
SINGLE SIGN ON SYSTEM

By

Illya bte Ridhwan

Supervised by

Mr Abdullah Sani Abdul Rahman

Dissertation submitted in partial fulfillment of

the requirement for the

Bachelor of Technology (Hons)

(Information Communication Technology)

JUNE 2006

Universiti Teknologi PETRONAS

Bandar Seri Iskandar WIPAT „,.,.,„„ w
PUSAT SUMBER MAKLUIVMT

31750 Tronoh UNIVERSITI TEKNOLOGI PETRONAS

Perak Darul Ridzuan universiti teknologi petronas
Information Resource Center

*t

^^S-t<6<< IPB183585

-j^g 0 "MC <js^~\<y ^v^^^x^ \^u^^ ^



CERTIFICATION OF APPROVAL

Single Sign-On System

by

Illya Bte Ridhwan

Supervised by

Mr Abdullah Sani Abdul Rahman

A project dissertation submitted to the

Information Communication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF INFORMATION COMMUNICATION TECHNOLOGY (Hons)

Approved by,

(/tw aU^UhV $<*ft'\ MkM (UWto)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2006



CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

&fc
(ILLYA BTE RIDHWAN)



ABSTRACT

This report is provided to explain regarding the Single Sign-On system. In this report, it

will give a thorough view on Single Sign-On focusing on the system purpose, scope of

study, methodology, results and conclusion. For the purpose point of view, this system is

a typeof software authentication that enables a userto authenticate once and gainaccess

to the resources of multiple software systems. This is to make sure that the user

authentication process becomes easy as they don't have to enter multiple usernames and

passwords for multiple systems. In order to achieve this objective, the scope of the

systemhas to be analyzed first. For this system, it will only relate to the systemsthat are

web-based applications. In other words, we can call this system as Single Sign-On Web

Portal. For the methodology part, PHP language as well as Apache server will be used to

complete this project. It is one of the most demanding types of programming language

nowadays. This system will also be divided into 2 parts: user interface and administration

interface. For the results part, this report will shown the work progress as well as the

screenshot of the system interface. The discussions along the work progress will also

being included. Last but not, for the conclusion part, this report will conclude all the work

done and provide recommendation for system enhancement in the future. This report will

be guidance through out the system, from the first it being planned until the end product

comes out.

11



ACKNOWLEDGEMENTS

During my task in completing my final year project regarding Single Sign-On system, I

had gone through various challenges and problems upon completing all the tasks and

assignments that had been assigned to me. Without the help from other people, I would

be in great difficulties.

As a token of appreciation, I would like to take this opportunity to express my heartiest

gratitude to Universiti Teknologi PETRONAS (UTP) for giving me a chance to further

my study here and grab so many experiences since my first year of study until the final

year. As their mission is to provide a well-rounded student, they trained student who can

stand on their own feet without being too dependent on anyone else and create a pleasant

study environment to the student as well.

I would also like to thank one of my supervisors while I'm doing my Industrial

Internship, Mr. Hazaruddin Zulkillpully and my UTP supervisors, Mr. Abdullah Sani for

their advice, concern and words for encouragement. Besides that, I also would like to

thank you for all their effort in order to help me to finish my project either directly or

indirectly. Without their help, my project won't be complete. My greatest appreciation

also goes to them for being patient in spending many hours in finding solutions and

helping me out with the projects. I thank them for the support, cooperation and the

understanding that he had showed throughout all the activities that we had done together.

Last but not least, I would like to say thank you to all my friends regardless where are

they now, either in UTP or anywhere else. Without help from you all, I don't think I can

stay long here and thank you so much for all the memories we created that I will always

blossom in my heart.



TABLE OF CONTENTS

^-EjJVI iff IV-A1 IAAL i . ******
. i

ABSTRACT .
•

*••**» ii

CHAPTER 1: INTRODUCTION .... 1

1.1 Background of Study 1

1.2 Problem Statement . 2

1.3 Objectives and Scope of Study 4

CHAPTER 2: LITERATURE REVIEW/THEORY 6

CHAPTER 3: METHODOLOGY .... 8

3.1 PHP 8

3.2 Apache Server 12

3.3 MYSQL .... 18

3.4 Single Sign On Mechanisms. 27

3.5 Tools Required 28

CHAPTER 4: RESULTS AND DISCUSSION . 29

CHAPTER 5: CONCLUSION AND RECOMMENDATION 36

REFERENCES 39



LIST OF FIGURES

Figure 3.1 Relationship between Server and Clientthrough PHP

Figure 3.2 Relationship between Server and Client

Figure 3.3 Apache modules

Figure 3.4 Model of Web Application

Figure 3.5 MYSQL Control Panel

Figure 3.6 Create database called "sso"

Figure 3.7 Database "sso" has been created

Figure 3.8 SQL button for entering data in the database

Figure 3.9 Upload the database data entry

Figure 3.10 Upload the location of the textfile

Figure 3.11 MYSQL database successfully upload

Figure 3.12 An Single Sign-On Architecture Utilizing Scripting

Figure 4.1 System 1 Web Application Login Page

Figure 4.2 System 1 Web Application Main Page

Figure 4.3 System 2 Web Application Login Page

Figure 4.4 System 2 Web Application Main Page

Figure 4.5 Single Sign-On Web Application Login Page

Figure 4.6 Single Sign-On Web Application Main Page

Figure 4.7 Admin Control Panel Page

Figure 5.1 SAML scenarios

LIST OF TABLES

Table 5.1 Advantages and Disadvantages of Single Sign-On Architectures



CHAPTER 1

INTRODUCTION

For a large enterprise, as the number of passwords each user is required to maintain

increases, so do the support calls. With each of these calls having an associated

operational cost of some of money, and the increasing number of applications in use,

businesses cannot afford the productivity lost through continuous password resets.

