- DCMOTOR CONTROL USING GENETIC ALGORITHM BASED PID

By

NURUL ASHIKIN BINTI SHAHRONI

FINAL DISSERTATION

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2011
by
Nurul Ashikin binti Shahroni, 2011

CERTIFICATION OF APPROVAL

DC MOTOR CONTROL USING GENETIC ALGORITHM BASED PID

by

Nurul Ashikin binti Shahroni

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Assoc. Prof. Dr. Irraivan Elamvazuthi
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

September 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

ik

Nurul Ashikin binti Shahroni

ACKNOWLEDGEMENT

First and foremost, I would like to express my heartily gratitude to my supervisor,
Assoc. Prof. Dr. Irramivan Elamvazuthi for the guidance, motivation, support,
inspiration, encouragement and enthusiasm given throughout the progress of this
project. With the guidance and motivation, I manage to overcome hardships in

completing the project and also keep motivated throughout these two semesters.

My appreciation also goes to my beloved parents and family who have always been
there for me, supporting me all these years. Thanks for their encouragement, love
and emotional support that they had given to me. Without them, my thesis and
project would not have finished on time.

Nevertheless, my honest appreciation is also dedicated towards all my friends and
those who have helped me in the completion of ‘the project, either directly or
indirectly. Thank you.

ABSTRACT

This dissertation presents the research that had been done on the chosen topic, works
done and results acquired throughout the Final Year Project for two semesters, about
the DC Motor Control using Genetic Algorithm based PID. The objectives of this
project are to optimize speed control of the DC motor by using Genetic Algorithm
based PID, to improve the performances of the DC motor controller in term of rise
time, settling time, maximum overshoot and Integral of Time Absolute Error (ITAE)
and to decide the best parameters to be used for Genetic Algorithm that can optimize
the performance of a DC Motor (eg: population size, mutation rate and crossover
value). First, the report discusses the types of DC motor available in industry
nowadays and the origination of Genetic Algorithm itself. Next, the paper sees the
implementation. of DC motor control and the tuning available that has been
researched before. The usage of Genetic Algorithm is briefly explained which
comprises of three main phases; reproduction, crossover and mutation. For this
study, the software used is MATLAB/Simulink, where the implementation of the
chosen DC motor model is represented and Genetic Algorithm is incorporated into
the PID controller of the motor, to observe the performance of chosen parameters
available. Next, the paper shows the results of PID controller tuning and also the
results for the implementation of GA based PID controller. Comparison then is made
and discussed to see whether the results are as expected. Lastly, recommendation and

conclusion pertaining to the completion of this project are presented.

ACKNOWLEDGEMENT
ABSTRACT .
LIST OF ABBREVATIONS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1i: INTRODUCTION
1.1 Background of Study .
12 Problem Statements
1.3 Objective and Scope of Study.
1.4 Scope of the Project
CHAPTER 2: LITERATURE REVIEW
2.1 DC Motor Control
2.2 Speed Control of DC Motor and Its Tuning. .
23 Optimization and Genetic Algorithm .
CHAPTER 3: PROJECT METHODOLOGY.
3.2 Stages (Flow) of Genetic Algorithm .
3.3 DC Motor Application (FAULHABER)
34 MATLAB/Simulink Software
CHAPTER 4: RESULT AND DISCUSSION
4.1 DC Motor Transfer Function .
42 Simulation Work
43 Designing of PID Using Genetic Algorithm .

TABLE OF CONTENTS

it

vii

15
15
16
17
19
19
21

23

CHAPTER 5: RECOMMENDATION AND CONCLUSION

51 Recommendation
5.2 Conclusion

REFERENCES.

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIXE.

iv

39
39
39
41

43

51
52
53

DC
GA
GA-PID

Pl

PD
PID
IAE
ISE
ITAE
SA
BLDC
EA

LIST OF ABBREVATIONS

Direct Current

Genetic Algorithm

Genetic Algorithm based PID Control
Proportional
Proportional-Integral
Proportional-Derivative
Proportional~1ntegral-Derivative
Integral of Absolute Error
Integral of Squared Error
Integral of Time Absolute Error
Simulated Annealing

Brushless Direct Current

Evolutionary Algorithm

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17

LIST OF FIGURES

Model for Separately Excited DC Motor
Depiction of Roulette Wheel Selection
Ilustration of Multi-Point Crossover.
[lustration of Mutation Operation

Flow for Genetic Algorithm
Robust DC Motor Drives Deep-Sea Sensors by FAULHABER
Block diagram of the Overall System
PID Tuning Block Diagram
Block Diagram of the System with PID
System Response for PID Controller Tuning
Coding to Initialize the Genetic Algorithm
Coding to Set Parameters for GA
Coding to Perform the GA
Convergence of the PID Chromosomes by GA
Coding to Perform the Objective Function for GA
Coding to Implement ITAE
Coding to Ensure Stabilization of the Controlled System
GA-PID Response with Population Size 20
GA-PID Response with Population Size 30
GA-PID Response with Population Size 40
GA-PID Response with Population Size 50
GA-PID Response with Population Size 60
GA-PID Response with Population Size 70
GA-PID Response with Population Size 80

vi

Table 1
Table 2
Table 3
Table 4

LIST OF TABLES

System Requirements

Parameters of GA

Analysis on GA - PID System Response
Comparison between PID and GA-PID Controller

vii

CHAPTER 1
INTRODUCTION

1.1 Background of Study

It is known that DC motor is employed in almost all industrial automation due to its
excellent speed control characteristics. The application of DC motor varies from
small industry to high technology industry.Therefore, the optimization in the
application of DC motor controller has been widely discussed and researched for a
better performance of the motor. Previously, industry usually used classical method
in tuning the controller of a DC motor such as Proportional, Integral and Derivative
method (PID). Due to some constraints in the output of the PID tuning, people have
come out with ideas and researches on how to optimize the controller. In this paper,
the DC motor model is designed and funed by using Genetic Algorithm (GA) based
PID, where GA is a stochastic global search method that emulated the process of

natural evolution.

GA has proven to be one of the most preferable methods in an optimization of a plant
or project, to obtain the best results. Research had been done on this technique from
the year of 1989, to see the implication of using GA in a system, and how does GA
actually effect the performance of a plant. GA has been shown to be capable of
locating high performance areas in complex domains without experiencing the
difficulties associated with high dimensionality or false optima. For this study, the

optimization is done to achieve best result in tuning the speed control of a DC motor.

The MATLAB software is used for simulation and coding of the project. At the end
of this study, the system responses are analyzed to see whether the usage of GA
based PID bring any significance in improving the performances of the motor’s
controller. This is done to show the relevancy of the project and the effect of using
GA into DC motor for optimization, which can be seen by improving the step
response characteristics such as, reducing the steady-states error; rise time, settling

time and maximum overshoot in speed control of a DC motor.

1.2 Problem Statements

In industry, the usage of classical method such as Ziegler-Nichols Method for tuning
on a conventional Proportional-Integral (PI) controller, Proportional-Derivative (PD)
controller or Proportional-Integral-Derivative (PID) controller have been widely
used, especially for speed and position control of a DC motor. However, often in
practice, tuning is carried out by an experienced operator using a ‘trial and error’
procedure and some practical rules, which is often a time consuming and portrait as a
difficult activity to be carried out [7]. Due to this constraint, studies have been done

in order to optimize the performance of a DC motor widely.

In this project, four main aspects in term of the performances of a DC motor are

being investigated:

(a) Rise Time

The rise time of a controller needed improvement (by reaching zero

ideal values) to obtain a good performance of motor control.
(b) Settling Time

A faster settling time of a system shows that the control system is
better.

