CERTIFICATION OF APPROVAL

Parallel Processing of RSA Algorithm Using MPI Library

By

Wan Rahaya Bt Wan Dagang

A project dissertation submitted to the
Information Technology Program
Universiti Teknologi PETRONAS
in partial of the requirement for the
BACHELOR OF TECHNOLGY (HONS)
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Approved by,

= (Mr. Izzatdin Bin Abdul Aziz)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
JUNE 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

“~
WAN RAHAYA BT WAN DAGANG

ACKNOLEDGEMENT

First and foremost, I would like to express my gratefulness to Allah S.W.T for His Bless

and Guidance that strengthens me in facing every challenge in completing this project.

I would like to thanks my supervisor, Mr, [zzatdin Bin Abdul Aziz for his understanding,

morale support, and guidance that has really motivated me to accomplish this project.

I would also like to thank all my families, and friends for their advices and morale

supports in this project.

I would also like to say “thank you” for everybody else that has contributed to this

project.

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1: INFRODUCTION

1.1 Background of Study
1.1.1 RSA Cryptosystem
1.1.2 Parallel Processing
1.1.3 Message Passing Interface

1.1.4 Grid or Cluster Computing

1.2 Problem Statements
1.2.1 Problem Identification
1.2.2 Significant of the Project

1.3 Objective of Studies
1.3.1 To conduct a study on RSA algorithm
1.3.2 To conduct a study on Parallel Programming
1.3.3 To conduct a study on Message Passing Interface (MPI)
1.3.4 To convert sequential RSA algorithm into parallel RSA algorithm

1.3.5 To implement parallel RSA into grid computing environment

1.4 Scope of Studies

CHAPTER 2: LITERATURE REVIEW
Introduction

2.1 RSA Cryptosystem
2.1.1 RSA Algorithm:

2.2 Parallel Computing
2.3 Message Passing Interface

2.4 Gnd Computing

= NN = k=

L th Lth b R B

10

12

CHAPTER 3: METHODOLOGY

3.1 System Architecture — The Evolutionary Approach Development

3.2 Tools and Devices
3.2.1 Development Tools
3.2.2 Libraries
3.2.3 Platform

3.2.4 Hardware/Devices

CHAPTER 4: RESULT AND DISCUSSION

4.1 Project Results
4.1.1 Sequential RSA Algorithm
4.1.2 Parallel RSA Algorithm

4.1.3 Performance Measurement

4.2 Discussion

CHAPTER 5: CONCLUSION AND RECOMMENDATION

REFERENCES

APPENDIX .

il

13

13

15
15
16
17
17

18

18
18
22
28

29

30

31

32

LIST OF FIGURES

Figure 1: Phase Involved in Evolutionary Development Approach
Figure 2: General MPI Program Structure

Figure 3: Flowchart of Sequential Program of RSA Algorithm

Figure 4: Flowchart of Parallel Program of RSA Algorithm

Figure 5: Master creates a dynamic 2D to populate odd numbers
Figure 6: Master sends an equal-sized of row of 2D array to each slave

Figure 7: Example of assigning row 1200 rows to 4 processots (slaves)

LIST OF TABLES

Table 1: Modular Multiplication of M'® using Binary Method

Table 2: Comparison of Execution Time for Different Number of Nodes

1ii

ABBREVIATIONS AND NOMENCLATURES

CPU : Central Processing Unit

MPI : Message Passing Interface

PVM : Parallel Virtual Machine

IPC : Inter Process Communication

SISD : Single Instruction Single Data
SIMD : Single Instruction Multiple Data
MISD : Multiple Instruction Single Data
MIMD : Multiple Instruction Multiple Data
FLOPS : Floating Point Operation per Second
PC : Personal Computer

iv

ABSTRACT

This report explains the project of developing Parallel Processing of RSA Algorithm
Using MPI Library. RSA Algorithm is a public-key cryptosystem that offers encryption
technique which security is based on the difficulty of factoring large prime integers. The
computation of RSA is performed by a series of intensive computational of modular
multiplications. The scope of this project is developing a parallel system to generate
public and private key, and to encrypt and decrypt files using the algorithm of RSA. The
system is needed to be parallel as to overcome the problem of intensive computational by
the RSA algorithm. This parallel system is going to be embedded on grid or cluster
computing environment. The language and library that are going to be used for the
system is C++ and Message Passing Interface (MPI). This project is completed phase by
phase and for the system development, the method used is evolutionary development

approach. The end result of this project is a parallel algorithm of RSA cryptosystem.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

1.1.1 RSA Cryptosystem

Cryptosystem is used as a tool to protect important secrets and sirategies. RSA public-key
cryptosystem which is the first usable public-key cryptography developed by Ronald
Rivest, Adi Shamir, and Leonard Adleman. It is used for both data encryption and
authentication, based on the one-way function of integer factorization, where it is easy to
construct a large number which is the product of prime powers, but hard to factorize the

resultant number Into its constituents.

1.1.2 Parallel Processing

Traditionally, software has been written for sequential computation, to be executed by a
single computer having a single Central Processing Unit
(CPU); problems are solved by a series of instructions, executed one after another by the
CPU. Nowadays we already overcome this problem by having parallel processing and

parallel programming for faster computational power.

The massive computational process of RSA Algorithm can be executed more efficiently
using parallel processing that is implemented on cluster computing. Parallel Processing
refers to the concept of speeding up the execution by dividing the program into multiple

tasks that can be executed simultaneously.

The principle of parallel processing involves decomposition as the mechanism of
partitioning the work load. As the author’s project is on parallelizing the sequential RSA
algorithm, the author then needs to discover which part of the sequential algorithm that
can be parallelized; which is going to be discussed into more detail on the methodology

section.

1.1.3 Message Passing Interface

Message Passing Interface (MPI) is a library specification for message-passing, proposed
as standard by a broadly based committee of vendors, developers, and users. Message
passing is a programming paradigm where we can directly control the flow operations
and data within our own parallel programs. A message-passing library let us explicitly
tell each processor what to do and provides a mechanism for us to transfer data between

processes.

While debate continues as to what is the best way to pass messages back and forth
between nodes of a cluster or grid, with Parallel Virtual Machine (PVM) still having
supporters, chances are if we look underneath the hood of a large cluster, supercomputer
or grid, we will find MPL. With MPI in place, we can embed our program from one

platform to another without undue worry about inter process communication (IPC).

1.1.4 Grid or Cluster Computing

Grid or cluster computing is gaining a lot of attention within the IT industry. Grid
computing is an emerging technology that enables large scale resource sharing and
coordinated problem solving within distributed, coordinated group that sometimes termed
as virtual organizations. Grid computing provides scalable high-performance

mechanisms for discovering and sharing geographically remote resources.

