Mobile IM as a Text Messaging Alternative Using Mobile Phone
through the Development of
Message Conveying System (MCS)

By

Azlan Fazly Mustaza

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Technology (Hons)
INFORMATION & COMMUNICATION TECHNOLOGY
JUNE 2006

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan
' é
W

UOS/‘\’O \3 J‘v"\a-\/f\\g.. (IR REAVEN (.M\i\af &@j\' Lt
NG
NS

Ve

12 SN E R VYRR

CERTIFICATION OF APPROVAL

Mobile IM as a Text Messaging Alternative Using Mobile Phone
through the Development of
Message Conveying System (MCS)

By

Azlan Fazly Mustaza

A project dissertation submitted to the
Information Technology Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
Bachelor of Technology (Hons)
INFORMATION & COMMUNICATION TECHNOLOGY

Approved by,

(MOHD HILMI HASAN)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2006

i

CERTIFICATION OF ORIGINALITY

This is to certify that 1 am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

AZLAN FAZLY MUSTAZA

iii

ABSTRACT

The development of Message Conveying System (MCS) as a mobile instant messenger
application system is to provide a text messaging alternative using mobile phone. MCS is
a mobile instant messenger application that is a part of global Jabber™ messaging
networks. It means that you can chat and check presence of any user of any Jabber™
networks in the world just by using your mobile phone. MCS can run on any Java-
enabled mobile phones that support General Packet Radio System (GPRS). Mobile phone
users need MCS to bring the abilities of desktop /M into their mobile phones. MCS
enables real-time communication between people. 1t also allows presence information to
be available to others. This gives AMCS an advantage over SMS because SMS does not
provide the users’ presence information to be available to others. MCS is also cheaper
than SMS because its usage charges are based on the amount of data transferred through
GPRS, not like SMS’ pay per use charges. Apart from that, MCS accepts communication
from different JAf application that uses the Jabber XMPP protocol. It means that users
who are using Jabber clients (e.g. GoogleTalk, Meebo, Spark, Exodus etc) can “talk” and
see the presence information of an MCS user. MCS is seen to become the new main
stream of text messaging because of the wide acceptance of IAf among the people
nowadays and the low usage charges that it provides which is way cheaper than the

conventional SAMS.

Keywords: Short Message Service (SMS), Instant Messaging (IM), presence, Message
Conveying System (MCS)

v

ACKNOWLEDGEMENTS

Where do I begin? I thank the All Mighty Allah for his blessings and every door of
opportunity He has opened for me throughout the period of completing this project. I

thank my family, especially both of my parents for their support and encouragement.

This report should not have been finished without the help and guidance from my Final
Year Project supervisor, Mr. Mohd Hilmi Hasan. His positive comments and critics have

been vital in getting the best out of me for this project.

I also like to thank other UTP IT/IS lecturers for their views and suggestions during the
presentations and evaluations. If it is not because of them, the project would have only
been a mediocre or a failure. Not to forget to all my friends and peers throughout my 5
years at this university. The likes of Razaly, Arien, Wafa, Nazrul, Zeid, Suhaily, Firdaus
and other people around have made my student life a worthwhile. The times spent with

them will always be cherished.

Lastly, I thank again to all individuals who had given their support and thoughts on the
completion of this project. May God bless us all, InsyaAllah.

CONTENTS

CERTIFICATION OF APPROVAL ..o, i
CERTIFICATION OF ORIGINALITY ... iil
ABSTRACT .ot v
ACKNOWLEDGEMENTS | et e \%
CHAPTER 1: INTRODUCTION ...t 3
L L M S & DM e e 3
1.2 BaCKEIOUNM ... 3
1.3 Problem STAIEIMIEIT ...ttt et 4
L ODJEOIIVE ...t e 5
CHAPTER 2: LITERATURE REVIEW 6
2.1 Presence and IV . 6
2.2 Today’s TECHNOIOZY ...t e, 8
2.3 Mobile Messaging Standards......o......oovoiiiiciiii i, 9
2.3.1 SMS - EMS- MM it 9
2.3.2 IM and SMS — A hybrid.technology ..o 10

2.4 Protocols and NetworkS ..o i 11
2.5 Java Application Developmentc..ocoomiiiiii 11
2.6 TNterOPErabilityov. i 12
2.6.1 Billing — Related Problems ..., 13
2.6.2 Standards Bodies and ProtocolS. ..o 14

2.7 SUIMMIATY L.ttt 16
CHAPTER 3: METHODOLOGY ... e 17
3.1 Planning PRASE ..ot 17
3.2 ANalySis PRASE . o.oooo i 18
3.2.1 SMS - Usage and Charges...........cccccoo i 18
3.2.2 Java 2 Micro Edition (JZME).cociiiiii i 19
323 T e 24

3.3 DESIEN PRASEoviooieci i 31
3.3.1 Programming MCS ... 32

3.4 Implementation Phase ..o 38
3.4.1 Execution and TeStimg........cco oo 38
3.4 2 MCS User Manual ...t s 43
343 TASTALLATION. ..ottt 43
CHAPTER 4: RESULTS AND DISCUSSION ... 45
4. MO S VS S S o e e 45
4.2 MCS as a cheaper text messaging COMMUNICAION ..o v 46

4 3 Interoperability among different Jabber clients ... 48

CHAPTER 5: CONCLUSION ... 49

REFERENCES .. e 50

Appendix A: MCS User Manual ... 53
Appendix B: Jabber Public Servers ... 57
LIST OF FIGURES

Figure 3.1: MCS Waterfall Methodology ..o 17
Figure 3.2: The concept of configurations and profiles...............cocoooviiiniineinns 20
Figure 3.3: Communication between MCS Java Packages ... 32
Figure 3.4: MCS splash SCIEeM ... 38
Figure 3.5: MCS offline SCreen ..o 39
Figure 3.6: GUI for “Login Info” option. ...t 39
Figure 3.7 GUI for “Help” option...........ccoooiiiiiiii i 39
Figure 3.8 MCS MaIN SCIEIoit it 40
Figure 3.9: Online Options LISt ... 40
Figure 3.10: Contact Options list..........coo i 41
Figure 3.11: The GUI t0 8€nd @ MESSAZEcovoiviiiiiiiieiiiee e 41
Figure 3.12: Notification message of incoming conversationc.c.oococcoveicecnnona, 41
Figure 3.13: The Add Contact FOMMccocoo.oviiieieies e 42
Figure 3.14: The Subscription Request Form ... 42
Figure 3.15: The Status Option LS. 42
Figure 3.16: MCS installation on Motorola SLVR...........ii 43
Figure 4.1: MCS XML Streams and UTF-8 Encoding...........ccoooooooiiiiiii 47
LIST OF TABLES

Table 3.1: Call and SMS Rates in Malaysiaocooooviiiiiini 18
Table 4.1: MCS Presence Information. ... 46
FONT CONVENTIONS

In this report, you will find different font formats for the keywords, Java syntaxes and
source code snippets. This is to enhance readability of the report. The table below

describes the font conventions used.

Key ‘ Definition _
Keywords (as stated in the Abstract) Keywords (e.g presence, IM) are in italic
Java Java syntax that is inside the text uses the

font type Courier New

Source code Source code snippets are all in smaller font

size than the text of the report.

CHAPTER 1
INTRODUCTION

1.1 SMS & IM

Short Message Service (SMS) refers to sending and receiving text messages to and from
mobile telephones. The text may be composed of words or numbers or may be an
alphanumeric combination. SMS was created as part of the GSM Phase 1 standard. The
first short message was sent in December 1992 from a PC to a mobile phone on the
Vodafone GSM network in the U K. Each short message ranges between 70-160
characters. SMS has a store-forward capability; this means sending messages is possible
even when the recipient is not available. The user is notified when a message is waiting,

as with voicemail.

Instant Messaging (IM) is an Internet-based protocol application that allows one-to-one
communication between users employing a variety of devices. The most popular form of

IM is chatting, where short, text-based messages are exchanged among computers.

Mobile Instant Messaging is the ability to engage in IM services from a mobile phone. It
allows users to address messages to other users using an alias (or user name) and

enabling the sender to know when his/her contacts are available.

1.2 Background

IM has been around for more than two decades. The first major player to enter the arena
of Instant Messaging was AOL, which launched its own version of instant messenger
with a component used for managing all the incoming and outgoing messages and the
list of friends. This component is popularly known as buddy list. Soon, Microsoft and
Yahoo! followed AOL's trail. As a result, MSN and Yahoo! messenger appeared on the

market with a variety of impressive new services. In its early days, Instant Messaging

uses were restricted to splashing messages on bulletin boards. Gradually, /nstant
Messaging became a major area of interest for youngsters. Society acknowledges Instant
Messaging as the most common means by which people of varying age groups,

especially youngsters, communicate with one another.

Until 1990, there was no significant change in the status of Instant Messaging from what
it had been when initially conceived, mainly because Instant Messaging was not taken
seriously till then, Subsequently, the corporate world changed its attitude toward /nstant
Messaging, thanks to the Internet revolution. With a sudden rise in the popularity of the
Internet and the arrival of new techniques like voicemail, online transactions, and so on,
the corporate world started taking nstant Messaging seriously. The Internet led not only
to a substantial increase in the number of Instani Messaging users but to the realization
of the potential of Instant Messaging and to earnest attempts to eliminate the limitations

of Instant Messaging and exploit its possibilities fully.
1.3 Problem Statement

Text messaging has become a prominent part of our daily activities. The emergence of
SMS and IM had contributed a lot into this matter. People send messages anytime and
anywhere they go. IM is popular for sending messages using the computer while SMS 1s
for sending messages using mobile phones. Currently, there have been many efforts to
bring the functionalities of /A into mobile phones. The advantage of mobile /M is that
messages are sent and received in real-time via mobile phones in the same way as fixed
IM services, but without the need to be attached to a computer. Mobile /M is seen as a

natural evolution of the popular SMS service.

