
CERTIFICATION OF APPROVAL

Parallel Processing of RSA Algorithm Using MPI Library

By

Wan Rahaya Bt Wan Dagang

A project dissertation submitted to the
Information Technology Program

Universiti Teknologi PETRONAS
in partial of the requirement for the

BACHELOR OF TECHNOLGY (HONS)
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Approved by,

(Mr. Izzatdin Bin Abdul Aziz)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

JUNE 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

^

WAN RAHAYA BT WAN DAGANG

ACKNOLEDGEMENT

First and foremost, I would like to express my gratefulness to Allah S.W.T for His Bless

and Guidance that strengthens me in facing every challenge in completing this project.

I would like to thanks my supervisor, Mr, Izzatdin Bin Abdul Aziz for his understanding,

morale support, and guidance that has really motivated me to accomplish this project.

I would also like to thank all my families, and friends for their advices and morale

supports in this project.

1 would also like to say "thank you" for everybody else that has contributed to this

project.

TABLE OF CONTENTS

ABSTRACT v

CHAPTER 1: INTRODUCTION *

1.1 Background ofStudy 1

1.1.1 RSA Cryptosystem 1

1.1.2 Parallel Processing 1

1.1.3 Message Passing Interface 2

1.1.4 Grid orCluster Computing 2

1.2 Problem Statements 3

1.2.1 Problem Identification 3

1.2.2 Significant ofthe Project 4

1.3 Objective ofStudies 4

1.3.1 To conduct a study on RSA algorithm 4

1.3.2 To conduct a study onParallel Programming 5

1.3.3 To conduct a study onMessage Passing Interface (MPI) 5

1.3.4 To convert sequential RSA algorithm into parallel RSA algorithm 5

1.3.5 To implement parallel RSA into grid computing environment 5

1.4 Scope ofStudies 6

CHAPTER2: LITERATURE REVIEW 7

Introduction '

2.1 RSA Cryptosystem 7

2.1.1 RSA Algorithm: 7

2.2 Parallel Computing 9

2.3 Message Passing Interface 10

2.4 Grid Computing l2

CHAPTER3: METHODOLOGY 13

3.1 System Architecture - The Evolutionary Approach Development 13

3.2 Tools and Devices 15

3.2.1 Development Tools 15

3.2.2 Libraries I6

3.2.3 Platform 17

3.2.4 Hardware/Devices 17

CHAPTER 4: RESULT AND DISCUSSION 18

4.1 Project Results

4.1.1 Sequential RSA Algorithm

4.1.2 Parallel RSA Algorithm 22

4.1.3 Performance Measurement 28

4.2 Discussion 29

18

18

CHAPTER 5: CONCLUSION AND RECOMMENDATION 30

REFERENCES 31

APPENDIX 32

n

LIST OF FIGURES

Figure 1: Phase Involved in Evolutionary Development Approach

Figure 2: General MPI Program Structure

Figure 3: Flowchart of Sequential Program of RSAAlgorithm

Figure 4: Flowchart of Parallel Program of RSA Algorithm

Figure 5: Master creates a dynamic 2D to populate odd numbers

Figure 6: Master sends an equal-sized of rowof 2Darray to each slave

Figure 7: Example of assigning row 1200 rows to 4 processors (slaves)

LIST OF TABLES

Table 1: Modular Multiplication ofM15 using Binary Method

Table 2: Comparison of Execution Time for Different Number of Nodes

m

ABBREVIATIONS AND NOMENCLATURES

CPU : Central Processing Unit

MPI : Message Passing Interface

PVM : Parallel Virtual Machine

IPC : Inter Process Communication

SISD : Single Instruction Single Data

SIMD : Single Instruction Multiple Data

MISD : Multiple Instruction Single Data

MIMD : Multiple Instruction Multiple Data

FLOPS : Floating Point Operation per Second

PC : Personal Computer

IV

ABSTRACT

This report explains the project of developing Parallel Processing of RSA Algorithm

Using MPI Library. RSA Algorithm is a public-key cryptosystem that offers encryption

technique which security is based on the difficulty of factoring large prime integers. The

computation of RSA is performed by a series of intensive computational of modular

multiplications. The scope of this project is developing a parallel system to generate

public and private key, and to encrypt and decrypt files using the algorithm of RSA. The

system is needed to be parallel as to overcome the problem of intensive computational by

the RSA algorithm. This parallel system is going to be embedded on grid or cluster

computing environment. The language and library that are going to be used for the

system is C++ and Message Passing Interface (MPI). This project is completed phase by

phase and for the system development, the method used is evolutionary development

approach. The end result of this project is a parallel algorithm of RSA cryptosystem.

v

1.1 Background of Study

CHAPTER 1

INTRODUCTION

1.1.1 RSA Cryptosystem

Cryptosystem isused as a tool to protect important secrets and strategies. RSA public-key

cryptosystem which is the first usable public-key cryptography developed by Ronald

Rivest, Adi Shamir, and Leonard Adleman. It is used for both data encryption and

authentication, based on the one-way function of integer factorization, where it is easy to

construct a large number which is the product ofprime powers, but hard to factorize the

resultant number into its constituents.

1.1.2 Parallel Processing

Traditionally, software has been written for sequential computation, to be executed by a

single computer having a single Central Processing Unit

(CPU); problems are solved by a series of instructions, executed one after another by the

CPU. Nowadays we already overcome this problem by having parallel processing and

parallel programming for faster computational power.

The massive computational process of RSA Algorithm can be executed more efficiently

using parallel processing that is implemented on cluster computing. Parallel Processing

refers to the concept of speeding up the execution by dividing the program into multiple

tasks that can be executed simultaneously.

The principle of parallel processing involves decomposition as the mechanism of

partitioning the work load. As the author's project is on parallelizing the sequential RSA

algorithm, the author then needs to discover which part of the sequential algorithm that

can be parallelized; which is going to be discussed into more detail on the methodology

section.

1.1.3 Message Passing Interface

Message Passing Interface (MPI) is a library specification for message-passing, proposed

as standard by a broadly based committee of vendors, developers, and users. Message

passing is a programming paradigm where we can directly control the flow operations

and data within our own parallel programs. A message-passing library let us explicitly

tell each processor what to do and provides a mechanism for us to transfer data between

processes.

While debate continues as to what is the best way to pass messages back and forth

between nodes of a cluster or grid, with Parallel Virtual Machine (PVM) still having

supporters, chances are if we look underneath the hood of a large cluster, supercomputer

or grid, we will find MPI. With MPI in place, we can embed our program from one

platform to another without undue worry about inter process communication (IPC).

1.1.4 Grid or Cluster Computing

Grid or cluster computing is gaining a lot of attention within the IT industry. Grid

computing is an emerging technology that enables large scale resource sharing and

coordinated problem solving within distributed, coordinated group that sometimes termed

as virtual organizations. Grid computing provides scalable high-performance

mechanisms for discovering and sharing geographicallyremote resources.