(¢) Maximum Overshoot

Trying to obtain an ideal maximum overshoot of a system to improve

its performances (approaching to zero values).
(d) Integral of Time Absolute Error (ITAE)

Trying to decrease the error to gain the best performance for the
controller (lesser error means better motor control system is

portraited).

1.3 Objective and Scope of Study
The purpose of this study is to achieve three different objectives,which are:

o To optimize speed control of the DC motor by using Genetic Algorithm
based PID.

¢ To improve the performances of the DC motor controller in term of rise time,
settling time, maximum overshoot and Integral of Time Absolute Error
(ITAE).

e To decide the best parameters to be used for Genetic Algorithm that can
optimize the performance of a DC Motor (eg: population size, mutation rate

and crossover value)

Genetic Algorithm (GA) is basically a stochastic algorithm based on principal of
natural selection and genetics. Using GA will result in the optimum controller being
evaluated for the system every time. To prove that desired optimization is achieved,

the results of GA based PID method will be compared with PID only technique later.

1.4 Scope of the Project

Base on the objectives of the project, the scope of study is divided into two main

categories;

1.4.1 DC Motor

DC motor has been widely used in industry where variable speed and strong torque
are required specifically [2]. There are some basic functions that motor control
systems perform, such as speed and position control, motor and circuit protection,
starting and stopping and also surge protection [2}]. In this project, we are going to do
ground research on the speed controller of a DC Motor. Some control systems in
industry require variable speed, which for the case of DC motor; this can be achieved
by controlling the voltage to the armature and the fields of the motor.

When full voltage is applied to both the armature and the field, the motor operates at
its base or normal speed. When full voltage is applied to the field and reduced
voltage is applied to the armature, the motor operates below normal speed. However,
when full voltage is applied to the armature and reduced voltage is applied to the
field, the motor operates above normal speed. This is the basic applications of a

speed control of a DC motor.

Due to this excellent speed control characteristics, speed and position control of DC
motor have attracted considerable research and several methods have evolved, even
though the maintenance costs of DC motor are higher than the induction motor. One

of the most famous researched methods is Genetic Algorithm.

142 Genetic Algorithm (GA)

Genetic Algorithm (GA) is a search heuristic method that mimics the process of
natural evolution. This heuristic is routinely used to generate useful solutions to
optimization and search problems. It has been shown to be capable of locating high
performance areas in complex domains without experiencing the difficulties
associated with high dimensionality -or false optima as may occur with gradient
decent techniques. Therefore, in this project, this optimization technique, GA, will be
utilized to tune the PID controller of a specific DC motor to find the optimum

controller for the motor accordingly.

CHAPTER 2
LITERATURE REVIEW

In the process of undertaking the project, to understand and to achicve the desired
objectives of the project, thorough reading regarding DC Motor Control, PID
Controller and Genetic Algorithm is needed. Hence comprehensive and depth
research for resources are needed that somehow have contributed to the required
accomplishment of the project. To understand the project better, the literature review

is done based on different parts essential for the projects.

21 DCMOTOR CONTROL

In spite of the development of power electronics resources, the direct current (DC)
machine became more and more useful. Nowadays their uses is not limited in the car
applications (electric vehicle), in applications of weak power using battery system
(motor or toy) but also in the electric traction in the multi-machine too [5]. In the
application of DC motor, the three most common speed control methods are
resistance confrol, armature voltage control, and armature resistance control [4].
According to Ayasun and Karbayez, feedback control system is also discussed for

implementation of speed control system for DC motor drives [4].

In the field resistance control method, a series resistance is inserted in the shunt-field
circuit of the motor in order to change the flux by controlling the field current [4].
However, in the armature voltage control method, the voltage applied to the armature
circuit is varied without changing the voltage applied to the field circuit of the motor
[4]. For the armature resistance control, an increase in the armature resistance resuits

in a significant increase in the slope of the torque-speed characteristics of the motor

while the no-load speed remains constant [4]. These cases are true for a separately-

excited DC motor system.

- —e 5
[, 3R,

£

v, fi
_ z\ﬁ;aa

e

. -~
'\rf f .;%! R g

-)

Figure 2.1: Model for Separately Excited DC Motor

For the case of position control of a DC shunt motors, Neenu Thomas and Dr. P.
Poongodi had found out that, the designed PID with GA has much faster response
than the response of a classical method [3] which is by using Ziegler-Nichols
method. With GA, the response is better in term of rise time, settling time and also

the error associated with the methods proven to be lesser than conventional method

[3].

In other research [9], where the motor discussed is a Brushless DC Motor (BLDC), it
is observed that GA performed better than Simulated Annealing (SA). (From the
simulation results, it is observed that GA performed better than SA for BLDC motor
design). Both GA and SA optimization techniques are proven to be efficient
powerful tools for obtaining global optimal solutions of the BLDC motor compared
to traditional design procedures. Optimal solutions show that GA is more efficient
than SA and it is proven that the accuracy of the optimal parameters is similar in both
the methods.

From all the readings, it has been found out that the brush DC motor model portrait
good electrical and mechanical performances more than other DC motor models [5].

Therefore, for this study, the brush DC motor model is chosen for research.

2.2 SPEED CONTROL OF DC MOTOR AND ITS TUNING

Approaching the control of speed in DC motor in different perception, we can also
discuss in term of the controllers of the speed itself. The controller types comprise of
several conventional and numeric controller, which can be: P1, PD or PID Controller,
Fuzzy Logic Controller; or the combination between them Fuzzy-Genetic Algorithm,
Fuzzy-Neural Networks, Fuzzy-Ants Colony or even Fuzzy-Swarm [5]. In other
research, the controllers of a DC motor can also be in other types, which is the
combination of GA and PID as in [6].

However, some of the methods show some major drawbacks in term of their
implementation. For instance the conventional PID controller is the most widely used
in industry, because of its remarkable effectiveness, simplicity of implementation
and broad applicability [7]. Nevertheless, often in practice, tuning is carried out by
an experienced operator using a ‘trial and error’ procedure and some practical rules,

which is often a time consuming and portrait as a difficult activity to be carried out

[7].

On the other hand, the application of other method which is fuzzy controlier also has
major drawback, which is the insufficient analytical design technique (choice of the
rules, the membership functions and the scaling factors) [5]. Therefore, the fuzzy
controller is often associated with the genetic algorithms approach to improve the
performance of the controller as in [5], using Fuzzy Logic-Genetic Algorithms

optimization.

2.3 OPTIMIZATION AND GENETIC ALGORITHM

From readings, optimization of a system is proven to be very important and has
become a major research topic. The goal of global optimization is to find the global
optima, that is, global maxima or minima of the objective function. Optimization
problems are used to find good parameters or designs for components or plants to be

put into action by the human beings or machines [8].

Observing the trend of optimization technique that is chosen to improve a
performance of a controller, Genetic Algorithm is one of the most popular
optimization technique used. GA is often used in collaboration with other tﬁning
method available. It has been proven in many studies that Genetic Algorithm gives a
very good result. According to [6], GA is however not guaranteed to find the global
optimum solution to a problem, but they are generally good at finding ‘acceptably
good’ solutions to problems in ‘acceptably quickly’ method. Based on these criteria
and a lot of readings, Genetic Algorithm is chosen as an interesting topic of study for

optimization technique in control engineering.