Single Sign-Onhave evolved as a cost savings solution to minimize support calls, and

at the same time simplify the administrative process of authentication and authorization.

This also can save the administration staff time as they don't have to set and reset

usernames and passwords for the other staffs who forget their account.

1.1 Background of study

There are two main types of single sign-on architecture types - Web-based and non

Web-based. For the most part, the various enterprise products available can be

segmented into one of these two categories. Today, non-Web-based applications are

sometimes referred to as legacy applications, and therefore, the associated Single Sign-

On products that they interoperate with are referred to as legacy Single Sign-On

products. To have a better understanding what features are important in helping you

selecting an implementing a Single Sign-On product, a deeper look is being considered

at these two Single Sign-On.segments.

1.1.1 Web Single Sign-On

The Web is made up of portals which act as gateways to many layers of web sites.

Some portals have a unique focus, while others try to be all things to all people. A

portal is often the front-end to a lot of different enterprise applications that converge in

one Web based user interface creating an organizational single point of presence. When

the Web first evolved, Secure Sockets Layer (SSL) was sufficient for passing encrypted



passwords via a browser because Web security was based on protecting URLs, not

applications. As applications and databases started being attached to the backend of

URLs, it became clear that SSL had limitations.

SSL is CPU intensive and, for the most part, a server can support only a limited number

of SSL handshakes. In some cases, SSL accelerators can resolve this performance

problem. However, SSL cannot create a user experience, where on a front-end portal,

the user puts in one password, and all the other applications on the backendof the portal

receive authentication information about that user. A properly implemented Single

Sign-On solution will write the front-end authentication through to a central

management console on the backend, and share this information between applications

for the extent of the user session. Also, SSL only can work between two endpoints, so if

a transaction involves three parties such as a customer, a merchant, and a card issuer,

you cannot use SSL.

1.1.2 Legacy Single Sign-On

Legacy Single Sign-On products conceptually use the same authentication and

authorization architecture structure as Web Single Sign-On, except a portal is not part of

the front-end picture. Legacy Single Sign-On enables smooth navigation of the various

applications on an intranet through one authentication session. Many legacy Single

Sign-On products also offer smart card, PKI, and biometric support. It is worth noting

that some industry analysts refer to legacy Single Sign-On as employee Single Sign-On.

1.2 Problem Statement

As the proliferation of applications accelerates, users find themselves losing the

authentication war, every application that they are introduced to requires its own

authentication or login. Some applications do this because they need to identify the user

they are dealing with. Other applications do so because they simply do not trust anyone



else to conduct authentication for them. The evolution of computing has introduced

many ways to accomplish authentication, some stronger than others. Single Sign-On

represents an attempt to address the "multiple login" issue, as well as other issues that

are intrinsically tied to multiple logins.

The importance of Single Sign-On cannot be stressed enough. Many organizations are

implementing Single Sign-On because of numerous significant benefits. Those are the

benefits of using Single Sign-On in order to overcome the problem arise before

implementation of this system.

1.2.1 User productivity

This is the most immediate benefit of implementing Single Sign-On. If we can

accomplish in one login what today takes us ten logins to accomplish, one would have

to agree that there is inherent efficiency in making this happen. We do no longer have to

remember ten accounts and ten passwords. We do not have to remember when we will

be asked to change password on application X, what policies govern this password

versus the password on application Y, and who do I need to contact when I forget the

password on application Z.

1.2.2 Increased security

This is a less tangible but far more important benefit of Single Sign-On. The human

brain can remember only so much detail, and eight, nine, or ten different accounts and

passwords far exceeds that amount. We all know what users do when they are

overloaded. They write their username and passwords down and put them in "safe"

places: in desk drawers, under keyboards, or in a file on their computer or PDA. The

system needs to manage this for us and it needs to do this securely and efficiently. Some

claim that implementing Single Sign-On can actually weaken security. The argument



goes something like this: all we have to do is break one password and we have broken

them all This argument, however, is patently false. If the password used to protect

Single Sing-On identity is inherently weak either because it is static or because it has a

weak policy engine behind it), then it is probable that other passwords are of equal

quality. So breaking any one of them would probably mean that we have now

discovered the password far more than half of the other systems at the same time. The

time it takes to break a weak password is no time at all. Knowing that the vulnerability

of any security system is measured by its weakest link, what is required is to strengthen

that link, not throw away the system.

1.2.3 Time and cost savings

Finally, increased productivity and increased security add up to significant time and

cost savings for everyone.

1.3 Objectives and Scope of Study

Identity proliferation frustrates employees, compromises network security, drives up

administration costs and hampers measures to comply with legislative regulation. Single

sign-on (SSO) has long been touted as the panacea to manage the ever growing number

of logins that most computer users will face when working with today's modern IT

systems. From system server logins to web based internet banking and email programs,

users tend to be bombarded with a vast number of different system logins each day with

most requiring a different username and password. The concept behind single sign-on is

that the user logs in once and the computer then takes over to perform any subsequent

logins automatically on behalf of that user. The burden of having to remember many

different passwords is thus reduced or even eliminated. The result is user convenience

dramatically improves, help desk calls are reduced, and security is strengthened.



