EDUCATIONAL PROCESSOR

By

NIK ADLI HAKIMI BIN NIK MOHAMAD SHUKRI

DISSERTATION

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfilment of the Requirements
for the Degree
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronch

Perak Darul Ridzuan

© Copyright 2011
by
Nik Adli Hakimi Bin Nik Mohamad Shukri, 2011

CERTIFICATION OF APPROVAL

EDUCATIONAL PROCESSOR

by

NIK ADLI HAKIMI BIN NJIK MOHAMAD SHUKRI

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

Patrick Sebastian
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

September 2011 -

li

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons,

Nik Adli Hakimi Bin Nik Mohamad Shukri

iti

ABSTRACT

This report discusses about the overview of the chosen project, which is an
Educational Processor (EduCPU). The objective of this project is to develop a simple
processor using TTL logic gates and also to develop simulation software for
educational purpose. The software is responsible for sending instruction codes to the
simple processor through serial communication in order to execute the instruction.
The software written is also capable of simulating the behaviour of the simple
processor. This educational processor would be used as a learning tool in Computer
System Architecture course in in Universiti Teknologi PETRONAS (UTP) to assist
students in understanding about computer system architecture. In order to complete
this project, the scope of study basically will cover the computer system architecture
and details about Central Processing Unit (CPU). The instruction format and CPU
data path design both are based on MIPS architecture processor. The methodologies
that are involved in this project are design and validation phase, constructing the
hardware, and programming the user interface to interact with the educational

processor.

v

ACKNOWLEDGEMENTS

Firstly, 1 give my utmost gratitude to ALLAH the Almighty for his
uncountable graces upon me and for the successful completion of this project in due

course of time.

I would like to express the appreciation to my supervisor, Mr. Patrick
Sebastian, Lecturer of Electrical & Electronics Department, UTP. The supervision
and continuous support that he gave truly helped me throughout completing this
project. He provided lots of guide, sample codes, and teaching me concepts in order
to successfully complete this project. He also helped me in correcting various

documents of mine with attention and care.

Lastly, great appreciation to my friends, who always helped me and giving
me support when I needed it. Not to forget my appreciation to all UTP lecturers,
students, staff, friends and to all whose their names are not mentioned here but they

provided help directly or indirectly in completing my project.

TABLE OF CONTENTS

ABSTRACT ... e see et et esscsta e s s s s e ssssas s s sases st s e sasssassmsnssnsssnasasans v
ACKNOWLEDGEMENTS ...t en st st s v
TABLE OF CONTENTS ...ttt et sesasasstsssasastasass sosesnssessossssssaes vi
LIST OF FIGURES......ociciiteintinetssesisiecrestnrrireserssessssesasssssesss rossstseonasssiessenssesessenes ix
LIST OF TABLES ...ttt e esesssesas e sesa s sens e e sasabas e sesassosssnssans Xi
LIST OF ABBREVIATIONS ...ttt ssneses e sene s s s s e sasssa st asesns xit
CHAPTER 1 INTRODUCTIONcovctivrererrenrrnesssssesesecersrvnssssssssssssenssssssssssssssees 1
1.1 Background of Study.......occcccecvemvrrnnrnreveeneicenenirnrrrensesensonsnensesnens |

1.2 Problem Statementccoveeveevieeiienerneeenensesscnseeseersatsassesensessessssasanens]

1.2.1 Problem Identification..........cccoeeverveereeescnciicsnraresenessnrnssssessenaens 1

1.2.2 Significance of PrOJECtooucceininrniciri st seescesrevesnnaens 2

1.3 Objective and Scope of the Projectoocceevececevvcecvrnnrnvceeceeeccneicvenaen 2

13,1 ObJECHIVES ccrreeeieececictiers e cee s e seaesems e stsasrasb e s e ss e e sessmeanan 2

1.3.2 Scope Of the PrOJEct........cvvvsivveriveeenniresssissosessnesesnsesesresnsssssssssnens 3

1.4 Relevancy Of PIOJECEocceeiererricceieirinri et snsnssseesssesessssnnanesessserens 3

1.5 Feasibility Of PrOJECE ...covcieceriiciccrieec s eeeecae e rmerensm et snere s se s 3

Chapter 2 LITERATURE REVIEWoiicectnrirsssiseeses et essssssssrnsnrsbessssens 4
2.1 Introduction (0 PrOCESSOTS ... cecorreecrrnrrcreceescenseseresesarnsssessssrssssssenes 4

2.2 Instruction Set ArChItECTULEcoveuceeeciiiceciee et 4

2.3 Introduction to MIPS Archiecture........ccovveivireseemriceceveinsirsreerssssassneens 5

2.4 CPU Functional UnNItScuoceeeeeeeeininriiresnreseeeesesessesessacvsee s renssnsnnsnns 6

2.4.1 Program Counter (PC)......ccoeiereeoiciecescaeeieeeceniae s cesraseessnssssenns 7

2.4.2 InSructions MEMOIYc.cvvveeveericrcinreriseesvensseste s e ssesseeacesrrsseens 7

2.4.3 InStruction REZISIErc.ucevereeece e st s e es e e 7

vi

2.4 4 ReISTEr Fle .ccviiviricccnetrreerrrrecse e ce e st s s 7

2.4.5 Random Access Memory (RAM)ocvimeineeeeeeeeeeeeeeeesseesrennns 7

2.4.6 COnMTOl LOGICvcvvieeseeeeireeeeirt e cesees e sesssseeseessesesenes 8

2.4.7 Arithmetic and Logic Unit (ALU)ceoveireeeeeeeresers e 8

2.4.8 Address Bus and Data BusS..........ceeeonvnevreececmceensieecescsneseeneens 8

Chapter 3 METHODOLOGY ...ueeceereeeiecceeareeecs e eememeeeseseessesssssssssssessesssssesees 9
3.1 Project FIOWCRAIT ... ceeeeneerenretnecceiescv e ceene e eenesssesasessssss s seres 9

3.2 Research Methodologyccocevreeeeceecceesceeecceeseerercresesesesesessssens 10

3.3 Instruction Set DeSIZNc.ceveer e eee s esenes 10

3.4 T00lS REQUITEQeeeeeeeectecir e ettt sresecsen e veresans 12

3.5 INSTUCHIONS LISt ...cvuiiireeecreerencrrrieiesrcsnesiesscesssesceeesensess e s sesnsessanns 13
3.0Datapath ...t et 14

3.7 Graphical User INETFACEccorureeiemrereretccteeeeee e eeeesessesesesesee s 14

3.8 PrOJECt DUIBLION «.e.oeevereverrecnnreiececeetctsim e ceseeeeeeseesseseseneenes e s ssees 14

Chapter 4 RESULTS AND DISCUSSION..........ooieieecteemeeeeeeeeeeesesesres i s 15
4.1 Graphical User INErfaceco.ovevorrecrreceeeeceereseeeeeeeeveesnsesesseeseseerens 15

4.2 COMPIHNG.....oorvereeerrerrersermreseressenseceeseeressceeeeesseesesseseessesssssee s seesen 20

4.2.1 ReTYPCurreenreeeessrnerereessseeesesssessssesssssssesenesseessesssesssessseeeeesseeseess s 20

B2 2 T-TYPR ctereeeeirteeseuciesiesnnessee s sessssessesnsastsetseesasessass e eessne s eens 20

4. 2.3 J-TYPC ettt recsertesse st et ee s eeeeseee s v e s seeees 21

4.3 Simulation: Test Code 1 — Adding values..........covvmemeeeveeeenemonn. 21

4.4 Simulation: Test Code 2 — Multiplying valuescooeeeeeerreveeevrereenns 25

4.5 Transmitting machine code through serial communication.................. 30

4.6 HArGWAreeeoeeciernsie s cese st s e ees st 31

4.7 DHSCUSSION «..coeeveecvinsireeeensermensssessesess s eseascaeseeeeeebensnsessseseses s s s 33

Chapter 5 CONCLUSION & RECOMMENDATIONS.....coouomeeeeeeeeeeoeeveeso 35
3.1 CONCIUBION.........crirreceeancere st eneessens e tscoenssesasses s e s s e s 35

vii

APPENDIX A — PROJECT GANTT CHARTcoreeccceciretreeerescscstnenenes 37
APPENDIX B — DATAPATH DESIGN ...t sesnseccn e saenene 39
APPENDIX C — CIRCUIT DESIGN ...t eressesst e s sesnans 40
APPENDIX E — PERL SOURCE CODEcooomiiirreverermnnnererrsssasasnesssnsssssesssnans 44
APPENDIX F — VISUAL BASIC 2010 SOURCE CODE......cccocuvieeeereeeerrrescecnrenens 47

viii

LIST OF FIGURES

Figure 1: MIPS R-Type instruction format...........ccconrerererererensssnrercersessnnns 5
Figure 2: MIPS I-Type instruction formatc.ccceevereveevnessresesecreesssnnenns 5
Figure 3: MIPS J-Type instruction formatccceceveeeecverereseseveveecnsecesecenes 6
Figure 4: Project FIOWChArt........cccooeivieteitcre et seness s 9
Figure 5: Instruction Format Designcovveeereeeeeeneceeeesreecsscessensen e 11
Figure 6: R-Type instruction formatcccovveireirnececerns e 11
Figure 7: I-Type instruction format...........cccccovereemvenreneeernreereesessvennsssesennns 11
Figure 8: J-Type instruction formatcccooureeeeorninccninsiececese e 11
Figure 9: EQUCPU Main VIEWc.coiiiinmirencnrcreesenensassssensssssnsssssersssns 15
Figure 10: Example of code With errors.........c.c.oveeeceeceeeeeeeeeeevcre e 16
Figure 11: Code without any Syntax €rror..........cveeeceeeeieeeeeevrvecvrsenresrersesenens 17
Figure 12: EQuCPU Datapath VIEWcc.eeeeceeeeeereeecver s ceeees s s 17
Figure 13: RegISIEr VIEWc.ceieeecceicnreiresrn s v estssenet s s s sssssssnone 18
Figure 14: MemOTY VIEW......cccoroeerereeiiieiieneeeeecess e reen s sessessseseseesssesessanens 18
Figure 15: Help WindoW.......cooieeeecentcret s sne s 19
Figure 16: Test Code 1, Line T Datapath VieW......ccuovveveeeeeeeeeeerseeceeeeeneeeeenns 22
Figure 17: Test Code 1, Line 1 Register VIEW....c..o.ovvevecveeeenieseecesieeenncaneacne 22
Figure 18: Test Code 1, Line 3 Datapath VieW.........o.cceveverereeeceseseesseseeecens 23
Figure 19: Test Code 1, Line 3 Register VIEW.....cvuveeceeecveeceeceeerereeeeseeenns 23
Figure 20: Test Code 1, Line 4 Memory VIEWo.cuceeuieceeeemreeeeeeeeeesesesens 24
Figure 21: Reg 3 =Reg 1 T REE 3 vt sao e seseneenans 25
Figure 22: Registers view after line 4 is transmitted...........cooceoveirererermeenenne. 26
Figure 23: Registers view afler line 5 is transmitted............cooevueervreeeereecneene. 26
Figure 24: Datapath view after transmitting line 6ccovvvereevnscevrrecnns 27
Figure 25: Main view after transmitting line 4 for second time..................... 27
Figure 26: Datapath view after transmitting line 4 for second time.............. 28
Figure 27: Registers view after transmitting line 4 for second time............... 28
Figure 28: Datapath view after transmitting the last line of the code 29
Figure 29: Registers view after transmitting the last line of the code............ 29
Figure 30: Main view after transmitting the last line of the code................... 30
Figure 31: Connection between PC and hardware........o.oocouvmeeeoeevereeen.n. 30

ix

Figure 32: Choosing the correct Seral POrt......cocoeiveeecveererrvirerenserssessssnsenas

Figure 33: Hardware of Educational Processor........ocvwevreeenteeenresiseresessessnnens

RISC

CISC

MIPS

CPU

EPROM

CSA

TTL

OPCODE

LIST OF ABBREVIATIONS

Reduced Instruction Set Computing

Complex Instruction Set Computing

Microprocessor without Interlocked Pipeline
Stages

Central Processing Unit

Random Access Memory

Erasable Programmable Read-only memory

Program Counter

Computer System Architecture

Transistor-transistor Logic

Operation Code

Xii

CHAPTER 1
INTRODUCTION

This chapter discusses about the introduction to this project. It covers the
background of study which discusses the background knowledge involved in this
project. The problem statement and the reasons that lead to the implementation of

this project are also discussed in this chapter.