Genetic Algorithms (GAs) are actually subclass of evolutionary algorithms (EAs).
What is Evolutionary Algorithms? They are population-based meta heuristic
optimization algorithms that use biology-inspired mechanisms and survival of the
fittest theory in order to refine a set of solution iteratively. Therefore, GA is its
subclass where the elements of the search space are binary strings or arrays of other
elementary types [8].GA is computer based search technigues patterned after the
genetic mechanisms of biological organisms that have adapted and flourished in

changing highly competitive environment [8].

Genetic Algorithm is a search heuristic that mimics the process of evoluation [8].
From all the readings above, it is stated that GAs are powerful and broadly applicable

stochastic search and optimization techniques that really work for many problems

that are very difficult to solve by conventional techniques. In general, GA has five

basic components, which are;

A genetic representation of solutions to the problem
A way to create an initial population of solutions

An evaluation function rating solutions in terms of their fitness

o b=

Genetic operators that alter the genetic composition of children during
reproduction

5. Values for the parameters of genetic algorithms [1].

Basically, GA consists of three main stages: reproduction, crossover and mutation.
The application of these three basic operations allows the creation of new individuals

which may be better than their parents [2].

This algorithm is repeated for many generations and finally stops when reaching
individuals that represents the optimum solution to the problem [2]. A GA is
typically initialized with a random population consisting of between 20-100
individuals. Determining the number of population is the one of the important step in
GA [6]. The decision is still based on trial and error.

2.3.1 Introduction

The usage of GA is proven to be more efficient than the traditional methods due to
some reasons. This Genetic Algorithm is substantially different to traditional search

and optimization techniques because of five main differences. They are:

1. GA searches a population of possible solutions in parallel, not in term of

single point [6].

2. To run a Genetic Algorithm optimization, one does not need to have
derivative information or other auxiliary knowledge. One only needs to
define the objective function for the optimization problem and the
corresponding fitness levels that will influence the directions of the search for

best population {6].

10

3. Genetic Algorithm uses probabilistic transition rules, not deterministic rules

[6].

4. Genetic algorithm may provide a number of potential solutions (optimum

solutions) and the final choice is up to the user [6].
2.3.2 Reproduction

The principle behind genetic algorithms is essentially Darwinian natural sclection
[1]. Selection provides the driving force in GA. Typically; a lower selection pressure _
is indicated at the start of a genetic search in favor of a wide exploration of the search
space, while a higher selection pressure is recommended at the end to narrow the

search space [1]. Common types for reproduction phase are as follows:

¢ Roulette wheel selection
o (u+ A)-selection

o Tournament selection

s Steady-state reproduction
¢ Ranking and scaling

e Sharing [1]

For this study, we will concentrate of Roulette wheel selection as it is a common

selection technique and the best known selection type still until today.

11

2.3.2.1 Roulette Wheel Selection

The basic idea behind this selection is to determine selection probability or survival
probability for each chromosome proportional to the fitness value. Then a model
roulette wheel can be made displaying these probabilities. The selection process is
based on spinning the wheel the number of times equal to population size, each time
selecting a single chromosome for the new population [1]. An example of a roulette

wheel selection is as below;

Figure 2.2: Depiction of roulette wheel selection

2.3.3 Crossover

Once the selection process is completed, the crossover algorithm is initiated. The
crossover operations swap certain parts of the two selected strings in a bid to capture
the good parts of old chromosomes and create better new ones [6]. Genetic operators
manipulate the characters of a chromosome directly, using the assumption that
certain individval gene codes, on average, produce fitter individuals. The crossover
probability indicates how often crossover is performed. A probability of 0% means
that the offspring will be exact replicas of their parents and a probability of 100%

means that each generation will be composed of entirely new offspring.

12

There are Single-Point Crossover, Multi-Point Crossover and Uniform Crossover
Algorithms available for the chosen technique. For this study, Multi-point Crossover
is chosen because it is the extension of Single-point Crossover and operates on the
principle that the parts of a chromosome that contribute most to its fitness might not
be adjacent [6]. Besides, uniform crossover is the most disruptive of the crossover
algorithms and has the capability to completely dismantle a fit string, rendering it

useless in the next generation.
There are three main stages involved in a Multi-Point Crossover:

¢ Members of the newly reproduced strings in the mating pool are
‘mated’ (paired) at random.

e Multiple positions are selected randomly with no duplicates and sorted
into ascending order.

e The bits between successive crossover points are exchanged to produce

new offspring.

Example: If the string 77111 and 00000 were selected for crossoverand the
multipoint crossover positions were selected to be 2 and 4 then the newlycreated

strings will be 71001 and 00110 as shown in Figure 3.
11001

11141
00 00[0 00110
Figure 2.3: Illustration of Multi-Point Crossover.

e

13

2.3.4 Mutation

Using selection and crossover on their own will generate a large amount of different

strings. However there are two main problems with this:

» Depending on the initial population chosen, there may not be enough
diversity in the initial strings to ensure the Genetic Algorithm searches
the entire problem space.

o The Genetic Algorithm may converge on sub-optimum strings due to a

bad choice of initial population.

These problems may be overcome by the introduction of a mutation operator into the
Genetic Algorithm. Mutation is the occasional random alteration of a value of a
string position. It is considered a background operator in the genetic algorithm. The
probability of mutation is normally low because a high mutation rate would destroy
fit strings and degenerate the genetic algorithm into a random search. Mutation
probability values of around 0.1% or 0.01% are common, these values represent the
probability that a certain string will be selected for mutation i.e. for a probability of

0.1%; one string in one thousand will be selected for mutation [6].

Once a string is selected for mutation, a randomly chosen element of the string is
changed or .mutated.. For example, if the GA chooses bit position 4 for mutation in
the binary string /0000, the resulting string is 70010 as the fourth bit in the string is
flipped as shown in Figure 4.

10000 — 10010

Figure 2.4: Tllustration of Mutation Operation

After all these three steps of Genetic Algorithm are done, we hope to find the
optimum solution to the speed controller of the chosen separately excited DC motor
in the study.

14

CHAPTER 3
PROJECT METHODOLOGY

3.1 Genetic Algorithm

Figure 3.1 shows the flowchart of the Genetic Algorithm.

Initialize Population

Evaluate Fitness

Select Fitness

Crossover / Production

R j Non Optimum
¥ Solution

Optimum Solution

Figure 3.1: Flow for Genetic Algorithm

The detailed explanation of this technique is provided in Chapter 2. The flow of the
entire project and the Gantt charts for the entire project starting from Final Year
Project I up until Final Year Project II are shown in Appendix C, Appendix D and
Appendix E accordingly.

i5

3.2 DC Motor Application (FAULHABER)

Figure 3.2: Robust DC Motor Drives Deep-Sea Sensors
by FAULHABER

For this project, the chosen DC motor to be applied with the optimization technique
for the controller using Genetic Algorithm is a motor by FAULHABER which is
Robust DC Motor Drives Deep-Sea Sensors. This motor is used to cope with extreme
conditions to retrieve the right data especially for marine research. This kind of
underwater sensor plumbs the depths of the world’s ocean trying to withstand not
only temperature differences but also extreme pressures, yet still having to deliver
reliable readings. The objectives are to achieve reliability and absolutely
maintenance-free depth control and also to come up with a robust, compact system

for precise depth control of the underwater sensors.

For these purposes, according to Timo Witte, Project Manager for developing the
NEMO floats, the properties of the DC brush motor are ideal. Therefore,
FAULHABER have come out with the best solution to satisfy all the requirements;
where the motor need to start up at minimal voltage, simple to install and reliable

with precision control, with the usage of its DC Micromotor product.

16

To achieve this purpose, a biological principal is put to technical use by the DC
Micromotor. Since the beginning of time, many species of fish have used a gas
bladder to control their buoyancy in the water. This allows them to float in the water
without expanding any extra energy, by a simple process of regulating the amount of
gas in the bladder. This is also precisely what is required of the monitoring floats if

they are to record data for the longest possible periods of time.