To date, users have required an existing active /M account - such as that offered by AOL
and Yahoo! - and a compatible handset (one with a pre-installed messaging client)
running over a GPRS or 3GSM network. Mobile IM is available from some operators
now, but it is not always possible to use /M services between different operators and

different M communities. However, this type of service has not yet been available to the

users in Malaysia because the telecommunication operators in Malaysia have not taken
the step to venture into this kind of service. This is because they fear that the introduction
of IM will cost a much loss in profit to them as shown by Yuan that 40% of the profits for
telecommunication operators come from SMS [Yuan, 2003]. Other study also states that
Malaysian mobile telecommunication operators rely heavily on conventional Short SMS

operations as it provides the bulk of its revenue [American.edu, 2004].

Malaysian users need a mobile IM that brings the abilities of desktop /M into their mobile
phones. The mobile M should allow communication between different operators and
different JAf communities. A person with the appropriate mobile phone that supports
GPRS will have the ability to send and receive messages in real-time via mobile phones
in the same way as fixed /M services, but without the need to be attached to a computer.
In doing so, messages can be sent much faster, more efficient and the most important of

all — cheaper than the conventional SMS.

1.4 Objective

The purpose of this project is to provide a text messaging alternative using mobile phone

through the development of a mobile instant messenger application that:

1. Can run on Java-enabled and GPRS-supported mobile phone.
il. Proves mobile IM as a cheaper text messaging communication than SMS.
1. Allows communication between users from different /A application that uses

the same protocol.

CHAPTER 2
LITERATURE REVIEW

2.1 Presence and IM

The advances of new technologies and the convergence of different communication
media are constantly changing not only our means and modes of communication with
other people, but the notion of connectivity itself. Rather that being online or offline, we
can be ‘connected’ in many different ways and without directly interacting with
technology itself. Presence awareness, facilitated by Instant Messaging applications,
mobile phones, wireless handheld devices, location tracking and so on, can make

someone reachable almost at any time.

Presence is becoming a key issue in the wired and wireless wotld. At the most basic
level, presence awareness lets users know when other people in their contact list are
online. However, the concept has expanded from the initial online/offline description to
what we identify as rich presence. Thus, presence information can include more user
details, such as availability, location, activity, device capability and other communication
preferences, even expressed in more abstract terms, like ‘mood’ or ‘intention’. A general
notion of presence would answer the questions of Who (user), Where (location and
device), When (preference and willingness), How, (device capability) and Why
(information exchange, leisure, keeping in touch etc) [Chakraborty, 2002].

The most commonly used tools thai facilitate presence awareness are the various Instant
Messaging applications, though there is an increasing trend towards recognising that M
is itself just one (communication-oriented) of many facets of presence management.
Instant Messaging is one of the fastest growing areas of the internet for the past few years
that allows millions of users around the world to contact friends and colleagues in a
convenient way, with more immediacy than e-mail and without the expense of a phone

call.

An IM service can be either device-based or network-based. In the former case, the user
needs to have a client application installed on a computer or other device. Contact lists,
user information and preferences are then stored on the device. If a user wants to access
the system from another device, for example a mobile phone or PDA, all the information
must be set again by the user for every device. Any future changes (e.g. adding another
contact to the contact list) would then need to be made manually for every device used to
access the system. The advantages of a network-based system where all information is
stored on a dedicated server and updated dynamically are evident. A client application
still needs to be installed or embedded on every device used to access the system, but
then all information need to be provided only once and all changes will be updated, so
that all devices display the same information. However, this model has the trade-off of
security risks and lack of privacy, particularly for corporate /M use. For wireless M
communication, a network-based system is highly recommended, partly because of low
memory availability on handheld devices. A network-based system can also serve to
provide translation mechanisms, allowing users with different device specifications (e.g
screen size), capabilities and software to communicate with each other. While desktop IM
users are quite used to having more than one /M application running, we expect that
mobile users will be more willing to use only one client, due to the limited resources on
mobile devices and since switching between clients is more complicated. For this reason,

a server would need to provide gateways to other /A providers.

Most familiar today is computer-to-computer Instant Messaging, but IM is clearly
moving to the mobile domain. Majjor desktop IM providers have already formed
partnerships with mobile telecommunication operators to add SMS functionality to their
systems. Currently /A/ is also implémented on mobile phones through W AP-based clients

and also as a separate Java application for Java-enabled mobile phones.

Presence is the key feature that differentiates mobile Jnstant Messaging to the existing

SMS messaging facility on mobile phones. Without presence, the user does not know of a

person’s availability or device status. Presence is a constantly evolving dynamic

construct with a great potential for future telecommunication applications.

2.2 Today’s Technelogy

With the introduction of the latest mobile phone technology and as /A7 moves to the
mobile domain, one of the key functions is connectivity between the internet and the
mobile world. Inter-working between /A on PCs and /A on mobile devices marks a true
convergence [Nardi & Whittaker, 2000]. This inevitably affects usage patterns and can
extend the functionality of /A to various directions, By adding the element of mobility
and location to M, another level of presence awareness is introduced. For example, users
can find about other people’s approximate location as well as availability. In this way,
they can contact each other to meet when in vicinity. Other uses of this application, like

multiplayer games, are also likely to emerge.

The telecommunications industry has high expectations from the integration of M with
mobile services. Apart from increasing revenue streams through advanced messaging
services, wireless presence and IM are also beneficial for mobile commerce, business use

and location based services (LBS) [Peretz, 2002].

With the addition of IP telephony capability, an JM application can become a major
communications platform. When integrated with the phone, /A allows users to negotiate
availability and avoid interruptive phone calls. In this way, an M system can act as a
personal communications portal, providing users with the ability to specify their
communication preferences according to the device they are using or who they want or

do not want to communicate with.

Presence technology and Instant Messaging integrated in the mobile domain will affect
our daily communication patterns and behaviors, even more strongly than desktop /M has
already done. /M is informal in nature, but provides great assistance for group
collaboration. In professional and educational settings the impact of desktop /A has been
significant so far: work coordination, meeting arrangements, quick exchange of
information and a sense of being ‘connected’ with people at a distance are some of the
most important facilities offered by /M. Mobile Instant Messaging can have an even
greater effect, by providing more flexibility in time management and meeting

arrangements as well as an ‘always in touch’ state, which can foster group interaction.

At the moment however, there are significant technological and economic constraints
preventing Presence and IM from becoming truly revolutionary technologies, widely
accepted by mobile device users. The problem originates from deskiop /M and becomes
more complicated when it comes to mobile phones. Unlike the internet, /M has not been
based on open standards and therefore most users can only communicate with people
using the same protocol. For /A to become a broader communications platform, the
various systems need to be able to communicate on a standards basis, which means that
major IM providers like AOL should open their systems to other providers. Despite
valuable interoperability efforts, the issue is still the hottest topic in the industry. Mobile
Instant Messaging on the other hand, requires the cooperation of mobile
telecommunication operators for standards establishment. Since the technology is so new,
it will be very interesting to see how it will evolve. In the near future, interoperability

developments will determine the use and adaptation of mobile presence and IM.

2.3 Mobile Messaging Standards

2.3.1 SMS - EMS- MMS
Messaging on mobile phones is rapidly evolving from pure text messages (SMS) to
messages that resemble multimedia presentations (MMS — Multimedia Messaging

Service) and can include graphics, data, animations, audio clips, voice transmissions and

short video sequences. In between SMS and MMS we have the Enhanced Messaging
Service (EMS), which can contain combinations of text, simple images and melodies.
The text of an EMS message can be formatted. EMS has added a degree of
personalization to text messaging. MMS is definitely an important advancement over
SMS and EMS, however new network infrastructure components and new handsets are
required. The introduction of MMS has shown so far that it is not going to be a seamless
customer experience due to serious interoperability problems [Tulloch, 2002]. Technical
complexity put aside, it is still hard to achieve network interoperability for commercial
reasons; operators use different tariff schemes to charge messaging services. There are
concerns that users might not adopt MMS as they did with SMS because of

interoperability problems as well as high costs.

2.3.2 IM and SMS - A hybrid technology

The advance of mobile messaging standards from SMS to MMS will not really influence
the way IM itself currently works on mobile phones, apart from offering the ability to

send audiovisual data to contacts.

The combination of IM with SMS resulted in a hybrid technology possessing attributes of
both. Messaging patterns are quite similar, both /A and SMS messages are usually shorter
than 100 characters with no attachments. Contrary to desktop JA, SMS enjoys global
connectivity, like e-mail. /M benefits from the store-forward capability of SMS (i.e.
messages are sent via an SMS centre), which allows users to send messages to recipients
that might have their mobile phone switched off [Pulver.com, 2001]. The advantage of
SMS as an established technology with a great user base and popularity in both Europe
and Asia has created expectations in the industry that it will drive the uptake of mobile
IM. Basic IM functionality (send/receive messages and contact list) can already become

available on existing handsets and networks.

10

Therefore, it is nearly impossible to provide a cross-platform Java mobile application as
developers need to take care to ensure that the GUI controls that they use work properly
and somewhat consistently on each deployed platform. In addition, the user interface
requirements must not exceed the various devices’ capabilities and complexities that are
unnecessary on some platforms have to be added in order to satisfy the requirements of
others. The work of putting in the additional work and complexity to have one
application that runs on multiple devices can be an endless process. This suggests that the

“Write Once, Run Anywhere" of Java cannot be applied to mobile applications.

Currently in Japan, Java has successfully been deployed on NTTDoCoMo’s i-mode
platform. Interactive content on i-mode is more advanced and graphically interesting than
most mobile content available in Europe (e.g. users can send full color animated
messages with cartoon characters), [FunMail, 2002]. The J2ME technology is a driving
force for content development on mobile phones, personal digital assistants and other
handheld devices. Mobile /M can be implemented as a separate application on Java-
enabled devices and in the future JAMf and presence information could be combined with

other applications as well, for example multiplayer games.