1.2 Problem Statements

1.2.1 Problem Identification

Even though it has been proven that RSA cryptography is part of many official standards
wotldwide, but there is still area in the algorithm that can be improved. The security of
RSA depends on the difficulty of factoring large generated key. The task of recovering
the private key is equivalent to the task of factoring the modulus ». That is why it is

always suggested to choose ‘strong’ key primes to generate the modulus #.

‘Strong’ key primes mean larger key primes. The products of key primes create the
modulus 7. But the larger the modulus, the greater the security, but this will lead to
slower RSA algorithm operations due to massive modular computation; it takes more
time to complete the calculation parts and RSA algorithm is all about mathematical
calculation. As generating strong, large key prime is really time consuming (even for a
32bit size of key) therefore it shall be optimum to be processed in a parallel manner as to

increase the efficiency of the algorithm operation.

This problem could be overcome by employing super computers to do all the tasks
involved in the RSA computation. But then again this is not the best solution as this will
lead to high cost of machine requisition. This is where parallel processing and grid

computing can be applied to replace the super computers.

A collection of underutilized desktops or processors, which is near to obsolete in terms of
processor technology linked by a grid middleware would be comparable to a current high
end processor. Cluster can be easily built using open source middleware such as

OpenMosix.

1.2.2 Significant of the Project

The expected end product of this project is parallelized RSA algorithm. The idea of this
prototype is to speed up the process of RSA computation and ensure the security of the
encryption and decryption by generating large, reasonable prime keys. This can be
achieved by utilizing the available computer resources in Universiti Teknologi Petronas;
the underutilized computing powers in the lab around campus. Idle workstations are put

together to form a single cluster running MPI programs.

1.3 Objective of Studies

1.3.1 To conduct a study on RSA algorithm

In order to understand the public-key cryptosystem of RSA, the author needs to be well-
versed of all mathematical algorithm used in the cryptosystem. This is an essential part as

next the author needs to convert all the formulas involved into C++ language.

Up to this extend, the author has understand all the mathematical functions in the RSA
algorithm; the Extended Euclidean Function, Euler Totient Function, appropriate method
to generate large prime numbers, and appropriate method to determine a number is a

prime.

1.3.2 To conduct a study on Parallel Programming

As the project is all about parallelizing the RSA algorithm, the author needs to know and

develop the skill of parallel programming in order to create an appropriate and efficient

algorithm to divide the entire subtask for the load balancing of parallel processing to take
part.

Flynn’s Taxonomy [1] classifies different types of parallel computing models which are
Single Instructions Single Data (SISD), Single Instruction Multiple Data (SIMD),
Multiple Instruction Single Data (MISD), and Multiple Instruction Multiple Data
(MIMD). And my project makes use of the model of SIMD. And to use that model I have

to be well-versed of parallel programming.

1.3.3 To conduct a study on Message Passing Interface (MPI)

MPI is the heart of this project. As in order to make the sequential algorithm turned into
parallel, the author need to use and manipulate all the library of subroutines in MPI to
pass messages between nodes to execute the algorithm. To achieve this objective, the
author first needs to master the art of programming in MPI. As MPI is a library of
subroutine specifications that can be called from C and C++ (for MPI 2), thus the author

needs to be well-versed with the library functions provided by MPL

1.3.4 To convert sequential RSA algorithm into parallel RSA algorithm

The study performed in this project is to apply the idea of converting the sequential RSA
algorithm a parallel one. The algorithm is in C++ language to be integrated with MPL

1.3.5 To implement parallel RSA into grid computing environment

The paralle]l system is going to be implemented in grid computing environment. The
objective is to speed up the process as grid computing offers distributed system consists
of a set of computers that work together to implement jobs and in this case is to

implement the parallel RSA computation process.

1.4 Scope of Studies

The paraliel program of RSA algorithm is implemented on LINUX. The part of the
sequential program of RSA algorithm that is going to be parallelized is on the prime
number generation only. This is because for RSA encryption and decryption to take part,

three distinct primes are needed for the value of p, ¢, and e.

CHAPTER 2

LITERATURE REVIEW

Introduction

The significance of this project is to develop a parallel RSA algorithm and put it in a
paralle]l system using the MP] libraries and implement the system in the grid computing
environment. The idea of parallelizing the sequential RSA algorithm is to speed up the
process of massive computation involves. The first challenge that the author has to cope
up is to understand the underlying mathematic algorithm in the RSA cryptography in
order to program it in C++. Studies have to be made on all the algorithms, functions and
methods used in the RSA cryptography. The next thing to be considered is on how to
parallel the sequential program using the programming model of message passing. In
order for the author to implement the parallel program into the grid computing
environment, sufficient related work pertaining this area needs to be reviewed. Important

points of related works are discussed in this section.

2.1 RSA Cryptosystem

RSA cryptosysten is a public-key cryptosystem that offers both encryption and digital
signatures developed by Ronald Rivest, Adi Shamir, and Leonard Adleman.

2.1.1 RSA Algorithm:

1. Generate two large random primes, p and q, of approximately equal size such that
their product n = pq is of the required bit length, e.g. 1024 bits.
2. Compute n = pq and (o) phi = (p-1)(g-1).

3. Choose an integer e, 1 < e < phi, such that ged(e, phi) = 1.

4. Compute the secret exponent d, 1 < d < phi, such that
ed = 1 (mod phi).

5. The public key is (n, ¢) and the private key is (n, d). The values of p, g, and phi
should also be kept secret.

6. Plaintextis M

7. Cipher text; C=M°*modn

8. Plaintext; M= CYmodn

+ nis known as the modulus.
e ¢ is known as the public exponent or encryption exporent.

o dis known as the secret exponent or decryption exponent.

“The RSA system is the most widely used public-key cryptosystem today and
has often been called a de facto standard.” |2]

It has been proven that RSA Cryptosystem is part of many official standards worldwide.
The RSA system is currently used in a wide variety of products, platforms, and industries
around the world. RSA is also built into current operating systems by Microsoft, Apple,
Sun and Novell. It is also used internally in many institutions, including branches of the

U.S government, major corporations, national laboratories and universities.

“In the literature pertaining to the RSA algorithm, it has ofien been suggested that
in choosing a key pair, one should use so-called “strong” primes p and q to generate the

modulus n.” 3]

Strong primes have certain properties that make the product » hard to factor by specific
factoring methods; this is why choosing strong primes helps to increase security.
However, large primes would take more time to be generated compare to an arbitrary
prime and this is what the project is mainly about. Segments of sequential code in RSA

are done in parallel for example, massive iterations and decisions.