A hydraulic piston filled with oil is the main floatation device. In order to be able to
steer the underwater sensor to the desired depth, the amount of oil in the swim
bubble is varied via the piston. Depending on how well the bladder is filled, the
overall density of the sensor changes and it sinks, floats and rises to the surface. A
control piston serves as the drive element, by varying the gas pressure. To add the
necessary muscles to these sensors, a DC micromotor performing at around 26W
drives the piston. This is where our optimization technique is put in use; to better

mprove the system for these sensors.
3.3 MATLAB/Simulink Software

For this project, we are doing the simulation plus coding work to achieve our
objectives. MATLAB with its tool boxes such as Simulink and SimPowerSystems is
one of the most popular software packages used to run the simulation or testing of a
plant or process system before the real implementationonto the
equipments. Therefore, the MATLAB/Simulink software is fully utilized by
embedding it into the DC motor model system for the optimization. The block
diagram that is incorporated into the system is as shown below:

?: Fitness Function .

GA

¥

1

= i
SO SR . [
I

|

T T e VS
coow s PID bee-on PROCESS ¢ |
- ‘ IT prl‘oi f-‘fi‘ﬂ‘ :"k'"""'“'r"‘"‘""'""“ '""3 ‘ :

. 1 SENSOR ‘,,_" _____ i

Figure 3.3: Block diagram of the overall system [14]

17

To achieve the complete Genetic Algorithm optimization, the usage of M-file with
programming is needed. Results of the system will then be observed and analysed to
find the best conclusion to the study of the system.

18

CHAPTER 4
RESULT AND DISCUSSION

4.1 DC Motor Transfer Function

For this project, a DC Micromotor with Graphite Commutation from FAULHABER
(Series 3557...CS) is chosen based on the criteria given; compact dimensions of
35mm in diameter and 57mm in length teamed with high-performance output and
motor performing at around 26W to drive the piston. Using the standard equation for
the DC motor and the reference from FAULHABER datasheet (see Appendix A), the

transfer function obtain is as shown below.

v=Ri+LS +e, (1)
L

Te=+ @)

Tn = Kpig(t) (3)
g [

Ty =] 52 + B20) (4)
daag

ep = e(t) = K = (5)

i
G(5) = i e (6)

{(Tms+1)(Te5+1)

Equation 1 up until equation 6 are the standard equation that are used to find the
transfer function of the motor. With reference to the datasheet that we obtained for
the micromotor (as in Appendix A), the values that are used into the calculation of

the motor are;

19

Kp =209 mV /rpm
Kg = 2.19mV frpm

J=52x1077 kgm?

L= 220uH
R =134 0hm
T = 16ms

Transfer function that is obtained for the motor is;

0.46

G =5 ea T T 1616 1

20

4.2 Simulation Work

To do all the PID simulation, the project is based on this block diagram;

1

Desired
Height

+

» -

s

El

8

Ki

P ouic

X

Kp ™ -
TFranster For
> X
teQrater |
%9 l Froduct

.48

plt++

S&Ns)

1

Derivative
’ Productt

kg

Figure 4.1: PID Tuning Block Diagram

4.2.1 PID Controller Tuning

4.2.1.1 Basic Controller Tuning Block Diagram

The transfer function of the PID Controller is;

1
TiS

The system under study above has the following basic block diagram;

R(s) *
—>

1

Ge(5)

> G(S) =

0.46

2.63s2 + 16.16s5 + 1

Scope

Figure 4.2: Block Diagram of the System with PID

21

£(s)

4.2.2 PID Controller Tuning Response

Using the transfer function of the motor, tuning of PID is done to see the effect of
tuning onto the system. The choices for the parameters are done by trial and error
method. Figure below shows the chosen PID controller tuning response to the

system,;

Figure 4.3: System Response for PID Controller Tuning

Controller Parameters: Corresponding System Performances:
K, =100 Rise time (sec) =().85

K; =8 Settling time (sec) =2.14

K;=1 Overshoot (%) =4

From this controller gain values, and the step response that is obtain pertaining to the
gain values, the system performances are analyzed. The rise time is taken to reach
10% to 90% of the final value which is about 0.85 seconds. The settling time for the

response is about 2.14 seconds while the maximum overshoot is about 4%.

22

To obtain the best response of the system, a lot of trial and error in the changes of the
parameters for P, I and D need to be done. This is proven to be time consuming. The
results that we obtained alse cannot be proven to be the best value for PID tuning,
since it is done manually. However, the system response is acceptable and a good
reading is manageable from the tuning done. From this, we try to optimize the plant
model to get a better system performances. The system requirements are given
below:

Table 1 : System Requirements

System | Maximum | Rise time | Settling time
Specs. | overshoot (sec) (sec)

Values <4% <0.85 <2.14

4.3 Designing of PID Using Genetic Algorithm

4,3.1 [Initializing the Population of the Genetic Algorithm

In the first step of implementing Genetic Algorithm technique into a desired plant,
the Genetic Algorithm has to be initialized first. The initializations that are vital
include the population size, variable bounds and the evaluation function. The
following code is utilized for this step. This code is based on the Genetic Algorithm
Optimization Toolbox (GAOT).

$Initialising the genetic algorithm

populationSize=80;

variableBounds=[-100 100;-100 100;-100 100]:

eval FN="PID objfun ITAR';

evalOps=[];

options=[le~6 11;

initPop=initializega (populationSize,variableBounds,evalFN, ...
evalOps, options);

Figure 4.4: Coding to Initialize the Genetic Algorithm

23

Explanations on basic codes that are used in the project are explained below.

PopulationSize- The first stage in writing codes for Genetic Algorithm is to
initialize and determine the number of population to be used for the project.
Usually, the population size ranges from 20-100. The best value of population
size differs pertaining to the plant model for the project used. Generally, the
bigger the population size is the better for the final approximation since that, a
bigger population size means a bigger possible optimum solution for the
problem.

VariableBounds— The three row matrix used in the coding are corresponding to
the gains of PID controller, since that the project is to optimize the gains of it.
The coding illustrate to us that, a population of eighty members are being
initialized with values randomly selected between ~100 and 100.

eval FN— This function will fetch the objective function for the project, which is
the ‘PID_objfun ITAE’ m.file. It will execute the codes and return the value
back to the main codes.

Options — A real (floating point) numbers is used to encode the population. The
value of ‘1e-6’ is the term for floating point precision and the ¢1° term is used to
indicate that the real numbers are being used for this project.

Initializega— This command correspond to the GAOT toolbox. This command
wili combine all terms before and creates initial population of 80 real valued

members between -100 and 100 with 6 decimal place precision.

24

4.3.2 Setting The Parameters for The Genetic Algorithm

Afier initialization of the GA is done, setting of the parameters for the GA is needed

to be carried out. The following are codes that are used to set up the GA.

$Setting the parameters for the genetic algorithm
bounds=[~100 100;-100 100;~100 1G60];
eval FN="PID objfun ITAE';
evalOps=[];

startPop=initPop;

opts=[le-6 1 0];
termEN="maxGenTerm"';

termCps=200;
selectFN="'normGeomSelect';
selectOps=0.08;
xOverFNs='"arithXover’';

x0OverOps=4;

mutFNs=*unifMutation®;

mutOps=8;

Figure 4.5: Coding to Set The Parameters for GA

» Bounds — The variable bound is used for the Genetic Algorithm to search within
a specified area. For this project, the variable bound that is used is same to the
one that is used to initialize the population. This bound define the entire search
space for the technique.

o startPop- This function is defined as same as the previous function ‘initPop’. It
serves the same function as “initPop’.

e Opts 1t consists of the precision for the string value.

e TermFN- This is the code for the termination function for the genetic algorithm.
This code will call to another m.file entitled maxGenTerm.m. This is used to
terminate the iteration done by Genetic Algorithm once a certain criterion is met.

o TermOps— This command will define the options for the termination function.
For the project, a number of 100 termination option is set. This means that the
GA will reproduce one hundred generations before terminating the code. This
number can be altered to best suit the convergence criteria of the Genetic
Algorithm.