Historically, single sign-on has always been viewed as weakening a system's

security. This is mainly due to the fact that the authentication which is designed to

protect the system is being reduced to a few or even a single credential validation

event. The initial login must therefore be quite secure in order to stop any malicious

party from gaining unauthorized access. Advancements in secure user login have

developed to such a stage that strong authentication can now be assured in a single

authentication session. Multifactor authentication is based on the concept of using

two or more methods to identify the user. This is generally something the user has

(such as smart card or token), something the user knows (a password or PIN), and

something that only the user can present (a biometric ID such as from a fingerprint

or retina scan). Any good single sign-on implementation should have the flexibility

to offer the integration of advanced authentication systems in order to boost the

security of the user's login. So, basically the objectives of this Single Sign-On Web

Application are to reduce the time spent by system administrator tracking and

resetting passwords for various account logins, ease the pain of remembering

passwords where user no longer have to remember multiple passwords, and simplify

the authentication process for the users and provide advanced security to various

applications.



CHAPTER 2

LITERATURE REVIEW AND/OR THEORY

1. " LDAP's support by various programming languages offers interesting

possibilities. It's quick to create an extensive address management

system for your home intranet with these, if you use languages such as

PHP." [ Volker Schwaberow (2001), Open LDAP:Practical Apllication

Organising Principle]

2. " Clearly, implementing Single Sign-On for any but the smallest and

most homogeneous of enterprises is a highly organization-specific task,

and certainly no one can provide a true "cook book" for arriving at an

agreeable and functional solution for use in all environments.

Nevertheless, the authors are convinced that as organizational computing

infrastructures become increasingly complex and users become more

dissatisfied with the ease of use problems associated with heterogeneous

computing environments, system administrators will increasingly be

called upon to provide Single Sign-On Solutions for their organizations.

[ Michael Fleming Grubb and Rob Carter ( 1998), Single Sign-On and

the System Administrator]

3. "PHP is a powerful, flexible open source scripting language typically

used to generate dynamic content in web pages. (PHP is similar to Perl,

but much less complicated. For more background, visit OTN's Open

Source Developer Center.) Out of the box, PHP provides a rich set of

features and services including LDAP, MAP, SNMP, NNTP, POP3,

HTTP, XML, XSL, and database access modules for most database

products including Oracle. PHP can run as a CGI under Apache or be



configured as an Apache Web Server module." [David Jason Bennett

(2004), Single Sign-On for PHP Pages]

4. "A business objective for many institutions is to construct a capability

that enables users to access all of their relationships with the institution

through a single portal website that requires only a single login,

regardless of the separate applications that may invoke. Typically, each

application is constructed to require its own login, often with unique

login ID and password. The burden is usually placed on the user to

remember and enter these passwords for each function or application

they invoke. A single login portal would remove that burden from the

user and facilitate their access to those applications that are authorized to

them. This single login capability could also lead to providing the

institution with a unified view of each user's interactions, improving the

quality of the "real-time" service. " [Hewlett Pakard Development

Company (2003), Single Sign On Capability]



CHAPTER 3

METHODOLOGY/PROJECT WORK

For this Single Sign-On system, the consideration has beingmade to use PHP language

as well as Apache server. On this subtopic, we will discuss about PHP and Apache in

terms of how their works, their advantages, their mechanisms and many else. In order to

make sure that PHP and Apache are "well-communicate", we have to download

appserv-win32-2.4.1, a kind of software to achieve those relations. We also will use

MYSQL as the database part. We also will discuss about how the Single Sign-On

mechanisms and what tools in terms of equipment, software and hardware used to

achieve the objective.

3.1 PHP

According to the official PHP Web site, PHP is "a server-side, cross-platform, and

HTML embedded scripting language." This may sound like a mouthful, but it's fairly

straightforward and meaningful when broken down into its parts. First, server-side

refers to the fact that everything PHP does occurs on the server (as opposed to on the

client, which is the Web site viewer's computer). A server is simply a special computer

that houses the pages that you see when you go to a Web address with your browser.

PHP is cross-platform, meaning that it can be used on machines running almost any

operating system-Unix, Windows NT, Macintosh, OS/2, to name the most popular

ones. Again, that's the server's operating system, not the client's. Not only that, but

unlike with most other programming languages, your work can be switched from one

platform to another with very few or no modifications. To say that PHP is HTML

embedded means you can put it into your HTML code-HTML being the code with

which all Web pages are built. Therefore, scripting withPHP can be only slightly more

complicated thanhand-coding HTML. If you can make a basic HTML Web page, you

can make a dynamic one, too.



Last, PHP is a scripting language, as opposed to a programming language. This means

that PHP is designed to do something only after an event occurs; for example, when a

user submits a form or goes to a URL. Programming languages such as Java, C, and

Perl can write standalone applications, while PHP cannot. The most popular Web

scripting language is JavaScript, which commonly handles events that occur within the

browser (for example, when a mouse goes over an image), and is not dissimilar to PHP,

although JavaScript is a client-side technology. In fact, if you can already work with

JavaScript, you won't have a problem mastering PHP.

3.1.1 Why PHP?

Webmasters learned a long time ago that HTML alone cannot produce enticing and

lasting Web sites. That's why server-side technologies such as CGI scripts have gained

widespread popularity. With them, Web page designers can create dynamically

generated Web applications. Often database-driven, these advanced sites require less

manual work to update and maintain than static HTML pages, and they allow for e-

commerce and other advanced transactions. PHP lets you exponentially expand what

you can do with the World Wide Web. The advantage PHP has over basic HTML is that

the latter is limited and one-sided. Visitors to HTML-only sites see simple pages that

aren't customized for them anddon't display any dynamic behavior. WithPHP, you can

create exciting and original documents based on many factors~the time of day or

whether the user is a repeat visitor, for example. PHP can also interact with databases

and files, handle email, and do many other things that HTML cannot.