2.6 Interoperability

Lack of interoperability is the greatest problem for both desktop and mobile M [Woods,
2002]. In the desktop world, the greatest obstacles have been posed by major service
providers, like AOL, who want to protect their user base. AOL has sidestepped A/
standardization efforts from the Internet Engineering Task Force (IETF) and, citing
privacy concerns, shut out rivals who figured out how to let their users access AOL’s M
services [Ulfelder, 2001]. Interoperability is vital for the success of mobile /A and
Presence, since users are unlikely going to pay for a service if they cannot communicate

with people on other networks or using a different service provider. The value of an /M

12

service to end users is dependent on the number of other users of the same service. A

critical mass is required for early adoption, in order to fuel usage growth.

2.6.1 Billing — Related Problems

Unfortunately, most important interoperability constraints are not technical, but
commercial in nature, particularly when considering the inter-working of mobile /Af with
existing desktop based IM services. Mobile operators have always been charging for
messaging services, while desktop /M has been free for internet users, thus PC-to-SMS

messaging becomes problematic since billing issues need to be resolved.

Many operators, particularly in the US, have formed partnerships with /M service
providers. They are also likely to launch their own services in the future. The most
important motives for this, according to “Wireless Instant Messaging” white paper
[Wiral, 2001] are:

a) Larger share of revenues

b) Increased brand value

C) Greater control over service development

d) Security and reliability issues (Internet /M services have not proved secure

enough for business use)

€) Leveraging of complementary services, such as location services by

combining subscriber presence information with location information.

Alliances between mobile telecommunication operators and major internet /Af providers
usually operate on a dual model, without promoting interoperability standards for the rest

of market.

2.6.2 Standards Bodies and Protocols

Several groups are currently working on establishing standard protocols for messaging
interoperability, however, while their efforts do not necessarily contradict each other,

those groups are not working together.
IETF — Internet Engineering Task Force }

The Internet Engineering Task Force is a large open international community of
network designers, operators, vendors, and researchers concerned with the evolution
of the Internet architecture and the smooth operation of the Internet [IETF, 2002].
Working groups within IETF focus on developing protocols for Presence and IM.
The MMUSIC (Multiparty Multimedia Session Control) working group has
developed the SIP (Session Initiation Protocol), a signaling protocol for Internet
conferencing, telephony, presence, events notification and Instant Messaging [IETF,
2001]. Another group within IETF, the SIMPLE group, develops the SIP (Session
Initiation Protocol) for Jnstant Messaging and Presence Leveraging Extensions. The
SIP-based architecture of the SIMPLE protocol aims to integrate presence and Instant
Messaging with traditional telephorfle communications and web conferencing. This
protocol has acquired a lot of indusftry support so far, particularly from two of the
largest software corporations, Micréosoft and IBM. There is also the Instant
Messaging and Presence Protocol (IMPP) group within IETF, working on protocols
and data formats necessary to build an internet-scale end-user presence awareness,
notification and /nstant Memmrging5 system [IMPP, 2002]. Finally, the most recently
established group [XMPP, 2002] is the Extensible Messaging and Presence Protocol
XMPP working group. XMPP :ﬁis the XML-based core protocol of the Jabber /nstant
Messaging and Presence techniology, an open source community initiative (see

section 3.2.3 for a description of the Jabber project).

PAM Forum — Presence and Availability Management

The Presence and Availability Mahagement (PAM) Forum is an independent,
nonprofit consortium established to standardize the management and sharing of

presence and availability information across multiple services and networks. The goal

14

i1s to establish a standard for maintaining and publishing information about user
identity, presence (including information like location, device state and
communication capabilities) and availability. The PAM specification also provides a
mechanism for privacy management, to allow users have control over their private
information. The focus of the PAM forum is to develop and promote a presence and

availability application programming interface (API) specification [PAM, 2002].

Wireless Village

The Wireless Village initiative was founded by Ericsson, Motorola and Nokia in
April 2001 to define and promote a set of universal specifications for mobile Instant
Messaging and presence services. The specifications concern the exchange of
messages and presence information between mobile devices, mobile services and
Internet-based Instant Messaging services. 1t is the only group with a clear focus on
mobile /M and Presence; though the other groups also take wireless technologies into
consideration, they keep a more general approach. The Wireless Village proposes a
standard protocol for Instant Messaging and Presence Service (IMPS), which includes
presence information management, /nstant Messaging, group management and shared
content [Ericsson, Motorola and Nokia, 2002]. Unlike the PAM Forum, which
separates availability from the rest of presence information, in the Wireless Village
specification, presence includes availability, as well as other information such as

location, device capability, profile etc.

15

2.7 Summary

'The research that had been made shows that mobile presence and /M are clearly very
promising and have already attracted a great interest. The establishment of the 2.5G and
3G of mobile network technology will facilitate persistent ‘always-on’ connection with
friends, family and colleagues through IAf. Moreover, presence is becoming increasingly
important and currently moving beyond /M to a variety of domains. Rapid technological
convergence will continue and we can envision preserce information becoming more
ubiquitous and driving embedded software development beyond mobile phones. Presence
will not only include the notion of user or device state, but almost anything can have a
presence state, from the printer and the coffee machine to any work in progress in our

computer.

16

CHAPTER 3
METHODOLOGY

The project follows the Waterfall Methodology where the planning, analysis, design, and
implementation phases proceed in sequence from one phase to another. This chapter will

describe the detailed explanations of each phases of the methodology.

Planning

Analysis

Design

Implementation

Figure 3.1: MCS Waterfall Methodology

3.1 Planning Phase

The planning phase of this project involves what to be produced and who are the target
users of the end product. The platform and technology that can cater to the project

objectives was chosen to develop the system.
The whole idea of this project is to develop a mobile /A that meets all of the project

objectives. MCS is a mobile instant messenger that uses J2ME as its platform and utilizes

the power of Jabber, an open-source Instant Messaging platform that uses open, XML~

17

based protocols to create the standard functionality people expect of an IAf system: one-
to-one chat, multi-user chat, the ability to subscribe to someone else's presence, and so
on. With the power of Java as a renowned platform independent software and Jabber
XML capabilities, MCS is expected to run on all Java-enabled and GPRS-supported

mobile phones.

3.2 Analysis Phase

During this phase, the current SMS rate in Malaysia is gathered in order to know how
much the service actually cost. Further on, analysis is being made between the possible

platforms and technologies that are to be used in developing the system.

3.2.1 SMS — Usage and Charges

SMS is very popular among the people in this country. Malaysians sent a stunning 21.03
billion SMS last year, more than twice as many as in 2004 [NST, 2006]. This suggests
that Malaysians are becoming increasingly comfortable using this service because it is
cheaper and easier than most other modes of communication. People opt for the service
because they want to save cost and they feel more comfortable to send text messages
rather than talking on the phone. The table below outlines the standard mobile call and
SMS charges in Malaysia [Maxis, 2006].

Table 3.1: Call and SMS Rates in Malaysia

Peak Rate Off-Peak Rate
- Calls : - (7am to 7pm) : (7pm to 7am)
_ (per mimite) : (per minute)
Lbcal Area RM0.30 RMO.15
Outstation RM0.30 RMO0.30
SMS RMO.15/sms

I8

3.2.2 Java 2 Micro Edition (J2ME)

The first question that comes to mind is why J2ME? Why not simply use the application
designed in Java 2 Standard Edition (J2SE) or Java 2 Enterprise Edition (J2EE) for
handheld devices? The answer lies in the basic design of these handheld devices. These
devices are conceptually designed to be handy and compact; hence, they are smail,
lightweight, and portable. They have limited computing power, limited memory, a small
display area, and limited input power (being battery operated). Besides, most of these
handheld devices work on proprietary software, with little or no compatibility with other
brands or other devices. Hence, what is required is a platform on which a memory-
efficient, device-independent or platform-independent application can be built. An
application designed in J2SE, for example, cannot run in a limited memory space of
16K-512K, which happens to be the typical range of memory for handheld devices. The
solution lies in J2ME, the third platform (after J2EE and J2SE) offered by Sun

Microsystems.

J2ME is Java’s platform for embedded and small consumer electronic devices. The
J2ME technology has been developed specifically to work within constrained resources
(for instance, within a limited memory range of 128K--512K). 1t should, however, be
noted that J2ME is not restricted to lower-end devices only. If can also be used on
higher-end devices, such as set-top boxes, with as much computing power as a PC. Since
J2ME is upwardly scalable to work with J2SE and J2EE, it enables these small

consumer devices to be networked with servers or PCs.

The J2ME platform consists of a J2ME Virtual Machine and a set of APIs that are
suitable for consumer and embedded devices. The J2ME technology can be divided into
two primary components - configurations and profiles. These components can be
understood if we think of J2ME in terms of a layered technology, with one layer
working upon the other. The base layer is formed by a configuration, upon which
operates the second layer, formed by a profile. Figure 2 illustrates this concept. A
configuration is composed of the low-level APIs and the J2ME Virtual Machine; both of

these provide an interface with a device’s operating system. A profile built on top of a

19

configuration is composed of APIs that provide functionality to build the user interface

and develop the classes required to build an application.

Application level APIs

T 50

Hhs
J2ME Virtual
Machine

Figure 3.2: The concept of configurations and profiles

Think of a configuration as an abstract entity that provides basic J2ME functionality to a
device, whereas a profile is what utilizes this configuration to allow the actual
implementation of that functionality. For example, a configuration may support J2ME
input/output functions on a family of devices, but the implementation of the input/output
streams and their associated methods, properties, and so on depends upon the profile
being used. Configurations and profiles are complementary to each other; both are

required to develop and run a J2ME application.

J2ME Virtual Machine _

As mentioned earlier, J2ME is used for devices with limited memory. This means that
the Java 2 Virtual Machine (JVM) meant for PCs and servers cannot be used with low-
end electronic devices such as mobile phones, two-way pagers, hand-held devices,
screen phones, smart phones, and so on. In addition, J2ME targets high-end electronic

devices such as set-top boxes, car navigation systems, and handheld PCs that have much

20

better resources. However, they still don’t accommodate the large size of the
conventional JVM. Therefore, to support the J2ZME technology, two smaller Virtual
Machines have been developed. These are, the K Virtual Machine (KVM), which has a
smaller footprint than CVM and is used with low-end devices, and the C Virtual
Machine (CVM), which has a footprint larger than KVM and is used with high-end

devices.