1.1 Background of Study

This project is aimed to develop a simple educational processor which would
be used as a teaching material in Computer System Architecture class. The main
objective of this project is to provide an opportunity for the students taking this
course to understand and examine how a processor executes an instruction. Students
will be able to interactively interact with the basic of the processor to enhance

students’ learning environment.

The knowledge required in this project is the knowledge of digital electronics
and also knowledge about computer system architecture. This project also requires
the knowledge in microcontroller since this educational processor would be
interfaced to a computer using a microcontroller via serial communication. In order
to write the program that would be used to interface the educational processor and
computer, knowledge about programming using C, Perl, and Visual Basic is also

needed.
1.2 Problem Statement

1.2.1} Problem Identification

The processor is one of the most important parts of a computer sysitem. ‘The
development of the processor has evolved over the years. In 1945, a mathematician
John Von Neumann outlined the design of a stored-program computer which became
the primary design of most modern Central Processing Units (CPU) [1]. M(é)st of the

1

processor designs now are very sophisticated and complex compared to its earlier
development stage. This makes the learning process of how processors actually work

becomes increasingly difficult.

The Electrical and Electronics Engineering students in Universiti Teknologi
PETRONAS especially those taking Computer Systems as their major have the
chance to learn about computer system through Computer System Architecture
course. The course exposes the students to lectures and also lab assignments in order
for the students to understand the basics of computer system architectures, including

on how processors work.

The course does not focus on any specific computer architecture, but instead
exposes the students to the general processor designs with MIPS architecture
processor briefly explained. The course itself is also quite theoretical which makes it

harder for the students to fully understand the concepts of processors.

1.2.2 Significance of Project

This project would give an opportunity to the Computer System Architecture
students to explore and examine at the gate level about a MIPS-based architecture
processor datapath. The students would be able to observe exactly what happens at
cach stage in the processors and how each logic device interact with each other in

order to complete a CPU instruction.

1.3 Objective and Scope of the Project

1.3.1 Objectives

The main objective of this project is to develop a simple MIPS based
architecture processor as learning and teaching tool in Computer System

Architecture course.

The sub obijectives of the project are listed as the following:

¢ To help students understand more about how a processor works.
2

¢ To construct the PCB boards and validate the prototype.
e To develop a software with a graphic user interface in order to give

commands to the designed processor.

1.3.2 Scope of the Project

This project will start with literature reviews related to processors with MIPS
architecture to fully understand how processors with MIPS architecture work. After
that, the simple processor will be designed in design phase before actually
implementing the design on real hardware. The software will also be designed in the
design phase in order to let the processor communicate with a connected computer.
Then, the prototype will be developed where the data path hardware is implemented
using TTL logic gates designed during design phase. Further testing will be carried

out to make sure the processor works by interfacing the processor with a computer.

1.4 Relevancy of Project

This educational processor will follow the format of MIPS architecture
commands that is included in Computer System Architecture cburse syllabus. Instead
of learning only in theory about how MIPS processors work, students taking
Computer System Architecture course will also have the opportunity to clearly see
how MIPS processors work. The educational processor will be combined with
graphical user interface software. This project will significantly improve the

students’ understanding about processors, especially MIPS processors.

1.5 Feasibility of Project

The whole project will be done in two semesters. This includes three main
areas which are research, development, and also improvement of the design. The
software development tools (Microsoft Visual Studio 2010, Perl, MPLAB IDE, and
PICKit) are available. The components needed for hardware implementation such as
TTL gates and microprocessors are also readily available in the lab. Based on the
description above, it is very clear that this project is feasible to be completed within

the time frame.

CHAPTER 2
LITERATURE REVIEW

This chapter discusses about the theories and paperwork reviews related to
this project. Besides that, details on the educational processor’s architecture and data

path design would also be discussed in this chapter.

2.1 Introduction to Processors

The processor or CPU is the portion of a computer system that carries out the
instructions of a computer program, and is the primary element carrying out the
functions of the computer or other processing device. The CPU carries out each
instruction of the program in sequence, to perform the basic arithmetical, logical, and
input/output operations of the system [2]. This term has been in use in the computer
industry at least since the early 1960s [1]. The form, design and implementation of
CPUs have changed dramatically since the earliest examples, but their fundamental

operation remains much the same.

2.2 Imstruction Set Architecture

'The Instruction Set Architecture is the part of the processor that is visible to
the programmer or compiler writer. It is an abstract model of a computer that
describes what it does, rather than how it does it (functional definition). So, it can be
said that the instruction set architecture and the instructions available in the processor
determine the processor capabilities and performance [3]. The ISA also serves as the

boundary between software and hardware.

The ISA varies from machine to machine. Instructions are classified by format
and the number of operands they take. The three basics instruction types are data
movement which copies data from one Jocation to another, data processing which
operates on data, and flow control which modifies the order in which instructions are
executed. Instruction formats can take zero, one, two or three operands. It depends on

how many bits are used to represent the whole instructions.

4

2.3 Introduction to MIPS Architecture

MIPS architecture is a 32-bit RISC instruction set architecture developed by
MIPS Computer System (now known as MIPS Technologies). MIPS architecture is
designed for high performance. To allow the user to get maximum performance, the
complexity of individual instructions is minimized. This allows the execution of these
instructions at significantly higher speeds [5]. MIPS instructions are classified into
groups according to their coding formats [4]. These formats are:
» R-Type (register-to register instruction)
This group contains all instructions that do not require an immediate
value, target offset, memory address displacement, or memory address to
specify an operand. This includes arithmetic and logic with all operands
in registers, shift instructions, and register direct jump instructions.
» [-Type (immediate operand)

. This group includes instructions with an immediate operand, branch
instructions, and load and store instructions. In the MIPS architecture, afl
memory accesses are handled by the main processor, so coprocessor load
and store instructions are included in this group.

¢ J-Type (branch/jump instruction)
This group consists of the direct jump instructions. These instructions

require a memory address to specify their operand.

Figures below describe the format of 32-bit MIPS instruction formats — R-
Type, I-Type, and also J-Type instructions.

31 26 25 21 20 16 15 11 10 6 5 0
| Opcode(6) | RS(5) | RT(5) | RD(5) | SA(5) | Function (6) |

Figure 1: MIPS R-Type instruction format

31 26 25 21 20 16 15 0
Opcade (6) ‘ RS (5) I RT (5) I Immediate (16}

Figure 2: MIPS I-Type instraction format

31 26 25 0

Opcode (6} | Target Jump Address {26)

Figure 3: MIPS J-Type instruction format

The opcode field is the Operation Code field that indicates the code for each
instruction. Each instruction has its own unique opcode. RS is the source or base
register. RT acts as a second source register for R-Type instruction, but acts as the
destination register for I-Type instruction. RD is the destination register (only present
in R-Type instruction). SA (shift amount) is the amount of bits to be shifted. Only
certain instructions use this field for execution. Immediate acts as the immediate
operand or as address offset, depending on the instruction that is being executed.
Target Jump Address is the memory word address to be jumped to [4]. It has 26-bit
literal that is concatenated with the 6 most significant bits of the program counter to

create 32-bit address.

Since 5 bits are allocated to registers (RS, RT, and RD) field, it follows that
the MIPS architecture contains 2% = 32 internal registers that can be accessed by

instructions given.

2.4 CPU Functional Units

It is important to understand the relationships between the CPU, the memory,
and the program before looking into the details of how CPU works. The program is
the list of instructions to be executed by the processor. Examples of programs are the
software and applications that are available in our computers today. The memory
temporarily stores the list of instruction of the program and also the data of the
program during CPU execution. The CPU then reads the list of instructions stored in
the memory one-by-one and performs the required execution on the data. Finally, the

processed data is stored back into the memory.

2.4.1 Program Counter (PC)

Program counter contains the next instruction address to be executed.
Normally, PC will be increased after every instruction executed to point to the next
address, except if any flow control instructions is executed which modifies the bits

contained in the PC, thus modifies the sequence of the instructions.

2.4.2 Instructions Memory

The instructions memory contains the list of instructions to be executed by
the CPU. The CPU fetches the instructions that it needs to execute from the

instructions memory.

2.43 Instruction Register

Instruction register contains the current instruction that the CPU is executing.
It stores the current register temporarily and is connected to various other logic
devices such as control logic and register files. After current instruction is completed,

the content of this instruction register will be overwritten by the next instruction.

2.4.4 Register File

Register file serves as the general purpose register to store temporary data
that is executed by the CPU. Register files are similar to Random Access Memory
(RAM), except that it does not have as much capacity as RAM. It is also faster than

RAM. This makes the execution of register-register instructions faster.

2.4.5 Random Access Memory (RAM)

RAM is a form of computer data storage. However, it is a volatile memory
which means that the stored information is lost if the power is removed. It functions
similarly to the register files — to store temporary data. However, it usually has much

more capacity than the register file has.

2.4.6 Control Logic

Control logic controls the sequence and the datapath flow of an instruction.
When an instruction is executed, it fetches and translates the opcode of the
instruction. Then, it will output the control logic signals to the appropriate modules

such as register files, ALU, memory, and also multiplexers that handle the data path.

2.4.7 Arithmetic and Logic Unit (ALU)

ALU is the unit that does the arithmetic and logical manipulation of data such
as addition, subtraction, logical AND, logical OR, logical XOR, and many more. It is
a fundamental building block of the CPU of a computer {6].

2.4.8 Address Bus and Data Bus

Buses are used to simplify the movement of data from point to point in a
CPU. It is connected to various logic devices in order to transfer data. In a bused
system, only one communication from point to point could happen at any one time.
Thus, a careful synchronization needs to be taken care of to make sure that the data is

successfully transmitted.

CHAPTER 3
METHODOLOGY

This chapter discusses about how the project would be carried out. Tt includes

the method of research, tools, components, and software involved.

3.1 Project Flowchart

P v
{ Start /:} PCB fabrication
k h 4
Research and studies » Prototype construction

| l

Ea

Instruction set design

/,. _L\l

e

Fail -~ Testeach ™.
.....__.g’\ . . A
~. functional unit -

¥

Data path design L
X Pass 1
i Circuit schematics design

k4

Connect all units

.

Fal
—<_ Simulation > S
o Fail_~Programming and ™.
| s validation = 7
N .
Pass I .
- \“_ o g
F Design complete e
Pass
Project complete

Figure 4: Project Flowchart

9

3.2 Research Methoedology

The theories behind CPU design and CPU architectures, especially MIPS
architecture are studied. However, studies regarding CISC and RISC architectures
are also done. The research mainly focuses on the decision between these

architectures — which one would best educate students.

After decision is made, which is to focus on MIPS architecture, further
research regarding MIPS architecture is done. To understand CPU architecture, the
knowledge on these theories is important. This includes instruction set architecture,
CPU functional units, and CPU data path. All these have been outlined in the

literature review chapter.

The sources of research include from books, websites, conference papers, and
also journals. The relevancy between the selected sources and the project’s
objectives is also taken into account to ensure the credibility of this project. The
understanding from participation in Computer System Architecture classes and labs

has also contributed to the research study.

3.3 Imstruction Set Design

In this stage, instruction set architecture is designed. The ISA defines the
whole identity of the processor itself. Since the processor is only used for educational
purposes, which is to show to the students the concept of how processors work, it
would have a very limited instruction set. Thus, the choice of instructions to be
included has been made according to research that shows the most commonly used

instruction in a program.
The design begins with the format of the instruction set. The instruction

format defines the width of the instruction, opcode field, and also operand fields.
Figure 5 below illustrates how the instructions format is designed.

