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ABSTRACT

Through this work, different amount of Rice Husk Ash (RHA) was employed as a

partial replacement of cement with percentages of 2.5%, 5%, 7.5%, 10%, 12.5%,

15%, 17.5% and 20% in mortar mixes. The physical properties of control cement

mortar, and Rice Husk Ash (RHA) mortar were tested to determine the effect of this

material on mortar properties. Mortar specimens were cured in water for certain days,

through which, shrinkage were tested at ages 4, 11, 18, 25, 28 and 60 days, while

porosity test were determined at age 7, 28 and 60 days. All the specimens were

immersed in lime saturated water for certain period. The obtained results show that

the shrinkage and porosity of the mortar containing rice husk ash was better than that

of the control cement mortar and the optimum amount of RHA got from this research

was 7.5%. One of the main reasons for the improvement of concrete properties upon

addition of RHA possibly may be attributed to the formation of more C-S-H gel and
94-

less portlandite in concrete due to the reaction occurring between RHA and the Ca ,

OH" ions, or Ca(OH)2 in hydrating cement.
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CHAPTER 1

INTRODUCTION

1.1 Project Background

Rice husk is an agro-waste material which is produced abundantly

through a year. In the majority of rice producing countries much of the husk

produced from the processing of rice is eitherburnt or dumpedas a waste [2].

Rice covers 1% of the earth's surface and is a primary source of food for

billions of people. Globally, approximately 600 million tones of rice paddy

are produced each year. This gives annual total production of rice husk up

tol20 million tones which is 20% of the rice paddy production [17]. The

abundant waste of rice husk may lead to the agro-waste problem. Concerning

of this, the usage of RHA had been widened and this project is also part of the

way to extend the usage of RHA.

This project will undergo into details about the mechanism of mortar

shrinkage that contained RHA. Before going further, this part will explain

generally about the volume change (shrinkage) of mortar and concrete.

Concrete is subject to several types of volume changes during its service life.

The four main types of shrinkage associated with concrete are plastic,

autogenous, carbonation, and drying shrinkage [11]. The volume changes in

concrete due to shrinkage can lead to the cracking of the concrete. In the case

of reinforced concrete, the cracking may produce a direct path for chloride

ions to reach the reinforcing steel. Once chloride ions reach the steel surface,

the steel will corrode, which itself can cause cracking, spalling, and

delamination of the concrete.

Volume changes in concrete due to autogenous shrinkage and

moisture loss can result in the early deterioration of reinforced concrete. As



concrete cures and dries, tensile stresses are created due to the concrete's

resistance to volume changes. Drying shrinkage is defined as the decrease in

concrete volume with time due to moisture loss, whereas autogenous

shrinkage is defined as the reduction in volume of the concrete due to

hydration of the cement. Drying shrinkage cracking is related not only to the

amount of shrinkage, but also to the modulus of elasticity, creep, and tensile

strength of the concrete [11]. Further explanation about shrinkage type will be

discussed in next section.

Rice husk ashhas many applications due to its various properties. It is

an excellent insulator, so has applications in industrial processes such as steel

foundries, and in the manufacture of insulation for houses and refractory

bricks. It is also highly absorbent, and is used to absorb oil on hard surfaces

and potentially to filter arsenic from water. More recently, studies have been

carried out to purify it and use it in place of silica in a range of industrial uses,

including silicon chip manufacture. There are health issues associated with the

use of crystalline ash, inhalation of which can lead to a number of diseases,

the most common being silicosis. This affects the potential markets for this

type of ash.

1.1.1 Potential and current uses ofRHA

An extensive literature search has highlighted many uses of RHA.

Two main uses have been identified, as an insulator in the steel industry and

as a pozzolan in the cement industry [17].

Steel industry:

• RHA is used by the steel industry in the production of high quality flat steel.

Flat steel is a plate product or a hot rolled strip product, typically used for

automotive bodypanels anddomestic 'white goods' products.

• RHA is an excellent insulator, having low thermal conductivity, high

melting point, low bulk density and high porosity. It is this insulating property

that makes it an excellent 'tundish powder'. These are powders that are used



to insulate the tundish, prevent rapid cooling of the steel and ensure uniform

solidification in the continuous casting process.

Cement industry;

• Substantial research has been carried out on the use of amorphous silica in

the manufacture of concrete. There are two areas for which RHA is used, in

the manufacture of low cost building blocks and in the production of high
quality cement.

• Ordinary Portland Cement (OPC) is expensive and unaffordable to a large

portion of the world's population. Since OPC is typically the most expensive

constituent of concrete, the replacement of a proportion of it with RHA offers

improved concrete affordability, particularly for low-cost housing in

developing countries.

The addition ofRHA to cement has been found to enhance cement properties:

• The addition of RHA speeds up setting time, although the water requirement

is greater than for OPC.

• At 35% replacement, RHA cement has improved compressive strength due

to its higher percentage of silica.

• RHA cement has improved resistance to acid attack compared to OPC,

thought to be due to the silica present in the RHA which combines with the

calcium hydroxide andreduces the amount susceptible to acid attack.

• More recent studies have shown RHA has uses in the manufacture of

concrete for the marine environment. Replacing 10% Portland cement with

RHA can improve resistance to chloride penetration.

• Several studies have combined fly ash and RHA in various proportions. In

general, concrete made with Portland cement containing both RHA and fly

ash has a higher compressive strength than concrete made with Portland

cementcontaining eitherRHA or fly ash only.

RHA can also replace silica fume in high strength concrete. Silica fume or

micro silica is the most commonly used mineral admixture in high strength



concrete. The major characteristics of RHA are its high water demand and

coarseness compared with condensed silica fume. To solve these problems

RHA needs to be ground finely into particles of 8-10 urn and a

superplasticizer added to reduce water requirement. There are two patents for

a ground RHA cement additive thatclosely matches the performance of silica

fume [17].

1.2 Problem Statement

Rice is grown on every continent except Antarctica and covers 1% of

the earth's surface. It is a primary source of food for billions of people, and

ranks second to wheat in terms of area and production. During growth, rice

plants absorb silica from the soil and accumulate it into their structures. It is

this silica, concentrated by burning at high temperatures removing other

elements, which make theash sovaluable [17].

The annual production of paddy rice (Oryza sativa) globally was

579,500,000 tonnes in 2002.Of this, 95% was produced by 20 countries, as

shown in Table 1.1.

Rice, Paddy
Production in 2002

(t)

Percentage of
Total Paddy
Production

Husk Produced

(20% of total) (t)

Potential Ash

Production (18% of
husk) (t)

China 177,589,000 30.7% 35,517,800 6,393,204
India 123:000.000 21.2% 24,600,000 4,428,000

Indonesia 48,654.048 8.4% 9,730.810 1.751,546
Bangladesh 39,000.000 6.7% 7.8QOJ30Q 1,404,000
Viet Nam 31,319.000 5.4% 6,263,800 1,127,484
Thailand 27,000,000 4.7% 5,400,000 972,000
Myanmar 21.200,000 3.7%, 4,240,000 763,200

Philippines 12,684,800 2.2% 2,536,960 456,653
Japan 11,264,000, 1.9% 2,252,800 405,504
Brazil 10,48940£ 1.8% 2,097,880 377,618
USA 9,616J5C 1.7% 1.923.35C 346,203

Korea 7,429,00C 1.3% 1.485.80C 267.444
Pakistan 5,776,00C 1.0% U55,20C 207,936

Egypt 5.700.000 1% U40,00C 205,200
Nepal 4.750.G0C 0.8% 950500C 171,000

Cambodia 4,099.016 0.7% 819,803 147.565
Nigeria 3,367,Q0C 0.6% 673.400 121.212

Sri Lanka 2.794.00C 0.5% 558.80C 100,584
Colombia 2,353.44C 0.4% 470,688 84,724

Laos 2,300,000 0.4% 460,00C 82,800
Rest of the World 29,091,358 5.0% 5,818,272 1.047,289

Total (World) 579,476,722 100% 115,895,344 20,861,162

Table 1 Rice paddy andpotential husk and ashproduction in the 20highest
producing countries, 2002.



Although the potential global estimate of RHA production is

21,000,000 tones (Tablel), the actual scope for utilization is considerably less.

The majorities of mills from which the husks are sourced are small and

dispersed within developing countries. This makes collection of the resource

logistically problematical, and currently husks are dumped and burnt in open

piles. The ash produced is of poor quality and is often used domestically in

small quantities for cleaning glassware and cooking utensils. Thus in rural

catchments areas the collection of rice husks and security of fuel supply tends

to limit the practical size of biomass power plants. It is estimated that the

optimum size of power plants in such areas is between 2-5 MW, producing up

to 10,000 tones of ash per year.

