CONTROL OF MOBILE ROBOT PLATFORM

By

STELLA LAU KUN SHII

FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programtii¢
in Partial Fulfillment of the Requirements
for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2011
by
Stella Lau Kun Shii, 2611

ii

CERTIFICATION OF APPROVAL

CONTROL OF MOBILE ROBOT PLATFORM

by

Stella Lau Kun Shii

A Final Report submiitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

%}.

ey
Mr Patrick Sebastian

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

May 2011

iil

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

W.

Stella Lau Kun Shii

iv

ABSTRACT

This report is meant to report everything that was done in the whole of Final
Year Project 1. First Chapter of the report states the detailed background study and
problem statement for this project. It also includes the objectives and scope of study
of this project. Second chapter of this report is literature review done for this project.
This includes the basic study and theory of mobile robot and its important parts such
as the DC motor. Third chapter records the methodology of this project including
both Final Year Project 1 and Final Year Project 2. Chapter includes the hardware
specifications and information of tools and software utilized in this project. Chapter
Four shows the schematic designs of this project and some elabotations of the
schematic designs. Chapter Five reports the hardware design of the project. This
includes some important parts such as the rotary encoder. Chapter Six shows the
firmware development of the project and some results from the firmware execution
while Chapter Seven gives some details on the problem faced throughout the course
of developing this mobile robots and solutions used to solve the problems. Lastly,
Chapter Eight concludes the project and gives some recommendations for further

study and improvements of the project.

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for His grace and guidance
through the whole course of this project development. His constant and unfailing
presence at times when things seemed impossible has been a great comfort and

encouragement.

Secondly, I would like to thank my supervisor, Mr Patrick Sebastian for all his
advices. From the very choosing of project title till the end of FYP1 and now to the
completion of FYP2, | thank him for the guidance that he had given. 1 am very
grateful for the space he has given me fo do this project on my pace but still give very
valuable suggestions at times I got stuck on a certain stage.

Next, I would like to thank the FYP committee for their hard work in
organizing the flow of both FYP1 and FYP2. Their constant reminder on e-learning
has been very useful and the dates set between each due dates are comfortable.

Last but not least, I'm grateful to a few faithful friends who had been -
tirelessly helped me with the testing of my prototypes, taking videos of the testing

over and over again into late nights.

vi

TABLE OF CONTENTS

ABSTRACTcoeereerrvcereiersesttrissssssassssssssesssssensensssas s msassssenonss shesessasssssssssssssssanssnses v
ACKNOWLEDGEMENTcoonimsnsiiessinersisastsniassossesssssssesssisssssssssssssasassans vi
LIST OF TABLEScoteierevsmtesssesnsassasssrssnsesssase srsssesesmsssssssss seomssssasasassenssasssstnsasessens i
LIST OF FIGURES.......cceittireeireesasinsirsosssssosssssessassissssssssnsssssisssensossassssassasssnsansassrsosasse 2
CHAPTER 1 INTRODUCTION ...cocoviirnnrnsimmmmrsmsisssinsssnssisosssssscsnasissssssssenss 3
1.1 Background of Study ...t 3

1.2 Problem Statementcccecreireeeinninssnisiesesecesnssssesessesnesesssans 3

1.3 Objectiveocevrrveernunns beerestensenservessnssesrroreeserhernetastonisasasesrernraresesaere 4

1.4 Final Year Project L....oreeiniencreeicreecrsesnesiesnnnsessssnssassssssssassassss 4

1.5 Final Year PrOJECt 2....crieninninniminsnssinmninssn s 5

1.6 SCOPE OF STUAY ..cvverrrrrerrrrnrsererani i srersss s ssssssssessstsaesssessenssseans 5

1.6.1 To carry out literature review on building of mobile robot 5

1.6.2 To Analyze Suitable Parts, Gear and Interface Device for this

PIOJECE v eriimcerseessisesticceesrnsecsassressastsesasasssaoenessssssnesanssseressnsnerens 6

1.6.3 To Analyze Suitable Tools and Software for Project Design.. 6
1.6.4 To Design a Main Circuit-Devices Connection...........cccvevvne. 6
1.6.5 To Build the Most Suitable Hardware for This Mobile Robot 6
1.6.6 To Write a Suitable Firmware to Run Every Part of This

Mobile RODOL......ooeceectrcccirecinncrcsssennccens s e rees e s sasassesssssessers 6

CHAPTER 2 LITERATURE REVIEWccveeurirnrnncscnrnssinirienenerinsesessssassesssossssessssrans 7
2.1 Basic Theory of Mobile RODOLSoceeverirveercnieceneceenressnsnnanernenes 7

2.2 Basic Theory of DC MOtOF.......ccccvvcrvcveeeivennernrensessssessssaeisesssseas 8

2.3 Basic Theory of Motor Driver........corecvvevvnnne erreerbesretssnnnennnas 9

CHAPTER 3 METHODOLOGY ..o cerenrneecnssssssssssssssssrssessssesssesssssresssssssns 10
3.1 Procedure IdentifiCationocoeiccesvensssnssnerscsesrnsssesenstesessesseensesne 10

3.2 Hardware SpeCifiCationvieeiereneinsnrcrereseesrnssssassasassssssasss 13

3.2.1 Tamiya Double GearboX........cccvreremrirsisiessvnrnasnrseenmsssserssnsess 13

3.2.2 L298 MOtOT DIIVEL..c.civiiiiiiicrecinrete s sesrertvanvenssessesnnses 13

3.2.3 ROLArY EACOAET .uucuicviiiisivinierinnsiencrinensssnerarsssarsansesesasessosesss 16

vii

3.3 Tools And Equipments Used...........ocemairnnnienriesecennnnnnenicscanens 17

3.3.1 Cytron’s USB ICSP PIC Programmer UICQ0A 17

3.3.2 Cadsoft Eagle Freeware.......ccoceeeininincrniincnessstinnsenscssenessnns 18

3.3.3 Custom Computer Service (CCS) C Compiler........cccerrevenee. 18

CHAPTER 4 SCHEMATIC DESIGN.........cciireritrrcssisinimensesesessosinsensassansoscstenns 19
4.1 Main Schematic Design.......cvericreescsnsesnessereacns .19

4.2 Main Circuit to Interface Device Desigh ..o ecarcnriesensosinisnses 20

CHAPTER 5 HARDWARE DESIGN........cceveerrmriesenscriasessisensastssssssisseresssassssarsssss 21
5.1 Voltage Regulator.........ccvvemreeiiiennnninecscsinrsnsissscsssssnsassssssinscons 21

5.2 Main Circuit serreriesbesetsesans sermssmvearbenes .21

5.3 Rotary ENCOder.....cocivintiinecrissiniisniiccnnmasenssirassesessonssssesensensaneas 22

CHAPTER 6 FIRMWARE DEVELOPMENTcocovnmrcemneesrersresesasseesresesssesenes 24
6.1 Pin Declarations . ererrases st s eren s as R sasassssraRarE s .. 24

6.2 DC MOtOL CONMIOLo.ecoemeeireacniaesrrerescssssesionsassesssssesssnsasessessasnses 25

6.3 LCD INput PIOMPL.....c.cocoeienrrrnmirenirrensacnsssessetsssassesssessersesnsessarssas 26

6.4 Storing Input Data..........cccmmeievmrmnimnsensmsesnsenssssesssssnsiosssnasensas 27

6.5 Keypad SCanning.........ovveeermeerermivsninssssssnsnsnssssesssssnsmarssnssensasssens 28

6.5.1 Row Scan.. O PO O 28

6.5.2 Column Scan........ SO 28

6.6 Firmware for Rotary Encoder (Going Straight)ceeviereeerernsn 30

6.7 Firmware for Rotary Encoder (Turning Left/Right)c.cceceueueee. 33

6.8 Combined Firmware...........ccccvarirnrnemcrnarenrmessssnmissenrssesemenessses 35

6.8.1 Firmware FIowchart..........ccooenriiieririneecsisnnensncssninenssseneas 35

6.8.2 Firmware DesCriptioncceeecvusuvreeescrermssessessrreessrnsssssinsasse 36

CHAPTER 7 PROBLEMS FACED AND SOLUTIONSc.oooiicerrrmeninressisisnes 39
7.1 Friction on Course Surface.....ccvvvecerrunnne. reossntacssenenbsans 39

- 7.1.1 Mobile robot not moving in straight line.........ccevvrriennennnne. 39

7.1.2 DC motor is eXhausted.c.occerrveenrinennnerernrsnererssssesens 39

7.1.3 Turning is iNACCUTALEcccveeevrecemrmrecsrevasasnesnenemsessaesesnrassesns 40

7.2 Insufficient Current Supplyccoeceeeceerereecreererenens .40

7.3 Circuit INStABIIIY ..c.cveveisersisissirrnsecrisiesiasesesresssessessacarasssmssnsesssases 41

viii

CHAPTER 8 RECOMMENDATION AND CONCLUSION ..o vnnnirinnnieneinisenrieen 42

8.1 RecOMMENAALIONScoveviernirereiesisisosssnsnesnssssmrasresssrnsanssessacsensssssass 42

8.1.1 Using Rotary Encoder with Higher Resolutionsccoo...... 42

8.1.2 Replacing Keypad Wires with Wireless Connections............ 42

8.1.3 Sensor to Avoid ObSLACIEccovrmmrcvameirisieniissenemsinirssssarsns 42

8.2 CONCIUSION.oovrenrerieresnnsenmrnsssessessestasssrsssansrssnesssarsssssssesnssnensssssess 43
REEFERENCES. ..1.esovrectessssssssssessesesssssssssssasssssseasssesessssessssssssssssseessnss v 44
APPENDICES. .. .ccvetitiriseerecsessessesesrassssssressasssnsssesssssisssssiabesssersasssssssssssssassssssnassossiass 45
Appendix A FULL FIRMWARE........covmnririrsevsiisnmincsssiisnnsiiineese 46

