
Neural Network based Controller for High Speed Vehicle following
Predetermined Path

by

Tan Zhang Yaw

Dissertation submitted in partial fiilfilment of

the requirement for the

Bachelor ofEngineering (Hons)

(Electrical & Electronics Engineering)

December 2006

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Neural Network based Controller for High Speed Vehicle following
Predetermined Path

Approved by,

by

Tan Zhang Yaw

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment ofthe requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

NOOR HAZRIN HANY BT. MOHAMAD HANIF

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERIISKANDAR

TRONOH, PERAK DARUL RIDZUAN

December 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

TAN ZHANG YAW

11

ABSTRACT

The actual integration of automated control systems in vehicles such as Anti-lock

Braking Systems (ABS) or Traction Control System (TCS) has proved to increase road

safety and improve driver's comfort. Since most of the accidents are attributed to the

fault of the driver, automated control systems in vehicle safety technology may

dramatically better road safety by improving driver's performance. This thesis presents

an enhanced and improved autonomous intelligent cruise control systems with obstacle

collision avoidance integrated with path following/lane keeping. Obstacle collision

avoidance is the ability to avoid obstaclesthat are in the vehicle's path, without causing

damage to the obstacle or vehicle. Path following/lane keeping is the ability to follow

the vehicle's path and keeping in its lane, as accurately as possible. The idea is to have a

vehicle that drives by itself and avoids obstacles in the real world. Every instant, the

vehicle decides by itself how to modify its direction according to its environment. This

thesis demonstrates Gaussian functions and multi-objective cost function employed

alongside with the Neural Network and optimal preview controller for control of the

position of the vehicle to move while avoiding collision with obstacles. Each obstacle is

represented independent of the others as a bell-shaped hump by the Gaussian functions

which serve as an obstacle recognition system. Multi-objective cost function is formed

for the planning strategy to generate, evaluate and select plans so that the vehicle can

select which direction to move. Neural Network and optimal preview steering control

are utilized to control a full linear steering model of a vehicle so as to increase path

following accuracy. Optimal preview control is capable to portray the driver's vision of

the path and process the knowledge while Neural Network controller has the ability to

'learn' from past errors and adjust the network to obtain specific target output. In this

thesis, a MATLAB simulation environment was created to simulate the ability of a

vehicle to avoid obstacles that are in the vehicle's path. Simulated obstacle avoidance

has confirmed the capability of a vehicle to precisely avoid collision with obstacles

while traveling on high speed along its predetermined path.

in

ACKNOWLEDGEMENTS

Firstly, I would like to thankmy supervisor, Ms. Noor Hazrin Hanybt. Mohamad Hanif,

for giving me this wonderful opportunity to work on such an interesting project. Allow

me also to express my deep appreciation and profound thanks to my supervisor for her

meritorious assistance, guidance and perseverance throughout this project. It is through

the help of her that this project was possible thus leading to an ultimate success. I will

always value the excellent scientific, engineering and ethical qualities that she has tried

to instill in me, through leading by example. I am grateful to her for always being

accessible and for providing a friendly and stimulating environment to work on this

project.

I would like to express my heartfelt appreciation and ardent gratitude to Universiti

Teknologi PETRONAS (UTP) Electrical and Electronics Engineering Department lab

technologists, lab executives and lecturers for their approachable demeanorand for their

unconditional help and effort in making my project a success. I would also like to thank

my fellow colleague Sim for his relentless assistance and willingness to oblige when I

needed help. Nevertheless, a special thanks to all my peers at UTP for their comments,

suggestions and encouragement.

I want to thank my family for their support, prayers and encouragement. I especially

want to extendmy thanks to Siew Hui for standing by me relentlessly.

Above all, I would like to thank God for continuing to bless me with amazing family

and friends and providing me with countless opportunities throughout my life.

IV

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL

CERTIFICATION OF ORIGINALITY

ABSTRACT

ACKNOWLEDGEMENTS.

CHAPTER 1: INTRODUCTION .

1.1 Background of Study .

1.2 Problem Statement

1.2.1 Safety .

1.2.2 Comfort/Convenience

1.3 Objective and Scope of Study.

1.4 Outline ofThesis

CHAPTER 2: LITERATURE REVIEW AND/OR THE(

2.1 Relevant Research Topics

2.2 Neural Network

2.2.1 Overview ofNeural Network

2.2.2 Neural Network Training

2.2.2.1 Online Training

2.2.3 Neural Network Algorithm

2.2.3.1 Gradient Descent Method

2.3 Generic Planning Steps for Obstacle Avoidance

2.3.1 Represent the problem

("Planning domain") .

n

iii

iv

1

•1

2

3

3

3

4

6

6

7

8

10

10

11

11

12

13

CHAPTER 3:

CHAPTER 4:

2.3.2 Set goal ... 14

2.3.3 Decide to Plan. . . 14

2.3.4 Build a Plan (Select a Strategy) 15

2.3.5 Execute the Plan, Monitor and

Repair/Replan. . . 15

METHODOLOGY/PROJECT WORK . . 17

3.1 Path Following/Lane Keeping with Obstacle

Collision Avoidance 17

3.2 Linear Car Model 18

3.3 Road Preview Model.... 20

3.4 Obstacle Collision Avoidance System . 22

3.4.1 Obstacle Course and Vehicle

Characteristics. . . 23

3.4.2 Obstacle and Goal Function . 24

3.4.3 Multiobjective Cost Function. 27

3.4.4 Plan Generation and Selection 28

3.5 Path Following/Lane Keeping System . 29

3.5.1 Optimal Controller . . 30

3.5.2 Neural Network Controller . 30

3.5.2.1 Implementation using Gradient

Method ... 31

RESULTS AND DISCUSSION ... 33

4.1 Obstacle Collision Avoidance. . . 33

4.2 Path Following/Lane Keeping with Obstacle

Collision Avoidance 34

4.2.1 Obstacle Course (Straight Path) 35

4.2.1.1 Obstacle Course (Straight Path)

at80km/h ... 35

VI

4.2.1.2 Obstacle Course (Straight Path)

at90km/h ... 36

4.2.1.3 Obstacle Course (Straight Path)

atlOOkm/h ... 37

4.2.1.4 Obstacle Course (Straight Path)

atllOkm/h ... 38

4.2.1.5 Obstacle Course (Straight Path)

atl20km/h ... 39

4.2.1.6 Obstacle Course (Straight Path)

atl30km/h ... 40

4.2.1.7 Obstacle Course (Straight Path)

atl40km/h ... 40

4.2.1.8 Obstacle Course (Straight Path)

atl50km/h ... 41

4.2.1.9 Obstacle Course (Straight Path)

atl60km/h ... 41

4.2.1.10 Obstacle Course (Straight Path)

atl70km/h ... 41

4.2.1.11 Obstacle Course (Straight Path)

atl80km/h ... 42

4.2.1.12 Obstacle Course (Straight Path)

atl90km/h ... 42

4.2.1.13 Obstacle Course (Straight Path)

at200km/h ... 43

4.2.2 Mobile Obstacles and Uncertainty 44

4.3 Graphical User Interface (GUI) . . 45

4.3.1 Obstacle Course GUI Screenshot 45

4.3.1.1 Straight Path ... 45

4.3.1.2 Lane Change ... 48

4.3.1.3 Sudden Change of Direction . 49

vn

CHAPTER 5:

REFERENCE

APPENDIX A

APPENDIX B

4.3.2 Predetermined Obstacle Free Paths

GUI Screenshot . . 49

4.3.2.1 Sinus Path ... 50

4.3.2.2 Lane Change ... 51

4.3.2.3 Sudden Change ofDirection . 52

4.3.2.4 Smooth Random Path. . 53

CONCLUSION AND RECOMMENDATION . 56

5.1 Conclusion 56

5.2 Proposal for Future Works ... 57

5.2.1 Employment ofModel-Predictive

Control (MPC) Method . 57

5.2.2 Additional Neural Network Control

of the Forward Speed . 57

5.2.3 Implementation of Different Types

ofPath. 57

5.2.4 Improvement ofCar Model . 58

5.2.5 Implementation ofDifferent

Learning Process 58

5.2.6 Improvement ofNeural Structure 58

59

62

74

vui

LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1:

Figure 3.2:

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10:

Figure 3.11;

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 4.1:

Model of a neuron

Four basic activation functions of a neuron

A basic multi-layer feed-forward network

Generic planning steps

Tree representation of the alternative plans that can be considered at

some point in time, along with the costs ofexecuting such plans

Path following/lane keeping system (dotted) integrated with obstacle

collision avoidance system (dashed)

Vehicle steers away from another stationary vehicle or object appearing

in the vehicle's path while traveling on a prescribed path/lane

Plan view ofthe model of the car

Car and Road at instant k

Obstacle collision avoidance system

Vehicle avoids another vehicle or object appearing unexpectedly in the

vehicle's path while traveling on a prescribed path/lane

Initial vehicle position, goal position and obstacles

Autonomous vehicle guidance system

Obstacle function J0(x, v) (scaled by ©/)

Obstacle function J0(x,y) (scaled), contour form, with initial vehicle

position and goal position

Goal function a>2 J&, y), contour form, with initial vehicle position and

goal position

Multiobjective cost function J(x, y) for evaluating plans

Vehicle follows a prescribed path or keeps in a designated lane

Path following/lane keeping system

Car/road system structure

Optimal preview gains for path following for five different speeds

Vehicle path for obstacle avoidance and goal seeking

IX

Figure 4.2: Vehicle path on obstacle course (straight path) for path following/lane

keeping

Figure 4.3: Obstacle course (straight path) at 80 km/h with 120 preview points

Figure 4.4: Obstacle course (straight path) at 90 km/h with 120 preview points

Figure 4.5: Obstaclecourse (straight path) at 100km/h with 120previewpoints

Figure 4.6: Obstacle course (straight path) at 110 km/h with 120preview points

Figure 4.7: Obstacle course (straight path) at 120 km/h with 120 preview points

Figure4.8: Obstaclecourse (straightpath) at 130km/h with 120previewpoints

Figure 4.9: Obstacle course (straight path) at 140km/h with 120 preview points

Figure 4.10: Obstaclecourse (straight path) at 150km/h with 120previewpoints

Figure 4.11: Obstacle course (straight path) at 160km/h with 120 preview points

Figure 4.12: Obstacle course (straight path) at 170 km/h with 120 preview points

Figure 4.13: Obstacle course (straight path) at 180km/h with 120preview points

Figure 4.14: Obstacle course (straight path) at 190 km/h with 120 preview points

Figure4.15: Obstaclecourse (straightpath) at 200 km/h with 120previewpoints

Figure 4.16: Graphical User Interface (GUI) screenshot

Figure 4.17: GUI screenshot of path ofvehicleand positionsofobstaclespreview

Figure 4.18: GUI screenshot ofpath of the vehicle as to avoid the obstaclesand stay

on course to the goal

Figure 4.19: GUI screenshot ofpath followed and Y path following error ofthe

vehicle

Figure 4.20: GUI screenshot of lane change with obstacles at 110 km/h with 80

preview points

Figure 4.21: GUI screenshot of sudden change ofdirection with obstacles at 110 km/h

with 80 preview points

Figure 4.22: GUI screenshot of sinus path without obstacles at 110 km/h with 100

preview points

Figure 4.23: GUI screenshot of lane change without obstacles at 110 km/h with 100

preview points

Figure 4.24: GUI screenshot of sudden change ofdirection without obstacles at 110

km/h with 80 preview points

x

Figure 4.25: GUI screenshot of smooth random path without obstacles at 110 km/h

with 100 preview points

LIST OF TABLES

Table 1.1

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

Table 4.10

Table 4.11

Table 4.12

Table 4.13

Table 4.14

Table 4.15:

Table 4.16:

Table 4.17:

Causes offatal road accident on Malaysian roadways in 2003

Vehicle model parameters

Vehicle model forces

Summary ofobstacle course (straight path) at 80 km/h

Summary ofobstacle course (straight path) at 90 km/h

Summary ofobstacle course (straight path) at 100 km/h

Summary ofobstacle course (straight path) at 110 km/h

Summary ofobstacle course (straight path) at 120 km/h

Summary ofobstacle course (straight path) at 130 km/h

Summary ofobstacle course (straight path) at 140 km/h

Summary ofobstacle course (straight path) at 150 km/h

Summary ofobstacle course (straight path) at 160 km/h

Summary ofobstacle course (straight path) at 170 km/h

Summary ofobstacle course (straight path) at 180 km/h

Summary ofobstacle course (straight path) at 190 km/h

Summary ofobstacle course (straight path) at 200 km/h

Summary of sinus path without obstacles at 110 km/h with 100 preview

points

Summary of lane change without obstacles at 110 km/h with 100 preview

points

Summary of sudden change ofdirection without obstacles at 110 km/h

with 80 preview points

Summary of smooth random path without obstacles at 110 km/h with 100

preview points

xi

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Malaysia is considered relatively safe for driving compared to other developing

countries. But if we observe past years' and recent road accidents statistics/reports,

we can perceive that the propensity of road accidents in Malaysia is on the rise.

Accidents are generally classified as single vehicle accidents and multiple vehicle

accidents. Single vehicle accidents in whichthe vehicle is eithercolliding with fixed

objects or with pedestrians or the vehicle may fall in a ditch and so forth whereas

multiple vehicle accidents in which two or more than two vehicle can either collide

head-on or one vehicle may collide with the front vehicle at the back or may a have

side-swipe type collision. As a rapidly developing country, Malaysia has seen a

dramatic increase in the number of vehicle ownership, averaging 8 % per annum

from 7.7 million in 1996 to 12.8 million vehicles in 2003. This had translated into an

increase in the number of road accidents from 189,109 cases in 1996 to 298,651

cases in 2003. At the same time, the number of fatalities resulting from road

accidents had decreased slightly from 6,304 cases in 1996 to 6,282 cases in 2003.

However, the number ofdeaths per 10,000 vehicles had decreased from 8.2 deaths in

1996 to 4.9 deaths per 10,000 in 2003 [1]. According to [2], the main cause of road

accidents on the Malaysian roadways is the loss control of vehicle (Terbabas sendiri

(satu kenderaan)) which contributed 23.19 % ofthe total road accidents in 2003 (see

Table 1.1 in Appendix A). A comprehensive study of road safety by [3] found that

human error was the sole cause in 57 % of all road accidentsand was a contributing

factor in over 90 % [4].

In the vehicle safety technology arena we have seen major advances in the last few

decades. These developments from three-point seatbelts to airbags to Anti-lock

Braking Systems (ABS) have saved thousands ofdrivers' and passengers' lives. And

recently, it has gotten even better. Accelerated by the advent of the microchip, in the

1

last ten years we have witnessed an incredible array of safety devices installed in

vehicles. The actual integration of automated control systems in vehicles such as

Traction Control System (TCS), Acceleration Slip Regulation (ASR) traction control,

Electronic Stability Control (ESP), Autonomous Intelligent Cruise Control System

has proved to increase road safety and improve driver's comfort. Driving is thus

more relaxing, less stressful and safer andthe driver can more easily concentrate on

other important factors. Autonomous control system is a discipline in which control

algorithms are developed by emulating certain characteristics of intelligent biological

systems. It is quickly emerging as a technology that has opened avenues for

significant advances in many areas. One of the many areas is vehicle safety

technology. Looking at the genuine achievements of this technology, implementation

is designed to reduce the number of accidents and fatalities on the roadways and

highways. Automobile makers are currently trying to adopt this technology to the

cruisecontrol of their vehicles. However beingautonomous, the degree of safetyand

reliability of this technology on the roadways is inevitably highly debated and

questioned. This project employing Gaussian functions and multi-objective cost

function alongside with optimal preview controller and Neural Network controller,

as the heart of the vehicle autonomous control system would eventually open up

possibilities of a whole new driving experience with vehicle traveling safely,

accurately, precisely andproviding a comfortable ride autonomously.

1.2 Problem Statement

With traffic continually increasing, basic cruise control is becoming less useful and

becoming obsolete. This project has been conducted to enhance and improve the

functions of conventional cruise control, a system which presently only maintains

preset speed ofa vehicle. The driver sets the speed and the system will take over the

throttle of the vehicle to maintainthe same speed.The existingcruise control system

which only maintains the desired speed preset by the driver without any features

assuming some of the driver's responsibility for safe driving is fraught with liability

pitfallsand it is addressed as follows:

1.2.1 Safety

Most cruise control systems do not allow the use ofthe cruise control below a certain

speed (normally 80 km/h) to discourage use in city driving. Therefore, when the

cruise control is engaged, the vehicle is assumed to travel on a constant high speed.

A vehicle traveling on high speed requires no margin of errors as any of it poses a

high risk to the passengers and other users on the road. Although an error-free

condition is not realistic, it should be as minimal as possible to ensure a level of

safety for the utilization ofan autonomous vehicleon the roadways.

1.2.2 Comfort/Convenience

Roadsare oftennot obstacle and traffic-free. Traveling on a presetconstant speedon

a populated roadway posesa potential collision withthe vehicle upfront or objects on

its way. In dense traffic on the motorway and expressways with road environment

constantly changing, conventional cruise control is often useless. Standard cruise

control will not prevent accidents. It cannot provide steering assist when a driver is

slow to take evasive action when unexpectedly confronted with another vehicle or

objectappearing in the vehicle's path. As a vehicle approaches a curve, this system

is unable to provide compensatory steering assist to keep the vehicle in its lane and

keep the vehicle well on its path.

13 Objective and Scope ofStudy

This project is an expansion of existing cruise control system. The system presented

in this thesis not only maintains the desired speed preset by the driver, but also,

whenever required provides steering assist on the motorways and expressways or

country roads. This system relieves the driver of the permanent and monotonous

chore of constantly adjusting the vehicle's speed and controlling the vehicle's

steering. Also, it assumes some of the driver's responsibility for safe driving. It

provides steering assist when a driver is slow to take evasive action when

unexpectedly confronted with another vehicle or object appearing in the vehicle's

path. At the start of evasive action, the system provides steering assist to help the

driver avoid the obstacle. During evasive action, the system provides a safe and

comfortable gap from theobstacle to help prevent thedriver from getting tooclose to

the obstacle. After evasive action, the system provides steering assist if the driver is

slow to return the vehicle to its original course, helping prevent the vehicle from

spinning out of control. In short, this system assists drivers in taking evasive action

and then helps stabilize the vehicle. This project has been conducted with reference

to the works of [5] on Neural Network based controller for high speed vehicle

following predetermined paths. The aim of this project is to develop an improved

and enhanced autonomous intelligent cruisecontrol system that is capable to follow

accuratelythe predetermined path with the smallestpossible error and also to avoid

obstacles alongthe path. For the easeand simplicity of the project, it will be assumed

that the vehicle has perfect information aboutwhere the obstacles are (e.g., via radar

sensor system, laser sensor system or computer vision system). The test speeds in

interest are those commonly used on Malaysian motorways and expressways which

are from 80 km/h to 110 km/h. Traveling above 110 km/h is well over the

expresswaylegal speed limit and would not only earn the driver a speeding ticket but

poses high risk to the passengers and other users on the road. In line with the

objective to develop an autonomous intelligent cruise control system for high speed

vehicle, therefore vehicle speed up to 200 km/h is studied to examine the reliability

and robustness of the system. To make it easier to simulate path following/lane

keeping with obstacle avoidance system of the vehicle, a simple and user friendly

Graphical User Interface (GUI) is designed.

1.4 Outline ofThesis

This thesis is divided into several chapters and structured in the following way.

Chapter 2 (Literature Review And/Or Theory) discusses prior work related to

collision avoidance, reviews Neural Network; its definition, training method (online)

and algorithm (gradient descent) and outlines generic planning steps for obstacle

avoidance.

Chapter 3 (Methodology/Project Work) recaps the works by Sharp [19] and Dandre"

[12] on the linear car model and road previewmodel. Gaussian functions and multi-

objective cost function utilized for obstacle collision avoidance are described. This

chapter also discusses optimal preview controller and Neural Network controller

employed alongside with obstacle collision avoidance system to drive a linear car

model accuratelyand precisely on prescribed paths.

Chapter 4 (Results and Discussion) discusses the simulation results of the vehicle

traveling on high speed avoiding collision with obstacles while following the path

designed to avoid the obstacles. The Graphical User Interface (GUI) developed for

this purpose is also discussed. Path following/lane keeping with obstacle collision

avoidance simulation results in the GUI for obstacle course (straight path, lane

change and sudden change of direction) as well as path following simulation results

in GUI for four predetermined obstacle free paths: sinus path, lane change, sudden

changeof direction and smoothrandompath are presented.

Chapter 5 (Conclusion and Recommendation) gives a conclusion of the work and

proposes a range ofpossible future work that could improve the results ofthe thesis.

CHAPTER 2

LITERATURE REVIEW AND/OR THEORY

2.1 Relevant Research Topics

There has been much interesting research done for obstacle collision avoidance.

Below are descriptions ofa few relevant research topics.

In [6], there is a formalization of human centered design principles and illustrate

their application using an automation system that assists drivers to avoid unsafe lane

departures. This paper recognizes the importance of the human-computer interaction

as related to collision avoidance. The safety and effectiveness of a collision

avoidance system in an automobile is not only related to how well the automated

systemworks,but howthe entirehuman-computer system performs.