Larger rice mills such as the Patum rice mill in Thailand produce

320,000 tones/year, and already utilize husk for cogeneration. In developed

countries, where the mills are typically larger, disposal of the husks is a big

problem. Burning in open piles is not acceptable on environmental grounds,

and so the majority of husk is currently going into landfill. The cost of this

erodes the profit of the milling company [17]. This has led to many research

programmed into potential end uses of both husk and ash.

This project is concern about the research of mortar shrinkage when

RHA is added. This research is done to improve the quality of mortar or

concrete and also to use the industrial waste as a partial cement replacement.

Shrinkage had cause cracking problem and this is the crucial part that lead to

the research. The current yearly world production of paddy rice is

approximately 500 million tones that give approximately 100 million tones of

rice husks as a waste product from the milling.

1.3 Objectives and Scope of Study

The objective of the project is to produce a research and study about

the shrinkage of mortar that containing rice husk ash. Shrinkage is one of the

overlay performance parameters. Shrinkage is a three dimensional

deformation of concrete that results in an overall reduction in volume. Total

shrinkage may be measured under either restrained or unrestrained conditions.



This research examines the drying shrinkage performance of mortar

that mixed with RHA. It needs tobeperformed due to the cracking problem of

concrete and agro-waste material from the rice industries. This project will

conduct the study and shrinkage experiment for mortar that contained certain

amount of rice husk ash. The result of the analysis must be able to determine

the percentage of RHA needed in the mortar to achieve the best result and also

to produce specific procedure to prepare the mortar containing RHA. For this

project shrinkage was also correlated with the porosity of mortar.



CHAPTER 2

LITERATURE REVIEW

2.1 Rice Husk Ash

Research on producing rice husk ash that can be incorporated to

concrete and mortars arenotrecent. In 1973 Metha P.Kinvestigated the effect

of pyroprocessing on thepozzolanic reactivity of RHA [4]. Since then, a lotof

studies have been developed to improve the mechanical and durability

properties of concrete.

Rice husks are one of the largest readily available but most under

utilized biomass resources, being an ideal fuel for electricity generation. The

calorific value varies with rice variety, moisture and bran content but a typical

value for husks with 8-10% moisture content and essentially zero bran is 15

MJ/kg. The unburnt rice husk contains about 50% cellulose, 25-30% lignin

and 15-20% of silica [12]. The treatment of rice husk as a 'resource' for

energy production is a departure from the perception that husks present

disposal problems. Rice husk is unusually high in ash compared to other

biomass fuels - close to 20%. The ash is 92-95% silica, highly porous and

lightweight, with a very high external surface area. Its absorbent and

insulating properties areuseful to many industrial applications and the ash has

been the subject of many research studies. The concept of generating energy

from rice husk has great potential, particularly in those countries that are

primarily dependent on imported oil for their energy needs. For these

countries, the use of locally available biomass, including rice husks is of

crucial importance.

Rice husks, an agricultural waste, constitute about one fifth of 300

million tons of rice produced annually in the world. Byburning the rice husks



under a controlled temperature and atmosphere, a highly reactive rice ash is

obtained. In fact the ash consists of non-crystalline silica and produces similar

effects in concrete as silica fome. Nevertheless, dissimilar silica fume, the

particles of rice husk ash possess a cellular structure as shown in Figure 1,

which is responsible for the high surface area of the material even when the

particles are not very small in size [14].

j^i/^ffMtV^' •*":-" rfSJfr

uhriM&K^^^&irt' '* *'A&

Figure 1 Rice husks ash - cellular structure responsible for the high surface
area.

Rice husk is the outer covering of paddy and accounts for 20-25% of

its weight. It is removed during rice milling. Before rice husk is being

commercialized it is used mainly as fuel for heating in Indian homes and

industries. Its heating value of 13-15 MJ/kg is lower than most woody

biomass fuels. However, it is extensively used in rural India because of its

widespread availability and relatively low cost. The annual generation of rice

husk in India is 18-22 million tons and this corresponds to a power generation

potential of 1200 MW. A few rice husk-based power plants with capacities

between 1 and 10 MW are already in operation and these are based either on

direct combustion or through fluidized bed combustion [16]. Both these routes

are beset with technical problems because of the chemical composition of rice

husk and its combustion characteristics.

Rice husk is characterized by low bulk density and high ash content

(18-22%o by weight). The large amount of ash generated during combustion

has to be continuously removed for a smooth operation of the system.

Frequently, the throat of downdraft gasifier gets clogged because of the



sintering (caking) of the ash generated in the gasifier. The rice husk gasifier

virtually acts as a pyrolyzer since the residence time for the particles is often

not long enough for char gasification reactions to proceed [16]. This results in

poor carbon conversion efficiency, sometimes as low as 55%o. It has also been

reported that the main reason for a poor utilization of carbon is due to

difficulties in accessing all the carbon present in the material. Some of it,

trapped as chemical compounds in the ash, is not easily gasified or burnt.

Silicon oxide forms the main component (90-97%) of the ash with

trace amounts of CaO, MgO, K2O and Na20. The melting point of Si02 is

1410-1610°C, while that of K20 and Na20 is 350 and 1275CC respectively. It

has been suggested that at higher temperatures, the low-melting oxides fuse

with silica on the surface of the rice husk char and form glassy or amorphous

phases, preventing the completion of reaction. This places an upper limit on

local temperature of the gasifier. Similar behavior was also observed in

fluidized beds where the bed materials, sand or alumina react with rice husk

particles forming soft agglomerates and preventing the completion of

pyrolysis and combustion reactions.

From the micro-structural of RHA observations it shows that there is

virtually no change in size or shape of the particle until ~ 200°C. This is

followed by a rapid shrinkage between 200 and 400°C. Above 400°C, the

particle shrinks at a slow rate and stops shrinking after ~ 800°C. Two distinct

stages in the shrinkage of particles are clearly seen (Figure 2), when the

effective radius of the particles is plotted as a function of temperature. The

first stage can be explained as due to a rapid thermal degradation due to

volatiles escaping from the: particle. This process is complete when the

temperature rises to ~ 400°C. The second stage is because of char combustion

due to oxygen (present in argon) and gases generated from the first stage. This

stage is sluggish and less pronounced in rice husk [16].
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Figure2 Effective radius of particle shownin

An important feature of this shrinkage is that the size reduction along

the transverse direction of the largely longitudinal husks was significantly

larger than along the longitudinal axis (Figure 3). Circumscribing an ellipse

around the particle and calculating the aspect ratio captures this effect. In

Figure 4, the aspect ratio (L/D) increased from an initialvalueof 2.19 to 3.23.

Figure 3 Confoeal Scanning Laser Microscope (CSLM) images of a rice
husk particle heated in flowing argon at various temperatures. Particle
shrinkage is much more in the transverse direction than in the longitudinal
direction.

10
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Figure 4 Aspectratio of particlevs temperature.

From the study that has being done it was confirmed that, at

temperatures around 40°C and in the presence of water, the amorphous silica

contained in rice husk ash can reactwith Ca(OH)2 to form one kind of C-S-H

gel ( Cai.5 Si03.5 H20 ). The C-S-H gel looks like floes in morphology, with a

porous structure and large specific surface. The average particle diameter of

the reaction product, ranging from 4.8 to 7.9urn, varies slightly with the

condition under which the reaction occurs. When the product is heated, it

gradually loses the water that exists in it but it maintains an amorphous form

up to 750°. Above 780°C it begins to transform to crystalline CaSi03. One of

the main reasons for the improvement of concrete properties upon addition of

RHA possibly may be attributed to the formation of more C-S-H gel and less

portlandite in concrete due to the reaction occurring between RHA and the

Ca , OH" ions, or Ca(OH)2 inhydrating cement [1],

Regarding the strengthening mechanism of RHA blended concrete,

Sugita et al. [1] suggested that:

(1) the average pore size of RHA concrete compared with that

of control concrete is decreased;

(2) the practical water-to-cement (w/c) ratio of RHA concrete

is less than the used one because a portion of free water

has been adsorbed in the great number of mesoperes

existing in RHA particles and having an average pore

diameter of about 80A;

11



(3) Cement hydration is improved and

(4) More C-S-H gel may be formed in RHA concrete due to

the reaction that probably occurs between the silica in

RHA and the Ca2+, OH" ions, or Ca(OH)2 in hydrating
cement.

2.2 Pozzolanic Materials

A "pozzolan" is defined as "a siliceous or siliceous and aluminous

material, which in itselfpossesses little orno cementing property, butwill in a

finely divided form - and in the presence of moisture - chemically react with

calcium hydroxide at ordinary temperatures to form compounds possessing

cementitious properties."