Appendix B Gantt chart(FYP1)...... rrereneesrsestanssebsessn s e b s b s 63

Appendix C Gantt chart(FYP2)......... rretseresassersnsssssessaes 64

X

LIST OF TABLES

.. 15
Table 2 DC MOtOr CONMTOL ..cuvvurrrreerirrerrrresressenseisisssesessessssesssssessssssesesssssessssssssesmnes 16
Table 3 Rotary Encoder Part DESCHPUON «........eveeeereeeeeeeeeeeeereseeeenesesressersenssesmssssens 17
Table 4 Keypad Pint CONIOL ..o ruruecuereeeeereeeeeecceeeeeeese s eeeeeesesee e see e 25

LIST OF FIGURES

Figure 1 Speed performance With PWM...........ccoooeiviiieeeeeneeeeeee et 8
Figure 2 Speed control With PWM......ccviiieieicrtseiesseceereenesensssesesssssesssenns 8
Figure 3 Tamiya Double GEarbOX.......cceuereruerieeisereies st eseseeseeseeesessessssesssssessees 13
Figure 4 L298 MOtOr ALiVeT ...c.ccvuveeeeeeeierieiereiteiee e ceesee e seeeeemsessessssssssenessesessesseanes 13
Figure 5 1L.298's full bridge drivers and its connections to DC motoroveeee...... 14
Figure 6 L298 pin dia@raml........cocoeoemreeivveerisneiiiecneeniseseasesconseseressesssssssssssssssssssssssssses 15
Figure 7 ROtArY ENCOART ...ceovveeeerriereeiec ettt sr et ees s s sssseessassesse s ssensns 16
Figure 8 Rotary Encoder Sensor BOATId...............u.euceveecmiiseosisecmsesesseesrseeesessessessesseens 17
Figure 9 Cytron USBFigure 8 ICSP PIC Programmer UICOOAovoveveeerereerann, 17
Figure 10 PIC - Motor Driver SChEmAticoevueeeeeeerreeereeseeessereeeeeeeseesssee o, 19
Figure 11 PIC - Keypad and LCD COnnections..............ceveeeeoseevmreesosrescereenessresssnonns 20
Figure 12 Soldered Voltage Regulator CIrcuit..........ovvevureeeeereemeereeeesreeesereseroenesesns 21
Figure 13 Assembled/Soldered main Circuitveeeeeeeeeeecreeeceeeeeereseees e 21
Figure 14 ROAry ERCOMET ..c.vvuervreererericeeceteise ettt amsesceres st st esesssens s 22
Figure 15 Rotary ENCOGET 2uouvrrreerrriert et esssessseseeseesmseessesesssessenns 23
Figure 16 Firmware excerpt showing pins declarations...............ooeeeeeveeveveevreesns s 24
Figure 17 LCD Pin InitialiZation.......coceevvvvenmuemerucieseesieceseseaseseesesesensessessesesesssesanes 25
Figure 18 DC Motor Control With PWMcoovureemreereeveeeeessseesseesersssssesssenons 26
Figure 19 LCD INPUt PIOMPLovurriirrnrrieerneieereeneretetecesesesseeeseesessesesessesssssesssssesens 26
Figure 20 Data SOrNEc.cvecueeeeiriernientesensesstenessssasesssessssessosesmossssssssesssessesesasssses 27
Figure 21 LCD DiSPIayccceueereriermrensenrsrinsrsseereesessesssssisssscossessrsessessessesessssesesiosseons 27
Figure 22 Keypad ROW SCANMING..........o.oueeeiiieeeeeeeee oo eeeeeee oo 28
Figure 23 Keypad Column SCanningeeueeeeureeciereceeccrneresseessessssssesseessessssns 28
Figure 24 Flowchart for keypad SCAnning.............oovoeeememreeeeeceeeeeeeereeseseesseses s 29
Figure 25 Firmware for rotary encoder (fOrward)........cooomeevereereseeeseeessesrsssssesnns 30
Figure 26 Flowchart for forward routine with rotary encoderoovvevreevererennnns. 31
Figure 27 Rotary encoder calibration.............cvoveureecmceeeee e ereeenssemesessessssesensssessnns 32
Figure 28 Firmware for turning left/right with rotary encoderoooovevevveevonnnn, 33
Figure 29 Flowchart for turn left/right routine.ocovoveeememeresereees oo 34
Figure 30 Full Firmware FIOWCHArtcvervcrueeecruereineeeseesesreceeeecneeeessseesessesessess s, 36

CHAPTER 1
INTRODUCTION

1.1 Backsround of Study

Looking at the toy industry today, one of the most commonly sold mobile
robots are the wireless remote controlled cars. These remote controlled mobile robots
simply respond the user through a control panel such as joystick, going in directions
and avoiding obstacles as the user directs. Therefore, there is little chance for

purchaser or user of controlling the mobile robots’ navigation program wise.

However, in this new age of technology, it is important to instill structured
thinking skills into children at young age, enhancing the development of problem
solving ability in them. A variety of how mobile robots could be played may help to

keep a child’s mind challenged and wanting for more,

1.2 Problem Statement

Children today are the leader and hope of the future. It is important to shape
their mind and character since young, to guide them to the right path and thinking.
Especially in the world today where technology plays a big role in human’s ﬁfe, it is
always good to get children to understand the fundamentals of technology. It is
crucial also not to let children take for granted the easy life they have thanks to
technology today. |

A remote controlled mobile robot can be very futi, and very satisfying to have
the car’s navigation under control. However, it is not very building to a child’s mind.
How well they perform on a track depends basically on hiw fast and how finite the

user’s fingers can control it.

At other times, in competitions involving these remote controlled cars, such as
the infamous RC Race, results depends heavily on how much money a person spends
on his car. The quality of his car’s gears and motors, the quality of the casing and the
wheels. This may build an unhealthy mindset in a child to keep asking for money
from parents for upgrades of their car, to keep up with the other players.

Therefore, an alternative has to be created to keep children playing it
constantly challenged to achieve a higher level, yet at the same time teaches them
some valuable principles in life besides developing their thinking skills.

1.3 Objective

The objective of this project is to build a controllable mobile robot platform.
This mobile robot will be able to understand simple inputs of commands or
- instructions, and executes it later after the commands are confirmed by the user.
Series of the instructions will be executed without human intervention. Results will
tell if the user, which in this project we targets the children, was able to give the
mobile robot sufficient or accurate instructions to perform required task or to get to

the destination from a starting point.

1.4 Final Year Project 1

Final Year Project is separated into two parts, completed over two semesters.
Final Year Project 1 is done on the first semester of final year study and Final Year
Project 2 is to be completed in the second semester. Each semesier has its own target

to meet.

The basic and foundations of the project was covered in Final Year Project 1.
Work done includes background of study, brief literature review on current
technology and toy industry. Then, suitable parts and components, including motor
type, microcontroller, appropriate rotary encoder and motor driver were selected.
Basic hardware was then assembled and firmware was written to test the functionality
of the hardware. Straightforward firmware was written to test the microcontroller’s
input/output pins and to find the right duty cycle of PWM(pulse width modulation) to

get the motor running,.

1.5 Final Year Project 2

Final year Project 2 includes drawing the schematic circuit to connect rotary
encoder, keypad and led display to main circuit. Choose the most suitable pins on the
microcontroller for the control of each application, and makes sure that sending or
receiving of signals will not be confused later. Considerations are later done on the
hardware of the project, on how the rotary encoder, keypad and led display should be
connected to the mobile robot. Separate testing firmware is written for each different
external device. Each rotary encoder, keypad and led display is tested with a
straightforward firmware to see if they work. Firmware is later developed to suit the

applications of this project.

1.6 Scope of Study

L6.1 To carry out literature review on building of mobile robot

A full understanding on how a basic mobile robot works is crucial in
designing a new one. Important parts such as the dc motor, the motor driver, the
mobile robot’s platform and the simplest algorithm of a mobile robot. Innovations can
only begin after understanding on how the foundation of mobile robot’s design

works.

1.6.2 To Analyze Suitable Parts, Gear and Interface Device for this Project

For the mobile robot to work efficiently, suitable parts and gears have to be
selected. To build a mobile robot with constant interface with user, suitable interface
device is needed for it to be more user friendly, eliminating any chance of frustration

when communicating with the mobile robot.

1.6.3 To Analyze Suitable Tools and Software for Project Design

For ease of designing, programming and debugging, the right software tools
have to be chosen to avoid the need of trouble occurring from the design software

itself.

1.6.4 To Design a Main Circuit-Devices Connection

Before having progress on the hardware, designs of pin connections for each
device have to be done carefully to make sure each pin is connected well to the
microcontroller and sending or receiving of control signal will not cause confusion to
any other devices. Things like microcontroller’s internal functions(ADC, PWM etc),
and compiler’s build in driver/functions are taken into considerations when choosing

pins for certain devices.

