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ABSTRACT

The actual integration of automated control systems in vehicles such as Anti-lock
Braking Systems (ABS) or Traction Control System (TCS) has proved to increase road
safety and improve driver’s comfort. Since most of the accidents are attributed to the
fault of the driver, automated control systems in vehicle safety technology may
dramatically better road safety by improving driver’s performance. This thesis presents
an enhanced and improved autonomous intelligent cruise control systems with obstacle
collision avoidance integrated with path following/lane keeping. Obstacle collision
avoidance is the ability to avoid obstacles that are in the vehicle’s path, without causing
damage to the obstacle or vehicle. Path following/lane keeping is the ability to follow
the vehicle’s path and keeping in its lane, as accurately as possible. The idea is to have a
vehicle that drives by itself and avoids obstacles in the real world. Every instant, the
vehicle decides by itself how to modify its direction according to its environment. This
thesis demonstrates Gaussian functions and multi-objective cost function employed
alongside with the Neural Network and optimal preview controller for control of the
position of the vehicle to move while avoiding collision with obstacles. Each obstacle is
represented independent of the others as a bell-shaped hump by the Gaussian functions
which serve as an obstacle recognition system. Multi-objective cost function is formed
for the planning strategy to generate, evaluate and select plans so that the vehicle can
select which direction to move. Neural Network and optimal preview steering control
are utilized to control a full linear steering model of a vehicle so as to increase path
following accuracy. Optimal preview control is capable to portray the driver’s vision of
the path and process the knowledge while Neural Network controller has the ability to
‘learn’ from past errors and adjust the network to obtain specific target output. In this
thesis, a MATLAB simulation environment was created to simulate the ability of a
vehicle to avoid obstacles that are in the vehicle’s path. Simulated obstacle avoidance
has confirmed the capability of a vehicle to precisely avoid collision with obstacles
while traveling on high speed along its predetermined path.
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CHAPTER 1
INTRODUCTION

1.1 Background of Study

Malaysia is considered relatively safe for driving compared to other developing
countries. But if we observe past years’ and recent road accidents statistics/reports,
we can perceive that the propensity of road accidents in Malaysia is on the rise.
Accidents are generally classified as single vehicle accidents and multiple vehicle
accidents. Single vehicle accidents in which the vehicle is either colliding with fixed
objects or with pedestrians or the vehicle may fall in a ditch and so forth whereas
multiple vehicle accidents in which two or more than two vehicle can either collide
head-on or one vehicie may collide with the front vehicle at the back or may a have
side-swipe type collision. As a rapidly developing country, Malaysia has seen a
dramatic increase in the number of vehicle ownership, averaging 8 % per annum
from 7.7 million in 1996 to 12.8 million vehicles in 2003. This had translated into an
increase in the number of road accidents from 189,109 cases in 1996 to 298,651
cases in 2003. At the same time, the number of fatalities resuiting from road
accidents had decreased slightly from 6,304 cases in 1996 to 6,282 cases in 2003.
However, the number of deaths per 10,000 vehicles had decreased from 8.2 deaths in
1996 to 4.9 deaths per 10,000 in 2003 [1]. According to [2], the main cause of road
accidents on the Malaysian roadways is the loss control of vehicle (Terbabas sendiri
(satu kenderaan)) which contributed 23.19 % of the total road accidents in 2003 (see
Table 1.1 in Appendix A). A comprehensive study of road safety by [3] found that
human error was the sole cause in 57 % of all road accidents and was a contributing

factor in over 90 % [4].

In the vehicle safety technology arena we have seen major advances in the last few
decades. These developments from three-point seatbelts to airbags to Anti-lock
Braking Systems (ABS) have saved thousands of drivers' and passengers’ lives. And
recently, it has gotten even better. Accelerated by the advent of the microchip, in the



last ten years we have witnessed an incredible array of safety devices installed in
vehicles. The actual integration of automated control systems in vehicles such as
Traction Control System (TCS), Acceleration Slip Regulation (ASR) traction control,
Electronic Stability Control (ESP), Autonomous Intelligent Cruise Control System
has proved to increase road safety and improve driver’s comfort. Driving is thus
more relaxing, less stressful and safer and the driver can more easily concentrate on
other important factors. Autonomous control system is a discipline in which control
algorithms are developed by emulating certain characteristics of intelligent biological
systems. It is quickly emerging as a technology that has opened avenues for
significant advances in many areas. One of the many areas is vehicle safety
technology. Looking at the genuine achievements of this technology, implementation
is designed to reduce the number of accidents and fatalities on the roadways and
highways. Automobile makers are currently trying to adopt this technology to the
cruise control of their vehicles. However being.autonomous, the degree of safety and
reliability of this technology on the roadways is inevitably highly debated and
questioned. This project employing Gaussian functions and multi-objective cost
function alongside with optimal preview controller and Neural Network controller,
as the heart of the vehicle autonomous contro! system would eventually open up
possibilities of a whole new driving experience with vehicle traveling safely,

accurately, precisely and providing a comfortable ride autonomously.

1.2 Problem Statement

With traffic continually increasing, basic cruise control is becoming less useful and
becoming obsolete. This project has been conducted to enhance and improve the
functions of conventional cruise control, a system which presently only maintains
preset speed of a vehicle. The driver sets the speed and the system will take over the
throttle of the vehicle to maintain the same speed. The existing cruise control system
which only maintains the desired speed preset by the driver without any features
assuming some of the driver's responsibility for safe driving is fraught with liability
pitfails and it is addressed as follows:



1.2.1 Safety

Most cruise control systems do not allow the use of the cruise control below a certain
speed (normally 80 km/h) to discourage use in city driving. Therefore, when the
cruise control is engaged, the vehicie is assumed to travel on a constant high speed.
A vehicle traveling on high speed requires no margin of errors as any of it poses a
high risk to the passengers and other users on the road. Although an error-free
condition is not realistic, it should be as minimal as possible to ensure a level of

safety for the utilization of an autonomous vehicle on the roadways.

1.2.2 Comfort/Convenience

Roads are often not obstacle and traffic-free. Traveling on a preset constant speed on
a populated roadway poses a potentiai collision with the vehicle upfront or objects on
its way. In dense traffic on the motorway and expressways with road environment
constantly changing, conventional cruise control is often useless. Standard cruise
control will not prevent accidents. It cannot provide steering assist when a driver is
slow to take evasive action when unexpectedly confronted with another vehicle or
object appearing in the vehicle’s path. As a vehicle approaches a curve, this system
is unable to provide compensatory steering assist to keep the vehicle in its lane and

keep the vehicle well on its path.

1.3 Objective and Scope of Study

This project is an expansion of existing cruise control system. The system presented
in this thesis not only maintains the desired speed preset by the driver, but also,
whenever required provides steering assist on the motorways and expressways or
country roads. This system relieves the driver of the permanent and monotonous
chore of constantly adjusting the vehicle's speed and controlling the vehicle’s
steering, Also, it assumes some of the driver's responsibility for safe driving. It
provides steering assist when a driver is slow to take evasive action when
unexpectedly confronted with another vehicle or object appearing in the vehicle’s

path. At the start of evasive action, the system provides steering assist to help the



driver avoid the obstacle. During evasive action, the system provides a safe and
comfortable gap from the obstacle to help prevent the driver from getting too close to
the obstacle. After evasive action, the system provides steering assist if the driver is
slow to return the vehicle to its original course, helping prevent the vehicle from
spinning out of control. In short, this system assists drivers in taking evasive action
and then helps stabilize the vehicle. This project has been conducted with reference
to the works of [5] on Neural Network based controller for high speed vehicle
following predetermined paths. The aim of this project is to develop an improved
and enhanced autonomous intelligent cruise control system that is capable to follow
accurately the predetermined path with the smallest possible error and also to avoid
obstacles along the path. For the ease and simplicity of the project, it will be assumed
that the vehicle has perfect information about where the obstacles are (e.g., via radar
sensor system, laser sensor system or computer vision system). The test speeds in
interest are those commonly used on Malaysian motorways and expressways which
are from 80 km/ to 110 km/h. Traveling above 110 km/h is well over the
expressway legal speed limit and would not only earn the driver a speeding ticket but
poses high risk to the passengers and other users on the road. In line with the
objective to develop an autonomous intefligent cruise controi system for high speed
vehicle, therefore vehicle speed up to 200 km/h is studied to examine the reliability
and robustness of the system. To make it easier to simulate path foilowing/lane
keeping with obstacle avoidance system of the vehicle, a simple and user friendly
Graphical User Interface (GUI) is designed.

1.4 Qutline of Thesis

This thesis is divided into several chapters and structured in the following way.

Chapter 2 (Literature Review And/Or Theory) discusses prior work related to
collision avoidance, reviews Neural Network; its definition, training method {online)
and algorithm (gradient descent) and outlines generic planning steps for obstacle

avoidance.



Chapter 3 (Methodology/Project Work) recaps the works by Sharp [19] and Dandré
[12] on the linear car model and road preview model. Gaussian functions and multi-
objective cost function utilized for obstacle collision avoidance are described. This
chapter also discusses optimal preview controller and Neural Network controller
employed alongside with obstacle collision avoidance system to drive a linear car

model accurately and precisely on prescribed paths.

Chapter 4 (Results and Discussion) discusses the simulation results of the vehicle
traveling on high speed avoiding collision with obstacles while following the path
designed to avoid the obstacles. The Graphical User Interface (GUI) developed for
this purpose is also discussed. Path following/lane keeping with obstacle collision
avoidance simulation results in the GUI for obstacle course (straight path, lane
change and sudden change of direction) as well as path following simulation resuits
in GUI for four predetermined obstacle free paths: sinus path, lane change, sudden

change of direction and smooth random path are presented.

Chapter 5 (Conclusion and Recommendation) gives a conclusion of the work and

proposes a range of possible future work that could improve the results of the thesis.



CHAPTER 2 |
LITERATURE REVIEW AND/OR THEORY

2.1 Relevant Research Topics

There has been much interesting research done for obstacle collision avoidance.

Below are descriptions of a few relevant research topics.

In [6], there is a formalization of human centered design principles and illustrate
their application using an automation system that assists drivers to avoid unsafe lane
departures. This paper recognizes the importance of the human-computer interaction
as related to collision avoidance. The safety and effectiveness of a collision
avoidance system in an automobile is not only related to how well the automated

system works, but how the entire human-computer system performs.

Making sensor-friendly vehicle and roadway systems would improve on the abilities
of collision avoidance systems. In [7], work was done to show the improvements
possible with complementary signal sensor and reflector technologies. These
technologies can assist or replace single vehicle-based systems. The four most
promising technologies passive license plates with enhanced radar return, roadside
obstacle mounted radar-reflecting comer cubes, fluorescent paint for lane and
obstacle marking, and light emitting diode brake light messaging are discussed
especially on their improvement to the signal to noise ratio for the collision
avoidance sensors. These sensor friendly systems should significantly improve

collision avoidance systems.

In {8], a fuzzy logic enhanced car navigation and collision avoidance system has
been designed. Essentially, the control of a car in this system is based on the flexible
use of a fuzzy trajectory mapping unit that enables smooth trajectory management
independent of car’s initial position or position of the destination. This was done

with a fuzzy controlier consisting of 28 rules and a state machine containing 4 states.



For performing more demanding tasks, however, additional blocks of “intelligence”
are required. The latter is quite possible thanks to the modular structure of the control
system responsible for different task in separate without jeopardizing overall

performance.

In [9], a multi-sensor collision avoidance system (CAS) is described in this paper.

Measurements from radar, vision and sonar are combined using a fusion scheme that
utilizes fuzzy clustering and estimation techniques to estimate relative motion
between the vehicles. Fuzzy logic is used to generate audiovisual warnings for the
driver. It also implements a throttle relaxer and brake actuator to slow the vehicle

down. A prototype was impiemented on a Humvee.

A fuzzy collision avoidance system for a fixed obstacle was designed and tested in
[10]. This work describes a fuzzy trajectory controller with over 300 rules that is
used with a specially designed car-driving robot. The rules were created based on the
trajectories various drivers used to avoid a fixed obstacle. A laser was used as the
obstacle detection device. While the robot and fuzzy controller worked successfully

about 60 % of the time, the reasons for failure are understood.

Using Game Theory as a basis for collision avoidance is a subject of much research.
One example would be from [{1]. This work describes mathematically how an
evader (car) can avoid a pursuer (moving obstacle or static obstacle), using non-
cooperative game theory. There is no path to follow or limitation as to where the

vehicle can go to avoid the obstacle, outside its own physical path restrictions.

2.2 Neural Network

This part of the chapter reviews briefly the implementation of Neural Network in the
specific case of the control design. The learning process of a neural controller aiming

to reduce a predefined cost function is introduced.



2.2.1 Overview of Neural Network

Neural Network is a powerful mathematical model originally designed to mimic a
human’s information processing structure and able to capture and represent complex
input/output relationships. A Neural Network is a parallel processing structure

composed of processing elements called neurons or nodes.

A neuron having multiple-input and single-output is illustrated in Figure 2.1 in
Appendix A. Each neuron in an artificial Neural Network is based on:

o A set of input values a; and associated weights w;.

¢ A threshold or bias b.

¢ An activation function f, possibly non-linear, that operates on the weighted

inputs and the bias and maps the results to an output z:
uzf(Zw,..aﬁb] (2.1

The Figure 2.2 in Appendix A depicts some common activation functions also called
transfer functions. The network function of a neuron is determined largely by the
connections between the neurons and depends on the location of the considered

neuron in the network.

A Neural Network consists of a combination of neurons wired together in a complex
communication network in one or several layers. For instance, a multi-layer feed-
forward network is composed of input, hidden and output layers as depicted in
Figure 2.3 in Appendix A. Each neuron is connected to the others neurons in the next

layer through the weighting parameters.

The Neural Network's knowledge is stored within the inter-neuron connection
strengths also called synaptic weights. Commonly the networks are adjusted, or
trained, so that a particular input x leads to a specific target output y.

This learning process proceeds by way of presenting the network with a training set

{x(#), ¥(§)} composed of inputs together with the required response. A certain input is



fed into the input layer of the network. The network will then produce an output. By
comparing this output with the required target output, the error the network is
making can be measured. This error can then be used to alter the connection
strengths between layers in order that the network's response to the same input will
be better the next time around. This can be done thanks to a cost function of the form:

N

Jz%.Ze(i) (22)

i=1

0)=1{50-50] 5050 2

and an optimization process aimed to reduce the cost function. The gradient method
is commonly used but others methods exist. The update rule of the gradient method

is:

winew) = wlold)+ Aw 24 with Aw=-—y.% (2.5)

where y is the learning rate

and where w is a vector containing all weighting parameters

The true power of Neural Network lies in their ability to adapt to various situations.
The learning process depends mainly on the modeling. This advantage allows to
consider 2 wide range of outside conditions with little tuning and without the

modification of the main structure of the process.

Neural Network is also powerful in the case of both linear and non-lincar
relationships when traditional linear methods become inappropriate as the plant to be

controlled contains non-linearities [12].

Neural Network performs two major functions: learning and recall. Learning is the
process of adapting the connection in a Neural Network to produce a desired output
vector in response to a stimulus vector presented in the input buffer. Recall, on the
other hand, is the process of accepting input stimulus and producing output response
in accordance with the network weight structure.



Learning rules of neural computation indicates how connection weights are adjusted
in response to a learning example. The most used learning rule in engineering
application is supervised learning. In this method, the Neural Network is trained to
give the desired response to a specific input stimulus. The difference between actual
output and desired response is known as error, which is used to adjust the connection
weights.

Other learning rules are graded learning (output is 'graded' as good or bad on a
numeric scale, and the connection weights are adjusted in accordance to the grade)
and unsupervised learning (the network organizes itself internally so that each hidden

neuron responds strongly to a different set of input stimuli) [13].

2.2.2 Neural Network Training

Neural Network could produce desirable outputs by having sufficient training.
Commonly the networks are adjusted, or trained so that a particular input leads to a
specific target output. Online (incremental) training was used in this project and is

outlined in this section.

2.2.2.1 Online Training

Online training updates weights and biases as each input is presented to the network.
By setting any value of network learning rate, the weights will change at each
subsequent time step (instance). Thus, weights are updated more than once per entire
presentation of training data (epoch). Summarized in [14], the online training
proceeds as foliows:

Step 1: Initialize the weights.

Step 2: Process one training case.

Step 3: Update the weights.

Step 4: Repeat Step 2 onwards until the stopping criterion has been reached.

10



2.2.3 Neural Network Algorithm

The most commonly used Neural Network learning algorithm is back propagation.
The term refers to the manner in which the gradient is computed for nonlinear
multilayer networks [15]. Standard back propagation is a gradient descent algorithm,
in which the network weights are moved along the negative of the gradient of the
performance function. This algorithm has different variations based on the standard
optimization techniques. The variations include the gradient descent, conjugate
gradient descent, Newton, Quasi-Newton and Levenberg-Marquardt method. The
applications of these algorithms rely on the scale of the network to be used. Gradient
descent method is typically for a large scale network, conjugate direction is for a
medium scale, Quasi-Newton and Levenberg-Marquardt (preferred for low residual
regression problems) for small scale while Newton method is for a tiny scale
network [16]. Gradient descent method was used for this project and is described in

this section.
2.2.3.1 Gradient Descent Method

In Neural Network, the gradient descent learning is applied to determine network
weights that minimize error functions. The two parameters (weight and error
functions) create an error surface. This algorithm usually initializes at a commonly
random point in the weight space and points along the line of steepest descent until a
minimum in the error surface is found. As the sequences of the points reaching to the

minimum, the changing rate from the previous to next points decreases.

This particular manner is due to the formulation of the gradient descent learning
itself:

Aw:-y% (2.6)

where w is the weighting vector, J is the performance and 7 is the learning rate.

The negative sign implies that the gradient descent is approximated by taking small

but finite steps in the direction of steepest descent. As soon as the weights just start
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to change in the direction of the gradient at the measured point, the true gradient
itseff will start to change [17]. Thus, as the algorithm progresses, the learning rate

will be getting smaller and approaches zero.

A gradient descent algorithm by itself has a slow response. To increase the rate of
response, momentum term is combined with the basic algorithm. This combination
results in movement in fixed direction. Thus, if several steps are pointed towards the

same direction, the rate of response of the algorithm will increase.

Another mode of the gradient descent algorithm that is applied in this research is
gradient descent with adaptive learning rate back propagation. Without adaptive
learning, the learning rate is kept constant throughout learning. Selection of high
learning rate may lead the algorithm to oscillate and become unstable, while
selection of small learning rate will result in longer time taken for the algorithm to

converge to the desired minimum point.