Another definition of pozzolans:

A pozzolanic material has to contain reactive silicates or alumino-

silicates.

The particles must be fine enough to provide a sufficient reactive

surface area for the solid-state chemical reactions.

• The particles react with the alkalis and calcium hydroxide from the

cement to produce cementitious compounds (calcium-silicate hydrate gel,

calcium-alumino silicates, etc.).

Regarding the ambiguous words "fine enough", generally 45 urn

(micron) are specified as the maximum particle size. Realizing that these

particles are too big to allow a timely reaction between the lime that is given

offas the cement hardens, and the silicate or alumino-silicate of the pozzolan,

fly ash producers often indicate 35 um as the maximum particle size. Some

researchers in the field insist that even this is normally still too big, and they

specify a maximum of 10 um.

Cement gives off lime as it hardens and this lime will inevitably react

with silica (silicates or alumino-silicates). The aggregate in the concrete is

basically silica, but unfortunately it reacts too slowly, due to its reduced total

12



surface area. In a concrete without pozzolans, the lime produced in the

hardening of the cement will slowly react with the aggregate, producing gels.

These gels are expansive, and that is welcome as long as they just fill the

voids with a slight pressure thus avoiding water penetration and leaching.

The problem starts when too large a volume of gels is produced after

the concrete has hardened. That is the case if the lime only has aggregate or

large pozzolanic particles to react with. Given the relatively small total surface

area of the aggregate or big pozzolanic particles, as well as the slow reaction

between lime and silica, most of the gels will be produced after the hardening

of the cement, resulting in possible disastrous pressure build-up and a slow

destruction of the concrete. This makes it clear that the pozzolan has to be

very fine (<10 um) to ensure that most of the gels are formed before the

hardening.

Pozzolans play an important role when added to Portland cement

because they usually increase the mechanical strength and durability of

concrete structures. The most important effects in the cementitious paste

microstructure are changes in pore structure produced by the reduction grain

size caused by the pozzolanic reaction, pozzolanic effect and the obstruction

of pores and voids by the action of the finer grains [15].

The utilization of pozzolans in combination with Portland cement to

obtain high-performance concrete principally aims at improving concrete

microstructure. The small particles of pozzolans are less reactive than

Portland cement. When dispersed in the paste, they generate a large number of

nucleation sites for the precipitation of the hydration products. Therefore, this

mechanism makes the paste more homogeneous and dense as for the

distribution of the finer pores, because of the pozzolanic reactions between the

amorphous silica of the mineral addition and the calcium hydroxide produced

by the cement hydration reactions. In addition, the physical effect of the finer

grains allows denser packing within the cement and reduces the wall effect in

the transition zone between the paste and the aggregates. This weaker zone is

strengthened due to the higher bond between these two phases, improving the

concrete microstructure and properties [15]. In general, the pozzolanic effect

13



(PE) depends not only on the pozzolanic reaction but also on the physical or

filler effect of the smaller particles in the mixture.

Therefore, the addition of pozzolans to cement results in increased

mechanical strength and durability when compared to the plain pastebecause

of the interface reinforcement. Thus the pozzolanic effect on the paste

microstructure depends not only on the pozzolanic reactions but also on the

filler effect (FE) of the finer particles. The physical action of the pozzolans

provides a denser, more homogeneous and uniform paste. The pozzolanic

effect was stronger in the binary and ternary mixtures prepared withrice husk

ash in proportions of 25% higher.

Pozzolans not only strengthen and seal the concrete; they have many

other beneficial features. All of the below benefits apply to fly ash and rice

husk ash, and most of them to silica fume as well:

• Spherical Shape: Fly ash (FA) and rice hull ash (RHA) particles are

almost totally spherical in shape, allowing them to flow and blend

freely in mixtures.

• Ball Bearing Effect: The "ball-bearing" effect of FA and RHA

particles creates a lubricating action when concrete is in its plastic

state.

• Economic Savings: Pozzolans replace higher volumes of the more

costly cement, with typically less cost per volume.

• Higher Strength: Pozzolans continue to combine with free lime,

increasing structural strength over time.

• Decreased Permeability: Increased density and long-term pozzolanic

action, which ties up free lime, results in fewer bleed channels and

decreases permeability.

• Increased Durability. Densepozzolanconcretehelps keep aggressive

compounds on the surface, where destructive action is lessened.

Pozzolan concrete is also more resistant to attack by sulfate, mild acid,

soft (lime-hungry) water, and seawater.
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Reduced Sulfate Attack: Pozzolans tie up free lime that otherwise

could combine with sulfate to create destructive expansion

Reduced Efflorescence: Pozzolans chemically bind free limeand salts

that can create efflorescence. Denser concrete, due to pozzolans, holds

efflorescence-producing compounds on the inside.

Reduced Shrinkage: The largest contributor to drying shrinkage is

water content. The lubricating action of FA and RHA reduces the need

for waterand therefore also drying shrinkage

Reduced Volume: As pozzolans can in certain cases substitute for up

to four times the mass of cement, besides making the same amount of

concrete harder than without pozzolans, less voluminous structures are

able to bear the same load.

Reduced Heat of Hydration: The pozzolanic reaction between

pozzolan and lime generates less heat, resulting in reduced thermal

cracking whenpozzolans are usedto replace Portland cement.

Reduced Alkali Silica Reactivity: Pozzolans combine with alkalis

from cement that might otherwise combine with silica from

aggregates, which would cause potentially destructive expansion.

Workability: Concrete enhanced with FAand RHA is easier to place,

with less effort, responding better to vibration to fill forms more

completely.

Ease of Pumping: Pumping of FA and RHA concrete requires less

energy; therefore longer distances pumping are possible.

Improved Finishing: Sharp, clear architectural definition is easier to

achieve with FA and RHA concrete, with less worry about in-place

integrity.

Reduced Bleeding: Fewer bleed channels decreases porosity and

chemical attack. Bleed streaking is reduced for architectural finishes.
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Improved paste to aggregate contact results in enhanced bond

strengths.

Reduced Segregation: Improved cohesiveness of pozzolan concrete

reduces segregation that otherwise could lead to rock pockets and

blemishes.

Reduced Slump Loss: More dependable concrete allows for longer

working time - especially important in hot weather.

Very low Chloride Ion Diffusion: Pozzolans make concrete more

resistant to saltwater(seawater).

Improved Water Tightness: The formation of expansive gels

effectively seals the concrete.

Resistance to Freeze-Thaw: As water doesn't penetrate the hardened

concrete, freezing can't cause destructive expansion.

Resistance to Adverse Chemical Reactions: The example of

Dynastone shows how pozzolans canprotect against strong acids

2.2.1 Fly Ash (FA) as Pozzolan

Fly ash is the most commonly known artificial pozzolan and results

from the burning of pulverized coal in electric power plants. The amorphous

glassy spherical particles are the active pozzolanic portion of fly ash. It is

important that the coal is burnt at relatively low temperatures. At higher

temperatures the glassy particles would turn crystalline, rendering them

useless as pozzolans. Fly ash is 66-68% glass, on an average. Class F fly ash

(see ASTM C 618) readily reacts with lime (produced when Portlandcement

hydrates) and alkalis to form cementitious compounds. In addition to that,

Class C flyashmay also exhibit hydraulic (self-cementing) properties.

Concrete made with Type C fly ash(as opposed to Type F)has higher

early strengths because it contains its own lime. This allows pozzolanic
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activity tobegin earlier. At later ages, Type C behaves very much like Type F

- yielding higher strengths than conventional concrete at 56and90days.

Though fly ash is typically produced in coal-fired power plants, in

reality it doesn't matter at all where the ash comes from, as long as it can

produce the benefits listed above. Unfortunately that may not always be true

with the kind of ash you would like to use as a pozzolan. For example, coal

from the eastcoast tends to contain sulfur, which is stillpresent in the ash, or

the particles of an ash - regardless of its origin - might be too big or contain

too much carbon. In an attempt to the classify different qualities of ash,

categories have beencreated for coal-derived fly ash.

Fly ashes that comply with ASTM C 618 for mineral admixtures in

Portland cement concrete come in two classes: Class C is produced from

burning sub-bituminous coal and has faster strength gain, while Class F is

produced from burning bituminous coal and has higher ultimate strength.

ChemicalComposition of
Class C Fly Ash

Substance or Property Requirements
(ASTM C 618) %

Si02 plus A1203 plus Fe203, min 1 50

SO3, max. 5

Moisture content, max. '•• 3

Loss onignition1, max. 6

"Loss on ignition" basically refers to the carbon content in the ash. The more

carbon that is still present, the more weight will lose upon burning the ash.

