POWER SYSTEM CONFIGURATION, SHORT CIRCUIT ANALYSIS AND MOTOR STARTING STUDY OF AN OFFSHORE PLATFORM

By
NOR AFIFAH BINTI MOHD NOR

FINAL PROJECT REPORT

Submitted to the Electrical \& Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical \& Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan
© Copyright 2008
by
Nor Afifah binti Mohd Nor, 2008

CERTIFICATION OF APPROVAL

POWER SYSTEM CONFIGURATION, SHORT CIRCUIT ANALYSIS AND MOTOR STARTING STUDY OF AN OFFSHORE PLATFORM

by

Nor Afifah binti Mohd Nor

A project dissertation submitted to the Electrical \& Electronics Engineering Programme

Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Electrical \& Electronics Engineering)

Approved:

IR Perumal Nallagownden
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2008

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Abstract

An offshore oil platform can be defined as a large structure used to house workers and machinery needed to drill and then to produce oil and natural gas wells in the ocean. Platform usually consists of few modules such as drilling module, power generation module, gas lift module and etc. Normally, an oil platform consists of a central processing platform and few satellite platforms. This document defines the simulation for power system of an offshore platform. The study will be done based on Melor Lahor Tangga Barat gas field, MLTTB platform. Offshore structures and installation design requires highest consideration because any disruption may jeopardize safety of personnel and can cause equipment failure which will cause a lot of money and maintenance. This document outlines the factors needed to be considered in preparing a power system, equipment sizing and configuration, short circuit analysis and also motor starting study. The simulation will be done using electrical power transmission and distribution system software called EDSA.

ACKNOWLEDGEMENTS

Using this opportunity, the author would like to express her gratitude to all who have been assisting during the execution of this project. Thank you Allah the Almighty for His will and guidance, this project is now complete. Profound appreciation and sincere thanks goes to my university supervisor Ir. N.Perumal for all effort given in assisting and guiding me throughout the project. Special thanks to the industrial engineers from RNZ Integrated (M) sdn.bhd, electrical department, for their advices, information and co-operations. All of them are highly appreciated. Not to forget all Electrical \& Electronics Engineering lecturers and support staffs for being very helpful. Last but not least, the author would like to thank all her colleagues, friends and especially her family for all their support and motivations along the way. Thank you.

TABLE OF CONTENTS

ABSTRACT v
ACKNOWLEDGEMENT vi
LIST OF FIGURES ix
LIST OF TABLES x
CHAPTER 1: INTRODUCTION 1
1.1 Background of Study 1
1.2 Problem Statement 2
1.3 Objectives and Scope of Study 3
CHAPTER 2: LITERATURE REVIEW 4
2.1 System design requirements 4
2.2 Power system design and equipment selection 5
2.2.1 Regulations 5
2.2.2 Hazardous area 6
2.2.3 Environmental and design conditions. 7
2.2.4 Main power supply 8
2.2.5 Power transmission and distribution. 9
2.2.6 Cable system 9
2.2.7 Emergency power sources 9
2.3 Platform operation philosophy 10
2.4 Power system analysis 11
2.4.1 Short circuit analysis 11
2.4.1.1 Characteristics of short circuit 12
2.4.1.2 Method of calculation 14
2.4.2 Motor starting study 17
2.4.2.1 Direct On Line starter 17
2.4.2.2 Star- Delta Starter 18
2.4.2.3 Auto transformer 19
2.4.2.4 Soft starter 20
CHAPTER 3: METHODOLOGY 22
3.1 EDSA work flow 22
3.2 Short circuit comparison work flow 23
3.3 Motor starting study comparison work flow 23
3.4 Producing single line diagram 23
3.5 Short circuit analysis 25
3.6 Motor starting study using EDSA 29
CHAPTER 4: RESULTS AND DISCUSSION 32
4.1 Single line diagram 32
4.2 Load analysis 32
4.3 Configuration of equipment 32
4.3.1 Configuration of Gas Turbine Generator 32
4.3.2 Configuration of transformer 34
4.3.3 Configuration of emergency diesel generator. 35
4.4 Nominal high voltage selection 35
4.5 Power generation simulation 36
4.5.1 Short circuit analysis 36
4.5.2 Motor starting study 44
CHAPTER 5: CONCLUSION AND RECOMMENDATION. 50
5.1 Conclusion 50
5.2 Recommendation 51
REFERENCES 52
APPENDICES 55APPENDIX A TBCP-A Loadlist analysisAPPENDIX B TBCP-A voltage drop and cable sizing
APPENDIX C Fugikura XLPE table
APPENDIX D Vendor catalogue
APPENDIX E EDSA printout
APPENDIX F Short circuit calculation references
APPENDIX G Motor starting references