By applying adaptive learning, the learning rate is allowed to change during the
training process. This algorithm will keep the learning step size as large as possible
while keeping learning stable [15]. The learning rate is change in such a way that it
will be increased if stable learning is obtained per instance or decreased when the

learning becomes unstable [13].

2.3 Generic Planning Steps for Obstacle Avoidance

Essentially, planning is one approach that allows for more than simple reactions to
what it sensed. It utilizes information about the problem and environment, ofien in
the form of some type of model and considers many options and chooses the best one
to achieve the closed-loop control objectives. Planning provides for a very general
and broadly applicable methodology and it has been exploited extensively in
conventional control (e.g., in receding horizon control and model predictive control).
As compared to the fuzzy and expert system approaches, it exploits the use of an
explicit model to help it decide what actions to take. Like the fuzzy and expert

system approaches, it still, however, possible to incorporate heuristics that help to
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specify what control actions are the best to use. Hence, in a broad sense, planning
approaches attempt to use both heuristic knowledge and model-based knowledge to
make control decisions; this may be the fundamental reason for selecting a planning
strategy over a simple rule-based one. It is often bad engineering practice to oaly
favor the use of heuristics and ignore the information provided by a good
mathematical model; planning strategies provide a way to incorporate this

information.

“Action plans” are often formed to try to achieve specific goals. For instance, an
“action hierarchy” given in Figure 2.4 is performed by the vehicle as one type of
action plan. The goal is ultimately develop a simple planning strategy for control of
the autonomous vehicle to move along its predetermined path while avoiding

obstacles in its way.

Represent the Problem

Set Goal

h
Decide to Plan

h 4

Build a Plan

Execute the Plan

Figure 2.4: Generic planning steps

2.3.1 Represent the Problem (“Planning Domain”)

In order to plan, some types of representation (model) of the problem that must be
solved must exist. This model in this case is in the form of a road map where the
vehicle is trying to plan a route to avoid obstacles along its predetermined path.
Generally these models are thought as being acquired via experience (i.e., via

learning), however it is certainly the case that instincts (model passed to humans via
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evolution) affect planning. For instance, humans have certain “hard-wired”
knowledge that can be thought of as aspects of models that influence planning (e.g.,
tendency to have a fear of snakes and some insects). Performance in planning is
critically dependent on the model of the problem. A poor model will generally lead
to a bad plan, or at least to one that soon fails that is colliding with an obstacle or
going off the path and thus requiring replanning. A high quality model that allows to
project far into the future (or down a hierarchy of tasks and sub goals), may lead to
better plans. However characteristics of the problem domain may make it impossible
to specify a good model. For instance, time varying and stochastic features of some
problem domains may make it impossible to predict into the future with much

accuracy and hence make it a waste of time to predict too far into the future.
2.3.2 Set Goal

Setting goals is essential to planning, since without goals there is no purposeful
behavior. Goals can be very different for different system, environment and times.
Goals are driven by evolutionary characteristics (e.g., the goal of survival, the goal of
reproduction), but in humans such goals can also be significantly affected by
humans’ values and ideals (e.g., ones set by culture). Goals can be learned and can
consist of a time-varying hierarchy or sequence of sub goals. The goal of the vehicle
is pretty much straight forward where it is required to avoid collision with obstacies

along its predetermined path.
2.3.3 Decide to Plan

Sometimes humans simply react to situations without considering the consequences
of their actions. Other people decide to develop a plan since they may think that this
will allow them to more successfully reach their goals. There are many issues that
affect the decisions of whether or not to plan (e.g., physiological and cultural). Many

lower animals (e.g., some bacteria) cannot plan; they simply react to stimuli.
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2.3.4 Build a Plan (Select a Strategy)

Normally the selection of a plan first involves projecting into the future using a
mode! (e.g., in path planning of the vehicle in this case) and often involves
considering a variety of sequences of tasks and sub goals to be executed. In terms of
graph-theoretic view, this may be thought of as a “tree” of plans where the nodes of
the tree are tasks or sub goals and links between these indicate plans (a path in the
tree is a candidate pian). See Figure 2.5 in Appendix A. How “deep” a tree generate
(e.g., how far to plan into the future) depends on the quality of the model,
characteristics of the environment and how much time or resources that have to be
pianned. The second key component of selecting a plan is the solution of an
optimization problem. For instance, suppose that the links on the “tree” that
represents the set of possible plans are each labeled with integer values that represent
the “cost” of performing the task represented by going in that direction in the tree.
For instance, the cost may represent distance traveled or time executed the task and
the characteristics of the cost are typically dictated by the goal. Next, supposedly the
tree represents a finite number of possible plans and that the cost of a plan is
represented by summing the costs of each link that represents a step in the plan. Then,
the plans can be ordered according to the cost and minimization can be perforemed
by picking the lowest cost plan (the “best” plan). Again, see Figure 2.5 in Appendix
A. For example, this may be the shortest route to take for the vehicle to avoid all the
obstacles, if it is solving the subtask of obstacle avoidance of the vehicle.

2.3.5 Execute the Plan, Monitor and Repair/Replan

After selecting a plan, how to execute the plan must be decided. While the plan is
executed, it is monitored by detecting the deviations for what is expected to make
sure that all is going well. Then, especially in an uncertain problem domain, it could
be that there is a “plan failure” so that there is a need to repair the current plan, or to
develop a completely new plan (the frequency of replanning is generally proportional
to the amount of disturbances in the system). The decisions of whether to simply
“tweak” the current plan, or develop a completely new one is difficult and can
involve assessments of available resources (e.g., time) and the extent to which goals

is being met. Some problem domains are particularly difficult to monitor and hence

15



there may need to be a parallel process operating that estimates the “state” of the
domain from available sensed information (this is sometimes called “situation
assessment”). The ability to do this depends on the “observability” properties of the
probtem domain (i.e., whether the state of the plant can be computed from measured
inputs and outputs). When using such estimates, the need to guess whether the plan

is succeeding and subsequently replan arises [18].
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CHAPTER 3
METHODOLOGY/PROJECT WORK

This chapter examines clear procedures of this project in developing the control of a
high speed vehicle following a predetermined path or keeping in a designated lane
and whenever required, avoiding collisions with obstacles in its path. The first part of
the chapter describes the obstacle collision avoidance integrated with path
following/lane keeping cruise control of a vehicle. The second and third part recaps
the works by Sharp [19] and Dandré [12] on the linear car model and road preview
model. The fourth part is devoted to developing the evasive control of the obstacle
collision avoidance system and in the final part; the steering control of a vehicle

aiming to follow prescribed paths/lane is examined.

3.1 Path Following/Lane Keeping with Obstacle Collision Avoidance

The system as in Figure 3.1 provides steering assist when a driver is slow to take
evasive action when unexpectedly confronted with another vehicle or object
appearing in the vehicle’s path while traveling on a prescribed path/lane. As depicted
in Figure 3.2 in Appendix A, if another vehicle or object is detected in the driver's
path/lane (assumingly via radar sensor system, laser sensor system or computer
vision system) while following a path or keeping in its lane, the system takes evasive
action; steering sharply away from the other vehicle. This system assists with
sieering to support the driver. At the start of evasive action, the system provides
steering assist to help the driver avoid the obstacle. During evasive action, the system
provides a safe and comfortable gap from the obstacle to help prevent the driver
from getting too close to the obstacle. After evasive action, the system provides
steering assist if the driver is slow to return the vehicle to its origina} course, helping
prevent the vehicle from spinning out of control. This system assists drivers in taking
evasive action and helps stabilize the vehicle and then continues following its

predetermined path or keeping in its designated lane.
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Figure 3.1: Path following/lane keeping system (dotted) integrated with obstacle

collision avoidance system (dashed)

3.2 Linear Car Model

A standard yaw/sideslip model of a vehicle is shown in Figure 3.3 in Appendix A
and has been described by Sharp and Valtetsiotis in [19] and in {20]. The model
consists of a rigid body based on the following assumptions:

* Suspension is omitted and the car is a single rigid body.

¢ The car is moving on a level plane (the road is flat).

* The vehicle has three degrees of freedom: forward motion, lateral motion and

yawing motion.
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o There are four types of forces of the vehicle model: front axle longitudinal
force, front axle lateral force, rear axle longitudinal force and rear axle lateral
force.

® A consiant forward speed u is considered and the input will be the steering
wheel angle d;,.

o The relation between the steering wheel movement and that of the front road
wheels is fixed and defined by a gear ratio G. Inertial effects of steering the
wheels are discounted.

¢ Aerodynamic forces are discarded.

* Tyre aligning moments are ignored.

o Lateral weight shift and roll are discounted.

o The car is neutral steering.

The model is very simple and cannot represent truly a car. The model includes the
forward speed considered as constant, which strongly limits the real driving of a car
and neglects the suspension and the load transfer, which are vital when negotiating a
turn at high speed. In practical, speed should be reduced if the vehicle is nearing a
curve or changing direction. However, for simplicity, the car moves only in forward
direction with a constant speed throughout the whole path. Considering the control of
braking and thrust would imply the implementation of a second Neural Network.
Still this model suits fairly well the specifications required, since the main purpose of
the study is path following control. The vehicle model parameters to define the car
can be found in Table 3.1 and Table 3.2 in Appendix A.

One can notice that since a.Cy=b.C, the car is neutral steering and that the mass of
the body is quite heavy and the yaw inertia is also significant. The centre of gravity

is towards the front of the car.
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The state space equation of motion of the car model is x = Ax + Bd,, with the state

vectors:

x=[x1 X, X, er 3.1)

where x; is global lateral position y
x2 is global lateral speed y

x3 is global lateral angle 'V

x4 is global attitude rate ‘P

and

1 0 0
-\C,+C.}iMu |C,+C M bC, -aC . ) Mu
,+chm (c,+c)m C, -ac,)
0 0 1
(bC, —aC, )1 u (aC,-bC, )11, -(a*C, +b°C,) Lu

(32)

oo o o

0

C,IMG
B=| (3.3)

aC,/1.G

The equations of motion are transformed to discrete time using the MATLAB
command ‘c2d’. Taking 4; and B, as discrete matrices, the equation of motion
becomes x(k +1) = 4,x(k)+ B,5,, (k) in which k is the sampling time and T is the
sampling interval. The sampling period is initially set as 0.05 s, and could be reduced
when vehicle moves in higher speed to increase the number of preview points for the

car controller. Detailed explanation on the linear car model could be retrieved from

works in [12]. The preview points will be explained in the next section.

3.3 Road Preview Model

The purpose of the road preview is to represent very simply the road information
stored and used by the driver through his/her eyes. In real environment and
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considering an unknown path, this information would come for instance from one or
more sensors which would characterize the road path ahead of the vehicie. The
sensor could for example estimafe the relative locations of the white painted lines of
a motorway. Then the controller would use the data gathered by the sensor(s) and the
process would be on-line. In the case of a known path (racing circuit, etc.), the
sensors are not needed anymore and the information can be directly stored in a

computer. On-line computation is then not necessary.

Five paths are considered for the study: straight path, sinus path, lane change, sudden
change of direction and smooth random path. By considering constant forward speed,
the paths can be described by the lateral deviation, Y, from a fixed straight line (x-

axis) at sampling time kT.

Taking » as the number of preview values, the lateral deviations at time kuT meters
ahead of the car could be represented as y,, &)=l ». o y, ). The uT is

the x spacing, in which u is the speed of the vehicle. Figure 3.4 in Appendix A shows
the car and the road at instant k. At the next instant (k+I)7, the first road preview
sample is discarded and the second sample of y g{k) becomes the first value for

Y, k+1) and so on. For simplicity, the last sample value becomes the input to the

system and the other n samples are regarded as states.

Taking Y, the state vector and y_as the input to the road system, the state space

equation for the road preview model is y,., (k+1)= Dy, (k)+ E.y,,. The vectors of

D and E are:
0 1 0 0] KX
0 0 1 .. 0 0
D=l o e v (3.4) and E=|... (3.5)
0 0 0 1 0
0 0 0 0| 1]
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Detailed explanation on the road preview model could be retrieved from works in
f12].

3.4 Obstacle Collision Avoidance System

This part of the chapter delineates the steering control of a linear vehicle aiming to
follow a prescribed path or fo keep in a designated lane as shown in Figure 3.5. This
system supposedly uses on-board cameras and radar to detect when a vehicle
suddenly appears from the side, for exampie at an intersection or unexpectedly
confronted with another vehicle or object appearing in the vehicle’s path while
traveling on a prescribed path/lane as depicted in Figure 3.6 in Appendix A though in
this project obstacle positions are assumed to be known. If the system determines
that a collision may occur, it provides an evasive action; steering sharply away from
the other vehicle or object. This system assists with steering to support the driver. At
the start of evasive action, the system provides steering assist to help the driver avoid
the obstacle. During evasive action, the system provides a safe and comfortable gap
from the obstacle to help prevent the driver from getting too close to the obstacle.
After evasive action, the system provides steering assist if the driver is slow to return
the vehicle to its original course, helping prevent the vehicle from spinning out of
control. This system assists drivers in taking evasive action, and then helps stabilize
the vehicle. The first section is devoted to developing the obstacle course and the
characteristics of the vehicle. In the second section, the obstacle and goal functions
are described. The third and fourth section respectively considers the multiobjective
cost function and discusses how the planning strategy generates, evaluates and

selects plans so that the vehicle can select which direction to move,
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Figure 3.5: Obstacle coliision avoidance system

3.4.1 Obstacle Course and Vehicle Characteristics

It is assumed that perfect information about where obstacles are, is available with
known (x, y) positions. A test field of x-coordinate, x € [0, 30] and the y-coordinate,
y & [0, 50] with poles like obstacles are shown from a top view in Figure 3.7. The
intended path of the vehicle is a straight tine with the initial vehicle position at (1, 15)
and that the goal function position at (49, 15) as shown in Figure 3.7 via “0” and “x”
respectively.

Owlclu(o}.'milial_uh_ich(sqwa]lndgoal(:)m'_ ST
T T T ¥ T T
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oo - TR | B 1% xn - B IR AL 4 s

Figure 3.7: Initial vehicle position, goal position and obstacles
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Six poles shown in Figure 3.7 that are at positions (5, 15), (15, 18), (15, 12), (25, 17),
(30, 13) and (38, 15) respectively. The vehicle knows its own position (assumingly
via radar sensor system, laser sensor system or computer vision system) and the goal

position that it seeks to move to.

When a vehicle decides to move from one position to another position, it can
approximately do so in one time step. In particular the vehicle’s current positions is
(x(k), »(k)) and the onboard computer commands it to move at an angle & a distance

of 4 (see Figure 3.8 in Appendix A), it does so according to:

[x(k+1)]={x(k)]+ /1[005(9)]+M[92§(A€l} G6)

yk+1)| | y(k) sin(9) sin{A9)

where the sum of the first two terms on the right side of the equation represent the
desired position. A is chosen to be 0.1. The last term is a noise term that represents
effects on uncertainty that result in the vehicle not perfectly achieving the desired
position. A4 is chosen to be a random number at each time step uniformly on [0.14,
0.14] representing that there is a 10 % uncertainty in achieving the commanded
radial movement. Also, A@is assumed to be uniformliy distributed on [-z #]. Hence,
when the vehicle is commanded to go to a particular position in one step time, it ends
up somewhere in a circular region of radius 0.1 around the desired position. Notice
that in order to make such movements, the vehicle needs to sample its own position
at each time step. Hence, feedback control is used in the following way of guidance:
the current position is sensed and the command is made to move the vehicle to the
new position. The vehicle may not end up where it was commanded to go, but at the
next time instant, the vehicle will sense its position and make adjustments from that

point and so on.
3.4.2 Obstacle and Goal Function
It should be clear that since it is assumed that the positions of the vehicle and all the

obstacles are known, there is no need for a sensor that measures proximity to, or

characteristics of obstacles. In a certain sense, a perfect model of a part of the
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environment is available. A perfect model of the entire environment is unavailable
due to the uncertainty in reaching a desired commanded position. The information in
Figure 3.7 is represented and utilized about where the vehicle starts, where it should
go and where the obstacles are. Since a planning strategy is used, it is critical to
realize that the path-finding problem is needed to be formulated as an optimization
problem. To do this, the simple approach of constructing a surface (sometimes called
a “potential field”) that represents where the obstacles are is taken. In particular, to
represent the obstacles in Figure 3.7, the Gaussian functions of unity height is taken
and centered at each of the obstacles and an “obstacle function” J,(x, y) that is the
maximum value of each of those functions at each point (x, ) as shown in Figure 3.9
(the use of the maximum of the six Gaussian functions representing the six obstacles,
rather than, for instance, simple addition of the six Gaussian functions, ensures that

each obstacle position is represented independent of the others) is compufed.

Function w,, showing (scaled) obstacle finction vahree

Figure 3.9: Obstacle function J,(x, v} (scaled by )
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In Figure 3.10 the contour plot J,(x, y) along with the initial vehicle position and goal
position is shown.

" Comour map of wyJ, s Initie (aquare) snd owl {x) positions
1 1 T T

1 L 3 L
1 5 10 15 2 -1 ) 3 4 45 5

Figure 3.10: Obstacle function J,(x, y) (scaled), contour form, with initial vehicle

position and goal position

The contour nicely shows the “spreads™ (variances) of the Gaussian functions and
that there is a type of overlap such that the values of J,(x, y) are at least a bit above
zero for any positions where the vehicle should not be in order to avoid collision
with obstacles. Also, the obstacle function is scaled with a positive constant @;> @ in
the planning strategy, however here @; = 1 is chosen. Note that if the vehicle is
moved about the environment in a way that the vehicle position is moved to points
that try to minimize J,(x, ¥) (e.g., via hill climbing), then the vehicle will avoid the
obstacles, due to the tails of the Gaussian functions. For many vehicle initial
positions, the vehicle would move to the edge of the region and when it arrives there,

it is always kept on the edge.

Next the goal being at the position (49, 15) is represented. To do this, the minimum
point of a quadratic (bowl) function as follows is placed:

0, (5,9)= 0, [, yT ~[4915T [ [[v, T ~[49.35T | 3.7
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where @;> 0 is a scale factor and @, = 0.0001 is chosen that will multiply this
function. The scaled function is shown in Figure 3.11 as a contour plot. If at each

time step the vehicle moved to go down the surface, it will move toward the goal, but

it may run into an obstacle.
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Figure 3.11: Goal function @; Jg(x, ), contour form, with initial vehicle position and

goal position
3.4.3 Multiobjective Cost Function

Firstly, a cost function is formed for the planning strategy to generate, evaluate and
select plans so that the vehicle can select which direction;to move. If the vehicle is
commanded to move a distance of A in a direction Jthat iséchosen by simply moving
in the “direction of the steepest descent” on the function J,(x, y), then the vehicle
would avoid obstacles but not reach the goal position and sitay there. Similarly, if the
direction was chosen to be the one with steepest descenti for the Jy(x, y) function,

then it would move to the goal position but may collidé with some obstacles for

some initial vehicle positions.
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To solve this problem, a “multiobjective cost function” is used (actually a special
case where a “scalarization” approach is used to form a multiobjective cost, which is

one of many ways to generate a Pareto cost)
J(x,y)--: a)lJo(x,y)+ anJg(x, y) (3.8)

shown in Figure 3.12 where the weights @; and @ specify the relative importance of

achieving obstacle avoidance and reaching the goal.