But the question remains: Why should a Web designer use PHP to make a dynamic

Web site instead of CGI (Common Gateway Interface), ASP (Active Server Pages), or

JSP (Java Server Pages)? First, PHP is both faster to program in and faster to execute

than CGI scripts. It won't get into too much detail, butsuffice it to say that compared to

full programming languages like Java, C, or Perl, PHP is much easier to learn and use.

People without any formal programming training can write PHP scripts with ease after



reading a book. In comparison, ASP requires an understanding of VBScript, and CGI

requires Perl (or C), both of which are more difficult to learn, not to mention

presumably more expensive to develop in.

Second, PHP was written specifically for dynamic Web-page creation, whereas Perl

(and VBScript and Java) were not, inferring that, by its very intent, PHP can perform

certain tasks faster and easier than its alternatives.The final argument for learning PHP

is that, once you do, and as its popularity continues to grow (it is already being used on

nearly six million Web sites), you will find yourself well ahead of the learning curve on

this, the latest "next big thing" in the world of Internet technology.

3.1.2 How PHP works

When you go to a website (here we used http://www.DMCinsights.com/php/index.php

as an example here), your Internet Service Provider directs your request to the server

that holds the http://www.DMCinsights.com/php/index.php information. Because this

site was designed in PHP, the server reads the PHP and processes it according to its

scripted directions. In this example, the PHP code tells the server to send the

appropriate Web page data to your browser. This data is in ihe form of HTML that the

browser can display as it would a standard HTML page. In short, PHP creates an

HTML page on the fly based on parameters of my choosing; the server contains no

static HTML pages.

10



URL

Figure 3.1 - Relationship between Server and Client through PHP

This graphic demonstrates how the process works between a Client, the Server, and a

PHP module (an application added to the server to increase its functionality) to send

HTML back to the browser (albeit in very simplistic terms). All server-side

technologies (ASP, for example) use some sort of third-party module on the server to

process the data that gets sent back to the client. With a purely HTML-generated site,

the server merely sends the HTML data to the Web browser; there is no server-side

interpretation.

Server
HTML

Client
URL

Figure 3.2 - Relationship between Server and Client

Compare this direct relationship of how a server works with basic HTML to that of

Figure 1.1. This is also why HTML pages can be viewed in your browser from your

own computer since they do not need to be "served," but dynamically generated pages

need to be accessed through a server which handles theprocessing.

11



To the end user and their browser, there may not be an obvious difference betweenwhat

http://www.DMCinsights.coni/phn/index.phpandhttp://www.DMCmsights.conx/php/ind

ex.html look like, but how the pages arrived at that point are critically different. The

major difference: By using PHP, you can have the server dynamically generate the

HTML code. In this example, the index.phppage referencedabove displays news items

that it retrieves chronologically from a database. Dynamic Web page creation is what

sets apart the less appealing, static sites from the more interesting, and therefore more

visited, interactive ones.

3.2 Apache Server

Apache is the most popular Web server software on the Internet. The true secret of

Apache's success is that the source code is freely available. This means that anyone

who wants to add features to their Web server can start with the Apache code and build

on it. Indeed, some of Apache's most importantmodules began as externallydeveloped

projects. To encourage this kind of external development, all binary distributions now

come with a complete copy of the source code that's ready to build. Examining the

source code can be instructive and educational, and sometimes, it can even turn up a

bug— such is the power of open peer review. When a bug is found in Apache, anyone

can post a fix for it to the Internet and notify the Apache development team. This

produces rapid development of the server and third-party modules, as well as faster

fixes for any bugs discovered. It's also a core reason for its reputation as a secure Web

server.

3.2.1 How Apache works

Apache doesn't run like a user application such as a word processor. Instead, it runs

behind the scenes, providing services for other applications that communicate with it,

such as a Web browser. In Unix terminology, applications that provide services rather

than directly communicate with users are called daemons .Apache runs on Windows

NT, where the same concept is known as a service .Windows 95/98 and Windows ME

12



aren't capable of running Apache as a service; it must be run from the command line

(the MS-DOS prompt or the Startmenu's Run command), even though Apache doesn't

interact with the user once it's running.

Apache is designed to work over a network, so Apache andthe applications that talk to

it don't have to be on the same computer. These applications are generically known as

clients. Of course, a network can be defined as anything from a local intranet to the

whole Internet, depending on the server's purpose and target audience. The most

common kind of client is of course a Web browser; most of the time when we talk about

client, it means browser. However, there are several important clients that aren't

browsers. The most important are Web robots and crawlers that index Web sites, but

don't forget streaming media players, news ticker applications, and other desktop tools'

that query Internet servers for information. Web proxies are also a kind of client

because they forward requests for other clients.

The main task of a Web server is to translate a request into a response suitable for the

circumstances at the time. When the client opens communication with Apache, it sends

Apache a request for a resource. Apache either provides that resource or provides an

alternative response to explain why the request couldn't be fulfilled. In many cases, the

resource is a Hypertext Markup Language (HTML) Web page residing on a local disk,

but this is only the simplest option. It can be many other things, too—an image file, the

result of a script that generates HTML output, a Java applet that's downloaded and run

by the client, and so on. Apache uses HTTP to talk with clients. It's a request/response

protocol, which means that it defines how clients make requests and how servers

respond to them: Every HTTP communication starts with a request and ends with a

response. The Apache executable takes its name from the protocol, and on Unix

systems is generally called httpd, short for HTTP daemon.