1.2 Problem Statements

1.2.1 Problem Identification

Even though it has been proven that RSA cryptography is part ofmany official standards

worldwide, but there is still area in the algorithm that can be improved. The security of

RSA depends on the difficulty of factoring large generated key. The task of recovering

the private key is equivalent to the task of factoring the modulus n. That is why it is

always suggested to choose 'strong' key primes to generate the modulus n.

'Strong' key primes mean larger key primes. The products of key primes create the

modulus n. But the larger the modulus, the greater the security, but this will lead to

slower RSA algorithm operations due to massive modular computation; it takes more

time to complete the calculation parts and RSA algorithm is all about mathematical

calculation. As generating strong, large key prime is really time consuming (even for a

32bit size of key) therefore it shall be optimum to be processed in a parallel manner as to

increase the efficiency of the algorithm operation.

This problem could be overcome by employing super computers to do all the tasks

involved in the RSA computation. But then again this is not the best solution as this will

lead to high cost of machine requisition. This is where parallel processing and grid

computing can be applied to replace the supercomputers.

A collection of underutilized desktops or processors, which is near to obsolete in terms of

processor technology linked by a grid middleware would be comparable to a current high

end processor. Cluster can be easily built using open source middleware such as

OpenMosix.

1.2.2 Significant of the Project

The expected end product of this project is parallelized RSA algorithm. The ideaof this

prototype is to speed up the process of RSA computation and ensure the security of the

encryption and decryption by generating large, reasonable prime keys. This can be

achieved by utilizing the available computer resources in Universiti Teknologi Petronas;

the underutilized computing powers in the lab around campus. Idle workstations are put

together to form a single cluster running MPI programs.

1.3 Objective of Studies

1.3.1 To conduct a study on RSA algorithm

In order to understand the public-key cryptosystem of RSA, the authorneeds to be well-

versed of all mathematical algorithm used in the cryptosystem. This is an essential partas

next the author needs to convert all the formulas involved into C++ language.

Up to this extend, the author has understand all the mathematical functions in the RSA

algorithm; the Extended Euclidean Function, Euler Totient Function, appropriate method

to generate large prime numbers, and appropriate method to determine a number is a

prime.

1.3.2 To conduct a study on Parallel Programming

As the project is all about parallelizing the RSA algorithm, the author needs to know and

develop the skill of parallel programming in order to create an appropriate and efficient

algorithm to divide the entire subtask for the load balancing of parallel processing to take

part.

Flynn's Taxonomy [1] classifies different types of parallel computing models which are

Single Instructions Single Data (SISD), Single Instruction Multiple Data (SIMD),

Multiple Instruction Single Data (MISD), and Multiple Instruction Multiple Data

(MIMD). And my project makes use of the model of SIMD. And to use thatmodel I have

to be well-versed of parallel programming.

1.3.3 To conduct a study on Message Passing Interface (MPI)

MPI is the heart of this project. As in order to make the sequential algorithm turned into

parallel, the author need to use and manipulate all the library of subroutines in MPI to

pass messages between nodes to execute the algorithm. To achieve this objective, the

author first needs to master the art of programming in MPI. As MPI is a library of

subroutine specifications that can be called from C and C++ (for MPI 2), thus the author

needs to be well-versed with the library functions provided by MPI.

1.3.4 To convert sequential RSA algorithm into parallel RSA algorithm

The study performed in this project is to apply the idea of converting the sequential RSA

algorithm a parallel one. The algorithm is inC++ language tobeintegrated with MPI.

1.3.5 To implement parallel RSA into grid computing environment

The parallel system is going to be implemented in grid computing environment. The

objective is to speed up the process as grid computing offers distributed system consists

of a set of computers that work together to implement jobs and in this case is to

implement the parallelRSA computation process.

1.4 Scope of Studies

The parallel program of RSA algorithm is implemented on LINUX. The part of the

sequential program of RSA algorithm that is going to be parallelized is on the prime

number generation only. This is because for RSA encryption and decryption to take part,

three distinct primes are needed for the value ofp, q, ande.

CHAPTER 2

LITERATURE REVIEW

Introduction

The significance of this project is to develop a parallel RSA algorithm and put it in a

parallel system using the MPI libraries and implement the system in the grid computing

environment. The idea of parallelizing the sequential RSA algorithm is to speed up the

process ofmassive computation involves. The first challenge that the author has to cope

up is to understand the underlying mathematic algorithm in the RSA cryptography in

order to program it in C++. Studies have to be made on all the algorithms, functions and

methods used in the RSA cryptography. The next thing to be considered is on how to

parallel the sequential program using the programming model of message passing. In

order for the author to implement the parallel program into the grid computing

environment, sufficient related work pertaining this area needs to be reviewed. Important

points of related works are discussed in this section.

2.1 RSA Cryptosystem

RSA cryptosystem is a public-key cryptosystem that offers both encryption and digital

signatures developed by Ronald Rivest, Adi Shamir, and Leonard Adleman.

2.1.1 RSA Algorithm:

1. Generate two large random primes, p and q, of approximately equal size such that

their product n = pq is of the required bit length, e.g. 1024 bits.

2. Compute n = pq and (cp) phi = (p-l)(q-l).

3. Choose an integer e, 1 < e < phi, such that gcd(e, phi) = 1.

4. Compute the secret exponent d, 1 < d < phi, such that

ed = 1 (mod phi).

5. The public key is (n, e) and the private key is (n, d). The values of p, q, and phi

should also be kept secret.

6. Plaintext is M

7. Cipher text; C = Memodn

8. Plaintext; M= Cdmodn

• n is known as the modulus.

• e is known as the public exponent or encryption exponent.

• d is known as the secret exponent or decryption exponent.

"The RSA system is the most widely used public-key cryptosystem today and

has often been called a defacto standard." [2]

It has been proven that RSA Cryptosystem is part of many official standards worldwide.

The RSA system is currently used in a wide variety of products, platforms, and industries

around the world. RSA is also built into current operating systems by Microsoft, Apple,

Sun and Novell. It is also used internally in many institutions, including branches of the

U.S government, major corporations, national laboratories anduniversities.

"In the literature pertaining to the RSA algorithm, ithas often been suggested that

in choosing a key pair, one should use so-called "strong" primes p andq to generate the

modulus w." [3]

Strong primes have certain properties that make the product n hard to factor by specific

factoring methods; this is why choosing strong primes helps to increase security.

However, large primes would take more time to be generated compare to an arbitrary

prime and this is what the project is mainly about. Segments of sequential code in RSA

aredone in parallel for example, massive iterations and decisions.

"RSA currently recommends key sizes of1024 bitsfor corporate use and2048

bitsfor extremely valuable keys like the root keypair usedbya certifying authority." [2]

Thebest size for a modulus depends on one's security needs. The largerthe modulus, the

greater the security of the system. A modulus n is the product of two primes; p and q. Let

say if one chooses to use a 1024-bit modulus, the primes should each have length

approximately 512 bits. The primes should be roughly equal length as the modulus is

harder to factor than if one prime is much smaller than the other.