“RSA currently recommends key sizes of 1024 bits for corporate use and 2048
bits for extremely valuable keys like the root key pair used by a certifying authority.” [2]

The best size for a modulus depends on one’s security needs. The larger the modulus, the
greater the security of the system. A modulus # is the product of two primes; p and g. Let
say if one chooses to use a 1024-bit modulus, the primes should each have length
approximately 512 bits. The primes should be roughly equal length as the modulus is

harder to factor than if one prime is much smaller than the other.

One should choose a modulus length upon consideration, firstly, of the value of the
protected data and how long it needs to be protected, and secondly, how dreadful
potential threats might be.

2.2 Parallel Computing

“4 parallel computer is a set of processors that are able to work cooperatively

fo solve a computational problem.”[3]

The main interest of parallel computing is that it offers the potential to concentrate on
computational process, whether processors, memory, or I/O bandwidth on important
computational process. It is important to note that the performance of a computer depends
directly on the time required to perform a basic operation and the number of these basic

operations that can be performed concurrently.

The time to perform a basic operation is limited by the clock cycle of the processor that is
the time required to perform the most primitive operation. One way to overcome the
decreasing clock cycle times is by incorporating multiple computers, each with its own
processor, memory and associated interconnection mechanism, which is going to be
implemented in this project, therefore results in better floating point operation per second

(FLOPS).

“Parallel computing is a divide-and-conquer sirategy”. [3]

The idea of partitioning the work in parallel computing is for all processors to keep busy
and none remain idle. Parallel computing is a natural extension of the concept of divide
and conquer; we first begin with a problem that is need to be solved, then access the
available resources that can be used to solve the problem; which is the number of
processors that can be used, and attempt to partition the problem into manageable pieces

that can be executed concurrently by each processor.

“4 popular taxonomy for parallel computers is the description introduced by
Michael Flynn in the mid-1960s of the programming model as single instruction —
multiple data stream (SIMD) or multiple instruction-multiple data stream (MIMD).”[3]

On a SIMD computer, each processor performs the same arithmetic operation or stays
idle during each computer clock, as controlled by a central control unit. SIMD applies the
concept of master node synchronizes and coordinates the whole process. On the other
hand, on a MIMD compuier, each processor can execute a separate stream of instructions

on its own local data.

2.3 Message Passing Interface

“Almost everything in MPI can be summed up in the single idea of message

sent —- message received.” [3]

The basic principle of MPI is that a multiple parallel processes work concurrently toward
a common goal using messages as their means of communicating among cach other. This
is the mechanism of message-passing programming model. Message-passing is probably

the most widely used parallel programming model today.

10

“Message-passing model does not preclude the dynamic creation of tasks, the
execution of multiple tasks per processor, or the execution of different programs by
different tasks. However, in practice, most message-passing sysiems create a fixed
number of identical tasks at program startup and do not allow tasks to be created or

destroyed during program execution”. [4]

These kinds of systems are said to implement SIMD programming model that is
mentioned earlier. This is because each task executes the same program but operates on
different data. Based on the reviewed that has be done on journals and book on MPI, it
shows that in most MPI implementations, a fixed set of processes is created at program

initialization and one process is created per processor.

However, as it is said that MPI does not preclude dynamic creation of tasks; MPI
processes may also execute different programs. Thus the MPI programming model is
sometimes referred to as MIMD to distinguish it from the SIMD model in which every

processor executes the same program.

“On the other hand, recent development in parallel programming has placed
emphasis on more traditional message-passing models, such as PVM, NX, and MPI MPI
especially has been adopted as the de facto standard with support from all vendors™. [5]

The distributed memory paradigm for parallel computing is widely used and standardized
interfaces such as MPI have enabled portability between clusters from different
manufacturers. An advantage of the MPI standard is that different platforms can have
their own optimized implementations. For this project, MPI is chosen to be implemented
together with RSA algorithm as there are seamless approach to parallel computing in
C++ and MPI available through books and online resources via the internet. The author
experiences in writing C++ program for some course project before is also the main

reason for choosing the MPL

11

2.4 Grid Computing

“Grid computing offers the power to address some of the world's most
challenging problems; for example, struggles to prevent cancer and cure smallpox, fo

reliably predict earthquakes and global warming, and many others”. {0]

Two key benefits of grid computing would enable these advances. First, grids tie varied
systems into a mega computer, and therefore, can apply greater computational power to a
task. Second, a grid virtualizes these varied resources, so that applications for the grid can
be written as if for a single, local computer, vastly simplifying the development needed

for such powerful applications.

“4 computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access fo high-end

computational capabilities.” [7]

Like it is said before, grid computing is an emerging technology that enables large scale
resource sharing and coordinated problem solving within distributed, coordinated group;
this is the computational aspects of grids. Thus for the project, this fundamental element
of grid computing is going to help a lot in exccuting the massive calculation task in a

parallel manner by utilizing the available resources; the so-called sleeping PCs in the lab.

12

CHAPTER 3

METHODOLOGY

3.1 System Architecture — The Evolutionary Approach Development

This project would be completed phase by phase and for the system architecture for this
project, evolutionary approach development model is chosen. This method is chosen due

to its flexible allowances choice of system development methodology.

Traditional approach of system development methodology that needs to get the
development model mostly correct in the early stage is impossible as this project involves
more than just one area of studies such like RSA algorithm, parallel processing, MPI and
grid computing. Various issues need to be considered that is unforeseen at the beginning.
Thus different conditions and techniques would be evolved during project development

phase from time to time.

Evolutionary development is an iterative and incremental approach for system
development. The system will be delivered incrementally over time. Evolutionary
development is new to many existing professional developer, and many traditional
programmers as well. Figure 1 illustrates the phases involved in evolutionary

development approach.

13

Initial

Specification -

Version
Cutline . —— —
description " Development |75 | Intermediate
> " version

1 Validation Final version |-

L 28

Figure 1: Phases involved in Evolutionary Development Approach

o Specification Phase

The project begins by developing a sequential program of RSA algorithm in
C-++. Then the phase is to identify which part of the sequential program that
could be parallelized. This is the beginning of the specification phase of the
project development. Although the main objective is to parallelize the
sequential RSA algorithm, but not all part of the program can be parallelized.
This is where the partitioning stage of the programming design takes place

which is intended to expose the opportunities for parallel execution.

¢ Development Phase

This is where the execution of the project takes place based on the
specification specified. As mentioned earlier, the parallelization of the

algorithm is achieved by using MPI libraries. And also as this project is using

14

iterative and incremental approach, the parallel program of RSA algorithm is
written incrementally over time which means troubleshooting is done on the

program from time to time to avoid error that cannot be debug later on.

o Validation Phase

Then the program prototype will go on the validation phase in order to ensure
the project requirement is achieved. If there are still areas that need to be
modified and altered, the whole phases will be repeated all over again until the
final version of the program is released. In this project, most of the evaluation
processes arc done by the author alone, which means the author as the

programmer is testing the program as an evaluator.