Ideally, there shouldbe no weightloss at all.

In combination with portland cement, Class C fly ash can be used as a

cement replacement, ranging from 20-35% of the mass of cementitious

material. Class C fly ash must replace at least 25% of the portland cement to

mitigate the effects of alkali silica reaction.
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Chemical Composition of
Class F Fly Ash

Substance or Property Requirements

(ASTM C 618)%

Si02 plus A1203 plus Fe203, min ! 70

S03, max. 5

Moisture content, max. 3

Loss on ignition1, max. 6 !

In combination withportland cement, Class F fly ash canbe usedas a cement

replacement ranging from 20-30% of the mass of cementitious material. If the

fly ash has high calcium content, it should not be used in sulfate exposure or

hydraulic applications.

2.2.2 Silica Fume (SF) as Pozzolan

Silica fume is a waste product of the silicon metal industry, and isa super-fine

powder of almost pure amorphous silica. Though difficult (and expensive) to

handle, transport and mix, it has become the chosen favorite for very high-

strength concretes (such as for high rise buildings), often in combination with

both cement and fly ash.

Silica fume is a by-product resulting from the production of silicon or

ferrosilicon alloys or other silicon alloys. Silica fume is light or dark gray in
color, containing typically more than 90% of amorphous silicon dioxide.

Silica fume powder collected from waste gases and without any further

treatment is generally called "undensified silica fume", to distinguish it from

other forms of silica fume.

Undensified silicon fume consists of very fine vitreous spherical

particles with an average diameter about O.lum, which is 100 times smaller

than the average cement particle. The undensified silica fume is almost as fine

as cigarette ash and the bulk density is only about 200 - 300 kg/m3. The
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relative density of typical silica fume particles is 2.2 to 2.5. Because the

extreme fineness and high silicon content, silica fumes is generally a very

effective pozzolan.

High-strength silica fume concretes of up to 300Mpa have been

achieved in some countries. Applying silica fume inconcrete fertilizer storage

silos effectively reduced calcium nitrate attack. Condensed silica fume (CSF)

has been used in repairing a dam stilling basin to improve abrasion erosion

resistance; it has also been employed asanessential additive to prevent alkali-

silica reaction.

Though condensed silica fume is much easier to handle and transport,

uncondensed silica fume (normally in the form of slurry) is more effective.

The smaller, already wetted particles mix much easier and distribute better,

hence reactivity is better too.

Chemical composition of SF varies depending on the nature of the the

manufacture process from which the SF is collected. The main constituent

material in SF is silica (Si02), the content of which is normally over 90%.

The following table lists a chemical analysis of a commercially available

silica fume.

Commercially Available
Silica Fume

Substance Percentage %

! Si02 92.85

A1203 .61

Fe203 .94 |

CaO .39

MgO 1.58

K20 .87

Na20 .50
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Properties of (problems with) fresh concrete with silica fume:

• Workability, water demand: Use of silica fume in concrete usually

increases water demand. The increased water demand causes an

increase in water to cement ratio and could negate the benefits of

adding silica fume. For this reason, silica fume concrete (SFC)

normally incorporates a water reducing agent or superplasticiser.

• Stability: SFC is more cohesive than conventional concrete. This is

true for SFCs both with and without superplasticiser. Increased

cohesiveness reduces the likelihood of bleeding and segregation. This

increased cohesiveness could however increase the required

compaction energy.

• Plastic shrinkage: Increased cohesiveness of SFC encourages the

potentiality of plastic shrinkage and cracking that appears when the

bleeding water cannot compensate for the water loss on the surface,

due to evaporation. Under conditions of fast evaporation, curing

measures should be taken immediately after placing the concrete.

It should be noted that to overcome the above shortcomings, sometimes

fly ash (FA) and/ or rice husk ash (RHA) are also added to the concrete,

together with SF.

Combining SF with the appropriate aggregates and water-reducing

agent can produce high-strength concrete with a cube compressive strength of

around lOOMpa, inextreme cases up to 300 Mpa. The impermeability of SFC

is higher than that of similar concrete without SF.

Tests have proven that one part of silica fume can replace up to 3-4

parts of cement without any loss of strength. Replacing 10%o by weight of

cement with SF is a good starting point for experiments. Unfortunately, some

types of SF cannot be used in concrete. The combination of Si and FeSi-75%

condensed silica fume hasproven to workeffectively, while mixtures of FeSi-

75% withFeSi-50% andFeSi-75% withCaSihaveproven to be ineffective.
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The silica fume particle consists mainly of "vitreous" silica particles. It

has a specific gravity of about 2.20, which happens to be the accepted value

for the specific gravity of any vitreous silica. Nevertheless, it has been proven

that the higher the amount of impurities in silica fume, the higher the specific

value. Certain impurities such as iron, magnesium, and calcium (note: but not

CaSi) have shown to increase this value.

As stated before, silica fume was first looked at as a replacement for

cement, but today only a portion of the cement is replaced with a much

smaller amount of condensed silica fume in the concrete mix. Besides that,

silica fume - just like any other pozzolan - is not inert filler, but plays an

active role in the performance of the concrete.

2.2.3 Slag as a Pozzolan

The term 'slag' defined in ASTM Specification for GroundGranulated Blast-

Furnace Slag for use in Concrete and Mortars (ASTM C 989) is meant to

include each modifiers used in the specification title. The slag is the

nonmetallic product, consisting essentially of silicates and aluminosilicates of

calcium and other bases that is developed in the molten condition

simultaneously with iron in a blast furnace. The granulated material is then

ground to cement fineness. According to ASTM C 125, slag is the glassy,

granular material formed when molten blast-furnace slag produced as a by

product in the making of iron is rapidly chilled as by immersion in water.

Advantage of using slag added as a separate ingredient in concrete are as

follows:

1. higher ultimate strengths with a tendency toward lower early

strengths

2. higher ratio of flexural to compressive strengths

3. improved refractory properties

4. lowercoefficients of variationin strengths

5. improved resistance to sulfates and seawater
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6. lowered expansion from alkali-silica reaction

7. lower temperature rise due to lower heatof hydration

8. better finish and lighter color

9. equivalent durability in freezing and thawing

10. decreased porosityand chloridepenetration

2.2.4 Rice Husk (Hulls)Ash as a Pozzolan

Rice hull ash (RHA) is frequently referred to as a pozzolan superior to

fly ash. It also known as Super - Pozzolans because of having high silica

content which is above 85%. Some people even claim that it is superior to

silica fume (see above). Unfortunately, there is hardly any in-depth

information available in the public domain, though there should be a lot of

proprietary information. RHA does not come by nature as a "finely divided

powder", one of the requirements to be a good pozzolan. So it is important to

make sure that it is either already finely ground or use a suitable mill and

screen.

As rice hulls are an organic product, they contain carbon. The

technology for burning rice hulls has improved a lot, but that doesn't mean

that each and every plant that burns these hulls is using the latest technology.

Even if they do, the result will not necessarily be a suitable pozzolan. The

modern furnaces for rice hulls are probably mostly designed to produce as

little N02 emission as possible. For that the hulls would have to be burnt with

the minimum possible amount of air (oxygen). That in turn would

unfortunately mean that the carbon content measured in "LOI" (loss on

ignition) might be high.

Given the potential of pozzolans in general - and RHA inparticular - it

would be good if user groups like "ferrocement" could conduct research into

this matter. Among other points of research they might consider ultrasonic

conditioning and wet scrubbing as a previous stage before including this

pozzolan in their mixes. Rice husk ash and fly ash is pozzolanic mineral
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admixture with silica and silica or alumina. Silica and alumina will react with

free calcium hydroxide from the hydration of portland cement and causes an

increase in compressive strength at a later age. Concrete made with Portland

cement containing both rice husk ash and fly ash resulted in higher

compressive strength than the one made with Portland cement containing with

eitherrice husk ash or fly ash.

2.3 Comparison for Durability of Mortar Containing Different pozzolanic
Materials

2.3.1 Compressive Strength

500 -r

n r

control cement SF slag grog FA RHA
dust

Mixes

Figure 5 Compressive strength ofthe investigated mortar mixes atages 3,7
and 28 days

Figure 5 shows the compressive strength of control, cement dust, silica

fume (SF), slag, grog, fly ash (FA), and RHA mortars at ages 3, 7 and 28

days. It indicates that the ultimate compressive strength increases as the period

of curing in water increases for all types of mortar mixes and using 10% of

cement dust, SF, slag, grog, FA, and RHA in the mortar causes an increase in
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the compressive strength for all ages of testing than the control mix. The

increase in the strength for 3 days curing age was about 19%, 21%, 19%,

21%, 19% and 24% than the control mortar for cement dust, SF, slag, grog,

FA and RHA mortar respectively [18]. The increase in the strength for 7 days

curing age was about 23%, 40%, 42%, 46%, 29% and 44% than the control

mortar for cement dust, SF, slag, grog, FA and RHA mortar respectively.