J=w|J°+w2J'mi%ial(sm)mdgudmmiiws

X

Figure 3.12: Muitiobjective cost function J(x, y) for evaluating plans

The magnitudes of the values of each term in selecting these must be taken into
consideration. The choices of weight values above represeilt that obstacle avoidance
is important, but the vehicle also must keep moving toward the goal position. The
choice of the weights will affect the shape of the trajectory fchat the vehicle will move

on toward the goal position.

3.4.4 Plan Generation and Selection
A simple approach is taken to plan generation and evaluation. If the vehicle is at a
position (x, ), the value of J is computed at N values (x;, v), i = 1, 2, ..., N,

regularly spaced on a circle of radius r around the vehicle position (see Figure 3.8 in

Appendix A, where N;= 8). Here, r = 1 and N; = 16 are used. This generates 16 plans,
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where one step is predicted ahead. More values of J can be computed that are along
other longer paths. The set of plans is viewed as “the vehicle is at (x, y), move it to

(x; 3).” The plan is chosen to execute by finding a value i* such that:
T,y ) € I3, M i=12,000N, (3.9)

(i.e., by finding the direction which will resuit in minimization of the multiobjective
cost function). This direction &k) is called and the vehicle is commanded to take a
step of length A in the direction &Kk).

The above approach will approximate the “steepest descent approach” (hill-climbing)
discussed above but analytical gradient information is unnecessary since the gradient
of the multiobjective cost function is not explicitly computed. Higher values of N,
cost more computations in plan generation and evaluation, but they also provide
more precise directional commands. Notice that by using the above strategy, for any
initial position on Figure 3.12, it is expected that the vehicle will navigate so as to
avoid the obstacles and move toward the goal by simply moving down the surface
[18].

3.5 Path Following/Lane Keeping System

This part of the chapter is an account of [19] which examines the steering control of
a linear vehicle aiming to follow a prescribed path or to keep in a designated lane as
shown in Figure 3.13 in Appendix A. Ideally, as the vehicle approaches a curve, this
system will use information from the vehicle’s navigation or radar system to assess
the curvature of the road and calculates the vehicle’s appropriate speed. If the vehicle
is traveling above that speed, the system applies the brakes to slow the car to the
appropriate speed. However this feature is yet to be developed and would be
recommended for future works. The first section considers the set up of an optimal
preview controller and the final section outlines the Neural Network controller.
Detailed explanation on the optimal controller could be retrieved from works in [12].
Figure 3.14 displays the system of path following/lane keeping of the vehicle.
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Figure 3.14: Path following/lane keeping system
3.5.1 Optimal Controller

The purpose of the controller implementation is to establish a connection between
the road preview model and the car. Plainly, optimal controller is purported to
represent and synthesize well the vision of the driver so that the vehicle can follow
the path as accurately as possible. The structure combining the car and road preview
models with the optimal controller is illustrated in Figure 3.15 in Appendix A. In
other words, the car is to be driven along the path with the aid of the optimal
controller. The state space equation of the car and the road (having no connection
between both) is as follows:

[;((‘;:I)J:Bd g]{;(g)]‘“mw g +ﬁ: ]-iw (3.10)

According to simulation results obtained by [19] and repeated by [12], as the speed
of vehicle is increased, the preview gain will be more oscillatory. Figure 3.16 in
Appendix A shows the simulation result for the optimal preview gains of path
following [13]. Detailed explanation on the optimal controller could be retrieved

from works in [12].
3.5.2 Neural Network Controller

The purpose of the Neural Network controller is to mimic a driver’s information

processing structure and to capture and represent complex input/output relationship.
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It is a learning and training strategy that trains and adjusts to converge to the desired
output with the respective input given by comparing the output with the required
target output. In short, it learns from past errors and adjusts the network to improve

network’s response.

Five paths (straight path, sinus path, lane change, sudden change of direction and
smooth random path) were simulated and tracked with the use of an optimal
controller. From previous works done by Sharp in [19], it is proven that the optimal

controlier has the capabifity to precisely track reasonable paths.

Dandré [12] has continued the research by tracking the similar paths using Neural
Network. The coefficients obtained through the optimal control theory were taken as

the initial weighting parameters for the neural controller [13].
3.5.2.1 Implementation using Gradient Method

The controlier is set to be a linear, single processing neuron. The input to the
controller is the augmented state z =[x y,]T. x is obtained from the equations of

motion of the car model while y. is the local lateral preview errors. The output of the

neuron is the steering wheel angle, 5, which was represented by Dandré [12] in the

following formula:

5., =w(k)z, (k)+w,(k)z, (k) +...w, .5 (k)z,.5 (k) (3.11)

By considering # preview points, there would be 4+n+] weighting parameters and
one bias for the single neuron. The weighting parameters are set in such way as there
are four non-preview system (states x) and n+1 preview points at instant k. As it is
desired that all path following etrors are to be minimized, the best steering wheel
angle would be zero when the car is moving on a straight path. Thus the bias b is set
to zero. As the car is supposed to follow the simulated paths, the cost priorities are

set as:
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0
g1=100, g:=1, Ry=1 and R, =[401 ] (3.12)
q,

As it was done in previous works, the initial weighting parameters wy for the neural
controllers were taken from coefficients obtained from the optimal control theory.
Alternatively, the initial wéighting parameters could also be set either to zero, or
chosen randomly. However, it is preferred to take the obtained coefficients from the
optimal control theory as it gives the best representation of the path tracking

optimization.

A high learning rate may lead to instability of the algorithm whiist a low learning
rate may cause longer time taken for the algorithm to converge to desired
performance. By running the simulation for a number of times, the best initial
learning rates were chosen based on the least maximum Y path error obtained after
the simulation. To ensure an improved performance of the steepest gradient descent
algorithm, the learning rate is allowed to be adaptive, i.e. it is allowed to change
during the training process. By using the [14], the learning rate is multiplied by 1.05
if the cost ratio between the present cost and previous cost is less than 1. On the
other hand, it is multiplied by 0.7 if the cost ratio is more than 1.005.

If the training mode of the network is set to be online, the weights will be updated

each time the learning rate is updated [13]. Detailed explanation on the Neural
Network controller could be retrieved from works in [12].
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CHAPTER 4
RESULTS AND DISCUSSION

The simulation environment was created using MATLAB. Simulated obstacle
collision avoidance has confirmed the capability of a vehicle to precisely avoid
collision with obstacles along its prescribed path. It is then possible to integrate the
path following/lane keeping system with the obstacle collision avoidance system for
the vehicle to avoid obstacles whilst following its predetermined path. In the first
part of the chapter, it is noticed that the results are promising where the vehicle is
able to avoid obstacles along an obstacle course, without causing damage to the
obstacle or the vehicle. The second part demonstrates the ability of the vehicle to
accurately and precisely follow the path designed to avoid the obstacles on the
obstacle course while traveling on high speed. The second part in addition considers
the removal of the assumptions used in the previous chapter and the flaws of this
system will be highlighted. The third part is dedicated to describe the functionality
of the Graphical User Interface (GUI) developed which also presents the simulation
results of path following/lane keeping with obstacle coilision avoidance in GUI for
obstacle course (straight path, lane change and sudden change of direction) as well as
simulation results of path following in GUI for four predetermined obstacle free

paths: sinus path, lane change, sudden change of direction and smooth random path.

4.1 Obstacle Collision Avoidance

Using the planning strategy as mentioned in the preceding chapter, obstacle course
and vehicle, the trajectory shown in Figure 4.1 is obtained. Clearly, the vehicle
moves so as to avoid the obstacles (via the effect of J) but tries to stay on course to
the goal (via the effect of J;). The effects of the uncertainty in reaching commanded
positions is seen by the small deviations on the trajectory that are “corrected” at each
step since the vehicle is assumed to get a measurement of its own position at each

time step. Other vehicle paths resuit from other choices of obstacles and goal
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functions and their scale factors (higher weight on the goal function tends to reduce
deviations away from obstacles). Moreover, a different pattern of points where the
multiobjective cost function is evaluated can result in a different path. For instance,

using fewer points on the circular patter results on trajectories that are not as smooth.

VYehicle path 10 avnid ebetaclas snd raach goal
i T E T T T T T T T

Figure 4.1: Vehicle path for obstacle avoidance and goal seeking

4.2 Path Following/Lane Keeping with Obstacle Collision Avoidance

With both system viz. path following/lane keeping and obstacle collision avoidance

fused together as to form a whole, the reliability and robustness of the joint activity
| of the two systems is probed by simulating the path following on the obstacle course
(straight path) with increasing vehicle speed as well as preview points. The test
speed studied in this thesis is from 80 km/h to 200 km/h which is the operation limits
of a present vehicle cruise control. As reported in the works of [5], simulated path
following proved to achieve the smallest error when a range of 80 to 120 preview
points are applied. Therefore, the same range of preview points which allows good

accuracy and precision is being employed.
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4.2.1 Obstacle Course (Straight Path)

Figure 4.2 depicts the vehicle trajectory as to avoid obstacles on the obstacle course,
an intended straight path before obstacles are included. The selected path generated
by the obstacle collision avoidance system described and shown earlier in Figure 4.1
is fed into the Neural Network path following/lane keeping system of the vehicle to

accurately and precisely follow the generated path.

Path Following

y coordinate . m

distance, m

Figure 4.2: Vehicle path on obstacle course (straight path) for path following/lane
keeping

4.2.1.1 Obstacle Course (Straight Path) at 80 kmv/h

The path following is as shown in Figure 4.2 and the vehicle traveling at a speed of
80 km/h is examined. Initially, when preview points of 80 are applied, the average Y
path following error is 0.0106 m (10.6000 mm). By applying preview points of 120,
the Neural Network converged to a desired output with an average Y path following
error of 0.0090 m (9.0000 mm). As tabulated in Table 4.1, the average Y path
foliowing error reduces with the increasing of preview points although other
parameters such as clockwise and counter clockwise steering wheel angle are almost
identical. The results and observations for the obstacle course (straight path) at 80
km/h are presented in the following Table 4.1 and Figure 4.3.
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Table 4.1: Summary of obstacie course (straight path) at 80 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points | Foliowing Error,m CW CCW
80 0.0106 0.3436 0.7923
90 0.0100 0.3436 0.7924
80 100 0.0095 0.3436 0.7924
110 0.0091 0.3436 0.7924
120 0.0090 0.3436 0.7924

Figure 4.3: Obstacle course (straight path) at 80 km/h with 120 preview points
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Figure 4.3(i) — (top): Y path following error
Figure 4.3(ii) — (bottom): Steering wheel angle

4.2.1.2 Obstacle Course (Straight Path) at 90 km/h

For the speed of 90 km/h which is the speed limit of country roads or trunk roads and
certain stretches of expressways or highways, the simulation shows that 120 preview
points displayed excellent result with the lowest average Y path following error as
compared to the other preview points. A speed of 90 km/h with 120 preview points
yielded an average Y path following error of 0.0089 m (8.9000 mm), a clockwise
and counter clockwise steering wheel angle of 0.2988 rad and 0.7656 rad
respectivety. The results and observations for the obstacle course (straight path) at 90
km/h are presented in the following Table 4.2 and Figure 4.4.
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Table 4.2: Summary of obstacle course (straight path) at 90 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error, m CW CCW
80 0.0105 0.2988 0.7656
90 0.0099 0.2988 0.7656
90 100 0.0094 0.2988 0.7656
110 0.0090 0.2988 0.7656
120 0.0089 0.2988 0.7656

Figure 4.4: Obstacle course (straight path) at 90 km/h with 120 prc:viev&:r points
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Figure 4.4(i) — (top): Y path following error
Figure 4.4(ii) — (bottom): Steering wheel angle

4.2.1.3 Obstacle Course (Straight Path) at 100 km/h

The vehicle traveling at 100 km/h proved capable of following the path designed to
avoid the obstacles on the obstacle course (straight path) with much accuracy and
precision as compared to the lower speed examined previously. 120 preview points
proved to yield the lowest average Y path foliowing errors judging by the other
preview points. The Neural Network controller of the vehicle converged to the
desired output with an average Y path following error of 0.0088 m (8.8000 mm)
when a 120 preview points are applied. Clockwise and counter clockwise steering

wheel angle produced indistinguishable results with the increasing of preview points.
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The results and observations for the obstacle course (straight path) at 100 km/h are
presented in the following Table 4.3 and Figure 4.5.

Table 4.3: Summary of obstacle course (straight path) at 100 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error, m CW CCW
80 0.0104 0.2638 0.7481
90 0.0098 (.2638 0.7481
100 100 0.0093 0.2638 0.7481
110 0.0089 0.2638 0.7481
120 0.0088 0.2638 0.7481

Figure 4.5: Obstacle course (straight path) at 100 km/h with 120 preview points
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Figure 4.5(i) - (top): Y path following error
Figure 4.5(}i) - (bottom): Steering wheel angle

4.2.1.4 Obstacle Course (Straight Path) at 110 km/h

The speed is further increased to 110 km/h which simulates the speed limit on
expressways and highways. As in the previous simulations, all parameters almost
coincide except for the Y path following errors. Once again, 120 preview points
appears to produce the lowest average Y path following error in comparison with

other preview points. The vehicle traveling at 110 km/h manifests a high level of
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accuracy and precision in avoiding the obstacles on the obstacle course with an
average Y path following error of 0.0088 m (8.8000 mm). In spite of the fact that the
speed is increasing, the Y path following results of 110 km/h is an almost match to
those of the lower speeds. The results and observations for the obstacle course
(straight path) at 110 km/h are presented in the following Table 4.4 and Figure 4.6.

Table 4.4: Summary of obstacle course (straight path) at 110 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error,m CW CCW
80 0.0104 0.2386 0.7364
90 0.0098 0.2387 0.7362
110 100 0.0093 0.2387 0.7363
110 0.0089 0.2387 0.7363
120 0.0088 0.2387 0.7363

Figure 4.6: Obstacle course (straight path) at 110 km/h with 120 preview points
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Figure 4.6(i) — (top): Y path following error
Figure 4.6(ii) — (bottom): Steering wheel angle

4.2,1.5 Obstacle Course (Straight Path) at 120 kn/h

The results and observations for the obstacle course (straight path) at 120 km/h are
presented in the following Table 4.5 and Figure 4.7 in Appendix A.
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Table 4.5: Summary of obstacle course (straight path) at 120 km/h

Speed, { Preview Average Y Path Steering Wheel Angle, rad
km/h Points | Following Error, m CwW CCW
80 0.0103 0.2222 0.7284
90 0.0098 0.2224 0.7281
120 100 0.0092 0.2223 0.7282
110 0.0088 0.2223 0.7282
120 0.0087 0.2223 0.7282

4.2.1.6 Obstacle Course (Straight Path) at 130 knvh

The results and observations for the obstacle course (straight path) at 130 km/h are
presented in the following Table 4.6 and Figure 4.8 in Appendix A.

Table 4.6: Summary of obstacle course (straight path) at 130 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error, m CW CCW
80 0.0103 0.2322 0.7230
90 0.0098 0.2325 0.7226
130 100 0.0092 0.2324 0.7227
110 0.0088 0.2324 0.7227
120 0.0087 0.2324 0.7227

4.2.1,7 Obstacle Course (Straight Path) at 140 km/h

The results and observations for the obstacle course (straight path) at 140 km/h are
presented in the following Table 4.7 and Figure 4.9 in Appendix A.

Table 4.7: Summary of obstacle course (straight path) at 140 km/h

Speed, Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error,m CW CCW
80 0.0103 0.2385 0.7192
90 0.0098 0.2389 0.7187
140 100 0.0092 0.2388 0.7188
110 0,0088 0.2388 0.7188
120 0.0087 0.2388 0.7188
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4.2.1.8 Obstacle Course (Straight Path) at 150 km/h

The results and observations for the obstacle course (straight path) at 150 km/h are
presented in the following Table 4.8 and Figure 4.10 in Appendix A.

Table 4.8: Summary of obstacie course (straight path) at 150 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points Foliowing Error, m Cw CCW
80 0.0103 (.2488 0.7167
90 0.0097 0.2492 0.7161
150 100 0.0092 0.2491 0.7162
110 0.0088 0.2491 0.7162
120 0.0087 0.2491 0.7162

4.2.1.9 Obstacle Course (Straight Path) at 160 km/h

The results and observations for the obstacle course (straight path) at 160 km/h are
presented in the following Table 4.9 and Figure 4.11 in Appendix A.

Table 4.9: Summary of obstacle course (straight path) at 160 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error, m CW CCW
80 0.0103 0.2575 0.7149
90 0.0097 0.2580 0.7143
160 100 0.0092 0.2579 0.7144
110 0.0088 0.2579 0.7144
120 0.0087 0.2579 0.7144

4.2.1.10 Obstacle Course (Straight Path) at 170 km/h

The results and observations for the obstacie course (straight path) at 170 km/h are
presented in the following Table 4.10 and Figure 4.12 in Appendix A.
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Table 4.10: Summary of obstacle course (straight path) at 170 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points | Following Error, m CW CCW
80 0.0103 0.2641 0.7138
90 0.0097 0.2647 0.7131
170 100 0,0092 0.2646 0.7132
110 0.0088 0.2646 0.7132
120 0.0087 0.2646 0.7132

4.2.1.11 Obstacle Course (Straight Path) at 180 km/h

The results and observations for the obstacle course (straight path) at 180 km/h are
presented in the following Table 4.11 and Figure 4.13 in Appendix A.

Table 4.11: Summary of obstacle course (straight path) at 180 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points | Following Error, m CW CCwW
80 0.0103 0.2691 0.7132
%0 0.0097 0.2698 0.7124
180 100 0.0092 0.2697 0.7125
110 0.0088 0.2697 0.7125
120 0.0087 0.2697 0.7125

4.2.1,12 Obstacle Course (Straight Path) at 190 km/h

The results and observations for the obstacle course (straight path) at 190 km/h are
presented in the following Table 4.12 and Figure 4.14 in Appendix A.