25

SelectFN-Normalised geometric selection (‘normGeomSelect’) is used for this
project. This function will call to the normGeomSelect.m file in the source code.
This m.file is provided by the GAOT toolbox. The GAOT toolbox also gives the
user other choices of selection function, which are Tournament selection and
Roulette wheel selection. However, tournament selection is not suitable for the
MATLAB simulation because it has a longer compilation time than the rest, and
this is a big issue for MATLAB software.

SelectOps— When ‘normGeomSelect” is chosen, probability of the fittest
chromosomes is declared in this function, which is decided to be 0.08 for the
project.

XOverFN- Arithmetic crossover was chosen as the crossover procedure. Single
point crossover is too simplistic to work effectively on a chromosome with three
parameters (P, 1 and D), a more uniform crossover procedure throughout the
chromosome is required. Heuristic crossover was discarded because it performs
the crossover procedure a number of times and then picks the best one. This
increases the compilation time of the program and is undesirable. The Arithmetic
crossover procedure is specifically used for floating pointnumbers and is the ideal
crossover option for use in this project.

XOverOptions-This is where the number of crossover points is specified.
mutFNs- The .multiNonUnifMutation., or multi non-uniformly
distributedmutation operator, was chosen as the mutation operator as it is
considered tofunction well with multiple variables.

MutOps- The mutation operator takes in three options when using the
‘multiNonUnifMutation’ function. The first is the total number of
mutations,normally set with a probability of around 0.1%. The second parameter
is themaximum number of generations and the third parameter is the shape of
thedistribution.: This last parameter is set to a value of two, three or four wherethe

number reflects the variance of the distribution.

26

4.33 Performing The Genetic Algorithm

$Iterating the genetic algorithm

[%, endPop, bPop, tracelnfo]=ga{bounds, evalFN, evalOps, startPop, o
pts, termkN, termCps, selecttN, selectOps, xOverFNs, xOverOps, mut FN
s, mutOps) ;

Figure 4.6: Coding to Perform the GA

The coding above will iterate the Genetic Algorithm for the project. This iteration
will be done up until it fulfills the termination function and the program is

terminated. This iteration will return four variables to the user:

x = the best population
endPop = the GA’s final population
bestPop = the GA’s best solution that is tracked over generation

traceInfo = the best value and average value for each generation.

Figure 4.7 shows how the Genetic Algorithm is converged into its final best solution
for the project. The graph used values of K, = 98.09443, K; =6.1111and
K; = 8.70368

100 ——=

Gain
=

80 L 1 L 1 1 1] L L
g 20 40 80 80 100 120 140 1860 180 200
Ki Value
160 T T r v
E 50 \ X
o
0 L i

0 20 40 &0 g0 102 120 1:!0 1éﬂ 18lU2DG

Kd Value

Gain
foi
L

1 1 1 A A 1 A 1
1] 20 40 51) 80 100 120 140 160 180 200
Generations

Figure 4.7: Convergence of the PID Chromosomes by GA

27

434 Objective Function Of The Genetic Algorithm

One of the most important steps in performing the Genetic Algorithm is determining
the best suited objective function prior to the objective of the project itself. After
much consideration, the objective function that is chosen to be minimized is the
Integral of Time Absolute Error (ITAE) performance criterion. This ITAE is defined

as:

T
ITAE = f tle(t)|dt
0

This objective function is created to find a PID controller that gives the smallest
overshoot, fastest rise time or quickest settling time. Therefore, in order to combine
all these three objectives, the simplest way is to minimize the error of the controlied

system instead. Therefore, ITAE is chosen as the objective function.

Apart from that, this ITAE performance index has the advantages of producing
smaller system overshoots and oscillations when comparing with other technique
which is the IAE (integral of absolute error) and ISE (integral of squared error)
performance indices. ITAE is also proven to be the most sensitive of the three, thus
having the best selectivity among those. Coding below shown the steps in performing
the objective function for the Genetic Algorithm iteration.

function [x pop, fx_val]l=PID objfun ITAE({xX pop,options)
glcbalsys controlled

global time

globalsysrl

0

Kp=x_pop (2)

Ki=x pop(3);

Kd=x pop(1};

%Creating the PID controller from current wvalues
pid den={1 0];

pid_num=[{KdKp Kil;

pid_sys=tf(pid num,pid den); %overall PID controller
tCreating PID feedback loop

sys_series=series(pid sys,sysrl};
sys_controlled=feedback{sys_series,1);

Figure 4.8: Coding to Perform the Objective Function for GA

28

For this coding, each chromosome from the population is passed into the objective
function one at a time. Then, the fittest value is evaluated through the objective
function. After that, a new population is created consisting of the fittest members for
the population beforehand. The chromosomes for this project consist of three
separate string of P, I and D term. When the chromosomes pass the evaluation
function, they are split into three terms of P, I and D. The gains are used to create a
PID controller according to the equation below:

Kys* + Kps + K;

s

Chhi==

Then, the newly formed PID controller is placed in a unity feedback loop with the
system transfer function as shown in the coding before. The controlled system will
be given a step input and the error which is based on ITAE for this project is
assessed. Below is the code for the implementation of ITAE:

%calculating the error

for i=1:301

error{i) = {(abs(l-y(i)))*t(i);
end

$Integral of Squared Error
ITAE=sum{error);

Figure 4.9: Coding to Implement ITAE

29

To ensure that the genetic algorithm will converge to a controller that will produce a
stable system, a coding which will ensure the stability of the system is written. The
coding below shows that the poles of the controlled system is assessed and if they are
found to be instable (which is on the s-plane of the system), the error will be assigned

an extremely large value as to make sure that the same chromosome (possible

solution) will not be selected the other time.

$to make sure controlled system is stable
poles=pole(sys controlled);

if poles(1)>0

ITAE=100e300;

elseif poles(2})>0

ITAE=100e300;

elseif poles(3)>0

ITAE=100300;

end
fx_val=1/ITAE;

Figure 4.10: Coding to Ensure Stabilization of the Controlled System

30

4.3.6 Results For The GA Based PID Controller

This part of the report will discuss the results that we obtained from the
implementation of Genetic Algorithm into the PID controller for the plant model. In
the process of completing the project, a lot of parameters for GA need to be decided
to use in the programming itself. Table 2 shows the parameters of GA that are used in
the project. The selections of all the parameters have been validated in the previous

explanation of the main coding for the project.

Table 2: Parameters for GA

GA Property Value/Method
Maximum number
. 100
of generation
Fitness function Integral of time
absolute error
Normalized
Selection Method Geometric
Selection
Probabil_ity of 0.08
selection
Crossover method Arithmetic
Crossover
Number of 4
crossover points
Mutation method | Uniform mutation
Mutation _
probability 0.08

The GA based PID is initially initialized with population size of 20. Then, the system
response is observed with different initialization of population size, starting from 30
up to 80 to find the optimum solution. In this project, other parameters (mutation
rates and crossover value) are chosen first and set to be the same throughout the
testing (after much consideration and observation is done on the implication of other
parameters onto the system response) with only changes applied in the population
size. The responses of GA based PID are then analyzed to find the smallest

overshoot, fastest rise time and the fastest settling time.