While the increase in the strength for 28 days curing age was about 35%,

45%, 37%, 40%, 32% and 39% than the control mortar for cement dust, SF,

slag, grog, FAandRHA mortar respectively. It could be seenthatthe addition

of a fine pozzolanic material reduces both pore sizes and porosity, and

therefore raises strength.

2.3.2 FlexuralStrength

control cement SF slag
dust

Mixes

Figure 6 Flexural strength ofthe investigated mortar mixes atage 28 days

FA RHA

Figure 6 shows the flexural strength of control, cement dust, SF, slag,

grog, FA, and RHA mortars at age 28 days. It indicates that using 10% of

cement dust, SF, slag, grog, FA, and RHA in the mortar causes an increase in

the flexural strength. This increase was obtained 9%, 38%, 24%, 24%, 26%

and 31% respectively than the control mortar [18].
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2.3.3 Tensile Strength

control cement

dust

SF slag grog

Mixes

Figure 7 Tensile strength ofthe investigated mortar mixes at age 28 days

FA RHA

Figure 7 shows the tensile strength of control, cement dust, SF, slag,

grog, FA, and RHA mortars at age 28 days. It indicates that using 10% of

cement dust, SF, slag, grog, FA, and RHA in the mortar causes an increase in

the tensile strength. This increase was obtained 28%, 44%, 39%, 42%, 33%

and44%respectively thanthe control mortar [18].
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2.3.4 Durability
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Figure 8 Compressive strength versus period of immersion in water after the
preliminary 28 days curing in water

V

*_>

CD

o

6
u

500

400-

30

•control

Period ofimmersion, clays.
90 120

Figure 9 Compressive strength versus period of immersion in sodium
sulfate solution after the preliminary 28 days curing in water
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The compressive strength versus period of immersion in water after

the preliminary 28 days curing inwater is shown inFigure 8. The compressive

strength was obtained for ages 1, 2 and 3 months for all seven mortar mixes

after the preliminary 28 days curing in water. The presence of 10% of cement

dust, SF, slag, grog, FA, and RHA in the mortar causes an increase in the

compressive strength 31%, 40%, 32%, 34%, 27% and 33% respectively than

the control mortar for age 1 month after the preliminary 28 days curing in

water. For the age of 2 months, the increase in the compressive strength was

21%, 31%, 25%, 25%, 19% and 23% respectively. After age of 3 months, the

increase in thecompressive strength was 23%, 34%, 26%, 28%, 22% and26%

respectively than the control mortar [18]. The compressive strength versus

period ofimmersion insodium sulfate (Na2S04) solution after the preliminary

28 days curing in water is shown in Figure 9. The compressive strength was

determined for ages 1, 2 and 3 months for all mixes. Using 10% of cement

dust, SF, slag, grog, FA, and RHA in the mortar causes an increase in the

compressive strength 8%, 41%, 28%, 34%, 2% and 39% respectively than the

control mortar for curing age 1month in the solution. Forthe age of 2 months,

the increase in the compressive strength was 11%, 31%, 26%, 29%, 7% and

29% respectively. After age of 3 months, the increase in the compressive

strength was 22%, 31%, 28%, 28%, 11% and 28% respectively than the

control mortar. These results demonstrate that the replacement of 10% of the

Portland cement by the different materials used in this research effectively

improved the resistance ofthe mortar to the sulfate solution attack. This may

be due to itsfiner pore structure and the reduced content ofcalcium hydroxide

in the cement paste.
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Figure 10 Compressive strength versus period of immersion in magnesium
sulfate solution after the preliminary28 days curing in water

The compressive strength versus period of irnmersion in magnesium

sulfate (MgSC>4) solution after the preliminary 28 days curing in water is

shown in Figure 10. The compressive strengthwas obtained for ages 1, 2 and

3 months for all mixes. The presence of 10% of cement dust, SF, slag, grog,

FA, and RHA in the mortar causes an increase in the compressive strength

10%, 33%, 30%, 30%, 7% and 7% respectively than the control mortar for

curing age 1 month in the solution. For the age of 2 months, the increase in the

compressive strength was 12%, 28%, 28%, 26%, 12% and 17% respectively.

After age of 3 months, the increase in the compressive strength was 21%,

24%, 24%, 23%, 16% and 24% respectively than the control mortar. It is

observed that the effect of magnesium sulfate solution was found to be most

severe [18]. This may be due to the reaction ofthe magnesium sulfate solution

with C3A as well as C3S which is the principal cementations constituent and

may also be due to the lower value of pH of the saturated solution in the case

of magnesium sulfate attack and thereby the stability ofC.S.H in the system is

reduced.
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2.4 Shrinkage

Although there has been a great deal of research conducted on the

effects of shrinkage and thermal gradients on concrete performance, there is

no generally accepted procedure for analyzing this problem. Most current

analyses concentrate on stresses from thermal gradients (Khazanovich, 1994

and Hansen, 1997), while the modeling of the concrete drying shrinkage and

thermal contraction, the interface between the slab and the base, the variation

in moisture conditions in the slab, and the interaction with other slabs is less

understood and accounted for.

Autogenous volumes changes are associated with cement hydration

alone and do not include environmental effects due to variation in moisture

and temperature. The autogenously volume change with ordinary Portland

cement concrete, is usually small, that is less than 0.010% or 100 microstrain

expansion or shrinkage. The magnitude is dependent on the overall effect of

two opposing phenomena:

1) The increase in the disjoining pressure in poorly crystalline C-S-H

and ettringite due to water adsorption, and

2) The reduction in the disjoining pressuredue to removal of adsorbed

water by desiccation.

The magnitude of autogenously shrinkage when compared to other

types of shrinkage is very small; it is ignored for practical purposes except in

the case of dams. This is because in the interior of mass concrete there is little

likelihood of occurrence of any other type of shrinkage. The development of

high strength systems with very low water cement ratio has brought the

phenomenon of autogenously shrinkage to the attention of researchers again.

Using cementpastes madewith a 0.23 or 0.30 water cementratio, a high early

strength Portland cement (430 m2/kg) and a superplasticizer, Tazawa and

Miyazawa reported that the autogenous shrinkage of sealed specimens at an

age of 70 days was of the order of 1000 microstrain; this autogenous

shrinkage value increased to almost double when the cement was replaced

with 10 or 20%o condensed silica fume by weight. This phenomenon that
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caused the autogenous shrinkage is also believed to be responsible for the

observation that flexural strengths of sealed beams of cement paste were much

lower than those obtained for specimens cured under water when the water

cement ratio was less than 0.4. it appears that, due to the desiccation

phenomenon, the tensile stress generated near the surface of the specimen

must have caused some micro cracking that resulted in the reduction of

flexural strength [5].

Carbonation shrinkage occurs as a result of chemical interaction

between atmospheric carbon dioxide (CO2) and hydration products of cement.

Since it takes place concurrently with drying shrinkage, most reported data do

not distinguish between the two and designate both as drying shrinkage. This

is convenient when the carbonation shrinkage is low, such as with low-

permeability concrete kept in a continually wet or dry condition. The rate of

carbonation is dependent on several factors such as porosity of concrete, size

of the member, relative humidity, temperature, CO2 concentration, time of

exposure, method ofcuring, and the sequence ofdrying and carbonation [5].

Drying shrinkage occurs in concrete as a result of moisture loss within

the cement paste in the range of0.04 to 0.08% (400 to 800 microstrains). The

source of drying shrinkage in concrete is the adsorbed water and the water

held in small capillary pores of the hydrated cement paste [5], A portion of

this drying shrinkage will be elastic (recoverable) and a portion plastic

(unrecoverable). This shrinkage can cause both bending and axial stresses in

concrete slabs. The drying shrinkage ofconcrete slabs will vary, depending on

the concrete mix components and curing and environmental conditions. The

shrinkage of concrete will be higher for the unrestrained case (free shrinkage)

than for the partially restrained case (shrinkage restricted). The partially

restrained case is further complicated by elastic deformations and creep,

brought about by boundary conditions acting on the concrete specimen

(Farrington, et al, 1996). The creep of concrete will reduce the stresses due to

shrinkage ofconcrete pavement slabs.

Different models exist where the rate of concrete shrinkage can be

calculated as a function of the moisture conditions, the cement shrinkage, the

quantity of aggregate and the elastic properties of the concrete (Ruth, 1993).
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The major problem with this approach is the relationship is for calculating

unrestrained concrete shrinkage, which is not the true field situation. Another

problem is a large number of parameters are required, of which the relative

humidity at different depths in the pavement is difficult to determine.