One should choose a modulus length upon consideration, firstly, of the value of the

protected data and how long it needs to be protected, and secondly, how dreadful

potential threats might be.

2.2 Parallel Computing

"A parallel computer isa setofprocessors that are able to work cooperatively

to solve a computationalproblem."[3]

The main interest of parallel computing is that it offers the potential to concentrate on

computational process; whether processors, memory, or I/O bandwidth on important

computational process. It is important tonote that the performance of a computer depends

directly on the time required to perform a basic operation and the number of these basic

operations that can be performedconcurrently.

The time to perform a basic operation is limited by the clock cycle of the processor that is

the time required to perform the most primitive operation. One way to overcome the

decreasing clock cycle times is by incorporating multiple computers, each with its own

processor, memory and associated interconnection mechanism, which is going to be

implemented in this project, therefore results in better floating pointoperation per second

(FLOPS).

"Parallel computing is a divide-and-conquer strategy". [3]

The idea of partitioning the work in parallel computing is for all processors to keep busy

and none remain idle. Parallel computing is a natural extension of the concept of divide

and conquer; we first begin with a problem that is need to be solved, then access the

available resources that can be used to solve the problem; which is the number of

processors that can be used, and attempt to partition the problem into manageable pieces

that can be executed concurrently by each processor.

"A popular taxonomyfor parallel computers is the description introduced by

Michael Flynn in the mid-1960s of the programming model as single instruction -

multiple data stream (SIMD) ormultiple instruction-multiple data stream (MIMD)"[3]

On a SIMD computer, each processor performs the same arithmetic operation or stays

idle during each computer clock, as controlled by a central control unit. SIMD applies the

concept of master node synchronizes and coordinates the whole process. On the other

hand, on a MIMD computer, each processor can executea separate stream of instructions

on its own local data.

2.3 Message Passing Interface

"Almost everything in MPI can be summed up in the single idea of message

sent - message received." [3]

The basic principle of MPI is that a multiple parallel processes work concurrently toward

a common goal using messages as their means of communicating among each other. This

is the mechanism of message-passing programming model. Message-passing is probably

the most widely used parallel programming model today.

10

"Message-passing model does not preclude the dynamic creation of tasks, the

execution of multiple tasks per processor, or the execution of different programs by

different tasks. However, in practice, most message-passing systems create a fixed

number of identical tasks atprogram startup and do not allow tasks to be created or

destroyed duringprogram execution". [4]

These kinds of systems are said to implement SIMD programming model that is

mentioned earlier. This is because each task executes the same program but operates on

different data. Based on the reviewed that has be done on journals and book on MPI, it

shows that in most MPI implementations, a fixed set of processes is created at program

initialization and one process is created per processor.

However, as it is said that MPI does not preclude dynamic creation of tasks; MPI

processes may also execute different programs. Thus the MPI programming model is

sometimes referred to as MIMD to distinguish it from the SIMD model in which every

processor executes the same program.

"On the other hand, recent development in parallel programming has placed

emphasis on more traditional message-passing models, such as PVM, NX, and MPI. MPI

especially has been adopted as the defacto standard with supportfrom allvendors ". [5]

The distributed memory paradigm for parallel computing is widely used and standardized

interfaces such as MPI have enabled portability between clusters from different

manufacturers. An advantage of the MPI standard is that different platforms can have

their own optimized implementations. For this project, MPI is chosen to be implemented

together with RSA algorithm as there are seamless approach to parallel computing in

C++ and MPI available through books and online resources via the internet. The author

experiences in writing C++ program for some course project before is also the main

reason for choosing the MPI.

11

2.4 Grid Computing

"Grid computing offers the power to address some of the world's most

challenging problems; for example, struggles to prevent cancer and cure smallpox, to

reliablypredict earthquakes andglobal warming, andmany others". [6]

Two key benefits of grid computing would enable these advances. First, grids tie varied

systems into a mega computer, and therefore, can apply greater computational power to a

task. Second, a grid virtualizes these varied resources, sothat applications for the grid can

be written as if for a single, local computer, vastly simplifying the development needed

for such powerful applications.

"A computational grid is a hardware and software infrastructure that

provides dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities" [7]

Like it is said before, grid computing is an emerging technology that enables large scale

resource sharing and coordinated problem solving within distributed, coordinated group;

this is the computational aspects of grids. Thus for the project, this fundamental element

of grid computing is going to help a lot in executing the massive calculation task in a

parallel manner by utilizing the available resources; the so-called sleeping PCs inthe lab.

12

CHAPTER 3

METHODOLOGY

3.1 System Architecture - The Evolutionary Approach Development

This project would be completed phase by phase and for the system architecture for this

project, evolutionary approach development model is chosen. This method is chosen due

to its flexible allowances choice of system development methodology.

Traditional approach of system development methodology that needs to get the

development model mostly correct in the early stage is impossible as this project involves

more than just one area of studies such like RSA algorithm, parallel processing, MPI and

grid computing. Various issues need to be considered that is unforeseen at the beginning.

Thus different conditions and techniques would be evolved during project development

phase from time to time.

Evolutionary development is an iterative and incremental approach for system

development. The system will be delivered incrementally over time. Evolutionary

development is new to many existing professional developer, and many traditional

programmers as well. Figure 1 illustrates the phases involved in evolutionary

development approach.

13

Specification Initial

Version
.

Outline

description

t

Development Intermediate

version

Validation Final version

Figure 1: Phases involvedin Evolutionary Development Approach

Specification Phase

The project begins by developing a sequential program of RSA algorithm in

C++. Then the phase is to identify which part of the sequential program that

could be parallelized. This is the beginning of the specification phase of the

project development. Although the main objective is to parallelize the

sequential RSA algorithm, but not all part of the program can be parallelized.

This is where the partitioning stage of the programming design takes place

which is intended to expose the opportunities for parallel execution.

Development Phase

This is where the execution of the project takes place based on the

specification specified. As mentioned earlier, the parallelization of the

algorithm is achieved by using MPI libraries. And also as this project is using

14

iterative and incremental approach, the parallel program of RSA algorithm is

written incrementally over time which means troubleshooting is done on the

program from timeto timeto avoid errorthat cannot be debug lateron.

• Validation Phase

Then the program prototype will go on the validation phase in order to ensure

the project requirement is achieved. If there are still areas that need to be

modified and altered, the whole phases will be repeated all over againuntil the

final version of the program is released. In this project, most of the evaluation

processes are done by the author alone, which means the author as the

programmer is testing the program as an evaluator.

3.2 Tools and Devices

3.2.1 Development Tools

Programming language used to write the parallel RSA algorithm is C++. Apart from the

author's experiences of writing programs using this language, the major reason of

choosing C++ to write the program is because it provides an object-oriented

infrastructure that accommodates mechanism of breaking down the problem into a

collection of data structures and operations that is similar with the characteristic of

parallel processing.