Table 4.12: Summary of obstacle course (straight path) at 190 kin/h

Speed, Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error,m CwW CCW
80 0.0103 0.2729 0.7128
90 0.0098 0.2737 0.7120
190 100 0.0092 0.2736 0.7121
110 0.0088 0.2735 0.7121
120 0.0087 0.2736 0.7121
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4.2.1.13 Obstacle Course (Straight Path) at 200 km/h

For the uitimate speed of 200 km/h, Table 4.13 attests to the vehicle’s ability to
follow the path designed to avoid obstacles. At such high speed, the Neurat Network
controller yet again proved to converge to the targeted output with an average Y path
following error of 0.0087 m (8.7000 mm). Clockwise counter clockwise steering
wheel angle is 0.2764 rad and 0.7120 rad respectively with 120 preview points
applied. Clockwise steering wheel angle is somewhat decreasing with the increment
of preview points. The results and observations for the obstacle course (straight path)
at 200 km/h are presented in the following Table 4.13 and Figure 4.15.

Table 4.13: Summary of obstacle course (straight path) at 200 km/h

Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Points Following Error, m CwW CCwW
80 0.0103 0.2757 0.7127
90 0.0098 0.2766 0.7118
200 100 0.0092 0.2765 0.7120
110 0.0088 0.2764 0.7120
120 0.0087 0.2764 0.7120

Figure 4.15: Obstacle course (straight path) at 200 km/h with 120 preview points
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Figure 4.15(1) — (top): Y path following error
Figure 4.15(ii) — {(bottom): Steering wheel angie
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All path following simulations on the obstacle course (straight path) give excellent
results. The average Y path following errors obtained is very small. They vary from
0.0087 m (8.7000 mm) to 0.0106 m (10.6000 mm). The average Y path following
errors depends on many parameters such as: the number of preview points used (or
similarly the time ahead of the car taken into account in the optimal controller), the
priorities chosen for the optimal controlier, the car parameters (mass and the yaw
inertia especially), the speed of the car and the path chosen [12]. The average Y path
following error decreases with the increase of preview points as one can expect. By
choosing a high number of preview points and by setting high priorities on path
following, it is possible to obtain lesser Y path following error. It is also worth
noticing that the Y path following error and steering wheel angle fluctuates less
when traveling on a straight section of the path. On the contrary, the vehicle
produces a larger Y path following error and requires a larger magnitude of steering

wheel angle when negotiating a bend, curve or turn.

4.2.2 Mobile Obstacles and Uncertainty

The assumption of stationary obstacles will not hold in any real obstacle avoidance
problem. Stationary obstacles can be represented as pot-holes, stalled vehicle or
objects of any kind (debris, carcass or fallen branch of a tree) encountered along the
path. If the obstacles environment is dynamic in the sense that, for instance,
obstacles can move such as another vehicle up-front, this system reqguires extensions.
For instance if some obstacles suddenly appeared at some position and the vehicle
did not “know” about it, it can simply collide with it. Or if the obstacles moved in
predictable ways, it should be clear that a “lock-ahead strategy” may be needed. If
the obstacles moved in unpredictable ways, then the model may not be able to
accurately represent this so the vehicle will need to sense the environment while it

navigates it and try to iearn about the obstacles positions and movements.
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4.3 Graphical User Interface (GUI)

To make it easier to simulate path following/lane keeping with obstacle avoidance
system of the vehicle, the aim was to build a Graphical User Interface (GUI) with all
useful possibilities. The GUI is designed to be simple and user friendly. The GUI as
shown in Figure 4.16 is divided into six panels for some settings and six displays for

some information.
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Figure 4.16: Graphical User Interface (GUI) screenshot
4.3.1 Obstacle Course GUI Screenshot
4.3.1.1 Straight Path
The first panel is “Vehicle”, In this panel vehicle initial and goal position can be
specified but the test field for the vehicle to travel within is constrained to [50, 30].

The second panel “Path” is for the lane change setup. Setting “0” is for the vehicle to
travel in a straight path (from one end to another), “1” is for sudden change of
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direction and “2” is for lane change. In the third panel “Obstacles”, the number of
obstacles and the locations of the obstacles can be varied. Maximum of 6 obstacles
can be selected and each obstacle position must comply with the test field boundaries
which is limited to [50, 30]. At the same time, the “Randomize” push button allows
the positions of the obstacles to be randomized automatically. The “Preview” push
button enables the user to preview the path of the vehicle and also the location of the
obstacles as shown in Figure 4.17. The user is able to edit any information after the
preview or reset all the information previously stored with the “Reset All” push
button. “Run” push button on the “Path Generation” panel generates the path of the
vehicle as to avoid the obstacles and stay on course to the goal as depicted in Figure
4.18.
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Figure 4.17: GUI screenshot of path of vehicle and positions of obstacles preview
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Figure 4.18: GUI screenshot of path of the vehicle as to avoid the obstacles and stay

on course to the goal

After obtaining the path of vehicle designed to avoid the obstacles, the ability of the
vehicle to accurately and precisely follow the path can be gauged. The speed and
preview points of vehicle are determined foremost in the “Vehicle Characteristics”
panel. In the next panel “Type of Path™ there are five pop up menus viz. “Obstacle
Avoidance”, “Sinus Shape”, “Lane Change”, “Sudden Change of Direction” and
“Smooth Random Path”. There the user can select the appropriate type of path where
the Neural Network can learn to converge to the targeted output. “Obstacle
Avoidance” option is selected for an obstacle course which is limited to straight path,
lane change and sudden change of direction as mentioned earlier, whereas the rest
are designed to perform for an obstacle free path. Also on this panel, is “Find Error”
push button to calculate the performance of the Neural Network which is the average
Y path following error of the vehicle. After the processing of the Neural Network,
simulation results of the path followed and the Y path following error jointly with
the average Y path following error value are dispiayed. The GUI screenshot for
obstacle course (straight path) at 110 km/h with 120 preview points is depicted in
Figure 4.19.
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Figure 4.19: GUI screenshot of path followed and Y path following error of the

vehicle

4.3.1.2 Lane Change

The GUI screenshot for lane change with obstacles at 110 km/h with 80 preview
points is depicted in Figure 4.20.
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Figure 4.20; GUI screenshot of lane change with obstacles at 110 km/h with 80

preview points
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4.3.1.3 Sudden Change of Direction

The GUI screenshot for sudden change of direction with obstacles at 110 km/h with
80 preview points is depicted in Figure 4.21.
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4.3.2 Predetermined Obstacle Free Paths GUI Screenshot

This section is dedicated to simulate path following on an assortment of
predetermined paths without obstacles in GUI. In order to simulate a wide range of
circuits, severa! road sections created in the works of {12] have been used here.
These are the different road sections selected to represent most maneuvers. In works
by Baharudin [5], four different paths: sinus path, lane change, sudden change of
direction and smooth random path were simulated with the increasing speed of
vehicle as well as preview points. It is worth noticing that all road sections are
feasible maneuvers with respect to the speed chosen (80 km/h to 110 km/h). As
reported in the works of [5], the path following simulation of these paths proved to
achieve the smallest error when a range of 80 to 120 preview points are applied. In
this section, the path following ability of the vehicle on four different obstacie free

paths is examined once again but in the GUI developed in this thesis. The median

49



value of 100 preview points is being employed on the vehicle speed limit on

expressway, 110 km/h.
4.3.2.1 Sinus Path

The succession of curves consisting of a cosine shaped road is as shown in Figure
4.22. The simulation results in Table 4.14 shows that 110 km/h with 100 preview
points produces an astounding average Y path of 3.5974x10° m (0.035970 mm).
Clockwise and counter clockwise steering wheel angle are both 0.1962 rad. The
Neural Network is much more accurate in sinus path, yielding average Y path
following errors of less than 10° m as well as clockwise and counter clockwise
steering wheel angle of the same magnitude, because the turns are smooth as the road
input is a sihus at a specific frequency and it is not surprising to obtain better results
on a sinus path. The tabulated results and observation as well as the GUI screenshot
for the sinus path at 110 km/h with 100 preview points are presented in the following
Table 4.14 and Figure 4.22.

Table 4.14: Summary of sinus path without obstacles at 110 km/h with 100 preview

points
Speed, | Preview Average Y Path Steering Wheel Angle, rad
km/h Poiats | Following Error, m CwW CCW
110 100 3.5974x10° 0.1962 0.1962
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Figure 4.22: GUI screenshot of sinus path without obstacles at 110 km/h with 100

preview points
4.3.2.2 Lane Change

The lane change consisting of a cosine shaped lateral shift joining two straight lines
is as shown in Figure 4.23. From the result of lane change simulation tabulated in
Table 4.15, an average Y path following error of 0.0035 m (3.5000 mm) is obtained.
The tremendous difference of average Y path following error is due to the fact that
even the change of direction in lane change is smooth but the turns are tight whereas
in sinus path, road input is a sinus at a specific frequency. The tabulated results and
observation as well as the GUI screenshot for the lane change at 110 km/h with 100
preview points are presented in the following Table 4.15 and Figure 4.23.

Table 4.15; Summary of lane change without obstacles at 110 km/h with 100

preview points
Speed, | Preview Average Y Path Stecring Wheel Angle, rad
km/h Points Following Error, m CW CCW
110 100 0.0035 0.3271 0.2738
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Figure 4.23; GUI screenshot of lane change without obstacles at 110 km/h with 100

yeTor, m

preview points

4.3.2.3 Sudden Change of Direction

The sudden change of direction is as shown in Figure 4.24. Referring to the works of
[5], it has been reported that a maximum preview points of 80 is allowabie to achieve
the targeted result due to the fact that sudden change contains high frequencies and
implies that the tracked path is closer to random noise. However in this simulation,
the vehicle speed remains as 110 km/h. Table 4.16 displays the path following ability
of the vehicle traveling at 110 km/h generating an average Y path following error of
0.0070 m (7.0000 mm). Clockwise and counter clockwise steering wheel angle
appears to be 0.2649 rad and 0.1731 rad respectively. The tabulated results and
observation as well as the GUI screenshot for the sudden change of direction at 110
km/h with 80 preview points are presented in the following Table 4.16 and Figure
4.24,
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Table 4.16: Summary of sudden change of direction without obstacles at 110 kmfh

with 80 preview points
. Steering Wheel Angle, rad
Speed, | Preview Average Y Path g gles
km/h Points Following Error, m CW CCW
110 80 0.0070 0.2649 0.1731
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Figure 4.24: GUI screenshot of sudden change of direction without obstacles at 110
km/h with 80 preview points

4.3.2.4 Smooth Random Path

The smooth random path is as shown in Figure 4.25. The vehicle traveling at 110
km/h with 100 preview points manifests a high level of accuracy and precision in
following the path with an average Y path error of 1.3684x10° m (0.013684 mm).
Both smooth random path and sinus path appears to produce outstanding results in
terms of average Y path following errors with less than 10° m. The fact that it is
possible to obtain better results with smooth random path than with obstacle course,
lane change or sudden change of direction is not surprising. Since the random path
has been smoothed, most high frequencies have disappeared and the random path is
not representative of a noise disturbance. The tabulated results and observation as
well as the GUI screenshot for the smooth random path at 110 km/h with 100
preview points are presented in the following Table 4.17 and Figure 4.25.
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Table 4.17: Summary of smooth random path without obstacles at 110 km/h with

100 preview points

Speed, | Preview Average Y Path Max Steering | Min Steering
km/h Points Following Error, m | Wheel Angle, ° | Wheel Angle, °

110 100 1.3684x10” | 4.658147 -5.72958
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Figure 4.25: GUI screenshot of smooth random path without obstacles at 110 km/h

with 100 preview points

All path following simulations for four different obstacle free paths: sinus path, lane
change, sudden change of direction and sfnooth random path give excellent results.
The Y path following errors obtained after is very small for all four paths. They vary
from 3.5974x10” m (0.035970 mm) for the sinus path to 0.0070 m (7.0000 mm) for
the sudden change of direction. The Y Epath following errors depends on many
parameters such as: the number of preview points used (or similarly the time ahead
of the car taken into account in the optimat controller), the priorities chosen for the
optimal controller, the car parameters (mass and the yaw inertia especially), the
speed of the car and the path chosen [12]. By choosing & high number of preview
points and by setting high priorities on path following, it is possible to obtain Y path
following errors of less than 10° m. In [12], the Y path following errors of sinus road
are tracked for several speeds as a function of the time ahead used in the optimal

controller. The minimum time required to track the path increases with the speed as
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one can expect. Preview gains study by Dandré [12] has shown the importance of
choosing a suitable preview points to be considered in the road preview model. Study
by Dandré [12] highlighted also that even small preview gains can have a strong
effect on the Y path following errors.
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CHAPTER §
CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This thesis emphasized on vehicle guidance for obstacle collision avoidance
operating conjointly with the works of [5], [12], [13] and [18] on path following/lane
keeping. The MATLAB simulation using Gaussian functions and multi-objective
cost function proved the capability of a vehicle to precisely maneuver and avoid
collision with obstacles along its path by assuming stationary and static obstacles.
The collaboration of path following/lane keeping system (utilizing Neural Network
controller and optimal controlier) with obstacle collision avoidance system (utilizing
Gaussian functions and multi-objective cost function) performed substantially well in
avoiding collision with obstacles while traveling on high speed along its
predetermined path. Vehicle traveling at a range of speed of 80 km/h to 200 km/h on
an obstacle course demonstrated its ability to avoid collision with obstacles whilst
following the predetermined path with much precision and accuracy. The average Y
path following errors obtained for obstacle course varying from 0.0087 m (8.7000
mm) to 0.0265 m (26.5000 mm) is very small and considered almost negligible. The
Y path following errors depends on many parameters such as: the number of preview
points used (or similarly the time ahead of the car taken into account in the optimal
controller), the priorities chosen for the optimal controlier, the car parameters (mass
and the yaw inertia especially), the speed of the car and the path chosen [12]. By
choosing a high number of preview points and by setting high priorities on path

following, it is possible to achieve greater accuracy and precision.

This project has been very interesting and opened other possibilities for making cars
safer. Nevertheless, we are now at the forefront of designing Smarter/Safer vehicles,
when it comes to following a path/keeping on a lane and avoiding collision with
obstacles while on high speed. We have hybrid-powered cars now, maybe one day
soon hybrid (Human/Computer) controlled steering vehicles will be on the roads.
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5.2 Proposal for Future Works

Several recommendations on future works for expansion and continuation of the

project are as follows:

5.2.1 Employment of Model-Predictive Control (MPC) Method

No model is perfectly accurate and this will always be the case that the model will
not be a perfect representation of the environment. This implies that there will
always be uncertainty in planning and hence there will always be a bound on the
amount of time that it makes sense to project (simulate the model) into the future.
Projecting into the future too far becomes useless at some point since the predictions
will become inaccurate at some point and hence provide no good information on how
to select the best plan. The difficulty is knowing how good the model is and how far
to project into the future. The employment of MPC will enable the vehicle to predict
what goal is going to occur in the future since there could be a time-varying goal. If
the goal can be predicted, contingencies can be developed and earlier plans may be

modified to try to ensure success for not only the current goals, but anticipated ones.

5.2.2 Additional Neural Network Control of the Forward Speed

This additional feature will enable the vehicle to move in non-constant speed. This
way, the network will reduce the velocity of the vehicle when moving at sharp
curves or turns and return to the original velocity when the path is smoother. Thus

better path foflowing will be achieved.

5.2.3 Implementation of Different Types of Path

At this time, simulation on obstacie course is only limited to straight path, lane
change and sudden change of direction. In order to simulate a wide range of circuits,
sinus path and smooth random path with obstacles can be included in future studies.
Unexplored and unknown paths are also a substantive feature to be considered as the
paths taken by a car varies constantly and it is impractical that a driver only travels

along that narrow range of circuits. It would also be interesting to see the car model
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is able follow more chalienging paths that have moving obstacles such as domestic
animals or children crossing the road and moving light or heavy vehicle ahead of the

car, just to name a few.

5.2.4 Improvement of Car Model

The car model can be improved to represent a genuine car in several manners: a
suspension model with rolling motion can be defined; the right and left wheels on
one axle can be decoupled considering load transfer and aerodynamic forces can be

considered.
5.2.5 Implementation of Different Learning Process

So far, only one type of learning process has been tried out: Gradient descent. It is
possible to use other different learning process to improve the performance of the

controller such as Quasi-Newton, conjugate gradient method or Newton’s method.

5.2.6 Improvement of Neural Structure
The efficiency of the Neural Network can be improved by selecting a suitable

structure of the network such as number of hidden layers and number of neurons per

layer.
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APPENDIX A

Tables

Table 1.1: Causes of fatal road accident on Malaysian roadways in 2003 (source: Traffic
Division of Bukit Aman Police Headquarters, 2003)

Sebab-Sebab Kemalangan Peratusan

Cuai mefintas jalar (pfkaki) 24 64
Terbabas sendin {satu kenderaan) 23.19
Cubaisedang memotongitukar lorong 18.84
ktakan jalan {bukan memotorg; 12.56
Cuai keluarfdasuk simpang jalan susur 7.26
Tidak nampakiperasan ada kerderaan dan lain-lain B.75
Itengikut rapat 434
Fusing "L"/Patar balik/t’enyeberang laluar 242
Welawan alirar trafik 1.93
Tidak ikut lampu isyarat merah 0.48
Berherti mengejut (.48
LekaiSerangan/_etihhdengantuk .48
W abuk/dacdah 0
{Sual mengundur 0
Berlumba:Potong Zig-zag 0
Lain-lair 5.28
Tidak dikstahut 4.83
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Table 3.1: Vehicle model parameters (source: P. Dandré¢, 2003)

Parameters Values
Body Mass (M) 1200 kg
Yaw Inertia (I,) 1500 kgm”
Distance from center of gravity to front axle (a) 0.92
Distance from center of gravity to rear axle (b) 1.38
Cornering stiffness of front axle tyres (Cy) 120000 Nrad™
Cornering stiffness of rear axle tyres (C,) 80000 Nrad™
Fixed Steering Ratio (Hand wheel/road wheel), G 17
Track Width, w

Table 3.2: Vehicle model forces (source: P. Dandré, 2003)

Type of Forces Equations

Front axle longitudinal force Fy=Fg+ Fy

Front axle lateral force Fyy=Fyg+ Fy

Rear axie longitudinal force Fo=Fg+ Fep

Rear axle lateral force Fy=Fpu+ Fy,
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Figure 2.1: Model of a neuron (redrawn from P. Dandré, 2003)
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Figure 2.2: Four basic activation functions of a neuron (taken from P. Dandré, 2003)
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2005)
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Figure 3.3: Plan view of the model of the car (taken from P. Dandré, 2003)
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Figure 4.7: Obstacle course (straight path) at 120 km/h with 120 preview points
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Figure 4.8: Obstacle course (straight path) at 130 km/h with 120 preview points
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Figure 4.8(i) — (top): Y path following error
Figure 4.8(ii) — (bottom): Steering wheel angle
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Figure 4.9: Obstacle course (straight path) at 140 km/h with 120 preview points
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Figure 4.10: Obstacle course (straight path) at 150 km/h with 120 preview points

Y Path Following Error
oo s ) 1 T 1 T T T !