Making sensor-friendly vehicle and roadway systems would improve on the abilities

of collision avoidance systems. In [7], work was done to show the improvements

possible with complementary signal sensor and reflector technologies. These

technologies can assist or replace single vehicle-based systems. The four most

promising technologies passive license plates with enhanced radar return, roadside

obstacle mounted radar-reflecting corner cubes, fluorescent paint for lane and

obstacle marking, and light emitting diode brake light messaging are discussed

especially on their improvement to the signal to noise ratio for the collision

avoidance sensors. These sensor friendly systems should significantly improve

collision avoidance systems.

In [8], a fuzzy logic enhanced car navigation and collision avoidance system has

been designed. Essentially, the control of a car in this system is based on the flexible

use of a fuzzy trajectory mapping unit that enables smooth trajectory management

independent of car's initial position or position of the destination. This was done

with a fuzzy controller consisting of28 rules and a state machine containing 4 states.

For performing more demanding tasks, however, additional blocks of "intelligence"

are required. The latter is quite possible thanks to the modular structure ofthe control

system responsible for different task in separate without jeopardizing overall

performance.

In [9], a multi-sensorcollisionavoidance system(CAS) is describedin this paper.

Measurements from radar, vision and sonar are combinedusing a fusion schemethat

utilizes fuzzy clustering and estimation techniques to estimate relative motion

between the vehicles. Fuzzy logic is used to generate audiovisual warnings for the

driver. It also implements a throttle relaxer and brake actuator to slow the vehicle

down. A prototype was implemented on a Humvee.

A fuzzy collision avoidance system for a fixed obstacle was designed and tested in

[10]. This work describes a fuzzy trajectory controller with over 300 rules that is

used with a specially designed car-driving robot. The rules were created based on the

trajectories various drivers used to avoid a fixed obstacle. A laser was used as the

obstacle detection device. While the robot and fuzzy controller worked successfully

about 60 % of the time, the reasons for failure are understood.

Using Game Theory as a basis for collision avoidance is a subject ofmuch research.

One example would be from [11], This work describes mathematically how an

evader (car) can avoid a pursuer (moving obstacle or static obstacle), using non-

cooperative game theory. There is no path to follow or limitation as to where the

vehicle can go to avoid the obstacle, outside its own physical path restrictions.

2.2 Neural Network

This part of the chapter reviews briefly the implementation ofNeural Network in the

specific case ofthe control design. The learning process ofa neural controller aiming

to reduce a predefined cost function is introduced.

2.2.1 Overview of Neural Network

Neural Network is a powerful mathematical model originally designed to mimic a

human's information processing structure and able to capture and represent complex

input/output relationships. A Neural Network is a parallel processing structure

composed ofprocessing elements called neurons or nodes.

A neuron having multiple-input and single-output is illustrated in Figure 2.1 in

Appendix A. Each neuron in an artificial Neural Network is based on:

• A set of input values <z, and associated weights wt.

• A threshold or bias b.

• An activation function f, possibly non-linear, that operates on the weighted

inputs and the bias and maps the results to an output w:

f

u = f (2.1)
v *

The Figure 2.2 in Appendix A depicts some common activation functions also called

transfer functions. The network function of a neuron is determined largely by the

connections between the neurons and depends on the location of the considered

neuron in the network.

A Neural Network consists ofa combination of neurons wired together in a complex

communication network in one or several layers. For instance, a multi-layer feed

forward network is composed of input, hidden and output layers as depicted in

Figure 2.3 in Appendix A. Each neuron is connected to the others neurons in the next

layer through the weighting parameters.

The Neural Network's knowledge is stored within the inter-neuron connection

strengths also called synaptic weights. Commonly the networks are adjusted, or

trained, so that a particular input x leads to a specific target outputy.

This learning process proceeds by way of presenting the network with a training set

{x(i),y(i)} composed of inputs together with the required response. A certain input is

8

fed into the input layerof the network. The network will then produce an output. By

comparing this output with the required target output, the error the network is

making can be measured. This error can then be used to alter the connection

strengths between layers in order that the network's response to the same input will

be better the next time around. This can be done thanks to a cost function ofthe form:

J=Jfp(i) (2-2)

4)=\(k)-y(!)j(rt)-y<!)) (2-3)

and an optimization process aimed to reduce the cost function. The gradient method

is commonly used but others methods exist. The update rule of the gradient method

is:

3 T

w(new)=w(old)+Aw (2.4) with Aw =-y.— (2.5)
dw

where y is the learning rate

and where w is a vector containing all weighting parameters

The true power of Neural Network lies in their ability to adapt to various situations.

The learning process depends mainly on the modeling. This advantage allows to

consider a wide range of outside conditions with little tuning and without the

modification ofthe main structure ofthe process.

Neural Network is also powerful in the case of both linear and non-linear

relationships when traditional linear methods become inappropriate as the plant to be

controlled contains non-linearities [12].

Neural Network performs two major functions: learning and recall. Learning is the

process of adapting the connection in a Neural Network to produce a desired output

vector in response to a stimulus vector presented in the input buffer. Recall, on the

other hand, is the process of accepting input stimulus and producing output response

in accordance with the network weight structure.

Learning rules of neural computation indicates how connection weights are adjusted

in response to a learning example. The most used learning rule in engineering

application is supervised learning. In this method, the Neural Network is trained to

give the desired response to a specific input stimulus. The difference between actual

output and desired response is known as error, which is used to adjust the connection

weights.

Other learning rules are graded learning (output is 'graded' as good or bad on a

numeric scale, and the connection weights are adjusted in accordance to the grade)

and unsupervised learning (the network organizes itself internally so that each hidden

neuron responds strongly to a different set of input stimuli) [13].

2.2.2 Neural Network Training

Neural Network could produce desirable outputs by having sufficient training.

Commonly the networks are adjusted, or trained so that a particular input leads to a

specific target output. Online (incremental) training was used in this project and is

outlined in this section.

2.2X1 Online Training

Online training updates weights and biases as each input is presented to the network.

By setting any value of network learning rate, the weights will change at each

subsequent time step (instance). Thus, weights are updated more than once per entire

presentation of training data (epoch). Summarized in [14], the online training

proceeds as follows:

Step 1: Initialize the weights.

Step 2: Process one training case.

Step 3: Update the weights.

Step 4: Repeat Step 2 onwards until the stopping criterion has been reached.

10

2.2.3 Neural Network Algorithm

The most commonly used Neural Network learning algorithm is back propagation.

The term refers to the manner in which the gradient is computed for nonlinear

multilayer networks [15]. Standard back propagation is a gradient descent algorithm,

in which the network weights are moved along the negative of the gradient of the

performance function. This algorithm has different variations based on the standard

optimization techniques. The variations include the gradient descent, conjugate

gradient descent, Newton, Quasi-Newton and Levenberg-Marquardt method. The

applications of these algorithms rely on the scale of the network to be used. Gradient

descent method is typically for a large scale network, conjugate direction is for a

medium scale, Quasi-Newton and Levenberg-Marquardt (preferred for low residual

regression problems) for small scale while Newton method is for a tiny scale

network [16]. Gradient descent method was used for this project and is described in

this section.

2.2.3J Gradient Descent Method

In Neural Network, the gradient descent learning is applied to determine network

weights that minimize error functions. The two parameters (weight and error

functions) create an error surface. This algorithm usually initializes at a commonly

random point in the weight space and points along the line of steepest descent until a

minimum in the error surface is found. As the sequences ofthe points reaching to the

minimum, the changing rate from the previous to next points decreases.

This particular manner is due to the formulation of the gradient descent learning

itself:

Aw = -y— (2.6)
dw

where w is the weighting vector, J is the performance and y is the learning rate.

The negative sign implies that the gradient descent is approximated by taking small

but finite steps in the direction of steepest descent. As soon as the weights just start

11

to change in the direction of the gradient at the measured point, the true gradient

itself will start to change [17]. Thus, as the algorithm progresses, the learning rate

will be getting smaller and approaches zero.

A gradient descent algorithm by itself has a slow response. To increase the rate of

response, momentum term is combined with the basic algorithm. This combination

results in movement in fixed direction. Thus, if several steps are pointed towards the

same direction, the rate of response ofthe algorithm will increase.

Another mode of the gradient descent algorithm that is applied in this research is

gradient descent with adaptive learning rate back propagation. Without adaptive

learning, the learning rate is kept constant throughout learning. Selection of high

learning rate may lead the algorithm to oscillate and become unstable, while

selection of small learning rate will result in longer time taken for the algorithm to

converge to the desired minimum point.

By applying adaptive learning, the learning rate is allowed to change during the

training process. This algorithm will keep the learning step size as large as possible

while keeping learning stable [15]. The learning rate is change in such a way that it

will be increased if stable learning is obtained per instance or decreased when the

learning becomes unstable [13].

2.3 Generic Planning Steps for Obstacle Avoidance

Essentially, planning is one approach that allows for more than simple reactions to

what it sensed. It utilizes information about the problem and environment, often in

the form of some type ofmodel and considers many options and chooses the best one

to achieve the closed-loop control objectives. Planning provides for a very general

and broadly applicable methodology and it has been exploited extensively in

conventional control (e.g., in receding horizon control and model predictive control).

As compared to the fuzzy and expert system approaches, it exploits the use of an

explicit model to help it decide what actions to take. Like the fuzzy and expert

system approaches, it still, however, possible to incorporate heuristics that help to

12

specify what control actions are the best to use. Hence, in a broad sense, planning

approaches attempt to use both heuristic knowledge and model-based knowledge to

make control decisions; this may be the fundamental reason for selecting a planning

strategy over a simple rule-based one. It is often bad engineering practice to only

favor the use of heuristics and ignore the information provided by a good

mathematical model; planning strategies provide a way to incorporate this

information.

"Action plans" are often formed to try to achieve specific goals. For instance, an

"action hierarchy" given in Figure 2.4 is performed by the vehicle as one type of

action plan. The goal is ultimately develop a sunple planning strategy for control of

the autonomous vehicle to move along its predetermined path while avoiding

obstacles in its way.

Represent the Problem

Set Goal

Decide to Plan

Build a Plan

Execute the Plan

Figure 2.4: Generic planning steps

2.3.1 Represent the Problem ("Planning Domain")

In order to plan, some types of representation (model) of the problem that must be

solved must exist. This model in this case is in the form of a road map where the

vehicle is trying to plan a route to avoid obstacles along its predetermined path.

Generally these models are thought as being acquired via experience (i.e., via

learning), however it is certainly the case that instincts (model passed to humans via

13

evolution) affect planning. For instance, humans have certain "hard-wired"

knowledge that can be thought of as aspects of models that influence planning (e.g.,

tendency to have a fear of snakes and some insects). Performance in planning is

critically dependenton the model of the problem. A poor model will generally lead

to a bad plan, or at least to one that soon fails that is colliding with an obstacle or

going off the path and thus requiring replanning. A high quality model that allows to

project far into the future (or down a hierarchy of tasks and sub goals), may lead to

better plans. Howevercharacteristics of the problem domainmay make it impossible

to specify a good model. For instance, time varying and stochastic features of some

problem domains may make it impossible to predict into the future with much

accuracy and hence make it a waste of time to predict too far into the future.

2.3.2 Set Goal

Setting goals is essential to planning, since without goals there is no purposeful

behavior. Goals can be very different for different system, environment and times.

Goals are driven by evolutionary characteristics (e.g., the goal of survival, the goal of

reproduction), but in humans such goals can also be significantly affected by

humans' values and ideals (e.g., ones set by culture). Goals can be learned and can

consist of a time-varying hierarchy or sequence of sub goals. The goal of the vehicle

is pretty much straight forward where it is required to avoid collision with obstacles

along its predetermined path.

233 Decide to Plan

Sometimes humans simply react to situations without considering the consequences

of their actions. Other people decide to develop a plan since they may think that this

will allow them to more successfully reach their goals. There are many issues that

affect the decisions ofwhether or not to plan (e.g., physiological and cultural). Many

lower animals (e.g., some bacteria) cannot plan; they simply react to stimuli.

14

2.3.4 Build a Plan (Select a Strategy)

Normally the selection of a plan first involves projecting into the future using a

model (e.g., in path planning of the vehicle in this case) and often involves

considering a variety of sequences of tasks and sub goals to be executed. In terms of

graph-theoretic view, this may be thought of as a "tree" of plans where the nodes of

the tree are tasks or sub goals and links between these indicate plans (a path in the

tree is a candidate plan). See Figure 2.5 in Appendix A. How "deep" a tree generate

(e.g., how far to plan into the future) depends on the quality of the model,

characteristics of the environment and how much time or resources that have to be

planned. The second key component of selecting a plan is the solution of an

optimization problem. For instance, suppose that the links on the "tree" that

represents the set ofpossible plans are each labeled with integer values that represent

the "cost" of performing the task represented by going in that direction in the tree.

For instance, the cost may represent distance traveled or time executed the task and

the characteristics of the cost are typically dictated by the goal. Next, supposedly the

tree represents a finite number of possible plans and that the cost of a plan is

represented by summing the costs ofeach link that represents a step in the plan. Then,

the plans can be ordered according to the cost and minimization can be perforemed

by picking the lowest cost plan (the "best" plan). Again, see Figure 2.5 in Appendix

A. For example, this may be the shortest route to take for the vehicle to avoid all the

obstacles, if it is solving the subtask ofobstacle avoidance of the vehicle.

2.3.5 Execute the Plan, Monitor and Repair/Replan

After selecting a plan, how to execute the plan must be decided. While the plan is

executed, it is monitored by detecting the deviations for what is expected to make

sure that all is goingwell. Then, especially in an uncertain problem domain, it could

be that there is a "plan failure" so that there is a need to repair the current plan, or to

develop a completely new plan (the frequency ofreplanning is generally proportional

to the amount of disturbances in the system). The decisions of whether to simply

"tweak" the current plan, or develop a completely new one is difficult and can

involve assessments of available resources (e.g., time) and the extent to which goals

is being met. Some problem domains are particularly difficult to monitor and hence

15

there may need to be a parallel process operating that estimates the "state" of the

domain from available sensed information (this is sometimes called "situation

assessment"). The ability to do this depends on the "observability" properties of the

problemdomain (i.e., whether the state of the plant can be computed from measured

inputs and outputs). When using such estimates, the need to guess whether the plan

is succeeding and subsequently replan arises [18].

16

CHAPTER 3

METHODOLOGY/PROJECT WORK

This chapter examines clear procedures of this project in developing the control of a

high speed vehicle following a predetermined path or keeping in a designated lane

and whenever required, avoiding collisions with obstacles in its path. The first part of

the chapter describes the obstacle collision avoidance integrated with path

following/lane keeping cruise control of a vehicle. The second and third part recaps

the works by Sharp [19] and Dandre" [12] on the linear car model and road preview

model. The fourth part is devoted to developing the evasive control of the obstacle

collision avoidance system and in the final part; the steering control of a vehicle

aiming to follow prescribed paths/lane is examined.

3.1 Path Following/Lane Keeping with Obstacle Collision Avoidance

The system as in Figure 3.1 provides steering assist when a driver is slow to take

evasive action when unexpectedly confronted with another vehicle or object

appearing in the vehicle's path while traveling on a prescribed path/lane. As depicted

in Figure 3.2 in Appendix A, if another vehicle or object is detected in the driver's

path/lane (assumingly via radar sensor system, laser sensor system or computer

vision system) while following a path or keeping in its lane, the system takes evasive

action; steering sharply away from the other vehicle. This system assists with

steering to support the driver. At the start of evasive action, the system provides

steering assist to help the driver avoid the obstacle. During evasive action, the system

provides a safe and comfortable gap from the obstacle to help prevent the driver

from getting too close to the obstacle. After evasive action, the system provides

steering assist if the driver is slow to return the vehicle to its original course, helping

prevent the vehicle from spinning out ofcontrol. This system assists drivers in taking

evasive action and helps stabilize the vehicle and then continues following its

predetermined path or keeping in its designated lane.

17

Vehicle Initial Position

''

/
' r i r

Linear Car // Road Preview
Model // Model /

W - f

s^ Obstacle \^
\^Detected? .-^

Yes

A
! Obstacle Course !

1NO j
Optimal Controller

• i

! Obstacle & Goal Function !

Neural Network Controller ! Multiobjective Cost Function !

~ ~~r " ~~ "" ::::::::::::::];::::::::":::::
Path Followed & Obstacle Avoided

• i

! Path Generation & Selection !

+
Vehicle Final Position

Figure 3.1: Path following/lane keeping system (dotted) integrated with obstacle

collision avoidance system (dashed)

3.2 Linear Car Model

A standard yaw/sideslip model of a vehicle is shown in Figure 3.3 in Appendix A

and has been described by Sharp and Valtetsiotis in [19] and in [20]. The model

consists ofa rigid body based on the following assumptions:

• Suspension is omitted and the car is a single rigid body.

• The car is moving on a level plane (the road is flat).

• The vehicle has three degrees of freedom: forward motion, lateral motion and

yawing motion.

18

• There are four types of forces of the vehicle model: front axle longitudinal

force, front axle lateral force, rear axle longitudinal force and rear axle lateral

force.

• A constant forward speed u is considered and the input will be the steering

wheel angle d^.

• The relation between the steering wheel movement and that of the front road

wheels is fixed and defined by a gear ratio G. Inertial effects of steering the

wheels are discounted.

• Aerodynamic forces are discarded.

• Tyre aligning moments are ignored.

• Lateral weight shift and roll are discounted.

• The car is neutral steering.

The model is very simple and cannot represent truly a car. The model includes the

forward speed considered as constant, which strongly limits the real driving of a car

and neglects the suspension and the loadtransfer, which are vitalwhen negotiating a

turn at high speed. In practical, speed should be reduced if the vehicle is nearing a

curve or changingdirection. However, for simplicity, the car moves only in forward

directionwith a constantspeedthroughout the whole path. Considering the controlof

braking and thrust would imply the implementation of a second Neural Network.

Still this model suits fairlywell the specifications required, since the main purposeof

the study is path following control. The vehicle model parameters to define the car

can be found in Table 3.1 and Table 3.2 in Appendix A.

One can noticethat since a.C/=b.Cr the car is neutral steeringand that the mass of

the body is quite heavy and the yaw inertia is also significant. The centre ofgravity

is towards the front ofthe car.

19

Thestate space equation of motion of thecarmodel is x = Ax +BS^ withthe state

vectors:

and

A =

X —|X| X2 Xj JC4 \

where xi is global lateral position^

X2 is global lateral speedy

X3 is global lateral angle*F

X4 is global attitude rate ¥

"0 1 0

0 - (Cf +Cr)lMu (Cf +Cr)lM
0 0 0

0 {bCF-aCf)/Izu (aCf-bCr)/I2

B =
CfIMG

aCfIIzG

(bCr-aCf)/Mu
1

-{a2Cf+b2Cr)lIzu

(3.1)

(3.2)

(3.3)

The equations of motion are transformed to discrete time using the MATLAB

command *c2d'. Taking Ad and Bd as discrete matrices, the equation of motion

becomes x{k+l) =Adx(k)+BdSsw(k) in which k is the sampling time and T is the

sampling interval. The sampling period is initially set as 0.05 s, and could be reduced

when vehicle moves in higher speed to increase the number ofpreview points for the

car controller. Detailed explanation on the linear car model could be retrieved from

works in [12]. The preview points will be explained in the next section.

33 Road Preview Model

The purpose of the road preview is to represent very simply the road information

stored and used by the driver through his/her eyes. In real environment and

20

considering an unknown path, this information would come for instance from one or

more sensors which would characterize the road path ahead of the vehicle. The

sensor could forexample estimate the relative locations of the white painted lines of

a motorway. Then thecontroller would use thedata gathered bythesensor(s) andthe

process would be on-line. In the case of a known path (racing circuit, etc.), the

sensors are not needed anymore and the information can be directly stored in a

computer. On-linecomputation is then not necessary.

Five paths are considered for the study: straight path, sinus path, lane change, sudden

change ofdirection and smooth random path. Byconsidering constant forward speed,

the paths can be described by the lateral deviation, y, from a fixed straight line (x-

axis) at samplingtime kT.

Taking n as the number of preview values, the lateral deviations at time kuT meters

ahead of the car could be represented as vre/(£)=[yr0 yrl ymJ •The uT is

thex spacing, inwhich wis the speed of thevehicle. Figure 3.4 inAppendix A shows

the car and the road at instant k. At the next instant (k+l)T, the first road preview

sample is discarded and the second sample of yJk) becomes the first value for

v (k+1) and so on. For simplicity, the last sample value becomes the input to the

system and the othern samples are regarded as states.

Takingy as the state vector and y as the input to the road system, the state space
ref ri

equation for the road preview model is ynf(k +1) =£>.yre/(*)+ E.yn. The vectors of

D and E are:

D =

0 1 0 ... 0

0 0 1 ... 0

0 0 0 1

0 0 0 0

(3.4)

21

and E~ (3.5)

Detailed explanation on the road preview model could be retrieved from works in

[12].