Furthermore, C++ is also compatible with the concept of partitioning, and dynamic

memory allocation which are the concept that is going to be involved in the parallel RSA

algorithm. As mentioned earlier, MPI is used for the parallel processing of thealgorithm;

a library of subroutine specifications that can be called from C and C++; this is also

another reason why the parallel program is written in C++. The application that is used to

edit the program in C++ is Microsoft Visual Studio C++6.0 and g++.

15

3.2.2 Libraries

MPI provides all the subroutines that are needed to break the tasks involved in the

massive computational process into subtasks to be distributed to a number of available

nodes and processed. The goal of the MPI is to establish a portable, efficient, and

flexible standard for message passing that will be widely used for writing message

passing programs. MPI provides an appropriate environment for general purpose

message-passing programs, especially programs with regular communication patterns.

Figure 2 shows the general MPI program structure:

MPI include file

Initialize MPI environment

Do work and make message passing calls

Terminate MPI Environment

Figure 2: General MPI Program Structure

MPI contains approximately 125 functions avoiding the author from any mishaps when

implementing common communication structures, such as send-receive, broadcasts and

16

reductions. However, MPI is reasonably easy to learn, as a complete message-passing

program can be written with just six basic functions. Please refer to appendix to have a

look at some basic MPI functions.

MPI is such a useful communications library for applications that need to be ported to

many platforms. Versions of MPI exist for virtually every major platform: message-

passing supercomputers, scalable shared-memory machines, symmetric multiprocessors,

loosely-coupled workstation clusters, and even individual PCs. With MPI, the author can

write code once and merely recompile it for each new platform.

3.2.3 Platform

As mentioned earlier, the parallel program of RSA algorithm will be running on grid

computing platform that is developed in the lab. The idle workstations in the lab is put

together to form a single cluster running MPI programs.

3.2.4 Hardware/Devices

• Workstation with minimum Pentium III processor, 256 ram memory

• Fast Ethernet Switch

• Networkadapter and Unshielded TwistedPair (UTP) cable

17

^

CHAPTER 4

RESULT AND DISCUSSION

4.1 Project Results

4.1.1 Sequential RSA Algorithm

The first development of the project was for the author to write the sequential program of

RSA Algorithm. The algorithm of the sequential program is as follow:

Pseudocode

1. Start

2. Begin while loop until an invalid option is selected

3. Prompt user to select program option

4. Switch (method)

5. Case 1: prompt user to entera value greaterthan 10000

6. If value > 10000, generate key primes

7. Else

8. Exit program

9. Case 2: open file and encrypt

10. Case 3: open file and decrypt

11. Case 4: exit program

12. End

End

18

Figure 3 shows the flowchart of sequential program of RSA algorithm written in

C++:

Figure 3: Flowchart of Sequential Program of RSA Algorithm

The sequential program flowchart shown in figure 3, begins by prompting user to select
an option; whether to create the key primes (if they are not yet created), or to do the
encryption on a particular file (using the generated key primes), or to do decryption on a

decrypted file (using the generated key primes) or to exit from the program.

4.1.1.1 Trial Division

This program is written in C++. This program used dynamic 2D array; using calloc
function to create a table that contains a population of odd numbers and then each of

19

them will be determined whether they are a prime number or not. As the odd numbers

populated are only consist of not more than 5 digits, the primality test used to determine

whether they are prime or not is byusing trial division (if the number are consist of more

than 200 digits, trial division is impossible). Trial division is one if the simplest method

to test a primality of a number. Trial division consists of trial-dividing n (integer to be

factored) by every prime number less than or equal to square root of n; since all other

combinations of factors would include one number larger than the square root and one

smaller.

4.1.1.2 Binary Method

Encryption and decryption part of RSA algorithm involve a massive modular

multiplication. In this sequential program, the author has used the Binary method for both

parts. The binary method scans the bits ofexponentiation either from left to right or from

right to left, a squaring is performed at each step, and depending on the scanned bit value,

a subsequent multiplication is performed. In this program, the binary method scans the

bits of exponentiation from left to right.

C: = Me(modn),

To execute the equation above, it cannot be computed by first exponentiating M6 and then

performing a division to obtain the remainder of (Af) % n. This is because the storage

required to store the temporary result ofAfis enormous. Thus we have no way ofstoring

it. Then we should know in advance how many modular multiplications that are needed

to compute M (mod n) before we actually execute the multiplication to avoid memory

wastage.

For example, to compute M15 (mod n), if we compute it in a naive way, we will be

computing all powers of Muntil 15;

20

45M-> M2 -> M3-> M4 -> M5 -> M6 -> M7 -> l£ -> l£ -> M10 -> M

which requires 14 multiplications. However, not all powers ofM need tobe computed in

order to obtain M15. Using the Binary method, we require only 6 multiplications;

M-> M2 -> M3 ->hf -> M7-> M14 -> M15

The Binary method is also called as exponentiation by repeated squaring and

multiplication. The algorithm of binary method is shown below:

Input: M,e,N

Output: C-=M mod n.

1. if ek.} then C:= Mehe C:= 1

2. for i = k-2 downto 0

a. C:= C.C (mod n)

b. if et - 1 then C:= CM (mod n)

3. return C

As an example, let e = 250, then first it is converted into binary values = 11111010,

which implies k= 8. Thus we take C: - Mas ek.i = e7 = 1. Then the binary method would

take place as follows:

Table 1: Modular Multiplication ofM15 using Binary Method

i et Step 2a Step 2b

6 1 (M)' - M2 M2.M -M3

5 1 (M3)2 = M6 M6.M -M7

4 1 (M7)2 = M14 M14.M =M1S

3 1 (M15)2 = M30 M30.M =M31

2 0 (M31)2 = M62 M62

1 1 (M62)2 = M124 M124.M-M125

0 0 (M125)2 =M250 M250

21

As we can see, the number of multiplications required by the binary method for

computing M250 isonly 12 (instead of250 multiplications).

•124 ^ ,j250M-> M2 -> M3 -> M6 -> M7 -> M14 -> M15 -> M30-> M31 -> M62 -> M124-> M

For an arbitrary it-bit number e with ek.} = 1,thebinary method requires:

• Squarings: k- 1where kis the number ofbits in the binary expansion ofe.

• Multiplications: H (e) - 1where H(e) is the Hamming weight (the number of

1s in the binary expansion) of e.

This binary method has been successfully implemented in the author's sequential and

parallel algorithm of RSA.