3.2 Tools and Devices

3.2.1 Development Tools

Programming language used to write the paralle]l RSA algorithm is C++. Apart from the
author’s experiences of writing programs using this language, the major reason of
choosing C++ to write the program is because it provides an object-oriented
infrastructure that accommodates mechanism of breaking down the problem into a
collection of data structures and operations that is similar with the characteristic of

parallel processing.

Furthermore, C++ is also compatible with the concept of partitioning, and dynamic
memory allocation which are the concept that is going to be involved in the parallel RSA
algorithm. As mentioned earlier, MPI is used for the parallel processing of the algorithm;
a library of subroutine specifications that can be called from C and C++; this is also
another reason why the parallel program is written in C++. The application that is used to

edit the program in C++ is Microsoft Visual Studio C++ 6.0 and g++.

15

3.2.2 Libraries

MPI provides all the subroutines that are needed to break the tasks involved in the
massive computational process into subtasks to be distributed to a number of available
nodes and processed. The goal of the MPI is to establish a portable, efficient, and
flexible standard for message passing that will be widely used for writing message
passing programs. MPI provides an appropriate environment for general purpose
message-passing programs, especially programs with regular communication patterns.

Figure 2 shows the general MPI program structure:

MPT include file

| Initialize MPT environment

Terminat e. NPT Env

Figure 2: General MPI Program Structure

MPI contains approximately 125 functions avoiding the author from any mishaps when

implementing common communication structures, such as send-receive, broadcasts and

16

reductions. However, MPI is reasonably easy to learn, as a complete message-passing
program can be written with just six basic functions. Please refer to appendix to have a

look at some basic MPI functions.

MPI is such a useful communications library for applications that need to be ported to
many platforms. Versions of MPI exist for virtually every major platform: message-
passing supercomputers, scalable shared-memory machines, symmetric multiprocessors,
loosely-coupled workstation clusters, and even individual PCs. With MPI, the author can

write code once and merely recompile it for each new platform.

3.2.3 Platform

As mentioned ecarlier, the parallel program of RSA algorithm will be running on grid
computing platform that is developed in the lab. The idle workstations in the lab is put

together to form a single cluster running MPI programs.

3.2.4 Hardware/Devices

o Workstation with minimum Pentium III processor, 256 ram memory
¢ Fast Ethernet Switch
¢ Network adapter and Unshielded Twisted Pair (UTP) cable

17

CHAPTER 4

RESULT AND DISCUSSION

4.1 Project Results

41.1 Sequential RSA Algorithm

The first development of the project was for the author to write the sequential program of

RSA Algorithm. The algorithm of the sequential program is as follow:

Pseudocode
1. Start
2. Begin while loop until an invalid option is selected
3. Prompt user to select program option
4 Switch (method)
5 Case 1: prompt user to enter a value greater than 10000
6. If value > 10000, generate key primes
7 Else
8 Exit program
9 Case 2: open file and encrypt
10. Case 3: open file and decrypt
11. Case 4: exit program
12. End

End

18

Figure 3 shows the flowchart of sequential program of RSA algorithm written in
CH++:

F . Whils ™.
ethod!= - 1

T

Uset. . -7
-selact
1121344

i . H

) F i T Ogen file-and v

I Mehod=3 | enciypt: - - TN
F i T " Open filé dhd F
} ahod=4 | encrypt '

Genbrais-key |
prime

END

Figure 3: Flowchart of Sequential Program of RSA Algorithm

The sequential program flowchart shown in figure 3, begins by prompting user to select
an option; whether to create the key primes (if they are not yet created), or to do the
encryption on a particular file (using the generated key primes), or to do decryption on a

decrypted file (using the generated key primes) or to exit from the program.
4.1.1.1 Trial Division

This program is written in C++. This program used dynamic 2D array; using calloc

function to create a table that contains a population of odd numbers and then each of

19

them will be determined whether they are a prime number or not. As the odd numbers
populated are only consist of not more than 5 digits, the primality test used to determine
whether they are prime or not is by using trial division (if the number are consist of more
than 200 digits, trial division is impossible). Trial division is one if the simplest method
to test a primality of a number. Trial division consists of trial-dividing » (integer to be
factored) by every prime number less than or equal to square root of #; since all other
combinations of factors would include one number larger than the square root and one

smaller.

4.1.1.2 Binary Method

Encryption and decryption part of RSA algorithm involve a massive modular
muttiplication. In this sequéntial program, the author has used the Binary method for both
parts. The binary method scans the bits of exponentiation either from left to right or from
right to left, a squaring is performed at each step, and depending on the scanned bit value,
a subsequent multiplication is performed. In this program, the binary method scans the

bits of exponentiation from left to right.
C: = M°® (mod n),

To execute the equation above, it cannot be computed by first exponentiating M and then
performing a division to obtain the remainder of (M} % n. This is because the storage
required to store the temporary result of A is enormous. Thus we have no way of storing
it. Then we should know in advance how many modular multiplications that are needed
to compute M® (mod n) before we actually execute the multiplication to avoid memory

wastage.

For example, to compute M" (mod n), if we compute it in a naive way, we will be

computing all powers of M until 15;

20

M>MS>M>sM>MS>M>M>M>M>M > ... M

which requires 14 multiplications. However, not all powers of M need to be computed in
order to obtain M”. Using the Binary method, we require only 6 multiplications;

M"> M2 > M3 _>M6 > M7_> M]4 > ij

The Binary method is also called as exponentiation by repeated squaring and

multiplication. The algorithm of binary method is shown below:

Input: MeN.
Ouiput: C = M mod n.
1. ife; then C:= Melse C:=1
2. fori= k-2 downto 0
a. C:=C.C(modn)
b. ife,=1 then C:= C. M (mod n)

3. return C

As an example, let e = 250, then first it is converted into binary values = 11111010,
which implies k = 8. Thus we take C: = M as ex.1 =7 = 1. Then the binary method would
take place as follows:

Table 1: Modular Multiplication of M" using Binary Method

i e; Step 2a Step 2b

6 1 (M)* =M" M* M =M’
5 1 M) = M°® M. M =M’

3 1 (MIS)Z =M M. M =M
) 0 (M3’)2 = M®? M®2

1 1 (M62)2= M124 M124 M= M125
0 0 (Mlzs)z = M50 MO

21

As we can see, the number of multiplications required by the binary method for

computing M is only 12 (instead of 250 multiplications).
Moo Mo Mo M M > MY > M7 > M0 > M > M7 > M > M

For an arbitrary k-bit number e with e;.; = 1, the binary method requires:
e Squarings: k— 1 where & is the number of bits in the binary expansion of e.
e Multiplications: H (e) — 1 where I (e) is the Hamming weight (the number of

1s in the binary expansion) of e.