K Virtual Machine (KVM)

The K Virtual Machine (KVM) has been developed keeping in mind the
constraints of small mobile devices being manufactured in the industry. The
KVM is a highly optimized version of the conventional JVM, with a size as
small as S0K. Since K VM was specifically designed for very small environments
that are proprietary, it has also been made highly customizable to enable
manufacturers to adapt it to suit their particular device. The design
considerations for KVM ensure that it is capable of running on low-power
processors. The KVM can run on any system that has a 16-bit/32-bit processor
and 160-512 K of total memory. Nevertheless, the size reduction has occurred at
the expense of a vast number of packages that are not supported by the KVM. As
of now, the KVM has no support for certain features such as determinism, long

and float data types, and so on.

The K Virtual Machine can theoretically run several profiles, but it cannot run
perfectly all the profiles and APIs that aren’t specifically designed for it, just as it
cannot be used to run the Connected Device Configuration (CDC). It is meant for
Connected Limited Device Configuration (CLDC). Presently, KVM supports
only one profile -— Mobile Information Device Profile (MIDP). This means that
applications written for the more capable C Virtual Machine (CVM) or for the
conventional JVM most probably cannot run on the KVM without some changes.
However, the converse is not true — applications written for KVM can easily run

on the CVM or the normal JVM.

21

J2ME configurations _

J2ME configurations have been classified into two categories — Connected, Limited
Device Configuration (CLDC) for low-end devices with 128K—512K memory and
Connected Device Configuration (CDC) for 512K+ devices. For this project, CLDC is

being used as mobile phones are categorized under the low-end devices group.

Connected, Limited Device Configuration (CLDC)

CLDC is meant for small devices such as mobile phones, with constrained
resources. CLDC is ideally suited for devices with a 16/32-bit microprocessor
and can work on an available memory as low as 160K. Tt uses the small K
Virtual Machine (KVM) and a limited set of libraries. Together, the KVM and
the libraries can be stored in just 128K of memory space. Limited functionality is
the price paid for using the memory-efficient CLDC. For example, the most
commonly used J2SE packages, such as java.lang awt, java.lang.beans, and
others, have been dropped. In fact, CLDC contains only the following four
packages:

* Jjava.lo: A stripped-down version of the J2SE java. io package. It
contains the classes required for data input and output using streams.

¢ Java.lang: A stripped-down version of the J2SE java.lang
package. It contains the classes that are basic to the Java language, such
as the wrapper classes for data types.

e Jjava.util: A stripped-down version of the J2SE Jjava.util
package. It contains classes such as Calendar, Date, Vector, and
Random.

¢ Jjavax.microedition.io: A newly introduced CLDC-specific class
that defines the Generic Connection Framework. It contains the classes

for handling all types of connections by using the same framework.

The emphasis in CLDC is providing just the basic functionality to conserve

memory. Although certain basic features of J28E are altogether missing in

22

CLDC, certain implementations have been altered to make them simpler. The

following list discusses these features of CLDC:

Data types 1ong and £ 1oat are not supported. All the methods of J2SE
inherited classes that use these data types have been removed.

The number of runtime errors has been reduced significantly for the
classes included in CLDC. In fact, only thé following three errors
(java.lang.Error, java. lang.OutCfMemoryError, and
java.lang.VirtualMachineError) are available. Other errors
arc handled in an implementation-specific manner.

To make garbage collection simple, support for finalization is not
provided. There is no finalizing method in the java. lang.Object
class.

Java Native Interface (JNI), which provides a means to access the [ocal
hardware, is not supported in CLDC. The purpose is to eliminate
platform-dependence so that the applications can be ported to any
platform containing the virtual machine.

Threads can be used but not thread groups or daemon threads.

In the standard edition, objects can be marked for possible garbage
collection. This cannot be done with CLDC. In other words, there is no
support for weak references.

Verification of classes to check whether the code is well formed is done
off-device — that is, on the desktop system on which the applications are
developed -— by a tool called pre-verifier. Pre-verification process should
be done explicitly after compiling the code.

A different security model is used in CLDC that is somewhat similar to
the one used in browsers for downloaded applets. The reason is that the
model used in the standard edition is too heavy for small devices, and the
security needs of the connected devices are similar to those of the

browsers.

23

MCS utilizes the capabilities of CLDC with Mobile Information Device Profile (MIDP)

to provide the complete J2ME runtime environment for Java-enabled mobile phones.

3.2.3 Jabber

Jabber is best known as "the Linux of instant messaging" -- an open, secure, ad-free
alternative to consumer /M services like AIM, ICQ and MSN. Under the hood, Jabber is a
set of streaming XML protocols and technologies that enable any two entities on the
Internet to exchange messages, presence, and other structured information in close to real

time. Jabber technologies offer several key advantages:

+ Open -~ the Jabber protocols are free, open, public, and easily understandable; in
addition, multiple implementations exist for clients, servers, components, and
code libraries.

« Standard -- the Internet Engineering Task Force (IETF) has formalized the core
XML streaming protocols as an approved Instant Messaging and presence
technology under the name of XMPP, and the XMPP specifications have been
published as RFC 3920 and RFC 3921.

s Proven -- the first Jabber technologies were developed by Jeremie Miller in 1998
[Jabber.org, 2006] and are now quite stable; hundreds of developers are working
on Jabber technologies, there are tens of thousands of Jabber servers running on
the Internet today, and millions of people use Jabber for /A4,

» Decentralized -- the architecture of the Jabber network is similar to email; as a
result, anyone can run their own Jabber server, enabling individuals and
organizations to take control of their /M experience.

« Secure -- any Jabber server may be isolated from the public Jabber network (e.g.,
on a company intranet), and robust security using SASL and TLS has been built
into the core XMPP specifications.

« Extensible -- using the power of XML namespaces, anyone can build custom

functionality on top of the core protocols.

24

« Flexible -- Jabber applications beyond /M include network management, content
syndication, collaboration tools, file sharing, gaming, and remote systems
monitoring.

o Diverse -- a wide range of companies and open-source projects use the Jabber
protocols to build and deploy real-time applications and services; you will never

get "locked in" when you use Jabber technologies.

The Jabber server is far more complex than those of the conventional Client/Server
architecture, whose simplicity may be attributed to the fact that they often overlook the
client priorities. With the Jabber server, making Jabber clients for different platforms is
far simpler and involves fewer headaches than with the conventional servers. In order to

start creating a Jabber client, we need at first understand Jabber’s architecture.

Jabber Architecture

Jabber's architecture is remarkably similar to the email architecture. Just like the email
architecture, Jabber Instant Messaging works through a distributed network of servers
using a standard protocol (SMTP in case of email, XMPP for Jabber). Anyone is free to
run their own server with their own set of users. The user addresses are DNS bases and of
the form user@host - again similar to the email. The distributed client/server architecture
allows for a great degree of flexibility and interoperability. Users use a relatively simple
client to connect to their server. Any messages that the user sends are sent to the server
which relays them to other servers based on the address of the recipient. The messages
are delivered immediately - opposed to the store-forward approach of email. Presence is a
key feature of the system. When a user is connected to her server, the server knows she is
online. This presence information is immediately available to other users who have

subscribed for it provided that the user has authorized them to know this information.

Jabber has opted for client-server architecture as opposed to peer-to-peer architecture that
is used by some alternative Insiant Messaging systems. An important design guideline
has been to move complexity to the server and keep the client as simple as possible. The

client-server separation and putting the complexity in the server has several benefits:

235

Clients do need to understand any other protocols if the recipient uses a different

protocol.

Clients need not be modified if the inter-server protocols are modified or new

protocols are added.

The contact lists and personal information is maintained at the server and a user
can have access to this information with any client from any operating system. If
this were kept at the client, a user using different clients will need to synchronize

them routinely.

Client

The guiding design criterion for the Jabber client is simplicity. The only

architectural requirements for the client are:

o It needs to understand the Jabber protocol to be able to speak to the Jabber

SCIver

¢ Support security mechanisms such as encryption for users that require

secure communications

¢ Be easy to use as the end-user interaction only takes place with a client

Server

A consequence of keeping the client simple has been that all the important
functionality resides in the server. It communicates with the clients and other
Jabber servers using streaming XML protocols exchanging structured data and
instant messages. & also allows for interoperability with other commercial Jnstant
Messaging systems having proprietary protocols i.e. AIM, ICQ, IRC and WAP

etc. The jabber server performs.four key functions:

e Maintaining a list of registered users, their personal information and

contact lists

26

¢ Listening for clients to open connections with the server, communicating

with clients and relaying messages and presence information for them
¢ Communicating with other Jabber servers

e Translate between different protocols to interoperate with non-Jabber

servers using proprietary protocols

Structure of Jabber XML protocol

As mentioned earlier, XML is the basis of the Jabber system. Communication between
the client and the Jabber server takes place on port 5222. Two XML streams are
involved in the exchange of data. One stream delivers the data packet from the client to
the server, and thQ other stream delivers the data from the server to the client. The
following code snippet is an example of XML exchange between the Jabber server and

the client.

Listing 3.1: XML exchange between Jabber server and its client.

SEND: to='aslan.net’
SEND: xmins='jabber:client’
SEND: xmlns:stream="hitp.//etherx.jabber.org/streams'>
RECV: <stream:stream
RECV: xmins:stream="hitp.//etherx.jabber.org/streams’
RECV: id="38d807¢°
RECY: xmins=Tjabber:client'
RECV: from='aslan.net’>
(XML for user session goes here)
SEND: </stréam:stream>

RECV: </stream:stream>

27

Jabber’s Open XML protocol contains three top-level XML elements (also called tags).

1. <presence/> — This element determines the status of the user. The structure of

the presence element is as follows:

Listing 3.2: Structure of the presence element.