1.6.5 To Build the Most Suitable Hardware for This Mobile Robot

The basic hardware, main circuit with the robot motor, motor driver,
microcontroller and voltage regulator were built. Now, based on the further
developed schematic design, other control devices such as the rotary encoder and
keypad needs to be attached to the mobile robot, and it has to be carefully placed so
they would not disturb the rotary of the motor or the navigation of the mobile robot.

1.6.6 To Write a Suitable Firmware to Run Every Part of This Mobile Robot

Referring to the schematic designed, pins are initialized accordingly and
firmware is developed for the mobile robot to work as desired. A simple and
straightforward one is first written and further developed after each function is tested

to be working and successful.

CHAPTER 2
LITERATURE REVIEW

2.1 Basic Theory of Mobile Robots

Mobile robot is a type of robot with its own engine and power, enabling it to
move around its environment independently. To make this possible, the robot needs
to be able to travel or navigate in a range and accuracy depending on its navigational
ability. Navigational ability will vary between different types of mobile robots
depending on the size of the robot and the type of task it is meant to carry out. [1]

There are several types of mobile robot navigation. Below shows some of the

example;

The Line Followinig Robot, is a type of mobile robot that follows a visual line
painted or embedded in the floor. Most of these robots operate on a simple

"keep the line in the center sensor” algorithm.

Autonomous Robot, randomized or guarded. Autonomously Randomized
Robot bounce off walls, having simple algorithm of sense and turn into
another direction, in a certain degree. Autonomously Guarded Robot will have
a certain amount of information on where it should turn and has a certain goal

to achieve.

Manual Remote or Tele-op and Guarded Tele-op is what we know more
commonly as remote controlled car, A popular production in the toy industry.
Manual remote is our usual robot or car that is totally under control of a driver
with a joystick or other control device. Guarded Tele-op on the other hand has

the ability to sense and avoid obstacles but otherwise navigate as driven. [2]

2.2 Basic Theory of DC Motor

A direct current (DC) motor is a straight forward and simple electric motor
that uses electricity and a magnetic field to produce torque, which turns the motor.
This means that it generates torque directly from DC power supplied to the motor by
using internal commutation, stationary permanent magnets, and rotating electrical
magnets.

The speed of the DC motor is directly proportional the supply voltage. This
means that if the DC motor needs 9V to run at maximum speed, reducing the supply
voltage to 4.5V will also halve the DC motor’s speed. However, simply adjusting the
supply voltage to the DC motor to control its speed is inefficient. A better way would
be to switch the motor's supply on and off very quickly. If the switching is fast

enough, the motor doesn't notice it, it only notices the average effect.

Therefore, best way to control the DC motor with the microcontroller will be

with Pulse Width Modulation (PWM). Figure below shows the performance of DC
motor’s speed controlled by PWM.

250 + -+ 20
5 1 15 8
150 £

b -]

8 j 10>
v 100 4 f E
wh

50 5

0 0

Time

L—— Motor speed — Supply vnhag;]

Figure 1 Speed performance with PWM

From Figure 1, we can see that the average speed is around 150, although it
may vary a little. If the supply voltage is switched fast enough, it won’t have time to
change speed much, and the speed will be quite stable. To increase or decrease the
average speed depends on the PWM’s duty cycle. This is the principle of switch
mode speed control. Thus the speed is set by PWM — Pulse Width Modulation. [3]

2.3 Basic Theory of Motor Driver

Motor drivers are essentially current amplifiers, Their function is to take a
low-current control signal, and turn it into a proportionally higher-current signal that
can drive a motor. Besides driving the motor, a motor driver may includes functions
like manual or automatic means for starting and stopping the motor and selecting

forward or reverse rotation. [4]

CHAPTER 3
METHODOLOGY

3.1 Procedure Idéntification

Start

SN

Problem Identification

SN

Research and Literature
Review on suitable parts

U

Determine electronic parts
for the project

U

Design circuits for the project:

s Voltage regulator circuit
¢ L298 - DC motor circuit

e 1298 ~ PIC circuit

e PiCload program circuit

|l

Solder and assemble circuit,
assemble prototype

U

Test and debug circuit "

Circuit working fine?

10

I

Develop firmware flowchart

!

Develop DC motor firmware

U

Test and debug firmware

Firmware working?

Design pin connections for
rofary encoder

!

Attach rotary encoder to
mobile robot

{

Write firmware for control
of robot motor speed
through rotary encoder

Calibrate the firmware
parameters/modify the
firmware algorithm

Y

Does the firmware
works?

Does the firmwaré

Design pin connections for
keypad and Icd display

11

Write firmware for keypad

F 3

and lcd display, test them
out on pic simulator

iyl

Test firmware out on the
actual mobile robot

No

Firmware and hardware
working?

Prepare gamefield for
the mobile robot

Calibrate firmware | NQ
parameters or
sensitivities

Can mobile robot
complete task?

No

Can mobile robot
complete task?

Figure 2 Project Flowchart

12

3.2 Hardware Specification

3.2.1 Tamiya Double Gearbox

DC motor that was chosen for this project is the Tamiya Double Gearbox set,

shown in Figure below.

Figure 3 Tamiya Double Gearbox

Tamiya Double Gearbox is a compact unit with two independent motors and
gear trains. The possible gear ratio configurations are 12.7:1, 38:1, 115:1, and 344:1.

It works just like any DC motor as explained in the section before.

3.2.2 L298 Motor Driver

The motor driver chosen for this project is the 1298 motor driver, shown in

figure below.

Ehobaroirs L Wi SOLATTOTICS Sk ATy

Figure 4 L.298 motor driver

13

The L298 is an integrated monolithic circuit in a 15-lead Multiwatt and Power
S020 packages. For this project, the 15-lead Multiwatt 1.298 (as shown in Figure 1-2)

is chosen.

It is a high voltage, high current dual full-bridge driver designed to accept
standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and

stepping motors. In this project, L298 is used to drive the bidirectional DC motor.

Two enable inputs are provided to enable or disable the device independently
of the input signals. This means that L298 can controls two DC motor separately at

the same time,

Diagram of 1.298’s dual full bridge driver and its connections to DC motor is

as shown below. Pin descriptions can be found on the next page.

Tov
I

s
(ot
£
___.l‘;)._.
s
LI
ot z
Yy E e34]
Ll id LA
gy

ﬁ i

HE LIRGN

! L,
10 GUNIRTL d lﬁ 1
TIROUT '—J- —-r—mo

Figure 5 L298's full bridge drivers and its connections
to DC motor

14

Pin Fucntions

/

o

PN

—

E ' i Wuitiwamﬁ

CURRENT $ENSING B
CUTPUT 4

M CUTRUT 3

f2 2T iNeuT4

w T ENABLEB

—— Ty

ME— LOBIL SUPALY VOLTAGE Vg
A— 11

— NPT 2

ENABLE &

S IMFUTA

T SUPPLY VOLTAGE vy

3 m— SUTPUT 2

-

) B

L

) GUTPUT Y
N GURRENT SEMSING A

= N W A o 0 . I i O

TaB COHNECTED T4 PIN 8

Figure 6 L298 pin diagram

As stated earlier, the 1298 has two drivers that can drive two motors

separately. Therefore, there are two sets of similar pins on for each driver which we

may call driver A and driver B. To make matter more understandable, focus is made

on one of the driver, driver A for explanation of pin functions.

Referring to Figure 6,
Table 1 Pin Functions
Pin Number | Pin Name Functions
15 Current Sensing B | Control the current of the load
13,14 Output3, Output 4 | Outputs of bridge A, connected to motor to
drive the motor _
4 Vs Supply Voltage for Power Output Stages .
10,12 Input 3, Input 4 TTL Compatible inputs to bridge A, inpu't; from
8 GND l(:“'J‘Ircou.nd
9 VSS Supply Voltage for Logic Blocks :
11 Enable B Enable/ Disable bridge A (receives PWM from
PIC)

15

Inputs of PWM into Enable A will deterriine the speed of the motor, while
combinations of Input 1-Input 2 will determine rotation directions of the motor. How

the direction is controlled is shown in the table below. [5]

Table 2 DC motor control
Inputs Functions
Ven=H 1=H;2=L Forward
1=1;2=H Reverse
=2 Fast Motor Stop
Ven=1L C=X;D=X Free Running
Motor Stop
H = High
L =Low
X =Don’t care
1 =Input 1
2 =Input 2

3.2.3 Rotary Encoder

Cyirogss

WAW, Y TROMN. OO

Figure 7 Rotary Encoder

This rotary encoder comes with a sensor board and a slotted disc of eight
slots. Data of rotary motion is converted into a series of electrical pulses readable by

the controller.

16

Table 3 Rotary Encoder Part Description

Label Part Name Fucntion

A | Optical Sensor Detect missing slot of disc when the disc rotate,
further generate pulses at signal pin
B | +5V input supply +5V is should be connected to this pin

GND/ negative Should be connected to negative terminal of
supply supply

D | Signal Output/pulse | Signal output of sensor board. This pin is
output internally pulled up to 5V, thus no extra

component is needed for sensor to be connected
to controller.