3.4 Obstacle Collision Avoidance System

This part of the chapter delineates the steering control of a linear vehicle aiming to

follow a prescribed path or to keep in a designated lane as shown in Figure 3.5. This

system supposedly uses on-board cameras and radar to detect when a vehicle

suddenly appears from the side, for example at an intersection or unexpectedly

confronted with another vehicle or object appearing in the vehicle's path while

traveling on a prescribed path/lane as depicted in Figure 3.6 in Appendix A though in

this project obstacle positions are assumed to be known. If the system determines

that a collision may occur, it provides an evasive action; steering sharply away from

the other vehicle or object. This system assists with steering to support the driver. At

the start ofevasive action, the system provides steering assist to help the driver avoid

the obstacle. During evasive action, the system provides a safe and comfortable gap

from the obstacle to help prevent the driver from getting too close to the obstacle.

After evasive action, the system provides steering assist ifthe driver is slow to return

the vehicle to its original course, helping prevent the vehicle from spinning out of

control. This system assists drivers in taking evasive action, and then helps stabilize

the vehicle. The first section is devoted to developing the obstacle course and the

characteristics of the vehicle. In the second section, the obstacle and goal functions

are described. The third and fourth section respectively considers the multiobjective

cost function and discusses how the planning strategy generates, evaluates and

selects plans so that the vehicle can select which direction to move.

22

Obstacle Course

Obstacle and Goal Functions

1
Multiobjective Cost Function

i
Plan Generation and Selection

Obstacle Avoidance

Figure 3.5: Obstacle collisionavoidance system

3.4.1 Obstacle Course and Vehicle Characteristics

It is assumed that perfect information about where obstacles are, is available with

known (x, y) positions. Atest field of^-coordinate, x <= [0, 30] and the y-coordinate,

y e [0, 50] with poles like obstacles are shown from a top view in Figure 3.7. The

intended path of thevehicle isa straight line with the initial vehicle position at (1,15)

andthat thegoal function position at (49,15) as shown in Figure 3.7via"a" and"x"

respectively.

"T r

Obsttclm (o),initial whicte(uiuan) and goal(•) positioni
—i 1 1 1 1 r

Figure 3.7: Initial vehicle position, goal position andobstacles

23

Six polesshown in Figure3.7 that are at positions (5,15), (15,18), (15,12), (25,17),

(30, 13) and (38, 15) respectively. The vehicle knows its own position (assumingly

via radarsensor system, lasersensor system or computer vision system) and the goal

position that it seeks to move to.

When a vehicle decides to move from one position to another position, it can

approximately do so in one time step. In particular the vehicle's current positions is

{x(k), y(k)) and the onboard computercommands it to move at an angle 6 a distance

ofX(see Figure 3.8 in AppendixA), it does so according to:

c(k +l) ik) cos(0)' cos(A6>)
+ X

y(k +l)J [y(k)] [sin(0)J [sin(A0)+ AX (3.6)

where the sum of the first two terms on the right side of the equation represent the

desired position. Xis chosen to be 0.1. The last term is a noise term that represents

effects on uncertainty that result in the vehicle not perfectly achieving the desired

position. AX is chosen to be a random number at each time step uniformly on [0.H

0.H] representing that there is a 10 % uncertainty in achieving the commanded

radial movement. Also, A0is assumed to be uniformly distributed on [-^ *]. Hence,

when the vehicle is commanded to go to a particularposition in one step time, it ends

up somewhere in a circular region of radius 0.1 Xaround the desiredposition. Notice

that in order to make such movements, the vehicle needs to sample its own position

at each time step. Hence, feedback control is used in the following way of guidance:

the current position is sensed and the command is made to move the vehicle to the

new position. The vehicle may not end up where it was commanded to go, but at the

next time instant, the vehicle will sense its position and make adjustments from that

point and so on.

3.4.2 Obstacle and Goal Function

It should be clear that since it is assumed that the positions of the vehicle and all the

obstacles are known, there is no need for a sensor that measures proximity to, or

characteristics of obstacles. In a certain sense, a perfect model of a part of the

24

environment is available. A perfect model of the entire environment is unavailable

due to the uncertainty in reaching a desired commanded position. The information in

Figure 3.7 is represented and utilized about where the vehicle starts, where it should

go and where the obstacles are. Since a planning strategy is used, it is critical to

realize that the path-finding problem is needed to be formulated as an optimization

problem. To do this, the simple approach of constructing a surface (sometimes called

a "potential field") that represents where the obstacles are is taken. In particular, to

represent the obstacles in Figure 3.7, the Gaussian functions of unity height is taken

and centered at each of the obstacles and an "obstacle function" J0(x, y) that is the

maximum value ofeach ofthose functions at each point (x, y) as shown in Figure 3.9

(the use ofthe maximum ofthe six Gaussian functions representing the six obstacles,

rather than, for instance, simple addition of the six Gaussian functions, ensures that

each obstacle position is represented independentofthe others) is computed.

Function w,J;,showing (m!ad)obtUcle tactionwhng

0 o

Figure 3.9: Obstacle function JQ(x, y) (scaled by coj)

25

In Figure 3.10 the contour plot J0{xf y) along with the initial vehicle position and goal

position is shown.

Contour ma»ofw,JaandInitial (squire) andgoal(a)Bunions

I®J ©

-I . .. I -..t 1 1 L.
15 2023035404550

Figure 3.10: Obstacle function J0(x, y) (scaled), contour form, with initial vehicle

position and goal position

The contour nicely shows the "spreads" (variances) of the Gaussian functions and

that there is a type of overlap such that the values ofJ0(x, y) are at least a bit above

zero for any positions where the vehicle should not be in order to avoid collision

with obstacles. Also, the obstacle function is scaled with a positive constant o>i > 0 in

the planning strategy, however here wj = 1 is chosen. Note that if the vehicle is

moved about the environment in a way that the vehicle position is moved to points

that try to minimize J0(x, y) (e.g., via hill climbing), then the vehicle will avoid the

obstacles, due to the tails of the Gaussian functions. For many vehicle initial

positions, the vehicle would move to the edge of the region and when it arrives there,

it is always kept on the edge.

Next the goal being at the position (49, 15) is represented. To do this, the minimum

point ofa quadratic (bowl) function as follows is placed:

^>,y)=<4*,yF -[49,15ffIcyf -[49,157] (3-7)

26

where co2 > 0 is a scale factor and a>2 ~ 0.0001 is chosen that will multiply this

function. The scaled function is shown in Figure 3.11 as a contour plot. If at each

time step the vehiclemovedto go downthe surface, it will move toward the goal, but

it may run into an obstacle.

Comour tactionofvfyL andinitial (iqwa) andgoal (•) pesters

ID IS 20 25 30 3540 45 50

Figure 3.11: Goal function coz J^x,y), contourform, with initialvehicle positionand

goal position

3.4.3 Multiobjective Cost Function

Firstly, a cost function is formed for the planning strategy to generate, evaluate and

select plans so that the vehicle can select which direction to move. If the vehicle is

commanded to move a distanceofXin a direction #that is chosen by simplymoving

in the "direction of the steepest descent" on the function: J0{x, y), then the vehicle

would avoid obstacles but not reach the goal position and stay there. Similarly, if the

direction was chosen to be the one with steepest descent for the J^x, y) function,

then it would move to the goal position but may collide with some obstacles for

some initial vehicle positions.

27

To solve this problem, a "multiobjective cost function" is used (actually a special

case where a "scalarization"approach is used to form a multiobjective cost, which is

one ofmany ways to generate a Pareto cost)

J(x, y)=a>lJ0 (*, y)+G)2J (x, y) (3.8)

shown in Figure 3.12 where the weights mi and &2 specify the relative importance of

achieving obstacle avoidance and reaching the goal.

J=w,J0+WjJ„ and mttsJ (square) and goal Wportions
_, . , -, ,— , _—, , —r-

10 15 2O2530354G455O

Figure 3.12: Multiobjective cost function J(x,y) for evaluating plans

The magnitudes of the values of each term in selecting these must be taken into

consideration. The choices of weight values above represent that obstacle avoidance

is important, but the vehicle also must keep moving toward the goal position. The

choice of the weightswill affect the shapeofthe trajectorythat the vehiclewill move

on toward the goal position.

3.4.4 Plan Generation and Selection

A simple approach is taken to plan generation and evaluation. If the vehicle is at a

position (x, y), the value of J is computed at Rvalues (xb y,), / = 1, 2, Ns,

regularly spaced on a circle of radius r around the vehicle position (see Figure 3.8 in

AppendixA, whereNs=%). Here,r- 1 andJVs- 16are used. This generates 16plans,

28

where one stepis predicted ahead. More values of J can be computed that are along

other longer paths. The setof plans is viewed as "thevehicle is at (x, y), move it to

(xi, y,)."The plan is chosen to execute by finding a value/* suchthat:

j{x^yi.)<j(xny{\i =\X^Ns (3.9)

(i.e., by finding the direction which will result inminimization of the multiobjective

cost function). This direction 6{k) is called and the vehicle is commanded to take a

step of lengthXin the direction 6(k).

The above approach will approximate the "steepest descent approach" (hill-climbing)

discussed above butanalytical gradient information is unnecessary since thegradient

of the multiobjective cost function is not explicitly computed. Higher values of Ns

cost more computations in plan generation and evaluation, but they also provide

more precise directional commands. Notice that by using the above strategy, for any

initial position on Figure 3.12, it is expected that the vehicle will navigate so as to

avoid the obstacles and move toward the goal by simply moving down the surface

[18].

3.5 Path Following/Lane Keeping System

This part of the chapter is anaccount of [19] which examines the steering control of

a linear vehicle aiming to follow a prescribed path or to keep in a designated lane as

shown inFigure 3.13 inAppendix A. Ideally, asthe vehicle approaches a curve, this

system will use information from the vehicle's navigation or radar system to assess

the curvatureofthe road and calculates the vehicle's appropriate speed. Ifthe vehicle

is traveling above that speed, the system applies the brakes to slow the car to the

appropriate speed. However this feature is yet to be developed and would be

recommended for future works. The first section considers the set up of an optimal

preview controller and the final section outlines the Neural Network controller.

Detailed explanation onthe optimal controller could be retrieved from works in [12].

Figure 3.14 displays the system ofpath following/lane keeping ofthe vehicle.

29

Optimal Controller

Neural Network Controller

Path Following

Figure 3.14: Path following/lane keeping system

3.5.1 Optimal Controller

The purpose of the controller implementation is to establish a connection between

the road preview model and the car. Plainly, optimal controller is purported to

represent and synthesize well the vision of the driver so that the vehicle can follow

the path as accuratelyas possible. The structure combining the car and road preview

models with the optimal controller is illustrated in Figure 3.15 in Appendix A. In

other words, the car is to be driven along the path with the aid of the optimal

controller. The state space equation of the car and the road (having no connection

between both) is as follows:

A
x(k +l)
yr(k+l)

=
4, °
0 D

x(k)

yr(k)
+

0

E
•yrt +

0
(3.10)

According to simulation results obtained by [19] and repeated by [12], as the speed

of vehicle is increased, the preview gain will be more oscillatory. Figure 3.16 in

Appendix A shows the simulation result for the optimal preview gains of path

following [13]. Detailed explanation on the optimal controller could be retrieved

from works in [12].

3.5.2 Neural Network Controller

The purpose of the Neural Network controller is to mimic a driver's information

processing structure and to capture and represent complex input/output relationship.

30

It is a learning and training strategy that trains and adjusts to converge to thedesired

output with the respective input given by comparing the output with the required

target output. In short, it learns from past errors andadjusts the network to improve

network's response.

Five paths (straight path, sinus path, lane change, sudden change of direction and

smooth random path) were simulated and tracked with the use of an optimal

controller. From previous works done by Sharp in [19], it is proven that the optimal

controller has the capability to precisely trackreasonable paths.

Dandre [12] has continued the research by tracking the similar paths using Neural

Network. Thecoefficients obtained through the optimal control theory were taken as

the initial weighting parameters for the neural controller [13].

3.5.2.1 Implementation usingGradient Method

The controller is set to be a linear, single processing neuron. The input to the

controller is the augmented state z=[x yrJ. x is obtamed from the equations of

motionof the car model whiley is the local lateral previewerrors. The output of the
r

neuron is the steering wheel angle, Sw which was represented byDandre* [12] inthe

following formula:

By considering n preview points, there would be 4+n+l weighting parameters and

one bias for thesingle neuron. The weighting parameters areset in such way as there

are four non-preview system (states x) and n+1 preview points at instant k. As it is

desired that all path following errors are to be minimized, the best steering wheel

angle would bezero when the carismoving ona straight path. Thus the bias b is set

to zero. As the car is supposed to follow the simulated paths, the cost priorities are

set as:

31

qi=100, q2=l, R2=l and Rx =
"ft o
0 q2

(3.12)

As it was done in previous works, the initial weighting parameters wo for the neural

controllers were taken from coefficients obtained from the optimal control theory.

Alternatively, the initial weighting parameters could also be set either to zero, or

chosen randomly. However, it is preferred to take the obtained coefficients from the

optimal control theory as it gives the best representation of the path tracking

optimization.

A high learning rate may lead to instability of the algorithm whilst a low learning

rate may cause longer time taken for the algorithm to converge to desired

performance. By running the simulation for a number of times, the best initial

learning rates were chosen based on the least maximum Y path error obtained after

the simulation. To ensure an improved performance of the steepest gradient descent

algorithm, the learning rate is allowed to be adaptive, i.e. it is allowed to change

during the training process. By using the [14], the learning rate is multiplied by 1.05

if the cost ratio between the present cost and previous cost is less than 1. On the

other hand, it is multiplied by 0.7 if the cost ratio is more than 1.005.

If the training mode of the network is set to be online, the weights will be updated

each time the learning rate is updated [13]. Detailed explanation on the Neural

Network controller could be retrieved from works in [12].

32

CHAPTER 4

RESULTS AND DISCUSSION

The simulation environment was created using MATLAB. Simulated obstacle

collision avoidance has confirmed the capability of a vehicle to precisely avoid

collision with obstacles along its prescribed path. It is then possible to integrate the

path following/lane keeping system with the obstacle collision avoidance system for

the vehicle to avoid obstacles whilst following its predetermined path. In the first

part of the chapter, it is noticed that the results are promising where the vehicle is

able to avoid obstacles along an obstacle course, without causing damage to the

obstacle or the vehicle. The second part demonstrates the ability of the vehicle to

accurately and precisely follow the path designed to avoid the obstacles on the

obstacle course while traveling on high speed. The second part in addition considers

the removal of the assumptions used in the previous chapter and the flaws of this

system will be highlighted. The third part is dedicated to describe the functionality

of the Graphical User Interface (GUI) developed which also presents the simulation

results of path following/lane keeping with obstacle collision avoidance in GUI for

obstacle course (straight path, lane change and sudden change ofdirection) as well as

simulation results of path following in GUI for four predetermined obstacle free

paths: sinus path, lane change, sudden change ofdirection and smooth random path.

4.1 Obstacle Collision Avoidance

Using the planning strategy as mentioned in the preceding chapter, obstacle course

and vehicle, the trajectory shown in Figure 4.1 is obtained. Clearly, the vehicle

moves so as to avoid the obstacles (via the effect ofJ) but tries to stay on course to

the goal (via the effect ofJg). The effects of the uncertainty in reaching commanded

positions is seen by the small deviations on the trajectory that are "corrected" at each

step since the vehicle is assumed to get a measurement of its own position at each

time step. Other vehicle paths result from other choices of obstacles and goal

33

functions and their scale factors (higher weight on the goal function tends to reduce

deviations away from obstacles). Moreover, a different pattern of points where the

multiobjective cost function is evaluated can result in a different path. For instance,

using fewer points on the circular patter results on trajectories that are not as smooth.

Vehidi pathto avoidobstacles and raach goal

Figure 4.1: Vehicle path for obstacle avoidance and goal seeking

4.2 Path Following/Lane Keeping with Obstacle Collision Avoidance

With both system viz. path following/lane keeping and obstacle collision avoidance

fused together as to form a whole, the reliability and robustness of the joint activity

of the two systems is probed by simulating the path following on the obstaclecourse

(straight path) with increasing vehicle speed as well as preview points. The test

speed studied in this thesis is from 80 km/h to 200 km/h which is the operation limits

of a present vehicle cruise control. As reported in the works of [5], simulated path

following proved to achieve the smallest error when a range of 80 to 120 preview

points are applied. Therefore, the same range of preview points which allows good

accuracy and precision is being employed.

34

4.2.1 Obstacle Course (Straight Path)

Figure 4.2 depicts the vehicle trajectory as to avoid obstacles on the obstacle course,

an intended straight path before obstacles are included. The selected path generated

by the obstacle collision avoidance system described and shown earlier in Figure 4.1

is fed into the Neural Network path following/lane keeping system of the vehicle to

accurately and precisely follow the generated path.

Path Following

13

E ,71-

8 14 / i

13h vT
12

5 10 15 20 25 30 35 40 45 50

distance, m

Figure 4.2: Vehicle path on obstacle course (straight path) for path following/lane

keeping

4.2.1.1 Obstacle Course (Straight Path) at 80 km/h

The path following is as shown in Figure 4.2 and the vehicle traveling at a speed of

80 km/h is examined. Initially, when preview points of 80 are applied, the average Y

path following error is 0.0106 m (10.6000 mm). By applying preview points of 120,

the Neural Network converged to a desired output with an average Y path following

error of 0.0090 m (9.0000 mm). As tabulated in Table 4.1, the average Y path

following error reduces with the increasing of preview points although other

parameters such as clockwise and counter clockwise steering wheel angle are almost

identical. The results and observations for the obstacle course (straight path) at 80

km/h are presented in the following Table 4.1 and Figure 4.3.

35

Table 4.1: Summary of obstacle course (straight path) at 80 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

80

80 0.0106 0.3436 0.7923

90 0.0100 0.3436 0.7924

100 0.0095 0.3436 0.7924

110 0.0091 0.3436 0.7924

120 0.0090 0.3436 0.7924

Figure 4.3: Obstacle course (straight path) at 80 km/h with 120 preview points

Y Path Following Error
0 05

~ 04 -

a 02 --

_ 0 -

CO

20 25 30

distance, m

Steering Wheel Angle

20 25 30

distance, m

Figure 4.3(i) - (top): Y path following error

Figure 4.3(ii) - (bottom): Steering wheel angle

4.2.1.2 Obstacle Course (Straight Path) at 90 km/h

For the speed of90 km/h which is the speed limit ofcountry roads or trunk roads and

certain stretches of expressways or highways, the simulation shows that 120 preview

points displayed excellent result with the lowest average Y path following error as

compared to the other preview points. A speed of 90 km/h with 120 preview points

yielded an average Y path following error of 0.0089 m (8.9000 mm), a clockwise

and counter clockwise steering wheel angle of 0.2988 rad and 0.7656 rad

respectively. The results and observations for the obstacle course (straight path) at 90

km/h are presented in the following Table 4.2 and Figure 4.4.

36

Table 4.2: Summaryofobstaclecourse(straightpath)at 90 km/h

Speed,
km/h

Preview

Points

Average Y Path
Followmg Error, m

Steering Wheel Angle, rad
CW CCW

90

80 0.0105 0.2988 0.7656

90 0.0099 0.2988 0.7656

100 0.0094 0.2988 0.7656

110 0.0090 0.2988 0.7656

120 0.0089 0.2988 0.7656

Figure4.4: Obstaclecourse (straightpath) at 90 km/hwith 120previewpoints

Y Path FollowingError

•§, 02 --.,...—-}]--,.

s: .02 -

01-0 4

20 25 30

distance, m

Steering Wheel Angle

0 5 10 15 2D 25 30 35 40 4j 50

distance, m

Figure 4.4(i) - (top): Y path following error

Figure 4.4(ii) - (bottom): Steering wheel angle

4.2.1.3 Obstacle Course (Straight Path) at 100 km/h

The vehicle traveling at 100 km/h proved capable of following the path designed to

avoid the obstacles on the obstacle course (straight path) with much accuracy and

precision as compared to the lower speed examined previously. 120 preview points

proved to yield the lowest average Y path following errors judging by the other

preview points. The Neural Network controller of the vehicle converged to the

desired output with an average Y path following error of 0.0088 m (8.8000 mm)

when a 120 preview points are applied. Clockwise and counter clockwise steering

wheel angle produced indistinguishable results with the increasing ofpreview points.

37

The results and observations for the obstacle course (straight path) at 100 km/h are

presented in the following Table 4.3 and Figure 4.5.

Table 4.3: Summary ofobstacle course (straight path) at 100 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW ccw

100

80 0.0104 0.2638 0.7481

90 0.0098 0.2638 0.7481

100 0.0093 0.2638 0.7481

110 0.0089 0.2638 0.7481

120 0.0088 0.2638 0.7481

Figure 4.5: Obstacle course (straight path) at 100 km/h with 120 preview points

Y Path Following Etror
•.05

0.4 -

"S 0.2 —* I

~ o

2D 25 3D

distance, m

Stewing Wheel Anglo

20 25 3D

distance, m

Figure 4.5(i) - (top): Y path following error

Figure 4.5(H) - (bottom): Steering wheel angle

4.2.1.4 Obstacle Course (Straight Path) at 110 km/h

The speed is further increased to 110 km/h which simulates the speed limit on

expressways and highways. As in the previous simulations, all parameters almost

coincide except for the Y path following errors. Once again, 120 preview points

appears to produce the lowest average Y path following error in comparison with

other preview points. The vehicle traveling at 110 km/h manifests a high level of

38

accuracy and precision in avoiding the obstacles on the obstacle course with an

average Y path following error of0.0088 m (8.8000 mm). In spite of thefact thatthe

speed is increasing, the Y path following results of 110 km/h is an almost match to

those of the lower speeds. The results and observations for the obstacle course

(straight path) at 110 km/h arepresented inthefollowing Table 4.4and Figure 4.6.