<presence from="ayeen@aslan.net/JabberMCS' to="azlanfa)aslan.net/JabberMCS">
<status>Online </status>

</presence>

Based on the status of the user to be communicated, the <presence> element can

be evaluated on the basis of the following values:

probe — This value of the presence element is used to send a special

request to the recipient of the message without waiting for the user’s

presence information. Notice that the server, not the client, processes
such a request.

o subscribe — This sends a request that the recipient automatically send the
presence information to the sender whenever the user changes its status.

e subscribed — This sends a notice that the sender accepts the recipient’s
request for presence subscription. The server now sends the recipient the
sender’s presence information whenever it changes.

o unsubscribe — If the value of the presence element is unsubscribed, the
user sends the request to the recipient of the message to stop sending the
messages of his/her presence.

¢ unsubscribed — In case the presence element holds this value, then it

indicates that the user will not be able to communicate in any way with

the sender of this message. In such a situation, the server no longer sends

the sender’s presence to the recipient of the message.

28

o from — This mentions the name or id of the sender of the message.
» to - This mentions the name of the recipient of the message.

e show — This displays the status of the user.

e status — This displays the description of the status.

2. <message/> — This element is used for sending the messages between two
Jabber users. JSM (Jabber Session Manager) is responsible for catering all
messages regardless of the status of the target user. If the user is online, the JSM
will instantly deliver the message, otherwise, the JSM will store the message and
deliver it to the user no sooner than he or she comes online. The <message™>

element contains the following information:

¢ to — This identifies the receiver of the message.
¢ from — This mentions the name or id of the message’s sender.
e text — This element contains the message about to be delivered to the

target user.

Listing 3.3: Structure of the message element.

<message type="chat’ from = 'ayeen@aslan.net/JabberMCS’
to ='aslan@aslan.net/JabberMCS"™>
<body>Hello!</body>

</message>

29

3. <ig/> element — This element manages the conversation between any two users
on the Jabber server and allows them to pass XML-formatted queries and

respond accordingly.

The main attribute of the <ig/> element is type. The type attribute of the <ig/>

element can carry the following values:

a. get - This attribute of the <ig/> element is used to retrieve the values of

the fields present.

b. set — This attribute is responsible for setting or replacing the values of
the fields queried by the get attribute.

c. result — This attribute indicates the successful response to an earlier

set/get type query.

Listing 3.4: Structure of the iq element.

<stream:stream id="38{d8070" from="aslon.net’ xmi:lang='"en' xmins=jabber:client’
xmins:stream="http:/fetherx.jabber.org/streams'>

<ig to="ayeen@aslan.net/JabberMCS' id='s3' type="result'><query xmins='jabber:ig:roster'>
<item name="aslan’ subscription="both’
Jid='aslan(@aslan.net'><group>love</group></item><ilem name="mfuzze’ subscription="both’
Jid="mfuzze@asian net"> <group>love</group></item></query></ig> ' |

</stream . stream>

30

3.3 Design Phase

MCS 1s an instant messenger application that uses Jabber technology as 1ts standard and
protocol. The whole purpose of AM/CS development is to provide an alternative of text
messaging for Java-enabled mobile phone users. It is based on J2ME (MIDP 2.0) and the
MicroJabber library [MicroJabber, 2005]. MCS is being designed to run on all Java-
enabled mobile phones with the abilities to support all Jabber client basic features and to

provide easy, fast and essential GUI

MCS is built from different Java packages which each have their own classes to handle

specific tasks. The application is consists of these packages:

mcs: Contains the GUI Midlet (main program) and the Jabber stanzas reader

mcs . connection: Contains the connection tools

jabber.roster: Contains classes concerning Jabber ID and roster management
jabber.conversation: Contains classes to manage chats

jabber.presence: Contains classes for jabber presence management
jabber.subscription: Contains classes for registration to jabber servers and
Jabber IDs subscriptions

org.bouncycastle.crypte.digests: Contains classes for password encryption
util: Contains utility classes

xmlstreamparser: Contains classes for XML parsing

The communication of these packages is explained in Figure 3.3.

31

1
. 1 1
i) ncs | xnl5treanParser V

WriterThread mcs. connection
Parser

meConnector

C ! k) .
| ReaderThread lf l onnectorinterface © | TCP connection tooi

/ Parserlistener }
ReaderThreadiistener CommunicationManager

Ceonnection manager
+midiet: Midlet b = - [

I ExceptionListener +stanzoReader: StazaReader

+cinit: meComnector

StartMidlet

Datas GUl midlet
data storage ObjECt - +cm: CommunicationManager
Clontents StanzaReader
Gui contents '} Read incoming stanzas

isence V- P o T _r'o-st:r' ————— v‘ --——--_-_-... ::::: - -V

9. \J
Presencelistener Hosterlistener Conversationlistenar
+not if yPresenc el raster: 1id, name: St ring} +notif yRoster(roster: 1id, presence:int) +newConversat lonEvent [cenv: Conversation)
Message Conversation
Presence lid
Jabber presence class jabber jid class

SingleChat

subs¢ ription

e A e mm o me e me Mm Em mr mm o ome ek PR W

Subscribe
{abber subscription manager

A

Figure 3.3: Communication between MCS Java Packages

3.3.1 Programming MCS

In MCS, two J2ME classes work together to recognize user events and to send user
requests to the Jabber server: mcs.StartMidlet andmcs.StanzaReader. The
midlet mcs . StartMidlet provides the user interface necessary for the working of
MCS application, and the mcs . StanzaReader class works in the background, reading
incoming stanzas and answers them if necessary (as method result). Stanza in this context

refers to first depth XML nodes. MCS uses XML requests that comply with the XMPP

32

protocol to communicate with the Jabber server. This enables MCS to connect with any
Jabber server which then allows AZCS to accept contacts from other servers running the
same protocol. Some of the servers are jabber.org, ijabber.com and gmail com. Full list of

public Jabber servers is included in the appendix.

1. Themcs.StartMidlet GUIis based on the ChoiceGroup class which 1s much
the same as radio buttons in Java Swing applications. To create the GUI, methods are
called and command listener is added to the list. The code snippet below shows how

this is being done. It provides an “OK” and “Exit” button.

Listing 3.5: Creating the GUI of Offline Menu

public Displayable getGuiOffiineMenu() {
Form res = Contents.offline form;
if (res.size() > 0)

return res;

off LineMenu = new ChoiceGroup("OffLine", List. EXCLUSIVE, Contents.offlineChoices, null);

res. append(offLineMenu);
res.addCommand(Contents.ok);
res.addCommand(Contents.exit),
res.setCommandListener(this),

return res;

2. In the above example, four parameter values have been passed while creating a
ChoiceGroup object. The first value containing the string “Offline” is the name of
the list. The second value, List.EXCLUSIVE denotes the type of list. In this case,
the list type only allows one option to be selected. The third value,
Contents.offlineChoices,is a string array containing values for the list
elements (here these elements are "Connect”, "Login Info" and "Help"). The fourth
value that is a null parameter here accepts an image array for any image icons. The

offline display on the screen is as shown in Figure 3.5.

33

3. When the user presses the “OK” button, the corresponding screen of the list item in
focus appears. The index of the selected item is obtained to determine the list element
that the user has focused upon before pressing “OK”. The “Connect” option
establishes connection to the Jabber server, “Login Info” option displays login details

screen to get input from user and the “Help” option displays the help screen.

Listing 3.6: Command Listener for the Offline Menu

public void command ActionOfflineMene(String id) {

_ if (id.equals("ok™) { .
display.setCurrent(, getGuiWaitCOnniec’L());

internal_state = WAIT CONNECT;

if (offLineMenu.getSelectedIndex() ==)]
cm.connect(0); /fuser a]réady registered

else if (offLineMenu.getSelectedindex() == 1) {
display.setCurrent(getGuiParams());
intemal_state = PARAMS,;

y |

else if (offLineMenu.getSelected Index() == 2 {
display.setCurrent(COntehts.help,getGuiOﬂlineMenu());
infernal_state = OFFLINE,;

else

System.out.print!n("Errof: choice not chosen"),

}
. else if (id.equals("exit"}) {
notifyDestroyed();
3

4. The GUISs for index 1 and 2 in the code snippet above are shown in Figure 3.6 and
Figure 3.7. In the “Login Info” screen, if the user is connecting to a public Jabber
server such as ijabber.com, there is (in general) no formal process for requesting a
usemname. All the user has to do is try to log in with his/her desired Jabber [D and
password. If it doesn't work (e.g., because the Jabber ID is taken), he/she has to try
again with other Jabber ID. (If the user is using a private Jabber server, for example a
server running on a company's intranet, he/she may need to contact the server

administrator in order to register an account.)

34

5. After the user selects the “Connect” option, connection to the Jabber server is
established. Communication between AMCS and the Jabber server takes place on port
5222, The connection is handled by the mcs . connection.meConnector class
which extends mcs. connection.ConnectorInterface thread class. The
mcs.connection.meConnector class receives parameters from the
ncs.connection.CommunicationManager class (Listing 3.7). The code

snippet below shows how the parameters are passed.

Listing 3.7: Passing parameters to establish connection

public void connect(int state) {
cinit = new meConnector(“aslant.net”, 5222, this);
type_of connection = state,

cinit.start();'

The argument state takes the value 0 of type int from mcs.StartMidlet
class as indication that user has already been registered. Three parameter values have
been passed while creating a mcs . connection.meConnector object. The first
value indicates the hostname, the second value states which communication port to be
used and the third value represents the
mcs.connection.CommunicationManager object. The start() method of
mcs .connection.meConnector class initiates the connection with the Jabber
server. The start() method is referred to as run() method in the

mes . connection.meConnector class (Listing 3.8).

Listing 3.8: Calling the method run to initiate connection with Jabber server

public void run() {
StringBuffer connectorStringBuffer = new StringBuffer("socket:/");
connéctorStringBuﬁ‘er.append(hostname }; -
connectorStringBuffer.append(":");
connectorStringBuffer.append(_port);
cunnectorStriﬁgBuﬂ‘er.append("y

35

String connectorString = connectorStringBuffer.toString();
System.0ut.pri1_1th1(conne_ctorSt1jn§);
try { .