LIST OF FIGURES

Figure 2.1: Short circuit current components. 14
Figure 2.2: DOL starting 18
Figure 2.3: DOL motor start characteristics. 18
Figure 2.4: Star-delta starter. 19
Figure 2.5: Auto transformer 20
Figure 2.6: Soft starter. 20
Figure 2.7: Motor current 21
Figure 2.8: Torque. 21
Figure 3.1: EDSA work flow 22
Figure 3.2: Short circuit comparison work flow 23
Figure 3.3: Motor starting comparison work flow 23
Figure 3.4: 3 phase single transformer system. 26

LIST OF TABLES

Table 4.1: Selection basis of motor voltages and power ratings 35
Table 4.2: Short circuit tabulated result 40
Table 4.3: Summary of EDSA calculation 3phase fault current level 43
Table 4.4: Motor starting study tabulated result 49

CHAPTER 1

INTRODUCTION

1.1 Background of study

Offshore installations are for industrial oil processing plants that operate in highly corrosive and humidity environments. Interruption in the operations such as power failure can cause production loss and will also jeopardize lives of personnel. Therefore in platform system design, a lot of considerations need to be taken.

Power system should be safe to operate, reliable and also energy sufficient. Short circuit studies were run to confirm that buses, switchboards, motor control centers (MCC), transformers and feeder cables would operate within their short circuit ratings and to determine the short circuit of all bus. The system was modeled based on the electrical overall single line diagram of MLTTB platform [11].

A motor starting study is prepared in order to analyze the transient effect of the system's voltage profile during motor starting. The system loading for the motor starting study will be accordance with the voltage drop study [10].

In the electrical system design, distribution and protection studies of the overall system shall be considered as well. Fault in power generation or distribution will affect the operation of a platform, Emergency total shutdown will cause major disruption and will affect the cause of the project.

1.2 Problem statement

Offshore structures can be designed for installation in protected waters, in the open sea, many kilometers from shore lines. The design and analysis of offshore platform must be done taking into consideration many factors including the environmental parameters, soil characteristic, technical standard regulations and intensity level of consequences of failure [14].

The equipment selection will depend on the hazardous area classification and the installation should be safe, reliable and requires minimum maintenance. Interruptions to production caused by equipment failure are costly and its maintenance is complex. The levels of electricity demand and available generating capacity are important, and both are influenced by many factors [15].

Basically, factors to be considered in designing optimum generation system are its reliability, adequacy and economically. Distribution and protection studies of the overall system need to be considered. Fault in power generation or distribution will influence the operation of a platform and shutting down the operation will effect the production and cost of the project.

A fault is a disruption in the normal flow of electricity, which can occur if a conducting object falls across one or more phases of live equipment. This is known as a short circuit. When a short circuit occurs, increasing current rushes toward the location of the fault from contributing motors and generators. High levels of current and voltage cause the air to ionize resulting in an arc flash of electricity, and incident energy is released. The purpose of a short circuit study is to determine how much current is available during a fault. A short circuit study simulates a worst case (three-phase) fault at every possible location and gives the available current that result [16].

Starting large motors can cause disturbances to the motor and other loads on other buses. In the worst cases the starting motor may stall and be unable to start the driven load. One of the most common side effects of starting large motors is a serious voltage dip on the buses throughout the facility. This voltage dip will cause other motors to slow down; in
severe cases other motors may reach the stall point causing a domino effect to the voltage drop. Control relays may not hold and auxiliary equipment may be affected. In addition to these secondary effects the life of all motors on the system may be shortened. Ideally a transient motor starting study should be preformed which shows a time/voltage waveform for the motor bus. Motor starting studies should be performed prior to the ordering of large motors, such that the motor can be installed with confidence that the motor's life and applications performance will be satisfactory and the remainder of the power distribution system will not be adversely affected [23].

In designing the electrical power generation, we need to first produce the load analysis to know the expected load to be used in the platform. This is essential especially in sizing the equipment. Load analysis is produced based on the information from other disciplines such as the mechanical, structural, instrument and process. Studies need to be done to determine the number of equipment needed in order for the platform to operate optimally. The number of generating sets to be installed and their individual ratings depend on the maintenance requirement, economic size and reliability and availability.