The drying shrinkage of a concrete slab is non-uniform because of the

different moisture and evaporation conditions at the surface and base of the

slab. This shrinkage gradient can have the same curling effect as the night

time temperature situation where the top of the slab contracts more than the

bottom of the slab, as illustrated in Figure 11. This is because the top of the

slab looses moisture as it is exposed to the environment (sunlight, air, and

wind) and therefore shrinks more than the bottom of the slab [9].

Upwards curling - Top contracts relative tobottom

Downwards curling - Bottom contracts relative totop

Figure 11 Upwards and downwards curling geometry

A model proposed by Rasmussen and McCullough assumes that the

full shrinkage occurs at the surface of a concrete pavement and no shrinkage

occurs below the mid-depth of the slab (Rasmussen and McCullough, 1998).

The shrinkage is assumed to decrease ina linear manner between the top and

centerof the slab,as shownin Figurel2 [9].
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No shrinkage- -Full shrinkage

Slab depth

Figure 12 Slab shrinkage gradient assumed by Rasmussen and McCullough
(1998)

The stresses from differential shrinkage can be modeled by calculating

an equivalent temperature distribution for the slab, which can then be used to

determine the curling stresses. The stresses caused by axial shrinkage and base

friction can be modeled in the same manner as stresses from axial thermal

contraction.

Since the temperature at the top of a concrete slab varies more than

that at the base, the neutral axis ofbending will typically be closer to the top

of the slab. During the typical night time situation, the non-linear axial and

linear curling components of the temperature distribution add to each other at

the top of the slab resulting in hightensile stresses.

Because of concrete shrinkage, the friction between a pavement slab

and the base will always result in tensile stresses in the slab. As the top ofthe

slab shrinks more than the bottom, upwards curling similar to nigh time

temperature curling will occur, resulting in tensile stresses near the surface of

the slab.

Frictional stresses caused by the concrete slab cooling from theheatof

hydration will be tensile. These stresses will be highest when the slab is at its

coolest (during the night) and when paving was performed during the heat of

the day. As the strain magnitudes in concrete slabs are generally low, linear

elasticity is assumed and the tensile stresses from temperature changes can

therefore be added to those from shrinkage, taking the orientations of the

stresses into account.
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2.5 Water Cement Ratio (w/c)

For this project, the w/c ratio used for the specimens should be

minimizing to certain amount. The value will be based on the equation below:

Vc =w/c - 0.36a cm3/g (Equation 1)

Vc= Capillary pore volume

a = Hydration

It can be seen that at low w/c ratios, there is insufficient space for the

hydration products to form so that complete hydration is not possible. Using

this criterion, the minimum w/c ratio that can be used and still ensure

complete hydration can be determined from equation above by setting a= 1.0.

However, the hydration products must beformed with the gel pores saturated.

Thus, the water required for complete hydration is [24]:

Wmin =(Wn +Wg) g/g oforiginal cement, (Equation 2)

Or (w/c)min = 0.42 a

Wn= Non-evaporable water = 0.24 a g/gof original cement

Wg= Gelwater= 0.18 a g/g of original cement

Thusfor complete hydration (eel), the w/c ratio should not fall below

0.42. The space requirements for gel are less than the water requirements, so

that the available water will be used up while space is still available. This

means that below a w/c ratio of 0.42, a paste will selfdesiccate and the

residual capillary pores will become partially empty, unless water is added

during the curing period. Since water is physically lost from the paste by
evaporation, absorption by formwork or subgrade, etc [24]. During actual

concreting, the effective minimum w/c ratio needed to avoid selfdesiccation

is higher than 0.42. Figures below will show the volume relationships among
constituents of hydratedcementpastes:
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Figure 13 Volume relationships among constituents ofhydrated cement
pastes; constant w/c ratio = 0.5

Pores Empty
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Increasing w/c ratio

Figure 14 Volume relationships among constituents ofhydrated cement
pastes; changing w/c ratio (a= 1.0)

2.6 Shrinkage and Stress Relationship

Drying of concrete in air results in shrinkage, while concrete kept

under water swells. When the change involume by shrinkage orby swelling is

restrained stresses develop. Inreinforced concrete structures, the restraint may

be caused by the reinforcing steel, by the supports or by the difference in

volume change of various parts of the structure. We are concerned here with

the stresses caused by shrinkage, which is generally larger in absolute value

than swelling and occurs more frequently. However, there is no difference in

the treatment except in the sign of the term representing the amount of volume

change. The symbol ecs will be used for the free (unrestrained) strain due to

shrinkage or swelling. In order to comply with the sign convention for other
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causes of strain, ecs is considered positive when it represents elongation. Thus

shrinkage of concrete, ecs is a negative quantity.

Stresses caused by shrinkage are generally reduced by the effect of

creep ofconcrete. Thus the effects ofthese two simultaneous phenomena must

be considered in stress analysis. For this purpose, the amount offree shrinkage
and an expression for its variation with time are needed. Shrinkage starts to

develop at time ts when moist curing stops. The strain that develops due to

free shrinkage between tsand a later instant t may beexpressed asfollows:

ecs (t, W= ecso Bs(t - ts) (Equation 3)

where ecso is the total shrinkage that occurs after concrete hardening up to time

infinity. The value of ecs0 depends upon the quality of concrete and the

ambient air humidity. The function fis(t - ts) adopted by MC-90 depends upon

the size and shape of the element considered. The free shrinkage ecs (t2 ti)

occurring between any two instant ti and t2 can be determined as the

difference between the two values obtained by Equation 1, substituting ti and
t2 for t.

2.7 Porosity

When cement ismixed with water, the chemical reactions ofhydration

slowly begin to produce new materials (concrete, mortar). Concrete is a

random composite material with the fine and coarse aggregate acting as the
inclusions andthe cement paste acting as the matrix.

The properties of the aggregate are measurable and usually remain

constant in time, while the properties of the cement paste depend on the

original water/cement ratio, type and quantity of admixtures, hydration time,

degree ofhydration, and to some extent onthe initial particle size distribution.

In the interface transition zone between the cement paste and the

aggregates the cement paste microstructure may play a critical role in

determining the bulk concrete properties. It is known that bond between

cement paste and aggregate surface have higher capillary porosity and larger

pores than in the bulk cement paste matrix (Maso, 1980).
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The porosity of the interface transition zone and cement paste is the

most important coefficient which has an influence on the strength of the

concrete. Pore content of 1 V% causes 4-5% loss of strength (Woods, 1968),

thus production ofconcrete higher than 6 V% is impractical.

The presence of capillary pores and air voids influence concrete

permeability to a large extent. The ingress ofaggressive agents into the pore

structure is responsible for various durability problems in concrete structures

(aquitardity, corrosivity and freeze-thaw resistance).

The durability of concrete depends on the type, size and distribution of

pores in the concrete. Further factors are the absorption and the connection of

the pores and the cracks in the concrete.

The visualization of the pore content can happen in three levels. The

three levels are design level, working level and post-hydration level. Chemical

reactions proceed at the most favorable rate when the environmental

temperature is moderate (about1 15°C). On the other hand the degree of

hydration affects the pore content and micro-cracking. During hydration

capillary pores are developed in those parts of the concrete which are not

filled by the excess volume generated during hydration (Neville, 1995).

To minimize and control the porosity of concrete the paste-saturation

and the water/cement ratio of concrete have to be optimized. The over-

saturated and unsaturated concretes have higher porosities compared to those

of paste-saturated concrete. In the first case the difference is caused by the

capillary porosity while in the second case it is caused by the quantity of the
airpores (Balazs, Erdelyi, Kovacs!, 1990).

2.7.1 Degree ofporosity ofconcrete

The porosity offresh concrete depends onthe following factors:

1) Saturation of concrete,

2) Compression or the air content ofthe packed fresh concrete (air-bubbles),

3) Quality ofaggregate (porosity ofaggregate, shape and surface roughness of
aggregate),
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4) air-pore content imported by aggregate artificially (air-pore generator).

The porosity of the hardened concrete depends in addition to the above listed

factors on the following:

5)water/cement ratio (high water content),

6)Degree ofhydration (age of concrete),

7) Shrinkage of concrete.
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CHAPTER 3

METHODOLOGY

Selection ofProject Tnpin

- This stage is crucial to ensure that the topic is
feasible in term of scope andtime frame.

ProjectPlanning

- AH defined scope of work is outlined along
specific time frame to keep track with on-going and
planned activities. It is vital to keep it updates with
the outlined activities.