H
"
I
"

¥ oror, m

i ; i i i i i
0055 5 10 15 20 25 . .
: : distance, m

Steering Wheel Angle ..
| L] T T T

2. s =
e ke @

&
h

I

A
s

steering wheel angle , rad

=)
<

disiance, m

Figure 4.10(i) — (top): Y path following error
Figure 4.10(ii) — (bottom): Steering wheel angle
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Figure 4.11: Obstacle course (straight path) at 160 km/h with 120 preview points
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Figure 4.11(i) — (top): Y path following error

Figure 4.11(ii) — (bottom): Steering wheel angle

Figure 4.12; Obstacle course (straight path) at 170 km/h with 120 preview points
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Figure 4.12(i) — (top): Y path following error
Figure 4.12(ii) — (bottom): Steering wheel angle
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Figure 4.13: Obstacle course (straight path) at 180 km/h with 120 preview points
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Figure 4.13(i) — (top): Y path following error
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Figure 4.14: Obstacle course (straight path) at 190 km/h with 120 preview points
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APPENDIX B

MATLAB Codes

Graphical User Interface (GUI)

function varargout = myGUI2(varargin)
% MYGUL2 M-fite for myGUI2 fig

L R T o A A R A T T A o A L S e S
% mygui2.m

B A T T T T T A R T e Ly P L e Py S v
% TAN ZHANG YAW

% Electrical & Electronics Department

% Final Year Project

% Universiti Teknologi PETRONAS (UTP)

B L T T T P T T Ly L P e S L P S e P
%

% Neural Network based Controlter for High Speed Vehicle following Predetermined Paths Graphical User Interface (GUT)

%

B T T T T T T A T Ly L L L v ey )
% Last Modified by GUIDE v2.5 14-0ct-2006 15:21:59

o/

% INITIALISATION CODES

[ 174
Ly

% Begin initialization code - DO NOT EDIT

gui_Singleton =1;

gui_State = struct({'gui_Name',  mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFen', @myGUIZ_OpeningFen, ...
‘zui_OutputFen', @myGUI2_OutputFen, ...
"gui_LayoutFen', [], ...
'gui_Callback', {);

if nargin && ischar(varargin{l})
gui_State.gui_Callback = str2func(varargin{1});

end

if nargout
[varargout{ | :nargout}] = gui_mainfon(gui_State, varargin{:});
else
gui_mainfon(gui_State, vararging{:});
end
% End initialization code - DO NOT EDIT

function myGUL2_OpeningFen(hObject, eventdata, handles, varargin)

handles.output = hObject;
guidata(hObject, handles),

thisPic = imread('neuralnet.bmp”);

axes(handles.myPicture);
imshow(thisPic, 'notruesize");
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thisPic2 = imread(‘cruise.jpg));

axes(handles. myPicture2);

imshow(thisPic2 'notruesize');

function varargout = myGUI2_OutputFen(hObject, eventdata, handles)

varargoutf1} = handles.output;

% EDIT BOXES INITIAL CODES

174
o

function cblnitialX_Callback(hObject, eventdata, handles)
function ebInitialX_CreateFen(hObject, eventdata, handles)
ifispc
set(hObject, BackgroundColor','white');
clse
set(hObject, BackgrommdColor',get(0, defauliUicontrolBackgroundColor'));
end
function ebInitial Y _Callback(hObject, eventdata, handles)
finction ebInitial Y _CreateFen(hOhbject, eventdata, handles)
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject, BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function ebGoalX_CallbackthObject, eventdata, handles)
function ebGoalX_CreateFen(hObject, eventdata, handles)
if ispe
set(hObiect, BackgroundColor','white'};
else
set{(hObject, BackgroundCotor',get(0, defaultUicontroiBackgroundColor'y);
end
function ebGoalY _Callback(hObject, eventdata, handles)
function €bGoalY_CreateFen(hObject, eventdata, handles)
ifispc
set(hOhbject, BackgroundColor','white');
else
set(hOhject, BackgroundColor',get(0,'defaultUicontrolBackgroundColer’));
end
function ebObstacle1X_Callback(hObject, eventdata, handles)
function ebObstacle]1 X_CreateFen(bObject, eventdata, handles)
if ispe
set(hObject, BackgroundColor’, 'white");
clse
setthObject, BackgroundColor',get{0, defaultUicontrolBackgroundColor);
end
function ebObstaclel Y_Callback(hObject, eventdata, handles)
function ebObstaclelY_CreateFen(hObject, eventdata, handies)
if ispe
set(hObject,'BackgroundColor’,'white'y;
clse
set(hObject, BackgroundColor',get(0,'defanltUicontroiBackgroundColor'));
end
function ebObstacle2X_Callback(hObject, eventdata, handles)
function ebObstacle2X_CreateFen(hObject, eventdata, handles)
ifispc
set{(hObject, BackgroundColor','white');
else
setthObject, BackgroundColor',get(0,'defanltUicontrolBackgroundColor));
end
function ebObstacle2Y_Callback(hObject, eventdata, handles)
function ebObstacle2¥_CreateFen(hOhbject, eventdata, handles)
ifispe
set(hOhbject, BackgroundColor','white');
else
set(hObject, 'BackgroundColor',get(0,'defaultUicontrolBackgroundColor));
end
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function ebObstacle3X_Callback(hObject, eventdata, handles)
function ebObstacle3X_CreateFen(hObject, eventdata, handles)
if ispc :
set(hObject, BackgroundColor','white');
else
set(hObject, BackgroundColor',get(0, defaultUicontrolBackgroundColory),
end
function ebObstacle3 Y _Callback(hObject, eventdata, handles)
function ebObstacle3Y_CreateFen(hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColot','white');
else
set(hObject, BackgroundColor',get(0, defanltUicontrolBackgroundColor'));
end
function ebObstacle4X_Callback(hObject, eventdata, handles)
function ebObstacledX_CreateFen(hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColor', 'white");
else
set(hObject, BackgroundColor',get(0,'defaultUicontrolBackgroundColor));,
end
function ebObstacled¥_Callback(hObject, eventdata, handles)
function ebObstacledY_CreateFen(hObject, eventdata, handles)
if ispc
set(hObiject,'BackgroundColor','white");
else
set(hObject, BackgroundColor',get(0,'defauttUicontrolBackgroundColor'));
end
function ebObstacle5X_Callback(hObject, eventdata, handles)
function ebObstacteSX_CreateFen(hObject, eventdata, handles)
ifispc
sct(hObject, BackgroundColor','white');
else
set(hObject, BackgroundColor',get(0,'defaultUicontroiBackgroundColor'));
end
function ebObstacle5Y_ Callback(hObject, eventdata, handles)
function ebObstacleSY_CreateFen{hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColor','white");
else
set(hObject,'BackgroundColor',get{0,'defauitUicontrolBackgroundColor'));
end
fimction ebObstacle6X_Callback(hObject, eventdata, handles)
function ebObstacle6X_CreateFen(hObject, eventdata, handles)
ifispc
" set(hObject, BackgroundColor','white');
clse
set(hObject, BackgroundColor',get(0,'defaultUicontrolBackgroundColor");
end
function ebObstacle6Y_Caliback{(hObject, eventdata, handtes)
function ebObstacle6Y_CreateFen{hObject, eventdata, handies)
if ispc
set(hObject, BackgroundColer,'white');
else
set{hObject, BackgroundColor’,get{0, defaultUicontrolBackgroundColor’));
end
finction ebSpeed _Callback(hObject, cventdata, handles)
function ebSpeed_CreateFen(hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColor','white'),
else
set(hObject, BackgroundColor',get(0, defanltUicontrolBackgroundColor')),
end
function ebPreview_Callback(hObject, eventdata, handles)
function ebPreview_CreateFen(hObject, eventdata, hardles)
if ispc
set(hOhject, BackgroundColor','white');
else
setthObject, BackgroundColor’, get(0, defaultUicontrolBackgroundColor'));
end
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function ddPathType_Caliback(hObject, eventdata, handles)
function ddPathType CreateFen(hOhject, eventdata, handles)
ifispc
set(hObject, BackgroundColor', 'white'),
else
set(hObject, BackgroundColor',get(C,'defaultUicontrolBackgroundColor"));
end
finction ebObstacleAmount_Callback(hObject, evenidata, handles)
function ebObstacleAmount_CreateFen(hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColor','white');
clse
set(hObject,'BackgroundColor,get(0, defaultUicontrolBackgroundColos'));
end
function ebLaneChanges_Callback(hObject, eventdata, handies)
function ebLaneChanges_CreateFen(hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0, defauliUicontrolBackgroundCotor’));
end '

9/,

% RANDOMISE OBSTACLES CODES

O/,
A

function binRandomObstacles_Callback(hObject, eventdata, handles)
numberOfObstacles = str2double(get(handles.ebObstacle Amount,'String));

if numberOfObstacles >= 1
randomNumber = round(50*rand(1));
set(handles.ebObstacle1X,'String’,randomNumber);
randomNumber = romnd(30*rand(1));
set(handles.ebObstacleY,'String',randomNumber);

else
set(handles.chObstacle1X,'String','0");
set(handles.cbObstaclel Y, 'String’,'0");

end

if numberOfObstacles >=2
randomNumber = round(50*rand(1));
set(handles.ebObstacle2X,'String’,randomNumber);
randomNumber = round(30*rand(1));
set(handies.cbObstacle? Y, 'String’ randomNumber);

else
set(handies.ebObstacle2X, 'String”,'0");
set(handles.ebObstacle? Y, 'String','0");

end

if numberOfObstacles >=3
randomNumber = round(50*rand(1}));
setthandles ebObstacle3X,'String',randomNumber);
randomNumber = round(30*rand(1)};
set(hendles.ebObstacle3 Y,'String' randomNumber);
clse
set(handles.ebObstacte3X,'Siring','0);
set(handles.ebObstacle3Y,'String','0");
end

if numberOfObstacles >+ 4
randomNumber = round(50*rand(1)};
set(handles.ebObstacled X, 'String’ randomNumber);
randomNumber = round(30*rand(1));
set(handles.ebObstacled4 Y ,'String’,randomNumber);

else
set(handles.ebObstacle4 X, 'String','0");
set(handles.ebObstacted Y,'String','0");

end
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if numberOfObstacles >=5
randomNumber = round(50*rand(1});
set(handles.ebObstacleSX,'String’,randomNumber);
randomNumber = round(30*rand(1})),
set(handles.cbObstacle5 Y, 'String',randomNumber),

else
set(handles.chObstacte5X,'String’,'0");
set(handies.ebObstacles Y, 'String','0");

end

if numberOfObstacles >= 6
randomNumber = round(50*rand(1));
set(handles.cbObstacle6X, 'String',randomNumber);
randomNumber = round(30*rand(1));
set(handles.ehObstacle6 Y, 'String',randomNumber),

clse
set(handies.ebObstacle6X,'String’,'0);
set(handles.ebObstacle6 Y, 'Siring’,'07;

end

set(handles.txtCurrentLane,'String’,'1");

Y —
% RESET CODES
VA ———

finction binResetAll_Callback(hObject, eventdata, handles)

set(handles.chinitialX, 'String’,'0");
set(handles.cblnitial Y,'String’,'0");
set(handles.ebGoalX,'String','50%);
set(handles.ebGoal Y,'String','30;

set(handles.ebObstacle1 X,'String’,'0");
set{handles.ebOCbstaclel Y,'String','0");
set(handles.ebObstacle2X "String’,'0");
set(handles.ebObstacle2Y,'String','0);
set(handles.ebObstacle3X,'String','0");
set{handles.ebObstacle3 Y, String','0");
sct(handles.ebObstacled X, 'String’,'0%);
set(handles.ebObstacle4 Y, String,'0");
set(handles ebObstacle53 'String,'0%;
set(handles.ebObstacle5 Y, 'String','0");
set(handles.ebObstacle6X,'String','0";
set(handles.ebObstacle6Y,'String','0");

set(handles.chLaneChanges, String','0°);
set(handles.ebObstacleAmount,'String','6");
set(handles.txtFinalError, String',' Average Error = 0'); %reset Average Error to 0

set(handles ebSpeed,'Steing', 90');
setthandles.ebPreview, 'String’,"20%;

axes(handles. boxObstaclePreview);
cla;

axes(handles.boxShowPath),

cla;

axes(handles.boxPath);

cla;

axes(handies.boxError);

cla;

set(handles.txtCurrentLane,'String!,'1');

% INFORMATION CODES 1

i

function binPreviewObstacles_Caliback(hObject, eventdata, handles)

% Grab initial and end vehicle coordinates
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imitialX = str2double(get(handles.eblnitial X, 'String'));
initial Y = str2double(get(handles.cblnitial Y, 'String"));
goalX = str2double(get(handles.cbGoal X, 'String’));
goalY = str2double(get(handles.cbGoal Y, 'String'));

% Get the projected line
if initialX = goalX

xValucs = (initialX-0.001):0.001/100:goalX;
else

XValues = initialX:(goal X-initial X)/100:goatX;
end
if initial Y = goal Y

yValues = (initial Y-0.001):0.001/100:g0al Y;
¢clse

yValues = initial Y :(goal Y-initial Y)/100:goal Y;
end

% Grab obstacle coordinates

obs1X = str2double(get(handles.cbObstacle] X, 'String'));
obs1Y = str2double(get(handles.ebObstaclel Y, 'String'));
obs2X = str2double(get(handies.cbObstacle2 X, 'String'));
obs2Y = st2double(get(handtes.ebObstacle2 Y, 'String'});
0bs3X = str2double(get(handles ebObstacle3 X, 'String));
obs3Y = str2double(get(handles ebObstacle3 Y, 'String?));
obs4X = str2deuble(get(handles.ebObstacled X, 'String);
obs4Y = str2double(get(handles.chObstacle4 Y, 'String);
obs5X = sir2double(get(handles.cbObstacle5X,'String");
obs5Y = str2double(get(handles.cbObstacle5 Y, 'String'));
obs6X = str2double{get(handles.cbObstacle6X,'String);
obs6Y = str2double(get(handles.cbObstacle6 Y, 'String'));

% Plot initial and fina positions

axes(handles boxObstaclePreview);
plot(xVahzes,yValues);

axis([0 50 0 30]);

title('Initial Vehicle Position, Goal Position & Obstacles”);

% Plot obstacle positions (sets obstaclefunction)
hold on
if obs1X >0
ifobslY >0
plot(obs1X,0bs1Y,'r0")
end
end
hold off
hold on
if 0bs2X >0
ifobs2Y >0
plot(obs2X,0bs2 Y, r0)
end
end
hold off
hold on
ifobs3X >0
ifobs3Y >0
plot{obs3X,0bs3Y,'ro)
end
end
hold off
hold on
if obsdX > 0
ifobsdY >0
plot(obs4 X obsd ¥, ro)
end
end
hold off
hold on
if ohs5X >0
if obs3Y >0
plot{obs5X obs5Y,'10")
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end

end

hold off

hold on

if obs6X >0
ifobs6Y > 0

plot(obs6X,0bs6Y,'10")

end

end

hold off

9/
L

% LANE CHANGE CODES
L1 V4

function binStart_Callback(hObject, eventdata, handles)

% == Setup all the initial variables —
numberOfLancs = str2double(get(handles.cbLaneChanges,'String")) + 1;
if numberOfLanes > 3
numberQfLanes = 3;
end
currentLane = str2double(get(handles.txtCurrentLane,'String"));

% Grab initial and end vehicle coordinates

initial = str2double{get(handles.ebInitialX,'String'));
initial ¥ = str2double(get(handles.ebInitial Y, Siring"));
goalX = str2double{getthandles.ebGoal X, 'String)};
goal Y = str2double(get(handles.cbGoal Y,'String'));

% Get the projected line
if initial X} = goalX

xValues = (inittatX-0.001):0.001/100:goalX;
clse

xValues = initialX:(goalX-initial X)/100:goalX;
end
if initial Y === goal Y

yValues = (initial Y -0.001):0.001/100:goal Y ;
cise

yValues = initial Y:{goal Y -initial Y)/100:goal Y;
end

val = get(handles.ddPathType,'Value"),;
str = get(handles.ddPathType, 'String’);
thisMethod = str{val};

% Grab obstacle coordinates

obs1X = str2double(get{handies.cbObstacle f X, 'String"));
obs1Y = str2double(get(handies.ebObstaclel Y,'String’));
obs2X = str2double(get(handiesebObstacle2 X, 'String"));
obs2Y = str2double(get(handles.cbObstacle2 Y, 'String'));
obs3X = str2zdouble(get(handles.cbObstacle3X,'String));
obs3Y = str2double(get(handles.ebObstacle3 Y, 'String));
obs4X = str2double(get(handles.cbObstacied X, 'String));
obs4Y = str2double{get(handles.ebObstacled Y, 'String));
obs5X = str2double{get(handles ebObstacle5X, 'String));
0bs3Y = str2double{get(handles ebObstacle5Y, 'String’));
obs6X = str2double{get(handles ebObstacle6X,'String”));
obs6Y = str2double(get(handles.ebObstacleb Y, 'String"));

speed = str2double(get(handles.chSpeed, 'String’));
speed = speed* 100013600, % convert km/h to m/s
previewPoints = str2double{get(handles.ebPreview, 'String'));

9,

% PREVIEW CODES

[ Y4
i

% Plot initial and final positions
axes(handles.boxObstaclePreview);
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plot(xValues,y Values);
axis([¢ 50 0 30]);
title('Initial Vehicle Position, Goal Position & Obstacles');

% Plot obstacle positions (sets obstaclefunction)

hold on

if obs1X > 0 && obs1Y >0
plot{obs1X 0bs1Y,'r0")

end

hold off

hold on

if obs2X > 0 && obs2Y >0
plot{cbs2X,0bs2 Y,'10")

end

hotd off

hold on

if obs3X > 0 && obs3Y >0
plot{obs3X,0bs3Y,'ro")

end

hold off

hold on

if obs4X > 0 && obsdY >
plot(obsdX obs4Y,'ro")

end

hoid off

hold on

if obs5X > 0 && obs5Y >0
plot{obs5X,0bs5Y,'r0")

end

hold off

hold on

if obs6X > 0 && obs6Y >0
plot{obs6X,0hs6Y,'ro")

end

hold off

obs(1) = obs1X; obs(2) = obslY;
obs(3) = obs2X; obs(4) = obs2Y,
obs(5) = obs3X; obs(6) = obs3Y;
obs(7) = obs4X; obs(8) = obs4Y;
obs(9) = obs5X; obs(10) = obs3Y;
obs(11) = obs6X; obs(12) = obs6 Y,

