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ABSTRACT

This progress report is basically present the research that has been done so for far
based on the chosen topic, which is Development of 3D Crane PID Controller System
via State-space Approach. The objective of the project is to be able to determine the
3D Crane and 2D Crane dynamics using the state-space approach and applies the
Proportional-Integral-Derivative controller algorithm into the system for improvement.
This dynamic equation is important for simulating the 2D crane in computer using
Matlab and Simulink software and designing a suitable controller for the 2D crane. The
mathematical equation for 2D crane can be modeled dynamically using various
approaches such as Lagrange-Euler’s Method and Newton-Euler’s Method. After the
success of producing the 2D Crane dynamics, the mathematical formulation of 3D Crane
dynamics will take place. Using the appropriate approach, the mathematical or state
space equation of the 3D Crane dynamics will be produced for simulation in Matlab and
Simulink Sofware. Finally, the Proportional-Integral-Derivative controller will be added

into the system for increasing of crane reliability and productivity.
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CHAPTER 1

INTRODUCTION

1.0 Project Background

3D cranes are an important industrial structure that are often used in building
construction, factories and oil rig/platform or even on the navy shipyard. Besides
that, they are also widely constructed to transport heavy loads and hazardous
material in shipyards, factories, nuclear installation, and high building construction.
These cranes are usually operated manually by crane operators. Generally, operators
use the joystick and also the acceleration pedal to control the movement and
direction of the cranes. On the shipyard, they are mounted to transfer cargo between

ships or on the harbor pavements to transfer cargo between ships and offshore.

Basically, the movement of cranes has no prescribed path. They are used to
move load from one point to another, With the size of these cranes becoming larger
and the motion expected to be faster, the process of controlling them become
difficult. As 3D cranes have to run under different operating conditions, which make

closed-loop control preferable.

The requirement of precise sway control of 3D cranes implies that the residual
sway of the payload should be zero or near to zero. Over the years, investigations
have been carried out to devise efficient approaches to reduce the payload sway of
3D cranes. As the performance requirements imposed by the industry become more

severe, the need to understand how to model and control 3D cranes become an



1.3. Scope of Study

a)

b)

For this project, scopes of study are limited to certain area:

Operator-in-the-loop approach

Operator-in-the-loop approach means that the input of the model will be the
accelerations of the links of the 3D crane resulting from the control of an
operator using acceleration pedals and joystick.

Proportional Integral Derivative, PID Controller technique

The application of Proportional-Integral-Derivative, PID Controller will be

applied on the 3D crane System to optimize the application and increase the
reliability of the 3D crane.

1.4. Methodology

For this project, the approaches being used to carry out the project are:

a)

b)

Literature review

Many technical papers and online materials regarding to the modeling technique
of 3D crane are referred. Besides, article about the PID Controller applied on 3D

crane of various schemes have been read and analyzed.
Matlab software

Matlab software is used to calculate complex mathematical solutions and to
model the 3D crane mathematically. The PID Control schemes are designed and
simulate using Matlab Simulink toolbox.
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CHAPTER 2

LITERATURE REVIEW

This chapter consists of some information about crane system and also an

overview of the literature that has been published in relation to crane control.

2.0 Introduction to 3D Crane

A crane is a mechanical machine that equipped with a wire rope drum, wire
rope or chain and shaves that can be used both to lift and lower materials and to
move them horizontally. It uses a combination of one or more simple machines to
create mechanical advantages and thus move load beyond the normal capability of a
human. This is important to make sure the crane is able to lifi a heavy load within
required time frame from one location to the other. Crane is commonly employed in
the transport industry for the loading and unloading of freight, in the construction
industry for the movement of materials and in the manufacturing industry for
assembling of heavy equipment in a higher floor which wasn’t able to reach by

human capability.

In history of crane, the first constructed cranes were invented by ancient
Greeks where the earliest crane was build from wood, but cast iron and steel took
over with the coming of the Industria] Revolution. Before the mechanical power
which is steam engines and hydraulic system equipped crane, the first invented crane
were powered by men or beasts as burden, Modern crane usually use interna
combustion engines or electric motors and hydraulic systems to provide a much

greater lifting capability than was previously use. The introduction of the winch and
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pulley hoist soon leads to a widespread replacement of ramps as the main means of
vertical motion. As the demand of constructing a high power crane increases, the

facilities of increasing crane effectiveness required to be proportional.

In designing a crane, there are two major consideration which is first the crane
must be able to lift a load of a specific range of weight and second it must remain stable
and not to drop or topple over when the load is lifted and moved to another locations. In
the direction of lifting and moving, the load must be able to avoid any obstacle in the
way as to avoid damage to surrounding. The cranes also just like any other machine,
where it obeys the principle of conservation of energy. Meaning that the energy
delivered to the load must not exceed the energy put into the machine. As example, if a
pulley system multiplies the applied force by ten, then the load moves only one tenth as
far as the applied force. And since energy equal to force times distance, the output
energy is keep roughly equal to the input energy. But sometimes the output energy is
slightly less than the input energy due to the lost cause by friction in the rail and

inefficiency of the mechanical machine involved.

For stability of a crane, the sum of all moments about any point such as the base
of the crane must equal to zero. In real life, the magnitude of load that is permitted to be
lifted or known as “rated load” must be less than the load that will cause the crane to tip.
The rated load is usually in a manner of lowest and highest that can be supported by the
mechanical components involved in the system as it is important to avoid any

mechanical structure to degrade faster and reduce the efficiency of the overall system.

Movement of 3D crane consists of a three dimensional direction which is x, y and
z direction respectively. The difference between 3D crane compare to any other crane
such as Spider Crane is that 3D crane has better structure and higher Safety Integrity
Level, SIL for its instrument and mechanical structure since the failure of 3D crane is
easily repaired and spotted in the first place before accident occur. In increasing demand
of using 3D crane to transfer heavy and big stuff from one place to the other, a reliable

controller is required to control the crane to work at higher accuracy and reliability.