E | LED indicator LED will on if the disc does not block the optical
sensor

3.3 Tools And Equipments Used

3.3.1 Cytron’s USB ICSP PIC Programmer UIC00A

Cytron USB ICSP PIC Programmer UIC00A is a PIC USB programmer able
to program popular Flash PIC MCU which includes PIC12F, PIC16F and PIC18F
family. It can also program 16bit PIC MCU.

Figure 9 Cytron USBFigure 8 ICSP PIC Programmer UIC00A

3.3.2 Cadsoft Eagle Freeware

Cadsoft Eagle is a tool used to design printed circuit board, PCB. It has three

main modules,

Layout Editor

maximurn drawing area 1.6 x 1.6m (64 x 64 inch)

resolution 1/10,600mm (0.1 micron)

up to 16 signal layers

conventional and SMT parts

comes with a full set of part libraries

easily create your own parts with the fully integrated library editor
undo/redo function for ANY editing command, to any depth
script files for batch command execution

copper pouring

cut and paste function for copying entire sections of a drawing
design rule check

interactive Follow-me Router (requires the Autorouter module)

Schematic Editor

» up to 999 sheets in one schematic

» electrical rule check

o gate and pinswap

» create a board from a schematic with a single command
Autorouter

¢ ripup&retry router
* up to 16 signal layers
» routing strategy driven by user definable cost factors

3.3.3 Custom Computer Service (CCS) C Compiler

CCS provides a complete integrated tool suite for developing and debugging
embedded applications running on Microchip PIC® MCUs and dsPIC® DSCs. The
heart of this development tools suite is the CCS intelligent code optimizing C
compiler which gives freedom to developers to concentrate on design functionality

instead of having to become an MCU architecture expert.

18

CHAPTER 4
SCHEMATIC DESIGN

4.1 Main Schematic Design

The most important part of the circuit is connections of the core components,
such as the voltage regulator, the connections between the PIC and the 1.298 motor

driver and connections for the programmer for loading firmware purposes.

. A I program
i FIC18RA82 —] mnotor driver
PP PGED] currernl serking
ace outpd §
[S—— Eaﬁ-' ‘UUE‘ cllpuild
JE—— [_BEd-input3 inpuls
] | RE3-encoder? wighing
. [| EBZ-1p:t2 il it
it | RA!-n ity = At
—BED | | RBO-encodgert & D
_REY] ARV DN iLput?
RE? VRS oneables
£ _4DD En? -
yEn oo i1
o 4 K RDA oulgul?
——mrd S HL/ Cllput
—— | RC7 cuiren! sensing A
eiablaB-PYAA RCA
enablinA PN REA
— BLD
oho RO E
R0 RDZ . Z_J‘_

Figure 10 PIC - Motor Driver schematic

Schematic above shows that motor driver will be driven/enabled by the PWM
output from the PIC. Each PWM will control one side of the motor driver which will
drive a DC motor each. Encoderl and Encoder2 are pins connected to the signal
output of the encoders, to receive input pulses from the encoders and to keep track of
‘the wheels’ rotations. Inputl, input2 and input3, input4 are connected to the motor
driver to determine the direction of the motor’s directions. Outputl, output? and
output3, output4 on the motor driver are connected to the DC motor itself, to drive

them.

19

4.2 Main Circuit to Interface Device Design

laad program

& PIC18FAS2 L]
PR
i e]
LCD ~RBEDQ |
controt | -.BEL_;
pins —RE2 |
VoD | RO7
V&S LBDE ~LCDI/
~LLKi] {RD: L
| | R4 RREDG KPDZ O WPDE KPR
— RC?-rowl gt i g LoD et
__PEA RCf-row RECE | RPRE [RFDE | KPDD
Pyl I DR RS D D))
RCA-rowt RRDF [P32 TRPDD [KPR
ol R0 B03.cnlt : il Ty B Y)
col AR RDZ-col? P PRPDE [RFDE
e s S? S

Figure 11 PIC - Keypad and LCD Connections

Figure above shows that the rows of the keypad are connected to pins RC4-
RC7 while the columns are connected to pins RDO-RD3. The rows are connected to
ground, giving high output alternatively one after another as means of scanning for

inputs.

Pins REQ, RE1 and RE2 are connected to the LCD display’s control pins
while pins RD4-RDS5 are connected as data output to LCD display.

20

CHAPTER §
HARDWARE DESIGN

5.1 Voltage Regulator

From 9V |

N

Figure 12 Soldered Voltage Regulator Circuit

One side of the VR has connector receiving 9V voltage from the main source
or battery. Another side of VR has single core wire connected to the main circuit to

provide main circuit and microcontroller with constant 5V.

5.2 Main Circuit

[Figure 13 Assembled/Soldered main circuit

21

Referring to Figure 13;

A = crystal oscillator, 4dMHz

B = master clear circuit

C = connector to programmer, USB ICSP PIC Programmer UIC00A

D = motor driver, ST L298

E = connector ports, connecting microcontroller’s input/output ports to other devices
or components via single core wire

F = microcontroller, PIC16F877A

Crystal oscillator determines the maximum speed the mobile robot can
operate. Master clear circuit comes with a master clear switch for manual restart of
program or the mobile robot itself at any time, even during execution. A connector to
program is soldered directly on the main circuit board so program or firmware can be
programmed directly to microcontroller without needing to take off and fix on the
microcontroller repetitively. Some connections between microcontroller and other
devices are currently temporal to allow changes made throughout the project

development.

5.3 Rotary Encoder

Figure 14 Rotary Encoder

The gear-plate used to trigger the sensor is placed on the shaft connecting the
motor gear and the wheel. Therefore, it will move in parallel to the wheel and send

signals to the microcontroller keeping track of wheel rotations.

22

WO © 7 .
Figure 15 Rotary Encoder 2
LED will light up when the sensor is blocked by the disc, and a low signal is

sent to the PIC. In contrary, when sensor is not blocked, LED does not light up and a

high signal is sent.

23

CHAPTER 6
FIRMWARE DEVELOPMENT

6.1 Pin Declaration

finclude <18F452 h:

ffifuses XT NOWDT, K NOPROTECT, NOLVP NOPUT NOBROWNOUT K NODEBUG

fluse delayiclock = 4000000) 24NMHz

#include "Ci\Documenta and Setcings\User\My Documents\Microcontroller\ lab4\Flexlcd2.c"

pln Aerine I1Ior a
#idefine coll PIN D3
#define col2 PIN D2
fdefine col3 PIN D1
#define col4 PIN_DO
#define rowl PIN C7
#idefine row2 PIN_C6
fidefine row3 PIN C5
f#idefine row4 PIN C4

kevnad
Kevpad

Pin define TOr motor

#fdefine inl PIN B1 //set B& to be outputl
#define in2 PIN B2 set B7 to be output?
#define in3 PIN B4 get B4 to be ou =
#idefine in4 PIN_BS set. BES to be output

pin cdefine for rotary encode
#define encoderl PIN BO
#idefine encoderZ PIN B3
#define max 255

Figure 16 Firmware excerpt showing pins declarations

As shown in figure above, inl and in2 determines direction of the motor
rotary on the right while in3 and in4 determines the rotary direction of motor on the
left. Encoderl is for receiving encoder signals on the right while encoder2 is for

receiving signals on the left.

Pin RD0 — RD3 are used to control the columns of the keypad while Pin RC4
— RD7 are for the control of keypad rows. Table below shows the keypad pin control.

24

Table 4 Keypad Pin Control

Row | Column | Key Represented Row | Column | Key Represented
1 1 1 3 1 7
1 2 2 3 2 8
1 3 3 3 3 B
1 4 F 3 4 D
2 1 Rl + 1 A
2 2 5 4 2 0
2 3 6 4 3 B
2 4 E -+ 4 C

#define LCD_DB4 PIN D4
fidefine LCD_DBS PIN_DS
#idefine LCD_DB6 PIN D6
fidefine LCD_DB? PIN D7

#define LCD_E PIN_EO
fidefine LCD RS PIN E1
#define LCD_RW PIN E2

[Figure 17 LCD Pin Initialization

Figure above shows the pin initialization for the LCD display. A built-in
driver of CCS is used for the LCD display application these initializations are done
on that separate source file.

6.2 DC Motor Control

Refering to Figure 15 again,

Inl = Input 1
In2 = Input 2
In3 = Input 3
In4 = Input 4

Combinations of Inl/In2 and In3/In4 determines if that particular motor rotates
forward or backward.

25

void forward (void)

set_pwmZ_ duty 12

set_pwml duty 120

output_high inl) :
output low in2
output_high in3) ;

void turn_right (void

set_pwmZ_duty 0) -
set_pwml duty 80)

output_high (inl
output_low(in2 :
output_high in3
output_low in4) :

void stop (void

set_pwm2_duty (0 :
set_pwml_duty (0 :
output_high inl) ;
output_high in2) ;
output_high iin3
output_high in4) :

output_low in4
void turn_left (void)

set_pwm2 duty (80) :
set_pwml duty (0
output_high (inl) :
output_low(in2) :
output_high (in3 :
output low in4, :

void reverse void)

set_pwm2_duty (100) ;
set_puwml duty 100
output_low inl
output_high in2) :
output_low (in3) ;
output_high in4) :

Figure 18 DC Motor Control with PWM

When mobile robot is in forward or reverse mode, both PWM are set to the
same duty cycle and changes in inl,in2 and in3,in4 will determine if the rotation of
the wheels are forward or backward. When the mobile robot needs to turn left, PWM
will have decreased or in this case, zero duty cycle on the left wheel. Bigger gap
between voltage high periods lowers the voltage resulting in lower speed in that DC
motor. Same thing applies to if mobile robot needs to turn to the right, PWM supplied
to the right driver/DC motor will be zero.