13



3.2.2 Running Apache : UNIX vs Windows

Apache was originally written to run on Unix servers, and today it's most commonly

found on Linux, BSD derivatives, Solaris, and other Unix platforms. Since Apache was

ported to Windows 95 and NT, it has made substantial inroads against the established

servers from Microsoft and other commercial vendors—a remarkable achievement

given the marketing power of those companies in the traditionally proprietary world of

Windows applications. Because of its Unix origins, Apache 1.3 was never quite as good

on Windows as it was on Unix, but with Apache 2, programmers have completely

redesigned the core of the Apache server. One major change is the abstraction of

platform-specific implementation details into the Apache Portable Runtime (APR), and

the server's core processing logic has been moved into a separate module, known as a

Multi Processing Module (MPM). As a result, Apache runs faster and more reliably on

Windows because of an MPM dedicated to those platforms. NetWare, BeOS, and OS/2

also benefit from an MPM tuned to their platform-specific needs.

Apache runs differently on Unix systems than on Windows. When we start Apache 1.3

on Unix, it creates (or forks) several new child processes to handle Web server requests.

Each new process created this way is a complete copy of the original Apache process.

Apache 2 provides this behavior in the prefork MPM, which is designed to provide

Apache 1.3 compatibility. Windows doesn't have anything resembling the fork system

call, so Apache was extensively rewritten to use the native Windows threads.

Theoretically, this is a much more efficient and lightweight solution because threads

can share resources (thereby reducing their memory requirements). It also allows more

intelligent switching between tasks by the operating system. However, Apache 1.3 used

the Windows POSIX emulation layer (a Unix compatibility standard) to implement

threads, which meant that it never ran as well as it theoretically would have. Apache 2

uses native Windows threads directly, courtesy of the APR, and accordingly runs much

more smoothly.

14



Thread support in Apache 2 for the Unix platform is found in the worker, leader,

threadpool, and perchild MPMs, which provide different processing models depending

on your requirements. The new architecture coupled with the benefits of threaded

programming provide a welcome boost in performance and also reduce the differences

between Windows and Unix, thus simplifying nature development work on both

platforms. Apache is more stable on Windows NT, 2000, and XP than on Windows 9x

and ME because the implementation of threads is cleaner on the former. To run Apache

on Windows with any degree of reliability, choose an NT-derived platform because it

allows Apache to run as a system service.

3.2.3 Apache configuration

Apache is set up through configuration files in which directives can be written to

control Apache's behavior. Apache supports an impressive number of directives, and

each module that's added to the server provides more. The approach Apache takes to

configuration makes it extremely versatile and gives the administrator comprehensive

control over the features and security provided by the server. It gives Apache a major

edge over its commercial rivals, which don't offer nearly the same degree of flexibility

and extensibility. It's also one of the reasons for Apache's slightly steeper learning

curve, but the effort is well worth the reward of almost complete control over every

aspect of the Web server's operation.

The drawback to Apache's versatility is that, unlike other commercial offerings, there's

currently no complete solution for configuring Apache with a Graphical User Interface

(GUI) editor—for involved tasks, we must edit the configuration by hand. That said,

there are some credible attempts at creating a respectable configuration tool to work

with Apache's power and flexibility. The drawback is that many configuration tools

handle only the most common configuration tasks, so the more advanced your needs

become, the more we'll find yourself editing the configuration directly. The fact that

15



we're editing in a GUI editor's window doesn't alter the fact that the GUI can help we

only so much.

One of Apache's greatest strengths is its modular structure. The main Apache

executable contains only a core set of features. Everything else is provided by modules

(as in Figure 1.3),which can either be built into Apache or be loaded dynamically when

Apache is run. Apache 2 takes this concept even further, removing platform-specific

functionality to MPMs and subdividing monolithic modules such as mod_proxy and

mod_cache into core and specific implementation submodules. This allows us to pick

and choose precisely the functionality we want. It also provides an extensible

architecture for new proxy and cache types. Consequently, the Web server administrator

can choose which modules to include and exclude when building Apache from the

source code, and unwanted functionality can be removed. That makes the server

smaller, require less memory, and less prone to misconfiguration. Therefore, the server

is that much more secure. Conversely, modules not normally included in Apache can be

added and enabled to provide extra functionality.

16



Apache Core R<egue^t Handler

MPM

Virtual Host

Linked Ust Of

Installed Modules

DSO

. _ 1 '

Modules

SSL |

Proxy

Perl

CGI I

1

Ruby/Perl/PythoiVC-t- +/.

Figure 3.3 - Apache modules

Apache also allows modules to be added so we don't have to rebuild Apache each time

you want to add new functionality. Adding a new module involves simply installing it

and then restarting the running Apache server—nothing else is necessary. To support

added modules, Apache consumes a little more memory than otherwise, and the server

starts more slowly because it has to load modules from disk. This is a minor downside

but possibly an important one when high performance is a requirement. Additionally,

the supplied apxs tool enables you to compile and add new modules from the source

code to your server using the same settings that were used to build Apache itself. It's

17



this flexibility, Apache's stability and performance, and the availability of its source

code that makes it the most popular Web server software on the Internet.

3.3 MYSQL

Pronounced "my ess cue el" (each letterseparately) and not "my SEE kwill."MySQL is

an open source RDBMS that relies on SQL for processing the data in the database.

MySQL provides APIs for the languages C, C++, Eiffel, Java, Perl, PHP and Python. In

addition, OLE DB and ODBC providers exist for MySQL data connection in the

Microsoft environment. A MySQL .NET Native Provider is also available, which

allows native MySQL to .NET access without the need for OLE DB. MySQL is most

commonly used for Web applications and for embedded applications and has become a

popular alternative to proprietary database systems because of its speed and reliability.