Table4.4: Summary of obstacle course (straight path)at 110 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
cw ccw

110

80 0.0104 0.2386 0.7364

90 0.0098 0.2387 0.7362

100 0.0093 0.2387 0.7363

110 0.0089 0.2387 0.7363

120 0.0088 0.2387 0.7363

Figure 4.6: Obstacle course (straight path) at 110 km/h with 120 preview points
Y Path Following Error

0.06

0.6

CT 0.2 - -:; : \-?\ r

™ 0
«

5
W-0.4

5 -0.6

*.QB

20 25 30

distance, nr

Steering Wheel Angle

20 25 3D

distance, m

so

Figure4.6(i)- (top):Y path following error

Figure4.6(H) - (bottom): Steeringwheelangle

4.2.1.5 Obstacle Course (StraightPath) at 120 km/h

The results and observations for the obstacle course (straight path) at 120 km/h are

presented inthe following Table 4.5 and Figure 4.7 inAppendix A.

39

Table 4.5: Summaryofobstaclecourse(straightpath) at 120km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

120

80 0.0103 0.2222 0.7284

90 0.0098 0.2224 0.7281

100 0.0092 0.2223 0.7282

110 0.0088 0.2223 0.7282

120 0.0087 0.2223 0.7282

4.2.1.6 Obstacle Course (Straight Path) at 130 km/h

The results and observations for the obstacle course (straight path) at 130 km/h are

presented in the following Table 4.6 and Figure 4.8 in Appendix A.

Table 4.6: Summary ofobstacle course (straight path) at 130 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

130

80 0.0103 0.2322 0.7230

90 0.0098 0.2325 0.7226

100 0.0092 0.2324 0.7227

110 0.0088 0.2324 0.7227

120 0.0087 0.2324 0.7227

4.2.1.7 Obstacle Course (Straight Path) at 140 km/h

The results and observations for the obstacle course (straight path) at 140 km/h are

presented in the following Table 4.7 and Figure 4.9 in Appendix A.

Table 4.7: Summary ofobstacle course (straight path) at 140 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

140

80 0.0103 0.2385 0.7192

90 0.0098 0.2389 0.7187

100 0.0092 0.2388 0.7188

110 0.0088 0.2388 0.7188

120 0.0087 0.2388 0.7188

40

4.2.1.8 Obstacle Course (Straight Path) at 150 km/h

The results and observations for the obstacle course (straight path) at 150 km/h are

presented in the following Table 4.8 and Figure 4.10 in Appendix A.

Table 4.8: Summaryofobstacle course (straight path) at 150 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

150

80 0.0103 0.2488 0.7167

90 0.0097 0.2492 0.7161

100 0.0092 0.2491 0.7162

110 0.0088 0.2491 0.7162

120 0.0087 0.2491 0.7162

4.2.1.9 Obstacle Course (Straight Path) at 160 km/h

The results and observations for the obstacle course (straight path) at 160 km/h are

presented in the following Table 4.9 and Figure 4.11 in Appendix A.

Table 4.9: Summary ofobstacle course (straight path) at 160 km/h

speed,

km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

160

80 0.0103 0.2575 0.7149

90 0.0097 0.2580 0.7143

100 0.0092 0.2579 0.7144

110 0.0088 0.2579 0.7144

120 0.0087 0.2579 0.7144

4.2.1.10 Obstacle Course (Straight Path) at 170 km/h

The results and observations for the obstacle course (straight path) at 170 km/h are

presented in the following Table 4.10 and Figure 4.12 in Appendix A.

41

Table 4.10: Summary ofobstacle course (straight path) at 170 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

170

80 0.0103 0.2641 0.7138

90 0.0097 0.2647 0.7131

100 0.0092 0.2646 0.7132

110 0.0088 0.2646 0.7132

120 0.0087 0.2646 0.7132

4.2.1.11 Obstacle Course (Straight Path) at 180 km/h

The results and observations for the obstacle course (straight path) at 180 km/h are

presented in the followingTable 4.11 and Figure 4.13 in Appendix A.

Table 4.11: Summary ofobstaclecourse (straightpath) at 180 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

180

80 0.0103 0.2691 0.7132

90 0.0097 0.2698 0.7124

100 0.0092 0.2697 0.7125

110 0.0088 0.2697 0.7125

120 0.0087 0.2697 0.7125

4.2.1.12 Obstacle Course (Straight Path) at 190 km/h

The results and observations for the obstacle course (straight path) at 190 km/h are

presented in the following Table 4.12 and Figure 4.14 in Appendix A.

Table 4.12: Summary ofobstacle course (straight path) at 190 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

190

80 0.0103 0.2729 0.7128

90 0.0098 0.2737 0.7120

100 0.0092 0.2736 0.7121

110 0.0088 0.2735 0.7121

120 0.0087 0.2736 0.7121

42

4.2.1.13 Obstacle Course (Straight Path) at 200 km/h

For the ultimate speed of 200 km/h, Table 4.13 attests to the vehicle's ability to

follow the path designed to avoid obstacles. At such high speed, the Neural Network

controller yet again proved to converge to the targeted output with an average Y path

following error of 0.0087 m (8.7000 mm). Clockwise counter clockwise steering

wheel angle is 0.2764 rad and 0.7120 rad respectively with 120 preview points

applied. Clockwise steering wheel angle is somewhat decreasing with the increment

ofpreview points. The results and observations for the obstacle course (straight path)

at 200 km/h are presented in the following Table 4.13 and Figure 4.15.

Table 4.13: Summary ofobstacle course (straight path) at 200 km/h

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad
CW CCW

200

80 0.0103 0.2757 0.7127

90 0.0098 0.2766 0.7118

100 0.0092 0.2765 0.7120

110 0.0088 0.2764 0.7120

120 0.0087 0.2764 0.7120

Figure 4.15: Obstacle course (straight path) at 200 km/h with 120 preview points

Y Path FoBowing Error
0.06

0.6

o> 0.2 -

20 25 30

distance, m

Steermg Wheel Angle

7^'t • ff ?v\:r~ jv^vh-A;V"-t- "4""—-h -t
', ! ! ! !

.e -0.2 h

O>-0.*h"

• -0.6

20 25 30

distance, m
35

Figure 4.15(i) - (top): Y path following error

Figure 4.15(H)- (bottom): Steering wheel angle

43

All path following simulations on the obstacle course (straight path) give excellent

results. The average Y path following errors obtained is very small. They vary from

0.0087 m (8.7000 mm) to 0.0106 m (10.6000 mm). The average Y path following

errors depends on many parameters such as: the number of preview points used (or

similarly the time ahead of the car taken into account in the optimal controller), the

priorities chosen for the optimal controller, the car parameters (mass and the yaw

inertia especially), the speed ofthe car and the path chosen [12]. The average Y path

following error decreases with the increase of preview points as one can expect. By

choosing a high number of preview points and by setting high priorities on path

following, it is possible to obtain lesser Y path following error. It is also worth

noticing that the Y path following error and steering wheel angle fluctuates less

when traveling on a straight section of the path. On the contrary, the vehicle

produces a larger Y path following error and requires a larger magnitude of steering

wheel angle when negotiating a bend, curve or turn.

4.2.2 Mobile Obstacles and Uncertainty

The assumption of stationary obstacles will not hold in any real obstacle avoidance

problem. Stationary obstacles can be represented as pot-holes, stalled vehicle or

objects of any kind (debris, carcass or fallen branch of a tree) encountered along the

path. If the obstacles environment is dynamic in the sense that, for instance,

obstacles can move such as another vehicle up-front, this system requires extensions.

For instance if some obstacles suddenly appeared at some position and the vehicle

did not "know" about it, it can simply collide with it. Or if the obstacles moved in

predictable ways, it should be clear that a "look-ahead strategy" may be needed. If

the obstacles moved in unpredictable ways, then the model may not be able to

accurately represent this so the vehicle will need to sense the environment while it

navigates it and try to learn about the obstacles positions and movements.

44

4.3 Graphical User Interface (GUI)

To make it easier to simulate path following/lane keeping with obstacle avoidance

system of the vehicle, the aim was to build a Graphical User Interface (GUI) with all

useful possibilities. The GUI is designed to be simple and user friendly. The GUI as

shown in Figure 4.16 is divided into six panels for some settings and six displays for

some information.

B1WMTU

NEURAL NETWORK BASED CONTROLLER

FOR Li. -J$!®gB
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

__^hi:Je- -

veiticicGoa'Pisllon

"a*

lait; elta.-jh *["•)"

I i r^un-*

«[-T

vsfT"

Rantfcwre Obslsdci

Rw*t<W

.23 •

;20

.15

10 •

5 •

; 0
0

;20 •

Pitti 'iefteMEJO'i |q

Hub j

tilHy&Ms'dUd

20 41

?n

ili

u.y 1

UBf

04;

02j

flL

05f

Spe?U

vef.ttteC'iai'actecs'.'R

kin? Ptu/wPjI'iUl 20"

02 0.1 06

Avtrag* Error =0 m

0? f!4 nn

0.S

ns

rzm*t

Figure 4.16: Graphical User Interface (GUI) screenshot

4.3.1 Obstacle Course GUI Screenshot

4.3.1.1 Straight Path

The first panel is "Vehicle". In this panel vehicle initial and goal position can be

specified but the test field for the vehicle to travel within is constrained to [50, 30].

The second panel "Path" is for the lane change setup. Setting "0" is for the vehicle to

travel in a straight path (from one end to another), "1" is for sudden change of

45

direction and "2" is for lane change. In the third panel "Obstacles", the number of

obstacles and the locations of the obstacles can be varied. Maximum of 6 obstacles

can be selected andeach obstacle position mustcomply withthe test fieldboundaries

which is limited to J50, 30]. At the sametime, the "Randomize" push button allows

the positions of the obstacles to be randomized automatically. The "Preview" push

button enables the userto preview the path of thevehicle andalso the location of the

obstacles as shown in Figure 4.17. The user is able to editany information after the

preview or reset all the information previously stored with the "Reset AH" push

button. "Run" push button on the "Path Generation" panel generates the path of the

vehicle as to avoid the obstaclesand stay on course to the goal as depicted in Figure

4.18.

- - i/ehto -

NEURAL NETWORK BASED CONTROLLER

FOR uu. -ms
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

•ftlidV*'t:-|*PM»iKi13l..*:P/sJi9i:«,C>:*S»;l*s
vet-Sri? Cnsra fffi-fi

f>ce~>i| jiS~~" WIS' Pitnei Pitm

Figure 4.17: GUI screenshot ofpath ofvehicle and positions ofobstacles preview

46

fflffWIiM

V«r.fel>

Rj-WfflsoWstxe;

NEURAL NETWORK BASED CONTROLLER

FOR tju. -=isaB
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

[-£»! \'rtiiLb Posili.n, Goal Puj:Lii 1 CI«,*.•*
- Willi'* fluTMWWI..'

- - TjJ.-rfpAlr . . .

Pill -0"(ClYI1t|

dictate o. m
Averse* Error = 0 m

'' yST Fottcwrq Eirci

25

20
^ ?|i-

,—V /---.

IS -^ -^89 © r-
V_-' •.©J '••-_-_-'• -_y

V -""

T^bvim.n d ^ lane tisnt;;

wzrm

Figure 4.18: GUI screenshot ofpath ofthe vehicle as to avoid the obstacles and stay

on course to the goal

After obtaining the path of vehicle designed to avoid the obstacles, the ability of the

vehicle to accurately and precisely follow the path can be gauged. The speed and

preview points of vehicle are determined foremost in the "Vehicle Characteristics"

panel. In the next panel "Type of Path" there are five pop up menus viz. "Obstacle

Avoidance", "Sinus Shape", "Lane Change", "Sudden Change of Direction" and

"Smooth Random Path". There the user can select the appropriate type ofpath where

the Neural Network can learn to converge to the targeted output. "Obstacle

Avoidance" option is selected for an obstacle course which is limited to straight path,

lane change and sudden change of direction as mentioned earlier, whereas the rest

are designed to perform for an obstacle free path. Also on this panel, is "Find Error"

push button to calculate the performance of the Neural Network which is the average

Y path following error of the vehicle. After the processing of the Neural Network,

simulation results of the path followed and the Y path following error jointly with

the average Y path following error value are displayed. The GUI screenshot for

obstacle course (straight path) at 110 km/h with 120 preview points is depicted in

Figure 4.19.

47

NEURAL NETWORK BASED CONTROLLER

FOR ul- • -ami
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

Imfflgl

- - 'IfhlSo - - - l]|l"»tl.E««l.:« I

•Jill tic MimPcMjc .n'ltji V*-J:1s Pjsaio:-. S^a! PusSan fc 3»!aJes
. Vt+iil*eW-tl"i-?t-i.*

Sp«nl| 11 fl' kilt PlWen-PiMij"

.Tlfl--r.tS»;li

f^oviowPipW I .IS>

Pllll6pll?l<*'.il'': |Q

Run I

1 Ao.Ituti vl lanc:hj-iK

P;B) Fciiw.nj

-n in

Averagi Error =0.010419 m
v ffllh fell Joins Eno-

Figure4.19: GUI screenshot ofpath followed and Y path following error of the

vehicle

4.3.1.2 Lane Change

The GUI screenshot for lane change with obstacles at 110 km/h with 80 preview

points is depicted in Figure 4.20.

reikis

Tcitcsl'tial-taiua

NEURAL NETWORK BASED CONTROLLER

FOR jl
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH ;

-V-ll-LtH'l-ll-Wl-'l.lli..

033

Cu.'-i.-?r..Hii*l.-T. ;
inri.lYirf'LlePtf lix.&a pLiliji i «*:*:!, ?l—1[-1i) Hull P:»ii»«Prt Nj Hi

-ypWFj.1-,

P3fh FoHltf IK

n ;n in i

tfclWKD. w

Averag* Error = 0.016543 m

",1lj*iitj« 3»* "ii>r chrfis

„IS--1_ -.--.
iij a.i :o *j so

Figure 4.20: GUI screenshot of lane change with obstacles at 110 km/h with 80

preview points

48

4.3.1.3 Sudden Change ofDirection

The GUI screenshot for sudden change of direction with obstacles at 110 km/h with

80 preview points is depicted in Figure 4.21.

m^iSEI

— \'4tr> --

•• j *9 '| 15

vl*1sitfc JMlsoa*:n j; _.
>•] 111 V| is

M* • ^-
Li'dIllitl^S' J1

!5-

j"~T C*»i.:t-> -0-

«r vi r

NEURAL NETWORK BASED CONTROLLER

for tt. *an
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

I wttii.ta :li,ritt«riilLiCirrrJIi F-Ifin; L-Hie: 5

30-
8[I40* | It li'»-T> Plt\M* ?0 TI'.V

C£*1«l* nvouan^

i'Mi KoHc-AV-g

xsf-5~ «pT~ 33-
10 20 3? I

dsjrc;. ii
Avtragt Error = 0.025892 m

f t'llr M»»¥.g fcnci
RmitoillsCtoapcJra

Path ^vfST.Ikn

ton

-g

as

d ere*, -ii

Figure 4.21: GUI screenshot of sudden change of direction with obstacles at 110

km/h with 80 preview points

4.3.2 Predetermined Obstacle Free Paths GUI Screenshot

This section is dedicated to simulate path following on an assortment of

predetermined paths without obstacles in GUI. In order to simulate a wide range of

circuits, several road sections created in the works of [12] have been used here.

These are the different road sections selected to represent most maneuvers. In works

by Baharudin [5], four different paths: sinus path, lane change, sudden change of

direction and smooth random path were simulated with the increasing speed of

vehicle as well as preview points. It is worth noticing that all road sections are

feasible maneuvers with respect to the speed chosen (80 km/h to 110 km/h). As

reported in the works of [5], the path following simulation of these paths proved to

achieve the smallest error when a range of 80 to 120 preview points are applied. In

this section, the path following ability of the vehicle on four different obstacle free

paths is examined once again but in the GUI developed in this thesis. The median

49

value of 100 preview points is being employed on the vehicle speed limit on

expressway, 110 km/h.

4.3.2.1 Sinus Path

The succession of curves consisting of a cosine shaped road is as shown in Figure

4.22. The simulation results in Table 4.14 shows that 110 km/h with 100 preview

points produces an astounding average Y path of 3.5974xl0"5 m (0.035970 mm).

Clockwise and counter clockwise steering wheel angle are both 0.1962 rad. The

Neural Network is much more accurate in sinus path, yielding average Y path

following errors of less than 10"5 m as well as clockwise and counter clockwise

steering wheel angle of the same magnitude, because the turns are smooth as the road

input is a sinus at a specific frequency and it is not surprising to obtain better results

on a sinus path. The tabulated results and observation as well as the GUI screenshot

for the sinus path at 110km/hwith 100previewpoints are presented in the following

Table 4.14 and Figure 4.22.

Table 4.14: Summary of sinus path withoutobstaclesat 110km/h with 100preview

points

Speed,

km/h

Preview

Points

Average Y Path

Following Error, m

Steering Wheel Angle, rad

CW CCW

110 100 3.5974xl0"s 0.1962 0.1962

50

-.-Vfhrcl*

'.'•JUKI; imsIP;*1*1

NEURAL NETWORK BASED CONTROLLER

FOR u»_ T^b
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

uiriertlyfiMingUiitt I

Intat VtKde =o;«on, Gisl P«it:oi & Qtelatie;

Verifcfe Clk,ii Isi^Uw

Tv^sofP.*

I'jfr (•'•S-OAmg

so ;no wj 50? e:o he a:o

Av«r«|* Error = 3.5¥74rO05 m
YI'Glhf cllowng tie-

in.- ?;n :(ii t:a it. pro be n.:n
iasivce, n ___

Figure 4.22: GUI screenshot ofsinus path without obstacles at UOkm/hwith 100

preview points

4.3.2.2 Lane Change

The lane change consisting ofa cosine shaped lateral shift joining two straight lines

is as shown in Figure 4.23. From the result of lane change simulation tabulated in

Table 4.15, an average Ypath following error of0.0035 m(3.5000 mm) is obtained.

The tremendous difference of average Y path following error is due to the fact that

even the change ofdirection inlane change is smooth but the turns are tight whereas

in sinus path, road input is a sinus ata specific frequency. The tabulated results and

observation as well as the GUI screenshot for the lane change at 110 km/h with 100

preview points are presented inthe following Table 4.15 and Figure 4.23.

Table 4.15: Summary of lane change without obstacles at 110 km/h with 100

preview points

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad

CW CCW

110 100 0.0035 0.3271 0.2738

51

JJJJjJJIH

- v.h'dB

'•Of.nl; iM3tp;S ion

NEURAL NETWORK BASED CONTROLLER

FOR ji sme
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

O.n-illyr-lilh-^liii-i I

Mai vslicle so;icon. 5»l Pj:i1o:i i. OkIscIk
VC'iMtilhltdilfcliC!

Fa«s} ~

Avtrag* Error = 0.0034782 m
I IV.ttlHlviV'IIJii-iO"

Figure 4.23: GUI screenshot of lane change without obstacles at 110 km/h with 100

preview points

4.3.2.3 Sudden Change ofDirection

The suddenchange ofdirectionis as shown in Figure4.24. Referringto the works of

[51, it has been reported that a maximum preview points of 80 is allowable to achieve

the targeted result due to the fact that sudden change contains high frequencies and

implies that the tracked path is closer to random noise. However in this simulation,

the vehicle speed remains as 110 km/h. Table 4.16 displays the path following ability

of the vehicle traveling at 110 km/h generating an average Y path following error of

0.0070 m (7.0000 mm). Clockwise and counter clockwise steering wheel angle

appears to be 0.2649 rad and 0.1731 rad respectively. The tabulated results and

observation as well as the GUI screenshot for the sudden change of direction at 110

km/h with 80 preview points are presented in the following Table 4.16 and Figure

4.24.

52

Table4.16: Summary of suddenchangeof direction withoutobstaclesat HOkm/h

with 80 preview points

Speed,
km/h

Preview

Points

Average Y Path
Following Error, m

Steering Wheel Angle, rad

CW CCW

110 80 0.0070 0.2649 0.1731

''jlKWInullfCiB*'

**>ilmit f'? lih- J]

NEURAL NETWORK BASED CONTROLLER
FOR ii.. *m

HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

:u:'*mitE.lil-*Ui«! I

nliil Vcii:lsPx&ar..G:a;P;;lix & 3ssu:f»

vditt •;:•»«: br-j'.-L

Ses.ilvia V«r*. Ptif.tmPjrti

Tft.urB*-ji

Sud»fl-ihtnjt•:!I'rMSon *|

l'.ill>J-i:tD*-itj

2D a to Z0 80

•:"i:ljn:c. n
Averm Error ' 0.007019$ m

1 i'mhfc-llMinnbro'

ITTxl

:a m ro ai 'm ta

Figure4.24: GUI screenshot of sudden changeofdirectionwithoutobstaclesat 110

km/h with 80 preview points

4.3.2.4 Smooth Random Path

The smooth random path is as shown in Figure 4.25. The vehicle traveling at 110

km/h with 100 preview points manifests a high level of accuracy and precision in

following the path with an average Y path error of 1.3684xl0"5 m (0.013684 mm).