6



X-Drive

Important part that help to move the load and crane in the
x-direction
Consists of a Motor that can support the load and drive the

crane to the x-direction as required

Y-Drive

Useful part that help to move the load and crane in the y-
direction
Consists of a Motor that can support the load and drive the

crane to the y-direction as required

Z-Drive

Parts that help to lift the load and crane in the z-direction
Consists of a Motor that can support the load and avoid

obstacles while following the x and y direction route

X-Position Sensor

Part that help to measure the x position of a main hook

Y-Position Sensor

Part that help to measure the y position of a main hook

Z-Position Sensor

Part that help to measure the length of the rope

Angle Sensor

Part that help to measure the length of angie in x and y

direction

Table 1: Basic Parts of 3D crane

Y.

Figure 2: 3D Crane Model




2.1 3D Crane System

Recently designed 3D cranes are larger and have higher lifting capacities and
travel speeds. To achieve high productivity and to comply with the safety requirements,
these cranes require effective controllers such as anti sway controls. Most of the anti
sway control of the 3D crane is performed manually by skillful human operators who
combine their intuition, experience and skill to manipulate a load hanging on a hoisting
cable by stopping the trolley near the desired position and then letting the payload to
stop oscillating gradually by a further gentle movement of the trolley. However, this
poses some practical problems, particularly due to human fatigue that in turn may affect

significantly the performance and operation of the 3D crane.

In addition, 3D cranes are mostly equipped with cabled hoisting mechanism,
which are prone to the load sway problems due to the fact that the assembly of the cable-
hook-payload results in complex system dynamics. Even in the absence of external
disturbances, inertia forces due to the motion of the crane can induce significant payload
oscillations. This problem is exacerbated by the fact that 3D cranes are usually lightly
damped, which implies that any transient motion takes a long time to dampen out [1]

For this reason, the payload sway angle should be kept to a minimum; otherwise,
a large payload sway angle during transportation may cause damage to the payload,
surrounding equipment or even personnel. If the pendulum-like oscillations of the
payload can be constrained using an appropriate method, there will be a number of
benefits such as having greater yield and safety margin, enabling higher operating speed,
enhancing work quality and creating greater throughput for a given installed capacity.
Besides, most actual systems are influenced by noise and external disturbances
including 3D crane. These disturbances such as wind, unstable mounting and others may
degrade the performance of the 3D crane.

Previously, many approaches have been proposed to solve the above stated

problem. An approach known as input shaping technique is widely used as an open-loop



control strategy for 3D cranes. The controller using this strategy will accelerate the
trolley in steps of constant acceleration. Although there will be effectively no residual
oscillations but large transient osciilations will happen during the transportation.
Besides, input-shaping techniques are limited by the facts that (i) they are sensitive to
variations in the parameter values about the nominal values and changes in the initial
conditions and external disturbances and (ii) they require ‘highly accurate values of the

system parameters’ to achieve satisfactory system response [2}.
2.2 Proportional-Integral-Derivative, PID Controller

PID is stand for Proportional-Integral-Derivative. This type of controller is
widely used in industrial application since 1940s and remains the most often algorithm
today. It is because of their simplicity, robustness, and successful practical applications.
A PID controlier also calculates an "error" value as the difference between a
measured process variable and a desired set point. The time-domain controller algorithm

for PID controlier is given below:
10t dE(t
MV{(t) =Kc|E(t) + —--f E(t)dt + Td—(-~2 + 1
TIj, dt

The PID controller calculation (algorithm) involves three separate parameters, and
is accordingly sometimes called three-term  control: the proportional, the
integral and derivative values,denoted P, I and D. The proportional value  determines
the reaction to the current error, the integral value determines the reaction based on the
sum of recent errors, and the derivative value determines the reaction based on the rate
at which the error has been changing. The weighted sum of these three actions is used to
adjust the process via a control element such as the position of a control valve or the
power supply of a heating element. Heuristically, these values can be interpreted in
terms of time: P depends on the present error, I on the accumulation of past errors, and is

a prediction of future errors, based on current rate of change[3].



By tuning the three constants in the PID controlier algorithm, the controller can:
provide control action designed for specific process requirements, The response of the
controller can be described in terms of the responsiveness of the.controller to an error,
the degree to which the controller overshoots the set point and the degree of system
oscillation, Note that the use of the PID algorithm for control does not guarantee optimal
control of the system or system stability.

Some applications may require using only one or two modes to provide the
appropriate system control. This is achieved by setting the gain of undesired control
outputs to zero. A PID controller will be called a PL PD, P or I controlier in the absence
of the respective control actions, P controllers are fairly common, since derivative
action is sensitive to measurement noise, whereas the absence of an integral value may

prevent the system from reaching its target value due to the controi action.

This controller often provides acceptable control even in the absence of tuning,
but performance can generally be improved by careful tuning, and performance may be
unacceptable with poor tuning. The example methods for tuning a PID loop are manual
tuning, Ziegler-Nichols, Software tools and Cohen-coon,

2.3 PID Control System for 3D Crane

The studies conducted by Sanda Dale, Gianina Gabor, Comelia Gyorodi aﬁd
Doina Zmaranda aim to investigate the control performance of an interpolative contro]
algorithm applied on a complex nonlinear system, The study is basically recognized PID
Controller as one of the most useful control algorithm that is highly used in industrial
and complex mechanical system. PID algorithm is known as one of the most used

control law due to its effectiveness, simplicity and large possibility of implementation

(4].

The construction of 3D Crane with PID Controller Algorithm was used to
eliminate the external disturbance that will lead to the inefficiency of the lifting and

10



transfer of heavy loads from one location to the other. The PID Controller with define
parameters of disturbance can lead to a productive mechanical machine which will
increase the plant effectiveness and reliability. The PID Controller need to be defined
first based on the structural construct of the 3D Crane in order to avoid instability of the

system.
2.4 Dynamic Modeling of Crane

Figure 3 illustrate 3D cranes that are modeled by B. Kiss, J. Levine and P.
Mullhaupt. The Dynamic equation of this 3D crane are obtained using Lagrange’s
multiplier associated to geometric constrains between generalized coordinates. This
approach provides a simple way to show differential flatness for all crane of the class
and to generate compact numerical simulation software. The main advantage of this
approach can be seen in two applications, namely detecting the flatness property and
computing the flat output on the one hand and simulating the system without need to
express it in explicit form to achieve simpler computation through with a large number
of variables on the other hand. In this paper, the flatness property is proven to hold the
modeled class of cranes. This property is useful for both motion planning purpose and

for closed control.