MySQL can run on UNIX, Windows and Mac OS. MySQL is developed, supportedand

marketed by MySQL AB. The database is available for free under the terms of the GNU

General Public License (GPL) or for a fee to those who do not wish to be bound by the

terms of the GPL.

18



3.3.1 MYSQL Web Application

Figure 3.4 - Model ofWeb Application

A program or group of programs designed for end users. Software can be divided into

two general classes: systems software and applications software. Systems software

consists of low-level programs that interact with the computer at a very basic level. This

includes operating systems, compilers, and utilities for managing computer resources.

In contrast, applications software (also called end-user programs) includes database

programs, word processors, and spreadsheets. Figuratively speaking, applications

software sits on top of systems software because it is unable to run without the

operating system and system utilities.

19



3.3.2 Why Use MYSQL?

MySQL is very fast, reliable, and easy to use. MySQL also has a very practical set of

features developed in close cooperation with its users. It is also Open Source and

therefore freely accessible. MySQL is used to access databases on the internet due to its

connectivity, speed and security. It was originally developed to manage large databases

at a much faster speedthan the solutionsthat previouslyexisted. MySQLhas for several

years, been thriving in the challenging areas ofproduction.

3.3.3 MYSQL Database Setup

Below here is the steps taken to setup the MYSQL database. This is to show the

sequence of the process before the whole system can be used.

Stepl

i$3nM£iik

fi

Database:

[(pjtafaases^,,.]^

Please select a database

Welcome to phpMyAdmin 2.6.0-pl2

MySQL 4.1.7-nt running onlocalhost asrool@localhost

MySQL

Create new database ©

Collation

Show MySQL runtime information

Show MySQL system variables ©

Show processes (D

Character Sets and Collations

Reload MySQL ©

Privileges

Databases

Export

Create

phpMyAdmin
&T Language ©: English (en-utHJ)

1 MySQL charset (utfB)

Hi MySQL connection collation. utfi_general_ci

# Theme/Style Original v!
^ phpMyAdmin documentation
d§ Show PHPinformation

£} Official phpMyAdmin Homepage

[ChangeLag] [CVS] [Lists]

TheScfgtPnaJftsoluteUri1] directive MUST he set inyour configuration file!
Your configuration file contains settings (root with nopassword) thatcorrespond tothedefault MySQL privileged accou
MySQL server isrunning with this default, isopen tointrusion, andyou really should fix this security hole.

Figure 3.5 - MYSQL Control Panel

20



First of all, we need to open the MYSQLControl Panel through Internet Explorerusing

dynamic IP Address of http://127.0.0.1/db/. This kind of page will be appearing like

Figure 3.5.

Step 2

pttpM^mtufs

OB f?Q

Database

(Databases) v |

Please select a database

Welcome to phpMyAdmin 2.6.0-pl2

MySQL 4.1.7-nt running onlocalhost asroot@localhosJ

Createnew database ©

ssd| I' Collation
jhow MyfcQL runtime information

Shuw MfSQL sy„tpm >anab|ps @

Shffrf tfocessHo 0

Character Sets andCollations

Relo/d MySQL ©
Priileges

flabases

Kport

phpMyAdmin

f Language ©: fEnglish (en-utfS)
1 MySQL charset: (utB)

EH MySQL connection collation: ut©_general_ci
© ZI""~"

# Theme IStyle: jOriginal 'V;

H| phpMyAdmin documentation
® ShowPHPinformation

(55 Official phpMyAdmin Homepage

[ChangeLog] (CVS] [Lists]

TtieftcfgfPraaHisoiuteUri'] directive MUST beset inyour configuration file!
Yo/r configuration file contains settings (root with no password) that correspond to the default MySQL privileged accoui

QL serveris running withthisdefault, is opento intrusion, andyoureally shouldfixthissecurity hole.

Figure 3.6 - Create database called "sso"

To create database

named "sso", fill in
this blank like in the

figure.

In this step, we want to create the database called "sso". Developer have to enter the

required name for the database (in this example, the name is "sso") into the create

textbox like in the Figure 3.6.

21



Step 3

jahpl

A

Database:

Isso (-)

sso

No tables found in

database.

Server £|localhost • Database: Usso

Database sso has been created.

SQL-query:
CREATE DATABASES*';

Figure 3.7 - Database "sso" has been created

When the database "sso" have

being created, this type of
message will appear,
"Database sso has been

created."

When the required database we want to create (as in the example, we create database

called "sso") is successfully created, the message will appear as shown in Figure 3.7.

22



Step 4

tf

Database:

!*

SSO

No tables found in

database.

Server: gj localhost • Database: glsso

Database sso has been created.

SQL-query:
CREATE DATABASE'sso';

[Edit] [Create PHPCode]

[Structure]! ^SQlTjl g^ Export y /Search

No tables found inda/abase.

tQuery jDrop

Figure/3.8 ~ SQL button for entering data in the database

In order to enter the data

in the previous created
database, we need to click
on the "SQL" button.

Developer need to click on the "SQL" button as in Figure 3.8 in order to enter data into

the empty database. This is useful to enter user's username and password so they have

grant to enter into the particular application.

23



Step 5

'0.127.6.0.1 » ioealftosf » sso | phpMyAdmin 2.6.G-i)l2 MozHla Firefox

File Upload

Look in: Ic3 sso

\,.\ jii_JS50
Og i[§|httpd.conf

My Recent |!K)SSOJ»
Documents ;

Desktop

My Documents

MyComputer

wgp Rename:

My Network Fiesoftjipe:

IV-; E5-

*- i [j rwdefhftion-isp.webopedia.c.

lueiy ! |p Drop

Open

AHFiles Cancel

[D^Dopjments and SetaJHBrowse...[j (Max: 2,048KB)
Compression:

@Autodetect q None q "gzipped"

Character set ofthe file: j uttB ivii

S

Figure 3.9 - Upload the database data entry

Developer need to
click on this "Browse'

button to upload the
database data entry.