Both smooth random path and sinus path appears to produce outstanding results in

terms of average Y path following errors with less than 10"5 m. The fact that it is

possible to obtain better results with smooth random path than with obstacle course,

lane change or sudden change of direction is not surprising. Since the random path

has been smoothed, most high frequencies have disappeared and the random path is

not representative of a noise disturbance. The tabulated results and observation as

well as the GUI screenshot for the smooth random path at 110 km/h with 100

previewpointsare presentedin the following Table 4.17 and Figure 4.25.

53

Table 4.17: Summary of smooth random path without obstacles at 110 km/h with

100 preview points

Speed,
km/h

110

Preview

Points

100

Average Y Path
Following Error, m

1.3684x10
,-5

Max Steering
Wheel Angle, °

4.658147

Min Steering
Wheel Angle,c

-5.72958

_-Jzl*l

NEURAL NETWORK BASED CONTROLLER

FOR a. -4H
HIGH SPEED VEHICLE FOLLOWING PREDETERMINED PATH

V-Jiirfc . .

vwl:i*nls Pisitoiit

vm<n:-6»iS'i>3ii:ii -el

ai •«

! Lino rBitw;T! 0

.-- • 0b;ta&e; - -

; it: jt~ ?ij ~

»r

i ' ^!ri«

Fi^vwcins^

I r-an jciiDrition

j | Km

Cjwitli'E-ittneijnt .clii:lo .tiJ'jHCfiilkc

HoeoJ Hi) imni FTi>ii\t:oimi!

lyiK s' PsHi

jSnmmttraMt'itn Jj _ «ni«hrar__

iqo 23J :-oa JO] 500 SK

rtST**e».-n
Awrag* Error = 1.36B4«-O05 m

YPill-l*-il..™.j Tim

ioo 3co ao <m aw etc

Figure 4.25: GUI screenshot of smooth random path without obstacles at 110 km/h

with 100 preview points

All path following simulations for four different obstacle free paths: sinus path, lane

change, sudden change of direction and smooth random path give excellent results.

The Y path following errors obtained after is very small for all four paths. They vary

from 3.5974xl0"5m (0.035970 mm) for the sinus path to 0.0070 m (7.0000 mm) for

the sudden change of direction. The Y path following errors depends on many

parameters such as: the number of preview points used (or similarly the time ahead

of the car taken into account in the optimal controller), the priorities chosen for the

optimal controller, the car parameters (mass and the yaw inertia especially), the

speed of the car and the path chosen [12]. By choosing a high number of preview

points and by setting high priorities on path following, it is possible to obtain Y path

following errors ofless than 10"6 m. In[12], the Ypath following errors ofsinus road

are tracked for several speeds as a function of the time ahead used in the optimal

controller. The minimum time required to track the path increases with the speed as

54

one can expect. Preview gains study by Dandre* [12] has shown the importance of

choosing a suitablepreviewpoints to be considered in the road previewmodel. Study

by Dandre* [12] highlighted also that even small preview gains can have a strong

effect on the Y path following errors.

55

CHAPTERS

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This thesis emphasized on vehicle guidance for obstacle collision avoidance

operating conjointly with theworks of [5], [12], [13] and [18] on path following/lane

keeping. The MATLAB simulation using Gaussian functions and multi-objective

cost function proved the capability of a vehicle to precisely maneuver and avoid

collision with obstacles along its path by assuming stationary and static obstacles.

The collaboration of path following/lane keeping system (utilizing Neural Network

controller andoptimal controller) with obstacle collision avoidance system (utilizing

Gaussian functions andmulti-objective cost function) performed substantially well in

avoiding collision with obstacles while traveling on high speed along its

predetermined path. Vehicle traveling at a range of speed of 80km/h to 200 km/h on

an obstacle course demonstrated its ability to avoid collision with obstacles whilst

following the predetermined path with much precision and accuracy. The average Y

path following errors obtained for obstacle course varying from 0.0087 m (8.7000

mm) to 0.0265 m (26.5000 mm) is very small andconsidered almost negligible. The

Y pathfollowing errors depends on many parameters such as: the number of preview

points used (or similarly the time ahead of the car taken into account in the optimal

controller), the priorities chosen for the optimal controller, the car parameters (mass

and the yaw inertia especially), the speed of the car and the path chosen [12]. By

choosing a high number of preview points and by setting high priorities on path

following, it is possible to achievegreater accuracy and precision.

This project hasbeen very interesting and opened otherpossibilities for making cars

safer. Nevertheless, we are now at the forefront of designing Smarter/Safer vehicles,

when it comes to following a path/keeping on a lane and avoiding collision with

obstacles while on high speed. We have hybrid-powered cars now, maybe one day

soon hybrid (Human/Computer) controlled steering vehicles will beonthe roads.

56

5.2 Proposal for Future Works

Several recommendations on future works for expansion and continuation of the

project are as follows:

5.2.1 Employment ofModel-Predictive Control (MPC) Method

No model is perfectly accurate and this will always be the case that the model will

not be a perfect representation of the environment. This implies that there will

always be uncertainty in planning and hence there will always be a bound on the

amount of time that it makes sense to project (simulate the model) into the future.

Projecting into the future too far becomesuselessat some point since the predictions

will become inaccurate at some point and hence provide no good information on how

to select the best plan. The difficulty is knowing how good the model is and how far

to project into the future. The employment of MPC will enable the vehicle to predict

what goal is going to occur in the future since there could be a time-varying goal. If

the goal can be predicted, contingencies can be developed and earlier plans may be

modifiedto try to ensure successfor not onlythe currentgoals, but anticipatedones.

5.2.2 Additional Neural Network Control ofthe Forward Speed

This additional feature will enable the vehicle to move in non-constant speed. This

way, the network will reduce the velocity of the vehicle when moving at sharp

curves or turns and return to the original velocity when the path is smoother. Thus

better path following will be achieved.

5.2.3 Implementation of Different Types of Path

At this time, simulation on obstacle course is only limited to straight path, lane

change and sudden change of direction. In order to simulate a wide range of circuits,

sinus path and smooth random path with obstacles can be included in future studies.

Unexplored and unknown paths are also a substantive feature to be consideredas the

paths taken by a car varies constantly and it is impractical that a driver only travels

along that narrow range of circuits. It would also be interesting to see the car model

57

is able follow more challenging paths that have moving obstacles such as domestic

animals orchildren crossing the road and moving light orheavy vehicle ahead ofthe

car,just to namea few.

5.2.4 Improvement of Car Model

The car model can be improved to represent a genuine car in several manners: a

suspension model with rolling motion can be defined; the right and left wheels on

one axle can be decoupled considering load transfer and aerodynamic forces can be

considered.

5.2.5Implementation ofDifferent Learning Process

So far, only one type of learning process has been tried out: Gradient descent. It is

possible to use other different learning process to improve the performance of the

controller such asQuasi-Newton, conjugate gradient method orNewton's method.

5.2.6 Improvement ofNeural Structure

The efficiency of the Neural Network can be improved by selecting a suitable

structure of the network such as number of hidden layers and number of neurons per

layer.

58

REFERENCE

[1] R. Mohamad Isa, Global Road Safety Crisis, The Plenary ofthe 58th Session
of the General Assembly ofthe United Nations, New York, 14 April 2004,

Agenda Item: 160.

[2] Road Accident Causes Report 2003, Traffic Division of Bukit Aman Police

Headquarters, 2003.

[3] J. R. Treat, N. S. Tumbas, S. T. McDonald, D. Shinar, R. D. Hume, R. E.

Mayer, R. L. Stanisfer and N. J. Castellan, Tri-Level Study ofthe Causes of

Traffic Accidents, 1977, Report No. DOT-HS-034-3-535-77 (TAC).

[4] M. Green and J. Senders, 2004, Human Error in Road Accidents,

http://www.visualexpert.com/Resou«^s/roadaccidents.html

[5] N. H. Baharudin, Neural Network Controller for Non-Linear Vehicle

Following Predetermined Paths, B.Sc. Thesis, Universiti Teknologi

PETRONAS, December 2005.

[6] M. A, Goodrich and E. R. Boer, Designing Human-CenteredAutomation

Tradeoffs in Collision Avoidance System Design, Proceedings of IEEE

Transactions on Intelligent Transportation Systems, Vol. 1, No. 1, March

2000.

[7] P. Griffiths, D. Langer, J. A. Misener, M. Siegel and C. Thorpe, 2001,

Sensor-Friendly Vehicle and Roadway Systems, Instrumentation and

Measurement Technology Conference, 2001. (IMTC 2001), Proceedings of

the 18th IEEE, Vol. 2,21 - 23 May 2001, pp. 1036- 1040.

59

[8] Riid, Andri, Pahhomov, Dmitri, Rustern and Ennu, 2004, CarNavigation and

CollisionAvoidance with Fuzzy Logic, Fuzzy Systems, 2004. Proceedings of

IEEE International Conference 2004, Vol. 3, 25 - 29 July 2004, pp. 144 -

1448.

[9] K. C. Cheok, G. E. Smid and D. J. McCune, A Multisensor Based Collision

Avoidance System withApplication to a Military HMMWV, Proceedings of

IEEE Intelligent Transportation Systems Conference 2000, Dearborn (MI),

USA, 1-3 October 2000.

[10] Lages and Ulrich, Collision Avoidance System for Fixed Obstacles - Fuzzy

Controller Network for Robot Driving of an Autonomous Vehicle,

Proceedings of IEEE Intelligent Transportation Systems Conference 2001,

Oakland (CA), USA, pp. 25 - 29, August 2001.

[11] Howells and C. Christopher, Game-Theoretic Approach with Cost

Manipulation to Vehicular Collision Avoidance, Thesis, VirginiaPolytechnic

Institute and State University, 2004

[12] P. Dandre*, Learning Path Following Control of an Automobile, M.Sc.

Thesis, Imperial College London, September 2003.

[13] N. H. H. Mohamad Hanif, Path Following Using a Learning Neural

Network Controller, M.Sc. Thesis, Imperial College London, September

2004.

[14] Neural NetworkFAQ, Part 2 of7: Learning,

http://www.accpc.com/nnfaq/FAQ2.html

[15] Neural NetworkMATLAB Toolbox, Version 6.5.

[16] A. Astolfi, Lecture Notes on Optimization, Electrical Engineering

Department, Imperial College London, 2004.

60

[17] R. Wilson, T. R. Martinez, The General Inefficiency of Batch Training for

GradientDescent Learning.

[18] K. M. Passino, Biomimicry for Optimization, Control and Automation,

London: Springer-Verlag, 2005.

[19] R.S. Sharp and V. Valtetsiotis, Optimal Preview Car Steering Control,

Supplement to Vehicle System Dynamics, 35 (P. Lugner and K Hendrick

eds), May 2001, p.p. 101-117.

[20] R.S. Sharp, Modelling ofthehandlingproblem.

61

APPENDIX A

Tables

Table 1.1: Causes of fatal road accident on Malaysian roadways in 2003 (source: Traffic

Division of Bukit Aman Police Headquarters, 2003)

Sebab-Sebab Kemalangan Peratusan

Cuai tnelintas jalan (p/kaki) 24.64

Terbabas sendiri fsatu kenderaan) 23.19

Cuba/sedang memotongMar -orong 18.84

Iv-akan jaian (bukan memotong} 12.56

Cuai keluar/Masuk sirnpang jalan suaur 7.26

Tidak nampak/perasan ada kenderaan dan lain-iain 6.76

Mengikut rapat 4.34

Fusing "LF/Patah halik/f/enyeberang laluan 2.42

Melawan alirar trafik 1.93

Tidak ikut lampu iayarat merah 0.48

Berherti mengejut 0.48

Leka/Berangan-ietiK^engantuk 0.48

Mabuk/dadah 0

Cuai mengundur 0

Berlumba-Potong Zig-zag 0

Lain-lair 6.28

Tidak diketahui 4.83

62

Table 3.1: Vehicle model parameters (source: P. Dandre, 2003)

Parameters Values

Body Mass (M) 1200 kg

Yaw Inertia (Iz) 1500 kgm2

Distance from center of gravity to front axle (a) 0.92

Distance from center ofgravity to rear axle (b) 1.38

Cornering stiffness of front axle tyres (Cf) 120000 Nrad-1

Cornering stiffness ofrear axle tyres (Cr) 80000 Nrad-1

Fixed Steering Ratio (Hand wheel/road wheel), G 17

Track Width, w

Table 3.2: Vehicle model forces (source: P. Dandre\ 2003)

Type of Forces Equations

Front axle longitudinal force Ftf=F# + F#

Front axle lateral force Fyf^Fyfl + Fyfr

Rear axle longitudinal force Fxr = Fxri + Fxrr

Rear axle lateral force Fyr ~ FyrJ + Fyrr

63

Figures

ai-

a2-

a3-

a3-
biasb

activation

function f

Figure 2.1: Model ofa neuron (redrawn from P. Dandre, 2003)

-1

a = ptireiiniu)

a

A+l

0

-I

•>•;

£7 = hardlimfii)

-0.S33 +0.833

£7 = mdbasiw

Figure 2.2: Four basic activation functions ofa neuron (taken from P. Dandre, 2003)

64

nut lntra»T

Hidden layer
JJUL Lay

INPUT 1

'CI

L %b?

INPUT 2 L ' . ^u?

INPUT 3 *• -•-; %&

INPUT 4 t ••:*- C

INPUTS L ,'••'••; C

INPUT 6 t •"'• c
INPUT 7 L . c

Output layer
^ OUTPUT 1

4*- OUTPUT 2

4r OUTPUT 3

^ One neuron

Figure 2.3: A basic multi-layer feed-forward network

Minimum cost

plan (path) that
reaches the goal
(bolded line)

Curren

time

Prediction

one step into
the future

j=3

Planning into the future

Figure 2.5: Tree representation ofthe alternative plans that can be considered at some

point in time, along with the costs of executing such plans (redrawn from K. M. Passino,

2005)

65

Stationary
vehicle

•Path following
system

•Obstacle avoidance

system

Figure 3.2: Vehicle steers away from another stationary vehicle or object appearing in

the vehicle's path while traveling on a prescribed path/lane

Figure 3.3: Plan view of the modelof the car (taken from P. Dandre*, 2003)

66

road

Figure 3.4: Car and Road at instant k (taken from P. Dandre, 2003)

Human

control

Figure 3.6: Vehicle avoids another vehicle or object appearing unexpectedly in the

vehicle's path while traveling on a prescribed path/lane

67

Driven wheels (4)

Vehicle top 6(r
view P\

•^•

o

<)

O

One sensor focus

:0S^feW:1*':
^i^avbided:;:;::::

O '

to
0

x

Figure3.8: Autonomous vehicle guidance system

68

Subject vehicle on high speed

Vehicle speed reduced

Cornering at

reduced[speed j

Figure 3.13: Vehicle follows a prescribed path or keeps in a designated lane

Intended path

Shift register

4 '
4 1

(9Vnerror}

si
—•
teer

Driver i

Vehicle

Figure 3.15: Car/road system structure (redrawn from R.S. Sharp and V. Valtetsiotis,

2001)

0>
3

C
'm

D.2

-0.2

i
cl -0.4

20 m/8 30 mis
10 rh/s !.•''"

P\/"T

•i- yT

A

/--!

-r~»T

40 m/s 50:m/s

; System (a), qjl « 100, q2 » o. isO preview points
-v>

0 10 20 30 40 50 60 70 80 90 100
distance ahoad, m

Figure3.16: Optimalpreviewgains for path following for five different speeds(taken

from N. H. H. Mohamad Hanif, 2004)

69

Figure 4.7: Obstacle course (straight path) at 120 km/h with 120 preview points

Y Path Following Error
0.05

-0.05
20 25 30

distance, m

Steering Wheel Angle

20 25 30

distance, m

Figure 4.7(i) - (top): Y path following error

Figure 4.7(ii) - (bottom): Steering wheel angle

Figure 4.8: Obstacle course (straight path)at 130km/hwith 120preview points

0 05

CO
c
re

"53
<u

i
D)

-g
9

-03

Y Path FollowingError

distance, m

Steering Wheel Angle

20 25 30

distance, m

Figure 4.8(i) - (top): Y path following error

Figure4.8(ii)- (bottom): Steering wheelangle

70

Figure 4.9: Obstacle course (straight path) at 140 km/h with 120 preview points

Y Path Following Error
0.05

O 0
1=
9

-0.05

0.6

j

1 j 1 ! | j ! !
• I

> i i i ' i i

•i 1 '; i

15 20 25 30

distance, m

Steering Wheel Angle

35 45 50

0.4 -

sz -0.2 -

?

c
-0.4 -

•as

•0.8
20 25 30

distance, m

50

Figure 4.9(i) - (top): Y path following error

Figure 4.9(ii) - (bottom): Steering wheel angle

Figure 4.10: Obstacle course (straight path) at 150 km/h with120 preview points
Y Path Foflowing Error

•D

£

J!

-0 3

20 25 30

distance, m

Steering Wheel Angle

20 25

distance, m

Figure4.10(i)- (top): Y path following error

Figure 4.10(ii) - (bottom): Steering wheel angle

71

Figure 4.11: Obstacle course (straight path)at 160km/hwith 120preview points
Y Path Following Error

0.05

•0.05.

0.6

0.4 -

0.2

0

"5.
c

o
9

s
TO-0.4 h
c

*5
•?

-0.6-

•0.B

20 26 30

distance, m

Steering Wheel Angle

20 25 . 30

distance, m
35

45 50

40 45 50

Figure 4.1 l(i) - (top): Y path following error

Figure 4.1l(ii) - (bottom): Steering wheel angle

Figure4.12: Obstaclecourse (straight path) at 170km/h with 120previewpoints

Y Path Following Error

J= -02 -

%
9.

25 30

distance, m

Steering Wheel Angle

20 25 30

distance, m

Figure 4.12(i) - (top): Y path following error

Figure 4.12(ii) - (bottom): Steering wheel angle

72

Figure4.13: Obstaclecourse (straightpath) at 180km/h with 120previewpoints

Y Path FoPowing Error
0.05 r

I °9

•0.05.

0.6

0.4 -

9
"TO 0.2

-0.2 -

-0.6

•0.B

20 25 30

distance, m

Steering Wheel Angle

20 25 30

distance, m

35

35

45

45 50

Figure 4.13(i) - (top): Y path following error

Figure4.13(H) - (bottom): Steering wheelangle

Figure 4.14: Obstacle course (straight path) at 190 km/h with 120 preview points

Y Path Followmg Error
0.05

0.6

CT 0.2
C

.£ -0.2 -

TO-0.4 -

-0.6 -

•0.8.

20 25 30

distance, m

Steering Wheel Angle

20 25 30

distance, m

35

Figure4.14(i)- (top): Y path following error

Figure 4.14(H) - (bottom): Steering wheel angle

73

45 50

APPENDIX B

MATLAB Codes

Graphical User Interface (GUI)

function varargout = myGUI2(varargin)
% MYGU12 M-file for myGUK.fig

%%
% mygui2.m
%%
% TAN ZHANG YAW

% Electrical& ElectronicsDepartment
% Final Year Project
% UniversitiTeknologiPETRONAS(UTP)
%%
%

% NeuralNetworkbasedController for HighSpeedVehicle following Predetermined PathsGraphical UserInterface (GUI)
%

%%

% Last Modified by GUIDE v2.5 14-Oct-200615:21:59

%=

% INITIALISATION CODES

%

% Begin initializationcode - DO NOT EDIT
guijSingleton = 1;
guijState = struct('gui_Name', mfilename,...