31

The following is the system response of GA based PID with population size of 20,
30, 40, 50, 60, 70 and 80 with their system performances accordingly.

Step Response

Ampitude

Time (sec)

Figure 4.11: GA-PID Response with Population Size 20

Controller Parameters: Corresponding System Performances:
K, =99.15879 Rise time (sec) ={.893

K; =6.1941 Settling time (sec) =2.33
K;=3.98398 Overshoot (%) =1

32

Step Response

Ampltude

Time {sec)

Figure 4.12: GA-PID Response with Population Size 30

Corresponding System Performances:

Controller Parameters:
K, =99.12296 Rise time (sec) =(.813
K; =6.1892 Settling time (sec) =2.28
K; = 4.14580 Overshoot (%) =1
. Step Response
| z
i :
i :
g
© Time.(;ec) -

Figure 4.13: GA-PID response with population size 40

Corresponding System Performances:

Controller Parameters:

K, =99.98597 Rise time (sec) =0.767
K; =6.7199 Settling time (sec) =2.28
K =2.28531 Overshoot (%) =2

33

Step Response

Ampliude

HM 14

= hi | &
Time (sec)

Figure 4.14: GA-PID response with population size 50

Corresponding System Performances:

Controller Parameters:
Kp = 08.62480 Rise time (sec) =(.818
K; =6.1503 Settling time (sec) =2.13
Ky =4.06390 Overshoot (%) =1
Step Response
E an l-‘f —
:'.!'! T e i o=
: - Tirne‘(dsec] -

Figure 4.15: GA-PID response with population size 60

Corresponding System Performances:

Controller Parameters:

K, =94.38349 Rise time (sec) =0.872
K; =5.8824 Settling time (sec) =2.16
K; = 4.60941 Overshoot (%) =1

34

Slep Response

H f
§ J::_:E:%-% -:
.| |

B] H

10 ts =0 ZE
Time (sec}

Figure 4.16: GA-PID response with population size 70

Controller Parameters: Corresponding System Performances:
K, =95.78919 Rise time (sec) = (.829
K; =59774 Settling time (sec) =2.06
K;=329274 Overshoot (%) =1
. Step Response
|
ol E
s
g ERLY ;!J
Time (;ec))

Figure 4.17: GA-PID response with population size 80

Controller Parameters: Corresponding System Performances:
K, = 98.09443 Rise time (sec) =0.842

K; =6.1111 Settling time (sec) =1.44

Ky = 8.70368 Overshoot (%) =0

35

Analysis is done on the system response of GA based PID with differences in the
population size. Table 3 shows the results that are obtained.

Table 3: Analysis on GA - PID System Response

Controller Parameters Measuring Factors
Population Settling Maximum
Size K, K, K, Risetime | rime | overshoot
“) e | o
20 99.15879 | 6.1941 | 3.98398 | 0.893 2.33 1
30 99.12296 | 6.1892 | 4.14580 | 0.813 2.28 1
40 99.98597 | 6.7199 | 2.28531 | 0.767 2.28 2
50 98.62480 | 6.1503 | 4.06390 | 0.818 2.13 1
60 0438349 | 5.8824 | 460941 | 0.872 2.16 1
70 95.78919 | 59774 | 3.29274{ 0.829 2.06 1
80 98.09443 | 6.1111 [8.70368 0.842 1.44 0

From all the above analysis done on the GA based PID system response for the plant
model with the difference in population size, the best system response that is being
recognized and detected is the system response of GA based PID with population
size of 80. This system response gives rise time of 0.842 seconds, settling time of

1.44 seconds and maximum overshoot of zero percentage.

36

Comparison is then made between the PID only controller and GA based PID

controller for their system performances. Table 4 shows the comparison done on the

two techniques:

Table 4: Comparison between PID and GA-PID Controller

Controller GA -PID Percentage
PID Controller |
Parameters Controller Improvement
K, 100 98.09443 NA
K; 8 6.1111 NA
K, 1 8.70368 NA
Measuring
Factors
Rise time (sec) 0.85 0.843 0.82 %
Settling Time
2.14 1.44 32.71%
(sec)
Maximum
4 0 100 %
ovetshoot (%)

From table below, results show that, GA based PID controller gives better system
performances than PID only controller technique. On average, the percentage of
improvement of GA-PID controller against PID controller is around 44.51%. The
biggest improvement can be seen in term of the maximum overshoot, where with
PID technique, we can find around 4% of maximum overshoot however with GA-
PID technique, the plant is optimized such that the maximum overshoot for the plant

model is 0%, which is happen to be an ideat case.

The results that we obtained here are correlated with the previous works that are
done so far on the GA based PID controller. For instance, Neenu Thomas and Dr. P.
Poongodi had found out from their research that, the designed PID with GA has
- much faster response (improvement about 50%) than the response of classical
method for motor tuning [3].

37

Apart from that, Yingfa Wang, Changliang Xia, Machua Zhang and Dan Liu from
Tianjin University in China had also found out that the GA technique that is being
applied onto their BLDCM servo system shows that the method not only robust, but
also improve dynamic performance of the system (less overshoot, less response time
and better stability) when it is compared with PID technique only [13].

Therefore, the results for this project can be testified in accordance to the previous
works done so far based on the same optimization technique. Genetic Algorithm is
proven to be one of the best optimization techniques available for the tuning of a

system and can be applied into the system nowadays.

38

CHAPTER 5
RECOMMENDATION AND CONCLUSION

5.1 Recommendation

To prove the works done for the PID tuning are correct, conventional method of
tuning using Ziegler-Nichols method can be utilized with this model. This
conventional method can give better explanation and understanding in term of
observing the effect of changing the controller parameters into the motor and finding
the best tuning contreller method to be used for this motor.

Apart from that, an online system can be applied with this technique to prove the
relevancy of the optimization technique online. A higher understanding of the GA
itself are needed to ensure the effectiveness of the technique and research can also be

conducted to find the best way possible to run GA technique with lesser difficulties.

5.2 Conclusion

In conclusion, the project had shown that the PID controller with GA optimization
technique has much faster response than by using the classical method which is PID
technique. Apart from that, GA based PID technique also proven to be time savers as
they are much faster to be conducted than PID technique which is basically based on
trial and error in getting the best PID values before the system can be natrowed down

in getting the closest to the ‘optimized’ value.

39

As shown in the Table 1 before where comparison is made on the system
performances between PID controller and GA-PID controller, a GA-PID controller
can give a faster settling time, faster rise time and no overshoot, which is an ideal
and stable case. Aside from that, the project has also shown to us that, the
initialization made for the population size bring significance effect onto the GA-PID
responses of the plant model. A bigger population size gives better chances to the
Genetic Algorithm to find the best optimum solution amongst all the chromosomes

being initialized earlier. The objectives of the project are successfully achieved.

40

[1]

(2]

[3]

[4}

{51

6]

(7]

[8]

REFERENCES

Mitsuo Gen, Runwei Cheng, “Genetic Algorithms & Engineering
Optimization”, JohnWiley & Sons, Inc. 2000

Stephen L. Herman, “Industrial Motor Control”, Delmar, Cangage Learning
2010.