Click on the "Browse" button as shown in Figure 3.9 to upload the database data. The

"File Upload" box will appear and developer just have to choose the file path, and then

click "Open" button. The file path will be appear in the "Browse" textbox.

24



Step 6

A

Database:

rssoTT

sso

No tables found in

database.

Server: Sgllocalhost • Database: Ssso

'• Structure SQL !0Export 1/Search iQuery

RunSQLquery/queries on database sso:

0 Showthis queryhere again

Or

Location of the textiile:

E\Doajments and Sejjj jBrowse...N (Max: 2,048KB)
Compression:

@Autodetect QNone q "gripped"

Character set of the file: [utffl

Figure 3.10 - Upload the location of the textfile

)Drop

Go

Click "Go" button to

make sure that

database entry is
success.

When the developer seen the path name in the textfield, click "Go" as s hown in the

Figure 3.10.

25



Step 7

a b gi

Database:

[ssoTiT

sso

m usertb

Server gjlocalhost • Database: gisso

Your SQL-query has been executed successfully

SQL-query:
CREATE TABLE-ujirrJbC

'id' i'IT( 11 ) NOT HULLAUTOJNCREMENT .
'usiname' W.fiC HA»<20 )NOT NULLDEFAULT ".
'psiOTid'•.V'r\'."HJiR(20) HOT NULL DEFAULT",
>stemr CI-TCI) NOT NULLDEFAULT".
'svst*m2' CK^RC 1 ) NOT NULL DEFAULT ".
•sso1 CH-'..K( 1 ) NOT NULLDEFAULT ",
PRIMARY KEV('rd').
KEY 'usmams' ('usmame' . •pasiw)d')

)TYPE = MYISAM COMMENT = -Useijb' AUTOJNCREMENT =4; # MySOL returned an *inptv r
INSERT INTO 'userjb'
VALUES (Vusefl'.'useriVY1,'N'.'N'); ft Ansctei] rows.1
INSERT INTO-userjb'
VALUES (2, 'usefi', 'useC. 'Y\ 'V. 'N' ); # Afteoierl rows:-]

INSERT iNTO'userJb-
VALUES (3. 'ustt3\ •usfciS', 'V. 'T. 'V J: # Asterieif ™..tr:1

[Edit] [CreatePHP Code]

g§ Structure !SQL ! |pi Export [ p Search @ Query

Run SQL query/queries on database sso: g)

CREATE TABLE 'userjb' (
'id' int(11) NOT NULLautoJncremerrt,
'lismame" varcttarf^])NOTNULL default",
'passwd' varcharpO) NOTNULL default*,
'systeml' char(1) NOT NULL default",
'systerrtT char(1) NOT NULL default\
'sso' char(1) NOT NULL default-,
PRIMARY KEY ftf).

IDrop

Figure 3.11 - MYSQL database successfully upload

When all the steps have been followed, the successfully database data will be appeared

as shown in Figure 3.11. The data in the database can be edit, and if the developer wants

to delete this database, just click on the "Drop" button. All this only can be done by the

administrator.

26



3.4 Single Sign-On Mechanisms

It is time to look at one of Single Sing-On architectures, which is scripting, where it

serves its strengths as well as its weakness. This is by far, the simplest approach of any.

It is fairly easy to implement, because it is noninvasive to either client or server

applications. Itsprimary goal is to automate the login procedure. At the same time, it is

not concerned with securing any of the existing applications. Also, scripts are not

necessarily intuitive to write and certainly present a scalability concern if they need to

be managedon each and every workstation.

1. SSO client

waits for

event to

happen
(application
to run,

specific
window to

open)

2. When

application X
opens, SSO client
opens encrypted
session with SSO

server to get
username and

password for the
application.

4. SSO client inserts

username and

password for the
application into the
necessary location
on the screen

5. Username and

password then sent
through normal means to
the application;
ancryption is application
specific

y y

/

e^~^ _~H^\

Passwords

SSO Server

Figure 3.12 - An Single Sign-On Architecture Utilizing Scripting

27

^

Target

Target

Target



3.5 Tools required

Those are the list of software and hardware that have being used in order to finish the

project.

3.5.1 Appserv-win32-2.4.1

At this time AppServ has been split to version 2.4.x and 2.5.x. 2.4.x is a Superb stable

version work for all user, by the way this version use PHP 4.x because work fine with

your old PHP code.

3.5.2 Microsoft Windows XP

3.5.3 DELL Personal Computer

3.5.4 Pentium® 4 CPU 2.26GHz

3.5.5 256 MB of RAM

28



CHAPTER 4

RESULTS AND DISCUSSION

Below this are the screenshots for the Single Sign-On system. Each of the screenshots,

there are description tell about the flow ofthe system.

Screenshot 1

UserRame:

Password:

System 1 Authentication

Sign In

Figure 4.1 - System 1 Web Application Login Page

This is the System 1 Web Application Login Page where users who want to enter the

application of System 1, they need to have the account consist of their own username

and password. If the users don't have the account, they need to request it with the

system administration, and then they have grants to enter into the System 1 application.

29



Screenshot 2

| Logout]

*Welcometo System 1'

!Putyourown content here...![System 1 - sso/system1fwel.php - Une 33)

Figure 4.2 - System 1 Web Application Main Page

After the users have successfully entered their username and password, they will see

this page showing the content of System 1 (in this figure, it only a blank content

because it just for a purpose of testing). Here, it also provided the "Logout" button to

make the users' task easy in case they want to enter another account or just want to

logout.