4.1.2 Parallel RSA Algorithm

The portion of the sequential RSA algorithm that is going to be parallelized is on the

generation ofprime numbers that is used for public keys (n,e) and the private key (n,d).
Which means there are three distinct primes needed for encryption and decryption of

RSA to take part; the value ofp, q, and e. The algorithm of the parallel program is as

follows:

Pseudocode

1. Start

2. Master creates a table of odd numbers and initialized row[0] only

3. Master broadcasts row[0] to all slaves

4. Master sends a number of rows to each slaves

Each slave will receive an initialized row from master

Each slave will populate row prime numbers

Each slave will return populated row to Master

22

5. Master waits for results from slaves

6. Master receives populated rows from each slave

7. Master checks unpopulated rows

IfmaxRow>0

Master will send another unpopulated row to slave

8. Masterpicks primenumbers randomly

9. Promptuser to selectprogram option

10. Switch (method)

11. Case 1:prompt userto entera value greater than 10000

12. If value > 10000, generate key primes

13. Else, Exit program

14. Case 2: open file and encrypt

15. Case 3: open file and decrypt

16. Case 4: exit program

17. End

End

Figure 4 shows theflowchart ofparallel program ofRSA algorithm:

23

(start)

User enter

value>10000

alue>10uQG

Master create a table of odd

numbers and initiate row[0]

Master broadcast

row[0]; MPl_Bcast

Master send n number of rows

to each node; MPI_Send

Figure 4: Flowchart ofParallel Program of RSAAlgorithm

24

(Parallel Part)

When the code runs on the grid cluster, master will create a table of dynamic 2D array

that later populated with odd number by slaves. If the degree of the security needed by

the user is really high, then they should entera large number; perhaps 98000, so that large

prime numbers can be generated and vice versa. But then again as mentioned earlier, it

takes quitea time to generate largeprimenumbers.

A pointer to pointer variable **table in master will point to an array of pointers that

subsequently point to a number of rows; this makes up a table of dynamic 2D array. After

the table of dynamic 2D array is created, master will then initialize the first row of the

table only. This idea is illustrated in figure 5.

♦♦table

*tat le
-* 1 7 11 13 17 19 23 29

L°j

*table

[1] *

*tat

[2
>le

]
-*

*table

W _ -*•

Figure 5: Master createsa dynamic 2D array to populate odd numbers

The parallel segment begins when master broadcast the row[0] to all nodes by using

MPI_Bcast. This row[0] will be used by each node to continue populating the rest of

the rows of the table with odd numbers. After then master will equally divide n-1 no

of rows left that is yet to be populated by number of nodes available in the grid

cluster. Then each node will be given an equal no of rows to be populated with odd

25

numbers. This achieved by using MPI_Send. A visual representation of this idea is

depicted in figure 6.

!*table

*table

[0]
*table

[1]

*table

[2] •

*table

*1 7 11 13 17 19 23 29
m Slave 1

Slave 2

I Slave 3

Slave n

Figure 6: Master sends anequal-sized of rowof 2D array to each slave

Then each node will be receiving n numbers of rows to be populated with odd

numbers. This is where the parallel process will take place. Each node will process

each row given concurrently. Each node will first populate the rows with odd

numbers then filter out for prime numbers using the primality test chosen; trial

division. Odd numbers that are prime will remain in the rows but those that are not

will be assigned to NULL. Then each populated row is return to master and master

will thenrandomly pickfor three distinct primes for the value ofp,q, and e.

For an example, if there are 4 processors available to execute above tasks, and there

are 1200 rows to needs to be populated with prime numbers, each row will be given

300 rows eachto be processed. The overall process is depicted in figure 7.

26

Processor 0

Row[0]

RPJKLI]

Row[n]

4 Processors (slaves) and
12000 rows

Processor 1 Processor 2 Processor 3

Figure 7: Example ofassigning 1200 rows to4 processors (slaves)

Processor 0 will be processing row[l] up to row[299], processor 1 will be processing

row[300] up to row[599], processor 2 will be processing row[600] up to row[899] and
lastly processor 3will be processing row[900] up to the last row, row[l 199].

After each node return the populated rows to master, master will then pick randomly

prime numbers to be assigned as the value ofp, q, and e. the program will then continue
with encryption and decryption part of the algorithm. It is clear here that the parallel
process that takes place in the whole program is only on the prime number generation.

Below is the algorithm of the parallel part of the whole program:

27

Begin algorithm

Master part

1. Generates 2D table, all table elements are assigned to NULL except

for row[0]

2. Broadcasts row[0] to all slaves

3. Sends a number of rows to each slaves

4. Waits for results from slaves

5. Repeat from (3) until no more rows to be sent

6. Proceeds with sequential part

Slaves part

7. Receive row[0] from Master

8. Receive an uninitialized row from Master

9. Generate odd numbers, fill up all the rows

10. Filterout for prime numbers, non-prime assigned to NULL

11. Send populated rows to Master

12. Repeat from (8) from Master until no more rows obtained from Master

End algorithm

4.1.3 Performance Measurement

Number of nodes Execution Time (ms)

1 7.850

3 0.039

5 0.043

10 0.053

30 0.093

Table 2: Comparison of Execution Time for Different Number of Nodes

28

4.2 Discussion

The grid computers are running on grid middleware, OpenMosix. Each node is having

two processors, which makes up:

2» nodes «2 protests "Will/ n.2S I IOl's oifBHHfr1''1'01'1*

Based on the bar chartabove, we could see a distinction comparison between running the

program only on a single node and more. However, it seems like there is a decrement in

performance when the program is running more than 3 nodes. That is caused by the

network latency during the distribution of the task that leads to increment in the time

taken for the execution to complete.

Thus it is approved that algorithm of parallel RSA Cryptosystem using MPI Library has

successfully reduced time taken in generating RSA key primes, hence resulting in

reducing time taken for the whole process that takes place in execution of RSA

Cryptosystem program.

29

CHAPTER 5

CONCLUSION AND RECOMMENDATION

There are five objectives of this project. All of them have been achieved successfully.

The programming paradigm that is involved in this parallel algorithm of RSA

cryptosystem is it used the master-slave paradigm in finding the solution. The master

process coordinates the work of the slave processes. However, in this solution, it

performs self-scheduling where a slave process will be given another portion of the

uninitialized table to be calculated when it has finished the current processing. This is

suitable in an environment where the job loads in the slave processes are different from

each other.

There is some recommendation that should be highlighted here for the furtherance of the

project development of this project. The scope of parallel part of the program should be

enlarged into the area ofcalculation ofencryption and decryption part inorder to achieve

an optimum parallelized RSA algorithm. For further refinement, the tedious

programming work on parallelizing encryption and decryption part can be completed

efficiently.

30

REFERENCES

[1] Foster, Ian. Designing and Programming Parallel Programs. An Online Publishing

Project of Addison-Wesley Inc., Argonne National Laboratory, and the NSF Center for

Research on Parallel Computation, <http://www-unix.mcs.anl.gov/dbpp/> Recent

access: Feb 2006.

[2] R.L. Rivest, A. Shamir, and L. Adleman. (1978). A journal on A Method for

Obtaining DigitalSignatures andPublic-Key Cryptosystems.

[3] A. Mollin, Richard, Chapman (2000). A book on RSA and Public-key Cryptography.

Hall/CRC.

[4] Foster, Ian. (1995). Ajournal onParallel Computers and Computation.

[5] Bourbonnais.S, Goate V.M, Haas M, Homan R.W, Malaika S, Narang I, Raman V.