'gui_Singleton', guiJSingleton, ...
'gui_OpeningFcn', @myGUI2_ppeningFcn,...
'gui_OutputFcn', @myGUI2_0utputFcn,...
'guLLayoutFcn', [],...
'gui_Callback', 0);

if nargin&& ischar(varargui{lj)
gui_State.gui_Callback = str2func(varargin{l});

end

ifnargout
[varargout{l:nargout}]= gui_mainfcnfeui_State,varargin{:});

else

gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

function myGUI2_OpeningFcn(hObject, eventdata,handles,varargin)

handtes.output = hObject;
guidatafliObject, handles);

thisPic = imread(>euralnetbmp');

axes(handles.myPicture);
imshow(thisPic,,notraesize');

74

thisPic2 = imread('cruise.jpg');

axes(handles.myPicture2);
imshow(tbisPic2>otruesize');

function varargout= myGUI2_OutputFcn(hObject, eventdata,handles)

varargout{ 1} - handles.output;

%=

% EDIT BOXES INITIAL CODES

%

function ebInitialX_Callback(hObject, eventdata,handles)
function ebImtiaK_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject3ackgroimdColorV\vhite');
else

set(hObject,Bacl^roundColoiJ,get(0,'defaultUicontrolBackgroundColoiO);
end

function eblnftialYj^allbackfliObject, eventdata, handles)
function ebInitialY_CreateFcn(hObject, eventdata,handles)
ifispc

set(hObject,'BackgroiindCoIor,,'white');
else

set0iObject,Background{^lof,get(0;defaultUicontrolBackgroundColor'));
end
function ebGoalX_Callback(hObject, eventdata,handles)
functionebGoalX_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,IBackgroundCoIoiJ,'white');
else

set(hObject,BackgroimdCotor',get(0J,defaultUicontrolBackgroundColor'));
end

function ebGoalYCallbackQiObject, eventdata, handles)
function ebGoalY_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,'Backg^oundColo^,,'white,);
else

set(hObject,Backg^oundColo^',get(0,,defaultUicontrou3ackgroundColo^,));
end

function ebObstactelX_Callback(hObject,eventdata, handles)
function ebObstaclelXjCreateFcnOtObject, eventdata, handles)
ifispc

set(hObject,,BackgroundColor,,'white');
else

set(hObject,Backg^>undColo^',get<0,'defaultUicontrolBackgroundColo^,));
end
function ebObstaclelYCallbackQiObject, eventdata,bandies)
function ebObstaclelY_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,'BackgroundColor','white');
else

set^Obje«,BackgroundCoIoiJ,geK0,'defaultUicontrolBackgroundColor'));
end

function ebObstacle2X_Callback(hObject, eventdata,handles)
function ebObstacle2X_CreateFcn(hObject, eventdata,handles)
ifispc

set(hObject,'BackgroundColor',,white');
else

set(hObject,BackgroundColor',get(0,,defaultUicontrolBackgroundColor'));
end

function ebObstacle2Y_Callback(hObject, eventdata, handles)
function ebObstacle2Y_CreateFcn(hObject, eventdata,handles)
ifispc

set(hObject,'Backg^oundColo^','white,);
else

setChObjectBackgroundCtolor^gettO^defauitUicontrolBackgroundColor'));
end

75

function ebObstacIe3X_CaUback(hObject, eventdata,handles)
function ebObstacle3X_CreateFcn(hObject, eventdata,handles)
ifispc

seuJiObject.'BackgroundColor'/white');
else

set(hObject,Backg^oundColor',get(0,,defaultUicontroBackgroundColo^,));
end
functionebObstacle3YjCallback(hObject,eventdata, handles)
function ebC*stacle3Y_CreateFcn(hObject, eventdata,handles)
ifispc

set(hObject,BackgroundColor',,white,);
else

set(hObject,'BackgroundCoIor',get(0,,defaultUicontroIBackgroundColoiJ));
end
function ebObstacle4XjCallback(hObject, eventdata, handles)
function ebObstacle4X_CreateFcn(hObject, eventdata,handles)
ifispc

set(hObject,'BackgroundColor,,'white');
else

set(hObjecl,BackgroundColor,,get(0,'defauItUicontrolBackgroundColoiJ));
end
runction ebObstacIe4Y_Callback(hObject, eventdata, handles)
functionebObstacle4Y_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,TJackgroundColor7white');
else

set(hObject,BackgroundCo^or,,get(0,'defauItUicont^olBacl(grou^dColor,));
end
function ebObstacle5X_CaUback(hObject, eventdata,handles)
functionebObstacle5X_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,'BackgroundColor,>hite');
else

set(hObject,BackgroundColor',get(0,'defaultUicont^o!BackgroundColor,));
end

functionebObstacle5Y_CalIback(hObject, eventdata, handles)
function ebObstacle5Y_CreateFcn(hObject, eventdata, handles)
ifispc

setthObjec^BackgroimdColor^hite');
else

set(hObject,BackgroundColor',get(0,,defaultUicontrolBackgroundColor'));
end
function ebObstacie6X_Callback(hObjecr, eventdata, handles)
function ebObstac!e6X_CreateFcn(hObject, eventdata, handles)
ifispc

set(>Object,'BackgroundColor,>hite');
else

set^ObjectJBackgroundColor',geK0,'defaultUicontrolBackgroundColor'));
end
function ebC*stacle6Y_Callback(hObject, eventdata, handles)
function ebObstacle6Y_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,'BackgroundColor',,white');
else

set^Object,BackgroundColor'sget<0,'defaultUicontroiBackgroundColorO);
end
functionebSpeed_Cal!back(hObject, eventdata, handles)
functionebSpeed_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,'BackgroundColor,,'white');
else

set(hObject,BackgrowdColoi^geK0,VIefaultU^
end

runction ebPreview_Callback(hObject, eventdata, handles)
runction ebPTeview_CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,'BackgroundColor','white');
else

set(hObject,BackgroundColor',get(0,,defaultUicontroIBackgroundCoIor'));
end

76

functionddPathTyp^CallbackthObject, eventdata, handles)
functionddPathType„CreateFcn(hObject, eventdata, handles)
ifispc

set(hObject,BackgK>undColor',\vhite');
else

setthObjec^BackgroundColo^geKO^defaultUicontrolBackgroundColor'));
end

function ebObstacleAmount_Callback(hObject, eventdata,handles)
function ebObstacIeAmountjCreateFcn(hObject, eventdata,handles)
ifispc

setfhObject,BackgroundColoiVwhite');
else

set(hObject,BackgroundColo^get(0,uefauI^^^
end

function ebLaneChanges_CaIlback(hObject, eventdata, handles)
function ebLaneChanges_CreateFcn(hObject, eventdata, handles)
ifispc

setthObjec^BackgroundColorVwrute');
else

seHhObjec^BackgroundColof.gettO.'defaultUicontroIBackgroundCoior'));
end

%=

% RANDOMISE OBSTACLES CODES

%

function btnRandomObstacles_Callback(hOb)ect, eventdata,handles)

numberOfObstacles = sS2double(get^iandles.eM)bstacleAmount,'String'));

if numberOfObstacles >= 1

randomNumber = round(50*rand(l));
set(handles.ebObstacIelX,'String',randomNurnber);
randomNumber = round(30*rand(l));
seuJiandles.ebObstacle1Y,'String',randomNumber);

else

set(handles.ebObstaclelX'String','0');
set(handles.ebObstacIelY,,String,,'0');

end

ifnumberOfObstacles >= 2

randomNumber = round(50*rand(l));
set(hmdIes.ebObstacle2X,'Stting',randoniNumber);
randomNumber = round(30*rand(l));
set{handles.ebObstacle2Y,'String',randomNumber);

else

set(handIes.ebObstacle2X,'String,J'0');
setOiandles.ebObstac^Y.'String'/O');

end

if numberOfObstacles >= 3

randomNumber « round(50*rand(l));
set0iandles.ebObstacle3X,'String',randomNumber);
randomNumber=round(30*rand(l));
set(handles.ebObstacle3Y,,String',randomNumber);

else

set(handles.ebObstacIe3X,'String,,'0');
setfhandles.ebObstacleSY.'StringVO*);

end

ifnumberOfObstacles >= 4

randomNumber = round(50*rand(l));
set(handles.ebObstacle4X,'String,^andomNumber);
randomNumber - round(30*rand(l));
set(handles.ebObstacle4Y,,String,,randomNumber);

else
setthandles.ebObstacl^X/StringVO');
set(handles.ebObstacIe4Y,,String,,,0');

end

77

ifnumberOfObstacles >= 5
randomNumber = round(50*rand(l));
set0iandles.ebObstacle5X,'String',randomNumber);
randomNumber=round(30*rand(l));
set(handIes.ebObstacle5Y,'String',randomNumber);

else

set(handles.ebObstacle5X,'StringV0');
set(handies.ebObstacle5Y,'String70');

end

ifnumberOfObstacles >= 6

randomNumber= round(50*rand(l));
set0iandles.ebObsiacle6X,'String,srandomNumber);
randomNumber=round(30*rand(l));
set(handes.ebObstacle6Y,'Strmg^randonu\umber);

else

set(handles.ebObstac!e6X,,String,,'0');
setthandles.ebObstacleoY/StringVO');

end

set(handIes.txCunentLane,'StringVlO;

%=

% RESET CODES

%

runction btnResetAll_Callback(hObject, eventdata, handles)

setOiandles.ebInitiaiX,'String',,0');
setthandles-ebmitialY/StringVO');
set(handles.ebGoalX,'String',,50');
setfrandIes.ebGoalY,,String730');

set(handles.ebObstacle1X'StringVO');
set(handles.ebObstacle1Y.'String'/O')-,
set(handles.ebObstacIe2X,,String,,,0');
set(handles.ebObstacle2Y,,String,,'0');
set(handles.ebObstacle3X,'String']'0');
set(handles.ebObstacle3Y,'String,,'0');
setfhandles.ebObstacle4X,,String,,,0');
set(handles.ebObstacle4Y,'String,,'0,);
setthandles.ebObstacleSX.'String'.'O');
set0umdIes.ebObstacle5Y,'StringyO');
setfrandles.ebObstacleoX'StringVO');
set0iandles.ebObstacIe6Y,'String,,'0');

setOiandles.ebLaneChanges.'StringVO');
set(handIes.ebObstacleAmount,'String,,,6');
seiOiandles.rxtFinalError,'String,;Average Error= 0');%reset Average Errorto 0

set(handles.ebSpeed,'String,,,90');
set(handles.ebPreview,'String';20');

axes(handles.boxObstaclePreview);
cla;
axes(handles.boxShowPam);
cla;
axes(handles.boxPath);
cla;
axes(handIes.boxError);
cla;

set(handles.txtCurrentLane,'String',' I');

%=

% INFORMATION CODES 1

%

functionbtnPreviewObstacles_Callback(hObject, eventdata, handles)

% Grab initial and end vehicle coordinates

78

initialX= str2double(get(hMdles.ebfoitialXf'String'));
initialY= str2double(get(handles.ebI^itialY,'Strmg,));
goalX « str2doublc(gct(handles.ebGaalX,'Strmg'});
goalY* stj^doirole(get(handles.ebGoalY,'String'));

% Get the projected line
if initialX = goalX

xValues - (initialX-0.001):0.001/100:goaIX;
else

xValues = initialX:(goalX-initialX)/100:goalX;
end
ifinitiaiY = goaiY

yValues= (inhiaIY-0.001):0.001/100:goalY;
else

yValues= initialY:(goalY-initialY)/100:goalY;
end

% Grab obstacle coordinates
obslX = st^oublefeetftandles.ebObstaclelX/String'));
obslY - sti2double<get(handles.ebObstaclelY,'String'));
obs2X =str2double4et0iandles.ebObstacle2X,'String'));
obs2Y =stadoublefeet^andies.ebObstac^Y/String'));
obs3X « str2double(get(handles.ebObstacle3X,,String'));
obs3Y = stj2double<get(handles.ebObstacle3Y,'StringO);
obs4X =str2double(get^andles.ebObstacle4X,,String'));
obs4Y = str2double(get(handles.ebObstacle4Y,,String'));
obs5X = str2doubIefeetiliand1es.ebObstacle5X,1String'));
obs5Y = st^oublefeetOiandles-ebObstacleSY/String'));
obs6X =str2doub!e(getfrandles.ebOrjstacle6X,'Strtog^
obs6Y- str2double(get(handles.ebObstacle6Y,,String'));

% Plot initial and final positions
axes(handles.boxObstaclePreview);
plot(xValues,yVaIues);
axis([0 50030]);
titleCInitiat Vehicle Position, Goal Position & Obstacles');

% Plot obstacle positions (sets obstaclefunction)
hold on

ifobslX > 0

ifobslY>0

plot(obslX,obslY,,ro')
end

end

hold off

hold on

ifobs2X>0

ifobs2Y>0

plot(obs2X,obs2Y,'ro')
end

end
hold off

hold on

ifobs3X>0

ifobs3Y>0

plot(obs3X,obs3Y,'ro')
end

end

hold off

hold on

ifobs4X>0
ifobs4Y>0

plot(obs4X,obs4Y,'ro')
end

end

hold off

hold on

ifobs5X>0

ifobs5Y>0

plottobsSX.obsSY/ro')

79

end

end

hold off

hold on

ifobs6X > 0

ifobs6Y>0

plot(obs6X,obs6Y,'ro')
end

end

hold off

%

% LANE CHANGE CODES

%

function bmStart_Callback(hObject, eventdata, handles)

% — Setup all the initialvariables —
numberOfLanes- str2double(get(handles.ebLaneChanges,,String')) + 1;
if numberOfLanes > 3

numberOfLanes =3;
end
currentLane= str2double(get(handIes.txtCurrentLane,'String'));

% Grab initial and end vehicle coordinates

initialX= str2doublefeet(handles.ebfoitialX,'String'));
initialY= str2double(get(handles.ebInirialY,'String^);
goalX« str2double(get(handles.ebGoalX,,StringO);
goalY= str2double(getftandles.ebGoalY,,String'));

%Get the projected line
ifinitialX = goalX

xValues = (initialX-0.00I):0.001/100:goalX;
else

xValues= initialX:(goalX-imtialX)/100:goalX;
end
ifinitialY = goalY

yValues- (initialY-0.001):0.001/100:goaIY;
else

yValues= initialY:(goalY-imtialY)/100:goalY;
end

val = getthandles.ddPathType/Value');
str=getfliandles.ddPathType, 'String");
thisMethod - str{val};

% Grab obstacle coordinates
obslX = sttfdoublefeet^dles.ebObstaclelX.'String'))
obslY - str2double(get(handles.ebObstaclelY.'String*))
obs2X = str2double(get(handies.ebObstacle2X,,String'))
obs2Y = stt2fouble(getfoandles.el)Obstacle2Y,,String'))
obs3X =str2double^{handles.ebObstacle3X,'String')):
obs3Y =str2double(get^dJes.eDObstacIe3Y,'String^):
obs4X = sri2double(get(handles.ebObstacle4X,,String')):
obs4Y =str2doub!e(get0iandles.ebObstacle4Y,,Stniig^)
obs5X =str2double(get(handles.ebObstacle5X,'String^)
obs5Y =str2doub!e(get^andles.ebObstacle5Y,'String'))
obs6X = sb2double(get0iandles.ebObstacle6X,,String^)
obs6Y = str2double(get(handles.ebObstacle6Y,'String'))

speed= str2doub!e(get(handles.ebSpeed,,String'));
speed= speed*1000/3600; % convertkm/hto m/s
previewPoints= str2double(get(handles.ebPreview,,String'));

%=

% PREVIEW CODES

%

% Plot initial and final positions
axes(handles.boxObstaclePreview);

80

plotXxValues^Values);
axis([0 50 0 30]);
titieCinitial Vehicle Position, GoalPosition& Obstacles');

% Plot obstacle positions(sets obstaclefunction)
hold on
ifobslX>0&&obslY>0

plot(obslX,obslY,'ro')
end

hold off

hold on
ifobs2X>0&&obs2Y>0

plot(obs2X,obs2Y,,ro')
end

hold off

hold on
ifobs3X>0&&obs3Y>0

plot(obs3X,obs3Y,'ro')
end

hold off

hold on

ifobs4X > 0 && obs4Y > 0

plot(obs4X,obs4Y,'ro')
end

hold off

hold on
ifobs5X>0&&obs5Y>0

plottobs5X,obs5Y,'ro')
end

hold off

hold on
ifobs6X>0&&obs6Y>0

plot(obs6X,obs6Y,W)
end

hold off

obs(l) = obslX; obs(2) = obslY;
obs(3) = obs2X; obs(4) = obs2Y;
obs(5) = obs3X; obs(6) = obs3Y;
obs(7) = obs4X; obs(8) = obs4Y;
obs(9) = obs5X; obs(10) - obs5Y;
obs(l 1) = obs6X; obs(12) = obs6Y;

%=

% OBSTACLE AVOIDANCE CODES

%

% Set edges of region want to search in
xmin=[0; 0];
xmax=[50;30];
Nsteps=750; % Maximum numberof steps to produce
lambdaH).1; % Step size to take in chosen direction at each move
Ns=16; % Number of points on circularpattern to sense
r=l; % Sensing radius
xs=0*ones(2,Ns); % Initialize xs
Jo(:,I)=0*ones(Ns,l);
Jg(:,l)=0*ones(Ns,l);
J(:,l)=0*ones(Ns,l);
thetaC, I)=0*ones(Ns, 1);
for m=2:Ns % Compute the angles to be used around the circle

theta(m,i)=meta(m-l,l)+(jpi/180)*(360/Ns);
end

% Goal position ofvehicle
xgoal=[goalX;goalY];
% Initial vehicle position
x=[initialX; initialY];

% Weighting parameters forplanning (setspriority forbeingaggresive
% in the direction of the goal vs. avoiding obstacles

81

wl=l;
w2=1.0000e-04;

% Allocate memory
x(:,2:Nsteps)=0*ones(2,Nsteps-l);

xx=0:50/100:50;
yy=0:30/100:30;

forjj=l:length(xx)
forii=l:length(yy)

zz(iiJ)=gui_obsfunction([xx(ij);yy(ii)],wi,obs);
end

end
forju=l:length(xx)

forii=l:length(yy)
zzz(iijj>^oalfunction([xx(ij);yy(ii)],xgoal,w2);

end

end

fork=l:Nsteps

% Useprojection to keep in boundaries (like hittinga walland stayingat it)

x(:,k)=min(x(:,k),xmax);
x(:,k)=max(x(:,k),xmin);

% Sensepoints on circularpattern

form=l:Ns
xs(:,m)=[x(l,k>fr*cos(theta(m,l)); x(2Jc>fr*sin(theta(m,l))]; % Pointon circularpattern
Jo(m,l)==gui_obsfunction(xs(:,m),wl,obs); % Compute theobstace function (whatis
% sensed at each sensed point
Jg(m,l)=^oalfunction(xs(:,m),xgoal,w2); % Compute howwelleach point
% moves toward the goal
J(m,l)=Jo(m,l)+Jg(m,l); % Computefunctionfor opt in planning

end

% Next pick the best direction

[val,bestone]=min(J);

% Then,updatethe vehicleposition(pickbestdirection andmovestepof lambdathatway)

x(:,k+lMx(l,k)4-lambda*cos(meta(bestone,l));x(2,^

% But the vehicle is in a real environment so when it tries to move to that point it
% onlygets to near that point To simulate this we perterbthe finalposition.

Deltalambda=0.1 *lambda*(2*rand-l); % Set the lengthperturbation to be up to 10%of the step size
Deltameta=2*pi*(2*rand-1); % Set to be360degvariationfromchosendirection
x(:,k+I)=[x(l,k+l)+DeltalamMa*cos(meta(bestone,l)+Deltatheta);...

x(2,k+l >fDeltalambda*sin(theta(bestone,1>+Deltameta)];

end % End main loop...

%=

% DISPLAY PATH CODES

%

axes(handles.boxShowPath);
contour(xx,yy,zz,25);
colormap(jet);
titleCVehicle Path');
if currentLane > 1

loadPathOne
hold on

plot(first_x(l, :),first_x(2,;),'r-');
hold off

end

82

if currentLane > 2

loadPathTwo

hold on
pIot(secondji(1,:),secotid_x(2,:),'r-');
hold off

end

hold on

plot(x(l,:),x<2,:)>');
plot(initialX,initialY,'s',goalX,goalY,'x^;
hold off

if currentLane < numberOfLanes

if currentLane — 1

first_x = x;
save PathOnefirst_x
set(handles.ebmitialX,'Strmg\get(handles.ebGoalX,'String'));
set(handIesxbmitialY,'String',geuTiandles.ebGoalY,'Stjing'));

end
ifcurrentLane = 2

second_x = x;
save PathTwo second_x
set(handles.ebmitialX,'String'Jget(handles.ebGoalX,,String'));
set(lumdles.ebInitialY,,Strin^get^andles.ebGoalY,'String'));

end

currentLane = currentLane + I;
se^andles.txtCurrentLane,,String>um2str(currentLane));

end

save PathThis x

%%%%%%%%%%End ofProgram%%%%%%%%%%%

functionbtnError_Callback(hObject, eventdata, handles)

%=

% INFORMATION CODES 2

%

%axes(handles.boxPath);
%titleCFoIlowPath');
%plot(x(l,:),x(2,:),'r-');

speed= str2double(get{handlesxbSpeed,,St^ing,));
speed= speed*1000/3600; % convertkm/hto m/s
previewPoints = str2double(get(handles.ebPTeview,,String'));
currentLane = str2double(get0iandles.txCunraitLane,'String'));
val = getOiandIes.ddPathType,'Value');
str = get(handIes.ddPathType, 'String*);
thisMethod = str{val};

load PathThis

[myWidth,myLength] = size(x);
if currentLane > 1

load PathOne

x(l,myLengm+I:myLength*2) = x(l,l:myLength);
x(l,I:myLengm) = first_x(l,l:myLength);
x(2^yLength+l:myLength*2) = x(2,l:myLength);
x(2,l:myUngth) = first_x(2,l:myLength);

end

if currentLane > 2

load PathTwo
x(l,myUngth*2+l:myLength*3) = x(lsmyLength+l:myLength*2);
x(l,myLengm+I:myLengm*2) = second_x(l,l:myLengrh);
x(2,myl^gth*2+l:myLength*3) = x(2,myLength+l:myLength*2);
x(2,myLength+l :myLength*2) = second_x(2,l :myLength);

end

axes(handles.boxPath);
titleCFollow Path');

83

plot(x(l,:),x(2,:),'r-');

% forward speed
u=speed;
% samplingperiodT
T=0.05;
% number ofpreview points
n=previewPoints;
%car parametersdefinition
Cf=120000;
Cr=80000;
a=0.92;
b=1.38;
M=1200;
G=17;
Iz=1500;

%%%%%%%%%% Road Model Matrices %%%%%%%%%%%

% road shift operators
D=[zeros(n,l)eye(n);zeros(lJn+l)];
E=[zeros(n,l); 1];

%D=[0 100000000;
%0010000000

%0001000000

%0000100000

%0000010000

%0000001000

%0000000I00

%0000000010

%0000000001

%0000000000

%E=[0;0;0;0;0;0;0;0;0;1];

%%%%%%%%%% Linear Car Model %%%%%%%%%%%

Linear_car_model

%%%%%%%%%% Linear Control Gain Calculation %%%%%%%%%%%

% costprioritites (Priority is on PATH FOLLOWING)
Q=[100 0;

01);
R2=l;
% computethe LQG gain Kt
LQRgain

%%%%%%%%%%% Linear Cost Parameters %%%%%%%%%%%

% The cost to be minimised is the folowing one:
%J=Z(:,k)'*Rlcost*Z(:,k)+delta(k),*R2cost*delta(k)
% We keep the same priorites.
Rlcost=Rl;
R2cost=R2;
tic %starts the stopwatchtimer

%%%%%%%%%%% Path Information %%%%%%%%%%%

for epoch = 1:5

switch(thisMethod)
case 'Sinus Shape'

% sinus shape
xref=[0:u*T:900];
yref=50*sin(xrer7100);

case 'Lane Change'
%lane change
xrl=[0:u*T:50-u*TJ;

84

xr2=[50:u*T:50^0];
xr3=[110+u*T:u*T:300];
xref=[xrl xr2 xr3];
yrl=0*xrl;
yr2=2-2*cos((pi/60)*xr2-50*pi/60);
yr3=4*ones(size(xr3));
yref^[yrl yr2 yr3];

case 'Sudden Change ofDirection'
%sudden change ofdirection
xrl=[0:u*T:60-u*T];
xr2=[60:u*T;200];
xref=[xrl xr2];
yrl=0*xrl;
SIZE_OF_xr2=size(xr2);
yr2= 0.5*0.25*[l:SIZE_OF_xr2(U)]*0.5359';
yref ™[yrl yr2];

case 'Smooth Random Path'

%smooth random path
K=900/(u*T)+l;
xref=[0:u*T:900];
[Bfilter,Afilter]= butter(5,0.007);
roadn=10*rand(K,I);
roadn = 40*(roadn-5);
yref = fiIter(Bfilter, Afilter, roadn)';

case 'Obstacle Avoidance'

%red-line path
xref = x(l,:);
yrefi;i,:) = x(2,:);

end

%ifepochal
%circuits_2
%else

%circuit_iterations
%end

[K,nb]= size(yref); %arraysizeof yref

%%%%%%%%%%% State Definition & Initialisation %%%%%%%%%%%

% At eachtimestep,a newglobalframeis defined.
% The state is based on a frame comprisingthe local x and y-axesof the vehicle.