This binary method has been successfully implemented in the author’s sequential and
parallel algorithm of RSA.

4.1.2 Parallel RSA Algorithm

The portion of the sequential RSA algorithm that is going to be parallelized 1s on the
generation of prime numbers that is used for public keys (n.e) and the private key (nd).
Which means there are three distinct primes needed for encryption and decryption of
RSA to take part; the value of p, g, and e. The algorithm of the parallel program is as
follows:
Pseudocode
1. Start
2. Master creates a table of odd numbers and initialized row[0] only
3. Master broadcasts row[{}] to all slaves
4. Master sends a number of rows to each slaves
Each slave will receive an initialized row {from master
Each slave will populate row prime numbers

Each slave will return populated row to Master

22

8.
9.

10.
1.
12.
13.
14.
15.
16.
17.

End

Master waits for results from slaves
Master receives populated rows from each slave
Master checks unpopulated rows
If maxRow > 0
Master will send another unpopulated row to slave
Master picks prime numbers randomly
Prompt user to select program option
Switch (method)
Case 1: prompt user to enter a value greater than 10000
If value > 10000, generate key primes
Else, Exit program
Case 2: open file and encrypt
Case 3: open file and decrypt
Case 4: exit program

End

Figure 4 shows the flowchart of parallel program of RSA algorithm:

23

START

Userénter
value>10000

F . if

lug>1000)

Master create-a table of-odd
‘numbers and initiate rew(0]

Master broadeast

row[0]; MPI_Bcast

/

/

|
¥

Master send n number of rows
to each node; MPI_Send

“Node3

Node 1 Node 2
i | i
¥ ¥ h
Node populste row Node populate row Node populate row
with prime number with prime number with prime number
Node refum Node retum Node returm, . - Node rétum
populated row to populated row to populated row-to populated row to
master mastsr o .~ master -master

(Parallel Part)

Master check
unpopulated row

3
Master pick a prime
ber randomly

¥ -
User choose o
encrypt or decrypt

Open filerand -
enrypt ’

Cpen file and
dacrypt

{ E;‘;D)
Figure 4: Flowchart of Parallel Program of RSA Algorithm

24

When the code runs on the grid cluster, master will create a table of dynamic 2D array
that later populated with odd number by slaves. If the degree of the security needed by
the user is really high, then they should enter a large number; perhaps 98000, so that large
prime numbers can be generated and vice versa. But then again as mentioned earlier, it

takes quite a time to generate large prime numbers.

A pointer to pointer variable **/able in master will point to an array of pointers that
subsequently point to a number of rows; this makes up a table of dynamic 2D array. After
the table of dynamic 2D array is created, master will then initialize the first row of the

table only. This idea is illustrated in figure 5.

|

*table »1 | 7 [11]13|17[19]23]29
(0]
*table

(1] g

*table
(2] >

*table
[n] ,

**rable

Figure 5: Master creates a dynamic 2D array to populate odd numbers

The paralicl segment begins when master broadcast the row[0] to all nodes by using
MPI_Becast. This row[0] will be used by each node to continue populating the rest of
the rows of the table with odd numbers. After then master will equally divide »-I no
of rows left that is yet to be populated by number of nodes available in the grid

cluster. Then each node will be given an equal no of rows to be populated with odd

25

numbers. This achieved by using MPI_Send. A visual representation of this idea is

depicted in figure 6.

i

*table »1 | 7|11 13]17(19|23]|29
{0]
*table

##*able

*1able

*table

[n]

Slaven

.

Figure 6: Master sends an equal-sized of row of 2D array to each slave

Then each node will be receiving » numbers of rows to be populated with odd
numbers. This is where the parallel process will take place. Each node will process
each row given concurrently. Fach node will first populate the rows with odd
numbers then filter out for prime numbers using the primality test chosen; frial
division. Odd numbers that are prime will remain in the rows but those that are not
will be assigned to NULL. Then each populated row is return to master and master

will then randomly pick for three distinct primes for the value of p,g, and e.
For an example, if there are 4 processors available to execute above tasks, and there

are 1200 rows to needs to be populated with prime numbers, each row will be given

300 rows each to be processed. The overall process is depicted in figure 7.

26

4 Processors (slaves) and
12000 rows

it ivt

Row{n]

S [
Processor 0 Processor 1 Processor 2 Processor 3

Figure 7: Example of assigning 1200 rows to 4 processors (slaves)

Processor 0 will be processing row[1] up to row[299], processor 1 will be processing
row[300] up to row[599], processor 2 will be processing row[600] up to row[899] and

lastly processor 3 will be processing row[900] up to the last row, row[1199].

After each node return the populated rows to master, master will then pick randomly
prime numbers to be assigned as the value of p, g, and e. the program will then continue
with encryption and decryption part of the algorithm. It is clear here that the parallel

process that takes place in the whole program is only on the prime number generation.

Below is the algorithm of the parallel part of the whole program:

27

Begin algorithm

Master part

1. Generates 2D table, all table elements are assigned to NULL except
for row[0]

Broadcasts row{0] to all slaves

Sends a number of rows to each slaves

Waits for results from slaves

Repeat from (3) until no more rows to be sent

AN

Proceeds with sequential part

Slaves part

7. Receive row[0] from Master

8. Receive an uninitialized row from Master

9. Generate odd numbers, fill up all the rows

10. Filter out for prime numbers, non-prime assigned to NULL
11. Send populated rows to Master

12. Repeat from (8) from Master until no more rows obtained from Master

End algorithm

4.1.3 Performance Measurement

Number of nodes Execution Time (ms)
1 7.850
3 0.039
5 0.043
10 0.053
30 0.093

Table 2: Comparison of Execution Time for Different Number of Nodes

28

4.2 Discussion

The grid computers are running on grid middleware, OpenMosix. Each node is having

two processors, which makes up:

Based on the bar chart above, we could see a distinction comparison between running the
program only on a single node and more. However, it seems like there is a decrement n
performance when the program is running more than 3 nodes. That is caused by the
network latency during the distribution of the task that leads to increment in the time

taken for the execution to complete.

Thus it is approved that algorithm of parallel RSA Cryptosystem using MPI Library has
successfully reduced time taken in generating RSA key primes, hence resulting in
reducing time taken for the whole process that takes place in execution of RSA

Cryptosystem program.

29

CHAPTER 5

CONCLUSION AND RECOMMENDATION

There are five objectives of this project. All of them have been achieved successfully.
The programming paradigm that is involved in this parallel algorithm of RSA
cryptosystem is it used the master-slave paradigm in finding the solution. The master
process coordinates the work of the slave processes. However, in this solution, it
performs self-scheduling where a slave process will be given another portion of the
uninitialized table to be calculated when it has finished the current processing. This is
suitable in an environment where the job loads in the slave processes are different from

each other.