Neenu Thomas, Dr. P. Poongodi, “Position Control of DC Motor Using
Genetic Algorithm Based PID Controller”, Proceedings of the World
Congress on Engineering 2009 Vol I July 1-3, 2009, London, UK

Saffet Ayasun, Gultekin Karbeyaz, “DC Motor Speed Control MethodsUsing
MATLAB/Simulink and Their Integration into Undergraduate Electric
Machinery Courses”, Wiley Periodicals Inc. 2007

Boumediene Allaoua, Abdellah Laoufi, Brahim Gasbaoui, Abdelfatah Nasri
and Abdessalam Abderrahmani, “Intelligent Controller Design for DC Motor
Speed Control based on Fuzzy Logic-Genetic AlgorithmsOptimization”,
Leonardo Journal of Sciences, Issue 13, July-December 2008.

Saifudin bin Mohamed Ibrahim, “The PID Controller Design Using Genetic
Algorithm”, University of Southern Queensland, 27" October 2005.

M.B.B Sharifian, R. Rahnavard and H. Delavari, ‘Velocity Control and DC
Motor Based Intelligent Methods and Optimal Integral State Feedback

Controller”, International Journal of Computer Theory and Engineering, Vol.
1, No. 1, April 2009,

Rahul Malhotra, Narinder Singh and Yaduvir Singh, “Genetic Algorithms:
Concepts, Design for Optimization for Process Controllers”, Canadian Center
of Science and Education, Vol. 4, No. 2, March 2011.

41

9

{10]

[11]

[12]

[13]

[14]

Kondapalli Siva Rama Rao and Azrul Hisham bin Othman, “Design
Optimization of a BLDC Motor by Genetic Algorithm and Simulated
Annealing”, Department of Electrical and Electronics Engineering, Universiti
Teknologi PETRONAS.

B. Nagaraj and N. Murugananth, “Soft Computing-Based Optimum Design
of PID Controller for a Position Control of DC Motor”, Mediamira Science
Publisher, 2010.

Ismail K. Bouserhane, Abdeldjebar Hazzab, Abdelkrim Boucheta, Benyounes
Mazari and Rahli Mostefa, “Optimal Fuzzy Self-Tuning of PI Controller
Using Genetic Algorithm for Induction Motor Speed Control”, Int. J. of
Automation Technology Vol. 2, No. 2, 2008

Indranil Pan, Saptarshi Das and Amitava Gupta, “Tuning of an optimal fuzzy
PID controller with stochastic algorithms for networked control systems with
random time delay”, Science Direct, ISA Transactions 50 (2011) 28-36

Yingfa Wang, Changliang Xia, Maohua Zhang and Dan Liu, “Adaptive
Speed Control for Brushless DC Motors Based On Genetic Algorithm and
RBF Neural Network”, IEEE International Conference on Control and
Automation, Guangzhou, China, May 30 to June 1, 2007.

B. Nagaraj, P. Vijayakumar, “A Comparative Study of PID Controller tuning
using GA, EP, PSO and ACO.” Journal of Automation, Mobile robotics &
Intelligent Systems, vol. 5, no.2, pp.42-48, 2011.

42

APPENDIX A
Datasheet for Robust DC Motor Drives Deep-Sea Sensors

“#: FAULHABER

DC-Micromotors 50 mNm

Graphite Commutation for comblnIon Wit
Gaitreal
IFOWTAIRT LT LAY R RIRD
573 154
PN T,
HEDE SN0+ DA STE0 HEDS 00 HEDS Yol

Series 3557 ... CS

1 Nominal vorage the] [[H % 13 &8 ¥
© 7 torminatemsings i : a1 [1 I 55 R 1
1 Outpe power _ . n 1 HE i i 0
4 ifMmdanry maa ; L N b 4 i N % T% %
5 BOMRT wend [% LA (AW 553 L5 by 2] Rm
& Mcmw-mmmnu-m, b 815 a3 i oS =0k
1 s M. S e W e thrd M
& Frovion toegas W i3 ih i4 it i% mNm
T Spoad cerstan [£ H 5% i 3 1 i
16 Buk TN comtant b 1% bAL) EAS] 43 e g
1T Torgue comtant 25 W #y EL N i & VA
12 Cunent conatant B 0087 {088 2. BoM oz At
13 wnMozwe P : o S b 25 1% e tpenivehs
% m#ﬂrma ’ L % 0 (%] L4 e P '
% Wocharaad Kime (omiant T. 1 1% W 1% Hig [
16 Roter inerris . oo &l & & B gm’]
1! Asuler ooz : [P : 3 i1 *» 1 E] i Pl oo
12 Trammn resstance Be:iBay F1579 : [
19 Thoima: bne conftant T it H1RIOMG 4
® Opitating temporatuce ringo o ' :
. o] H.oan)
- MtOr, AN RIS : B 7 : i L 4
21 sham tarnp B3 boarmg, seaaadad
23 Shat ot man:]
- it St Eamtit :] : . -
m‘;u!atBCOO!mum'rcmmn-m F %
- R e) : ¥
- R gt earanl K] 5
5 shattply g oL : . : ,
B F -] % G415 mee
- ikd . : : § e
M Hoakg mates : Fo_ £ Gabverened and paodvatod
% Hug) i 3
-2 Drocton af retdktion : cmm!w VIowd from T front fie :

& Lunet upsc 't'-a:*..e n-"nl

S IhammE: reastanid R ah&.& r..cu:m

Thearlpt o WETS rpe: ! 40 ey
Sacrinah tert Sobeat :
| T :

M? 25 g

,4;;\3?: é!ijg,u:a a3 o

wWETE %

43

APPENDIX B
Full MATLAB Codes Used for Genetic Algorithm Based PID in the Project

PID_GA.m

%This programme is being modified from a journal entitled ‘The PID
Controller Design Using Genetic Algorithm’ by Saifudin bin Mohamed
Ibrahim from University of Scuthern Queensland in 2005.

clc

clear

close all

globalsys controlled
global time

globalsysrl

%

denl=[2.63 16.16 11;
numl=[G.46];
sysrl=tf (numl, denl};
%

$Initialising the genetic algorithm

populationSize=80;

variableBounds=[-100 100;-100 100;-100 100];
evalFN='PID objfun ITAE';

evalOps=[}; :

options=[le-6 1];

initPop=initializeqga {populationSize, variableBounds,evalFN, ...
evaiOps, options);

%

%Setting the parameters for the genetic algoriihm
bounds=[-100 100;-100 100;-100 100j3;
evalFN='PID objfun ITAE';
evalOps=[];

startPop=initPop;

opts=[le-6 1 0];
termFN="maxGenTerm';

termOps=200;
selectFN="normGeomSelect';
selectOps=0.08;
xOverFNs="'arithXover"';

x0verOps=4;

mutFNs="'unifMutation';

matOpe=H;

%

glterating the genetic algorithm
[x,endPop, bPop, tracelnfol=ga (bounds, evalFN, evalQps, startPop, opts, ...

termFN,termOps,SelectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps);
%

%Creating the optimal PID controller from GA results
ga pid=tf({[x(1) x(2) x(3)1,[1 01):
ga_sys=feedback{series(ga_pid, sysrl),1);

figure(l)

4

hold on;
step{ga sys,'y’,0:0,01:30);%Green-genetic algorithm

%

$Printing to screen the PID values

fprintf (' Genetic Algorithm wvalues : Kd = %7.5f XKp = $7.5f Ki =
$7.4f ', x(1),x(2),x(3));

gdisp{ x };

%

%Plotting best population progress

figure (2}

subplot{3,1,1}),plot(bPopl:,1l),bPop(:,3)),...

title('Kp Value'),, ylabel('Gain'};
subplot(3,1,2),plot(bPop{:,1) ,bPopi{:,4)), ...

title('¥i Vvalue'),, ylabel('Gain');

subplot (3,1,3),plot (bPop{:, 1) ,bPop(:,2}),...