6.3 LCD Input Prompt

for (k=0D:k<200:k++
for (1=0:1<3:1++)

led gotoxyil,1):
led _putc ("Pls enter inscr™) :
lecd gotoxyi(1l,2):
led_putc ("& steps desired”);

led _gotoxy(1l,2):
lcd_putC>"\t”?‘

Figure 19 LCD Input Prompt

26

Figure 19 shows output that will be displayed on the LCD display upon power
on, prompting for user to key in their desired instructions(forward/reverse/left/right)

and the number of steps(1 step = 1 inch).

6.4 Storing Input Data

while key 13

key = 0
while (key 0

keypad
it (key == 10 key == 11 key == 12 || key 13 key 14 key 15 key == 16

store_instr [h] -key
h+

elase

store step/i)- key
o

delay ms 500
keypad lecd |
delay ms 1500 :

Figure 20 Data Storing

Figure 20 shows a loop for scanning user input. While (key==0) makes sure
that the firmware will keep scanning for keypad input until a ‘press’ is detected.
Keypad scanning is done by the keypad() function. Data received is then stored in the
store[] array and function keypad lcd() will display to users the instructions that had
been keyed in. The receiving and storing of input data will continue until key 13(A) is

pressed. Firmware will then continue to the next part.

SChModule
instes Forward

steEpsi
|~ Always On Top 5““ Close I
Figure 21 LCD Display

Figure 21 shows an example of how the LCD display will look like as user

keys in input of desired instructions and steps.

27

6.5 Keypad Scanning

6.5.1 Row Scan

void row_scan void)
switch k)
case 0: output_high rowl): break:
case 1: output_high row2): break:
case 2: output_high row3): break:
case 53: output_high row4): break:
Figure 22 Keypad Row Scanning

Figure 22 shows a switch case to determine which row to scan at one time.
The rows will be given high output alternatively, repeatedly and at the same time, the

column will also be scanned.

6.5.2 Column Scan

for (k=0: k<4: k++)
| row_scan
it (k == 0)
| if [input (coll)

hile (input (col

key = 1;
if (input (col2)

key = 2;

le {input (ccl?

if (input (col3)

if (input col4)

le (input | 14

key = 10;

delay ms (100) :
output_low rowl

Figure 23 Keypad Column Scanning

28

Figure 23 shows a firmware routine of scanning for column pressed. Since
only one row is given high output at a time, only the column in that row is given
consideration at the time. For example, as shown in Figure 21, when k=0 and the first
row is given high output, if any of the column in that row is pressed, that particular
PIC pin connected to the keypad will receive a high input. The high input received
will determine the key representation to be stored in the store[] array. At the end of
the routine, the row’s output will become low and the nest row will be given a high

output.

The commented whiles such as while(input(col1)) is to give an option for the
keypad press to be high-to-low edge triggered. This means that data will only be
received by the PIC once the key is let go.

Figure 24 shows a flowchart of the keypad scanning routine. The routine will
continue until key A (on keypad) or when key=13 is detected in the main function.

Start keypad
scanning

- k..__...O; ol

‘

» call row scan function

v

row[k+1] is given high
output

key is given a value
to be stored in later |—
part of firmware

Does any column
return high input?

Figure 24 Flowchart for keypad scanning

29

6.6 Firmware for Rotary Encoder (Going Straight)

void encoder (void) else if (countZ - gountl}
keypad lcdij: slight left | :
fnrward(j: delay ma{5);

¥

for (g=1;g-8tep+l;g++)
g slue
do ¢
1 forward:) :
if /input (sensor;)
}a_r:eak,: 1
if input (encoderl) | while|(countl < B s (count2< 91);
{
vhile [input encoderl}): i popuntl-count2)

countl = eountl + 1; {

keyEnl = wcountl:; countl = 1:

encoderl ledjj: count? = O

H keyEnl = countl:
if iinput (encoder?) ; encoderi led|;;

' keyEnz = count?:
vhile jinput jencoderl) | : apeader? led ! ;
count? = count2 + 1: : - '
keyEnZ = count?:

encoder2_led(] ; else if icountZ:countl)
' {

countl = (:
if (countl » count2) count? = 1:
v) kevEnl - countl:
slight_right encoderl lodi):
delay ms(5; keyEnZ = count2;:

b encoder? led!)

|
L

Figure 25 Firmware for rotary encoder (forward)

Figure 25 shows a firmware for the rotary encoder. Encoderl represents
encoder on the right while encoder2 represents encoder on the left. Whenever one
side rotates faster than the other by 1 count, the faster one will slow down for the
slower one to catch up. The turning used for going-forward calibrating is different
than the fulls top on one side turning because the abrupt stop on one side may cause
the mobile robot to off track on the other side. Therefore, functions stight right() and
slight_left() is used instead. These functions can be found in the full firmware in
APPENDIX A.

Flowchart on the next page shows how the forward routine in the firmware

above works, followed by some elaborations.

30

Display ‘forward’ to indicate current
instruction as moving forward

Execute forward() function

v
g=1

yes

Is the sensor alerted?

countl++ every time a high
signal is received by encoderl

count2++ every time a high
signal is received by encoder2

ey
2
h 4

updated encoder counts are
constantly displayed on LCD

Is count1>count?2?

slight_right(); [

slight left(); [

Adjust initial count values
for next while loop

no

Is g<step+1?

Figure 26 Flowchart for forward routine with rotary encoder

31

A full rotary gives 8 counts which is also equivalent to the distance of a step
defined for this mobile robot. As shown in the firmware in Figure 24, the DC motor
on each side will continue to rotate until both signal counts has reached 9. When the
counts reach a maximum of 60000, both counts will start from 0, to prevent any

confusion caused by register flow over.

The if(input(sensor)) is used to check for signals from sensor if mobile robot
happens to run into any obstacles. If obstacle is detected (sensor is triggered), then the
mobile robot will come to a stop, to prevent forcing forward against the obstacle

which may cause damage to the mobile robot.

Figure 27 Rotary
encoder calibration

Figure 27 shows how the rotary encoder is supposed to work. If the wheel
rotation on one side is too much faster than the other that it caused the mobile robot to
sway off line, the signals given by the rotary encoder is supposed to make the

firmware to self correct and the mobile robot is supposed to turn back into the line.

6.7 Firmware for Rotary Encoder (Turning Left/Right)

for (3=0: 3<h; F++)
i

key = store_instr[j]: it (key == 12]

motor_lcd () ; :

step = store_step(j]: for (g=1:g-step+l;g++;
i

it (key == 1%) do

{ {

1

£0r (g=1;F<Step+1; g+ if tinput (encoderl; |

i §

§ .

do while (input rencoderl;; ;

i countl = countl + 1;
if (input jencoder? | ; ¥

i keyEnl = countl:

while (input (encoder2;i) ; encoderl ledi;:
count? = count2 + 1; b

3 wvhileicountl = 3);
kevEn2 = gount?; countl = Q;

encoder2 ledi); ¥
%, 7‘
while countZ =« 9):

count? = O;

3
¥

Figure 28 Firmware for turning left/right with rotary encoder

Firmware in Figure 28 shows how the turning of the mobile robot is
calibrated. It has been tested that for the rotary encoder to send 8 signals, wheel
rotation is sufficient for the mobile robot to make a 45degree turn, Therefore, every
one step keyed in by the user represents a 45degree turn, and if the user desire for the
mobile robot to make a 90degree turn, at step: (2) has to be keyed in. Please refer to
flowchart in Figure 29 for better understanding,

33

=0
v

Extract instruction data from
store_instr()

Call motor_led() and execute
the chosen instruction

4

A

Extract number of steps from
store_step()

g1 Ts key=127 (turn lef})
v 0
count2++ every time a 108
—» high input is received by g=1
encoder2 until count2=9 ¢
countl++ every time a
count2=0: high input is.receivedr by [*
encoderl until count1=9
g+
count1=0;
Is g<step+1?
s g<step+ oit:
no

Is 1<h{num of instr)?

Figure 29 Flowchart for turn left/right routine

Count condition for both right and left wheel is different because time taken
for the DC motor to stop after reaching the condition is slightly different. Therefore,
for the wheel that takes a little more time to stop, the ¢ondition is 1 count less than the

other, to balance the turning result.

34

6.8 Combined Firmware

6.8.1 Firmware Flowchart

Define pins for keypad, motor driver,
rotary encoder, sensors and LCD
display

Declare variable types and sub-
functions

Set up ports for PWM

3

LLCD display prompts user to

key in inputs of instruction

h
Receives instruction and numbe
of steps keyed in by user

Y

Data stored in array;

Store_instr[] if it is instruction input
and store_step[] if it is step input

A
LCD display will display
the instructions and step:
that have been keyed in

no
Instructions confirmed?

yes

Execute instructions in keyed in
order

Extract stored data and use them
to activate routine in motor led()

v

35

:

After executing program lines in
motor_led();

If (key=10); enter encoder()
function

If (key=12); adjust turning left
with encoder! counts

If (key=16); adjust turning left
with encoder? counts

yes

Is the sensor alerted?