There is some recommendation that should be highlighted here for the furtherance of the
project development of this project. The scope of parallel part of the program should be
enlarged into the area of calculation of encryption and decryption part in order to achieve
an optimum parallelized RSA algorithm. For further refinement, the tedious
programming work on parallelizing encryption and decryption part can be completed

efficiently.

30

REFERENCES

[1] Foster, lan. Designing and Programming Parallel Programs. An Online Publishing
Project of Addison-Wesley Inc., Argonne National Laboratory, and the NSF Center for
Research on Parallel Computation. <http://www-unix.mcs.anl.gov/dbpp/> Recent
access: Feb 2006.

[2] R.L. Rivest, A. Shamir, and L. Adleman. (1978). A journal on A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.

[3] A. Mollin, Richard, Chapman (2000). A book on RS4 and Public-key Cryptography.
Hall/CRC.

[4] Foster, Ian. (1995). A journal on Parallel Computers and Computation.
[5] Bourbonnais.S, Goate V.M, Haas M, Homan R.W, Malaika S, Narang I, Raman V.
(Volume 43, Number 4, 2004). IBM Systems Journal; Towards an Information

Infrastructure.

[7] J. Joseph, M. Emest, and C. Fellenstein. (Volume 43, Number 4, 2004). IBM Systems
Journal; Evolution of Grid Computing Architecture and Grid Adoption Models

[8] Mao, Wenbo. (2004). Modern Cyrptography. Prentice Hall, PTR.

[9] Mohamed Ferdaus Abdul Wahab. (2005). Implementation of Grid Computing Jor
Cyrptosystem (RSA).

[10] Stalling, William. (2004). Cryptography and Network Security, Principle and

Practive. Prentice Hall.

31

APPENDIX

32

| abed

h,\W aupead { Aewwng Polold I ssaiboly
& suoisoun rewei3 eneemnnth Aeiwing - nds a|npayas Sm%.o%;mmﬁhﬂﬂ%?%ﬁm
syse] [ewana & suoIsalIN ¥sel

90/91./9 U4 90/91/9 U4 uolIeussald (B o]

6¢

80/61/G 114 90/61/5 Ud eI el UOHENSSSI {0 LUoISs|WgNg 8z

, /2

90/¥/¥ BNl 90/pH7 8nL Xa3=sid| 92

14

, 90/E/¥ UON 90/0C/8 NUL Bunsal psloid ¥z

| 90/62/E PEM | 90/Z/€ NUL walwdojaaaq 1oloid ez

QQ/ZL/ig ung 90/21/Zz ung uBisaq webold [Bleled 44

90/QL/g Ud 30/9/2 YO Bumesg s|o0L ¥4

m 90/Eir UON 90/9/¢ UON (1] Hed) Yo 192lold oz

| 6l

: G0/G/C) VoI G0/S/c) YOI IBUILIEXT [EUISIU| UM UOHEIURS3Id |BID a1

4}

, G0/4/1) UCN GO/L/EL UOIN poday WIS Jo UOISSILGNS gl

Sl

S0/G6/11 1B §0/81/01 3NL ublsag weiboid |epuenbag ¥l

GO/L1/0L YO | SO/0L/OL YOIN swainnbay Buuysq ¢l

S0/pivL W S0/0L/0} UOW (1 Hed) Yommaloid| zZi

1"

S0/4/01 1A §0/2/01 14 uoday AeulwBid 4O UoISSIIgGNG ol

6

GQ/9E/6 VOIN GO/21/6 UOKN Buuue|d 1aloid g

S0/GL/6 NUL S0/0E/8 =Nl salpnlg aInjelsy i

GO/6E/8 UOW G0/S1L/8 UOW adoos pue sanadlgo '1daauos jeslord sulwlieiag g

§0/9Z16 UON S0/G1/8 UOIN JJOAR uB1saq/ya4eesay Aeujwi|aid g

14

S0/6/8 M S0/6/8 M4 wawbissy mdo), ¢

SO/ NYL 50/1/8 YOW jesodold oidot z

I _ - §0/5/8 M4 SO/Li8 Yol aido] j08loid jo uonyoIRg L

z abed

g

suiipeag

Aewiwng joalold

@ cvosain Uy i Arewng

SHSE| |ewsixy

’ auoiseuw

ssaibolg
nds
Asel

5002 1snbny is| -aleq
anpayag joaloid Jea [euld 1osfoid

LI

YR

[NEL

—=s— T AT T AT T oAl T ol T heimlL 1 ezoL 1 gLor | &/0F 1 Z/ob

¢ abed

)/ sujpesq Alewiwng jo8foid EE— ssaiboig
“ v ‘o d 500z isnbny Is| :ateg
0 SUOISBIIN [BUISXT [Aelng nds anpayag peloid iea A jeuls 1osloid
Syse] [euiaxg ’ suojsally ¥SEL
(47(4
: ———— T T T A T AT A ST ave T RIE T FLUR 1 GE | 62 1 BWZ | ¢ie

MPI1 Function
Routines

MPI_Send Basic blocking send operation. Routine returns only after th
application buffer in the sending task is free for reuse. The MP
standard permits the use of a system buffer but does not require it.
MPI_Send(&buf,count,datatype,dest,tag,comm)

MPI_Recv Receive a message and block until the requested data is available i
the application buffer in the receiving task.
MPI Recv (&buf,count,datatype,source,tag,comm,&status)

MPI_Bcast Broadcasts (sends) a message from the process with rank "root" t

all other processes in the group.

MPI"Bcast(&buffer,count,datatype,source,comm)

MPI Scatter

Distributes distinct messages from a single source task to each tas

in the group.

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,

recvent, recviype, scurce, comm)

MPI_Gather

Gathers distinct messages from each task in the group to a sing

destination task. This routine is the reverse operation o

MPI_Scatter.