Figure 3: 3D Crane

11



CHAPTER 3

METHODOLOGY

3.0 Introduction to 2D Crane Mathematical Formulation

2D Crane dynamic equation is concern with mathematical formulation of
equations for the crane arm or joint motion where these set of mathematical equation
will describe the dynamic behavior of the 2D Crane. This dynamic equation is important
for simulating the 3D crane in computer using Matlab and Simulink software and
designing a suitable controller for the 3D crane. The mathematical equation for 3D crane
can be modeled dynamically using various approaches such as Lagrange-Euler’s
Method and Newton-Euler’s Method. For this project, Lagrange-Euler’s Method is used
because Lagrange-Euler’s methods are more simple and systematic and it will give a set
of dynamic equation in a compact matrix form which is appealing from the control view

point.

The dynamic model for thE 2D crane is derived by using Lagrange-Euler’s
Method. Based on the figure 4, the equation describing the dynamics of the 2D crane
will be determined to obtain the state-space equation of the system. Using Lagrange-
Euler’s Method, the linear and non-linear equation of the 2D crane will be obtain
considering the distance of the rail with the cart denote by x, the distance of the cart

denote by y, and angle of oscillation x-axis movement.

12



3.1. 2D Crane Modeling

Yy — axis . .
A Point of suspension

Trolley

-

Ym

Payload

Contre Point, G

mg

Figure 4: 2D Crane Dynamics

x o= Horizontal position of the trolley (m)
! = Length of the hoisting rope

) = Swing angle of the rope

M = Mass of the trolley (kg)

m = Mass of the payload (kg)

The dynamic model for this 2D crane is derived by using Lagrange-Euler’s
Method. Based on the figure 4, the equation describing the dynamics of the 2D crane
will be determined to obtain the state-space equation of the system. Using Lagrange-
Euler’s Method, the linear and non-linear equation of the 2D crane will be obtain
considering the distance of the rail with the cart denote by x, the distance of the cart

denote by y, and angle of oscillation x-axis movement.

13



3.3 Introduction to 3D Crane Mathematical Formulation

3D crane dynamic equation is concern with mathematical formulation of
equations for the 3D crane arm or joint motion where these set of mathematical equation
will describe the dynamic behavior of the 3D crane. This dynamic equation is important
for simulating the 3D crane in computer using Matlab and Simulink software and
designing a suitable controller for the 3D crane. The mathematical equation for 3D crane
can be modeled dynamically using various approaches such as Lagrange-Euler’s
Method and Newton-Euler’s Method. For this project, Lagrange-Euler’s Method is used
because Lagrange-Euler’s methods are more simple and systematic and it will give a set
of dynamic equation in a compact matrix form which is appealing from the control view

point.

3.4 Development of 3D Crane System

The 3D crane developed in this project has the ability to move in the x, y and z
direction which is in three dimensional direction. The payload can be lifted and lowered
in the z-direction. Both the rail and cart are capable of horizontal motion in the x-
direction. The cart is capable of horizontal movement along the rail in the y-direction.
Therefore, the payload attached to the end of the Iift line can move freely in 3-
dimensions. The 3D crane is driven by three DC Motor. There are five identical
measuring encoders measuring five state variables, the cart coordinate in the horizontal

plane, the lift-line length, and two deviation angles of the payload.
Angles are measured in the manner of x and y-direction movement which is

namely a and . The sway angle produce in the z-direction is assumed to be small and

approaching zero.

14



Figure 5: 3D Crane

There are 5 measured quantities:

- x,, denotes the distance of the rail with the cart
- ¥, denotes the distance of the cart

- R denotes the length of the lift line

- a denotes the angle between y-axis and the lift line

- B denotes the angle between the negative direction on the z-axis and the projection of

the lift line onto the xz-plane

m, - Mass of the payload

m, - Mass of the cart

mg - Mass of the moving rail

Xe, Yer 2 - Coordinates of the payload

S - Reaction force in the lift-line acting on the cart
E, - Force driving the rail with cart

F, - Force driving the cart along the rail

Fp - Force controlling the length of the lift-line

T, T, T - Friction forces

15



3.5. 3D Crane Modeling

The dynamic model for this 3D crane is derived by using Lagrange-Euler’s
Method. Based on the figure 4, the equation descﬁbing the dynamics of the 3D crane
will be determined to obtain the state-space equation of the system. Using Lagrange-
Euler’s Method, the linear and non-linear equation of the 3D crane will be obtain
considering the distance of the rail with the cart denote by X, the distance of the cart
denote by y, length of the line denote by R, angle of oscillation respected to y and x-axis

movement.

By using the state-space approach the dynamics of the 3D crane will be simulated
in Matlab to optimize the equation and for simulation of the proposed system. Using the
Matlab/Simulink, the 3D crane dynamics will be constructed and simulated accordingly
to produce the functional 3D crane. After that, the construction for the Proportional-
Integral-Derivative, PID Controller will take place to be applied into the system to
increase the reliability in term of speed and sway angle. The tuning constants for the
PID Controller will be determine as these tuning constants is tuned accordingly based on
the three tuning goals which are controlled variable behavior, model error and

manipulated variable behavior. [5]
3.6. Tools Required
The tools required for this project is Matlab/Simulink Software which is
important to be used in simulating the dynamics of the 2D Crane and 3D Crane

designed. Most of the time, this project will be using Matlab and Simulink Software to
produce the graph and other related information of the 21> Crane and 3D Crane system,

16



CHAPTER 4

SYSTEM MODELING

4,0 2D Crane Model Description

x = Horizontal position of the trolley (m)
l = Length of the hoisting rope

8 = Swing angle of the rope

M = Mass of the trolley (kg)

m Mass of the payload (kg)

4.1 Dynamic Equation Derivation

Lagrangian approach is used to derive the equation of motion. Based on figure, the

load and troliey position vectors are given by:

T = {x+1sin@,—1lcos 6}

7o = {x,0}

The kinetic and potential energy of the whole system are given by:

T = Tirottey + Tpaytoaa
= EMf-oz + Emf'mz
1

1 o o .
= EMJ'CZ + Em(a'cz + [2 + 1202 + 21l sin @ + 2x10 cos 9)

17



P =mgyn
= —mgl cos @

Using the Lagrangian approach, the following equation is derived as:

L=T~P

1 1 , . . .
=S Mi? + Em(a’cz + 1% + 1202 + 211 sin 6 + 2%16 cos 8) + mgl cos 8

Let the generalized forces corresponding to the generalized displacements § = {x, 6} be

F = {F,, 0}. Constructing the Lagrangian L = T — P and using Lagrangian’s equations:

d(oL\_ oL _. _
dc\aq;) oaq;  ’ J=12

We will obtain the equation of motion for the gantry crane system. Firstly, the equation

of motion associate with the generalized coordinate ¢ = x can be derived as below:

d(aL) oL
de\ax/ dx  *
oL_.
ax
aL-M'+1 2% +2[sin6 + 219 cos @
37 = Mx 2m(x sin cos @)
= Mx + mx +mlsin 9 + mlf cos 8
d (oL o g )
5(5}-)=M5&+mx+m(lsm9+l€cosi9)+m[l€cos€+lecosl9
+ 16(—sin ) 6]
= (M +m)x + m(Isin8 + i cos 8) + m[if cos & + 18 cos & — 167 sin 6]
= (M +m)% +mi(d cos@ — 6?sin@) + 2mid cos 8 + mising
Thus,

18



d (BL) 0=F
dt \d o
F, = (M +m)% + ml(f cos @ — 62 sin8) + 2mif cos 8

Secondly, the equation of motion associate with the generalized coordinate ¢ = 8 is as

below:
d (aL) aL
dt\ag/ a0
al 1 . s ) .
30 Em[ZJ‘d cos 8 + 2x18(—sin B)] + mgl(—sin @)
i . .
= Em(le cos§ — 216 sin@) — mglsin 9
oL
Fri —-m(ZlZB + 2%l cos @) — mglsin §

d Ly 1
—-—(—-~—) =m[2128 + 210(20) + 2%l cos 0 + 2xicos @
dt\gge/ 2

'—l

-Z-m(ZIZB + 4116 + 2% cos 8 + 2% cos @ — 2x10 sin )

d (BL) oL
dt

26) 36"
= Em(ZFG + 4116 + 2%l cos 6 + 2%l cos 6 — 2%1§ sin §)
1 . .
- —?:m(zxz cos 6 — 2110 sin8) + mgl sin 6

= 2028 + 41i6 + 25l cos 0 + 2%l cos @ — 2xl8 sin@ — 2xi cos @
+ 2%160sin 8 + 2glsing = 0

= 214 + 416 + 2% cos @ + 2gsin@ = 0
=16+ 20+ ¥cos® + gsinf =0
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The equation of motion of the crane model associated with the generalized coordinates

g = {x, 8} can be summarized, respectively as:

x: Fy = (M+m)i+ml(8cos 8~ &*sin 0) + 2mid cos 8 + misin 8

0: 10+2l0+%cos@®+gsinf=0
4.2 Linearization of the System

The above derived model is a nonlinear model. The nonlinear model has to be linearized
to simplify the progress of the modeling. For safe operation, two assumptions had been
made. First, we assume that the swing angle should be kept small

8=0

0=0

In this study, we assume that changing the rope length is needed only to avoid obstacles
in the path of the load. This change can be considered small too,
[~i=0

Using these two assumptions, the simplified equation of motion for the gantry crane
system can be obtained

x:F,=(M+m)i+mld

B:10+3i+g0=0

4.3 General State-space Representation of the System

After geiting the linearized equation, equation can be written in state representation

X =Ax + Bu
Where,
X X
_ {0 ]
8 §
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From equation (3.9),

i=—16—go
Substituting equations will get the following equation,

E.=(M+m)(—18 — g6) + mlb

M+4+m E,
=~ oo + 34l
Substitute above equations
. M+m F,
F, = (M +m)(~1f — g6) — m [(T) g0+ W]
B m
x=tGpe

Equations can be arranged into the matrix form as below:

0 01 ¢ - 0
x 0 0 01 X 0
0| _ mg o1, L
A=l © 57 o o Jiz|+ % |&
g (M +m) 8 1
0 - 0 0 —_
Ml Ml
The output equation is

BD =

HEHE

|

4.4 Transfer Function of 2D Crane System

T

The equations of motion for a linearized model of a 2D Crane are represented as

follows:
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+i+g0=0 2
From equation (2)
¥=-10 - go 3)

Representation of Models in Laplace or S Domain

In order to represent the Equations (5) and (7) in s domain, their respective transfer
functions can be derived through Laplace transformation assuming the initial states to be

zero. Thus for Equation (5), it becomes:

E(s) = (m; + my)s?X(s) + myls?6(s) 4
Equation (2) become
Is*0(s) + s2X(s) + go(s) = 0 (5)

Rearranging equation (5), we get:

_ —=s%X(s) (6)
" Ty
And
_ - (7)
X(s) = [ ISZB(.:;)Z gG(S)J

Substituting Equation (6) into Equation (4), a transfer function is obtained as follows:

X(s) Is2+g (8)
F.‘;C(S) - mll.SA' + Szg(m1 + mz)

Similarly, substituting Equation (7) into Equation (4), another transfer function is
derived as follows;

8(s) _ 1 (9)
E(s)  —myis? — (m, + my)g
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4.5 Dynamic Behaviors Simulation of 2D Crane

Figure 6 below shows the block diagram of 2D Crane system that is used to
simulate the dynamic behavior of the 2D Crane system in this project. As mentioned
above, the gantry crane system is represented by the Differential Equation Editor, DEE

tool.

Outt

Output
BiBang Input 2D Crane System P

Figure 6.1: 2D Crane

The input to the 2D Crane system is a bang-bang torque. The bang-bang input
force is generated using the multiple unit step input.

Figure 6 shows the general PID Controller for 2D Crane System that will be used
to obtain the maximum performance of 2D Crane System. Three scopes are used to
capture the trolley position and sway angle.