10

_ How many bus? How many operands? How many bats?

- i @

Opcade field Operand freld(s)

Y

4

o
-

How many bits?

Figure 5: Instruction Format Design

The selection of instructions to be included in the CPU is also done in this
stage. Each of the selected operation is assigned with a unique opcode in order for
the processor to differentiate between them. Their operands are then fitted
accordingly, depending on the instruction. The instructions are divided into 3

categories — R-Type, I-Type, and J-Type, similar to MIPS architecture.

Below are the figures of the operands field design for all three types of
instructions. Note that the instruction is designed to be 16 bits instead of 32 bits to
reduce complexity. However, the concept of the educational processor remains

sintilar to MIPS architecture.

15 11 10 8 7 5 4 2 1 0

Opcode(s) | RS3) | RTB) | w03 | sA(2)

]

Figure 6: R-Type instruction format

15 11 10 8 7 5 4 0

| Opcode(s) | RS(3) | RT@B) | Immediate (5)

Figure 7: -Type instruction format

15 11 10 0

L Opcode (5) I Target Jump Address (11)

Figure 8: J-Type instruction format

As shown in the figures above, the instruction format is very similar to the
instruction format of MIPS architecture. The difference is that in MIPS architecture,
the instruction format is 32-bit instead of 16-bit. The number of bits in opcode and in

the operand fields is reduced. The function field is present in MIPS architecture, but

11

not in this processor because we do not have as much number of instructions in this

project. So, the function field is not needed. So, as a summary, the designed bits are:

¢ Opcode: 5§ bits

¢ Registers (RS, RT, RD): 3 bits
¢ Shift Amount (SA): 2 bits

* Immediate (Immy}: 5 bits

e Jump Address (JumpAddr): 11 bits

3.4 Tools Required

The tools that are required in this project can be divided into two parts, which

is software and hardware. For the software, the tools required are:

CCS C Compiler v4.106

This is used to program the microcontroller that will be used for control
logic in the CPU.

PICKit v2.61

This program is used to write the written program in MPLAB IDE v8.70
into the microcontroller.

ActivePerl v5.12

ActivePerl is needed to compile the program written in Perl language.
Microsoft Visual Studio 2010

This program is needed for creating the user interface that will interact
with the educational processor.

Quartus v10.1 _

This software will be used mostly for simulation.

CadSoft Eagle Professional v5.6.0

Eagle is used to design PCB boards.

The hardware needed in this project can easily be obtained in the Electrical &
Electronics Store at Block 22. All hardware needed is listed below:

Microprocessor
TTL gates (includes ALU, registers, RAM, multiplexers, and others)
PCB boards

12

3.5 Instructions List

This educational processor is capable of executing 16 types of instructions.

The instructions are listed below, together with its corresponding opcode, operands,

and how it operates.

Name Mnemonic | Type Operation Opcode
Add add R ;?:i]iftc[i;s]f;{s . Fre 00001
Add Immediate | addi I ;‘;i]im;; :];Zil;;’];xt;nm:n 00010
Subtract sub R ;‘E%i;?r's]_ﬁii Fre 00011
And and R ;?;}i;?r’sl ;;? ' Fre 00100
And Immediate | andi I ;r;]i:lf; :]& ZS’;ZEXII“;“IH 00101
or or R ;Er d?igirs;;? ' sre 00110
Or Immediate ori I ;’[f rlt]j;[‘; ;]|Z$err zEx:IHnTm 00111
Xor Xor R ;‘E;]i;?r’s],;r[ii vrt 01000
Xor Immediate | xori I ;c[’;;}i;f]Z:;SEHIII;“E 01001
S [e e
| e |
Store Word sw I ;"{Rig ;ZE;)SE’X t:r:;]zR[ﬂ] 01100
Load Word Iw I ;‘E nf’j;’[R;z]S +Z§;E dtimm] | 01101
b ’ ; B

g;i’;?h On beq I ifl(ekfi[ri]iR[E; i 01110
PC=PC+4+BranchAddr
b , ; B dd

g;f:l’h On Not bne I ifI(lli[ri]r!iR[ii:)t R 01111
PC=PC+4+BranchAddr

Jump j y |) JumpAdds 10000

PC=JumpAddr

Table 1: Instructions List

13

3.6 Datapath

The datapath of this EduCPU is designed so that it can perform the
instructions listed before. The whole datapath of this educational processor is shown

in Appendix B.

3.7 Graphical User Interface

A program is written using Perl and Visual Basic 2010. This sofiware is able
to compile assembly language that is inputted by user and compile it into machine
language. It is equipped with error-checking codes to prevent crrors during
transmission. The program is also able to transmit the machine codes into the
educational processor hardware and retrieve back the relevant data from the
educational processor. Besides transmitting the machine code to the actual hardware,
the program is able to simulate written assembly code, and display the flow of data.

More details about this program are covered in Chapter 4.

3.8 Project Duration

In order to effectively monitor the progress of this project, a Ganit chart has
been constructed. The Gantt chart is included in Appendix A.

14

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Graphical User Interface

A program designed to run in Windows is programmed using Microsoft

Visual Studio 2010 and also Perl programming language. This program is called
EduCPU. The Visual Basic source code is attached in Appendix F. It is designed to
compile from assembly language input by user to the machine code that follows the
instruction format designed. EduCPU’s features are:

o Compiles assembly language code into machine language code

» Simulates the written assembly code

¢ Displays values in registers

e Changes values in registers

¢ Displays values in memory

s Displays data that flows in the datapath

EduCPU consists of 5 main windows. First is the main view. This is where

the user needs to put the assembly code. Figure 9 shows the main view window.

. 1 Senal Port Seltings
| ESCPUVe | o

i " COM Port -
| Regstes Vi | . 1
ST Baud Rate - :

= | MemoyView | g, -
| Machine code: o T S]
B " i, Stftware Flow Cortrol - b
1 h :
"“'T""'-m"'—__'"" . i
" Tora Lines: D :

Figure 9: EduCPU Main View
15

The program is equipped with error-checking codes. This means, if the user
enters a wrong command, wrong syntax, or invalid register/immediate values, the

compiler will tell the user there has been an error in the code.

When the user puts the assembly code in the designated field and presses
‘Compile’, the program will check the code for any errors. If there are errors, the text
box at the right side will display the error and the ‘Transmit’ button is disabled. See

below for example.

£ EduCPU Compiter

Assembly code: -
add §7, 5§21, $31 * | EAuCPU View } Seral Port Settings
add 53, 51 e i . . .
add? 34, 53, 51 ,r““"—"—__m“;_—*; COM Port - -
| Regist .
b= Baud Rate -]
L_ : V‘ewﬂ;j Dats Bits 7 - :
: ol e] Paty = !
Machine code: e _ o e
S SR . Software Flow Control -
i 00001LGA012111121100 - f _
| - DDOC160106010100 [Compie
j
I

Figure 10: Example of code with errors

In Figure 10, the user puts assembly code with some errors listed below:
¢ Value of RS and RT at line 1 is too large. We only have 8 registers, so
the maximum value should be $7.
e At line 2, the command *add’ should have 3 operands. The user only
puts 2 operands, thus generating the error code.

o At line 3, there is no such command ‘addf’,

If the user puts code with no syntax error, the bottom box will display “Code
OK. Proceed with transmission”. The ‘Transmit’ button will be enabled and the user

can now proceed with the simulation as shown in Figure 11.

16

& EduCPU Co

Assembly code:
addi $0, $0, 31 .
addi $1, §1, 20

| EQuCPU View
add §2, §1, §0 : COM Port -
sw §2, §1, § :M“M -
Baud Rate -
Compile

Serial Port Settings

Data Bis -
: Panty - ‘
Machine code:
Software Flow Control -
0001000000011111 -
0001000100110100
0000100100001000
0110000101000101 . o

Cumert Line Code OK Procesd with transeasion

Figure 11: Code without any syntax error

Before proceeding with the simulation by pressing ‘Transmit’ button, user
should first click ‘EduCPU View’ to view the datapath, ‘Registers View’ to view the

values in registers, and ‘Memory View’ to view the values in memory. The 3

windows are shown in Figure 12, Figure 13, and Figure 14 respectively.

e

Figure 12: EduCPU Datapath View
17

Vet T

EduCPU Registers

Register 000 0000000
Register 001 00000000
Register 010 00000000 |
Register 011 00000000
Regster 100 00000000
Register 101 00000000
Register 110 00000000
Regiter 111 00000000

Change Register
Values

Figure 13: Register View

Figure 14: Memory View

18

We can directly change the values in the registers during simulation using the
Register View window. After changing the values, press the ‘Change Register

Values’ button to save the changes.

As guide for users, they can click the ‘Help’ button to display the list of
instructions and the correct syntax on how to use them. Note that the instructions are
very similar to MIPS instructions. Afier clicking the ‘Help’ button, the window as

shown in Figure 15 should pop out.

Instructions List

Neme Mnemenic | Type Oparation ' Cpecde

add Frd, frs, Srt
Add add R 20031
RErd}=RIrsi+R[rt]

addi Sy, Aws, Imn

Age immedizie 304 i SO0
' Rfri=Rlrs)+ZeroSxtimm

Subtrac 5 T BT “ooL
Jstract s Rirdl=Rire-Rin] -

Ane p 2 and Sri, Irs, Iiry 20100
A an *]
Rlsel=RirsIRRT -

andl Fre, Srs, Innm
And e fiate andi i i 0101
Rii=RR51&IeroExtimm

oy Sxd, Irs, o@s
Gr ar R .) Gotto
Rird)eRirs) Rt

]] oYl FrIT, SrE, I
Or Immadiate 3] i . a0kl !
Rfrtl=Rirsi | FaccExtlnm

Ry Sxd, Erm, Srto

Xor Kor R . CLODD
Rfrdl=Rirs] Rt}

| _ . wori Sre, fys, Inm
Xor immediate xari ! - 01001
RIrtl=R{rs] ZaroExtimm

Snife Lett ogical " R 21l zrd, irs, skart -
hife Left L ogicH 5 t
£ Rirdl=Rirs]<<shamt

2rl Frd, irs, shant
Saifs Right Logira! sl R 21911
€ & Rirdl=R[rs}»>shamt

re Word Q| RER SEe. e 21100
e V Bt

‘ MIR[ss}+ZeroExtinm]=RI)
2B ST, fra, Imm
Loas Word by ' TEe TeEe o TEOTY
Rt RIS+ 2erafetinom)

e Sx 2rz, Ryranchiddy
Branch On Egeal nag T D ¢ STERLIAAL o118
H{R[rsjreRErt]s PC=P-4-Branchiedr

nRd 3rs, 5r3, JranchAagay

Branch On ot Equat bng i . N DiFLL
#iRfrs]l=Rint]) PL=IC-S-Branchacdr
] ; F] T umsader 18090
umg i
: PUrIuEApAGHET

FYP: Nk Adh Hakini B Nik Mohamad Shuke
Supervisor: Mr. Patrick Sebastian September 2011

Figure 15: Help Window

19

4.2 Compiling

As can be seen in Figure 1] in previous pages, the assembly code is
automatically compiled into machine code. The exact process can be seen through

examples in section 4.3 .

4.2.1 R-Type

ladd $2, 31, $0

R-Type instructions’ detailed information is shown in Chapter 3.5. For the
above instruction, the ‘add’ instruction is translated into 00001 (the opcode). Then,
the register RS which is $1 is translated into its binary equivalent, which is 001.
Register RT, $0 is translated into 000. Register RS, $2, is translated to 010. Finally,

since no shift operation is invoived, the shift amount (2 bits) is set to 00.