MPI_Gather(&sendbuf,sendcnt,sendtype,&recvbuf,

recvcount, recviype, source, comm;

| SENDING GRECENINGMESAGES

<

% 1 Switch

S

Workstation
K@ 1 UserJ

Idle Workstation Idle Workstation idle Workstation

T

|dle Warkstation

User

+¢ Command Prompt - mpifun -np.1 pri

8 8 i 3 3 11393
& 411 5}] 5 11423
11437 11443 5]
i} 11467 &
11491 114%% 11583
a 11527]
115561 5] @
a 115487 115%3
@ 11617 E

@ @
146727 3
5]

(5]
11781 @
11731 1] 11741
] @ 4

LigE1

7]
5] gl 4!
11821 11827 11831 11833
6] B 11863
élﬂﬁ? a 5]

i
&
L

=3
3]
L

DEE=E
[y [y
[=3]
)

o
e

0 E = 3G S &

. B 114923
5] @ 11953
@ 11984 B
12667 126811 a
12837 12641 12843
1] 12671
12637 12161
@ 5]
12157 12161
j & &
12214] a 2 5]
12244 (0 12251 1225: ; 12263
é 12297 12281 z 8
12361 8 5 f 12322

IERPTRONEE®
[) r
@
b

12283

SRR R R R
Heys generated:
6P I H SRS
B 4733

o 12241

e 11441

n LP36653
theta = 57219688
god =

d = SO6HE41L

Public Hey: (114311.5%936653>
Private Hey: (B@6HA4L1, 579366532

$all clock time = 7.85474%

REA Encryption

Please make a selectian:
1. Cenerate keys

2. Encrypt a file

3. Decrypt a file

4. Exit

Please enter 1-2-3-/4

: iﬂatdin-@gatewgy.u‘tp.c;luster: =

R AT S By BV
% R I o
bt [
fasy =]
jen [T

o S T S R
[
[
[T A
33 W

r

[

oo
(W]
By B

S
L]
[y S V)
[N R N

P

wmon

P b
P2
ha
5]

a1

i)

]

FETT
TauT
Ta3Y

w] (G

L
1
ok

|
[Eu]
b
-]
]
-]
L
i
Lgy

T

™y s
[

[e}
s}
v

[eH]
[
[}
L

[

[T
)

o

Las

[14]

3 LR
o

[
D
[}

b=

|

o]
[]
q

3

s
]
]
L

i
[

i
£
o
i o=d
rn
0

b £
[N)
Ll ¥

o)
[

[=3
Py
ra
5.
-
]

ooy rhon
LA R
ot

ooy oo
s
i
o]

R
Doy

[Tl
i)

[

e
i

o

Lall
jag
[
583
5]
i
L]
La

e o
=1

-

L 4]
3w
4]

L3

]
Lad
1=

g
3631 35
o

]
[]

&

=

14

L3

[TERR V]

&0

P

B ¥5)
[=)]
L
=
[ma
LES
=]
]
s
fa
(=]
Lo
L2l
Ly
o)

L
[
P L
o]
o
-}
[
Ll
4]
Lk
o |
Ll
[t
[’

o
£
£l
-
=yt
s
PR

Ly W
P SN
OED
=1 -
[oEIa
)
w}
v
i
[k

3
)
a3
i3
(¥

e T R

fet
i_’l
-
I SRy
L) W
£
o B

]

k]

[B

g

L)
o

£
=]
[}

M Cn

[
oan

o}
Y]

1 -]

i Tl

I U
i

[SEa
W

I

[&)
5]
[T €S I o R 5
e
[
I

[
fad
=
£
e
[
w
[
gl b2
=]
T34y L
wy o

-1
ki

3]
L3
94
12
i}

o
[
s

i
3
]
o
£3

ol
523
=
1
-}
s}
IS

1
£ oy

£

I
K
8]

[}
L
R
[ST RN I
[
ol
[N
e
[
-]
L&

]

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>
#include <conio.h>
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#include <time.h>

int GCD (int, int);

int FastExp(int,int, int);

const int maxsize = 50000;

int r[maxsize]; /hold remainders
int gfmaxsize]; //hold quotients
inttop=90,

int bottom = 0;

int ExtEuclid ();

int readFile(char filename []);
int writeFile();

void IntBin(int};

const int MAXLENGTH =20,
const int bytesize = 100;

char filename[MAXLENGTH] ;
int numericafText;

int bin[bytesize];

int rearrange(10];

int index=0;

int cipherText,

int main(int arge, char *argv{])

{

int maxCols = §;
int maxRows;
int temp[8];
int buffer[8];
int **table;
int myid, numprocs, numsent, slave, sender, rowrecvd, row, col, sr, modnum, max,row2;
int n,theta;
int p=0, q=0, e=0, ged=0, d=0;
MPI_Status stat;
MPL_Init(&arge, &argy),
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

ifimyid = 0)

{
cout<<endl<<endl,
cout<<"Name - WAN RAHAYA WAN DAGANG"<<endl,
cout<<"Program : INFORMATION TECHNOLOGY "<<endl;
cout<<"ID no 1 3059"<<endl,
cout<<"Title - PARALLEL PROCESSING OF RSA CRYPTOSYSTEM USING MPI

LIBRARY"<<endl<<endl<<endi;
cout<<“******* s e e e ke ok e ook o ok sk ok ok sokROR R Aok ok *’1‘************’k*******************"({cndl-
;

cout<<"Welcome to Parallel Progeam of RSA Cyrptosystem using MPI Libraries"<<endl,
cout<<"***#***"<<endl<<endl~

fiuser is prompt to enter a number that determines the strength of the key prime
/fthat is going to be generated
cout<<"Enter the max value between 10000 and 99999"<<endl;

cin>>max;

maxRows = max;

ifimax > 99999 || max < 10000) {exit(0); }
system{"CLS");

table = {int **)calloc{maxRows, sizeof(int*)),
table[0] = (int*}ealloc{maxCols, sizeof{int});

table[0}{01=1;

table[0][11=7;

tablef0][2] = L 1;
table[0][3} = 13;
table[0}{4] = 17,
table[0][5] = 19;
tablef(][6] =23;
table]0][7] = 2%;

for(int g=1; g<maxRows; q++)

talle[q] = (int*)calloc{maxCols, sizeof{int));

H
for(int a=0; a<maxCols; at++)

tempfa] = table[0][a], #atemp array to save row[0] of table[maxRows][maxCols]
}

/fbroadcast row[0] to all nodes
MPI_Beast(temp, maxCols, MPI_INT, 0, MPL_COMM_WORLD);

numsent = ;
slave=1;
int k=1;

//master despathees 1 row from table to each node accordingly; tag with row no
for(int i=0; i<numprocs; i++)

{
for(int j=0; j<maxCols; j++)
buffer[j] = table[k][f];
-
MPL_Send(buffer, maxCols, MPI_INT, slave, numsent, MPI_COMM_WORLD);
} numsent+; slavet+;

J/master waits result from slave and send another row of table for another processing
for(int x=0; x<maxRows; x++)

{
MPI Reev({buffer, maxCols, MP1_INT, MPI_ANY_SOURCE, MPI ANY_TAG, MP1 COMM_WORLD,

&stat);
sender = stat MPI_SOURCE;
rowrecvd = stat MPI_TAG;

/retrieve each element from buffer array and save into table
for(int y=0; y<maxCols; y++)

table[rowrecvd][v] = buffer{y];
if(numsent<maxRows)
{

for(int h=0; h<maxCols; h++)

buffer[h] = table[numsent][h];