3
Literature Study

- Most information is gathered from journal,
internet and text books.

3
Experiment / Laboratory Work

- To conduct experiment on the model to gain the
result needed.

n
Data Analysis

- All experimental results and observations shall be
documented for detailed analysis and further
discussion with supervisor. Any comparison should
be made in order to determine and obtain the
objectives of theproject.
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3.1 Test Methods of DeterminingVolume Changes

For evaluation of volume changes discussed in this project, ASTM

offers several methods which are listed here:

1. ASTM Test Method for Autoclave expansion of Portland cement (C

151)

2. ASTM Test Method for Length Change of Hardened Hydraulic

Cement Mortar and Concrete (C 157) - It may be pointed out that

ASTM C 157 is intended for use under a standard laboratory

environment. Much greater variability and, in some cases, higher

drying shrinkage values result when specimens are cast in the field

under temperature and humidity conditions that are different from the

laboratory.

3. ASTM Test Method for Drying Shrinkage of Mortar Containing

Portland Cement (C 596)

4. ASTM Test Method for Restrained Expansion ox Expansive Cement

Mortar (C 806)

5. ASTM Test Method for restrained Expansion of Shrinkage-

Compensating Concrete (C 878)

Tools / Equipment Used

- RiceHuskAsh, Concrete materials, Mold, Comparator, Batchfurnace etc.

3.1.1 TestMethodfor DryingShrinkage ofMortar Containing Hydraulic Cement

The term drying shrinkage is defined as the decrease in length of the

test specimen, where the decrease is caused by anyfactor other than externally

applied forces under stated conditions of temperature, relative humidity and

evaporation rate in the environment; the term includes the net effect of a

variety phenomena tending to bring about both increases and decreases in

length during the period in which the test specimens under consideration are

stored in the environment cement and in which a number of processes,

including hydration of the cement, are taking place at a variety of rates.
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ASTM C 596 provides a method for determining the drying shrinkage

of mortar containing hydraulic cement. The test utilizes 25 by 25 by 285 mm

mortar prisms, having an effective gage length of 250mm. The sand used is

graded standard sand predominantly graded between the 600[im (No. 30)

sieve and the 150/nn(No. 30) sieve.

The specimens are keptin molds for 23.5 ± 0.5 h, but if the strength of

the specimens is insufficient to allow proper removal from the mold at 24h,

moist cure in the mold for 47± 0.5h. Then the specimens from the molds are

removed and cured in waterfor 48 h. At the age of 72 ± 0.5 h, the specimens

are removed from water and immediately the length comparator reading for

each specimen was obtained. The specimens in air storage have a clearance of

at least25 mm on all sides. Comparator readings are takenat age4, 11, 18,25

and 28 days of air storage.

ASTM C 596 covers determination of the effect of Portland cement on

the drying shrinkage of a graded standard sand mortar subjected to stated

conditions of temperature, relative humidity, and rate of evaporation in the

environment. In regard to significance and use of the method, it is stated that

the drying shrinkage of mortar as determined by this method has a linear

relationship to the drying: shrinkage of concrete made with the same cement

and exposed to same drying conditions. Since drying shrinkage of concrete is

greatly influenced by the aggregate content, aggregate stiffness, and water

content, many researchers question the validity of extrapolating the data on

mortar shrinkage to concrete shrinkage. For instance, it is inconsistent to rely

on the behavior of either neat pastes or rich mortars to predict the ultimate

shrinkage of concrete, especially when the tests are concluded at early ages.

The mix proportion for mortar and RHA was shown in Table 2.
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To Prepare 4 samples

% of RHA Cement (g) Std Sand <g) RHA (g)

0.00 750.00 1500.00 0.00

2.50 731.25 1500.00 18.75

5.00 712.50 1500.00 37.50

7.50 693.75 1500.00 56.25

10.00 675.00 1500.00 75.00

12.50 656.25 1500.00 93.75

15.00 637.50 1500.00 112.50

17.50 618.75 1500.00 131.25

20.00 600.00 1500.00 150.00

Table2 Mix Proportion of Mortar for shrinkage test

3.2 Preparation of RHA

RHA used in this experiment was burnt in a batch furnace at about

600°C and ground in a ball mill for 1 hour. The RHA needed for this

experiment is about 4 kg. It should have an average particle diameter of 15.4

/xm. The result of the ash producedmust be grey in color otherwise it can not

be used in the experiments. The chemical compositions of RHA are shown in

Table 3.

Loss of Ignition 2.93 % Na20 0.05 %

Si02 91.9% K20 2.78 %

A1203 0.25 % Ti02 0.01 %

Fe203 0.41 % p2o5 0.36 %

CaO 0.38% MnO 0.16%

MgO 0.21 % C 0.41 %

Table 3 Chemical composition (%) of RHA used in experiment,
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The rice husk burning process must follow the specific procedure and use the

standard equipment, shown inTable 4 and Figure 15 and Figure 16:

Time (Start) Temperature (C°) Time (End) Time Range (min)

Normal-200

200 10

200-250

250 5

250-280

280 10

280-310

310 10

310-360

360 20*

360-480 Air entrance

480 10

480-520

520 7

520-550

550 10

Table 4 Procedure of Burning the Rice Husk

*At this moment the temperature should be maintain until the entire

smoke stop flowing out from the furnace.
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Figure 15 Platforms to burn the Rice Husk

30 cm 31

31 cm

3.5 cm
cm x

5 cm

cm M

Figure 16 Dimensions of the platform

Notes: For each platform the quantity of rice husk used are different.

3.3 Summary of ASTM C596, C490, C778, C305 and C157

3.3.1 Preparation ofMolds (C490)

Prior to the molding of specimens, the outside joint of the mold and

the contact lines of the mold and base plate shall be sealed to prevent loss of

mixing water from a freshly molded specimen. The surface of the mold will

be thinly covered by mineral oil. The gage studs must be taking care to keep

them clean and free of oil or any foreign matter.
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3.3.2 Test Specimens (CI57 & C596))

The test specimens for mortar shall be a prism of 25mm square cross-

section and approximately 285 in length. At least three specimens shall be

prepared for each test condition. A batch of mortar shall consist cement,

graded standard sand (between 600um (No. 30) sieve and 150um (No. 100)

sieve), water (0.45w/c) and rice husk ash. Mix proportion of specimens shown

in Table 2.

3.3.3 Mixing Mortars

Mortar is mix using the procedure described in Practice C305

3.3.4 Molding Specimens (C157)

The mortar will be place in the mold in two approximately equal

layers. Each layer was compacted with tamper. The mortar was worked into

the corners, around the gage studs, and along the surfaces of the moldwiththe

tamper until a homogeneous specimen obtained. The surfaces need to be

smooth after the top layer was compacted. After the completion of molding,

immediately the device was loosen for holding the gage studs in position at

each and ofthe mold inorder toprevent any restraint of the gage studs during

initial shrinkage of the specimen.

3.3.5 Use ofReference Bar (C490)

Each time the comparator reading is taken the reference bar will be

placed in the same position in the instrument. The dial gage setting of the

comparator by use of the reference bar must be check before and after the

specimens reading was taken.
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3.3.6 Obtaining Comparator Readings(C490)

The specimens was rotated slowly in the measuring instrument during

the reading from the comparator is being taken. When the rotation causes a

change in the dial reading the minimum reading will be recorded. The

specimens must be placed in the instrument with the same end up each time

reading is taken.

