CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MOHD AZMI BIN MOHD DZAKI

Mechanical Engineering

ABSTRACT

As the title in this project suggests, this project is mainly about using plasma gasification to produce gaseous fuels from waste biomass. The waste biomass referred here is the waste biomass that comes from oil palm plantation. Being one the world largest producer of palm oil, Malaysia generates a huge quantity of oil palm biomass. In oil palm plantation, only 10% is the finished products; palm oil and palm kernel oil. The remaining 90% (empty fruit bunches, fibers, fronds, trunks, kernels, palm oil mill effluent) was discarded as waste, and either burned in the open air or left to settle in waste ponds. This waste could be converted to useful gaseous fuels using proper system/process.

The objectives of this project are to do research on plasma gasification and investigate whether plasma gasification is a feasible choice to produce gaseous fuels from waste biomass that comes from oil palm plantation. The project is feasible so a small-scale/ lab scale of the system is made. This system performs the process of plasma gasification.

For the methodology, this project are completed in a 3-phase method; Extensive Literature Review, Design and Prototyping, and Experiment and Data Compilation. In the early stages of this project, literature reviews are done extensively. All details and information regarding plasma gasification and oil palm waste biomass were compiled. The type of waste biomass chosen for this project is Empty Fruit Bunch (EFB).Next, the Design and Prototyping phase. In this stage, the selection of plasma generator's type is done first before designing and constructing it. It is very important to select the most feasible type of plasma generator. In the last phase, experiments are conducted and the results are validated using FTIR analysis and CHNS analysis. From there, the analysis will help determine whether plasma gasification can be used to produce gaseous fuels from oil palm's empty fruit bunch.

ACKNOWLEDGMENT

First and foremost, I would like to thank Allah S.W.T for guiding me throughout this

project and in going through all the challenges and the hurdles.

I would like to thank all that contributed to a sucess in this project. With the

assistance and guidance in the project, a year of hardwork and sacrifices was really paid

off.

My greatest gratitude goes to my supervisor, Dr. Bambang Ariwahjoedi who

assist me in providing relevant data, information, guidance regarding the project. Thank

you for monitoring and guiding me throughout this project. Without his guidance and

patience, I would not succeed to complete the project. He is (without a doubt) one of

the best lecturer/supervisor/mentor that I've ever worked with in my life.

I would also like to extend my thanks to Dr. Chalilullah Rangkuti and Dr.

Khairul Fuad for contributing greatly in guiding me to finish this project. Their

suggestions and guidance during FYP 1 Oral Presentation, FYP 2 Seminar, and FYP 2

Oral Presentation is highly appreciated.

Not to forget my family members, relatives, fellow lecturers and friends who

gave moral support to motivate and allowed me to pursue to greater heights in my

project.

Last, but certainly not least, I would like to apologize if any party was inadvertently

excluded from being mentioned above and would like to thank all parties that were

involved in making this project a success.

Regards,

Mohd Azmi Bin Mohd Dzaki

iii

TABLE OF CONTENTS

CERTIFICATION OF ORIGINALITY	•••••
ABSTRACT	i
ACKNOWLEDGMENT	iii
LIST OF FIGURES, TABLES, EQUATIONS & ABBREVIATIONS	vi
1.0 INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	1
2.2.1 Problem Identification	2
2.2.2 Significance of Project	2
1.3 Objective and Scope of Study	3
2.3.1 Relevancy of Project	3
2.3.2 Feasibility of Project Within	3
2.0 LITERATURE REVIEW / THEORY	4
2.1 Oil palm Plantation and its waste biomass	4
2.2 Transforming Oil palm waste biomass into gaseous fuels	
2.3 Basic principle of plasma generation	
2.4 Basic principle of plasma gasification	9
2.5 Chemical Kinetics of Gasification & Pyrolysis	
2.6 Methane Gas and it properties	12
2.5 Industry Research: Biomass Energy Plant in Lumut, Perak	14
3.0 METHODOLOGY	10
3.1 Project Flow	16
3.2 Extensive Literature Review	17
3.3 Design and Prototyping	17
3.4 Experiment and Data Compilation	
3.5 Tools/Equipments Required	18