Note that ail registers are designed to be 3 bits. So, all register values are

translated into 3 bits. This process generates the following machine code:

| 0060100100001000

422 I-Type

laddi $1, $2, 20

[-Type instructions require 3 operands. For ‘addi’ instruction, the opcode is
00010. Then, register RS, $2 is translated into 010. Register RT, $1 is translated into
001. Final}_y, the immediate value, 20 is translated into 10100. Immediate value is

designed to be 5 bits. So, this generates the following machine code:

10001001000110100

20

4.2.3 J-Type

3.3

J-Type instructions require only 1 operand, which is JumpAddr (Jump
Address). The opcode for instruction ‘j° is 10000. Then, the JumpAddr, which is
valued at 3, is translated into 00000000011. This process generates the following

machine code:

[1000000000000011

4.3 Simulation: Test Code 1 — Adding values

addi $0, 50, 31
addi 51, s$1, 20
add $2, $1, S0
sw $2, $1, 5

This test code will basically add value 31 to register 0, add value 20 to
register 1, and then add the values in register 0 and register 1 into register 2. Value in
register 2 will then be stored into memory location 25. We can track which data goes
where exactly by observing the Datapath View, Register View, and Memory View.

The compiled test code can be seen in Figure 11.

After pressing ‘Transmit’ button once, we can see the Current Line in Main
View changes to 1. The values in Datapath View and Register View are also updated
as seen in Figure 16 and Figure 17. We can see how data flows into the CPU and also

real time register values.

21

’
i st lISM] ﬁ;}—onnoaﬂoa
Opzode COLID add SmerDl Ovetfioss Zere Negative

i 11
bunnonnbmnnz 2 @ o

atation i—- 500 Dats Rt - Senz e

Fegater1 Defa |- 00625500

- voo Pegamer2 Dua 2 |~ 00000000~ -, o
s) s S ALY [50013IIE-T—] At
- J Regaser | I R
tH e)m' Yo r)nonum{ e Memory
\ i)’“ -
H i ;
LIS RREEY PR

P Vite Rond
{'

BOBLITIT \:
2 i
T e —
En |

st L)
&J o

Figure 16: Test Code 1, Line 1 Datapath View

Register View.

i EduCPU Registers

Regiter 000 [p0G11231
Register 001 06000000
Register 010 00025000
| Register 011 66000060
| Register 100 00000600

Register 101 60000006

Ragiter 110 040GO000
Register 111 00000000

Figure 17: Test Code 1, Line 1 Register View

After line 1 is simulated (we can see current line in Datapath View, at PC
(program counter) value), register 0 [000] is loaded with value 31 j00011111]. This
happens because value in register 0 is given by summation of current value in

register 0 (which is currently 0) and immediate value of 31. By pressing ‘Transmit’
22

button again, line 2 is simulated. Line 2 is similar to line 1 ~ they both use ‘addi’
command. After pressing ‘Transmit” button for the third time, line 3 is simulated, as

shown in Figure 18 and Figure 19.

EduCPt) Datapath

LekRigh
o0

r
Spesda 1517} ShiRt |- 60010100
Opcode 20003 add Sham (1)

b0 - o
200G EEILABND & @ ¢

l ferttion [501

| . ;::‘E*Os; Pegeterd Dun2 [-o00L1i- s Foesigosio] i
i ; Lo Jome FLTSPEER - Memary :
—\ o L

Regaec] Dwtal |- 00030300 Tiaa Rlend |- Beastaze

R

Registers I Data Vi

Dua Ve 9 1
E aabbzost P
N Wree Frad
4813083, ————) ——{ij ~
frss) o~ o { l
—muun——@ﬁ}—————-——— \2f

e

naanmnui *

Figure 18: Test Code 1, Line 3 Datapath View

Register View =2 - " ¥

T - 4

| EduCPU Registers

Register D0 00A11111
Regiter 001 00010100
Register 010 00310011
Regiter 011 00000000 i
Regigter 100 000000RT

. Regster 101 00000050
. Regsier 110 00000000
1. Regiser 111 0onc0000
' mmﬁ
Vass |

£
o)

Figure 19: Test Code 1, Line 3 Register View
After simulating line 3, we can see the updated values in Register View.
Register 1 [001] is loaded with value 20 [00610100] during simulation of line 2.
Register 2 [010] now has value 51 {00110011], which is the summation of values in
register 0 and register 1. We can see the in Datapath View around the Registers, Data
23

1 comes from register [001], and Data 2 comes from register [000]. Both these data
flows into the ALU, and the result of [00110011] comes out from the ALU. The data
is written back into register [010], which is register 2. Now, we simulate line 4 of the

code.

EduCPU Memory |

138 ¢0000000 .

19 00000000

20 £0000000

21 00000000

22 00000000

23 00000000

24 00000000

25 00110011

26 00000000

27 00000000

28 00000000

29 00000000

30 40000000

31 00000000
1 32 00000000
P33 00000000

34 00000000

35 00000000

Refresh Memory | -
. Velues |

Figure 20: Test Code 1, Line 4 Memory View

According to the command executed, which is [sw $2, $1, 5], the
value in register 2 [010] will be stored into memory value register 1 [001] + 5. Since
the value in register 1 is 20 [00010100], when added with 5, the result is 25. We can
see the updated memory values by pressing ‘Refresh Memory Values® button. So, the
value in register 2, which is 51 [00110011] is stored in memory location 25 as shown
in Figure 20 above. Now the code has completed the simulation. The ‘Transmit’

button in Main View is now automaticaily disabled again.

24

4.4 Simulation: Test Code 2 — Multiplying values

addi $0, $0, 3
addi $1, sl1, 6
addi s$2, s$2, 1
add $3, 51, S$3
sub $0, $0, $2
bne $0, $4, $4

In this test code, we are going to do a 6 X 3 multiplication. The answer will
be saved into register 3. The method of doing this is we are going to add the value 6

with itself 3 times.

In the first two lines, we are just putting the numbers to be muitiplied in the
registers. Value 3 [00000011] is saved into register 0 and value 6 [00000110] is
saved into register 1. In third line, value 1 [00000001] is saved into register 2. The

purpose is so that we can subtract one from the counter in each loop.

In the fourth line, the data in register 1 is added to the data in register 3 and

stored into register 3. This action is shown in Figure 21 and Figure 22.

S
i
! EduCPU Datapath
i 1A Right
| e o
% Caende [15-17)) Sil:n\—eandaiié
Opeode D601 add SRamIRD d tneton 200 g

~ 00 .
bmnmnm:mnm Q 4 o
RS D08}

Iratnten f—- 001

Dt Rasd [hoprlare

011 Fegater? Data 2 |- 00000000 - T
mr,.s]l A f_l N ALy [DER0GTYE T s
: £
ar i EY o . =
Mu_ke DAL e Regater wuuecuouat e Memary
3 j -~

RG2)

[Registe

A0DOLLOD 'a E\
' i ﬁ\, Wit Reea
TooGDALG
RS e v L I

2! [- o112 ; s
1 Linpiger o l\%"
21301100 ¥

fegaeer 1 Data) 00800150

Figure 21: Reg 3=Reg 1 + Reg 3

25

Register 000 poooanil

Register D01 00000110
Register 010 00000001
Register 011 00000110

Register 100 00000000

Register 101 00000000
Register 110 00600200
Register 117 00006000

"| Change Register |
. Vakes !

Figure 22: Registers view after line 4 is transmitted

After the value 6 is added once, the value in register 0 is subtracted by one.
The value in register 0 represents the loop counter. Once it reaches 0, the program
will no longer add the value 6 into register 3. Figure 23 shows the registers view after

line 5 has been transmitted:

RegisterView . . ¥

| EduCPU Registers

Register 000 00000010

Register 00T 00000116

Register 110 00000001
Regiter 111 00000110
Register 100 00000000

Register 101 00000000

Register 110 DoOGO0D0D |

| Regster 111 00000060

Figure 23: Registers view after line 5 is transmitted
26

As we can see in Figure 23, the value in register 0 is decreased by one. The
last line checks if the value in register 0 is equal to value in register 4 or not. If it is
not equal, the program will go back to line 4 of the code. Now, the value in register 0
is 2 [00000010] and the value in register 4 is 0 [60000000]. It is not equal (Zero flag
not raised to 1), means the program will go back to line 4. Figure 24 shows the

datapath view after transmitting the last line. Note that the zero flag is zero:

EduCPLU Datapath
LeteFogre
oo
Crente ST }"S—W
Onevoe L3213 Wk Sff_';jtl“ﬂ : Dvediore 2om Negaksee I
[BRPRTEAT IR) [L :
et o i
ierortiun b 100 ————— Bagrer 1 Duad [00D caunn»—m—v———--l\ Dun Fea | DontTaze 3
. [2o [eguar? Taad [- B300DIE. i
tastuction § [AIJJ 12300335 e |
Memocy e ;\ ..
e & 805 Jvkee Prgener
fRp— - nm—\a' i nmmm Memony
LR
£ Ry Dita e
tathrLen : o
A tiwe Feed
£ Bealy { R
W It
- n M) S it
W R ¢ Y % 1.
1 o I E»"
T ®

Figure 24: Datapath view after transmitting line 6

The program now goes back to line 4. The main view, datapath view, and

registers view is shown in Figure 25, Figure 26, and Figure 27 respectively.

by S Senl o Senge
addi 3, £%, € R SO S e
‘eddi 62, 52, 1 T (0 Por o
zdd 33, $i, 53 1 Regﬂmm__j P
sub 50, $0, §2 — “.——*“____\‘ Baut Rate - i
boe &0, 34, &4 o Memoy Vew | s -
Hp Parity -
Wachine code: : 7) P
T PO A S— 1 ware Flom Control - N
0001060100100110 l Comple |
0002001001000002 _ ﬁ;___m__;__j _ .
He0CI00201161100 e R
0001200091000000 Cunent Line TR e ¢ [
£111110000000100 T g i Trnsma! |
: ¢
i S A
Totad Lines: € i__m_....__ _

Figure 25: Main view after transmitting line 4 for second time

27

EduCPU Datapath

Opadn 1E1T) @’Wm”‘”
|

Opeede 20001 sod 9!3;@11433 vefor Ze Negutve
[* i ° o o

DOODL00100201 100

RSNDY
institsen 1001

o gax Fugeters Datad |- 0000GLLD - R
[t : | - .
RS ‘—[} » AU 20002200 Aodiess
031 4 srme Rngarer Ly . e
—uu—\.: } b ’)nnaunnu{ Memury
ki

Fegaterl Daal [00600310 Data Read - Dmmxtace

mpg N /

& Registers . bt D Vi

fulilnfsx b Rel o]
' Gabbinee f\:; "
Em o ' 3
e {20 C
AophoariT] Lf _j»

2xa01100 -

)
Fol
gnw

Figure 26: Datapath view after transmitting line 4 for second time

Regasher\liew B

EduCPU Registers
Register 000 jp0coG010
Regiser 001 00000110 |
Register 010 40000601
Register 011 6001100
Register 100 0004000
Regster 101 00000000 |
Régisl&no ::ooomoao

Register 111: :00000000

Figure 27: Registers view after transmitting line 4 for second time

We can see the value in register 3 is now 12 [060001100]. Value in register 0
will be decreased by one again, and then ‘bne’ instruction will check if value in
register 0 is equal to value in register 4. 1t is still not equal because at this point of
time, the value in register 0 is 1 [00000001] and value in register 4 is 0 [00000000].

The program will go back to line 4 again for transmission.

28

In line 4, the value 6 will be added again to register 3, making the value in
register 6 to be 18 [00010010]. In line 5, the register 0 will contain the value 0
[00006G000] because the previous data, which was 1, is decreased again by one. In
line 6, ‘bne’ instruction will check again if value in register 0 is equal to the value in
register 4. If they are equal, the zero flag will be raised. Now we can see that they are

equal, denoted by the zero flag raised to 1. This is shown in Figure 28.