0L

% OBSTACLE AVOIDANCE CODES

07,
7

% Set edges of region want to search in

xmin=[0; 0];

xmax=[50;30];

Nsieps=750; % Maximum number of steps to produce

lambda=0.1; % Step size to take in chosen direction at each move

Ns=16; % Number of points on circular pattern to sense

=1; % Sensing radius

xs=0*ones(2,Ns); % Hnitialize xs

Jo(:,1y=0*ones(Ns,1);

Jg(:,1=0%ones(Ns,1);

J(:, 1)F0%*0ones(Ns, 1);

theta(:,1)=0*ones(Ns,1);

for m=2:Ns % Compute the angles to be used around the circle
theta(m, | )=theta(m-1,1)Hpi/180)*(360/Ns);

end

% Goal position of vehicle
xgoal=[goalX; goalY];

% Initial vehicle position
x=[initialX; initial Y],

% Weighting parameters for planning (sets priority for being aggresive
% in the direction of the goal vs. avoiding obstacles
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wl=1;
w2=1.0000e-04;

% Allocate memory
x(,2:Nsteps)y=0*ones(2, Nsteps-1);

xx=0:50/100:50;
yy=0:30/100:30;

for jj=1-length(xx)}
for ii=1:length(yy)
zz(ii,ji}=gui_obsfunction({xx(if);yy(ii)].wl,obs);
end
end
for jj=1:length(xx)
for ii=1:length(yy)
zzz(ii jj)=goalfunction(Dex(jj);yy(ii)l xgoal,w2);
end
end

for k=1:Nsteps
% Use projection to keep in boundaries (like hitting a wall and staying at it)

X(K)=min(x(; k), xmax);
x(:,Ky=max(x(:,k).xmin);

% Sense points on circular pattern

for m=1:Ns
xs(;,my=[x(1kHr*cos(theta(m, 1)); x(2k)+r*sin(theta(m,1))]; % Point on circular pattern
Jo(m, 1y=gui_obsfunction(xs(:,m),w1,0bs); % Compute the obstace function (what is
% sensed at each sensed point
Je(m,)=goalfunction(xs(:,m),xgoal, w2}, % Compute how well cach point
% moves toward the goal
J(m,1y=Yo(m,1}*+Jg(m,1); % Compute function for opt. in planning
end

% Next pick the best direction

[val,bestone]=min(J};

% Then, update the vehicle position (pick best direction and move step of lambda that way)
*(C,k+D(x(1 K)+ambda*cos(theta(bestone, 1)); x(2,kyHambda*sin(theta(bestone, ))];

% But the vehicle is in a real environment so when it tries to move to that point it
% only gets to near that point. To simulate this we perterb the final position.

Deltalambda=0.1 *lambda*(2*rand-1); % Set the length perturbation to be up to 10% of the step size

Deltatheta=2*pi*(2*rand-1); % Set to be 360deg variation from chosen direction

x(,k+=[x(Lk+1)+Deltalambda*cos{theta(bestone, 1 H Deltatheta); ...
x(2,k+1)+Deltalambda*sin(theta(bestone, 1 )+ Deltatheta)];

end % End main loop...

[+74
o

% DISPLAY PATH CODES

or
/0

axes(handles.boxShowPath);
contour(xx,yy,zz.25),
colormap(jet);
title("Vehicle Path');
if currentlLane > 1
load PathOne
hold on
plot(first_x(1,:).first_x(2,:),'r-;
hold off
end
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if currentLane > 2
load PathTwo
hold on
plot(second_x(1,:),second x(2,),'r");
hold off
end
hold on
plot(x(l,:),x(Z,:),'r-');
plot(initialX initial Y,'s’goal X goal Y. 'x");

hold off
if currentLane < pumberOfLanes
if currentLane == 1
first Xx=x;

save PathOne first x
set(handles. eblnitialX, String' get(handles.ebGoalX,'String");
set(handles.eblnitial Y, 'String’ get(handles.cbGoal Y, String);
end
if currentlane =2
second_X=1X;
save PathTwo second x
set(handles.eblnitialX 'String’ get(handtes.cbGoalX, 'String'));
sct(handles.cbnitialY,'String’ gei(handles.ebGoal Y, 'String'));
end
currentLane = currentLane + 1;
set(handles txtCurrentLane,'String' aum2str{currentLane));
end
save PathThis x

%%%%%%%%%% End of Program %0%%%%:%%% %% %

function btnError_Callback(hObject, eventdata, handles)
L V4

% INFORMATION CODES 2

0/,
7

Y%axes(handles. boxPath);
%title('Follow Path");
%pIOt(x(l ,:),x(2,:),'r—');

speed = str2double(get(handles.cbSpeed, String'));

speed = speed*®1000/3600; % convert km/h to m/s
previewPoints = str2double(get(handles.cbPreview, String'));
currentl.ane = str2double(get(handles. txtCurrentLane,'String"));
val = gei(handies.ddPathType, 'Value');

str = get(handles.ddPathType, "String');

thisMethod = str{val};

load PathThis

[myWidth,myLength] = size(x);

if currentlLane > 1
load PathOne
x(1,myLength+1:myLength*2) = x(1,1:myLength);
x(1,}:myLength) = first_x(1,1:mylLength);
x(2,myLength+1:myLength*2) = x(2,1:myLength);
%(2,1:myLength) = first x(2,1:myLength);

end

if currentLane > 2
load PathTwo
x(1,myLength*2+1:myLength*3) = x(1,myLength+1:myLength*2),
x(1,myLength+1:myLength*2) = second_x(1,1:myLength);
x(2,myLength®2+1:myl ength*3) = x(2,myLength+1:myLength*2),
x(2,myLength+1:myLength*2) = second_x(2,1:myLength),

end

axes(handles.boxPath);
title('Follow Path');
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plDt(X(l ,:),X(Z,Z),'l'—');

% forward speed

u=speed;

% sampling period T
T=0.05;

% number of preview points
n=previewPoints;

%car parameters definition
C1=120000;

Cr=80000;

a=0.92;

b=1.38;

M=1200;

G=17,;

Ez=1500;

%%e%0%%%%e%%% Road Model Matrices %6%%%%%%%%%%%

% road shift operators
D={zeros(n,1) eye(n);zeros(L.n+1)];
E={zeros(n.1); 1];

%D=[01060000000;
%00100060000;
%00061000000;
%0000100000;
%0000010000;
%0000001000;
%0000000100;
%00600000010;
%0000000001;
%0000000000%;
%E={0,0;0;0,0,0;0;0:0:1];

940096%%% %% %% Linear Car Model %%%%%%%%%%%
Lincar_car_model
% %%% %% % Y%%%% Linear Control Gain Calculation %6%%%%%%%%%%

% cost prioritites (Priority is on PATH FOLLOWING)
Q=[1000;
01y
R2=1;
% compute the LQG gain Kt
LQRgain

9% %% %% % YoY% Linear Cost Parameters %%%%%%%%%%%

% The cost to be minimised is the folowing one :

% J=Z(. k)"*Rlcost*Z( k)+delta(k) R 2cost*delta(k)
% We keep the same priorites.

Rlcost=R1;

Ricost=R2;

tic Ystarts the stopwatch timer

9%6%6%%% %% %%%:%% Path Information %6%%%:%%%6%%%%
for epoch = 1:5
switch(thisMethod)
case 'Sinus Shape'
% sinus shape

xref=[0:u*T:900];
yref=50*sin(xref/100);

case 'Lane Change'

%clane change
xr1=[0:u*T:50-u*T};
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xr2=[50*T:50-+60{;
xr3=[110+0*T:u*T:300];

xref={ xrl xr2 xr3];

yri=0*xri;
y12=2-2*cos((pi/60y*xr2-50*pi/60),
yr3=4*ones(size(xr3));

yref=[yrl yr2 yr3|;

case *Sudden Chenge of Direction’
%sudden change of direction
xri={0;u*T:60-u*T];
xr2={60:u*T:200];
xref=xel xi2];
yrt = (0%xri;
SIZE_OF _xr2=size(xr2);
yr2 = 0.5%0. 25 1:SIZE_OF _xr2(1,2)]*0.535%";
yref = [yrl yr2;

case "Smooth Random Path'
%smooth random path
K=900/(u*T)+1;
xref=[0:u*T:900};
[Bfilter, Afitter] = butter(5, 0.007);
roadn=10*rand(K,1);
roadn = 40*(roadn-3);
yref = filter(Bfilter, Afilter, roadn)';

case 'Obstacle Avoidance’
%red-line path
xref = x(1.:);
yref(1,)) = x(2,2);
end

%if epoch =1
Yocircuits_2

Y%else
%%circuit_iterations
%end

[K,nb] = size (vref'), %array size of yref
%% %aY6%%%%% State Definition & Initialisation %%%%%%%%%%%

% At cach time step, a new global frame is defined.
% The state is based on a frame comprising the local x and y-axes of the vehicle.

% Z= local latera! displacement v ]
% [ vdot ]

% [ locat angle phi |

% [ phidot ]

% [ local lateral preview errors ]
ZA = zeros(4+n+1 K-n-1);
ZA(L1) =yref(1);

ZA(3,1) = (yrefi2) - yref(1)}u*T);
ZA(4+1:4+n+1,1) = yref{1:n+1),;
ZB = zeros(4+n+1,K-n-1);

ZEB(1,1) = yref(1);

ZB(3,1) = (yrefi2) - yreR L)/ (u*T),
ZB(@+1:4+0+1,1) = yref{1:n+1)";

% augmented matrix
Ebis=[zeros(4,1);E[;

%% %% %% % Paramaters Initialisation %6%%6%6%6%%%%%%
Y%sensitivity functions initiatized to 0

dzdw = zeros(n+35,n+5);
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dudw = zeros(1,n+5);

dldw = zeros(1,n+5), %to be multiplied with gama to obtain deltaw for gradient mtd
prevdldw = zeros(1,n+3);

deltaw = zeros(1,n+5); % to be added to w to obtain w(k+1)

prevdeltaw = zeros(1,n+5);

Y%other parameters
phiA(1)=(yreR2)-yref{1))Au*T);
phiB(1)=(yrefi2)-yref{1))/(*T);

deltaA(1)=0;
deltaB{1)=0;

lateral_accelerationA{1)=0;
lateral_accelerationB(1)=0;

global_positionA(1)=ZA(1,1);
global_positionB(1)=ZB(1,1);

ZinHA = zeros(4+n+1,1);
ZinitB = zeros(4-+n+1,1);

ZstepA = zeros{d-+ntl, 1);
ZstepB = zeros(4+nt+1, 1);

%%0%0%%% %% %% %% Neural Network Implementation 96%%% 0% %% %% %%
disp(" Neural Network Implementation.....")

% choose an input layer with n+5 (number of states) neurons
input=[-50*ones(n+3,1} 50*ones(n+5,1)];

Y%net=newii(input, 1, {'tansig'});
net=newlin(input,1);

Yinitiatize the vector W(:) containing all weights and biases.
ifepoch=—1
for jg=1:4+n-+1
Wijig=Ki(jg); %Weight based coeff obtained from optimal ctrl theory
W_init=W;,  %Storing the initial weight
end

%fixed learning rate

gama=0.1;

gama_init=gama; %Storing the initial learning rate
gama_nexi(1)=gama;

else
W='W_last; %Last Updated weight from previous epoch
gama = gama_last; %last updated learning rate from previous epoch
gama_next(])=pama,

end

%initialize neural network weightings
netIW{1,1}=W;
net.b{1} =[0];

toc  %ereads the stopwatch timer
disp (' mainloop...")
tic  %starts another stopwatch timer

%% %% %% %% 0% % %% %% o% 0% Yo% Y e 09620 %0%6%6% %% %%
% MAIN LOCP %

%0 00 0“ Do Dn ﬂ%o DD 00 OD Do ﬂ%ﬂ 0%%%%“ 0%0 00 00 00 00 0%%%0 D%o £

fork=1:(K-n-1)
% definition of a new global frame based on the local x and y axes of the car.

% definition of the state of the car
ZinitA = ZA(: k);
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YdotA = ZAQ2K);

ZinitB = ZB(.k);
YdotB = ZB(2,k);

ifk>1

ZinitA(2) = ZinitA(2)-u*sin((phiA(k)-phiAck-1))); %%the local y-axis is changed
ZinitB(2) = ZinitB(2)-u*sin((phiB(k)-phiB(k-1)));
%ZinitC(2) = ZinitC2)-u*sin((phiC(k)-phiC(k-1))); %ethe local y-axis is changed

else
ZinitA(2)=0;
ZinitB2y= 0,
%ZinitC(2)y= 0,
end

% due to the choice of the frame, absolute positions become zero
ZinitA(1) = 0;
ZinitA(3)=0;
ZinitB(1) = 0;
ZinitB(3) = 0;

% absolute to relative road data transformation
local _yrefs = yref(k:k+nt1);

for j = 1:(nt2),
tocal_yrefsA(j) = local_yrefs(j) - globai_positionA(k)- ...
(i-1y*phiA(k)*u*T;
local yrefsB(j) = local_yrefs(j) - global_positionB(k)- ...
G- Dy*phiB(ky*u*T;
end

%% definition of the remainning states (preview path errors)
ZinitA{4+1:4+n+1) =local_yrefSA(l:n+1};
ZinitB(4+1:4+n+1) = locat_yrefsB(1:n+1);

%% %% % %% %% %% State Error %%0%%%%:%%% %%

epsA=ZinitA;
epsB=ZinitB;
%a%% %% %% %% %% Steer Angle %6%%6% %% %0%% %%

deltaA(k) = -Kt*epsA;
deltaB(k) = sim(net,¢psB);

%% %%6%%%%%% State Update %%%%%%%%% %%

ZstepA = A *ZinitA+ B*deltaA(k) + Ebis*local_yrefsA(n+2);
ZstepB = A *ZinitB+ B*dettaB(k) + Ebis*local_yrefsB(n+2);

%%6%%6%%%%%%%% Weighting Update %6%%6%0%%%%%%%

% dudw(k) calculation
dudw= -( ZstepB' + Wdzdw);

% dJdw(k) calculation keeping the previous derivative of the cost
prevdJdw=dldw;
dJdw=2*ZstepB"*R1cost*dzdw-+2*deltaB(k)*R2cost*dudw;

% dzdw(k+1) calculation
dzdw=A*dzdw+B*dudw;

% adaptive leaming rate

if dfdw/prevdIdw < 1.000 %cost ratio
gama=1.05*gama;

end

if didw/prevdldw > 1.005
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gama={).7*gama;
end
% difference calculation Polak Ribiere or Gradient method
% prevdeltaw=deltaw;
% if k<3
deltaw=-gama*dJdw; %value for deltaw

gama,_next(k+1)=gama;

% else

% deltaw=-gama*{dJdw - 1/norm{prevdlidw) *...
% (aJdw™(dJdw-prevdJdw)*prevdeltaw')’);

% end

% weighting update
W=W-+deltaw, Y%incremental training
netfW{l,1} =W,

U2 %06% %% %% End of Weighting Update %%%%%%%%%%%

% lateral_acceleration calculation
lateral accelerationAdlc+1} = (ZstepA(2,1)-YdotA)/ T+ru*ZstepA(4,1);
lateral _accelerationB(k+1) = (ZstepB(2,1)-Y dotBYT+u*ZstepB(4,1);

% update absolute positions

global_positionA(k+1) = global_positionA(k) + u*T*phiA(k) + ZstepA(L,1);
global_positionR(k+1) = global_positionB(k) + u*T*phiB(k) + ZstepB(1,1);
phiA(k+1) = phiA(k) + ZstepA(3,1);

phiB(k+1) = phiB(k) + ZstepB(3,1};

% store the state

ZA( k+1) = ZstepA;

ZB(k+1)=ZstepB;
end

%if epoch =1
% plot_plot
%eend

toc

gama_last = gama_next(K-n);

gama_end(epoch) = gama_last;

W_last=W;

W_end(epoch,L:4n+1=W_last(1,F:4+n+1};
end

Ws=W_init+0.0001;
xyz=(];
for r = 1ijg;
Yaxyziry=(W_lastB(r)-W_initB(r));
xyz(r)=abs((net.TW { 1,1 }(r)-Ws(D)/Ws(r))* 100;
end
weight_change=(sum(xyz))/jg;

T Y AU T R L R S e R
% END OF MAIN LOOP % :

L A A A A T A T AT A T A b e L )
%Plottings2inoneshot

road_angle estimation=zeros([1:K-n+1],1);

for j=1:K-n
road_angle_estimation()=(yrefij+1)-yref(j))/u*T);

end

yaw_errorA=phiA([1:K-n])-road_angle_estimation([1:K-n]);

axes(handles.boxPath);

%path following

plot(xref([1:K-n]),yref{ L[ L:K-n]),xref{[1:K-n]),global_positionA{1:K-n),'g");
%plot(xglobal(f 1:K-n+1]),yref(1,[1:K-n+1]),xglobal([1:K-n+1]),yglobal{L K-n+1 1),'g);grid;
xlabel('distance, m;
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ylabel('y coordinate , m");
title('Path Following');
switch(thisMethod)
case "Sinus Shape'
if i=2
AXIS({-10 1000 -100 100])
end

case Lane Change'
ifi==2
AXIS([-10 1000 -100 100])
end

¢ase 'Sudden Change of Direction'
if i==2
AXIS([-10 1000 -100 1007)
end

¢ase "Smooth Random Path'
ifi=2
AXIS([-10 1000 -100 100})
end

case 'Obstacle Avoidance'
axis([0 50 0 30]);
end

axes(handles.boxError);

%y difference

plot(aef{] 1:K-n]),yref([1 ' K-n})-global_positionA([1:K-n]),"");
xlabel('distance, m');

ylabel(y error, m’');

title("Y Path Following Error');

myCount = 1;
averageErmror = 0;
totalErmror = 0;
thisError = ();
while myCount < (K-n}
thisError = yrefimyCount) - global_positionA(myCount),
if thisError < 0
thisError = -thisError;
end
totalError = totalError + thisError;
myCount = myCount + I
end
averageError = totalError/myCount,

set(handies.txtFinalError, 'String’,["Average Error = ' num2str(averageError}]);
%Y % e YoY% % %20 Yo% Y6 Y% % Y6 Y 0% % %% Yo e T T T T T T T I T T S T P e (o

% End of Program

L e T R A T T T T A T T e s o e e Ly %a%e%
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Obstacle Collision Avoidance