4.0	.0 RESULTS AND DISCUSSION	19
	4.1 Waste Biomass Selection	19
	4.1.1 Types of waste biomass and current usage	19
	4.1.2 Factors that influences the selection of waste biomass	21
	4.1.3 Selecting the most suitable waste biomass	21
	4.2 Selection of Plasma Generation Method	22
	4.2.1 Plasma generated by Carbon Arcs	23
	4.3 Selected Plasma Generation Method	24
	4.4 Oxygen-starved Chamber	30
	4.5 How to supply the waste to the plasma generated	31
	4.6 Fabrication Phase	32
	4.7 Experiment Results	37
	4.8 FTIR Analysis	39
	4.9 CHNS Analysis	45
5.0	.0 CONCLUSION & RECOMMENDATION	49
6.0	0 REFERENCE	51
6.0	0 APPENDIX	53
7.0	O CANTT CHART	59

LIST OF FIGURES

Figure 2.1	Plasma Gasification Technology	8
Figure 3.1	Flow of the work	16
Figure 4.1 Frond of oil palm tree		19
Figure 4.2 Trunk of oil palm tree		19
Figure 4.3	Shell	20
Figure 4.4	Empty Fruit Bunch (EFB)	20
Figure 4.5	Rough Design of Carbon Arc System	23
Figure 4.6	Rough Design of Focused Solar Ray	24
Figure 4.7	Van de Graff generator	25
Figure 4.8	Electric arc created by electroshock weapon	26
Figure 4.9	Circuit diagram for stun gun	26
Figure 4.10	Gasification Chamber	27
Figure 4.11	Procedures of taking graphite rods from lantern battery	27
Figure 4.12	Holder With Plasticine	29
Figure 4.13	Stun Gun	30
Figure 4.14	Rubber Stopper	30
Figure 4.15	Sample of empty fruit bunch (fibrous form)	30
Figure 4.16	Plastic Tube	31
Figure 4.17	Valve	32
Figure 4.18	Design for Carbon Method	32
Figure 4.19	Stun Gun and its component.	35
Figure 4.20	Wire soldered to clip	35
Figure 4.21	Plasma generated during trial	36
Figure 4.22	Construct Holes to the chamber	36
Figure 4.23	Pure Nitrogen used for flushing	37
Figure 4.24	Water at Nitrogen Outlet	37
Figure 4.25	Sample Holder with plasticine	38
Figure 4.26	EFB sample inside chamber	38
Figure 4.27	Complete Equipment Setup	39
Figure 4.28	Voltage Used VS Weight Loss	41

LIST OF FIGURES (continued)

Figure 4.29	Graph and Data for EFB Sample Before Plasma Gasification	44
Figure 4.30	Graph and Data for EFB Sample After Plasma Gasification	45
Figure 4.31	Graph of FTIR Analysis for EFB Before Plasma Gasification	46
Figure 4.32	Graph of FTIR Analysis for EFB After Plasma Gasification	46
Figure 4.33	Combined Graphs of FTIR Analysis.	46

LIST OF TABLES

Table 4.1	Experiment Result-Weight Difference (Weight Loss)	40
Table 4.2	Experiment Result-Voltage Difference (Voltage Used)	40
Table 4.3	Weight Difference & Voltage Difference (in ascending order)	41
Table 4.4	Peak, Wavelength and possible assigned group	48
Table 4.5	CHNS Results for EFB Before Plasma Gasification	50
Table 4.6	CHNS Results for EFB AfterPlasma Gasification	50
Table 4.7	Difference of Average % Before and After Plasma Gasification	50

LIST OF EQUATIONS

(1)	Equation for gasification process	11
(2)	Equation for methane turning into syngas	14
(3)	Equation for gas water shift reaction	14

ABBREVIATIONS

EFB	Empty Fruit Bunch
-----	-------------------

FTIR Fourier Transform Infrared Spectroscopy
CHNS Carbon, Hydrogen, Nitrogen and Sulphur