EduCPU Datapath

Spewsa 1531 %H;I)—GMDBGUG
Opcpde 1LY g Shemepily
-5 :

s el B . .
188 Repster1 Dotn 1 - OD0R0D4S Towa Flead | Denzare
L-a00. Fogster? Data? | O0GADG0O-, | -
K75 {r’ < sl i) Addrets
LY y "
- 003 Vite Reguter ’l\ -
Fen— o § : } 60000800 - Memory
wmay o1 -
t Regisk Daca Ve

BRHODLLD P
{/‘\ Wree Read

Semtare —, 1 |
m B8 K g {’A\i !
WY Zero X g
nmo—(@————— k“j
x*

B Sumpdica {10
PELESEE

Figure 28: Datapath view after transmitting the Iast line of the code

it

Reagister View (e

EduCPU Registers

Regster 000 hooooooo
Register 001 00000110
Register 018 00000001,
Regster D11 0020010 |
Regiter 100 0000C0CO
Regster 101 00000000
- Register 110 00000000
Regster 111 - 60000050

Figure 29: Registers view after transmitting the last line of the code

29

Note that the program is complete at this point. We have the value in register
0 to be 0 [00000000], register 1 to be 6 [00000110], register 2 to be 1 [00000001]
and register 3 to be 18 [00010010] (our wanted final answer). The register values are
shown in Figure 29. The “Transmit” button is also disabled now, indicating that the

program has reached the end, as shown in Figure 30.

. . 1 Serial Port
add:.L §0, §0, 3 | EduCPU View Settings
addi $1, §1, 6 ol . —
ddi $2, $2, 1 on w
s .S, 61, 43 Regsters View | -
sub $0, §0, §2 ———— BeudFae ”
bne 50, 54, &4 - Memory 1 Deta Bis .
| Heo | Panty v
Machine code: =
e Software Flow Control -
0001000000000011 . | ’
0001000100100110 Compile
0001001001000001 |
0000100101101100 : E
0001100001000000 Cument Line
0111110000000100 B
- Total Lines: 6 l

Figure 30: Main view after transmitting the last line of the code

4.5 Transmitting machine code through serial communication

The machine code compiled by the graphical user interface can be transmitted

to the actual hardware through serial communication as shown in Figure 31 below.

Figure 31: Connection between PC and hardware

30

Since there will be a delay during transmission, the user has to wait
approximately 2 seconds before the data transmission can complete successfully. To
make sure that the simulation software is synchronized with the hardware result, the
simulation result is also delayed by approximately 2 seconds if a port is opened. If no

port is opened, the simulation will show results instantaneously.

In order to transmit using correct port, the hardware needs to be connected to
a serial port of the computer using a serial cable. Then, the correct port must be

selected using the graphical user interface as shown in Figure 32 below.

Assembly code
addi §0, §0, 31 . Serial Port Settings
addi §1, §1, 20
add §2, $1, §0 ‘ rom——) COM Port -
=™ 52, 81, 5 Fageters View |
——————— BaudRate 5600 - !
|
L____""'"”"'} Data Bts 8 - Close Pot |
= ’—”__‘1
Help Paty None -
Machine code:
Software Flow Control None -
0001000000011111 -
0001000100110100 Compie
0000100100001000 ‘
0110000101000101 R e — 1
c‘mm Loce U Ol wl ars L $s- :
0 Transmt! ||
N Total Lines: 4

Figure 32: Choosing the correct serial port

4.6 Hardware

The circuit design has been finished according to the datapath design shown
in Appendix B. The circuit design is done using CadSoft Eagle Professional v5.6.0. It
is shown in Appendix C. However, the actual implementation is that the circuit is
divided into 5 smaller parts for easier fabrication. The divided PCB parts are shown
in Appendix D.

Data is stored in register files. 4 register files are used in the designed circuit.

This is because the educational processor is designed with 8 8-bit registers. Each

31

register file only stores 4 4-bit register, so we need 4 register files in order to fulfill
the requirement of the design. Arithmetic logic unit (ALU) is used to compute
certain instructions such as add, sub, or, xor, and many more. 2 ALUs are used
because each ALU can only process 4 bits of data. Since the whole processor is

designed for 8-bit data, we need 2 ALUs to complete the instructions given.

Depending on the instruction, ALU, registers, and memory will need to
receive data from different parts of the circuit. The multiplexers are used to control
this data flow. 3-state buffers are used to disconnect certain data whenever it is not
needed, so that the data will not interfere with data coming from another part of the
circuit. Memory is used to store data temporarily. The memory is able to store a total
of 2048 8-bit data.

Two microcontrollers will be used to send the control logics to all the other
parts of the circuit. They will receive instructions from a connected computer
through serial communication. The software will send the instruction bits to the
microcontroller serially, and then the microcontrollers will send the control logics to
each component on the circuit in order to execute the instructions properly. The data

flowing in the circuit will be shown by LEDs on the circuit for easy reference.

The actual Educational Processor hardware with 16-bit instruction and 8-bit

data has been constructed and is shown in Figure 33.

Figure 33: Hardware of Educational Processor

32

The hardware will perform the same functions as the simulation software,
with some differences. The differences are;
o The hardware is unable to process ‘srl” and ‘sll’ instructions due to the
absence of parallel shift register.
e Users will not be able to directly change register values using the
EduCPU software. Values need to be set using ‘addi’ instruction.
e The data displayed on the hardware will not be as detailed as in the
stmulation software. The data displayed will only be at:
o ALU output/ Memory address input
o Memory output / Memory input

o Data written back into register

Despite the differences, users will still be able to see what data flows inside
the hardware by using multi meter. The LEDs are placed at only significant parts of

the circuit for easier implementation.

Upon receiving serial data from the computer, the microcontrollers will
interpret the received data and send corresponding control logic signals to the ICs in
order to execute the instruction given properly. 2 microcontrollers are used to send
logic signals, since the pins needed to control everything could not be covered by

only one microcontroller.

If the user does not use any ‘srl’” or ‘sll’ instructions or change the values in
the register directly, the data displayed at the hardware should be exactly the same

with the data shown in the simulation software.

4.7 Discussion

The EduCPU software should be significantly helpful for students who are
taking Computer System Architecture course in UTP. The hardware will function
just the same as the simulation software, so it is very useful for students who prefer

hands-on learning compared to just using the software.

33

The hardware can be improved some more by adding paratlel shift register
IC. Due to several constraints such as IC supplies and time constraint, the parallel
shift register could not be added to this processor. Other than that, the hardware is

working perfectly as intended.

34

CHAPTER 5
CONCLUSION & RECOMMENDATIONS

5.1 Conclusion

The objective of this project is to develop a simple processor using TTL logic
gates for educational purpose. This educational processor will be assisted by
software that will communicate with the educational processor through serial

comnmmication.

The software can also work on its own without the hardware. It can provide
simulation of the codes inputted by the user, and show exactly how MIPS-based
processors work. This will definitely help students in learning how processors work,

especially in Computer System Architecture course.

5.2 Recommendations

For future work, there are definitely a lot of improvements that can be done to
improve the educational processor. Such improvements include:

o The number of instructions can be increased to more than 16
instructions, allowing for more complex programs to be run on the

. ProCessor.
s Full working CPU capable of running a simple operating system can
be constructed. If this is completed, this project can educate students
in areas more than just Computer System Architecture, but also in the

Operating System, Assembler & Compiler Design and more areas.

35

[t]

[2]

[3]

[4]

[3]

[6]

{71

REFERENCES

Albert P. Malvino & Jerald A Brown, 3rd edition, “Digital Computer

Electronics”, “SAP Processor”.

Weik, Martin H. (1961), “A Third Survey of Domestic Electronic Digital

Computing Systems”.
Alan Clements (2006), 4th edition, “Principle of Computer Hardware”.

Gary Shute (2007), “MIPS Instruction Coding”
http://www.d.umn.edu/~gshute/spimsal/talref.html.

J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett, and J.
Gill (1982), “MIPS: A Microprocessor Architecture”.

Hwang, Enoch (2006), “Digital Logic and Microprocessor Design with
VHDL”. Thomson.

D ‘Arcy Becker, Meg Dwyer (1998), “The Impact of Student Verbal/Visual

Learning Style Preference on Implementing Groupware in the Classroom”.

36

LE

111

(4}

11

114

6 8 L 9 | v € [4

uonellige

FuiB8ngap pue uonenwis
uBisap sopewayas ynaD
udisap yjed ejeq
Bujwwesdoad asepiaiul asn
udisap 1as uonINJISU|
MalABs ainesay aajdwo)
J1doy Jnoqe yoieasay

uopaa|@s ado |

HIGNNN A33IM
T 1J3r0¥d ¥V3iA TYNI4

SaNIAIY

LAVHD LINVD LOArodd - VXIAONAddV

8¢

141

ET

(41

11

o1

6 8 (4

yioday |euly

Jjoday Yyeiqg
duijooysa|gno.l aiempieH
Bupy 8ng asemyjos
uodau ssasfoid
uoedlIqe) alempleH
Aupwwesdo.d asemyos

uOREIAUIPI ¥5EL

HIGAINN H3IM
T 123r0dd ¥V3A TVNI4

SORIAIDY

PRaM Sl

6t

BRI
Aowapw
ssauppy

pesy eiag

a1

aez WOPANQ

swp), e
siasiBayy
JasiBay Al

ZeRq] 7 pwbey
Lerg | eebay

ssauppy
uaIoneLy

Atowapy
uonannsuy

uoRonSy|

NOISHA HLVAVLVd — 94 XIANAddV

oy

LLYL - S3ydeT-a VLL8A9] — SIO[[ONUOD0IIN =
=g
ir =
ZIpL - s1png AvIS-¢ | _ ‘ ‘ / ‘
LS1¥L - ssoxaidniny 7 _ J
I

[INH | | |
iw_ iy ; _#r.-_ | r_r = i :

: AN (|6 |

SN [T e |

f i 4 M s f [T _r 7

E L | — = W= S [

n I _ _.m lii s _ I

i | BeN s st p i

; 7 - — = (| 3 | _:

= \ (Il

= = (|

j |
B - W Al N il

I - _ _

- i X A
[19 - Klowapy ______‘__.___ an A BN e

A — .

saa

NOISHd LINDYUID — I XIANAddV

87

-

]
e

[00000000
1.0
0000000000

"

NOIISAA LINDYHIO 40d LI'ldS —d XIANAddV

(44

144

APPENDIX E — PERL SOURCE CODE

Perl source code for the Compiler Windows application:

Handle input file from every filename in temp file
open(INFILE, "Assembly.xt") || die "Can't find ‘Assembly txt' in current folder. Stopped execution”;
@result = <INFILE>;

open(QUTFILE, ">Qutput.txt"} || die "Can't create output file in current folder. File 'Output.txt' may be cumently opened. Close
the file and try again. Stopped execution”;
@outputfile = <OUTFILE>;

open(ERRFILE, ">Error.txt") || die "Can't create output file in current folder. File "Errer txt’ may be currently opened. Close the
file and try again. Stopped execution”;
@ermorfile = <ERRFILE>;

if (not defined(@result)) { print ERRFILE "No code written.”; goto END;}

else { }
$error=0;
for($i=0;$i<=$fresult; $i++)
{
$linenumber=$i+1; # Line number for error checking
$type=0; # Initialize variable type
@result]$i} = s/./ fg; # Replace , with blank space
(@result[$i] = sA$/ fg; # Replace $ with blank space
(@command=split{/\s+/ @result[$i]); # Split everything
@command]0] = tr/A-Z/a-z/, # Convert all to lowercase
if (not defined(@command[0])) { goto END;} # If blank line, go to end of file (ignore the ling)
else { }
Determining the epcode and instruction type, then print the opcode for the given command
if (@command[0]=~add$/} { pmnt OQUTFILE "00001"; S$type=R"
$param=4;}
elsif (@commandf0l=/addi$/) { print OUTFILE "00010"; $type=T, $paran—4;}
elsif’ (@commandf0]=~/"sub$/} { print OUTFILE "00011"; $iype="R", $param=4;}
elsif’ (@commandf0]=/"and$/} { print OUTFILE "00100"; $type=R", $patam=4;}
elsif ({@cormmandf0]=/andi%/} { print QUTFILE "G0101"; $type=T; $param~4;}
elsif {(@commandf0]=/"0r$/) { print OUTFILE "00110"; $type="R"; $param=—4;}
elsif (@commandf0]=/ori$/) { print QUTFILE "00111", $type=T; $param=4;}
elsif (@commandf0]=/"xor§/) { print QUTFILE "01000"; $type="R", $param4;}
elsif’ (@command[0]=/"xori$/) { print OUTFILE "01001", $type=T; $param=4;}
elsif (@command[0]=~/"sil$/) { print QUTFILE "01010"; $type="5"; $paranr-4;}
elsif {@commandf0}=/*si$/) { print OUTFILE "01011"; $type='S"; $param=4;}
alsif (@command[0]=—/"sw$/) { print QUTFILE "01100"; $type="1"; $param=4}
elsif {@command{0]=/lw$/) { print OUTFILE "01101"; $type=T; $param=4;}
elsif {@command[0}=/"beq$/) { print QUTFILE "01110", $type="T; $param=4;}
elsif {@command[0]=/"bnre$/) { print QUTFILE "01111"; $type=T; $param=4;}
elsif {@command[0]=/"$/} { prmt QUTFILE "10000"; $type=¥; $param=2;}
else { print ERRFILE "Invalid

command at line $linenumber \n"; $error=1;)

if {not defined(@command[$param-11)) { print ERRFILE "Not encugh parameters at line $knenumberin";
$error=1:} # Check if enough parameters

else {}

if ($type=R){

®ister_rs; # Printing 1st register value (rs)
®ister rt; # Printing 2nd register value (rt)
®ister rd; # Printing 3rd register value (rd)

print OUTFILE "00\n"; # Printing O shift amount
H

elsif ($type=—1){

®ister_1s; # Printing 134 register value (£s)
®ister_rt i # Printing 2nd register value (rd)
&immediate; # Printing immediate value