L

Mobile robot
comes to a stop

no

Are the instructions all
executed?

yes
CD display prompt for Goes back to
input of new set of receiving set of
instructions instructions for
execution

Figure 30 Full Firmware Flowchart

6.8.2 Firmware Description

Referring to the firmware shown in APPPENDIX A, below are detailed
description of the flow of the firmware. Numberings on the side of the firmware is

meant for the ease of reference in the discussions of the firmware that follows.

From line 8 to line 21, it shows the pin declarations for keypad matrix,
encoders and motor drivers. From line 27 to line 28, it declares the datatype for
variables used in the firmware. Store_instr[30] is used to store the input instructions
while store_step[30] is used to store the input steps. Array shows that it can store up

to 30 insrtuctions. From line 30 to line 40, it shows the declarations of ﬁmctioné of

36

sub functions existing in the firmware, that will be called from time to time by the
main function to execute specific task or read external input signals. From line 52 to
line 60, it shows the port setups for timer for PWM and also shows that the initial
duty cycle for both PWM is set to zero(0). Line 62 shows the initialization function
for LCD display.

Line 67 to 78 will result in the LCD display showing “Pls enter instr & steps
desired” as a prompt to the user to key in the desired set of instructions and steps for
the instructions. Instructions that the users can key in include forward, reverse, left
and right, and the steps available range from one to nine. Each step represents one
inch of distance for forward and reverse while one step for turning right and left
represents 45 degree turning. Therefore, to make a 90 degree turning, user will have
to key in 2 steps for after keying in turn left or turn right.

Line 89 to 112 shows the reading of data from the keypad. Scanning of
keypad (done by function keypad()) will be done continuously as long as value in key
is 0, indicating that no key has been pressed. Once a key is pressed by the user,
firmware will check if it belongs to a instruction key or a step key. If it is either, 10,
11, 12, 14, 15 or 16, the data will be stored into store instr[h] as an instruction while
if the key pressed is neither of those above, the data will be stored in store_step[i] as a
step. For each instructions and steps keyed in, the LCD display will display the steps
that was keyed in. This is done with the keypad_lcd() function. After keying in a set
of instruction and step, user can continue to key in new instructions until key A(13) is
pressed indicating the user has confirmed the set of instructions wanted. Firmware

will then jump out of the (while(key==0)) loop to continue to the next instruction.

Line 121 to 125 will have the LCD display showing the user “Execute instr
from the start” indicating that the mobile robot will now execute the series of

instructions.

Values in the register storing signal data from rotary encoder is first cleared.
Data from store_instr[] and store_steps[] are extracted. Data from store_instr[] will be
used by function motor_lcd to activate the DC motor. Data from store_step[] is used

to determine the duration each instruction is executed, thus determine the distance or

37

the turning angle for each instruction. All these are controlled by commands from line
144 to line 284. How far the mobile robot moves at 1 step is controlled by the signals
received from the rotary encoder as explained in the sub-function sections earlier.
After each instruction is executed, the mobile robot will stop for a short while to
prevent messy navigation or error caused by uneven stopping and starting time by

each wheel or DC motor.

How the keypad(), keypad_lcd(), row_scan(), forward(), reverse(), turn_left(),
turn_right(), stop(), and encoder() functions works has been explained in the sections
before this. One changes made in the encoder() function is the threshold for the
firmware to detect mobile robot not moving in a straight line. Margin of 15 counts
have been reduced to just 1 count as the firmware have proved to respond fast enough

in this small and sensitive change or difference in the wheel rotations.

38

CHAPTER 7
PROBLEMS FACED AND SOLUTIONS

7.1 Friction on Course Surface

On the initial state of prototype testing, it was done mainly on tiled floor
where the surface is smooth. For accuracy purpose, PWM duty cycle is lowered so
signal reading from rotary encoder and respond can be done smoothly. However,
when the mobile robot was tested out in the lab where the floor surface is course, it

ceases to work. Two problems arise from this.

7.1.1 Mobile robot not moving in straight line

Most of the time, only one of the DC motor will rotate, causing the mobile
robot to run off course or that huge calibration is needed for the mobile robot to get
back on the track. As the PWM duty cycle is increased, even though both motor can
rotate when the mobile robot is placed on the floor, it’s moving too fast that the wheel

calibration to stay in a straight line became a challenge.

7.1.2 DC motor is exhausted

Due to the need to overcome friction, current supplied to the DC motor is
increased. Even though it results in the rotation of the DC motor, however, the
increased current exhaust the DC motor as in a short time, some smell is detected
from the DC motor. Therefore, it is not a good idea at all to increase the supply of

current to the DC motor.

To solve this problem, wheels are changed. The mobile robot is initially
attached with soft rubber wheels with air inside aiming to absorb any bumpiness on
travelled surface. However, due to the friction problem, the wheel is changed to a

hard rubber wheel. This reduces greatly the friction absorbed by the wheel.

39

7.1.3 Turning is inaccurate

The difference of friction on various surface also caused the previous
firmware to not work accurately when it comes to turning. Previously, turning was
made based on delays, and even though the time of delay was calibrated for it to turn
nicely at wanted angle, once the surface friction is different, the turning angle was
also affected.

To solve this problem, firmware was modified to use the signals from the
rotary encoder as a guide to how much the mobile robot tums. No matter how fast or
how slow the wheel rotates, the signals from the rotary encoder will not vary and

thus, the turning became more accurate.

7.2 Insufficient Current Supply

At initial state of combining the applications of the mobile robot, even though
the user interface and command execution works fine separately, when they are
combined, things became uncontroilable. LCD display will show trigger error, where

instructions and steps will appear without the keypad being pressed.

Later, it is found out that the current supplied to the circuit became
insufficient when the voltage source has to supply to both the circuit (including LCD
display) and the DC motor. This causes the circuit to not work properly. At the same

time, values of the pulled-down resistor used by the keypad was also too large.

Therefore, to solve the probiem, the resistors were changed to a smaller value.
Then, the source supplied to the circuit is separated. A 9-volt battery is supplied to the
circuit’s voltage regulator for the use of the circuit while the the DC motor is supplied

with a different power supply.

40

7.3 Circuit Instability

The circuit is sometimes instable due to amateur wiring and soldering.
Sometimes, the turning and moving of the mobile robot from places to places also

caused the connections to come loose.

To solve this problem, the circuit has to be constantly tested and debugged to

ensure that it is in working condition.

41

CHAPTER 8
RECOMMENDATION AND CONCLUSION

8.1 Recommendations

8.1.1 Using Rotary Encoder with Higher Resolutions

Rotary encoder with higher resolutions can increase the accuracy of the
mobile robot’s navigations. For example, the signal counts for a 45degree tumn is
supposedly 7.5 and 90degree is actually 15. However, due to low resolution, the
condition was set to be 8 counts for 45degree turn. Even though it is quite accurate,
for 45degree turn and 90degree turn, as the engle of turning increase, the inaccuracy
will become more apparent. If the rotary encoder’s resolution is increased by 100%,

the condition for a turn of 45degree can be set to 15 and 90degree to 30 and etc.

8.1.2 Replacing Keypad Wires with Wireless Connections

Improvements can also be made that the mobile robot can receive instructions
from the keypad via wireless. It solves the matter of messy connections altogether and
it also makes the end product to be more attractive and gives a more high technology

packaging to the consumers.

8.1.3 Sensor to Avoid Obstacle

A sensor can be installed in front of the mobile robot as a safety measure. This
sensor will act as indicator of obstacle approaching so the mobile robot will stop
advancing even if it was programmed to do so. This will help to ensure mobile robot

does not damage from repetitive crush into walls or obstacles.

42

8.2 Conclasion

This project is developed with the hope to provide an alternative to the toy
industry, as a more challenging mobile toy to the young children where children can
exercise their brain when they play. This project has completed the basis needed for a
mobile robot such as this to function. It can prompt for input, it can receive input
from users, it reads and retrieves instructions or data stored and then execute it to

perform a task or to reach a destination.

However, for the mobile robot to be more marketable, it still needs other
enhancements and improvements such as the recommendations mentioned in the
previous page. Besides those, outlook of the mobile robot is also very important. That
the circuit should be hidden, the casing should look attractive, the keypad should look

modem and etc.

For the mobile robot to look more attractive, more technologies should be
instilled. For example, the LCD display should be replaced with a colored LCD
screen that is thin and sleek and there should be lightings or sounds as the mobile

robot executes its command.