(Volume 43, Number 4, 2004). IBM Systems Journal; Towards an Information

Infrastructure.

[7] J. Joseph, M. Ernest, and C. Fellenstein. (Volume 43, Number 4, 2004). IBM Systems
Journal; Evolution of Grid Computing Architecture and Grid Adoption Models

[8] Mao, Wenbo. (2004). Modern Cyrptography. Prentice Hall, PTR.

[9] Mohamed Ferdaus Abdul Wahab. (2005). Implementation of Grid Computing for

Cyrptosystem (RSA).

[10] Stalling, William. (2004). Cryptography and Network Security, Principle and

Practive. Prentice Hall.

31

APPENDIX

32

Rroiti:! (.,uill (li.irl

S
e
le

c
ti

o
n

o
f

P
ro

je
ct

T
o

p
ic

T
o

p
ic

P
ro

p
o

sa
l

T
o

p
ic

A
ss

ig
m

en
t

P
re

li
m

in
ar

y
R

es
ea

rc
h

/D
es

ig
n

W
o

rk

D
et

er
m

in
e

pr
oj

ec
tc

on
ce

pt
,

ob
je

ct
iv

es
an

d
sc

op
e

L
it

e
ra

tu
re

S
tu

d
ie

s

P
ro

je
ct

P
la

n
n

in
g

1
0

S
u

b
m

is
si

o
n

of
P

re
li

m
in

ar
y

R
ep

o
rt

1
1

1
2

P
ro

je
ct

W
o

rk
(P

ar
t

I)

1
3

D
ef

in
in

g
R

eq
u

ir
em

en
t

1
4

S
eq

ue
nt

ia
l

P
ro

gr
am

D
es

ig
n

1
5

1
6

S
u

b
m

is
si

o
n

of
In

te
ri

m
R

ep
o

rt

1
7

1
8

O
ra

l
P

re
se

n
ta

ti
o

n
w

ith
In

te
rn

al
E

x
am

in
er

1
9

2
0

P
ro

je
ct

W
o

rk
(P

a
rt

ll
)

2
1

T
o

o
ls

S
et

ti
n

g

2
2

P
ar

al
le

l
P

ro
gr

am
D

es
ig

n

2
3

P
ro

je
ct

D
ev

el
o

p
m

en
t

2
4

P
ro

je
ct

T
es

ti
n

g

2
5

2
6

P
re

-E
D

X

2
7

2
8

S
u

b
m

is
si

o
n

of
D

is
se

rt
at

io
n

F
in

al
D

ra
ft

2
9

3
0

O
ra

l
P

re
se

n
ta

ti
o

n

Pr
oj

ec
t:

Fi
na

lY
ea

r
Pr

oj
ec

t
S

ch
ed

ul
e

D
at

e:
1

st
A

u
g

u
st

2
0

0
5

T
a
s
k

S
pl

it

P
ro

g
re

ss

M
o

n
8

/1
/0

5
F

ri
8

/5
/0

5

M
o

n
8

/1
/0

5
T

h
u

8
/4

/0
5

F
ri

8
/5

/0
5

F
ri

8
/5

/0
5

M
o

n
8

/1
5

/0
5

M
o

n
9

/2
6

/0
5

M
o

n
8

/1
5

/0
5

M
o

n
8

/2
9

/0
5

T
u

e
8

/3
0

/0
5

T
h

u
9

/1
5

/0
5

M
o

n
9

/1
2

/0
5

M
o

n
9

/2
6

/0
5

F
ri

1
0

/7
/0

5
F

ri
1

0
/7

/0
5

M
o

n
1

0
/1

0
/0

5
F

ri
1

1
/4

/0
5

M
o

n
1

0
/1

0
/0

5
M

o
n

1
0

/1
7

/0
5

T
u

e
1

0
/1

8
/0

5
S

a
t

1
1

/5
/0

5

M
o

n
1

1
/7

/0
5

M
o

n
1

1
/7

/0
5

M
o

n
1

2
/5

/0
5

M
o

n
1

2
/5

/0
5

M
o

n
2

/6
/0

6
M

o
n

4
/3

/0
6

M
o

n
2

/6
/0

6
F

ri
2

/1
0

/0
6

S
u

n
2

/1
2

/0
6

S
u

n
2

/1
2

/0
6

T
h

u
3

/2
/0

6
W

e
d

3
/2

9
/0

6

T
h

u
3

/3
0

/0
6

M
o

n
4

/3
/0

6

T
u

e
4

/4
/0

6
T

u
e

4
/4

/0
6

F
ri

5
/1

9
/0

6
F

ri
5

/1
9

/0
6

F
ri

6
/1

6
/0

6
F

ri
6

/1
6

/0
6

M
il

e
s
to

n
e

S
u

m
m

a
ry

P
ro

je
ct

S
u

m
m

ar
y P
a
g

e
1

E
x

te
rn

a
l

T
a
s
k

s

E
x

te
rn

a
l

M
il

e
s
to

n
e

D
e
a
d

li
n

e

1
0

/2
I

1
0

/9
I

1
0

/1
6

I
1

U
/Z

3
I

1
U

/J
U

I
n

/o
I

i
i
;
u

i
i

i/
^

u
I...

'•
.i

^i
l

Pr
oj

ec
t:

Fi
na

lY
ea

r
Pr

oj
ec

t
S

ch
ed

ul
e

D
at

e:
1

st
A

u
g

u
st

2
0

0
5

T
a
s
k

S
p

li
t

P
ro

g
re

ss

M
il

e
s
to

n
e

S
u

m
m

a
ry

P
ro

je
ct

S
u

m
m

ar
y P
a
g

e
2

E
x

te
rn

a
l

T
a
s
k

s

E
x

te
rn

a
!

M
il

e
s
to

n
e

D
e
a
d

li
n

e

2
/1

2
2

/1
9

2
/2

6
3

/i
>

-2
/4

2
-

Pr
oj

ec
t:

Fi
na

lY
ea

r
Pr

oj
ec

tS
ch

ed
ul

e
D

at
e:

1
st

A
u

g
u

st
2

0
0

5

W
Z

I
J
/1

a

T
a
s
k

S
p

li
t

P
ro

g
re

ss

o
/
^

o
i

M
il

e
s
to

n
e

S
u

m
m

a
ry

P
ro

je
ct

S
u

m
m

ar
y P
a
g

e
3

E
x

te
rn

a
l

T
a
s
k

s

E
x

te
rn

a
l

M
il

e
s
to

n
e

D
e
a
d

li
n

e

APPENDIX It: H:ink I inielinits in MPI

MPI

Routines

MPI Send

MPI Recv

MPI Beast

MPI Scatter

MPI Gather

Function

Basic blocking send operation. Routine returns only after th<

application buffer in the sending task is free for reuse. The MP

standard permits the use ofa system buffer but does not require it.

MPI Send(&buf, count, datatype, dest, tag, comm)

Receive a message and block until the requested data is available i:

the application buffer inthe receiving task.