44

}

elsif ($type=8}{
®ister_rs; # Printing 15t register value (1s)
®ister_rt; # Printing 2nd register value (rt)
®ister rd; # Printing 3rd register value (rd)
&sham; # Printing shift amount
}
elsif (Stype=J){
&jumpacidr; # Printing jump address
i
else {}
if (Serror == 0){ _
print ERRFILE "Code OK. Proceed with transmission.™;
}
else { }
sub dec2bin

{

my $str = unpack("B32", pack("N", shift));
$str =~ s/ O-H =AW/

return $str;

1
sub register_1s
{
if (@command[2]>7) { print ERRFILE “Invalid value of rs at line $linenumber\n";
$error=1;}
glsif’ (@commandf2]<2) { print QUTFILE "00";}
elsif (@command[2]<4) { print OUTFELE "0";}
else {)
$regrs = dec2bin(@command[2]);
print OUTFILE $regrs;
}
sub register_tt
{
if (@command[3]>7) { print ERRFILE "Invalid value of rt at line $linenumberin”;
$error=1;}
elsif {@command[3]<2) { print OUTFILE "00";}
elsif {(@command{3}<4) { print OUTFILE "0";}
else {}
$regrt = decZbin(@command[3]);
print OUTFILE $regrt;
}
sub register_rt i
{ .
if (@command[1]>7) { print FRRFILE "knvalid value of 1t at line $linenumber\n"”;
Serror=1;}
elsif (@command[1]<2) { print OUTFILE "00";}
elsif (@commandfl]<4) { print OUTFILE "0";}
else {}
$regrt = dec2bin{@command[1]);
print OUTFHELE S$regrt;
}
sub register rd
{
if {@coramand(1]>7) { print ERRFILE ‘“invalid value of rd at line $linenumberin”
Serror=1;}
elsif {@command{1}<2) { print OUTFILE "00";}
elsif {@command{1}<4) { print OUTFILE "0";}
else {}
$regrd = dec2bin(@commandf1]y,
print QUTFILE $regrd;
}

45

sub shamt

{

i (@commandf3]>3) { print ERRFILE ‘'Imvalid value of shift amount at line
$linenumber \n"; $error=1;}

elsif (@command{3}<2) { print OUTFILE "0";}

else {}
S$shiftvalue = dec2bin(@command{3]),
print QUTFILE $shifivalue;
print OUTFILE "\n";
1
sub immediate
{
if {@command[3]>31) { print ERRFILE "Invalid value of immediate at line $linenumber\n";
$error=1;}
elsif {@command[3}<2} { print OUTFILE "0000";}
elsif {@command[3]<4} { print OUTFILE "000";}
elsif {(@command[3]<8) { print OUTFILE "00";}
elsif’ {(@command[3]<16) { print OUTFELE "0";}
else {)
$imm = dee2bin(@command[3]};
print OUTFILE $imm:;
print OUTFILE ™n™;
}
sub jumpaddr
{
print QUTFILE "000"; #edit this to be 17 bits later
if (@command[1]>255)} { print ERRFILE "Invalid velue of jump address at line
$linenumber \n"; $error=1;}
elsif {(@command[1]<2}) { print OUTFILE "0000009";)
elsif’ {@command[1]<4) { print OUTFILE "000000";}
elsif (@command[1]<8) { print OUTFILE "00000";}
elsif (@command{1]<16) { print OUTFILE "0000";}
elsif (@command{1}<32) { print QUTFILE "000";}
elsif (@command{11<64) { print QUTFILE "00";}
elsif {@command[1]<128) { print OUTFILE "0";}
else {}
$imm = dec2bin{@command[1]);
print GUTFILE $imm;
print QUTFILE "\n";
}
END;

46

APPENDIX F — VISUAL BASIC 2010 SOURCE CODE

This is the code for the software with graphical user interface (EduCPU).

Imports System

Imports System.IC.Ports

Imports System.Threading
Imports System.Threading. Thread

Public Class FormMainView
#Region "Initialization”

Dim Withtvents COMPort As New SerialPort

Dim TransmitCounter As Integer = 8

Public Register()} As String = {"00000008", "000GEBPE", "0000GLER",
"00060000™, "6008000R", "00REEREO", "DOOBOREE", “GPABOABO"}

Oim OverflowFlag As Integer = @

Dim ZeroFlag As Integer = @

Dim NegativeFlag As Integer = @

Dim ShiftLeft As Integer = @

Dim ShiftRight As Integer = @

Public Memory As New List(Of String)

#End Region
#Region "Submit Button"

Private Sub ButtonSubmit Click(Byval sender As System.Obiect, ByVal e As
System.EventArgs) Handles ButtonSubmit.Click

'Initialize memory values all to ee

For MemCounter = @ To 256
Memory.Add("02000800™)

Next

For MemCounter = @ To 256
Memory(MemCounter) = "90600000"
Next

Dim filePath As String
filePath = "test.pl”

If My.Computer.FileSystem.FileExists(filePath) = False Then
‘Verify that the perl file exists.
MsgBox("File Not Found: " & filePath, MsgRoxStyle.Critical +
MsgBoxStyle.ApplicationModal, "Error”)
Environment.Exit(@)
Else
End If

Dim objFile As New System.IO.Streamiriter{“Assembly.txt™)
'File to save original code
Dim intCounter As Long = TextBoxAssemblyCode.lLines.Count
For intCounter = @ To TextBoxAssemblyCode.Lines.Count - 1
'For loop to write each line in TextBoxAssemblyCode to file
objFile.WriteLine(TextBoxAssemblyCode.Lines{intCounter).ToString)
Next intCounter
obiFile.Close()

47

Sheli(“"perl * + filePath, AppWinStyle.Hide, True)
'Run perl file that does the actual compiling

Dim objFilel As New System.IO.StreamReader("OQutput.txt") 'File
to read output from perl file

Dim strContents As String

strlontents = objFilel.ReadToEnd() 'Read
contents of text file, save in variable strContent

TextBoxMachineCode.Text = strContents
'Display in TextBoxMachineCode

objFilel.Close()

objFilel.Dispose()

Dim ErrorBox As New System.IO.Streamieader(“Error.txt") 'Read
error contents
Dim ErrorContents As String

ErrorContents = ErrorBox.ReadToEnd() 'Read
contents of text file, save in variable ErrorBox
TextBoxError.Text = Errorlontents ‘Display

in TextBoxError
ErrorBox.Close()
ErrorBox.Dispase{)

My.Computer.FileSystem.DeleteFile{ "Assembly.txt") ‘Delete
the text files after use

My.Computer.FileSystem.DeleteFile("Output.txt™)

My.Computer.FileSystem.PeleteFile("Error.txt")

’Hide Transmit button i¥f code contains errors
If Not TextBoxError.Text = “Code OK. Proceed with transmission.” And
Not TextBoxMachineCode.Text Is Nothing Then
ButtonTransmit.Enabled = False
Else
ButtonTransmit.Enabled = True
End If

'Set counter to & everytime assembly code is compiled
TransmitCounter = 8

TextBoxCounter.Text = "o"

LabelTotaltine.Text = TextBoxMachineCode.Lines.Count - 1

'Set all textboxes in EduCPY View to empty
FormUCView. TextBoxUCInstructions.Text = ="
FormUCView. TextBoxShift.Text = "
FormUCView. TextBoxRegRT.Text = "
FormUCView. TextBoxRegRS.Text = ""
FormUCView.TextBoxRegRDChosen,Text = "
FormUCView. TextBoxRegRD.Text = "*
FormuCview. TextBoxOpcode.Text = "
FormUCView. TextBoxImmExt . Text n
FormUCView. TextBoxImm. Text = *"
FormCView, TextBoxOverflow. Text = "
FormUCView, TextBoxDatal.Text = ™"
FormUCView. TextBoxData2.Text = ™"
FormuUCView. TextBoxALUInput2 . Text = "
FormUCView. TextBoxALUResult.Text "
FormUCView. TextBoxZero.Text = ™"
FormUCView. TextBoxNegative.Text = ""
FormUCView.TextBoxMemData.Text = "
FormUCView. TextBoxShifted.Text = "

[

1

48

FormUCView.TextBoxleft.Text = ™"

FormUCView.TextBoxRight.Text = "

FormCView. TextBoxDataWrite. . Fext = ""
FormUCView. TextBoxImmChosen.Text = "
FormUCView. TextBoxCtriRead.Text = "~
FormUCView. YextBoxCtriWwrite.Text = **
FormUCView.LabelInstruction.Text = “"

'Clears the values of registers 8-7
For i =@ To 7

Register(i) = “00000000"
Next

'Displays the cleared values

FormRegister.TextBox@88.Text = Register(8)
FormRegister.TextBox@01.Text = Register(1)
FormRegister.TextBox@18.Text = Register(2)
FormRegister.TextBox011.Text = Register(3)
FormRegister.TextBox180.Text = Register(4)
FormRegister.TextBox181.Text = Register(S)
FormRegister.TextBox110.Text = Register(6)
FormRegister.TextBox111.Text = Register(7)

FormMemory . ButtonChangeValues.Enabled = True
End Sub
#End Region
#Region "Transmit Button"

Private Sub ButtonTransmit_Click({Byval sender As System.Object, ByVal e As
System.tventirgs) Handles ButtonTransmit.Click

Dim MachineCodeStr As String
Dim InstructionLines() As String
bim InstructionType As String

MachineCodeStr = TextBoxMachineCode.Text "Te display
instruction in Microcontroller View

Instructiontines = Split(MachineCodeStr, vbCrif)

FormUCView. TextBoxUCInstructions.Text =
InstructionLines{TransmitCounter)

TransmitCounter = TransmitCounter + 1 'Increment
TransmitCounter

TextBoxCounter.Text = TransmitCounter

FormUCView. TextBoxPC.Text = TransmitCounter

'Pisplay which bits goes where in EduCPU View
FormUCView.TextBoxOpcode, Fext =

FormUCView. TextBoxUCInstructions. Text.Substring(@, 5)
FormUCView. TextBoxShift.Text =

FormUCView. TextBoxUCInstructions. Text.Substring(i4, 2)
FormUCView. TextBoxRegRS. Text =

FormUCView. TextBoxUCInstructions. Text.Substring(s, 3)
FormUCView. TextBoxRegRT. Text =