30



Screenshot 3

System 2 Authentication

ys&nigme;:'

Sign in

Figure 4.3 - System 2 Web Application Login Page

This is the page showing the System 2 Web Application Login Page. As System 1,

users need to have their own account in order to enter into this application. When the

wrong username and password are entered, the system will not give an access to that

user. Thewarning message will appearinform the user that theyhave entered the wrong

username and/or password.

31



Screenshot 4

[Logout]

•Welcome to System 2 *

Putyourowncontenthere...! (System2- ssofcystem2/wel.php - Line33)

Figure 4.4 - System 2 Web Application Main Page

This page also same along with the System 1 Main Page after the user successfully

entered their username and password. As whatthe content shows, it alsohave the logout

button to ease userto logout from this system. Thecontent of this pagealso have being

limited as thisonly for a testing period of time, showing that this system is working.

32



Screenshot 5

Username:

Password:

Sign In

Your IP has been logged. (127.0.0.1)

Figure 4.5 - Single Sign-On Web Application Login Page

This is the main Web application of this system, the Single Sign-On Web Application

Login Page. This is also need theuser account to enter into this application. Below that,

it says that theuser IPhas been logged. This is because this system is using thedynamic

IP, so once the user login into this pageusing their own IP address, their IP address will

be logged to IP address, 127.0.0.1.

33



Screenshot 6

Single Sign On

9SO Home

System i
System 2
Logout

Admin Control Panel

*Welcome to Singfe Sign On System vl.O*

Polyourown content here...!(sBotoel.php- Une 33)

Figure 4.6 - Single Sign-On Web Application Main Page

This page showed the usage of Single Sign-On Web Application. Here, it shows that

when user have being givenauthentication to access to System 1, System 2 and Single

Sign-On Web Application, at the left side of the application. It means when the user

want to go to the System 1 application, he/she just have to click at the required link and

the System 1 Main Page will appeared at the right side of this system. It also has the

"Logout" button to ease user to logout from this system. Below the "Logout" button, it

showed the Admin Control Panel link. That is for the usage of system administration

where they can change whose can or cannot enter ineither one oftheweb applications.

34



Screenshot 7

Admin umtroi fanei '^^^^^^™

Usei limine Access to system'1 Access to System 2 Single Siyn On

useri 0 D D

user2 a 0 D

user3 0 0

J

13

C Uoclale

Figure 4.7 - Admin Control Panel Page

Here, it showed that the system administration can change users' grants for each of the

systems. For example here, for used, he/she can only just to have access to System 1.

For user2, he/she have access to enterfor System 1 and System 2. But for user3, he/she

have being given the full access for all the systems, System 1, System 2 and Single

Sign-On system. After system administration has set all the setting for particular user,

he/she click on the"Update" button. Then the previous page will be appeared.

Based on these results, any enhancement canbe made on this system. Any involvement

of third party for authentication also can be included as enhancement. For example, if

user wants to have a direct authentication to Yahoo Mail account through Single Sign-

On System, it canbe madeby altering the codefor this system.

35



CHAPTER 5

CONCLUSION AND RECOMMENDATION

Basically, Single sign-on (SSO) is mechanism whereby a single action of user

authentication and authorization can permit a user to access all computers and systems

where he has access permission, without the need to enter multiple passwords. Single

sign-on reduces human error, a major component of systems failure and is therefore

highly desirable but difficult to implement. Web single sign-on (Web-SSO), also called

Web access management (Web-AM) works strictly with applications and resources

accessed with a web browser. Access to web resources is intercepted, either using a web

proxy server or by installing a component on each targeted web server. Unauthenticated

users who attempt to access a resource are diverted to an authentication service, and

returned only after a successful sign-on. Cookies are most often used to track user

authentication state, and the Web-SSO infrastructure extracts user identification

information from these cookies, passing it into each web resource.

Below this is a list showing the advantages and disadvantages of the chosen Single

Sign-On Architectures. Based on this table, some enhancements can be made in order to

reduce the number of disadvantages occur in term of the development of Single Sign-

On system.

Architecture Advantages Disadvantages

4 Simple 7 No encryption

Scripting
5 Easy to use, easy to

adapt
8 Distribution and

management issues
6 Learn intrusive to ifkept on desktop

application 9 Security risk if
password is stored
in the script

10 Unable to provide
multitier

authentication

Table 5.1 - Advantages and Disadvantages of Single Sign-On Architectures

36



In the "push" scenario, an HTML form is used on the Source website to include SAML

assertions in a hidden field, and these assertions are "pushed" to the Destination website

as a part of an HTTP Post.

38



REFERENCES

1. Caleb Racey, Web based Single Sign on, NCL Publishing Company.

2. Mahesh Bhaska, Noor-E-Saba Hakim, Sam Lam — Group Panama, Secure

Single Sign On, Harvard University Extension School

3. Davis Marasco, Patrick Botz, WebFacing and Single Sign-On :Exploiting

Identity Tokens in Multi-tier Web Applications

4. David P. Kormann and Aviel D. Rubin, Risks of the Passport Single Sign-On

Protocol, AT&TLabs

5. Joel Farrell. Peter Greene (2004), Single Sign-On Guidelines, MedBiquitous

Technical Steering Committee.

6. Alan Lawson (2002), Who to sign-up with for a single sign-on standard, Butler

Group Review Journal Article.

1. Toni Nykanen (2002), Secure Cross-Paltform Single Sign-On Solution for the

World-Wide Web, Department of Computer Science and Engineering Helsinki

UniversityofTechnology.

39