43

REFERENCES

. http://www.robots.com/glossary.php
. http://en.wikipedia.org/wiki/Mobile_robot

3. http://homepages.which.net/~paul.hills/SpeedControl/SpeedControliersBody.h

tml
. http://www?2 renesas.com/motor_driver/en/motor_drv_info.himl

5. ST L298 motor driver datasheet,

http://www.st.com/stonline/books/pdf/docs/1773.pdf

DRG] SN W LN —

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

APPENDIX A
FULL FIRMWARE

#include <18F452.h>
#fuses XT,NOWDT,NOPROTECT,NOLVP,NOPUT,NOBROWNOUT ,NODEBUG
#use delay(clock = 4000000)

#include "C:\Documents and Settings\User\My Documents\Past
semesters\Microcontroller\lab4\Flexled2.¢"

/fpin define for keypad
#define coll PIN_DO
#define col2 PIN_DI
#define col3 PIN_D2
#define cold4 PIN_D3
#define row! PIN_C4
#define row2 PIN_C5
#define row3 PIN_C6
#define row4 PIN_C7

#define inl PIN_B1 //set B6 to be outputl
#define in2 PIN_B2 //set B7 to be output2
#define in3 PIN_B4 //set B4 to be output3
#define ind4 PIN_B5 //set BS to be outputd

#define encoderl PIN_B0
#define encoder2 PIN_B3
#define max 60000

#define sensor PIN_C3

int key, keyEnl, keyEn2, step, g, h, i, j, k, L, m;
int store_instr[30], store step]30);

void keypad(void);

void keypad _lcd(void);
void motor_led(void);
void row_scan(void);
void encoderl_lcd{void);
void encoder?_led(void);

void encoder(void);
void reverse(void);
void turn_left(void);
void turn_right(void),
void slight_left(void);
void slight_right(void);
void forward(void);
void stop(void);

int16 countl,count?, f

46

49 void main(void){

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
31
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
08
99
100
101
102
103

set_tris_a(0x00);
set_tris_c(0x08);
set_tris_d(0xO0F);
set_tris_b(0xC9);
set_tris_e(0x0);

setup_timer 2(T2_DIV_BY 1,255,1); //postscaler=1, prescaler=1, PR = 255
enable_interrupts(INT_TIMER2); //enable interrupt for Timer2
enable_interrupts(global); /lenabling interrupts

setup_ccpl(CCP_PWM); //set PIN_C2 to be in PWM mode
set_pwml_duty(0);

setup_ccp2(CCP_PWM); //set PIN_CI to be in PWM mode
set pwm2_duty(0);

led_init();

for (k=0;k<200;k++)

{
for (I=0;1<3;1++)

{

led_gotoxy(1,1);
lcd_pute("Pis enter instr");
led_gotoxy(1,2);

fed pute("& steps desired");
3

t
led_gotoxy(1,2);

led_pute("™\f");

while(1)

{

stop();
led_gotoxy(1,1);
led_putc("instr:");
led gotoxy(1,2);
led_putc("steps:");

h=0;

i=0

key =0;

while(key !=13)

{

key =0;
whiie (key = 0)
{
keypad();

}
if (key == 10| key == 11 || key = 12 || key = 13 || key = 14 | key = 15 ||
key = 16)

47

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

{
store_instr{h}=key;
h++;

}

else

{

store_step[i]= key;
i+

H

delay_ms(500);
keypad_lfed();
delay ms(1500);

}

led_gotoxy(1,2);
fcd putc("™f™),

key=h-1;
keypad lcd();
delay_ms(1000);

led_gotoxy(1,1);
led_putc("Execute instr');
led gotoxy(1,2);
led_pute("from the start");
delay_ms(3000);

led_gotoxy(1,2);
led_putc(™f");

led_gotoxy(1,1);
led_putc("instr:");
led_gotoxy(1,2);
led putc("steps:");

countl = (;
count2 = (1

for (j=0; j<h; j++)
{

key = store_instr([j};
motor_lcd();
step = store_step[i]:

if (key == 10)
{
keypad_lcd();
forward();

for(g=1;g<stept1;gt++)
{
do
{
if (input(sensor))
break;
if(input(encoder1))

48

160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
17¢
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

{
while(input(encoderl));
countl = countl + 1;
keyEnl = countl;
encoderl _led();
}

if(input(encoder2))
{
while(input(encoder2));
count? = count2 + ;
keyEn2 = count2;
encoder?_led();
¥

if (countl > count2)
{

slight_right();
delay_ms(5);

}

else if (count2 > countl)

{
slight_left();
delay _ms(5);
3

else

{
forward();
}

h
while((count] < 9) && (count2< 9));

if{count! <count2)
{

countl =1;
count2 = 0;
keyEnl = countl;
encoderl_lcd();
keyEn2 = count2;
encoder2_lcd();

i

else if{count2<countl)
{

count]l ={;

count2 = 1;

keyEn! = countl;
encoderl led();
keyEn2 = count2;
encoder2_lcd();

}

else if(countl==count2)

{

countt = 0;

49

216 count? =0;

217 keyEnl = countl;

218 encoderl_lcd();

219 keyEn2 = count2;

220 encoder2_lcd();

221 }

222

223 key=g;

224 keypad_lcd();

225)

226 }

227

228 else if(key == 12 || key == 16 || key = 11)
229 {

230 countl = 0;

231 countZ = (J;

232 motor_led();

233 step = store_step[j];
234 H

235

236 if(key == 11)

237 {

238 for(g=1;g<step+1;g++)
239 {

240 key = g;

241 keypad_led();

242 delay _ms(700);

243 }

244 }

245

246 if (key = 16)

247 {

248 for(g=1;g<step+1;g++)
249 {

250 do

251 {

252 if(input(encoder2))
253 {

254 while(input(encoder2));
255 count2 = count2 + 1;
256 }

257 keyEn2 = count2;
258 encoder2_lcd();

259 }

260 while(count2 < 9);
261 count2 = 0;

262 }

263 }

264 key = store_instr{j];
265

266 if (key == 12)

267 {

268 for(g=1;g<step+1;g++)
269 {

270 do

271 {

50

272 if(input(encoder1))
273 {

274 while(input(encoder1));
275 countl = count] + 1;
276 H

277 keyEnl = countl;
278 encoder! _led();

279 }

280 while(count] < 8);
281 countl = (;

282 }

283 H

284 key = store_instr(j];
285

286 stop();

287 delay_ms(1000);
288 }

289 lcd_gotoxy(l,2);
290 led_pute("™f™);

291

292 lcd_gotoxy(l1,1);

293 lcd_pute("Pls key in new");

294 lcd_gotoxy(1,2);
295 lcd pute("instr & steps™);
296 delay_ms(3000);
297

298 led_gotoxy(1,2),
299 led_pute("™f™);
300 !

401

402}

403

404 void keypad(void)
405 {

406 m=0;

407 for(k=0; k<4; k++)
408 {

409 row_scan();

410

411 if(k=0)

412 ¢

413 if (input(coll))
414 {

415 key=1;
416 }

417

418 if (input(col2))
419 {

420 key=2;
421 }

422

423 if (input{col3))
424 {

425 key = 3;
426 }

427

51

428 if (input(coi4))
429 {

430 key = 10;
431 }

432

433 delay _ms(10};
434 output_Jow(rowl),
435 }

436

437 if(k==1)
438 {

439 if (input{coll})
440 {

441 key =4
442 3

443

444 if (input(col2))
445 {

446 key=S5;
447 3}

448

449 if (input(col3))
450 {

451 key=6;

452 }

453

454 if (input(cold))
455

456 key=11;

457 }

458 delay_ms(10);
459 output_low(row2);
460 }

461

462 if(k=2)
463 {

464 if (input(coll))
465 {

466 key=7;
467 }

468

469 if (input(col2))
470 {

4711 key=8§;

472 }

473

474 if (input(col3))
475 {

476 key=9;

477 }

478

479 if (input{cold))
480 {

481 key=12;
482 1}

483 delay_ms(10);

484 output_low(row3);
485 }

486

487

488 if (k==13)

489

480 if (input{(coll))
491

492 key=13;

493 }

494

495 if (input(col2))
496 {

497 key = 14;

498 }

499

500 if (input{col3))
501 ¢

502 key=15;

503 }

504

505 if (input(col4))
506 {

507 key=16;

508 }

509 delay_ms(10)
510 output_low({row4);
211

512 }

513 }

514

515 }

516

517 void row_scan(void)
518 §

519 switch(k)

520 {

521 case 0: output_high(row1); break;
522 case I: output_high(row2); break;
523 case 2: output_high(row3); break;
524 case 3: output_high(row4); break;

325 1}

526 }

527

528 void keypad_lcd(void)
529 {

536 switch(key)

531 §

532 case (-

533 {

534 break;

535 h

536 case 1:

537 {n

538 led_gotoxy(7,2);
539 led_putc("1™);

53

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
356
557
358
559
560
561
562
563
264
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
599
500
601
602
603
604
605

break;
}

case 2:

{112
led_gotoxy(7,2);
led putc("2™),
break;

}

case 3:

{ /73
led_gotoxy(7,2);
led putc("3");
break;

}

case 10:

{ //F
led_gotoxy(7,1);
led_putc(” ")
led_gotoxy(7,1);
led_pute("forward");
led_gotoxy(7,2);
led_pute(" ");
break;

¥

case 4:

{ //4
led_gotoxy(7,2);
led_putc("4"),
break;

3

case 5:

§ 15
led_gotoxy(7,2);
led pute("5");
break;

¥

case 6:

{ /76
led gotoxy(7,2);
led_pute("6");
break;

}

case t1:

{ /E
led_gotoxy(7,1);
led pute(" ")
led_gotoxy(7,1);
led_putc("reverse™);
led gotoxy(7,2);
led_pute(" ");
break;

}

case 7:

{ /7

lcd_gotoxy(7.2);

4

606
607
608
609
610
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
638
659
660
661
662
663
664
665
666
667
668
669
670
671

led _pute("7");
break;
}

case 8:

{//8
led_gotoxy(7,2);
led_putc("8");
break;

}

case 9;

{119
led gotoxy(7,2);
led_putc(™9™);
break;

}

case 12:

{/D
led_gotoxy(7,1);
led_pute(™ "),
led_gotoxy(7,1);
led_putce("lefi");
led gotoxy(7,2);
led pute("");
break;

}

case 13:

{ /A
led_gotoxy(7,1);
led_pute(™ ")
led_gotoxy(7,1};
fed_pute("A");
led_gotoxy(7,2);
led_putc(" ");
break;

}

case 14:

{110
led gotoxy(7,2);
led_pute("0");
break;

}

case 15:

{//B
led_gotoxy(7,2);
led_pute("B");
break;

}

case 16:

{ /1C
led_gotoxy(7,1);
led_pute(" ™)
led gotoxy(7,1);
led_pute("right™);
led_gotoxy(7,2);
fed_pute(" "),
break;

35

672)

673 }

674}

675

676 void motor_lcd(void)
677 {

678 switch(key)

679 {

680 case 11:

681 { /E

682 fed_gotoxy(7,1);
683 led_pute(" ");
684 led_gotoxy(7,1);
685 led_putc("reverse");
686 lcd_gotoxy(7,2);
687 fed_pute(" ");
688 reverse();

689 delay _ms(10);
690 break;

691 }

692

693 case 12:

694 {//D

695 led_gotoxy(7,1);
696 led_pute(” ")
697 led_gotoxy(7,1);
698 led_pute("left™);
699 ted_gotoxy(7,2);
700 led_pute(" ");
711 turn_left();

712 delay _ms(10);
713 break;

714 }

715 case 13:

716 {//A

717 Ied_gotoxy(7,1);
718 led_pute(" ")
719 led gotoxy(7,1);
720 led_putc("A");
721 break;

722 }

723 case 14:

724 {10

725 led_gotoxy(7,2);
726 led_pute("0™);
727 break;

728 }

729 case 15:

730 {//B

731 led_gotoxy(7.2);
732 led_pute("B");
733 break;

734 }

735 case 16:

736 {/IC

737 led_gotoxy(7,1);

56

738 led_pute(" ")

739 led_gotoxy(7,1);
740 led_pute("right");
741 led gotoxy(7,2),
742 led_pute(" ");
743 turn_right();
744 delay ms(10);
745 break;

746 }

747 }

748}

749

750

751 void forward(void)

752 §

753

754 set_pwm2_duty(115);
755 set_pwml_duty(115);
756 output_high(inl);
757 output_low(in2);
758 output_high(in3);
759 output_low(ind);
760}

761

762 void reverse(void)

763 {

764 set_pwm2_duty(85);
765 set_pwml_duty(85);
766 output low(inl);
767 output_high(in2);
768 output_low(in3);
769 output_high(ind);
770}

771

772 void turn_right(void)
773 {

774 set_pwm2_duty(95);
775 set_pwml_duty(0);
776 output_high(inl);
777 output low(in2);
778 output_high(in3);
779 output_low(ind);
780}

781

782void slight_right(void)
783 {

784 set_pwm2_duty(85);
785 set pwml_duty(110);
786 output_high(inl);
787 output_low(in2);
788 output_high(in3);
789 output_low(ind);
790 }

791

792 void turn_left(void)
793 {

57

794 set pwm2 duty(0);
795 set_pwml_duty(95);
796 output_high{inl);
797 output_low(in2),
798 output_high(in3);
799 output_low(ind);
800 }

811

812 void slight_left(void)
813

814 set pwm2 duty(110);
815 set_pwml duty(80);
816 output_high(inl);
817 output_low(in2);
818 output_high(in3);
819 output_low(ind);
320}

821

822void stop(void)

823

824 set_pwm?2_duty(0);
825 set_pwml_duty(0);
826 oufput_high(in1);
827 output_high(in2);
828 output_high(in3),
829 output_high(in4);

830}

831

832void encoder{void)

833{

834 keypad_lcd()

835 forward();

836

837 for(g=1;g<step+l;gt++)
838 {

839 do

840 {

841 if (input(sensor))

842 break;

343 if{input(encoderl))
844

845 while(input(encoderl));
846 countl = countt + 1;
847 keyEnl = counti;
848 encoderl_led();

849 }

850 if(input(encoder2))
851 {

852 while(input(encoder2));
853 couni2 = count2 + 1;
854 keyEn2 = count2;
855 encoder?_led();

856 }

857

858 if (count1 > count2)
859 {

58

860
861
862
863
364
865
866
867
868
369
870
871
872
373
874
875
876

87T

878
879
880
881
382
383
884
885
886
887
888
889
890

891 .

892

893

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

910}

911

slight_right();
delay _ms(5);

H

eise if (count2 > countl)

{
slight_lefi();
delay_ms(5);

else

{
forward(};
¥

}
while((count1 < 9) && (count2< 9));

if{count] <count2)
{

count] = 1;
count2 = {);
keyEn! = countl;
encoder]_lcd();
keyEn2 = count2;
encoder led();

}

else if{count2<countl)
{

countl = 0;

count2 = 1;

keyEnl = countl;
encoderl_lcd();
keyEn2 = count2;
encoder2 led();

h

else if(countl==count2)
{

count] = 0;

count2 = (;

keyEnl = countl;
encoderl_led();

keyEn2 = count2;
encoder2_led();

}

key = g;
keypad_led();
}

912 void encoderl_lcd(void)

913 {

914 switch(keyEnl)

915 {

39

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

case O
{
break;
}

case 1:
{n
led gotoxy{10,2);
led_pute(1");
break;
}
case 2:

{12
led_gotoxy(10,2);
led_pute("2"),
break;

i

case 3:

{13
led_gotoxy(10,2);
led putc("3™);
break;

}

case 4:

{ /14
led_gotoxy(10,2);
led_pute("4™;
break;

}

case 5:

{ 115
led_gotoxy(10,2);
led_pute("5");
break;

}

case 6:
{ /16
led _gotoxy(10,2);
led putc("6™);
break;
}

case 7;

{1
led_gotoxy(10,2);
led_pute("7");
break;

}

case 8:
{18
led _gotoxy(10,2);
Icd_pute("8");
break;

i

case 9:
{/19

60

972
973
974
975
976 }
977}
978

led gotoxy(10,2);
led_pute("9™);
break;

}

979void encoder2_lcd(void)

980{

981 switch(keyEn2)

982 {
983
984
985
986
987
088
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1011
1012
1013
1014
1015
1016
1017
10138
1019
1020
1021
1022
1023
1024
1025
1026
1027

case 0:

{
break;

¥

case 1:

{n
led_gotoxy(13,2);
led_putc("1");
break;

h

case 2:

{12
led_gotoxy(13,2);
led putc("2™);
break;

h

case 3:

{13
led_gotoxy(13,2);
fed putc("3");
break;

}

case 4:

{ /4
led _gotoxy(13,2);
led_putc("4™);
break;

h

case J;

{ /15
led_gotoxy(13,2);
led_pute("5™);
break;

}

case 6.

{ /6
led_gotoxy(13,2);
led_pute("6"};
break;

}

case 7:

{117

led_gotoxy(13.2);

61

1028 led_pute("7");

1029 break;

1020 }

1031 case 8:

1032 {1/8

1033 Ied_gotoxy(13,2);
1034 led_pute("8");
1035 break;

1036 }

1037 case 9:

1038 {19

1039 led_gotoxy(13,2);
1040 lcd_pute("9");
1041 break;

1042 }

1043 }

1044}

62

€9

Fi

£l

(4}

Il

01

Mid-semester Break

uonejusaly [e10

woday wuouy

dIeMpIey UO PA]Sd) dIEMWIIT] e
aremu,] xojouw D dopoaa(

weyomolj aremunty dopaaa(g

reurag 10afoig

woday ssardoig

1NOIId Sngap pue 183

adfy0101d a1quuassy
JINDIID J[qUIASSE puUR JOP[OS

yoday Areururjaig

symaxd 1aafoid uBisag

s103(01d 10 syred oTUONDA[2 AUTULIDND(»
sued J[qe)Ins UO MIIAI INJBISNI] PUE YOIBasdy

o1doy noge ssnoasip pue Josiazadng yim 199N

HPMVSEL

uoday [eoruyoa],
Hoday feurf

14!

£l

(4!

4!

01

Mid-semester Break

Bunsa) adfyo101g

poday yeiq [eutg

3ui83nqop pue 3unsa) aremuLiy

103f01d ajoym 10j aremuLIyy Jo sured [[e suIqUIO))

woday ssardoig

3u133ngap pue Sunsa) aremuLil]

Aepdsip D71 e
pediay e
sued arempirey mau 10J Juatudo[aAap aremuLIl]

onewayos pajepdn Joj A[qUIASSE dIeMpIEl]

SIO1AQ(] 20BJIAU] Jas() JOJ UBISI(] dNBWAYIS

I9POOUD AIR]01 10 UOTIRIQI[ED pue Sur)Sd) IBAMULIL]

Iapooud
A1e101 woly speudis Fuipeal 10§ Juowido[aAdp SIBMULIT]

JuawIyor)Ie 19p0dUd Aoy

PR WSEL