‘comnection = (StreamConnection} Connector.open(comiectorStriﬁg Y,

_em.notifyConnect(connection, this.openinputSiream(), this.openOutputStreamy));
, :
catch (Exception e){e.priniStack Trace(),

System. out.println(*Connection Error:"+ ¢.getMessage());

_cm.notifyNoConnectionOn("Connection Error:™+ e.getMessage());

H

retusn;

6. Upon successful connection, the user’s contact list is displayed on the mobile phone’s
display, as shown in Figure 3.8. The presence information of each of the user’s

contacts is represented by an image next to the contacts’ Jabber ID.

The list of friends shows the names of the friends along with their respective status.
The friend list is also derived from the ChoiceGroup class and is of EXCLUSIVE
type. The Options button in the left hand comer provides options such as
disconnecting from server, adding contact to roster and changing status as shown in

Figure 3.9.

The user can now choose any option from the list. And the display on the mobile
phone will show the corresponding GUL While the Select button in the right hand
corner provides options like deleting contact and sending message. This is shown in
Figure 3.10. The index of the selected friend is obtained to associate the chosen
option with the particular friend. For example, if the contact mfuzze(@aslan.net is
selected and the Send Message option is chosen, the program takes care that the

message keyed in is subsequently sent to mfuzzel@aslan.net.

36

7.

10.

When a user wants to start a conversation with a contact, a message window like the
one shown in Figure 3.11 appears. The user can type his’her message in the text box

and press “Send” to send it.

When a user receives a message from a friend, a notification like Figure 3.12 is
shown. This allows the user to be notified by the program whenever other contacts
send messages to the user. Notifications are also shown when users in the contact list

*3LC

are “online”, “away”, or “dnd”.

When a user chooses the option “Add Contact” as in Figure 3.8, a form like Figure
3.13 is shown to receive input from the user. The user has to insert his/her friend’s
Jabber ID and assign which group that the friend belongs to. After the user had
entered all the details and presses the “OK” button, an add-friend request is generated
by the jabber.subscription.Subscribe class and is send to the Jabber

SEIveEr.

When other user tries to add the user as a friend, a form like the in Figure 3.14
appears that provide the option of accepting (“Accept” button) or declining (“Deny”

button) the other user as a friend.

A user may also change his/her current status by selecting the option “Change Status”
in Figure 3.8. The status option list is shown in Figure 3.15. This provides the user’s

presence information to his/her contacts.

All requests are handled by the mcs . StartMidlet class that in turn calls the

appropriate classes and methods to generate the appropriate XML streams. These

requests are then being sent to the J abber server for responses. The full workings of every

J2ME classes used in MCS are explained in the Java Documentation included with this

report.

37

3.4 Implementation Phase

Implementation which is the final phase of the project work involves execution and
testing of MCS on the emulator to ensure it performs as designed. After the process has
been successful, a user manual for the application is written to guide users on how to use
the application. Finally, MCS is being installed into a Java-enabled mobile phone as the

final process of the implementation phase.

3.4.1 Execution and Testing

The execution and testing of MCS have been done using the J2ME Wireless Toolkit
Emulator. The emulator simulates an MIDP device on the desktop computer. It is a
convenient way to see how the application performs in an MIDP environment. Below are
the screenshots of the MCS application when it is run using the emulator. The functions

of each screenshots are the same as explained in the Design section.

Created by Azlan Fazly Mustaza

Figure 3.4: MCS splash screen

38

(O~
OLogh Infa
Orelp

Figure 3.5: MCS offline screen

Jabberld
iayeen@aslan.net/JabberldCS |

Pagawaord
1inn |

Email
just_ayeer@yahoo.com]

Figure 3.6: GUI for “Login Info” option.

Connsct: Connect to an IM server with JabberlD
jnformation saved betore

L ogin Info; Save your JabberlD, password and
=-mail.

1 vou are not registered to the server, you will be
kegistered onthe first connettion ettempt.

Figure 3.7: GUI for “Help” option.

39

(0 Baslang@aslan net
@] lhelm‘f@aslan.net
(' Baslsnomok@asien net
CIHide oifiine contacts

Figure 3.8: MCS main screen

O add Cortact
OChangE Status

Figure 3.9: Online Options list

40

mruzze

© P

(OSend message

Figure 3.10: Contact Options list

'

<Type your message here=

Figure 3.11: The GUI to send a message

i

AComversatlon from aslan

Figure 3.12: Notification message of incoming conversation

41

Eroup

1 i |

Figure 3.13: The Add Contact Form

helry warts to subscribe your presence!

Figure 3.14: The Subscription Request Form

Choosze status

e —

OEWEY
Odnc

Figure 3.15: The Status Option List

42

3.4.2 MCS User Manual
After the execution and testing had been successful, the user manual of MCS is written.

The full user manual is available as Appendix A.

3.4.3 Installation

MCS runs on all mobile phones which support J2ME with MIDP 2.0 and CLDC 1.1. The
device should also support GPRS for the application to connect to the Jabber server. The
installation of MCS is very easy as you only have to deploy the jar file in your device
following the specific guidelines provided by the device manufacturer. For demo
purpose, | have used a Motorola SLVR unit as the target device. The following diagram

shows the device installing the MCS jar file.

Figure 3.16: MCS installation on Motorola SLVR

43

After the installation has been completed, MCS can be run and users can connect to any
Jabber server that is available on the internet. The full list of the public Jabber server is

included as Appendix B.

44

CHAPTER 4
RESULTS AND DISCUSSION

4.1 MCS VS SMS

Over the years, Instant Messaging has proven itself to be a feasible technology not only
to fun-loving people but to the world of commerce and trade, where quick responses to
messages are crucial. With the wide acceptance it commands, Instant Messaging has
created a major league of fans that uses /A as an ideal tool for day-to-day

communication.

The step to bring /M into mobile phones has created a new way of text messaging to the
people. Apart from being an alternative to calls and SAMS, MCS allows spontaneous
interaction among users over the network, which SMS lacks off. It also makes it easier in
accessing remotely located users. Users from all around the world can use MCS to

communicate with each other as long as they are within the coverage area.

With MCS, one can be informed about the presence of their contacts through the status
information. This presence information does not exist on cell phones, but the minute they
are adopted there, they will enable real-time communication at another level. People will
be able to see if the person they want to reach is free to speak, and to decide if they're
rather send him a written message. This gives MCS an advantage over SMS because SMS
does not provide the users’ presence information to be available to others. Table 4.1

shows the presence information provided by MCS.

45

Table 4.1: MCS Presence Information

Status Description
! Online
) Away
I Do Not Disturb
§ Offline

4.2 MCS as a cheaper text messaging communication

MCS establishes its connection to the Jabber server through General Packet Radio
Service (GPRS) that is a connectivity solution based on Internet Protocols that supports a
wide range of enterprise and consumer applications. With throughput rates of up to 40
kilobit per second, users have a similar access speed to a dial-up modem, but with the
convenience of being able to connect from anywhere. With GPRS, users can always be
online. No more wasting time with dialing up, getting busy signals or disconnected. The

connection is always on, always instantly available the moment they need 1t.

GPRS charges are based on packet counting which means a user is being charged based
on the amount of data transferred. Thus with GPRS, a user only pays for the actual data
sent and received, which is calculated in kilobytes (kB).

In Malaysia, the average cost for mobile phone calls is RM 0.30 per minute and RM 0.15
per message for SMS which can take up to 160 characters. As for GPRS, users are being
charged RM 0.10 for each 10 kB of data transferred.

MCS sends requests and receives responses from the Jabber Server in XML format. XML
encodes characters using UTF-8 encoding standards [Tbray.org, 2003]. In UTF-8,
characters whose value is less than 128 (i.e. ASCII) are encoded as themselves in one
byte. Thus, every character in the XML streams is considered as one byte. The figure
below shows the XML streams involved and its characters representation in UTF-8

encoding.

46

) Pletwork Mondtor - 777 BefauliCelorPhone - Wireless Toolkit

File Edit

iHTTP :ﬁéﬁ\"sﬁg-}_c;;s'fiﬁﬁﬂﬁﬁﬂswu@]gg&EIE_]}oategrmﬂﬁi

LJRL:. ffaslan net 5222
5 ¢l faslan.net:5222 [Bize: 533
ahi) 0 0: 27 72 65 73 75 6c 74 22 20 63 64 ad zz 64 Sl reswlt” id="dis e
Gz 1 10z 63 S£ 69 74 65 6d 31 22 20 66 72 6f 54.3d Z{jjcoitenl™ from="a)
2 a0; 73 6c 61 6e 2e 6e 65 74 22 20 T4 6£ 3d 22 §{jglan.net” to="ay :
3 30: 65 65 6e 40 61 73 6c 6L 6e Ze Ge 65 74 2f 4i|leenfaslen.net/Ja .
4 40; 62 B2 65 72 4d 43 5322 3e 3c 7L 75 65 72 7||bberHCs s<ouery
oA 5 50z 78 £d 6c Ge 73 3d 22 68 7474 70 3a 2f 2f 5{|kmlns="hrip://ja Lo
8 60t 62 62 65 72 2e 6f 72 67 2£ 70 72 6£ 74 6f &]|bber.ory/protoco Cd
; 70: 6c ZE 64 69 73 63 6L 23 69 74 65 6d 73 22 3||[i/discofitens">< S
- 80: 69 74 65 6d 20 Ga 69 64 3d 22 63 6f ce 66 &|liten jid="confer i
8 o0z E5 &0 63 65 20 61 73 6c 6L 6e 2e e 65 74 zl|lence.aslen.net” P
] o ao: e 51 6d 65 3d 22 50 75 62 6c 69 63 20 43 5{|jname="Public Cha ;
bo: 74 72 6f 6C 6d 73 22 2f 3e 3c 69 74 55 6d 2{|jcrooms”><iten j Pt
o0t 65 54 3d 22 70 72 6 78 79 2e 61 73 6c 61 &ljid="proxy.aszlan. .
do: 6e 65 74 2z 20 6e 61 6d 65 3d 22 53 6 63 &]|pnet” name="Socks P
e0: 20 35 20 42 79 74 65 73 74 72 65 61 6d 73 2|{{ 5 Bytestreams ? P
£0: 72 6 78 79 22 2L 3¢ 3c 69 74 65 64 20 6& 6|jroxy™/><iten jid P
1001 3¢ 22 73 65 61 72 63 68 2e 6L 73 6c 6L Ge 2||i="search.aslan.n i
1101 |65 74 22 20 6e 61 6d 65 3d 22 55 73 65 72 2||{et” name="User 3 Lo
120t |65 61 72 63 68 22 2 3e 3c 2f Tl 75 65 72 7)||earch”sr</query> I
130: 3c-2C 68 7L Je 3¢ 7072 65 73 65 6e 63 65 2f|k/igr<presence i Cd
140¢ | 154 3d 22 3% 55 43 38 31 24 32 34 22 20 66 7}||2="9UCEL-24" fro L
150t |lsd 3d 22 68 65 5c 5d 79 40 61 73 6c 6L Ge 2} m="heluyfaslan.n C
160: [[65 74 2£ 53 70 61 72 6b 22 2074 6f 3d 22 6|{|ev/Spark” to="ay o
| (A rier ¥ Emarsetvgs . SorBy: [Time 4| : i
Nurrber of shown messeges: 1 out of 1