FormUCView.TextBoxUCInstructions. Text.Substring(8, 3)
FormUCView. TextBoxRegRD.Text =

49

FormUCView. TextBoxUCInstructions. Text.Substring(11, 3)
FormUCView. TextBoxImm.Text =
FormUCView. TextBoxUCInstructions.Text.Substring{11, 5}
FormUCView. TextBoxJumpAddr.Text =
FormUCView.TextBoxUCInstructions.Text.Substring(8, 8)
FormUCView. TextBoxImmExt.Text = "@ee” +
FormUCView. TextBoxUCInstructions., Text.Substring(11, 5)
FormUCView. TextBoxImmChosen.Text = FormUCView.TextBoxImmExt.Tex

'If R-Type instructions..
If FormUCView.TextBoxUCInstructions.Text.Substring(®, 5) = "eesnl” Or

FormUCview. TextBoxUCInstructions.Text.Substring(8, 5) = "ees11" Or
FormUCVview.TextBoxUCInstructions.Text.Substring(®, 5) = "ee1ee" or
FormuUCView. TextBoxUCInstructions. Yext. Substring(@, 5) = “"@9118" Or
FormUCview. TextBoxUCInstructions.Text.Substring(e, 5) = “e1eee” or
FormiCView.TextBoxUCInstructions.Text.Substring(@, 5) = "@1818" or

FormiCView. TextBoxUCInstructions . Text.Substring(®, 5) = "81811" Or
FormUCview. TextBoxUCInstructions.Text.Substring(@, 5) "@ilie” or
FormUCView.TextBoxUCInstructions.Text,Substringf@, 5) = "p1111"

1

Then

InstructionType = “R"
FormUCView. TextBoxRegRDChosen, Text =
FormUCview.TextBoxUCInstructions. Text.Substring(11, 3)
Else
InstructionType = "I
FormUCView.TextBoxRegRDChosen. Text =
FormUCView.TextBoxUCInstructions.Text.Substring(S, 3)

'Displays data running in EduCPU View
FormUCView, TextBoxbatal.Text =
Register(CDeci{FormUCView.TextBoxRegRS.Text))
FormUCView. TextBoxData2.Text =
Register(CDeci(FormUCView.TextBoxRegRT.Text))
FormUCView. TextBoxMemData.Text = "DontCare"
FormUCView. TextBoxShifted.Text =
Register(CDeci{FormUCView. TextBoxRegRS.Text))
FormUCView. TextBoxCtrlRead.Text = "o"
FormUCView. TextBoxCtrlWrite. Text = "@"

FormUCView. TextBoxMux3.Text = "1"
FormUCView. TextBoxMux4.Text = “x"
FormUCView.TextBoxMux5.Text = "1"

‘Specify which instruction does what
If FormUCView.TextBoxOpcode.Text = "88010" Then 'addi
FormUCView.LabelInstruction.Text = “addi”
Register(CDeci(FormUCview. FextBoxRegRDChosen.Text)) =
CBinB(CDeci{Register{CDeci(FormUCView. TextBoxRegRS.Text))) +
CDeci(FormUCView. TextBoxImm.Text))
FormUCView. TextBoxAlLUResult.Text =
Register(CDeci(FormUCView. TextBoxRegRDChosen.Text))
FormUCView, TextBoxDataWrite.Text =
FormUCView.TextBoxALUResult . Text
FormUCView, TextBoxMux2.Text = "g"
Elself FormUCView.TextBoxOpcode.Text = "@@e01" Then 'add
FormUCView.tabelInstruction. Text = "add"
Register(CDeci(FormUCView. TextBoxRegRDChosen. Text)) =

50

CBin8{(Deci(Register(CDeci(FormUCView. TextBoxRegRS.Text))) +
CDeci(Register(CDeci{FormUCView. TextBoxRegRT.Text))))
FormUCView.TextBoxALUResult.Text =
Register(CDeci{FormUCView. TextBoxRegRDChosen.Text))
FormuiCView.TextBoxDatawrite. Text =
FormUCvView.TextBoxALUResult . Text
FormUCView. TextBoxMux2.Text = "1"

Eiself FormuCView.TextBoxOpcode.Text = "80011" Then 'sub
FormUCView.LabelInstruction.Text = "sub”
Register(CDeci(FormUCView. TextBoxRegRDChosen.Text)) =

CBin8(CDeci{Register(Checi(FormiCView. TextBoxRegRS.Text))) -
C(Deci{Register{CDeci(FormUCView.TextBoxRegRT.Text))))
FormUCView.TextBoxALUResult. Text =
Register(CDeci(FormUCView.TextBoxRegRDChosen.Text))
FormuUCView. TextBoxDataWrite. Text =
FormUCView. TextBoxALUResult.Text
FormUCView.TextBoxMux2.Text = "1"

Elself FormUCView.TextBoxOpcode.Text = "00180" Then 'and
Formt)CView. LabelInstruction.Text = "and”
Register{CDeci(FormuUCview.TextBoxRegRDChosen.Text)) =

CBin8(CDeci(Register(Checi{FormUCView. TextBoxRegRS.Text)})) And
Checi(Register(CDeci(FormUCView. TextBoxRegRT.Text))))

- FormUCView. TextBoxALUResult.Text =
Register(CDeci{FormUCView.TextBoxRegRDChosen. Text))

FormUCView. TextBoxDataWrite.Text =
FormUCview.TextBoxALUResult. Text
FormUCView. TextBoxMux2.Text = "1"

Elself FormUCView.TextBoxOpcode.Text = "86161" Then 'andi
FormUCView.LabelInstruction.Text = "andi”

. Register{CDeci{FormUCView.TextBoxRegRDChosen.Text)) =
(Bin8((Deci(Register(CDeci(FormUCView. TextBoxRegRS.Text))) And
CDeci{FormUCView. TextBoxImm. Text))

" FormUCView. TextBoxALUResult.Text =
Register(CDeci(FormUCView. TextBoxRegRDChosen.Text))

FormUCview.TextBoxDataWirite. Text =
FormUCView.TextBoxAlLUResult.Text
FormUCView. TextBoxMux2.Text = "g"

ElseIf FormUCView.TextBoxOpcode,Text = "08118" Then ‘or
FormCView. LabelInstruction.Text = "or"®
Register(CDeci({FormUCView. TextBoxRegRDChosen.Text)) =

CBin8(CDeci(Register(CDeci(FormUCView. TextBoxRegRS.Text))) Or
(Deci{Register{CDeci(FormUCView. TextBoxRegRT.Text))))

. FormUCView.TextBoxAlLUResult.Text =

Register(CDeci(FormUCView. TextBoxRegRDChosen. Text))
FormUCView.TextBoxDataWrite.Text =
FormUCview. Text BoxALUResult. Text

© FormUCView.TextBoxMux2.Text = "i"

Elself FormUCView.TextBoxOpcode.Text = "80111" Then ‘ori
FarmUCView.LabelInstruction.Text = “ori”
Register((Deci(FormuCview. TextBoxRegRDChosen.Text)) =

CBin8(Cleci(Register{(Deci({FormUCView. TextBoxRegRS.Text))) oOr
CDeci(FormUCView. TextBoxImm.Fext))
FormUCView. TextBoxALUResult.Text =
Register(CDeci(FormUCView. TextBoxRegRDChosen.Text)})
FormUCView. TextBoxDataWrite, Text =
FormUCView, TextBoxALUResult.Text
FormUCView. TextBoxMux2.Text = "p"

ElseIf FormUCView.TextBoxOpcode.Text = “91866" Then 'xor
FormUCView.LabelInstruction.Text = "xor™
Register(CDeci{FormUCView. TextBoxRegRDChosen.Text))} =

CBin8(CDeci(Register(CDeci(FormUCView. TextBoxRegRS.Text))) Xor
CDeci(Register(CDeci(FormUCView. fextBoxRegRT.Text))))

1

51

FormUCView.TextBoxALUResult.Text =
Register{CDeci(FormUCView.TextBoxRegRDChosen.Text))

FormUCView, TextBoxDatawrite. Text =
FormUCView. TextBoxALUResult. Text

FormCView. TextBoxMux2. Text = "1™

ElseIf FormUCView.TextBoxOpcode.Text = "01801" Then 'xori
FormUCView. LabelInstruction.Text = "xori™
Register(CDeci{FormUCView. TextBoxRegRDChosen.Text)) =

CBin8(CDeci(Register({CDeci{FormUCView. TextBoxRegRS.Text))}) Xor
CDeci{FormUCView. TextBoxImm. Text))
FormUCView, TextBoxALUResult. Text =
Register(CDeci(FormUCView.TextBoxRegRDChosen. Text))
FormuUCView.TextBoxDataWrite . Text =
FormUCView. TextBoxALUResult . Text
FormlCView. TextBoxMux2.Text = "p"

Elself FormUCView.TextBoxOpcode.Text = "91018" Then 'sll
FormUCView. LabelInstruction.Text = "s11"
Register{CDeci{FormUCView.TextBoxRegRDChosen.Text)) =

Register(CDeci(FormUCView.TextBoxRegRS. Text)). Substring({Deci(FormUCView. TextB
oxShift.Text), 8 - CDeci(FormUCView.TextBoxShift.Text)).PadRight(B8, "@")
FormUCView. TextBoxALUResult.Text = "DontCare™
FormuUCview. TextBoxShifted.Text =
Register(CDeci({FormUCView. TextBoxRegRDChosen.Text))
Shiftieft = "1
Shiftkight = "@"
FormUCView. TextBoxDatalWrite. Text = FormUCView.TextBoxShifted. Text
FormUCView. TextBoxMux2.Text = "1"
FormUCView. TextBoxMux3.Text = "g"
FormUCView. TextBoxMux4. Text = "p"
Elself FormUCView.TextBoxOpcode.Text = "@1811" Then 'srl
FormUCView. LabelInstruction,Text = "srl”
Register({CDeci(FormuCview.TextBoxRegRDChosen.Text)) =
Register(CDeci(FormUCView. TextBoxRegRS. Text)).Substring(@, 8 -
CDeci{FormiiCView. TextBoxShift.Text)).Padieft(8, "8")

FormlCView. TextBoxaiUResult.Text = "DontCare™

FormUCView. TextBoxShifted.Text =
Register(CDeci{FormUCView.TextBoxRegRDChosen.Text))

Shiftleft = “g*

shiftRight = "1"

FormUCView. TextBoxDataWrite.Text = FormUCView.TextBoxShifted.Text

FormUCview. TextBoxMux2. Text = "1"
FormUCview. TextBoxMux3.Text = "g"
FormUCView, TextBoxMux4. Text = "

Elself FormUCView.TextBoxQOpcode.Text = "@1108" Then 'sw
FormiCView, LabelInstruction.Text = “sw"
Memory(CDeci(Register(CDeci({FormUCView. TextBoxRegRS. Text))) +

Cbeci(FormUCView. TextBoxImm.Text)) =
Register(CDeci(FormUCView. TextBoxRegRT.Text))

FormUCView. TextBoxALUResult.Text =
CBin8(CDeci({Register{(Deci{FormUCview. TextBoxRegRS.Text})) +
CDeci(FormUCView. TextBoxImm.Text))

FormUCView, TextBoxDataWrite.Text

FormUCView. TextBoxCtrlWwrite. Text

FormUCView. TextBoxMux2. Text "a"

FormUCView. TextBoxMux3.Text = "x"

FormUCView. TextBoxMux4. Text = ™x"

Elself FormUCView.TextBoxOpcode.text = "@1101" Then '1w
FormUCView.LabelInstruction.Text = "1uw"
Register(CDeci(FormUCView.TextBoxRegRT.Text)) =

Memory(CDeci(Register(CDeci(FormuUCView. TextBoxRegRS.Text))) +
CDeci{FormUCView. TextBoxImm. Text))
FormUCView, TextBoxMemData.Text =

i1

"DontCare"
nye

o

It

52

Memory(CDeci(Register(CDeci({FormJCView.TextBoxRegRS.Text))) +
CDeci(FormUCView. TextBoxImm.Text))