MPI Recv (&buf,count,datatype,source,tag,coram,Sstatus)

Broadcasts (sends) a message from the process with rank "root" t

all other processes in the group.

MPI Beast(Sbuffer,count,datatype,source,comm)

Distributes distinct messages from a single source task to each tas

in the group.

MPI_Scatter(Ssendbuf,sendent,sendtype,&recvbuf,

recvent,reevtype,source,comm)

Gathers distinct messages from each task in the group to a sing:

destination task. This routine is the reverse operation o

MPI_Scatter.

MPI_Gather f&sendbuf,sendcnt,sendtype,Srecvbuf,

recvcount,recvtype,source,comm)

\PPI.M)I\ (WIN Solid Kwi-iie

SENDING & RECEIVINGMESAGES

SWITCH/HUB

Si M)i\ i)

Router

Idle Workstation IdleWorkstation [dieWorkstation Idle Workstation idle Workstation

User

PN M)l\ I drill l:i\c

Workstation

\PPI M)l\ I : (.riil (»m pujci^U miiiinu 0|ieii\liisi\

\PPKM)I\ (i: (•viii-ruliiiK Prinu' Numlu'r*

tr izzatdin@gateway.irtp.cluster:

•royrans ; INFCSSI-IJ*

ID no : 3959

Supervisor : MR.IZZATDIM ABDUL AZIZ
Title : PM<AL1EL PROCESSING OE" RSA CRYPTOSYSTEM USIbI

Welcome to Parallel Program of RSA Cyrptosystera using MPI Libraries
***.-*>-£ !»*'£:

that supposedly entered by user is

RSA Encryption

Please raiEfce 2 selection

1. Generate keys

2. Encrypt a £ile

3. Decrypt a file

4. Exi c,

Please enter 1/2/3/4

Generating keys...

73 0

103 107

0 137

"!63 167

271 277 231 Joo u

0 307 311 313 317

331 337 0 0 34"

0 367 0 373 0

0 337 401 0 0

421 0 431 433 0

0 457 461 •3S3 46:

0 437 491 0 0

0 0 521 523 0

5zatdin@gateway:-

^deeded to siir.rjllfy this derco

33 Si

113 0

0 149

173 172

0 0

233 239

263 269

293 0

0 0

353 35^

APPKNDIX II: (iciicniliiisi IViiiK\Niiml»cri"on One ProeesMir

o'C Command Prompt - mpirun -np 1 prime

! 11437

11491 1149V

11731

11941
11971

1158?

11677

@ 11801
1182? 1183:J

IIS87 I

1200?
12037

0
12097

11981
12011

12071
12101

LGQ3 0

11593 11597 (
f% 0 I
I 11657 b
I 0 11609

m 11717 11719

11813

11839 0

11863 1186?
0 11897
11923 11927
11953 0

12073 0

11959

12049

11903 11909
11933 11939

12107 12109 12113 J2119
a 0 12143 :

12157 12161 12163

12211
12241

12277

Keys generated;

p = 4733
ci = 12241
e = 11411
n = 57936653
theta = 57919680
gcd = 1
A = 50600411

12251 12253
12281 0

Public Key: ai411,5793G653>
Private Key: <50600411,57936653)

Wall clock time = 7.847496

KSA Encryption
Please make a selection:
1 - Generate keys
2. Encrypt a file
3- Decrypt a file
4. Exit
Please enter 1/2/3/4

12227 0
0 0 12263

12289 0 83
n 0 12323 12329

- •M
jki

APPENDIX I: (.ehcrnlini! Prime \iiiiiIkisoii-I liree I'nirvNsurs

f izzatdin@gateway.iitp.cluster: -

12211

12241

0 jlJ.Z 1

12301 0

0

0 0

0 0

0 7867

0 0

a 7927

Wall clock time = 0.036!

APPJLN D^dASpu.^'f0^

#include "mpi.h"
^include <stdio.h>

#include <stdlib.h>

#include <fstream.h>

#include <conio.h>
include <iostream.h>

#include <iomanip.h>
#include<math.h>

#include <time.h>

intGCD{int, int);
int FastExp(int,int, int);
const int maxsize = 50000;
int r[maxsize]; //hold remainders
intqfmaxsize]; //hold quotients
int top = 0;
int bottom = 0;
intExtEuclid();
int readFile{char filename []);
int writeFile();
void IntBin(int);
const int MAXLENGTH = 20;
const intbytesize= 100;
charfilename[MAXLENGTH];
int numericalText;
intbin[bytesize];
intrearrange[10];
int index=0;
int cipherText;

intmain{int argc, char *argvfj)

intmaxCols = 8;
int maxRows;

int temp[8];
intbuffer[8];
int **table;
int myid, numprocs, numsent, slave, sender, rowrecvd, row, col, sr, modnum, max,row2;
int n,theta;
intp=0,q=0,e=0,gcd=0, d=0;

MPI_Status stat;
MPI_Init(&argc, &argv);
MPI_Commj-ank(MPI_COMM_WORLD,&myid);
MPl_Comm_size(MPI_COMM_WORLD,&numprocs);

if(myid = 0)

{
cout«endl«endl;
cout«"Name : WAN RAHAYA WAN DAGANG"«endl;
cout«"Program: INFORMATION TECHNOLOGY"«endl;
cout«"ID no : 3959"«endl;
cout«"Title : PARALLEL PROCESSING OF RSA CRYPTOSYSTEM USING MPI

LIBRARY"«endl«endl«endI; __
cout«"*** '«endl;
cout«"Welcome to Parallel Program ofRSA Cyrptosystem using MPI Libraries"«endl;
cout<<''************************************^

//user is prompt to enter anumber that determines the strength ofthe key prime
//that is goingto be generated
cout«"Enter the max value between 10000 and 99999"«endl;

cin»max;

maxRows^max;

if(max > 99999 || max < 10000){exit(0);}
system("CLS");

table= (int **)calloc(maxRows, sizeof(int*));

table[0] = (int*)calloc(maxCols, sizeof(int));

table[0][0] = l;
table[0][l]=7;
table[0][2] = H;
table[0][3]=13;
table[0][4] = 17;
table[0][5] = 19;
tab1e[0][6]=23;
table[0][7] = 29;

for(int q=l; q<maxRows; q++)

tablefq] = (int*)calloc(maxCols, sizeoflmt));
}

for(inta=0; a<maxCols; a++)

temp[a] =table[0][a]; //a temp array to save row[0] oftable[maxRows][maxCols3
}

//broadcast row[0] to all nodes
MPI_Bcast(temp, maxCols, MPIJNT, 0, MPI_COMM_WORLD);

numsent = 1;
slave = 1;
int k=l;

//master despathces 1row from table to each node accordingly; tag with row no
for{int i=0; Knumprocs; i++)
{

forfintj=0; j<maxCols; j++)
{

buffer[j]-table[k]Li];

}
k++;

MPI_Send(buffer, maxCols, MPI_INT, slave, numsent, MPI_COMM_WORLD);
numsent++; slave++;