1.3 Objective and scope of study

The objectives of the project are outlined as below:

1) To understand power system configuration and analysis by conducting research on power system fundamental and design requirements.
2) To familiarize with the methods involved in preparing short circuit and motor starting study for the oil and gas industry.
3) To perform short circuit and motor starting calculation manually and make comparison with the results obtained in EDSA software.

The scope of study can be summarized as review on the basic of electrical system installations for an offshore platform including the power system simulation based on the demand of facilities. The power system analysis will cover short circuit analysis and motor starting study. The report will focus on the generation, distribution and protection consideration.

CHAPTER 2

LITERATURE REVIEW

2.1 System design requirements

The design of the electrical power generation and distribution systems shall be based on good engineering practice and internationally accepted national standards and shall provide [13]:

- Safety to personnel during operation and maintenance of the platforms.
- Reliability and continuity of service of electrical systems to ensure maximum production of gas and condensate.
- Energy efficient power distribution and utilisation.
- Ease of operation, minimum manning and minimum maintenance of equipment.
- Continuous central monitoring of platform power systems and automatic protection of electrical equipment.
- Remote control facility.
- Fail-safe features for safety-related controls.
- Standardization of components for maximum interchange ability and minimal spare stockholding.
- Ease of future additions to the loads and extensions to existing facilities.

To ensure that the electrical supply is economical and has minimum risk of failure, a supply network must have:

- Adequate power to cope with the highest possible load.
- Provision of surplus power and distributing equipment capacity.
- Switchgear, transformers and cables are capable to carry the maximum short circuit fault currents and operate continuously in most rough conditions.
- A protective system capable of isolating faulty equipment with minimum of interference to the rest of the network and with minimum possible damage.

2.2 Power system design and equipment selection

Power system analysis mainly deals with the fundamentals of electrical systems which focus on power generation, transmission and distribution.

- Power generation -6.6 kV HV turbine generator
- 400 V LV diesel generator
- 400 V LV microturbine
- Distribution -6.6 kV HV switchgear
$-6.6 \mathrm{kV} / 0.42 \mathrm{kV}$ distribution transformer
- 400 V LV switchboard
-400 V MCC
- Consumer - Uninterruptible Power Supply
- Distribution board
- Lighting and small power outlet

The power systems shall be designed to meet the objective, primarily safety to operating and maintenance personnel, reliability and continuity of power supply for maximum production and energy-efficient operation. In the design of electrical system there are few important factors need to be considered.

2.2.1 Regulations

Petronas Technical Standard (PTS) is a guideline used in all PETRONAS offshore as well as onshore operation. They are based on the experience obtained during the involvement with the design, construction, operation and maintenance of processing units and also facilities. PTS is also made in reference of the national and international standards and codes of practice.

2.2.2 Hazardous area.

There are three main sources of ignition in industrial electrical equipment, which are hot surfaces, electrical sparks, friction and impact sparks. To ensure that the electrical equipment does not become a source of ignition, there are four principles involved [13]:

- Explosive mixture can penetrate the item of electrical equipment and be ignited. Measures are taken to ensure that the explosion cannot spread to the surrounding atmosphere.
- The item of equipment is provided with an enclosure that prevents the ingress of a potentially explosive mixture and / or contact with sources of ignition arising from the functioning equipment.
- Potentially explosive mixture can penetrate the enclosure but must not be ignited. Sparks and temperatures capable of causing ignition must be prevented.
- Potentially explosive mixture can penetrate the enclosure but must not be ignited. Sparks and temperatures must only occur within certain limit.

Basically, conditions in hazardous area are divided into 3 parts which are gases vapors, dusts and methane dusts. For gas vapors, if the flammable substances is present continuously or for long periods, the area is classified as zone 0 , if it is likely occur in normal operation occasionally, it is known as zone 1 and if it is not likely to occur in normal operation but if it does occur for a short period only, it is classified as zone 2 . Same goes with dusts substances, zone 20 if it is present continuously or for long period, zone 21 if it is likely occurs in normal operation and lastly zone 22 if it is not likely to occur in normal operation but if it does occur, will be for short period only.

Electrical equipment enclosure shall be selected based on the location of the equipment to provide adequate protection to the equipment and it shall also continuously provide safety and sufficient access to operators for operation and maintenance activities. As a minimum, electrical equipment for installation in process area shall be certified to Zone 2, Gas Group IIA, Temperatures Class T3 (unless otherwise stated) and shall be selected in accordance with IEC 60079 - 'Electrical Apparatus for Explosive Gas Atmosphere' or equivalent CENELEC Standards. All equipment selected for hazardous area shall be certified preferably by certifying authorities such as BASEEFA or other independent internationally recognised authorities [13].