UTF-8 Encoding XML Streams
Figure 4.1: MCS XML Streams and UTF-8 Encoding

To explain further, I will give an example of the calculation for the number of bytes
needed for a connection from the MCS application to the Jabber server and the usage

charges for the connection.

Establishing a connection to the Jabber server:

No. of characters in XML streams = 2431 characters

Encode using UTF-8 '(6ne byte for one character) = 2431 bytes

Convert to kilobytes ' = 2.431 kilobytes

Usage charges of GPRS = 2421/10 XRM 0.10
| = RM 0.02

In the result acquired from above, the usage charges for the connection is RM 0.02 which
is way cheaper than the average cost of a single SMS of RM 0.15. For other XML streams

such as sending messages, adding contacts, changing status and so on, the number of

47

characters in the XML streams is much less than establishing a connection. Therefore, 1
can honestly say that the total amount for all the streams will not be more than RM 0.15.
This proves that MCS is a much cheaper text messaging communication as we are not
paying for the service but paying for the amount of data transferred. Users can send

messages to their contacts much cheaper than the conventional SAS.

4.3 Interoperability among different Jabber clients

One of the objectives of the development of MCS is to accept communication from
different JM application that uses the same protocol. It is being achieved by using an
established Instant Messaging protocol that uses open and XML-based protocols that
provides the standard functionality of an /M system. This is where the Jabber XMPP
protocol comes into the picture. As explained in Chapter 3, Jabber protocol allows
different Jabber clients to communicate with each other through its distributed
client/server architecture. It means that users who are using Jabber clients other than AMCS
can “talk” and see the presence information of an MCS user. Among the Jabber clients
available are GoogleTalk, Meebo, Spark, Exodus etc. They each connect to different
Jabber servers but still able to communicate with each other because they comply with
the Jabber protocol. The same goes for MCS where it supports the capabilities of

“meeting” with others no matter what Jabber client other users use.

48

CHAPTER §
CONCLUSION

Presence and mobile Instant Messaging are clearly very promising and have already
attracted a great interest. The establishment of GPRS technology will facilitate persistent

‘always-on’ connection with friends, family and colleagues through mobile /M.

This report has explained the concept and development of MCS as a mobile /M
application system and the benefits in regards to mobile /Af and presence. MCS has
created a text messaging alternative using mobile phones. It also had achieved all the
project’s objectives stated in the early part of this report. It provides capabilities such as
presence information that SMS lacks off and interoperability between different /M
services that use the Jabber protocol. With such capabilities, MCS may become the new
main stream of text messaging. The reasons for this are the wide acceptance of M
among the people nowadays and the low usage charges that it provides which is way
cheaper than the conventional SMS. 1 ﬁope that in the near future, people will opt for
MCS rather than SMS to deliver text messaging to their families and friends. I believe
that MCS will create its own major league of fans that uses MCS as an ideal tool for day-

to-day communication.

49

REFERENCES

American.edu (2004). Information Technology Landscape of Malaysia. Accessed from
the web page with URL:
<http://www.american edu/initeb/ym6974a/telecom htm#Quick%20Links>

Antypas, J. & Leung, K. (2005). Primer for Mobile Commerce: The Decision Making
Process.

Chakraborty, R. (2002). Presence: A Disruptive Technology, JabberConf 2001

presentation, Denvor.

Ericsson, Motorola, Nokia (2002). Wireless Village: The Mobile IMPS Initiative.

Accessed from the web page with URL: <www.wireless-village org>

FunMail (2002). FunMail: Content Driven Wireless Messaging Solutions. Accessed from
the web page with URL: <http://www funmail.com/>

Gsmworld.com (2006). GPRS Platform. Accessed from the web page with URL:

<http://www.gsmworld.com/technology/gprs/index.shtm]>
Haggar, P. (2000). Practical Java Programming Language Guide. Addison-Wesley.

IETF (2002). Overview of the IETF. Accessed from the web page with URL:

<http:./fwww ietf.org/overview html>
IETF (2001). SIP: Session Initiation Protocol. The Internet Society. Accessed from the

web page with URL: <http://www.cs.columbia.edu/sip/drafts/draft-ietf-sip-
rfc2543bis-03 .pdf>

IMPP (2002). Instant Messaging and Presence Protocol (IMPP). IETF. Accessed from
the web page with URL: <www.ietf org/html charters/impp-charter. html>

50

Jabber.org (2006). Jabber People. Accessed from the web page with URL;
<http://www jabber.org/people/jer.shtml>

Maxis (2006). Maxis Call Charges in Malaysia. Accessed from the web page with URL:

<http://www.maxis.com.my/personal/mobile/call_charges/planscharges.asp>

Microlabber (2005). MicroJabber Project. Accessed from the web page with URL:

<http://micro-jabber.sourceforge net/?microJabber>

Nardi, B., Whittaker, S, et al. (2000). Inferaction and Outeraction: Instant Messaging in
Action. CSCW'2000, ACM Press.

NST (2006). The 21 Billion SMS Phenomenon, Kuala Lumpur, New Straits Time.

PAM (2002). About the PAM Forum. PAM Forum. Accessed from the web page with
URL: <www.pamforum .org/SubNav/background.html>

PAM (2002). PAM Specification Document: version 1.0. PAM Forum. Accessed from

the web page with URL: <www.pamforum.org>

Peretz, M. (2002). IM 101. Different Wireless Messaging Flavors. Instant Messaging
Planet. Accessed from the web page with URL:

<www instantmessagingplanet.com/wireless>

Pulver.com (2001), The marriage of SMS and Instant Messaging. Accessed from the web
page with URL: <http://pulver.com/reports/smsim.html>

Toray.org (2003). Characters VS Bytes. Accessed from the web page with URL:
<http://www tbray.org/ongoing/When/200x/2003/04/26/UTF>

51

Tulloch, J. (2002). Communication Breakdown. Mobile Communications International,

Telecoms.com. 01.

Ulfelder, S. (2001). Showdown over Instant Messaging. M-Business, 68.

Wiral (2001). Wireless Instant Messaging: Market Opportunity and Business Models.

Woods, B. (2002). Interoperability: Big Challenge for Mobile Messaging. Accessed from
the web page with URL: <http://www instantmessagingplanet.com/wireless/
article.php/964591>

XMPP. (2002). Extensible Messaging and Presence Protocol (XMPP). IETF. Accessed
from the web page with URL: <http://www ietf.org/html.charters/xmpp-charter htm1>

Yuan, M.J. (2003). Enterprise J2ME: Developing Mobile Java Applications. Prentice
Hall.

52

Appendix A
MCS User Manual

Message Conveying System

User Manual

Author: Azlan Fazly Mustaza

Introduction

Message Conveying System (MCS) is an Instant Messaging client for Jabber protocol for
GPRS mobile phones. It is based on J2ME (MIDP 2.0) and the MicroJabber library.
According to the still quite low performances of smartphones, MCS has these targets: to
support all the Jabber clients’ basic features; an easy, fast and essential GUI, easy
extendibility so that other features will be able to be added when more powerful devices

will be on the market.

System Requirements: MCS runs on all GPRS mobile phones which support J2ME with
MIDP 2.0 and CLDC 1.1.

Installation: MCS is very easy to install, you have to deploy the jar file in your device

following the specific guidelines provided by the device manufacturer.

Offline menu

When you start the application, after the preliminary splash screen, MCS shows the

Offline menu.

o Connect
e Login Info
e Help

K you have never used MCS before, you have to set your connection options: choose

“Login Info” and press OK, a form is shown where you can write your Jabber ID (JID),

53

password, and email address (optional); these settings are stored in your device memory,
$0 it's not necessary to write them each time you use MCS. Now you are ready to

connect, select the Connect option!

If you are not already registered to the Jabber server, MCS tries to register your JabberID,
if the registration is successful, the “Online” menu is displayed, otherwise an alert is

shown and you must change your settings.

If you choose Help and press OK, a help alert is displayed for ten seconds.
On the left part of the screen there is an EXIT button for you to close the application.

Online screen

This screen shows your Roster (your contacts list), if you have any. In particular, only
online contacts’ JabberIDs are displayed. If you want to see the entire list you can choose
“Show all Contacts” and press “Select”.

In the Roster list each contact’s JabberID has on its left an image which represents the

user current status. For more details see the table below:

Status * Description
&. Online
A . Away
] Do Not Disturb
3 " Offfine

On the bottom left of the screen, there is the “Options” command. If you press this

button, the Other Options menu is shown.