Distance Travel Transfer Function

Distance Travel

Subsystem3 Sway Anglet

Sway Angle Transfer Function
Figure 6.2: PID Controller for 2D Crane

Figure 7 shows the Differential Equation Editor, DEE box where the state space
equation for 2D Crane Dynamics are entered for simulation purposes.
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- u’f[j,!!-’d;fjf",]?‘!,‘ o : ..j __ils

Ditferential Equation Editor (Fon bilock syrtax)

Name:
#ofinputs: 1

’ First order equations, f(x,ux x0
( X(3)

x(4)
(UM 2)+u(1 )M
dhcilt= (M m)MAMH))*g*x(2)-u(1 JMPY)

oocoo

Number of states = 4 Total = 4

Status: READY

Figure 7: DEE for 2D Crane System

Using the control system toolbox in Matlab, the controllability and observability
of the system is being analyzed. Using the matrix method, the state space equation of the
2D Crane system is obtained and ranked. Based on the results obtained, the state space
equation of the 2D Crane System is controllable and observable.

4.6 Sway Motion of 2D Crane

Figures show the sway angle of the 2D crane, & when input force, F is applied to
the trolley. The initial position is assumed to have a sway angle of zero since no force is
applied to the trolley. When a positive force is applied to the trolley as showed in Figure
8, the payload will swing clock wise direction. The sway angle will be a negative value.
However, the payload will swing anticlockwise direction when the input force is
negative as showed in Figure 10 and the sway angle will be a positive value.

In simulation using Matlab/Simulink Software for the project, the following 2D
Crane parameters are used:
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Trolley mass, M = 1 kg

Payload mass, m = 0.8 kg

Length of hoisting rope, 1 = 0.305 m
Gravity, g = 9.81 m/s’

Input force, F=1N

Figure 8: Bang-bang Input Force, 1IN

When input force is applied to the trolley, the trolley will travel horizontally along
its path. Graph above shows that the trolley reached around 0.58 at 2s. The input force
will be taken away after 2s. The oscillation after 2s is due to the non-stop oscillation of
the payload.
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4.7 Trolley Position

Figure 9: Trolley Position (m)
Due to the force applied to the 2D Crane System, the trolley moved accordingly
to its position. Based on the Figure 9 above, the trolley position reach a constant value
under 2s period. The final value of trolley position is 0.55m in average.

4.8 Sway Angle

Due to the positive input force applied, the payload swing at a clockwise direction
at the starting of the simulation. The payload will continue to oscillate although the force
is taken off after 2s. This is because the 2D Crane system is designed without sway
angle damper.
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Figure 10: Sway Angle (rad)

4.9 System Analysis and Discussion

The effect of input force, length of the hoisting rope, trolley mass and payload
mass on the dynamic behavior of the gantry crane are investigated. By changing the
system parameters such as payload mass (m), trolley mass (M), length of the hoisting
rope (1) and the input force (F), the dynamic performance of the gantry crane will be
affected. The swing magnitude and the travelling distance will change when the system
parameters changed.

49.1 Input Force, F
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Figure 11: Bang-bang Input Force at 1N, 2N and 4N

Figure 12: Trolley Position for Force at 1N, 2N and 4N
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Figure 13: Sway Angle for Force at 1IN, 2N and 4N

Figure 11 shows the different input force that applied to the system. Figure 12 and
13 show the responses of the system in term of trolley position and sway angle when

different input force applied to the system.

From the graph obtain, as we increases the amount of torque or force to the
system, the travel distance of the trolley will increases but at the same time, the sway
angle will increase thus affecting the system reliability. Besides that, we also observe
that the sway frequency of the payload remain the same for different amount of force
applied. By applying the PID Controller in the future, it was hope that the amount of

sway angle will decrease or able to damped the sway angle over time.

When the input force is 4N, the trolley is able to travel more distance where it can
reaches around 2.25m from its initial position. However the vibration of the trolley is
higher which has a maximum magnitude of around 0.6 rad as the sway angle frequency
remains the same.
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4.9.2 Length of Hoisting Rope, |

Figure 14: Trolley Position for Hoisting Rope length, | of 0.305m, 0.2m and 0.5m

Figure 15: Sway Angle for Hoisting Rope length, | of 0.305m, 0.2m and 0.5m
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Trolley still reaches the same distance since the same force of 1N is applied to the
system. Thus, in general, the length of the hoisting rope does not affect the distance
travel by the trolley. However, as we decreased the length of the hoisting rope, | the
fluctuation of the trolley increased, this due to the payload oscillation increased when
the rope is shorter. From the Figure 15, the magnitude and frequency of the payload
swing can be observed to be greater.

From Figure 15, we can observe that as we increase the value of hoisting rope, | to
0.5 m, the payload sway angle stabilized after 2 s. In conclusion, the length of hoisting
rope, | needs to be controlled in order to obtain the maximum reliability of the 2D Crane
System since with the lower or smaller oscillation of the payload, the trolley can reach
the same location but more stable sway angle.

Figure 16: Trolley Position for Trolley Mass, M of 0.5 kg, 1 kg and 2 kg
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Figure 17: Sway Angle for Trolley Mass, M of 0.5 kg, 1 kg and 2 kg

Based on the figures above, when the trolley mass, M increases from 0.5 kg to 2
kg, the magnitude and frequency of the payload swing decrease. From Figure 16, the
smaller trolley mass which is 0.5 kg will travelled a greater distance compare to the
highest trolley mass 2 kg, this is due to the gravitational force that absorbed the force
applied to move the system.

In conclusion, as the trolley mass, M increases, the distance travelled by the
trolley will decrease. Besides that, it will also results in a lower magnitude, fluctuation
and frequency of the payload swing which will result in more reliable 2D Crane System.

4.9.3 Payload Mass, m

Finally, the effect on the trolley position and payload sway angle by payload
mass, m. This is important to determine the maximum and minimum limit of payload
mass that can be used for the 2D System created.
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Figure 18: Trolley Position for Payload Mass, M of 0.4 kg, 0.8 kg and 1.6 kg

Figure 19: Sway Angle for Payload Mass, M of 0.4 kg, 0.8 kg and 1.6 kg
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Figure 18 and 19 shows the performance of the 2D Crane System when we
increase and decrease the payload mass, m. When payload mass is increase from 0.4 kg
to 1.6 kg, the trolley position increased but the payload sway angle decreased. Thus in
general, the reliability of the 2D Crane System will increased as the payload mass
decreased.