}

//master waits result from slave and send another row oftable for another processing
for(int x=0;x<maxRows; x++)

{ MPLRecv(buffer, maxCols, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&stat);

sender = stat.MPI_SOURCE;
rowrecvd = stat.MPI_.TAG;

//retrieveeach element from buffer airay and save into table
for(inty=0;y<maxCols; y++)
{

table[rowrecvd][y] =buffer[y];

}
if(numsent<maxRows)
{

for(int h=0; h<maxCols; h++)
{

buffer[h] = table[numsent][h];

MPI_Send(buffer, maxCols, MPI_INT, sender, numsent, MPI_COMM_WORLD);
numsent++;

}

else

MPI_Send(buffer, maxCols, MPI_INT, sender, -1, MPI_COMM_WORLD);

}else//slave's part

{

MPI_Recv(buffer, maxCols, MPLINT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &stat);
if{stat.MPI "TAG 1= -1)

{
row = stat.MPI_TAG;

//filtering thetable array for primes:

for(int v=0;v<maxCols; v++)

//populate buffer with odd numbers
buffer[v] = (30*row) + temp[v];
sr=sqrt(buffer|>]); //determine primality ofodd no

for(intc=2;c<sr+2; C++)

modnum = buffer[v]%c;
if(modnum =0) //ifodd no isnot prime then NULL
{

c=sr+3;
buffer[v]=NULL;

}
I

MPI_Send(buffer, maxCols, MPI_INT, 0, row, MPI_COMM_WORLD);
}

}while(stat.MPI_TAG!=-l);

}

//master prints result
if(myid =0)

for(int g=0; g<maxRows; g++)
!

for(ints=0;s<maxCols; s++)

cout«setw(5)«table[g][s];

}
}

srand{(unsigned)time(NULL)); //seed random number generator with clock
while(p = 0)//until suitable primes are picked
{

row2 = randO % max;
col = rand()%8;
p=table[row][col];//assigns prime to value inmatrix

}

srand((unsigned)time(NULL));
while (q<= p &&q <= max)

while(q = 0)//until suitable primes are picked
{

row2 = rand() % max;
coI = rand()%8;
q=table[row][co!];//assigns prime to value inmatrix

}

n = p*q;
theta=(p-l)*(q-l);

srand((unsigned)time(NULL)); //srandQ is used to pick anumber from the array randomly

while(e=q ||e= 0) //to avoide = q

while(e = 0) //until suitable primes arepicked
{

row2 = rand() % max;
col = rand()%8;
e= table[row][col];//assigns prime tovalue inmatrix

gcd = GCD{e,theta); //determine gcd
d-ExtEuclid();
if(d<0)

{
d = theta-abs(d);

}

cout«endl;
cout«endl;
cout«" P value = " «p«endl;
cout«" Q value = "«q«endl;
cout«" N value = "«n«endl;
cout«" E value = "«e«endl;
cout«" Modulus N is "«theta«endl;
cout«" GCD is "«gcd«endl;
cout«" D is "«d«endl;

cout«endl«endl;

//starting to encrypta file:
cout«"Enter file name: "«endl;

cin »filename;
numericalText = readFile(filename);
cout«"File content: "«numericalText«endl;

IntBin(numericalText);
cipherText = FastExp(numericalText,e,n);
writeFileO;

//starting to decrypta file:
cout«"Enter file name : "«endl;

cin »filename;
numericalText = readFile{filename);

cout«"File content: ,l«numericalText«endi;
IntBin(numericalText);

cipherText = FastExp(numericalText,d,n);
writeFile();

}

getchO;

MPI_Finalize();
free (table);
return 0;

//this function will take2 parameters (eandtheta) and
//solve the GCD from Euclid's Algorithm
//GCD oftwo integers which arenotboth zero is the largest
//integer thatdivides bothnumbers.
//Thisfunction is using'Table' method
//******+**'1'*****

int GCD(inta, int b) //e,theta

{
int rem=0,gcd=0, i=0, k=0;

//initialize array of remainders andquotients
for(k=0; k<maxsize; k++)

r[k]=(0); //creating an array of atable consist of remainders and quotients
q[kH0);

r[i] =b; //first remainder value; starting value in the table
i++;
while (b%a !=0) //doesnt divide; both areprime

r[i] = a; //second remainder value
rem = b%a;
q[i] =b/a; //qstarts atq[l], no value for q[0]
b = a; //next 'b'
a = rem; //next'a'
i++;

}
gcd = rem;
if(i=l)

{
gcd= a; //bothno are not prime

r[i] =a; //store last value of r[i] =aas the compiler is stopped looping
bottom'= i+1; //store length ofarray for ExtEuclid loop

return gcd;

}

//*„***,K***«**«***«*******M****************»****+*****************
//This function will take 2parameters sent in and solve atwo variable
//equation using the Extended Euclid Algorithm.
//This functionwill return the value of d
//This function is also used the 'Table' method
™/*************^^

int ExtEuclidO

int d=0, k=0, length=0, i=0;
const int max = 5000;

int x[max];
int y[max];

for(k=0;k<max; k++)

x[k]=(0); //creating an array of atable consist ofx;coefficient of theta
y[k]=(0); //andy;coefficientofe
}
x[0]=l;
x[l]=0;
y[0] = 0;

y[i] = i;

length =bottom; //which isthe total no ofremainders

for(i=2; Klength; i++) ll\ starts at 2to calculate the 3rd value ofboth coefficients

xfi] =x[i-2] -(q[M]*x[Ml); //the next xvalue until the last value of remainder is reached
y[i] =y[i-2] -(q[i-i]*y[i-1]); //the next yvalue until the last value ofremainder is reached

}

d=y[i-l]; //the coefficient ofe; satisfy the equation of: demodtheta= 1ORd=eA-l mod theta
return d;

}

int readFile(charfilename[])

ifstream inStream;

inStream.open("infile.txt");
if(inStream.failO)
{

cout«"Input file opening failedAn";
exit(l);

}

int numeric;
inStream»numeric;

inStream. close();

return numeric;

int writeFile()

{

ofstream outStream;

outStream.open("outfile.txt");
if(outStream.failO)

cout«"Output file opening failed.\n"
exit(l);

outStream«cipherText;

outStream.ctoseO;

return 0;

//binary method is used to reduce the complexity ofmodular multiplication

void IntBin(int M2)

!
inttmp=l,remain=l;
int c=0,i=0j=0,test=0;
bool first(true);

cout«"Binary conversion:";

for (i = 0; i < bytesize; i++)

bin[i] = 0; //initialize arrayto 0

}
M2 = abs(M2);
while (M2 != 0)

while (tmp <= M2)

tmp = tmp * 2;
C++; //gets power

}

test = M2%2;//determine if even or odd
if(c= 0 && test=0)//special case; ones place

bin[c]=0;//even number, soassign one's place as0

}
else

{bin[c]=l;}

for(j=l;j<c;j++)