54

Other Options menu

This menu is composed by the following items:

e Disconnect: Disconnects from the server and return to the Offline menu.

e Add contact: This item allows you to add a new contact to your roster; a form is
displayed to enter the JabberlID, if the JabberlD exists in the server, the new
contact is added to the roster.

e (Change Status: This item allows you to manage your present state, when this
choice is selected MCS shows a menu with all the states you can choose:

b 1Y

“online”, “away” and “dnd”.

Contact details
This screen contains the possible interactions that you can activate with the contact

selected. On the top of the screen MCS shows the current state of the contact. These are

the options for the selected contact.

« Delete: if you want to delete the contact.
-Send a message: send an instant message to the contact, MCS opens the Conversation

screen (see Conversation screen section).

This last item can be replaced by “Active Conversation” if there is an active chat with
this contact. If you select this item, you will enter the Conversation screen (see

Conversation screen section).

Conversation screen

There is a form where you can insert the text to be sent (press the “Send” button on the
right). Under the textbox is the history text of the conversation growing as a stack (last

message on the top). On the left there is the “Back” button to return to the Online menu.

When there is an incoming message while MCS is showing a screen different from the

Conversation screen, an alert will be displayed.

55

MCS supports six types of smileys. The smileys are displayed if you or the other user

types the character representation of the smileys during a conversation.

Smileys Character Representation Description
@ “Y or“-y’ Smile
CG: ” Or EC:"(U'J Sad
i
“D” or “:-D” Big Smile
,~';';"'. i :p” or cc:_p” Tongue
Lo

.‘:."\. CE;)Jﬁ Or h’.;_))’ Wink
)
X “07 or “:-07 Shock
>

56

Appendix B
Jabber Public Servers

This is the list of the Jabber/XMPP servers that are registered with the XMPP Federation.
You can use MCS to connect to any of these servers.

* Source: http://www jabber.org/user/publicservers.php

ECmmtry Domain o Latitude

I at [jabber.uplink.at 48.14

Lot ljeimat 48.12

I at 5 jabber. linuxlovers.at 46.65

! at selfnet.at 48.12
au {jabber.org.au -31.97
au jabber.oztralia.com -33.50

3 au ekto.ath.cx -27.29
be |jabberweb.be 50,88

bg jabber.ﬁetworx-bg.com 43.20

r bg ;jabber.millusZ'i&org 43.12

1}-:- br : rede'sqlmij;éi -25.25

‘r br chat.placeredes.com.br -23.33

e dbbitea e |

46.03
panubls ops.c;ww -:15.22

ca jjabbercanada.net ;12:03
e |globalrelaynet | 49.21
Teh lowissjabberch 46.57
ch |swissjabberi 46.57
TTehswissjabber.de 14657
. ch swissjabber.org 46.57
" ez ljabundemetecz 50.22
cz ijabber.cz . 50.06
C ez Injsnetlaboz 50.06
¢z ijabbim.cz 50.06
" ljabbimsk 50.06
¢z fjabbimeom | 50.06
"Tde ideshalbfreiors | 49.27
de jjabberipoboxnmet | 5224
TUd Tiabberccede T T agaw
"o lasdlignet " T w00
" de |jabberschwarzvogelde | 5113
A o
U de amessaée.inf:o 4923

57

oesmsn

" de |amessaget 923 [|
| de |amessage.be 49.23 111 |
| de |amessage.ch 1923 | 1L |
de amessage.de 49.23 11.11 |
de lamessage.dk 49.23 1111 !
. de |amessageli 4923 | 1111 |
de amessage.nl 49.23 1111 i
de {jabber. hot-chi.lli.net o 52.3G 13.17 5
de foxalpha.de 53.33 9.58 j
de |jabber.23-42.net 49.27 11.03]
de }jabber.sow.as 52.24 9,44 J
de ljabber.fourecks.de 52.24 9.44 i
" de |jabber4friends.de 4927 | 1105 |
de 1jabber.workaround.org 53.60 16.10 l
© de |jabber.cc 4927 | 1103 !

de camaya.net 49.27 11.03

de |jabber.freenet.de 5114 6.42

de |draugr.de T 27 | 10

de im.flosoft.biz 52.30 13.25

de 2on.net 49.00 8.23

de |jabber servequake.com 49.00 8.23

" de |phende 4811 | 1148
de Imydebiande 50.12 8.73 |
de |schokokeks.org 51.28 7'13.,_.]
. de [alpha-labs.net 51.52 7.45 I
I "de|funkyjoh.de 4985 | 787 |
["de {jabber.pilgerer.de a3 [ns |
| de |nerdtreffde 49.45 11.07 J
T de hellercomserver.dyndns.org| 52.30 13.25 _j
dk jjabber.dk 55.40 12.34 ;
es {jabber-hispano.org 42.21 275 |
es |im.rediris.es 40.44 -3.68 l
oo tecnisol.com 37.45 -6.17 '}
" e |udiascom 8327 | 348
v es xintcat.org 42.22 128 ~—-

e |jabberlandoom 4261 | -5.60

es jabbernet.es o 39.52 -3.00

. fr jabber.netrusk.net 43.60 1.40
" fr |jabbertoweb.org 5063 | 306 |
" |mithrandirnet 4848 | 220 |
T lpratznmet 4848 | 220 |
& Ikayaepiknet org asag | 220 |
fr |jabber.fr 488 | 224 |
o limapincorg 1889 | 224 |
" f|jabber.gnubox net 5043 | 333 |
| fr iims.kelkoo.net 45.11 5.43 .*

58

| fr |jabber.eriirad.net 4457 | as4 |
fr e-bonnell.net _ 48.48 222 ;
fr jabber.nuxo.net 50.37 3.05
| ﬁ; im.drazzib.com 47.23 -1.58
\ gh infonet@ana.com 555 025
I it |jabber linux.it 45.40 741 i
it {jabber.dagarias.org 4525 886 |
mx ljabbermxorg 2565 | 10029
nl jabber.ambrero.nl 52.21 4.55
nl junstable.nl 52.35 489 |
nl nedbsd.nl 52.30 4.90
nl jnedbsd.be 52.30 4.90
nl {shady.nl 52,30 4.90 ;
| nl |dbusinessnl 5230 | 490 |
nl XMpPp.us 52.22 5.93 l
nl }12jabber.com 52.22 5.95 |
nl jabber.cn 52.22 595 i
nl jjabber.anywise.com 52.22 595 |
1l xstars.n] 52.11 3.20 4;
nl vanbragt.com 51.44 551 |
nl jwmijnnl 51.44 551 |
. no jjabberno 5991 | 1081 |
no jmanya.urbanturban.no 63.42 10.43 5
ruw;i- chrome.pl 50.40 1957 I
pl ijabber.wp.pl 5422 18.38 ;
pl |jabber.gdapl 54.40 18.60 j
pl {jabber.autocom.pl 50.04 19.57
pl remes.pl 52.30 16.40
pl lhapipl 5182 | 1947
pt ljabber.3gnt.org 38.79 -9.12
pt sapo.pt 38.73 -9.14
pt imail telepac.pt 3873 | 914 |
pt inetcabo.pt 38.73 914 |
pi |simplicidade.org 38.79 9.12 |
pt |jabber felisberto.net 40.20 -8.42 i
ro |jabber.ro 4425 | 2670 |
_mm:'u volgograd.ru 48.70 44.30 5
" m onlinevizru 000 | 400 |
m joborona.met 57.09 6532
o Tjabberu . 5539 | 373t
ru {xmpp.ru 5539 | 3731
ru city.veganet.re 56.33 36.72
m jabber.nno.v.ne_t 56.33 44.00
. 1jabber.dolm 5545 | 3142 |
byl fr.eeside.ru 55.45 37.42 i
se |jabber.cd.chalmers.se 5760 | 1198 |
B Vsk jabber.efb-group.sk 48.10 17.07

59

ua - ijabber.od.ua 46.40 3150 §
ua lost.net.ua 40.41 30.66 .
uva ijabberkiev.ua 50.19 30.53
ioua jabb;er.in.ua 49.99 36.21
T2 liabberafox et 5030 | 3028 1
' ua |planctaksua 4639 | 3237 |
ua |jabbermaxnetua 49.58 | 3620 |
! ua ijabberteua 49.33 25.36 ;
¢ uk [amber.orguk 51.27 235 :
. uk |jabber.tllp.co.uk 5150 | 002
. uk wfforguk 5397 | -1.59
uk jnetmindz.net 51.32 =050
'1 us ijabber.org 42.23 -91.]7}
‘ us pone.mauiholm.org 20.74 -156.45 i
 us !binaryfreedom.info 4248 | 7115 ;
us bgmr.net 26.80 -80.80
us |jabber.com 39.75 1 -104.90
us 1j20.rtcomp.us 43.41 -83.93 |
us | jabber.unoc.net 3278 | 9680 |
us hawkesnest net 44.52 -89.57 é
| us _jteamthickocom s -89.57 ;
] us pimpstation.org 43.25 7598 |
, us jsunyoccedu 43.00 7620
: us jfmalkjer.net T 38.88 -90.03
[us gmaileom 3739 | -12208 |
s prolly.orgwu 39.17 -76.53"6 i
us pyxos.net T 43,22 -76.98 “;
us foxybanana.com - 32.49 -117.07 a:
us inflecto.org 29.21 -98.26
us {hoffmang.com 7 3746 | -12227 ,
us netflint.net 40,77 -111.90 §
us deepdarc.com 3743 122.12 *
us patronsystems.com 40.02 -105.25 i
us lijabber.com 3250 | 9730 |
s ljsbberes.org 3746 | -12226 |
‘s |jabbervorpalcloud.org 3571 | 7861 |
us |vilinkup.com IRTIN NETY T
us|standd.net RN
us 1303labsnet 3397 | -11822
yu wwwwathammer.net 4452 | 3200 !
. jdarkskieszanet | 3440 | 1826 |
7a jabber.obsidian.co.zia -26.12 2840

60

ok