4.10Simulation of 2D Crane Using Transfer Function

Using the transfer function obtained earlier, the differential equation of the 2D
Crane is replaced with the transfer function. This is important to verify the results
obtained by using the differential equation approach earlier. Figure 20 shows the block
diagram of 2D Crane system that is used to simulate the dynamic behavior of the 2D
Crane system using transfer function approach. In simulation using Matlab/Simulink
Software for the project, the same 2D Crane parameters are used:-

Trolley mass, M = | kg

Payload mass, m = 0.8 kg

Length of hoisting rope, 1 = 0.305 m
Gravity, g = 9.81 m/s

Input force, F=1N

Distance Travel Transfer Function

Distance Travel

~H

Sway Angle

.

Figure 20: Block Diagram of 2D Crane System

Sway Angle Transfer Function
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As shown in the Figure 20, the linear value of the 2D Crane is substituted into the
2D Crane System to obtain the transfer function of both distance travelled and sway
angle:-

X(s) Is’+g _ 0.305s% +9.81
Fe(s) ~ myls* + s2g(m, + m;)  0.244s* + 17.65852
6(s) 1 1

E(s) ~ -myls? — (m, + my)g B(s) = —0.2445* — 17.6585s2

Figure 21: Trolley Position (m)

Figure 21 is the output graph for trolley position of the 2D Crane. Based on the
figure, we conclude that the transfer function system behave the same way as the
differential equation method. The oscillation for transfer function method is higher
compare to the differential equation method but based on the distance travelled by the
trolley we conclude that the result for both methods will produce the same average
travelled distance which is 0.6m.
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Figure 22: Sway Angle (rad)

Figure 22 shows the sway angle output produced using the 2D Crane system
transfer function. Based on the graph produced, we concluded that the sway angle for
transfer function method is higher compare to the differential equation method. The
oscillation for both sway angle and trolley position is higher compare to the differential
equation method. The deviation may be cause by the 3 decimal point value substituted
into the equation of transfer function for calculation.

4.11 Formulation of 2D Crane Using State-space Approach

Using a state variable approach gives a straightforward way to analyze a single-
input single-output (SISO) and a multiple input, multiple-output (MIMO) system. The
state model constructed from transfer functions are not unique and can have different
forms. There are two approaches that are used for this project which is contro] canonical
form and observer canonical form. Each approach will result in a different form of state
model.
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Using the results of 2D Crane System transfer function obtained earlier, the state-
space equation of the 2D Crane is obtained. This is important to verify the results
obtained by using the differential equation and transfer function approach earlier. Figure
23 shows the block diagram of 2D Crane system that is used to simulate the dynamic

behavior of the 2D Crane system using transfer function approach.

In simulation using Matlab/Simulink Software for the project, the same 2D Crane

parameters are used:-

Trolley mass, M = 0.8 kg

Payload mass, m =1 kg

Length of hoisting rope, I = 0.305 m
Gravity, g = 9.81 m/s”

Input force, F= 1N

4.11.1 Control Canonical Form of 2D Crane System

X(s) Is+g _ Bst+ B
E(s)  myls*+s2g(m; +my)  a.s* + a,s?
8(s) _ 1 Bo

(s) =

= E(s) = —2
F(s) -myls2—(m,+my)g ”* a,5% + ay

From the transfer function above, the similarities for both equations is defined.

Thus, the new equation of transfer function is produced. Which is:-

X(s) _ -Is*—g _ Bas?+ B
F(s) —mgls*—s2g(my +my)  a,s*+ ays?
8(s) _ s? ps°

E(s) =

E.(s)  —myls*—s2g(m; + m,) ayst + a,s52

Based on the variables assigned, the corresponding signal graph are obtained and
applied into the Matlab/Simulink for simulation. The results of the simulation are
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compared to the previous method in order to verify the accuracy of the signal graph

produced. Figure 23 below shows the block diagram constructed from the signal flow

graph obtained earlier.

Figure 23: Signal Flow Graph Block Diagram for 2D Crane

Control Canonical Form in Matrix Form (2D Crane)

. 0 1 0 0 0
1l o o 1 o|[* 0
2110 o 0 Y2+l o |pg
*3 (m; + m,)g 3 1
X4 0 0 ——== pllx, —
_mil —-‘m1l
X1
[J’i] _ [-g 0 -l 0]_ Xy
Y2 0 0 1 ol]xs
X4
Substituting values into the Matrix
Xy 0 1 0 0] rx4 0
x"z 1 0 xz 0

o o
oo o 1flw|t] o |
2 o 0 -72369 ollxd [_goa4
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R B S
X4

4.11.2 Observer Canonical Form of 2D Crane System

In obtaining the state-space representation of observer canonical form of the 2D
Crane System, the concept of duality is used. Since the value of the B will be varied thus
the input of the system will be different. For different input to obtain a different output,
both outputs are separated into two different control canonical equations, Below are the

steps involved:-

Renumbering in reverse order

: 0 1 0 0 0
1o o 1 0][*s 0
“l={0 o 0 Y21+ 0 |
X2 (my +my)g 2 1
) 10 0 ——22 glx ) (—Z_
"“"mil ""mll
X4
[sz]z[—g 0 - o] x3
Y1 0 0 1 ollx
X1

Rearranging in ascending numerical order

. +m 1
xl 0 g'n‘l—mizig- 0 0 xl —"m
X =y X iy
%] =1 0 0 oflii{+| o [[u]
Y 0 1 0 0 ” 0
0 0 1 0 0

V1 0 1 0 o0 2
[y2]=[0 -1 0 -g][ﬂ:s

After rearranging the matrix in ascending order, the transpose matrix are obtained based
on the steps below:-

Ac=4A7; B, =(CT; Cc=BT;D, = DT
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X=Ax+Bu;Y=Cx+Duy
Sway Angle Observer Canonical Form

0 0 0

1 X 0
<+ 1
_ w 0 1 ollx, 1
= ""'mll x3 + 0 [u]
0 0 0 1 A 0
0 0 0 ¢
X1
[y]—[ — 0 o 0] %
= "'m]_l x3
Xy
Trolley Distance Observer Canonical Form
. 0 1 0 0
2 omy +my)g 1o
xz - —'—"'—l—-—-— 0 1 0 xz + —‘l []
S o o 1| [0]™
4 0 0 0 o™ 174
Xy
] = [—3— 0 0 o] X2
o= "‘m]_l x3
Xy

TR

O— ?O_> —>(O—> — ¥
3 P

Ji
X,
—a, — — Gz

Figure 24: Signal Flow Graph of Observer Canonical Form

J'Cl ~3 1 0 0 X1 ﬁg X1
x"z _ |~ 0 1 0 X2 ﬁz . _ [ 1 ] X
Bl |-a; 0 0 1 [5:3] + B [ul; ] = —m,l 6 00 X3
s —a, 0 0 0flx, Bo 4
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Figure 26: Trolley Position (m)

Figure 27: Sway Angle (rad)

Figure 26 is the output graph for trolley position of the

2D Crane. Based on the
figure, we conclude that the state-space obtained behave the

same way as the differential
equation and transfer function method. The oscillation and value of trolley position is
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exactly the same as the transfer function method thus we concluded that the signal flow
graph used in this state-space approach is correct. In this project, the simulation are
applied using control canonical form of state-space approach because we assumed that
the other model such as observer canonical form will results in exactly the same output

value.