Main Program

B T T T T T T S A T T A T T e s e S T P P e P e e ]
% vehic_guide.m

OO e e Y e e e e e e Ve Yo e Y0 Y oYY 060 Ve %o Yo% e %% Y0 Yo %6 % %% % Y 6% e Y6 % % %% 20 % % e
%

% Obstacle Collision Avoidance

%

Y e o Y e e e e Yo %Yo Yoo Yo Yo Yo% Yo e Ye Yo% VoYY Yo Ye e Yo Yo% e Yo% Yo% Y YoY% % Ye YN e % e % %0 %%
clear % Initialize memory

xmin=[{; 0]; % Set edges of region want to search in
xmax={50;30];

Nsteps=750, % Maximum number of steps to produce
% Next set the parameters of the vehicle:

lambda=0.1; % Step size to take in chosen direction at each move

Ns=16; % Number of points on circular pattern to sense

=1; % Sensing radius

xs=0*ones(2, Ns), % Initialize

Jo(:,1 -0*ones(Ns,1);

Ja(:,1)=0%ones(Ns,1};

J(:,1)F0*ones(Ns,1);

theta(;,1)=0*ones(Ns,1);

for m=2:Ns % Compute the angles to be used around the circle
theta(m, 1 =theta(m-1.1yHpi/1 80)*(360/Ns);

end

% Goal position of vehicle
xgoal=[49; 15];

% Initial vehicle position
x=[1; 15];

% Weighting parameiers for planming (sets priority for being aggresive
% in the direction of the goal vs. avoiding obstacles

wl=l;

w2=1.0000e-04;

% Allocate memory
x(:,2:Nsteps)=0*ones{2 Nsteps-1);
% The obstacles:

figure(1)

clf

% Plot initiat and finat positions

plot(1,15,'s',49,15.'x")

axis([0 50 0 30D

hold on

xlabel(x");

ylabel('y);

title(Obstacles (o), initial vehicle (square) and goal (x) positions');
hold on

% Plot obstacle positions (sets obstaclefunction)
plot(5,15,'0,15,18,'0,15,12,'0',25,17,'9",30,13,'0',38,15,'0"}
hold off
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%o Yoo oo a %% 0% % Yo eV e Yo% Ve et Y %0% %% 0% n %0 % % % %% 020650 %60 %% %600 %0 %0 %% %% 0% 0% % %% %% %

% Plot the functions:

x0=0:50/100:50; % For our function the range of values we are considering
yy=0:30/100:30;

% Compute the obstacle and goal functions

for jj=1:length{xx}
for ii=1:lengthéyy)
(i jjobstaclefunction(Dxx(ij);yy(ii)],wl);
end
end
for jj=1:length(xx)
for ii=1:length(yy)
d zz(ii, jj=goatfumction([xx(jj);yy(ii) L xgoal w2);
en
end

figure(2)

cif

surf(xx,yy,Zz);

Y%colormap({jet)

% Use next line for generating plots to put in black and white documents.
colormap(white);

xlabel('x");

ylabel(y);

zlabel('w_1J_o");

title("Function w_1J_o showing (scaled) obstacle function values");

figure(3)

clf

contow (XL yy,zz,25)

colommap(jet)

% Use next ling for generating plots to put in black and white decuments.
%colormap(white);

xlabel(x");

yiabel('y');

titie(Contour map of w_1J_o and initial (square) and goal (x} positions);
hold on

% Plot initial and final positions

plot(1,15,'s',49,15,'x")

hold off

figure(4)

clf

surfixxyy,zzz);

view(82,26);

Ycolormap(jet)

% Use next line for generating plots to put in black and white documents.
colormap(white);

xlabel(x");

ViabelCy'y,

Zlabel('w_2J g%;

tidle('Goal function {scated));
Yerotate3d

figure(5)

clf

contour(xx,yy,zzz,25)

colormap(jet)

% Use next line for generating plots to put in black and white documents.
Yecolormap{gray);

xlabel("x');

yiabel('y');

title('Contour function of w_2J_g and initial (square) and goat (x) positions”);
hold on

% Piot initiat and final positions

plot(1,15,'s' 49,15, x")
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hold off

figure(6)

cif

contowr(oLyy, z2+z22,50)

colormap(jet)

% Use next line for generating plots to put in black and white documents.
Yecolormap(gray);

xlabel('x"),

yiabel('y'),

titie{'T=w_1J_o+ w_2J g and initial (square) and goal (x) positions’);
hold on

% Plot initial and final positions
plot(1,15,'s'49,15,'x")

hold off

B T A T S T T T L e P e S Py
% Start the simulation loop

for k=1 :Nsteps
% Use projection to keep in boundaries (fike hitting a wall and staying at if)

x(: Ky=min(x(: k), xmax);
x(: kymmax(x(. k), xmin);
% Sense poinfs on circular pattern
for m=1:Ns
xs(z,m)=x(1 ky+r*cos(theta(m,1)); x(2,k)+r*sin(theta(m,1))]; % Point on circular pattern
Jo(m, =-obstaclefunction(xs(;,m),w1); % Compute the obstace function (what is
% sensed

af each sensed point :
Jg(m,1y=goalfunction(xs(;,m),xgoal,w2); % Compute how well each point

% moves toward the goal

end J(m,1)=Jo(m,1)+Jg(m,1); % Compute function for opt. in planning

% Next pick the best direction

{val,bestone]=min{J);

% Then, update the vehicle position (pick best direction and move step of lambda that way)
x(,k+1)E[x(1 K)+lambxla*cos(theta(bestone, 1)); x(2,k)+lambda‘sin(theta(bestmje, 1§)1 4

% But the vehicle is in a real environment so when it tries to move to that point it
% only gets to near that point. To simulate this we perterb the final position.

Deltatambda=0. I *lambda*(2*rand-1); % Set the length perturbation to be up to:10% of the step size

Deltatheta=2*pi*(2*rand-1); % Set to be 360deg variation from chosen direction

*(: k+1=x(1 k+1)+Deltalambda*cos(theta(bestone, 1 y+Deltatheta); ... '
x(2,k+1y-Deltalambda*sin(theta(bestone, 1 y+Deltatheta)];

end % End main loop...

B R A A T T T T T T T T A P Ty e e S e g )
% Next, provide some plots of the resuits of the simulation,

L T T T T T T e L L Ty L o e P e S S g )
=0:Nsteps; % For use in plotting

figure(7)
cif
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plot(tx(1,]),%k-£x(2.), %~

ylabel(’x, ¥')

xlabel(Hteration, k')

title("Vehicle trajectory (x solid, y dashed)))

figure(8)

clf

CONtOUr(XX,yy,z2,25)

colormap(jet)

% Use next line for generating plots 1o put in black and white documents.
Yocolormap{gray);

xlabel('x");

ylabel('y");

title("Vehicle path to avoid obstacles and reach goal’);

hold on
plot(x(1,:),x(2,2),' -}
plot{1,15,'s’,49,15,'')
hold off

save dirResult x

Y Y b Y eV YoY% Yo Y Ve Yo Ye oY e Y Yoo Yo e Yo Y% U Y% %o Yo% % Yo %% e % %% %o ¥ Y % % Ve Y% %o % %%
% End of pr

OO e e e Y e o Y e Y e Y Yoo Y Y Y Yo %o Ve Yo Yo YoYU VoY a6 Y Y Y K %Y Yo %% % % %o %% % % %% %

Obstacle Function

O e e o Ve Y e etV Yo b Y% e Yo Y Yo Ve KMo Ye e Yo Yo %Y %% Yo% % Yo % % Yo %% %% Y% Ve % Yo Ye
% obstaclefunction.m

OO0/ 0400040/ 0/10407.0/40/0,0/040,0/0,070,0/40/ 000000090 %%% %% Yal% %62 0%0 %% %0% %% 0% Yo %% 0%6%0% %% %% Y% %% %%
%

% Obstacle Function

%

O e e e T e e e e A Y e e Yo Y e YoY% %o Y% e Y% Y% Yo Yo %6 e Yo% YoY% %o e e Y0 %% %o % %%
function J=obstaclefunction(x,wl)
% A function to represent sensed obstacles:

F=...
wi*max([exp(-0.8*((x(1,1)-3Y'2+(x(2,1)-15Y'2)),...
exp(-0.8%((x(1,1)-15)2+(x(2,1)-18)"2))....
exp(-0.8*((x(1,1)-15)"2+x(2,1)-12y"2)),...
exp(-0.8*((x(1,1)-25)"2+{(x(2,1)-17y"2),...
exp(-0.8*((x(1,1)-30y"2+(x(2,1)-13¥'2)),...
exp(-0.8%((x(1,1)-38)y"2H{(x(2,1}-15Y"2)]);

OO e e Yo Y T Y YN e e Y Y e e Y e % % T % Y% Y6 %% % % %6 % %0 %6 0 %0 % %% % %0 Y % % Y % W Yoo k%
% End of program

L T T T T T I T L B T B T Ly L T P P P L T B T P e e T

Goal Function

0000000/ 0/.0/.0/ 0/ 0/0.0/.0/40/04040/104040/00040001010400004000 %% %Y Y6% %% Y% % Yo% % %% %% % % %% % %% % % %% %%
% goalfinction.m
L T T T e A T T T T L P e P e U S
%

¢}
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% Goal Function

%
S S e T T T L A L S L v

00/
function Je=goaifunction(x,xgoal,w2)
% A goal function:

Jg=w2*(x-xgoal)"*(x-xgoal);
% Jg=0.01*(x-xgoal)"*(x-xgoal)/(1-0.01*(x-xgoal) *(x-xgoal)),
B A T T T T T T L P o L e ey Py

% End of program
B R R L T T T T T I T L L o S i e o)
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Path Following/Lane Keeping

Main Program

T T T T T A T T T e A T e S P P e e P e e )
% LinearNNa.m

L T T T T T T A T A A T T o B T L P S S P S e
% ;

% Neural Control of a Linear Car Model with a Single Processing Element

%

T T T A A T I T oy A P e e P S L S i S

disp( )
disp(’ One Single Processing Element, Linear Car Model )
disp(’ )
disp(")

clear all; close all;clc

% forward speed

v=input{'Speed in kmvh ? (using 20 par (default))’);
u=u*1000/3600; % convert km/h 1o m/s

if isempty{n}, v=20; disp('Using u=20m/s (default)’), end

% sampling period T
T=0.05;

% number of preview points
n=input{'Preview Points ? (using 20 par {(default})’);
if isempty(n), n=2/T; disp('Using a number corresponding to 1sec ahead (default)), end

Y%car parameters definition
C=120000;

Cr=80000;

a=0.92;

b=1.38,

M=1200;

G=17,

1z=1500;

%% %% %% %% %% Rord Model Matrices %%%%0%%%% %% %
% road shift operators

D={zeros(n,1) eye(n);zeros(1.n+1)};
E=fzeros(n,1}; 1];

%D=[0100000000;
%0010000000;
%0001000000;
%0000100000;
%0000010000;
%0000001000;
%0000000100;
%0000000010;
%0000000001;
%00000000007;
%E={0;0;0;0;0,0;0:0;0;1];

%%%%%%%%%%% Linear Car Model %%%%%%%%%%%

Linear_car_model
disp(")

%%%%6%%%%%%% Lincar Control Gain Calculation %%%%%%%%%%%
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% cost prioritites (Priority is on PATH FOLLOWING)
Q=[1000;

01};

R2==1;

% compute the LQG gain Kt

LQRgain

%%6%0%0%%% %% %6%% Linear Cost Parameters %%%%6%%%%%%%
% The cost t¢ be minimised is the folowing one :

% FZ( k) *Rlcost*Z(. k)tdeltatk)*R2cost*delta(k)

% We keep the same priorites.

Rlcost=R1;

R2cost=RZ2,

tic Ystart a stoopwatch timer
disp(  Loading path information......")

%%%%% %% % %% %% Path Information %%%%:%%%%%%%

for epoch=1:5
if epoch =1
circuits_2
clse
circuit_jterations
end

[K,nb] = size (yref) Yoarray size of yref
%%%%%0%%%%%% State Definition & Initialisation %%%%%%%%%%%

% At each time step, a new global frame is defined.
% The state is based on a frame comprising the local x and y-axes of the vehicle.

% Z=[ local lateral displacement v §
% [ vdot

% | local angle phi }

% { phidot ]

% [ local latersl preview errors |

ZA = zeros{d+n+1,K-n-1);
ZA(L1)=yref(1);

ZA(3,1)= (yref(2) - yref{ 1) (u*T);
ZAA+1:4+nt1,1) = yref{1:n+1)"

ZB = zeros(4+n+1 K-n-1});
ZB(1,1)=yref(1);

ZB(3,1) = (yrefi2) - yref{ 1)) (u*T),
ZB(4+E:4+n+1,1) = yref(Lin+1);

% aungmented matrix
Ebis=fzeros(4,1)%E];

4%%%%%%%%6%% Paramaters Initialisation %6%%%%%%%%%%
%sensitivity functions initialized to 0

dzdw = zeros(n+5,n+5);

dudw = zeros(1,n+5);

dJdw = zeros(1,n+5); %to be multiplied with gama to obtain deltaw for gradient mid
prevdldw = zeros(1,n+5);

deltaw = zeros(1,n+5); % to be added to w to obtain w(k+1)

prevdeliaw = zeros(1,n+5);

Yaother parameters
phiA(1)=(yrefi(2)-yref(1))/(u*T),
phiB(1)=(yrefi2)-yref(1)(u*T);

deitaA(1)~0;
deltaB(1)=0,
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lateral_accelerationA(1)=0;
lateral_accelerationB(1=0;

global_positionA(1)=ZA(L,1);
global_positionB(1)=ZB(1,1);

ZinitA = zeros(4-+nt+1,1);
ZinitB = zeros(4+n+1,1);

ZstepA = zeros(4+n+1, 1);
ZstepB = zeros(4+n+1, 1);

%a%%%6% %% %% %% % Neural Network Implementation %%%%%%%%%%%
disp("' Neural Network Implementation.....")

% choose an input layer with n+5 (number of states) neurons
input=[-50%ones(nr+5,1) 50*ones(n+5,1);

%net=ncwfl{input, 1, {"tansig"});
net=newlin(input,1);

Y%initialize the vector W(:) containing all weights and biases.
ifepoch==1
for jg=1:4+n+1
W(igEKt(ig);, %Weight based coeff obtained from optimal ctrl theory
W_init=W;  %Storing the initial weight
end

Y%fixed leaming rate

gama=0.1;

gama_init=gama; %Storing the initial learning rate
gama_next(1)-gama;

clse
W="W_iast; %Last Updated weight from previous epoch
gama = gama last %last updated learning rate from previous epoch
gama_next(1)=gama;

end

%initialize neural network weightings
net.IW{1,1}=W;
netb{1} ={0];

toc  %reads the stopwatch timer
disp ( mainloop...")
tic %staris another stopwatch timer

0% Y% % Y% % Yo %Y e % e %6 % %% %% %% %% %%
% MAIN LOOP %

B T T T S S A L T e v )

for k= 1:(K-n-1)
% definition of a new global frame based on the local x and y axes of the car.

% definition of the state of the car
ZinitA = ZA( K);
YdotA = ZA(2.,k);

ZinitB = ZB(.k};
YdotB = ZB(2 k);

ifk>1
ZinitA(2) = ZinitA(2)-w*sin((phiA(k)-phiA(k-1))); Ysthe local y-axis is changed

ZinitB(2) = ZinitB(2)-u*sin{(phiB(k)-phiB(k-1)));
4ZinitC(2) = ZinitC(2)-u*sin((phiCK)-phiC(k-1))); Ythe local y-axis is changed
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else
ZinitAQ2y=0;
ZinitB(2y=0;
%ZinC(2)=0;
end

% due to the choice of the frame, absolute positions become zero
ZinitA(1) = 0;
ZinitA(3)=0;
ZinitB(1)=0;
ZinitB(3)=0;

%% absolute to relative road data transformation
local_yrefs = yreflk-k+nt1);

for j = 1:{n+2),

local_yrefsA() = local_yrefs(j) - global_positionA(k)- ..
(i-1y*phiA(k)*u*T;

local_yrefsB(j) = local_yrefs(j) - global_positionB(k)- ...
(-1)*phiB(k)*u*T;

end

% definition of the remainning states (preview path errors)
ZinitA(4+1:4+n+1) = local_yrefsA(1:n+1);
ZinitB(4+1:4+n+1) = local_yrefsB(L:nt+1);

0% %% %%0%%%6% State Error %6%6%6%0%%6%6%0%%%

epsA=ZinitA;
epsB=ZinitB;

%%%%%%%%%%%% Steer Angle %%%%%%%%%%%

deltaA(k) = -Kt*epsA,
deltaB(k) = sim{net,-epsB);

%%%% %% %% %% % State Update %%%%%%%%%%%

ZstepA = A *ZinitA+ B*deltaA(k) + Ebis*local_yrefsA(n+2);
ZstepB = A *ZinitB-+ B*deltaB(k} + Ebis*local yrefsB(n+2),

%% %% %%0%%% %% Weighting Update %%%%%%%%%%%%

% dudw(k) calculation
dudw= - ZstepB' + W*dzdw);

% dJdw(k) calculation keeping the previous derivative of the cost
prevdldw=dJdw;
dIdw=2*ZstepB'*R 1 cost*dzdw+2 *deltaB(k)*R2cost*dudw;

% dzdw(k+1) calculation
dzdw=A*dzdw+B*dadw;

% adaptive learning rate

if dJdw/prevdidw < 1.000 %cost ratio
gama=1.05*gama;

end

if didw/prevdldw > 1.005
gama=0.7*gama;

end

% difference calculation Polak Ribiere or Gradient method
% prevdcltaw=deltaw;

% ifk<3

deltaw=-gama*dJdw; %value for deltaw
gama_next{k+1)=gama;

% clse

% deltaw=-gama*(dJdw - 1/norm(prevdIdw) *...
% (dJdw'*(dJdw-prevdJdw)*prevdeltaw’)");
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% end

% weighting update
W=W+deltaw; %incremental training
netIW{1,1} =W,

%% Y% %%%%% End of Weighting Update %%%%%%%%%%%

% lateral_acceleration calculation
lateral_accelerationA(k+1) = (ZstepA(2,1)-YdotA)/ T+u*ZstepA(4, 1);
lateral_accelerationB(k+1) = (ZstepB(2,1)-YdotBY T+u*ZstepB(4,1});

% update absolute positions

global_positionA(k+1) = globat_positionA(k) + u*T*phiA(k) + ZstepA(l,1);
global_positionB(k+1) = global_positionB(k) + u*T*phiB(k} + ZstepB(1,1);
phiA(k+1) = phiA(k) + ZstepA{(3,1);

phiB{k-+1) = phiB{k) + ZstepB(3,1);