3.3.7 Obtaining Comparator Readings ofSpecimens Stored inMoist (C490)

Clean the hole in the base of the comparator into which the gage stud

on the lower end of the bar fits, this is because this hole tends to collect water

and sand. Record the comparator indication of the reference bar. The first bar

is taken out from the immersion, the pins must be blotted. Then the bar will be

putted in the comparator to record the reading of the indication. The bar is

then returned to immersion and the hole in the base of the comparator was

cleaned again. The same procedure will be applied to another specimen. After

the last reading is done the hole in the comparator will be cleaned and the

reference-bar indications will again being recorded. (Note: the blot must be

only around the pins; this is to avoid drying and shrinkage of the bars)

3.4 Preparation of Porosity Test

The specimens for porosity test have the same mixtures as specimens

for shrinkage test. But the amount is increased by two times as the mold is

larger andmore specimens needed forthe test. This is important to ensure that

the properties of mortarare same forboth tests, so that the comparison done is

adequate. The test is first start by preparing the mortar using the 50 x 220 x

300 mm wood mold. After one day the specimens are demolded and cured in

water. The mortar will be cored during 7 and28 days. Forboth ages 3 samples

are needed. After coring, the samples will be vacuumed for 30 minutes

without water and then 6 hours with water. After those processes the samples

will be taken out and weight in air (Wair) and weight in water (Wwater) were

taken. After obtained those weights the samples will be dried in oven until the
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samples are fully dried and after this process, weight after dried (Wdried) will

be taken. Same procedures go for the samples at age 28. The specimens will

be onlytakenout from the waterafterit reaches the agewanted.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Shrinkage Analysis

The shrinkage of each specimen was determined using the data taken

from the changes of length. The calculation for the length change at certain

age was using the equation below:

L = (Lx-Li)xlOO

G

(Equation 4)

L = change in length at x age, %

Lx = comparator reading of specimen at x age minus comparator

readmg ofreference bar at x age

Li = initial comparator reading of specimen minus comparator reading

ofreference bar at that same time

G = nominal gage length, 250mm

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%

1 0.0080 0.0070 0.0060 0.0070 0.0180 0.0230 0.0120 0.0020 0.0100

4 0.0127 0.0112 0.0102 0.0130 0.0251 0.0300 0.0177 0.0084 0.0195

11 0.0307 0.0493 0.0315 0.0228 0.0359 0.0511 0.0436 0.0429 0.0400

18 0.0591 0.0680 0.0490 0.0372 0.0533 0.0611 0.0480 0.0501 0.0525

25 0.0701 0.0770 0.0514 0.0391 0.0595 0.0696 0.0565 0.0558 0.0544

28 0.0809 0.0776 0.0605 0.0425 0.0643 0.0723 0.0584 0.0602 0.0560

60 0.0889 0.0922 0.0693 0.0622 0.0699 0.0769 0.0629 0.0654 0.0616

Table 5 Average length change for different percentage ofRHA
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Figure 17 Graph of shrinkage vs ages of specimens

This investigation is aimed at developing lowest shrinkage mortar

using blends of pozzolanic by-product materials as cement replacing

materials. Rice husk ash is used in this project to exploit the potential of

reducing the percentage of shrinkage which can also reduce the potential of

cracking. The results of shrinkage at various ages are reported. Mortar

containing 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20% RHA

were incorporated as partial cement replacements. A water-cement ratio of

0.45 was used and it is constant for all specimens. It was found that the

incorporation of 7.5% RHA as cement replacement yielded the optimum

performance, resulting in the lowest shrinkage values.
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Figure 18 Graph ofShrinkage versus Percent ofRHA
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From figure 18, the graph shows the optimum point of RHA to

produce lowest shrinkage which is at 7.5% line. Using 20% RHA will also

produce good result of shrinkage at day 60 but to make it economically viable

7.5% is good enough. The graph also shows that after the 7.5% line the effect

of RHA to the shrinkage become lesser compared with before. So this again

proved that 7.5% RHA from the cement weight is the optimum weight of

RHA to reduce the shrinkage.

4.2 Porosity Analysis

This section presents experimental results on porosity of RHA modified

mortars using rule of thumb;

Porosity = (Waif-Waned / War-W^)* 100 (Equation 5)

RHA 7 days 28 days 60 days

0% 21.3558 18.5906 16.2738

5% 21.7472 18.9233 16.1537

10% 21.5711 18.8062 16.4606

15% 21.8965 19.5229 17.8276

20% 22.1808 19.2266 16.3866

Table 6 Table ofaverage porosity (%) for each specimens

Porosity vs RHA

EI 7 Days

128 Days

a 60 Days

Figure 19 Bar chart ofPorosity vs Percentage ofRHA for 7 and 28 days
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The graph above shows the porosity of the specimens from day 7 to

day 60 in various percentage of RHA. It shows that the addition ofRHA does

not influence much to the porosity. This is happened because ofthe properties

of RHA and C-S-H gel themselves is porous. So although the RHA added

reduced the capillary porosity the porous properties come from the RHA and

C-S-H product had make the graph not much different.

The RHA addition will greatly reduce the capillary porosity of the

interfacial zone by consuming the large crystals of CH and replacing them

with a higher volume of secondary C-S-H [25]. Simulation studies have

shown that a 10-20% by weight silica fume addition can produce a nearly

homogeneous distribution of C-S-H (primary plus secondary) throughout the

microstructure [25], including the interfacial zone, same can goes to RHA as

the richness ofsilica content is similar.

The ability of the smaller admixture particles to pack more closely to

the aggregate surface is clearly evident. But if only filling in the interfacial

zone with the inert admixtures, it may be inadequate to improve

microstructural homogeneity. This is where the pozzolanic reactivity of the

mineral admixture becomes important. Because the reaction of a pozzolanic

admixture with CH produces secondary C-S-H having a greater volume than

the original solid reactants, the effect of the presence of the mineral admixture

in the interfacial zone may be the production of a more homogeneous

microstructure and a better bond between paste and aggregate.

4.3 Relationships between surface area, porosity and drying shrinkage

All types of drying shrinkage increase with increasing C-S-H surface

area and pore volumes. The pore volume and surface area data are so highly

correlated. In other words, increases in surface area are generally

accompanied by increases in pore volumes ofall sizes. Furthermore, increases

in pore volume of one size range are generally accompanied by increases in

pore volume in the other size ranges. Therefore, the effects of surface area and

pore volumes on shrinkage are not independent and cannot be separated [26].
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The source of drying shrinkage in concrete is the adsorbed water and

the water held in small capillary pores of the hydrated cement paste [5]. This

proves that when the porosity is increase the shrinkage will also increase. So

the process of shrinkage can be controlled by reducing the porosity of the

concrete or mortar.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

As a conclusion, this project is expected to achieve the objectives and

serves as a benchmark towards understanding on the shrinkage of mortar by

adding the RHA. The study of shrinkage of mortar containing RHA had

proved that the shrinkage mechanism can be reduced when RHA is added.

The optimum amount of RHA to produced lowest shrinkage to the mortar is

7.5%. Besides, the usage of RHA in preparing a concrete or mortar is

expected to widely use in the world as it increase the quality of concrete in

economic way. Our country economy also can be raised up as the demand of

RHA is higher.

From the literature review it is clear that the properties of RHA are

necessary for cement replacement in order to produce more durable mortar

and concrete. Shrinkage mechanism also shown clearly and deep

understanding can be gathered from the information given above. Depending

on the addition rate, RHA enhanced the compressive strength of concrete by

up to 40% at 56 days and was superior to silica fume in this regard. Moreover,

RHA reduced the rapid chloride penetrability of concrete from a moderate to a

low or very low ASTM C1202 classification depending on the addition rate,

which was comparable to improvements imparted by silica fume. RHA

concrete was slightly more efficient than silica fiime concrete in resisting

surface scaling due to deicing salts [13].

This project also expected that mortars containing rice husk ash will

increase in compressive strength, an improvement in absorption

characteristics and a reduction in oxygen permeability. Considering the
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availability of rice husk worldwide, this study shows that economic

technology can be used in rice-producing countries to produce a highly

effective supplementary cementing material and reduce the environmental

impact ofuncontrolled burning ofrice byproducts.

Based on the studies and test carried out, the results suggest the

following conclusions for materials evaluated at a constant degree of

hydration:

i. Pozzolanic mineral admixtures reduce, but do not eliminate, the

capillary porosity gradient in the interfacial zone in concrete.

ii. The shrinkage of mortar will be reduced when RHA is added; the

optimum amountof RHA that producelowest shrinkage is 7.5%.

iii. Pozzolanic mineral admixtures can greatly reduce the volume

fraction of CH in both the interfacial zone and the bulk cement

paste matrix in concrete.

iv. Pozzolanic mineral admixtures improve the integrity of the

interfacial zone by increasing the amount of the total C-S-H +

cement phase present near the aggregate, relative to that present in

the bulk paste.

v. Both the size and the reactivity of the pozzolanic admixtures are

important in producing a uniform microstructure of cement paste

throughout the concrete, with small, highly reactive admixtures,

such as RHA.

5.2 Recommendation

• The timeconstraint for this project should be longer in order to get the

results of olderagesfor both shrinkage andporosity test.

• The equipments for both tests should be prepared earlier and more

equipment is needed so that more experiments that relates to this topic

can be performed.
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APPENDIX A

PREPARATION OF RHA

Rice Husk Furnace

Rice Husk in Furnace Rice Husk Ash

Grinder RHA after grind
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APPENDIX B

SHRINKAGE TEST

Mold for shrinkage test
specimens

Specimens after cured

Comparator

5Q

Specimens cured in lime
saturated water

Taking the comparator
reading ofthe specimens

Mortar Mixer



APPENDIX C

POROSITY TEST

Wood mold

Coring equipment

Saturation Vacuum

60

Specimens for porosity
test

Specimens after cored

Buoyancy Balance (to
obtain weight in air and

water)