% Z=[local lateral displacementv]
%[vdot]
% [local angle phi]
%[phidot]
% [local lateral previewerrors]

ZA = zeros(4+n+l,K-n-l);
ZA(U) = yrefU);
ZA(3,1) = (yref(2) - yref(l))/(u*T);
ZA(4+l:4+n+l,l) = yref(l:n+l)';

ZB = zeros(4+n+l,K~n-i);
ZB(l,l) = yref(l);
ZB(3,1) = (yref(2)- vrefi;i))/(u*T);
ZB(4+l:4+n+l,l) = yref(l:n+l)';

% augmented matrix
Ebis=lzeros(4,l);E];

%%%%%%%%%%% Paramaters Initialisation %%%%%%%%%%%

%sensitivity functions initialized to 0

dzdw = zeros(n+5,n+5);

85

dudw - zeros(l,n+5);
dJdw= zeros(l,n+5); %to be multiplied withgamato obtaindeltawfor gradientmtd
prevdJdw- zeros(l,n+5);
deltaw= zeros(l,n+5); % to be addedto w to obtainw(k+l)
prevdeltaw = zeros(l,n+5);

%other parameters
phiA(lMyref(2>.yref(l))/(u*T);
phiB(l)=(yref(2)-yref(l))/(u*T);

deltaA(l)=0;
deltaB(l)=0;

lateral_accelerationA(l)=0;
lateral_accelerationB(l)=0;

global_positionA(1)=ZA(1,1);
globaljositionB(l)=ZB(1,1);

ZinitA = zeros(4+n+l,l);
ZinitB - zeros(4+n+U);

ZstepA = zeros(4+n+l, 1);
ZstepB = zeros(4+n+l, 1);

%%%%%%%%%%%Neural Network Implementation%%%%%%%%%%%

disp(' Neural Network Implementation ')

% choosean inputlayerwith n+5 (numberof states)neurons
input=[-50*ones(n+5,l)50*ones(n+5,l)];

%net=newff(input,1,{tansig'});
net=newlin(input, 1);

%initialize the vector W(:) containing all weights and biases,
ifepoch =1

forjg=l:4+n+l
W(jg>=Kt(jg); %Weight basedcoeffobtainedfromoptimal Ctrl theory
W_init=W; %Storing the initialweight

end

%fixed learning rate
gama=0.1;
gama_init=gama; %Storingthe initiallearningrate
gama_next(l)=gama;

else

W - WJast; %LastUpdatedweightfrompreviousepoch
gama=gamajast; %lastupdatedlearningrate frompreviousepoch
gama_next(l)=gama;

end

%initialize neural network weightings
netlW{l,l}=W;
netb{l}=[0];

toe %reads the stopwatch timer
disp C mam loop....')
tic %starts another stopwatch timer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MAIN LOOP %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fork=l:(K-n-I)
% definition of a newglobal frame based onthe local x andy axesof the car.

% definition of the state of the car
ZinitA = ZA(:,k);

86

YdotA = ZA(2,k);

ZinitB = ZB(:,k);
YdotB = ZB(2,k);

ifk>l

ZinitA(2)=ZinitA(2)-u*sin(ft>hiA(k)-phiA(k-l))); %the local y-axis is changed
ZinitB(2)=ZinitB(2>u*sin((phiB(k)-phiB(k-l)));
%ZinitC(2)= ZiniC(2>u*sin((phiC(k)-phiC(k-l))); %me localy-axis is changed

else

ZinitA(2)=0;
ZinitB(2)=0;
%ZinitC(2)=0;

end

% due to the choice ofthe frame, absolute positions become zero
ZinitA(l) = 0;
ZinitA(3) = 0
ZinitB(l)=*0
ZinitB(3) = 0

% absolute to relative road data transformation

locaTyrefs = yref(k:k+n+l);

forj = l:(n+2),
Iocai_yrefsA(j) - local_yrefs(j)- global_positionA(k)-...

(j-l)*pbiA(k)*u*T;
local_yrefsB(j)= local_vrefs(j)- global_positionB(k)-...

(j-I)*phiB(k)*u*T;
end

% definitionof the remainningstates (previewpath errors)
ZinitA(4+l:4+n+l) - local_yrefsA(l:n+l);
ZinitB(4+l:4+n+l) = local_yrefsB(l:n+I);

%%%%%%%%%%% State Error %%%%%%%%%%%

epsA=ZinitA;
epsB=ZinitB;

%%%%%%%%%%% Steer Angle %%%%%%%%%%%

deltaA(k) = -Kt'epsA;
deltaB(k) = sim(net,-epsB);

%%%%%%%%%%% State Update %%%%%%%%%%%

ZstepA = A *ZinitA+B*deltaA(k)+ Ebis*locat_yrefsA(n+2);
ZstepB= A *ZinitB+ B*deltaB(k) + Ebis*local_yrersB(n+2);

%%%%%%%%%%% Weighting Update %%%%%%%%%%%

% dudw(k) calculation
dudw= -(ZstepB' + W*dzdw);

% dJdw(k) calculation keeping the previous derivative of the cost
prevdJdw=dJdw;
dJdw=2*ZstepB'*Rlcost*dzdw+2*deltaB(k)*R2cost*dudw;

% dzdw(k+l) calculation
dzdw=A*dzdw+B*dudw;

% adaptive learning rate
ifdJdw/prevdJdw< 1.000 %cost ratio

gama=1.05*gama;
end

if dJdw/prevdJdw> 1.005

87

gama=0.7*gama;
end
% difference calculation Polak Ribiere or Gradient method
% prevdeltaw=deltaw;
% ifk<3
deltaw=-gama*dJdw; %value for deltaw
gama_next(k+l)=gama;

%else

% deItaw=-gama*(dJdw - l/norm(prevdJdw) *...
% (dJdw'*(dJdw-prevdJdw)*prevdeltaw')');
%end

% weightingupdate
W^W+deltaw; %incremental training
net.rW{l,l}=W;

%%%%%%%%%%% End of Weighting Update%%%%%%%%%%%

% lateral_acceleration calculation
lateral_accelerationA(k+I) = (ZstepA(2,l)-YdotAVT+u*ZstepA(4,l);
lateral_accelerationB(k+l) = (ZstepB(2,l)-YdotB)/T+u*ZstepB(4,l);

% update absolutepositions
global_positionA(k+l) = global_positionA(k) +u*T*phiA(k) +ZstepA(l,l);
global_positionB(k+l)» global_positionB(k) + u*T*phiB(k) + ZstepB(l,l);
phiA(k+l) = phiA(k) + ZstepA(3,l);
phiB(k+l)= phfflflc) + ZstepB(3,l);

% store the state

ZAC,k+l) = ZstepA;
ZB(:,k+l)=ZstepB;

end

%ifepoch =1
% plot_plot
%end

toe

gamajast = gama_next(K-n);
gamajend(epoch) = gamajast;
W_last = W;
W_enoXepoch,l:4+n+l)=W_last(l,l:4+n+l);

end

Ws = WJnit+0.0001;
xyz=u;

forr=l:jg;
%xyz(r)=(W_lastB(r)-W_initB(r));
xyz(r)=abs((net.rW{l,l}(r)-Ws(r))/Ws(r))*100;

end
weight_change=a(sum(xyz))/(g;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ENDOF MAIN LOOP %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Plottings2inoneshot

road_angle_estimation=zeros([l :K-n+1],1);
forj*l:K-n

road_angle_estmiationOHyrefli+I)-yrenJ)V(u*T);
end
yaw_errorA=phiA([l:K-n])-road_angle_estimation([l:K-n]);

axes(handles.boxPath);
%path following
plot(xref([l:K-n]),yref(I,[l:K-n]),xref([l:K-n]),global_positionA(l:K-n),'g:');
%plot(xglobal([l:K-n+l]),yrefl:i,[l:K-n+l]),xglobal([l:K-n+l]),yglobal(l:K-n+l,l),,g');grid;
xlabelCdistance, nV);

88

ylabelCy coordinate, m');
titleCPath Following1);
switch(thisMethod)

case 'Sinus Shape'
if1=2

AXIS([-10 1000 -100 100])
end

case 'Lane Change'
ifi=2

AXIS([-10 1000-100 100])
end

case 'Sudden Change ofDirection'
ifi=2

AXIS([-10 1000-100 100])
end

case 'Smooth Random Path'

ifi=2
AXK([-10 1000-100 100])

end

case 'Obstacle Avoidance'

axis([0 50030]);
end

axes(handles.boxError);
%y difference
plot(xref([l:K-n]),yref([l:K-n])-global_positionA([l:K-n]),':');
xlabelCdistance, m');
ylabelCyerr01".m');
title('Y Path FollowingError1);

myCount= 1;
averageError = 0;
totalError = 0;
thisError = 0;
while myCount < (K-n)

thisError~ yref(myCount) - global_nositionA(myCount);
ifthisError<0

thisError = -thisError;
end

totalError=totalError + thisError;
myCount= myCount+ 1;

end
averageError = totalError/myCount;

setXhandles.txrFinalError.'String'̂ 'Average Error=' num2str(averageEiTor)3);

%%
% EndofProgram
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%^

89

Obstacle Collision Avoidance

Main Program

%%

% vehicjguide.m
%%
%

% Obstacle Collision Avoidance

%

%%

clear % Initialize memory

xmin=[0;0]; % Set edges ofregion want to search in
xmax=[50;30];

Nsteps=750; % Maximum number of steps to produce

% Next set the parametersof the vehicle:

lambda=0.1; % Stepsizeto take in chosendirection at eachmove
Ns=16; % Number of points on circularpattern to sense
r=l; % Sensing radius
xs=0*ones(2,Ns); % Initialize
Jo(:,l)=0*ones(Ns,l);
Jg(:,l)=0*ones(Ns,l);
J(:,l)=0*ones(Ns,l);
theta(:,l)=0*ones(Ns,l);
for m=2:Ns % Compute the angles to be used aroundthe circle

theta(m,l)=theta(m-l,l)+(pi/180)*(360/Ns);
end

% Goal position of vehicle
xgoaI=[49;15];

% Initial vehicle position
x=[l; 15];

% Weighting parameters for planning(sets priorityfor beingaggresive
% in the directionofthe goal vs. avoidingobstacles
wl=l;
w2=1.0000e-04;

% Allocate memory

x(:,2:Nsteps)=0*ones(2^steps-1);

% The obstacles:

figureO)
elf
% Plot initial and final positions
plot(l,15,'s',49,15,'x')
axis([0 50 0 30])
hold on
xlabeK'x');
ylabelCy*);
titleCObstacles (o), initial vehicle (square) and goal (x) positions');
hold on

% Plot obstacle positions(sets obstaclefunction)
plot(5,15,'oM5,18,'o',15sl2,'o'^5,17,'o',30,I3,'o',38,15,'o')
hold off

90

%%
% Plot the functions:

xx=0:50/100:50; % For our functionthe range of values we are considering
yy=0:30/IOO:30;

% Compute the obstacle and goal functions

forjj=l:length(xx)
forii=l:length(yy)

zz(iijj)=obstaclefunction([xx(ij);yy(ii)],wl);
end

end

forjy=l;Iength(xx)
forii=l:length(yy)

zz2(iiJ)=goalfunction([xx(jj);vy(ii)],xgoal,w2);
end

end

figure(2)
elf

surf(xx,yy,zz);
%colormap(jet)
% Use next line for generatingplots to put in black and white documents.
colormap(white);
xlabelCx');
ylabelCy1);
zlabel('w_U_o');
title(Tunction w 1Jo showing (scaled) obstacle functionvalues');

figure(3)
elf

contour(xx,yy,zz,25)
colormap(jet)
%Use next line for generating plots to put in black and white documents.
%colormap(white);
xlabelCx');
ylabelCy');
titleCContour map of w_l J_o and initial (square) and goal (x) positions');
hold on

% Plot initial and final positions
plot(l,15,'s',49,15,'x1)
hold off

figure(4)
elf

surf(xx,yy,zzz);
view(82,26);
%colormap(jet)
% Use next line for generating plots to put in black and white documents.
colormap(white);
xlabelCx');

ylabelCy');
zlabelCw_2J__g');
titleCGoal function (scaled)1);
%rotate3d

figure(5)
elf

contour(xx,vy,zzz,25)
colormap(jet)
% Use next line for generating plots to put in black and white documents.
%colormap(gray);
xlabel('x');
ylabelCy');
title('Contour function of w_2J_g and initial(square)and goal (x) positions');
hold on

%Plot initial and final positions
plot(l,15,'s',49,15,'x')

91

hold off

figure(6)
elf

contour(xx,yy,zz+zzz,50)
colormap(jet)
% Usenext line for generating plotsto put in blackandwhitedocuments.
%colormap(gray);
xlabelCx');
ylabel(y);
titleCJ=w_U_o + w_2J_gand initial(square) and goal (x) positions1);
hold on

% Plot initial and final positions
plotU.lS.'sWS/x')

hold off

%%
% Start the simulation loop

fork=l:Nsteps

% Useprojection to keep inboundaries (likehitting a wallandstaving at it)

x(:,k)=min(x(:,k),xmax);
x(:,k)=max(x(:,k),xmin);

% Sense points on circular pattern

form=l:Ns

xs(:,m)=[x(l^)+r*cos(theta(m,l)); x(2,k)+r*sin(theta(m,l))]; %Point oncircular pattern
Jo(nU>^bstaclefunction(xs(:?m),wl); %Compute the obstace function (what is

at each sensed point
Jg(m,l)=goalfunction(xs(:,m),xgoal5w2); %Compute how well each point

% moves toward the goal
J(m,l)=Jo(m,l>fJg(m,l); % Computefunction for opt. in planning

end

% Next pick the best direction

[val,bestone]=min(J);

% Then, update thevehicle position (pickbestdirection andmove stepof lambda thatway)

x(:,k+1H*(l^)+'ambda*cos(meta(bestone,1))^

% But the vehicle is in a real environmentso when it tries to move to that point it
% onlygetsto nearthatpoint. Tosimulate thisweperterb thefinalposition.

Deltalambda=0.1 *lambda*(2*rand-l); % Set the lengthperturbation to be up to 10%of the step size
Deltatheta=2*pi*(2*rand-1); % Set to be 360degvariation fromchosendirection
x(:,k+lHx(lJt+l)+Deltalambda*cos(meta(bestone,lKDeltatheta);...

x(2,k+l>fDeltalambda*sin(theta(bestone,1>+Deltatheta)];

end % End main loop...

% sensed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%W
%Next, providesomeplotsof the resultsof the simulation.
%%^^^^

t=0:Nsteps; % For use in plotting

figure(7)
elf

92

plot(t,x(l,0,'k-,)t,x(2,:),,k-1)
ylabel('x, y1)
xlabelCIteration,^
titieCVehicle trajectory (x solid, y dashed)1)

figure(8)
elf

contour(xx,yy,zz,25)
colormap(jet)
% Usenext line for generating plotsto put in blackandwhitedocuments.
%colormap(gray);
xlabelCx1);
ylabelCy1);
titieCVehicle path to avoid obstaclesand reach goal');

hold on

plot(x(l,:)X2,:),V)

plot(I,15,'s',49,15,'x')

hold off

save dirResult x

%%
% End of program
%%%%%%%%%%%%%%%%%%%%%%%%%%m%%%%%%%%%%%%%%%%%%%

Obstacle Function

%%
% obstaclefunction.m

%%%^
%

% Obstacle Function

%

%%%

function J=obstaclefunction(x,wl)

% A function to represent sensed obstacles:

J=...
wl*max([exp(-0.8*((x(l,l)-5r2+(x(2,l)-15)A2)),...
exp(-0.8*((x(l,l)-I5r2+(x(2Jl)-18)A2)),...
exp(-0.8*((x(l,l)-15)A2+(x(2,l>12)A2)),...
exp(-0.8*((x(l,l)-25)A2+(x(2,I)-I7)A2)),...
exp(-0.8*((x(l,l)-30)A2+(x(2,l)-13)A2)),..
exp(-0.8*((x(l,l)-38)A2-Kx(2,l)-15r2))]);

%%^^^^
% End ofprogram
%%

Goal Function

%%%
% goalfunction.m
%%%
%

93

% Goal Function

%

%%%^

runctionJg=goalfunction(x,xgoal,w2)

% A goal function:

Jg=w2*(x-xgoal)'*(x-xgoal);
% Jg=0.01*(x-xgoal)'*(x-xgoal)/(l-0.01*(x-xgoal)'*(x-xgoal));

%%^^^^
% Endofprogram
%%%

94

Path Following/Lane Keeping

Main Program

%%%
% LinearNNa.m
%%
%
% Neural Control of a LinearCar Modelwith a Single ProcessingElement
%
%%

dispC ')
dispC OneSingleProcessing Element, LinearCar Model')
dispC -•)

dispC)
clear all; close all;clc

% forward speed
u=input('Speed in km/h? (using20 par (default))");
u = u*1000/3600; % convert km/h to m/s
if isempty(u), u=20;dispCUsing u=20m/s (default)'), end

% samplingperiod T
T=0.05;

% number of previewpoints
n=inputCPreview Points? (using20 par (default))');
if isempty(n), n=2/T; dispCUsing a number corresponding to lsec ahead (default)*), end

%car parametersdefinition
Cf=120000;
Cr=80000;
a=0.92;
b=1.38;
M=1200;
G=17;
lz=1500;

%%%%%%%%%% Road Model Matrices %%%%%%%%%%%

% road shift operators

D=[zeros(n,l) eye(n);zeros(l,n+I)];
E=[zeros(n,l); 1];

%D=[0100000000;
%0010000000:

%0001000000:

%0000100000.

%0000010000

%0000001000

%0000000100:

%0000000010;

%0000000001

%0000000000];
%E=[0;0;0;0;0;0;0;0;0;1];

%%%%%%%%%%% Linear Car Model %%%%%%%%%%%

Linear_car_model
dispC)

%%%%%%%%%%% Linear Control Gain Calculation %%%%%%%%%%%

95

% cost prioritites(Priority is on PATH FOLLOWING)
Q=[1000;
01];
R2=l;
% compute the LQG gain Kt
LQRgain

%%%%%%%%%%% Linear Cost Parameters %%%%%%%%%%%
% The cost to be minimised is the folowing one:
%J=Z(:,k)'*Rlcost*Z(:Jc)+delta(k),*R2cost*delta(k)
% We keep the same priorites.
RlcosWU;
R2cost=R2;

tic %start a stoopwatchtimer
dispC Loading path information ')

%%%%%%%%%%% Path Information %%%%%%%%%%%

for epoch = 1:5
if epoch=1
circuits_2
else

circuit:^iterations
end

[K,nb]= size (yref) %array size of yref

%%%%%%%%%%% State Definition & Initialisation %%%%%%%%%%%

%At each time step, a new global frame is defined.
% The state is based on a frame comprisingthe local x and y-axesof the vehicle.