Figure 27 shows the output graph for the sway angle of the 2D Crane. Based on
the figure, we conclude that the sway oscillation produced by the previous methods is
the same as using the state-space approach. The detail analysis for the behavior of the
2D Crane are taken from the differential equation method as we concluded that the
output graph will be in the same range.

4.13 Simulation of PID Controller of 2D Crane System

*_ PID
PID Controller Trolley Positi
Trolley Distance Transfer Fen2 * -
Constant Input -
3 »{ PID —P
PID Controller  gyay Oscillation Transfer Fen2 Sway Angle:

Figure 28: PID Controller of 2D Crane

Based on Figure 28, the bang-bang input force is replaced with the constant input
force. This is important in order to avoid the trolley to turn back around to its original
position. In simulation of this 2D Crane System, the disturbance force such as impulse
force is neglected. First of all, the simulation of 2D Crane Controller system will be
tested with constant input force and self-tuning values of PID constants in order to make

sure the modification is functioning well for the system.
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Figure 30: Trolley Position output for PID Controller of 2D Crane System

Figure 31: Sway Angle output for PID Controller of 2D Crane System

Based on the Figure 30, the trolley travelled 1m after 1N of constant input force is
applied and also results in the stable payload oscillation after 3.5s thus results in a better
2D Crane System compare to the conventional system used without PID Controller.
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4.13.1 Time Delay

The next figures are results of adding Sms time delay into the output of the trolley
distance travelled transfer function or state-space. The results of the output are delay for

5ms in order to obtain more accurate and reliable PID Controller values,
B

Figure 33: Sway Angle output for PID Controller of 2D Crane System with Delay
46



Based on the figures below, both outputs are stabilize at a constant value thus the
value of PID constants used are reliable for the system.

4.13.2 Frictional Force Disturbance

The next figures are results of adding constant 0.IN frictional force as a
disturbance into the output of the 2D Crane System. The distance travelled overshoot for
the trolley is recorded to be 0.1N less than output results without frictional force. This is
because the 0.1N fore from the constant input force are compensated by the disturbance
force added into the system.

Figure 34: Trolley Position output for PID Controller of 2D Crane System with
Frictional Force Disturbance and Delay
Figure 35 shows the sway angle output produced for PID Controller of 2D Crane
with frictional force. The payload sway oscillation frequency is the same as the previous
results without disturbance force. The payload oscillation is able to be stabilized less
than 6 seconds thus improve the previous system without PID Controller which results
in long period of payload oscillation and less distance travelled by the trolley.
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Figure 35: Sway Angle output for PID Controller of 2D Crane System with
Frictional Force Disturbance and Delay

4.13.3 Harmonic Force Disturbance

The next figures are results of adding harmonic force as a disturbance into the
output of the 2D Crane System. ¥(t) = 1sin 5t

Figure 36: Harmonic Force into the 2D Crane System; y(t)

= 1sin5t
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Figure 37: Trolley Position output for PID Controller of 2D Crane System with
Harmonic Force Disturbance and Delay

Figure 38: Sway Angle output for PID Controller of 2D Crane System with
Harmonic Force Disturbance and Delay

Based on the figures above, the trolley position is able to stabilize at constant
value and sway angle output produced a constant frequency of oscillation. These may be
cause by the continuous harmonic force added into the system as disturbance.
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4.14 Simulation of PID Controller with Derivative Filter of 2D Crane System

PID Controller :
(with Approximate ~ Trolley Distance Transfer Fen1

Derivative)1

Trolley Position

[H

Constant Input
PID | D
PID Controller g "5 Cilatio Transfer Fen? Sway Angle
(with Approximate > S o
Derivative)2

Figure 39: PID Controller with Derivative Filter of 2D Crane

Based on the Figure 39, the PID Controller with Derivative Filter is applied to the
2D Crane System in order to compare the output results with the PID Controller without
Derivative Filter. In this section, the linear parameters of 2D Crane variables and PID
constants are applied to the system.

In simulation using Matlab/Simulink Software for the project, below parameters
are used for the PID Controller and 2D Crane state-space equation:-

Trolley mass, M = 1 kg

Payload mass, m = (.8 kg

Length of hoisting rope, 1 = 0.305 m
Gravity, g = 9.81 m/s>

Constant Input force, F=1 N

PID Constant values:-
Proportional Constant, K,=5
Integral Constant, K; = 1
Derivative Constant, K;=4
Derivative Divisor, D = 100
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Figure 40: Trolley Position Output for PID Controller with Derivative Filter
of 2D Crane System

Figure 41: Sway Angle Output for PID Controller with Derivative Filter
of 2D Crane System

Based on the figures above, the results of the simulation for PID Controller with

Derivative Filter of 2D Crane System is the same as the previous methods which is PID
Controller without Derivative Filter.
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4.15 Simulation of 3D Crane System using Differential Equation Approach

The simulation of 3D Crane System is conducted by using the differential

equation approach. The general state-space equation for 3D Crane System is derived as

shown below. The input for both x-direction and y-direction is separated accordingly.