title('Kd Value'),xlabel{'Generations'), ylabel('Gain');
%

45

PID objfun_ITAE.m

funection i{x pop, fx_vall=PID objfun ITAE{x pop,options)
globalsys controllied

glcobal time

globalsysrl

%

Kp=x_pop(2);

Ki=x pop(3);

Kd=x pop(l);

$Creating the PID controller from current values
pid den={1 0];

pid num=[KdKp Ki];

pid_sys=tf(pid_num,pid_den); %overall PID controller
%Creating PID feedback loop
sys_series=series (pid sys,sysrl);
sys_controlled=feedback(sys series,1);

%

time =0:0.1:30;

fy £t] = step(sys _contrelled,time}; % Step response of closed-loop
for i=1:301

error{i) = (abs(i-y(1)))*t(i);

end

%Integral of Squared Error

ITAE=sum (error) ;

%

%to make sure controlled system is stable
poles=pole(sys_controlled};

if poles(i)>0

ITAE=100e300;

elseif poles(2)>0

ITAE=100«300;

elseif poles(3}>0

ITAE=100e300;

end
fr_val=1/ITAE;

%

46

maxGenTerm.m

function [done] = maxGenTerm(ops,bPop,endPop)

% function [done] = maxGenTerm{ops,bPop,endPop)

%

% Returns 1, i.e. terminates the GA when the maximal generation is
reached,

%
% ops - a vector of options [current genmaximum_ generation]
% bPop ~ a matrix of best solutions

[generation_foundsclution string]
% endPop -~ the current generation of solutions

Binary and Real-Valued Simulation Evolution for Matlab
Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay

C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
optimization: A Matlab implementation. ACM Transactions on
Mathmatical

% Software, Submitted 1996.

%

% This program is free software; you can redistribute it and/or
modify

% it under the terms of the GNU General Public License as published
by

% the Free Software Foundation; either wersion 1, or (at your
option)

any later version.

%
%
%
%
%

%

%

% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details. A copy of the GNU
% General Public¢ lLicense can be obtained from the

%
4]

Free Scftware Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
SR

currentGen = ops{l);
maxGen = ops(2);
done = currentGen>= maxGen;

47

normGeomSelect.m

function[newPop] = normGeomSelect (01dPop, optiaons)

% NormGeomSelect is a ranking selection function based on the
normalized

% geometric distribution.

%
% function|newPop] = normGeomSelect (oldPop,options)

% newPop - the new population selected from the oldPop
% oldPop - the current population

% options - options to normGeomSelect [gen
probability of selecting best]

Binary and Real-Valued Simulation Evolution for Matlab
Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay

C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
optimization: A Matlab implementation. ACM Transactions on
Mathmatical

% Software, Submitted 1996,

%

% This program is free software; you can redistribute it and/or
modify

% it under the terms of the GNU General Public License as published
by

% the Free Software Foundation; either wversion 1, or (at your
option)

any later version.

%
%
%
%
%

%

%

% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details. A copy of the GNU
% General Public License can be obtained from the

%
u

Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
SA.

g=options(2); % Probability of selecting the best

e = size(oldPop,2); % Length of xZome, i.e. numvars+fit

n = size(oldPop,1); % Number of individuals in pop

newPop = zeros{n,e); % Allocate space for return pop

fit = zeros{n,1): % Allocates space for prob of select

x=zeros(n,2); % Sorted list of rank and id

x{:,1) =[n:-1:1]"; %2 To know what element it was

[y 2(:,2)] = sort{oldPop(:,e)}: % Get the index after a sort
= q/{1-{1-g)"n); % Normalize the distribution, g prime

fit(x{:,2))=r*(1-g}.~(%{:,1)-1}; % Generates Prob of selection

fit = cumsum{fit); % Calculate the cumulative prob. func

rNums=sort (rand{n, 1)) ; % Generste n sorted random numbers

fitIn=1; newln=1; % Initialize loop control

whilenewIn<=n % Get n new individuals

1f (rNums (newIn)<fit (fitIn))

newPop (newIn,:) = oldPop(fitIn,:); % Select the fitIn individual

newlIn = newln+l; % Looking for next new individual

else

fitIn = fitIn + 1; % Looking at next potential selection

end

end

arithXover.m

function [cl,c2l = arithXover(pl,p2,bounds,Ops)
% Arith crossover takes two parents PLl,P2 and performs an
interpolation

% along the line formed by the two parents,

%

% function {cl,c2} = arithXover {pl,pz,bounds, Ops)

% pl ~ the first parent ([solution string function value])
% p2 - the second parent ([solution string function value])
% bounds - the bounds matrix for the sclution space

% Ops - Options matrix for arith crossover [gen #ArithXovers]
% Binary and Real-Valued Simulation Evelution for Matlab

% Copyright (C} 19396 C.R. Houck, J.A. Joines, M.G. Kay

%

% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
% optimization: A Matlab implementation. ACM Transactions on

Mathmatical

% Software, Submitted 1996.

%

% This program is free software; you can redistribute it and/or
modify

% it under the terms of the GNU General Public License as published
by

% the Free Software Foundation; either version 1, or (at your
option)

% any later version.

%

% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details. A copy of the GNU
% General Public License can be obtained from the

%

Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
USA.

% Pick a random mix amount
a = rand;

% Create the children
cl = pl*a + p2*(1l-a);
cZ pl*(l-a) + p2*a;

Il

49

unifMutation.m

function [parent] = uniformMutate {parent, bounds, Ops)
Uniform mutation changes one of the parameters of the parent
based on a uniform probability distribution.

function [newSol] = multiNenUnifMutate{parent,bounds,Ops)
parent - the filrst parent { [sclution string function vaiuel)
bounds - the bounds matrix for the solution space

Ops - Options for uniformMutation [gen #UnifMutations)

de o Of oP of oP of

Binary and Real-Valued $Simulation Evolution for Matlab
Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay

C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
optimization: A Matlab implementation. ACM Transactions on
Mathmatical

% Software, Submitted 1996.

&

% This program is free software; you can redistribute it and/or
modify

% it under the terms of the GNU General Public License as published
by

% the Free Software Foundation; either version 1, or (at your
option)

%
%
%
%
%

% any later wersion,

%

% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details. A copy cof the GNU
% General Public License can be obtained from the

% Free Software Ioundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
USA.

df = bounds{:,2) - bounds{:,1}: % Range of the variables
numVar = sgize{parent,2)-1; % Get the number of variables

% Pick a variable to mutate randemly from l-number of wvars
mPoint = round{rand * {numVar-1}) + 1;

newValue = bounds (mPoint,l}+rand * df (mPoint); % Now mutate that
point

parent {(mPoint}) = newValue; % Make the child

50

APPENDIX C
Project Activity Flow

51

APPENDIX D
Gantt Chart for FYP 1

Detail / Week

Selection of Project Topic

11

12

13

14

Preliminary research work

Submission of extended proposal defense

Developing the model for DC motor control

Proposal Defense

Applying PID controller into the model of the
motor

Tuning of the controller using conventional
method

Implementing Genetic Algorithm into the motor
control (reproduction phase)

Submission of Interim Draft Report

10

Submission of Interim Report

APPENDIX E
Gantt Chart for FYP 11

Detail / Week

Project Work Continue (second phase of GA)

10

11

12

13

14

15

Submission on Progress Report

Project Work Continue (third phase of GA)

Pre-EDX

Submission of Draft Report

Submission of Dissertation (soft bound)

Submission of Technical Paper

Oral Presentation

Submission of Project Dissertation (Hard Bound)