I
MPI_Send(buffer, maxCols, MPL_INT, sender, numsent, MPI_COMM_WORLDY);
numsent++;

else

MPI_Send{buffer, maxCols, MPI_INT, sender, -1, MPI_COMM_WORLD);

'
}
telse /fslave’s part
{
do!
MPI_Recv(buffer, maxCols, MPT_INT, 0, MPL_AN Y TAG, MPI_COMM_WORLD, &stat);
if(stal MPL TAG I= -1)
{
row = stat. MPL_TAG;
/filtering the table array for primes:
for(int v=0; v<maxCols; v++)
{
fipopulate buffer with odd mmbers
buffer[v] = (30*row) + temp([v];
sr = sqrt(buffer[v]); /determine primality of odd no
for(int ¢=2; c<sr+2; c++}
{
modnum = buffer[v]%c;
iffmodnum ==0) //if odd no is not prime then NULL
{
¢=sr+3;
buffer[v] = NULL;
i
\)
MPI_Send(buffer, maxCols, MPL_INT, 0, row, MPI_COMM_WORLD),
1
}while(stat MP]_TAG |= -1},
h
/fmaster prints result
if{myid ==0)

for(int g=0; g<maxRows; g++)

for(int s=0; s<maxCols; s++}

{
}

cout<<setw{5)<<table[g][s};

srand{(unsigned)time(NULL)); /seed random number generator with clock
while(p == 0) //until suitable primes are picked

{
row2 = rand() % max;
col = rand() % 8,
p = table[row][col];//assigns prime to value in matrix

srand({unsigned)time(NULL)});
while (g<=p && q <= max)
while(q == 0) #/until suitable primes are picked
row2 = rand() % max;

col =rand() % 8;
q = table[row][col];//assigns prime to value in matrix

}

n=p*q;

theta = {p-1)*(q-1);

srand((unsigned}time(NULL)); /srand(} is used to pick a number from the array randomly

while(e==q le==0) /foavoide==¢

{
while(e == 0 //until suitable primes are picked
{
row2 = rand(}) % max;
col =rand(} % &,
& = table[row}{col];//assigns prime to valug in matrix
)
H

ged = GCD{e,theta); //determine ged
d = ExtEuclid(};
ifld<0)

d = theta - abs(d);
}

cout<<endl,

cout<<endl;

cout<<" P value = " <<p<<endl;
cout<<" (value = "<<g<<endl;
cout<<" N vatue = "<<n<<endl;
cout<<" E value = "<<g<<endl;
cout<<" Modulus N is "<<theta<<endl;
cout<<" GCD is "<<ged<<endl,
cout<<" D is "<<d<<endl,

cout<<endl<<endl;

Mstarting to encrypt a file:
cout<<"Enter file name : "<<endl;
¢in >>filename;
numerical Text = readFile(filename),
cout<<"File content ; "<<numericalText<<endl,
[ntBin(numerical Text);
cipherText = FastExp{numericalText,e,n);
writeFile();

Jstarting to decrypt a file:
cout<<"Enter file name : "<<endl;
cin >>filename;
numerical Text = readFile(filename);
cout<<"File content ; "<<numericalText<<end;
IntBin{numericalText);
cipherText = FastExp(numerical Text,d,n);
writeFile();

getch();

MPI_Finalize();
free (table);
return 0;

}

H***

/this function will take 2 parameters (e and theta) and
{fsolve the GCD from Euclid's Algorithm

/IGCD of two integers which are not both zero is the largest
/finteger that divides both numbers.

/{This function is using 'Table’ method
ﬂ**********************************#*#************************

int GCD(int &, int b) /e theta

int rem=0, ged=0, i=0, k=0;
/finitialize array of remainders and quotients
for(k=0; k<maxsize; k++)

r{k]=(0);, fcreating an array of a table consist of remainders and quotients
qlkI=(0},

rii] = by #first remainder value; starting value in the table
i++;
while (b%a 1= 0) //docsnt divide; both are prime

t[i] = a; //second remainder value
rem = b%a;
qli] = b/a; i/ q starts at q[1], no value for q[0]
b=a;, /mext'd
a=rem; /next'a

i+,
)
ged = Tem;
if(i=1)
{
ged=a, //both no are not prime
rfi] = a; Jistore Tast value of rfi] = a as the compiler is stopped looping
bottom = i+1; J{store length of array for ExtEuclid loop
return ged;

j

”***#*****************

JiThis function will take 2 parameters sent in and solve a two variable
/fequation using the Extended Euclid Algorithm,
/iThis function will return the value of d

JfThis function is also used the 'Table’ method
”*****************************#***************************************

int ExtEvclid()

{
int d=0, k=0, length=0, i=0;
const int max = 5000;
int x[max];
int y[max];

for(k=0; k<max; k++)

x[k]=(0); //creating an array of a table consist of x;coefficient of theta
yiki=(0); //and y;coefficient of e
}

X[0]=1;
x[1]=0;
y[0}=0;
vill=1,

length = bottom; //which is the total no of remainders

for(i=2; i<length; i++) /istartsat2 to calculate the 3rd value of both coefficients

x[i] = x[i-2] - (q[i-1]*x[i-1]); //the nextx value until the last value of remainder is reached

yli] = y[i-2] - {afi-17*y[i-11); //the next y valug until the last value of remainder is reached

¢ = y[i-1]; //the coefficient of e; satisty the equation of; de mod theta=1 OR d=¢"-1 mod theta
return d;

}

int readFile(char filenamef])

{

ifstream inStream,

inStream.open("infile.txt");
if (inStream.fail(})

{
cout<<"Input file opening failed.\n";

exit(1);
1

int numeric;
inStream>>numeric;

inStream.close();

refurh numeric;

}
int writeFile()
{
ofstream outStream;
outStream.open("outfile.txt");
if (outStream. fail(}}
cout<<"Output file opening failed.\n";
exit(1);
}
outStream<<eipherText;
outStream.close();
return 0;
}
{/binary method is used to reduce the complexity of modular multiplication
void [ntBin(int M2)
{

int tmp=1,remain=1;
int ¢=0,i=0,j=0,test=0;
beol first(true);

cout<<"Binary conversion: ";
for (i =0; i < bytesize; i++)
{
bin{i] = 0; /initialize array to 0

)
M2 = abs(M2);
while (M2 I=0)

{
while {tmp <= M2)
{
tmp = tmp * 2;
¢+ /gets power
}

test = M2%2; //determine if even or odd
if {c == 0 && test==0)//special case; ones place

{
}

else

bin[c]=0;//even number, so assign one's place as 0

{bin[c]=1;}

for (j=1; j<c; j++}