FormUCView, TextBoxALUResult . Text =
CBing8(CDeci{Register(CDeci(FormUCView. TextBoxRegRS.Text))) +
CDeci(FormUCView. TextBoxImm.Text))

FormUCView. TextBoxDataWrite. Text = FormiCView.TextBoxMemData.Text

FormCView. TextBoxCtriRead. Text = 1"

FormUCView. TextBoxMux2. Text = "g"

FormUCView. TextBoxMux3.Text = “p"

FormUCView. TextBoxMuxs, Text = "1"

ElseIlf FormUCView.TextBoxOpcode.Text

FormuCview.tabelInstruction. Text

FormUCView. TextBoxALUResult. Text
CBin8(CDeci(Register{CDeci{FormUCView. TextBoxRegRS.Text))) -
CDeci(Register(CDeci{FormiCView. TextBoxRegRT. Text))})

If Register(CDeci(FormUCView.TextBoxRegRS.Text)) =
Register(CDeci(FormiCView. TextBoxRegRT.Text)) Then

TransmitCounter = CDeci(FormUCView.TextBoxImm.Text) - 1

Else

End I+

FormUCView.TextBoxDataWrite.Text = "DontCare"

FormUCView. TextBoxMux2.Text = "1"

FormUCView. TextBoxMux3, Text = "x*

FormUCView. TextBoxMuxd.Text = “x"

ElseIf FormUCView.TextBoxOpcode.Text

FormUCView.lLabelInstruction.Fext

FormuCView.TextBoxALUResult. Text
CBinB(CDeci(Register(CDeci(FormCView. TextBoxRegRS. Text))) -
CDeci{Register(CDeci(FormUCView. TextBoxRegRT.Text))))

It Register({CDeci(FormuUCView.TextBoxRegRS.Text)) =
Register(CDeci(FormJCView.TextBoxRegRT.Text)) Then

Else

TransmitCounter = CDeci(FormUCView.TextBoxImm.Text) - 1

End If

FormJCView. TextBoxDataWrite.Text = "DontCare"

FormCView.TextBoxMux2.Text = "1*

FormUCView.TextBoxMux3.Text = "x"

FormCView. TextBoxMux4, Text = "x"

ElseIf FormUCView.TextBoxOpcode.Text = "10000" Then 'j

FormUCView.labelInstruction_Text = “j*

TransmitCounter = CDeci(FormuCView.TextBoxJumpAddr.Text) - 1

FormUCView. TextBoxAlLUResult.Text = "DontCare”

FormUCView. TextBoxDataWrite. Text
FormUCView, TextBoxALUResult . Text

H

I

"@1118" Then “beg
llbeq“

LI I |

It

"@1111" Then 'bne
"bne"

non

1

FormuUCView. TextBoxMux2.Text = "
FormUCView. TextBoxMux3.Text = "x"
FormUCView. TextBoxMux4.Text = "x"
FormUCView. TextBoxMux5.Text = "g"

"Check zero flag
If FormUCView.TextBoxALUResult.Text = "90000880™ Then

ZeroFlag = 1
Else

ZeroFlag = @
End If

‘Displays all the registers and flags values
FormRegister.TextBox#80.Text = Register(8)
FormRegister.TextBox@@l.Text = Register(l)

]

]

53

FormRegister.TextBox@1e.Text

Register(2)

FormRegister.TextBox@11l.Text = Register(3)
FormRegister.TextBox100.Text = Register(4)
FormRegister.TextBox101.Text = Register(5)
FormRegister.TextBox110.Text = Register{s)

FormRegister.TextBox111.Text = Register(7)
FormUCView.TextBoxOverflow. Text = OverflowFlag
FormUCView.TextBoxZero.Text = ZeroFlag
FormUCView,TextBoxNegative.Text = NegativeFlag
FormUCView.TextBoxLeft.Text = ShiftLeft
FormUCView,TextBoxRight.Text = ShiftRight

If InstructionType = "R" Then
FormUCView. TextBoxALUInput2. Text = FormUCView.TextBoxData2.Text
FormUCView. TextBoxMuxl.Text = “@”
Else
FormUCView. TextBoxALUInput2.Text =
FormUCView. TextBoxImmChosen. Text
FormUCView.TextBoxMuxl.Text = "1

"Reset values
Shiftleft = @
ShiftRight = @

If TransmitCounter >= TextBoxMachineCode.lines.Count - 1 Or
TransmitCounter < @ Then
ButtonTransmit.Enabled = False *Disable
the Transmit button
End I

‘Transmit through serial
If COMPort.IsOpen Then
ButtonTransmit.Enabled = False
COMPort.Write(FormiUCView. TextBoxUCInstructions . Text.Substring(e,

2))

Sleep(228)

COMPort . Write (FormUCView. TextBoxUCInstructions. Text.Substring(2,
2))

Sleep(220)

COMPart.Write(FormUCView. TextBoxUCInstructions. Text.Substring(4,
2))

Sleep(220)

COMPort.Write(FormUCView. TextBoxUCInstructions. Text.Substring(s,
2))

Sleep{229)

COMPort.Write(FormUCView. TextBoxUCInstructions.Text.Substring(8,
2}}

Sleep(220)

COMPort. Write(FormUCView. TextBoxUCInstructions.Text.Substring(10,
2))

Sleep(220)

COMPort . Write(FormUCView. TextBoxUCInstructiaons. Text. Substring(12,
2))

Sleep{220)

COMPort .Write (FormUCView. TextBoxUCInstructions.Text.Substring(14,
2))

Sleep(228)

COMPort.Write(vbCr)

If TransmitCounter >= TextBoxMachineCode.Lines.Count - 1 Or
TransmitCounter < @ Then

54

ButtonTransmit.Enabled = False
'Disable the Transmit button
Else
ButtonTransmit.Enabled = True
End If
End If

End Sub
#End Region
#Region "Other Forms Buttons”

Private Sub ButtonRegisters_Click(Byval sender As System.Objeci, Byval e
As System.Eventirgs) Handles ButtonRegisters.Click
FormRegister.Show()
End Sub

Private Sub ButtonMemoryView_Click(Byval sender As System.Object, Byval e
As System.Eventargs) Handles ButtonMemoryView.Click
FormManory . Show()
End Sub

Private Sub ButtonViewUC_Click(Byval sender As System.Objsct, ByVal e As
System.fventirgs) Handles ButtonViewUC.Click
Formlidyview. Show()
End Sub

Private Sub ButtonHelp Click{ByVval sender As System.0bject, Byval e As
System.tventirgs) Handles ButtonHelp.Click
FormHelp. Show()
End Sub

#End Region

#Region "Functions”
‘converts an integer to binary string
Public Function CBin(Byval DecimalNum As Long) As String
Dim tmp As String
Dim n As Long
n = DecimalNum
tmp = Trim(Str{n Mod 2))
n=n\2
Do While n <> @
tmp = Trim(Str{n Mod 2)) & tmp
n=n}\2
lL.oop
CBin = tmp
End Function

H T

‘converts a binary string to integer
Public Function CDeci(ByRef s As String) As Integer
Dim i As Long
Checi = 8
For 1 = @ To Llen(s) - 1
CDeci = CDeci + (Mid$(s, Len(s) - i, 1) * 2 ~ i)
Next i
End Function

‘tonverts an integer to 8-bit binary
Public Function CBin8(ByVal n As Integer) As String
If n > 255 Then “If bigger than 8 bit

35

n=n- 256
OverflowFlag = 1 'Set corresponding flag
NegativeFlag = @ ‘Set corresponding flag

Dim i As Ints4 = Convert.ToIntl6(n)

CBinB = Convert.TeString(i, 2).Padieft(8, "e")
ElseIf n < & Then 'If negative

Dim 1 As Int64 = {onvert.ToIntl6(n)

Dim TempBin As String

TempBin = Ccnvert.ToString(i, 2).PadLeft(8, "o")

CBin8 = TempBin.Substring(TempBin.Length - 8, 8)

OverflowFlag = 1 ‘Set corresponding flag

NegativeFlag = 1 'Set corresponding flag
Else

Dim i As Ints4 = Convert.ToIntlé{n)

CBin8 = Convert.ToString(i, 2).PadlLeft(8, "o")

OverflowFlag = @ 'Set corresponding flag
NegativeFlag = @ *Set corresponding flag
End IF

End Function
#End Region

#Region “Serial Ports Settings"”

Private Sub FormMainView Load({Byval sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

For Each COMSteing As String In My.Computer.Ports.SerialPortNames °

Load all available COM ports.
ComboBoxCOMPort . Ttems . Add (COMString)
Next
ComboBoxCOMPort.Sorted = True
End Sub

Private Sub ComboBaxCOMPort_SelectedIndexChanged(Byval sender As
System.0bject, ByVal e As System.EventArgs) Handles
ComboBoxCOMPort . SelectedIndexChanged

COMLamp .BackColor = (olor.Gray
COMLamp. Text = "Port closed”
'DTRLamp.BackColor = Color.Gray
If COMPort.IsOpen Then
COMPort.RtsEnable = False
COMPort .DtrEnable = False

ClosePort()
Application.DoEvents()
Sleep(268) ' Wait 8.2 second for port
close as this does not happen immediately.
End If
COMPort.PortName = ComboBoxCOMPort.Text

COMPort.BaudRate = 9666 ' Default for Max-i: 19206
8 data bits, ne parity, 1 stop bit

COMPort.WriteTimeout = 2066 ' Max time to wait for CTS
sec,

Try
COMPort.Open()
Catch ex As Excepticn
MsgBox(ex.Message)
End Try

ComboBoxBaudRate. Text
ComboBoxDataBits. Text

CGMPort . BaudRate.ToString
COMPort.DataBits.ToString

bit/s,

2

56

ComboBoxParity.Text = COMPort.Parity.ToString
ComboBoxFlowControl .Text = COMPort.Handshake.ToString

If COMPort.IsOpen Then
ButtonClosePort.Visible = True
COMPort.RtsEnable = True
COMLamp. Text = ComboBoxCOMPort.Text + " opened"
COMLamp .BackColor = Color.LightGreen
COMPort.DtrEnable = True
' DTRLamp.BackColor = Color.LightGreen

End If

End Sub

Private Sub ClosePort()
If COMPort.IsOpen Then COMPort.Close()
End Sub

Private Sub ComboBoxDataBits_SelectedIndexChanged(Byval sender As
System.0bject, ByVal e As System.Eventirgs) Handles
ComboBoxDataBits. SelectedIndexChanged
COMPort.DataBits = CInt(ComboBoxDataBits.Text)
End Sub

Private Sub ComboBoxBaudRate_SelectedIndexChanged(Byval sender As
System.0Object, ByVal e As System.EventArgs) Handles
ComboBoxBaudRate . SelectedIndexChanged

COMPort.BaudRate = CInt(ComboBoxBaudRate.Text)

End Sub

Private Sub ComboBoxParity_SelectedIndexChanged(Byval sender As
System.Object, ByVal e As System.EventArgs) Handles
ComboBoxParity.SelectedIndexChanged

COMPort.Parity = Clype([Enun}.Parse(GetType(Parity),
ComboBoxParity.Text), Parity)
End Sub

Private Sub ComboBoxFlowControl_SelectedIndexChanged(Byval sender As
System.Object, Byval e As System.fventArgs) Handles
ComboBoxFlowControl.SelectedIndexChanged

COMPort .Handshake = CType(] Enum].Parse(GetType(iandshake),
ComboBoxFlowControl.Text), Handshake)
End Sub

Private Sub ButtonClosePort_Click(ByVal sender As System.Dbject, Byval e
As System.tventArgs) Handles ButtonClosePort.Click

ClosePort()
COMLamp . BackColor = Color.Gray
COMLamp.Text = "Port closed"
ComboBoxBaudRate . Text = "~
ComboBoxDataBits.Text = ""
ComboBoxParity.Text = *"
ComboBoxFlowControl.Text = "
ComboBoxCOMPort.Text = **
ButtonClosePort.Visible = False

End Sub

#End Region

End Class

57