% store the state
ZA( k+1) = ZstepA;
ZB(: k+1)= ZstepB;
end

if epoch =1
plot_plot

end

toc

gama_last = gama_next(K-n),
gama_end{epoch) = gama _last;

W _last=W;

W_end(epoch, 1:4+n+1)=W_last(1,L:4+n+1);
end

Ws=W_init+).0001;
xyz=[l;
forr=1ig
Yoxyz(ry=(W_lastB(r)-W_initB(r));
xyz(rFabs({net.IW{ 1,1} (r)-Ws(r))/Ws(r))* 100,
end
weight_change=(sum(xyz))/jg;

D T T T T T A S T T S P el P ey
% END OF MAIN LOOP %

B A A T A A T A o oy v

Yfigure(4)
figure(2)

plot(ig)

%plot{gama)
xlabel(No. of Epoch’);
ylabel('Learning rate);
title {'Plot of Learning Rate")
gtid on

% figure(5)

figure(3)
wwl=W_end(;, 10}’
ww=[W_init(10),wwl];

% figure(6)

figure(3)

plot{ww)

xlabel('Ne. of Epoch");

ylabel{"'Weight");

title('Plot of Updated Weight vs No. of Epoch”)
grid on

Plottings2inoneshot
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OO e Y e e e Y e T eOL e e e e e %Y %Y e Y Y% Ve Yt Y% Y Yo% Y0 %o Y% 0 %6 % Y % %% 6% Yo% % e
% End of Program

000000/ 040/ 0/ 0/0/0/0,070/0/0,0/40/0007 9100090 00%%0%0% %% Y %% Yoy s 6% %% %2620 % %% %% %% % %Y %% %% %%
Linear Car Model

D T T T T e A e e P e P Ry 0660 0% 0% %o %o Y0 %% % Yo% %
% Linear_Car_Model.m

O T e e e Y e e e Y e e e T Y Yo Yo b6 Y% e %Yo %o e T %0 Yo Y Yo% %o %0 % %020 %% %0 %% 6" %%%%%
Y%

% Lincar Car Model

%

OO a0 A Y A e e e OO TV Y 6T e % Ve Ve YT Ve Ve Yo Yo U VY% Yo Ye Yo% % e % %% % Y% %% %% Yt %%

Y%continous state space form of a car model
%global frame

Acar={ 0 I 0 0

0 {CHCrY(M*n) (CHCOM (b*Cr-a*C)/(M*u);

0 0 ] 1 ;

0 (O*Cr-a*CH/(Iz*w) (@*CEb*Crylz -(a"2*Cf+b"2*Cr)(lz*u);]

0,
a*CiHlz*G) L

Cear=[1000];
Dcar =[0];

%discrete state space form of a car model
[Ad Bd) = C2D{Acar, Bear, T);

B T TS T e Sy N I Ly Py e S %% %% %Y %% %% % %% Y%
% End of

B s T L L T T T P T AT T T P R P e Py Oy P e %% %% %% %% %%
Linear Quadratic Regulator (LQR)

O eV e eV e Y Yo e Yo e Yo Yo% %% %0 % %6 %6 %6 %% e %620 e %o Yo Yo W%0%%1%0%%0% %% % Y% Y% Y% % %%
% LQRgain.m

O YU e e Y e e e e U e Yo Yo Yo Ve Y T a Yo Y% U %%6 %020 % Y% % e %% 26 %% Y6 Va0 % Yo Yo Yo% 0% %%%%%0%%%
%

% Linear Quadratic Regulator (LQR)

%

%0 00 A TATR A TA TR AT A ol' 00 00 oo 00 oﬂ e%o ATA T D%%%%“ 00 00 00 00 5% %% 2% %Y 0%0 00 oli uo D%D %% n%%%%a no 00 °0 0" 2% %%

% Compute the Linear control gain obtained with the LOR theory

C+[1000 -1 0 zeros(t,n-1);
0010 Uu*T) -1/ *T) zeros(la-1) ];

RI=C*Q*C;
A= Ad zeros(4,a+1), % Car model
zeros(n+l4) D ] % Road model
B=[ Bd,
zeros(n+1,1)];
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%non-preview gain using the DLRMI function
%,We could directly have used [Kt,Sbis,Ebis] = DLQR(A,B,R1,R2}
ogbut the time to compute wounld be much greater

[K1,P11] = digrmi(Ad,Bd,R1(1:4,1:4),R2); % K1 is gain matrix : feedback gain
% P11 is Riccati equation solution

% Use non-preview results to solve the preview problem.
FC= Ad - Bd*KI; % xdot

P12 = zeros(4,.0+1);
P12¢,1)=R1(1:4,4+1); % replaces the whole row and first colurnn of P12 with first four rows

% and fifth column of R}
for =2n+1
P12(,i) = RE(1:4, 4+i) + FC*P12(;,i-1);
end

K2 =inv(Bd*P11*Bd +R2) * Bd'* P12 * D;
K=[K1 K2};

O e Ve VYT %Yo Y %% %0 %% %% %96 % %% 0% Yo %o %% W% Y6 % Yo U %2026 %% %62 %% % % %% %%
% End of Program

OO Ve Yo e e e Ve YT Y Y Yo Yo Y Yo% % % %% %0 Y6 % % % %0 %6940 %6 %0265 % % Yo% %Y %% % %% %% % %%
Road Models 1

OO e e o e e e e oo e e Yo U Yoo e YoY% Y% Y Yo% % %0%6 %6 %% % % Yo % Yo% Yo Yo
% circuits_2.m .

T T T T T e A S P e L L P 6%e%a%%6% %% % %Yo %e % Yo% Y% %%
%

% Road Models

%

B T T I T T S S L P i S Y T T T T T T T P e )

disp('Type of circuit 77

disp{" 1 Sinus Shape '}

disp{" 2 Lanc Change ")

disp( 3 Sudden Change of Dircction”)
disp( 4 Smooth Random Path')

disp(' 5 Obstacle Course’)

ii=inpus(* );

if ii=1

% sinus shape
xref=[0u*T:900];
yref=50*sin({xref/100);
end

if ii==

%lane change
xr1={0:u*T:50-u*T];
xr2=[50:u*T:50+60];
xr3=[110+u*T:u*T:300];
xref=[ xrl xr2 xr3};
yrl=0*xrl;
yr2=2-2*cos{{pi/60)*xr2-50*pi/60);
yr3=4*ones(size(x3)),
yref=[yri y12 yr3);

end

if ii==3
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%sudden change of direction
xr1=[00*T:60-0*T];

xr2=[60:u*T:200];

xref=[xrl xr2];

yrl =0%xrl;

SIZE_OF_xr2=size(x12);

y12 = 0.5%0.25*[1:SIZE_OF_xr2(1,2)1*0.5359",
yref = [yrl yr2];

end

if =4

%smooth random path
K=000/(u*T)+1;
xref=[0:u*T:900];

[Bfilter, Afilter] = butter(5, 0.007);
roadn=10*rand(K,1);

roadn = 40*(roadn-5);

yref = filter(Bfilter, Afilter, roadn)';
end

if ii==5

%obstacle course path
load dirResult

xref =x(1,2);

yref(1,) = x(2,2);

end

O YoYU e e Y Y e e Yad e e e Yo Y% Yo% Ve % e % e %e Yo %o e Y% %% Yo% % % %%
% End of Program

O OO G000/ 040/, 010/0,0/0/0/0/0/0/04040/0/0/0/000,04050/0/,040/00/0004949495%%% %% %%%0%%% %% %% %% % %%
Road Models 2

OO e e Y e e e Y e Yo e e Y e Yo Ve Y Yo Ve Y Yoo Yo% %% %o %20 % Ya 0% % Ye%e %Yo %% % %6 % %% %
% circuit_iterations.m

B T T T A A T A T T L A s B e B e Y S S P, 2%%%%
%

% Road Models

%

B s L L e L S ]

Yif ii=1

% circle circuit
Y%R=25();
%xrl=[R;u*T:-R]; %
Yoxr2=[-R+u*T:u*T:R];
Yoxref=[xr1 xr2];
Yoyri=sqri{R"2-xr1."2},
Yoyr2=-sqri(R 2-xr2.°2);
Yoyref={yrl yr2};

%end

if i=1

% sinus shape
xref={0:u*T:900];
yref=50*sin(xref/100);
end

if ii==2

%lane change

xri=[Cu*T:50-u*T];
xr2=[50:w*T;50+-60];
xr3=[110+u*T:*T:300];

xref=[ xrl x12 xr3];

yrl=0*xrl;
y12=2-2*cos((pif60)*x12-50*pif60);
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yr3=4*ones(size(xr3));
yref=[yrl yr2 y13];
end

if i3

%sudden change of direction
xri=[0u*T:60-u*T];

x2=[60:u*T:200];

xref={xrl xr2];

yrl =0%xrl;

SIZE_OF _xr2=size(xr2);

yr2 = 0.5*0.25*%[1:SIZE_OF_xr2(1,2)]*0.5359",
yref = [yr} yi2];

end

if =4

%smoeoth random path
K=900/(u*T)+1;
xref=[0:u*T:900];

[Bfilter, Afilter] = butter(5, 0.007),
roadn=10*rand(K,1};

roadn = 40*{roadn-5);

yref = filter(Bfilter, Afilter, roadn)’;
end

if ii==5

%eobstacle course path
load dirResult

xref =x(1,);

yref(1,)) = x(2,));

end

L TR T T T T T T S S Ly L S S L L )
% End of Program

O e e e e e Y Y U %Y % % Y e % e Yo Yo% %% 0o %Yo Ya Y% %0 %% Ye Y Ye %6 %0 %0 % %0 %0 %% %% %% %

Graphs Display

OO Yo e Y Y e e Y% e L b oY % Yo% Yo % Yo Y e YoV e %6 Yo% Yo% o Yo% %0 0% %0%6% 0 %%46 % %% % %
% Plottings2inoneshot.m

O e e e e oY o YooY oYY e e Yoo e Y Y Ve Ya % U % e Yo% e %Y e %% o %% 6% e e 020 % 0% 0% % % %% %% %%
%

% Graphs Display

%

O e e e e e e Y e e Ve VoY YoV a Yoo % Ve % YoY% %Y e %Y e % % Y Yo% e Yo MY Y % Y% % % e % %% Y%

road_angle_estimation=zeros({1:K-n+1],1);
for j=1:K-n
toad_angle estimation(j}=(yrefij+1)-yref(i})/(u*T).
end
yaw_errorA=phiA({1:K-n])-road_angle_estimation([1:K-n]};

figure(1)

%path following

subplot(2,1,1)
plot(ref({1:K-n}),yref(1,[1:K-n]),xref{{1:K-n]),global_positionA(1:K-n),'s);
%plot(xglobai([1 K-n+1]),yref1,{1-K-n+11).xglobal({1 K-n+1]),yglobal(1: K-n+1,1),'g ). grid;
xlabel('distance, m');

h = get(gca, "xiabel’);

set(h, FontSize!, 14);

ylabel('y coordinate , m');

h = get(gca, 'ylabel);

set(h, 'FontSize', 14);

title{'Path Following');

h = get(gea, title);
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set(h, 'FoniSize', 14);
if i==2
AXIS([-10 1000 -100 100])
end
hold on;

% tateral velocity

subplot(2,1,2)

plot(xref{[1:K-n]),)ateral _accelerationA({1:K-n),"");
xlabel{'distance, m');

h = get(gea, *xlabel’);

set(h, 'FontSize', 14);

ylabel('tateral acceleration, m/s"2");

h = get(gca, "ylabel),

set(h, 'FontSize', i4);

title{'Lateral Acceleration at Mass Center m/s™2'");
h = get(gea, ‘title’);

set(h, FontSize', 14);

hold on;

figure(2)

%y differcnce

subplot(2,1,1)
plot(xref([1:K-n]),yref{{1:K-n])-global_positionA([1:K-n]),"";
xlabel('distance, m'y,

h = get(gea, "xlabel’);

set(h, 'FontSize!, 14);

ylabel('y error , m );

h = get(gca, ‘ylabel’);

set(h, 'FontSize', 14);
title("Path Following);

title('Y Path Following Error’);
h = get(gea, 'title");

set(h, 'FontSize', 14);

hold on;

Yayaw error

subplot(2,1,2)
plot{xref{[1:K-n]),yaw_errorA’,"");
xlabel('distance, m');

h = get{gca, 'xlabel’);

set(h, 'FontSize', 14);
ylabel('yaw angle error’);

b= get(gea, 'ylabel’);

set(h, ‘FontSize!, 14);

title('Path Following'};

title("Yaw Attitude Angle Error’);
h = get(gea, 'title");

set(h, FontSize', 14);

hold on;

figure(3)

%%steering wheel angie
subptot(2,1,1}

plot(xref{[ 1:K-n-11),deltaA(l:K-n-1),"");
Alabel("distance, m');

h = gei(gea, ‘xdabel);

set(h, 'FontSize', 14);
ylabel('steering wheel angle , rad *);
h = get(gca, "ylabel’),

set(h, 'FontSize', 14);

title('Path Following");
title('Steering Wheel Angle');

h = get(gea, 'title');

set(h, 'FontSize!, 14);

hold on;

Yeattitude angle
subplot(2,1,2)
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plot(xref([1:K-n]),road_angle_estimation(1:K-n),xref{[1:K-n]),phiA(t:K-n),'g");
xlabel('distance, m'};

h = get(gca, "xiabel’);

set(h, FontSiz', 14);
ylabelCattitude angle , rad 7);

h = get(gea, 'ylabel);

set(h, 'FontSize', 14);

titie(Path Following’),
title(Aititude Angle Following');
h= get(gea, 'itle);

set(h, 'FontSize', 14);

hold on;

yaw_esrorB=phiB([L:K-n])-road_angle estimation([1:K-n]);

figure(1)
Y%figure{4} %br tambah
%path following
subplot(2,1,1)
plot(xref([1:K-n]),yref{1,{1:K-n}), xrefi[1 K-n]),global_positionB(1:K-n),'s’);grid
%plot(xglobal(] 1 K-n+11),yref{ L[1:K-mrt+1]},xglobal{[1:K-n+11),yglobal(1:K-n+1,1).'g ) arid;
xlabel('distance, m');
h = get(gca, “xlabel);
set(h, 'FontSize', 14);
ylabel('y coordinate , m');
h = get{gca, 'ylabel’);
set(h, 'FontSize', 14);
title(Path Following),
h = get(gea, 'title'),
set(h, 'FontSize', 14);

if—=2

AXIS([-10 1000 -100 100])

end

hold on;

% lateral velocity

subplot(2,1,2)
plot(xref{{1:K-n]},lateral_accelerationB(1:K-n));grid;
xlabel('distance, m);

h= get(gea, "xlabel’);

set(h, 'FontSize, 14);

ylabel("lateral acceleration, m/s*27),

h = get{gca, 'ylabel);

set(h, FontSize', 14);

title('Lateral Acceleration at Mass Center m/s"2');
h = get(gcea, title');

set(h, 'FontSize', 14);

figure(2)

Y%figure(5) %obr tambah

%y difference

subplot(2,1,1)

plot(xref{| 1:K-n]),yref] 1 K-n])-global_positionB([1:K-n]));grid;
xlabei{'distance, m'");

h = get(gea, "xlabel’);

set(h, 'FontSize', 14);
ylabel('y error , m ),

h = get{gca, *ylabel');

set(h, FontSize', 14);
title('Path Following');

title('Y Path Following Error’);
h.= get(gea, title);

set(h, FomSize', 14);

hotd on;

Yeyaw error

subplot(2,1.2)
plot(xref{{1:K-n]),yaw_errorB');grid;
xtabel('distance, m');
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h = get(gca, 'xlabel’);

set(h, FontSize', 14);
ylabel{'yaw angle error’),

h= get(gca, 'ylabel');

set(h, FontSize', 14);

title('Path Following'y;

title('Yaw Attitude Angle Error');
h = get(gcea, title");

set(h, FontSize', 14);

hold on;

figure(3)

%figure(6) baru tambah0
%steering wheel angle
subplot(2,1,1)
plot(xref{{1:K-n-11),dettaB(1:K-n-1));grid;
xlabel('distance, m’);

h = get(gea, 'xlabel’),

set(h, ‘FontSize', 14);
ylabel('steering wheel angle , rad ");
h = get(gca, "ylabel');

set(h, FontSize', 14),

title('Path Following');
title("Steering Wheel Angle'y;

h = get(gca, title’);

set(h, FontSize', 14);

hold on;

%%attitude angle

subplot(2,1,2)
plot(xref{[1:K-n}),road_angte_estimation{§:K-n),xreR]1:K-n]),phiB(1:K-n),'s);evid;
xlabel("distance, m");

h = get(gca, xlabel);

set(h, ‘FontSize', 14);
ylabel(attitude angle , rad *);

h = get(gea, 'ylabel’);

set(h, 'FoniSize', 14);

title{'Path Following");
title("Attinrde Angel Following'),
h = get(gea, title');

set(h, 'FontSize', 14);

hold on;

O e O O Y e e Y e e e U e e Y Yo Y Y Y Y e Y Yo ra Ve Yo % o Yoo o Ye %% % %6 %% % %o % % % Vo2 % Y%
% End of Program
OO O e e e e e e o VY e e e e Yo e e Y Y% Y% Ye %Y e %o % % % Yo% Yo Y %o Yo% %% % k% % e

Y Path Following Error & Steering Wheel Angle Display

:/o" YT e a0 e e Yo Y Yo% Yo% %6 Y s %% %% e %% %% 0 % %6 %026 Y %% %% %6 Y% e % %X e he % Y% %%
://:"T‘:%::}’ A T T T T T L L s e o v ]
:;: Y Path Following Ertor & Steering Wheel Angle Display

‘ﬁ:" L A T T T o L S U Py e S e

if size{yref) = size{global_positionA)
countLimit = K-n;
clse
countLimit = min(size(yref),size{global_positionA));
end
myCount=1;
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averageError =0;

totalError = 0;

thisError = 0;

while myCount < countLimit(2)
thisFrror = yref{myCount) - global_positionA{myCount);
if thisError <0

thisError = -thisError;

end
totalError = totalError + thisEmor;
myCount = myCount + 1;

end

averageError = totalError/myCount;

averageError

max_angle=max(deltaA)

min_angle~min(deltaA)

e Y e e YU e e e T e Yt Y S e Ye e %% %% %% % %% %% % %% % %% % Y%

% End of Program

000 0L0 0 0 D00 0,0/ 0/0/0/0407000/0/000/0,04010,0/,0/049%0%%% %0566 %Yo Yo% Y% % %Y WYY %% %% Yo% %% % %%
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