% Z=[local lateral displacementv]
%[vdot]
%[local angle phi]
%[phidot]
% [local lateral preview errors]

ZA = zeros(4+n+l,K-n-l);
ZA(l,l) = yrefU);
ZA(3,1) - (yref(2)- yref(l))/(u*T);
ZA(4+l:4+u+l,l)=yref(l:n+I)';

ZB = zeros(4+n+I,K-n-l);
ZB(l,l) = yrefU);
ZB(3,1) = (yref(2) - yref(l))/(u*T);
ZB(4+I:4+n+l,l) = yref(l:n+l)';

% augmented matrix
Ebis=[zeros(4,1);E];

%%%%%%%%%%% Paramaters Initialisation %%%%%%%%%%%

%sensitivity functions initialized to 0

dzdw = zeros(n+5,n+5);
dudw = zeros(l,n+5);
dJdw - zeros(l,n+5); %to be multipliedwith gama to obtain deltawfor gradientmtd
prevdJdw=zeros(I,n+5);
deltaw = zeros(I,n+5); % to be added to w to obtain w(k+l)
prevdeltaw = zeros(l,n-*-5);

%other parameters
phiA(l)=(yref[2)-vref(l))/(u*T);
phiB(l)=(vrefl;2)-yref(l))/(u*T);

deltaA(l)=0;
deItaB(l)=0;

96

lateral_accelerationA(l)=0;
lateral_accelerationB(lH>;

global_positionA(1)=ZA(1,1);
globaljositionB(l)=ZB(l ,1);

ZinitA=zeros(4+n+l,l);
ZinitB = zeros(4+n+l,l);

ZstepA = zeros(4+n+l, 1);
ZstepB = zeros(4+n+l, 1);

%%%%%%%%%%% NeuralNetworkImplementation %%%%%%%%%%%

dispC NeuralNetworkImplementation ')

% choose an input layer with n+5 (number of states) neurons
inpuH-50*ones(n+5,l)50*ones(n+5,l)];

%net=newff(input,1,{'tansig1});
net=newlin(input, 1);

%initialize the vectorW(:)containing all weights andbiases,
if epoch ==1

forjg=l:4+n+l
W(jg)=Kt(jg); %Weight based coeffobtained from optimal Ctrl theory
Wjnit=W; %Storing the initialweight

end

%fixed learning rate
gama=0.1;
gama_init=gama; %Storingthe initiallearningrate
gama_next(l)=gama;

else

W= WJast; %LastUpdated weight from previous epoch
gama = gamajast %last updated learning rate from previous epoch
gama_next(l)=gama;

end

%initialize neural network weightings
net.IW{l,l}=W;
netb{I}=[0];

toe %reads the stopwatchtimer
disp (' main loop....1)
tic %starts another stopwatch timer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MAIN LOOP %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fork=l:(K-n-l)
% definition of anewglobal frame based onthe local x andy axesofthe car.

% definition of the state ofthe car

ZinitA = ZA(:,k);
YdotA = ZA(2,k);

ZinitB = ZB(:,k);
YdotB = ZB(2,k);

ifk>l

ZinitA(2) = ZinitA(2)-u*sin((phiA(k)-phiA(k-1))); %the local y-axis ischanged
ZinitB(2)= ZinitB(2)-u*sin((phiB(k)-phiB(k-l)));
%ZinitC(2)=ZinitC(2)-u*sin((phiC(k)-phiC(k-l))); %the local y-axis is changed

97

else
ZinitA(2)=0;
ZinitB(2)=0;
%ZinitC(2)=0;
end

% due to the choice ofthe frame, absolute positions become zero
ZinitA(l) - 0;
ZinitA(3) = 0:
ZinitB(l) = 0
ZinitB(3) = 0

% absolute to relative road data transformation

local_yrefs= yref(k:k+n+l);

forj = l:(n+2),
local_yrefsA(j) = local_yrefs(j) - global_positionA(k)-...
(j-l)*phiA(k)*u*T;
local_yrefsB(j) = local_yrefs(j) - globalj)ositionB(k>...
0-l)*phiB(k)*u*T;
end

% definition ofthe remainning states (preview path errors)
ZinitA(4+l :4+n+l) = local_yrefsA(l:n+l);
ZinitB(4+l:4+n+l) - local_yrefsB(l:n+l);

%%%%%%%%%%% State Error %%%%%%%%%%%

epsA=ZinitA;
epsB=ZinitB;

%%%%%%%%%%% Steer Angle %%%%%%%%%%%

deltaA(k) = -Kt*epsA;
deltaBfk) = sim(net-epsB);

%%%%%%%%%%% State Update %%%%%%%%%%%

ZstepA = A *ZinitA+ B*deltaA(k) + Ebis*local_yrefsA(n+2);
ZstepB = A *ZinitB+ B*deltaBOc) + Ebis*local_yrefsB(n+2);

%%%%%%%%%%% WeightingUpdate%%%%%%%%%%%

% dudw(k) calculation
dudw= -(ZstepB' + W*dzdw);

% dJdw(k) calculation keepingdie previous derivative of the cost
prevdJdw=dJdw;
dJdw=2*ZstepB'*Rlcost*dzdw+2*deltaB(k)*R2cost*dudw;

% dzdw(k+l) calculation
dzdw=A*dzdw+B*dudw;

% adaptive learning rate
ifdJdw/prevdJdw<I.000 %costratio
gama=EI.05*gama;
end

if dJdw/prevdJdw > 1.005
gama=0.7*gama;
end

% difference calculation Polak Ribiere or Gradient method
% prevdeltaw=deltaw;
% if k<3
deltaw^gama'djdw; %value for deltaw
gama_next(k+l)=gama;

%else
% deltaw=-gama*(dJdw - l/norm(prevdJdw) *...
%(dJdw'*(dJdw-prevdJdw)*prevdettaw')');

98

%end

% weightingupdate
W=W+deltaw; %incremental training
net.IW{l,I}=W;

%%%%%%%%%%% Endof Weighting Update%%%%%%%%%%%

% lateral_acceleration calculation
lateral_accelerationA(k+l) - (ZstepA(2,l)-YdotA)/T+u*ZstepA(4,l);
lateral^accelerationB(k+l) = (ZstepB(2,l)-YdotB)/T+u*ZstepB(4,l);

% update absolutepositions
global_positionA(k+l) - global_positionA(k) + u*T*phiA(k) + ZstepA(l,l);
gIobal_positionB(k+l) - global_positionB(k) + u*T*phiB(k) + ZstepB(l,l);
phiA(k+l) = phiA(k) + ZstepA(3,l);
phiB(k+l)» phiB(k)+ ZstepB(3,l);

% store the state

ZA(:,k+l) = ZstepA;
ZB(:,k+l) = ZstepB;
end

if epoch =1
plot_plot

end

toe

gamajast = gama_next(K-n);
gama_end(epoch) = gamajast;
WJast-W;
W_end(epoch,l:4+n+l)=WJast(l,l:4+n+l);
end

Ws = WJnit+0.0001;
xyz=Q;
forr=l:jg;

%xyz(r)=(WJastB(r)-W_initB(r));
xyz(r)=abs((net.IW{l,I)(r)-Ws(r))/Ws(r))*100;

end

weight_change=(sum(xyz))/jg;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% END OF MAIN LOOP%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%figure(4)
figure(2)
plot(jg)

%plot(gama)
xlabelCNo. ofEpoch');
ylabelCLeaming rate1);
title ('Plot ofLearning Rate*)
grid on

% figure(5)
figure(3)
wwl=W_end(:,10)'
ww=[WJnit(10),ww1];

%figure(6)
figure(3)
plot(ww)
xlabelCNo. ofEpoch');
ylabelCWeighf);
title('Plot of Updated Weight vsNo.of Epoch')
grid on

Plottings2inoneshot

99

%%
% End ofProgram
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Linear Car Model

%%%
% Linear Car_Model.m
%%^^^^
%

% Linear Car Model

%

%%^

%continous state spaceformof a car model

%global frame

Acar=[0 1 0 0 ;
0 <Cf-K:r)/(M*u) (Cf+Cr)/M (b*Cr-a*Cf)/(M*u);
0 0 0 1 ;
0 (b*Cr-a*Cf)/(Iz*u) <a*Cf-b*Cr)/Iz -(aA2*Cf+bA2*Cr)/(Iz*u);]

Bcar=[0 ;
Cf/(M*G);
0;
a*Cf7(Iz*G);];

Ccar=[10 0 0];
Dcar=[0];

%discrete statespaceformof a car model

[Ad Bd] = C2D(Acar,Bear, T);

%%%^^^^^
% End ofProgram
%%%^^^^^

Linear Quadratic Regulator (LQR)

%%^^^^^
%LQRgain.m
%%%W
%

% Linear Quadratic Regulator (LQR)
%

%%%

% Compute theLinear control gainobtained withtheLQR theory

C-flOOO -1 0 zeros(l,n-l);
00101/(u*T)-l/(u*T) zeros(l^-l)];

R1=C'*Q*C;

A=[Ad zeros(4,n+l); %Car model
zeros(n+l,4) D]; % Road model

B=[Bd;
zeros(n+l,l)];

100

%non-preview gainusingthe DLRMIfunction
%Wecoulddirectlyhaveused [KtSbis,Ebis]= DLQR(A3,R1,R2)
%butthe timeto compute wouldbe muchgreater

[K1,P11] = dlqrmi(Ad,B<LRl(l:4,l:4),R2); %Kl isgain matrix: feedback gain
% P11 is Riccati equationsolution

%Usenon-preview results to solvethe preview problem.

FC = Ad-Bd*Kl; %xdot

P12 = zeros(4,n+l);
P12(:,l) =Rl(l:4,4+1); %replaces the whole row and first column ofP12 with first four rows

% and fifth column ofRl

for r=2:n+l

P12(:,i)- Rl(l:4,4+i) + FC'*P12(:,i-l);
end

K2= inv(Bd'*Pll*Bd + R2) * Bd* * P12 * D;

Kt=[Kl K2];

%%%
% End ofProgram

Road Models 1

%o/0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%^
% circuits 2.m
%%
%

% Road Models

%

%%

disp('Type of circuit?')
dispC 1 SinusShape')
dispC 2 LaneChange')
dispC 3 SuddenChangeof Direction')
disp(' 4 SmoothRandomPath')
dispC 5 ObstacleCourse')

ii=inputC');

ifii=l

% sinus shape
xref=[0:u*T:900];
yref=50*sin(xrefyi00);
end

ifip-2
%lane change
xrl=[0:u*T:50-u*T];
xr2=[50:u*T:5O+«0];
xr3=[110+u*T:u*T:300];
xref=[xrl xr2 xr3];
yrl=0*xrl;
yr2=2-2*cos((pi/60)*xr2-50*pi/60);
yr3=4*ones(size(xr3));
yref=[yrl yr2 yr3];
end

ifii=3

101

%sudden changeof direction
xrl=[0:u*T:60-u*T];
xr2=[60:u*T:200];
xref=[xrl xr2j;
yrl=0*xrl;
SIZE_OF_xr2=size(xr2);
yr2- 0.5*0.25*[l:SIZE_OF_xr2(l,2)]*0.5359';
yref = [yrl yr2];
end

ifii^

%smooth random path
K=900/(u*T)+l;
xref=[0:u*T:900];
[Bfilter,Afilter]= butter(5,0.007);
roadn=10*rand(K,l);
roadn=40*(roadn-5);
yref= filterCBfilter, Afilter, roadn)';
end

ifii=5

%obstaclecourse path
load dirResult
xref=x(l,:);
yref(l,:) = x(2,:);
end

%%
% End ofProgram

Road Models 2

%%%
% circuitJterations.m
%%%
%

% Road Models

%

%%

%ifii=l

% circle circuit

%R=250;
%xrl=[R:-u*T:-R]; %
%xr2=[-R+u*T:u*T:Rj;
%xref=[xrl xr2];
%yrI=sqrt(RA2-xrl A2);
%yr2=-sqrt(RA2-xr2.A2);
%yref=[yrl yr2];
%end

ifii=I

% sinus shape
xref=[0:u*T:900];
yref=50*sin(xref7100);
end

ifii=2

%lane change
xrl=[0:u*T:50-u*T];
xr2=[50:u*T:50+o0];
xr3=[110+u*T:u*T:300];
xrefK xrl xr2 xr3];
yrl=0*xrl;
yr2=2-2*cos((pi/60)*xr2-50*pi/60);

102

yr3=4*ones(size(xr3));
yref=[yrl yr2 yr3];
end

ifii=3

%sudden change ofdirection
xrl=[0:u*T:60-u*T];
xr2-[60:u*T;200];
xref=[xrl xr2];
yrl=0*xrl;
SIZE_OF_xr2=size(xr2);
yr2 = 0.5*0.25*[l:SIZEjOF_xr2(l,2)]*0.5359';
yref = [yrl yr2];
end

ifii=4
%smooth random path
K=900/(u*T)+I;
xref=[0:u*T:900];
[Bfilter, Afilter] - butter(5,0.007);
roadn=10*rand(K,l);
roadn ~ 40*(roadn-5);
yref = filter(Bfilter, Afilter, roadn)';
end

ifii=5

%obstacle course path
load dirResult

xref=x(l,:);
yref(l,:) = x(2,.);
end

%%%^
% EndofProgram
%%%^

Graphs Display

%%%^
% Plottings2inoneshot.m
%%^^^^
%

% Graphs Display
%

%%^^^^

road_angle_estimation=zeros([l:K-n+l],l);
forj=l:K-n

road_angle_estiniationO}Kyre*0'l'l)"yreHJ)y(u*T)'
end

yaw_errorA=phtA([l :K-n])-road_angle_estimation([l :K.-n]);

figure(l)
%path following
subplot(2,l,l)
plot(xref([l:K-n]),yref(l ,[1:K-n]),xref([l :K-n]),global_positionA(l :K-n),'g:');
%plot(xgjobal([l:K-n+l]),vreiXl,[l:K-n+l])p£global([l:K-n+ll),yglobal(l:K-rt4-l,l),'g');grid;
xlabelCdistance, m');
h = getfgca, 'xlabeO;
set(h, 'FontSize', 14);
ylabelCy coordinate, m');
h - get(gca, "ylabel1);
seuTi, 'FontSize', 14);
titieCPathFollowing1);
h ~ get(gca, 'title1);

103

set(h, TontSize', 14);
ifi=2

AXIS([-10 1000-100 100])
end

hold on;

% lateral velocity
subplot(2,l,2)
plot(xref([l:K.-n]),late^al_accele^ationA(^.K-n),':,);
xlabet('distance, m');
h = get(gca, 'xlabel');
set(h, TontSize', 14);

ylabel('lateralacceleration,m/sA2');
h = get(gca, *ylabel');
set(h, TontSize', 14);
title('Lateral Acceleration at Mass Center m/sA2');
h - getfeca, titled;
set(h, TontSize', 14);
hold on;

figure(2)
%y difference
subplot(2,l,l)
p!ot(xref([l:K-n]),yref([l:K-n])-global_positionA([l:K-n]),':');
xlabel('distance, m');
h=get(gca, 'xlabel^;
setth, TontSize', 14);
ylabelCy error, m");
h - get(gca, "ylabel");
set(h, TontSize', 14);
title('Path Following');
title('Y Path Following Error');
h = get(gca, title*);
set(h, 'FontSize', 14);
hold on;

%yaw error
subpIot(2,l,2)
plot(xref([l:K-n]),yaw_errorA',':');
xlabelCdistance, m');
h = getfeca, "xlabel1);
set(h, TontSize', 14);
ylabel('yaw angle error1);
h = get(gca, "ylabel1);
set(h, TontSize', 14);
titie^ath Following1);
titleCYaw Attitude Angle Error1);
h = get(gca, title1);
set(h, 'FontSize', 14);
hold on;

figure(3)
%steering wheel angle
subplot,1,1)
plot(xref([l:K-n-l]),deltaA(l:K-n-l),':');
xlabel('distance, m');
h = get(gca, 'xlabel1);
set(h, 'FontSize', 14);
ylabel('steering wheel angle, rad');
h = get(gca, 'ylabel1);
set(h, TontSize', 14);
title(Path Following");
title('Steering Wheel Angle');
h = get(gca, "title');
set(h, TontSize', 14);
hold on;

%attitude angle
subplot(2,l,2)

104

plot(xref([l :K-n3),road_angle_estimation(l:K-n),xref([l :K-n]),phiA(l :K-n),'g:');
xlabelCdistance, m');
h = get(gca, *xiabel");
set(h, TontSize', 14);
ylabelCattitude angle, rad*);
h = get(gca, "ylabel');
set(h, 'FontSize', 14);
titleCPath Following');
titleCAttitude Angle Following');
h = getfeca, title');
set(h, 'FontSize', 14);
hold on;

yaw_eirorB^hffl([l:K-n])-road_angle_estimation([l:K-n]);

figured)
%figure(4)%br tambah
%path following
subplotaU)
p!ot(xref([l:K-n]),vref(l,[l:K.n]),xi^[l:K-n]),globalj)ositionB(I:K-n),'g');grid
%plot(xgtobal([l:K-n+l]),yref(l,[l:K-n+l]),xglobal([l:K-n+l]),yglobal(l:K-n+l,l),'g,);grid;
xlabel('distance,m');
h = get(gca, "xlabel');
set(h, TontSize', 14);
ylabelCy coordinate, m');
h = get(gca, 'ylabel1);
set(h, 'FontSize', 14);
titleCPam Following');
h = get(gca, title');
set(h, 'FontSize*, 14);

if1=2
AXIS([-10 1000-100100])

end

hold on;

% lateral velocity
subplot(2,l,2)
plot(xreif([l :K-n]),lateral_accelerationB(l:K-n));grid;
xlabelCdistance, m');
h = get(gca, 'xlabel');
set(h, 'FontSize', 14);

ylabel('lateral acceleration, m/s^1);
h = getfeca, 'ylabel1);
setfh, 'FontSize', 14);
titleCLateral Acceleration at MassCenterm/sA2');
h = get(gca, title1);
set(h, 'FontSize', 14);

figure(2)
%figure(5) %brtambah
%y difference
subplot(2,l,l)
pIot(xref([l:K-n]),vref([l:K-n])-globalj)ositionB([l:K-n]));grid;
xlabelCdistance, m');
h = get(gca, 'xlabel');
set(h, 'FontSize', 14);
ylabelCyerror >m ")i
h = get(gca, "ylabel');
set(h, TontSize', 14);
title('Path Following");
titleCY Path Following Error*);
h = get(gca, title*);
set(h, TontSize', 14);
hold on;

%yaw error
subplot(2,l,2)
plot(xref([l:K-n]),yaw_errorB');grid;
xlabelCdistance, nY);

105

h ~ get(gca, 'xlabel');
set(h, TontSize', 14);
ylabel('yawangle error');
h = get(gca, 'ylabel');
set(h, TontSize', 14);
titleCPath Following');
titleCYaw Attitude AngleError1);
h = get(gca, title');
set(h, TontSize', 14);

hold on;

figure(3)
%figure(6)baru tambahO
%steeringwheel angle
subplot(2,l,l)
plot(xretX[l:K-n-l]),deltaB(l:K-n-l));grid;
xlabelCdistance, m*);
h=get(gca, 'xlabel^;
set(h, TontSize", 14);
yiabel('steeringwheel angle, rad *);
h = get(gca, 'ylabel');
set(h, TontSize', 14);
title(*PathFollowing1);
title('SteeringWheel Angle');
h = get(gca, title");
set(n, TontSize', 14);
hold on;

%attitude angle
subplot(2,U)
p!ot(xref([l:K-n]),road_angte_estimation(I:K-n)^ref([l:K-n]),pliiB(l:K-n),'g');grid;
xlabelCdistance, m1);
h = get(gca, 'xlabel');
set(h, TontSize', 14);
ylabelCattitude angle, rad');
h = getfgca, 'ylabel1);
set(h, TontSize', 14);
title(Tath Following");
title('Attitude Angel Following');
h = getfeca, title');
set(h, "FontSize", 14);

hold on;

%%%^
% End ofProgram
%%

Y Path Following Error & Steering Wheel Angle Display

%%^
% avg.m
%%^^^^
%

% Y PathFollowing Error& SteeringWheelAngleDisplay
%

%%^^^^

if size(yref)= size(global_positionA)
countLimit - K-n;

else
countLimit = min(size(yref),size(global_positionA));

end
myCount = 1;

106

averageError = 0;
totalError = 0;
thisError = 0;
whilemyCount < countLimit(2)

thisError = yref(myCount) - global_positionA(myCount);
ifthisError < 0

thisError = -thisError;

end
totalError=totalError + thisError;
myCount - myCount+ 1;

end

averageError=totalError/myCount;

averageError

max_angle=max(deltaA)

mm_angle=smin(deltaA)

%%%^^^^
% EndofProgram
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%^^^^^

107