For y-direction, the mass of the trolley is change to mass of the trolley + mass of the

metal crane

Equations can be arranged into the matrix form as below:

0 0 1 0 0 0 0 0
0 0 0 0 0
_x- mg
- —_ 0
61 - 00
i (M +m)
i - 0
6_0 Wi 0 0 0 0 0
¥~ |0 0 0 0 0 0 10
gl |0 0 000 0 0 1
S mg
X 0 0 0 0 O 0 0
6 M+m,
0 0 000 O w3 ) 00
(M +m/)l
The output equation is
-x-
a
100000 0 O]f
[x]= 1 0 0 0 0 0 0 olle
6l o o 0 0 1 0 0 off%
0 0 0OO1 0 0 o0l)g
v

Di R D R DR D R

==

|~roo

D o
2| -

Figure 42: 3D Crane System DEE Method
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Below are the values and parameters used for simulation of 3D Crane:

Trolley mass, M = 1 kg

Metal Crane Mass, m, = 2kg
Payload mass, m = 0.8 kg

Length of hoisting rope, | = 0.305 m
Gravity, g = 9.81 m/s’

Input force, F=1N

| e ot et - 10

Differential Equation Editor  (Fon block syrtéx)

Name: 3D Crane System
#ofinputs: 2

=)

First order equations, f(x,u).

x(4)

(0.8*9.81 )1 *x(2)+u(1)H

(0. 8+1)(120.305))*9 81*x(2)-u(1)1*0.30
duidt= 5)

x(7)

(8)

(0.8*9.81 (1 +2)*x(B)+u{2)A(1+2) f

-((0.8+1+2)X(1+2)*0.305))*8 61 *x(6)-u(2)A(

1+2)'0.305)

Number of states = 8

Output Equations, 1(x u)
x(1)
¥ x(2)
x(5)
x(6)

i [~ N-N-F-N-N-N-N-]
]
@

(oo | [ Rewss | [ uwo | | oone |

Status. READY

Figure 43: 3D Crane System via Differential Equation

The result for both trolley position and payload sway angle are observed as
shown in Figure 44 below. The trolley position are observed to be less than the x-
direction but the sway angle for 3D Crane are able to stabilize at constant point compare
to the 2D Crane which results in the unstable payload sway angle. The trolley or crane
travel distance for y-direction is 0.26m and maximum payload sway angle of 0.05rad.
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Figure 44: Output for3D Crane System via Differential Equation

4.16 Simulation of 3D Crane System using Transfer Function Approach

After the successful simulation of 3D Crane System via differential equation
approach, the transfer function for the 3D Crane is obtained for the simulation using
transfer function approach. The results of the simulation are compared to the previous
method in order to verify the accuracy of the signal graph produced. Figure 45 below
shows the block diagram constructed from the 3D Crane system.

Distance Travel Transfer Function

Distance Travel

-

Subsystem Sway Angle

Sway Angle Transfer Function
Figure 45: Transfer function obtained for 3D Crane System
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Figure 46: Output for3D Crane System via Transfer Function

Based on the Figure 46, the output results for 3D Crane System via Transfer
Function is the same as the differential equation approach, thus we conclude that the
transfer function constructed for the y-direction are correct and the information obtained
are enough for the next simulation and derivation of the state space equation of 3D

Crane System.

4.17 Simulation of 3D Crane System via State-space Approach

After the successful simulation of 3D Crane System via transfer function
approach, the state-space equation for the 3D Crane is obtained for the simulation using
state-space approach. The results of the simulation are compared to the previous method
in order to verify the accuracy of the signal graph produced. Figure 47 below shows the
block diagram constructed from the 3D Crane system.
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Figure 47: Crane System via State-space Approach
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Figure 48: Output for 3D Crane System via State

-Space Approach for X-direction
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Figure 49: Output for 3D Crane System via State-space Approach for Y-direction

4.18 Simulation of 3D Crane System Controller via State-space Approach

. I

Figure 50: 3D Crane System Controller via State-space Approach
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Figure 51: Sway angle for 3D Crane System with Controller via State-s
For x-direction

pace Approach

Figure 52: Trolley position for 3D Crane System with Controller via State-s
For x-direction

Pace Approach
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Figure 53: Sway angle for 3D Crane System with Controller via State-space Approach
For y-direction

Figure 54: Sway angle for 3D Crane System with Controller via State-space Approach
For y-direction

Based on the figure 51-54, by using the PID Controller, we can obtained a
stabilize system with constant trolley distance for both x and y direction. For the 3D
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System with PID Controller, the simulation are conducted by using the step input

instead of bang-bang input force that are used for 3D Crane System without the PID
Controller.



CHAPTER 5

DISCUSSION

5.0 Project Reliability

The State-space construction of 3D crane is apparently a new project in the field
of Instrumentation and Control System. This project will optimized the author’s
understanding on the Proportional-Integral-Derivative, PID Controller and 3D crane
system since the failure of crane in the process and oil and gas industries are critical as it
needs to be optimized to avoid failure and decrease the plant reliability which will
definitely affect the profit and decrease the plant productivity.

This project will also highlight on the automated control of a 3D crane in the plant
industries thus will require author to study and conduct a detail research on
understanding the automated control system use in the plant. This will definitely help
author to optimize an understanding involving Instrumentation and Control System. In
Instrumentation and Control System, the author has been introduced to the function of
Distributed Control System, DCS and Programmable Logic Controller, PLC thus
enabled author to emphasize the application of the Proportional Integral Derivative, PID
Controller of the 3D Crane in detail manner.

5.1 Future Development and Application

The development of transfer function and state space equation of this 3D Crane
will enable future development of 3D Crane system. Using the Simulink and Matlab, the
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dynamics of the 3D Crane will be define for the future decoded into C++ and Matlab
command which will enable the application of hardware connected into the system. For
development of controller, the same application will be transferred into the system to
optimize the applicability and reliability of the 3D Crane system. The basic linear 3D
Crane can be constructed thus applying the PID Controller as define for optimization

and increase plant reliability.
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CHAPTER 6

CONCLUSION AND RECOMMENDATION

6.0 Conclusion

The modeling of the 3D Crane state space equation is still under process. The
reliability of the equation is hopefully to be able to increase in reliability by considering
the friction forces of the rail and other reliable information. After the state space
equation of the 3D Crane has been successfully accomplished, the simulation of the 3D
Crane system will take place. This part will consume time since it is to consider the

probability of failure of the system while on construction.

Since the author is majoring in Instrumentation and Control System, this is an
acceptable project to be accomplished for the fulfillment of Final Year Project since the
author has the credibility as an Electrical and Electronics Engineering student and
finally will enable author to have better understanding of Automation Control System.
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