All outdoor located equipment enclosures exposed to the atmosphere shall be weather proof, water proof and protected against ingress of dust. The enclosures shall have a minimum ingress protection of IP 56. Electrical equipment certified for use in hazardous areas shall carry the EEx code and Ex symbol. A certificate of conformity shall be furnished for electrical apparatus used in Zone 0,1 and 2 hazardous areas [13].

2.2.3 Environmental and design conditions

Environmental conditions [13]

Location $\quad: 185 \mathrm{~km}$ offshore east coast of Peninsular Malaysia
Environment : Tropical marine, humid, corrosive and salt-laden
Ambient temperature $: \quad 36^{\circ} \mathrm{C}$ - Maximum $20^{\circ} \mathrm{C}$ - Minimum

Design Amb. Temperature : $36^{\circ} \mathrm{C}$
Relative humidity : 100\%-Maximum
Wind velocity $\quad: 40$ meters/second (tropical cyclone) (1 minute mean)

Design Conditions

Outdoor

Electrical Design Temperature	$: 36^{\circ} \mathrm{C}$
Design Relative Humidity	$: 100 \%$
Degree of Ingress Protection	$:$
IP56 minimum	

Indoor (Air-Conditioned Environment)

Electrical Design Temperature	$: 55^{\circ} \mathrm{C}$ (for components within equipment	
	enclosures)	
Design Relative Humidity	$: 100 \%$	
Degree of Ingress Protection	$:$	IP41 minimum

2.2.4 Main power supply

In the Oil \& Gas industry and other industrial applications, power is generated by electric generators using, as prime movers, gas turbines, steam turbines, or reciprocating engines. Turbo-expanders are also used for power generation where a gas under pressure is expanded for process reasons, or made available for power recovery. The type of power generation will be selected depending on the requirement of the facilities. Centralized power generation and distribution can maximize the system's reliability and improves its safety. Below are few ways to generate power:
a) Rotating turbines - Attached to electrical generators produce most commercially available electricity. Turbines are driven by a fluid which acts as an intermediate energy carrier. The fluids typically used are:

- Steam - Water is boiled by nuclear fission or burning of fossil fuels.
- Water - Turbine blades are acted by flowing water, produced by hydroelectric dams or tidal forces.
- Wind - Generates electricity from naturally occurring wind.
- Hot gases - Turbine are driven directly by gases produced by combustion of natural gas or oil.
b) CCVT (closed-cycled vapour turbogenerator)
c) Submarine cable - The two main concerns are high cost installation and the material that will be used.
d) Diesel generator - combination of a diesel engine with an electrical generator (often called an alternator) to generate electric energy.
e) HVDC (high voltage direct current) - Requires large conversion from DC to AC , therefore it is not suitable to be used in offshore platform.
f) Solar panel - Although it is environmentally save, it is only practical for small power distribution usage.

Based on the study done on each power source, the gas turbine generator is recommended due to its higher availability, reliability and maintenance flexibility than the other power generators.

2.2.5 Power transmission and distribution.

Include the studies for power distribution equipment like transformer, switchgear, switchboard etc.
a) Distribution transformer - Transfer electrical energy from a primary distribution circuit, to a secondary distribution circuit, or within a secondary distribution circuit, or to a consumer's service circuit. Synchronizing and switching facilities usually provided to allow momentary paralleling of transformers so that any transformer can be taken out of service without interrupting the power system.
b) High voltage switchgear - Consist of vacuum circuit breakers (VCB) for generator incomers, bustie and for transformer feeders, while for motor starters and other outgoing circuits, it consists of fused vacuum contactors (VCU).
c) Low voltage switchboard - To provide the switching flexibility and to service the large 400 V AC loads.

2.2.6 Cable system

All power (both high voltage and low voltage), control and lightning cables shall be of the low smoke zero halogen (LZSH) type with stranded high conductivity copper conductors and cross-linked polyethylene (XLPE) insulation except fire-resistant low voltage power, control and lighting cables which shall have ethylene-propylene rubber (EPR) insulation instead. Cable shall be sized according to the thermal rating under site conditions, prospective fault current and its duration, and voltage drop, whichever are the limiting conditions [13].

2.2.7 Emergency Power Sources

The electrical load analyses are categorized as continuous, intermittent and standby load. The definitions of the above criteria are based on criticality of the equipment installed [13].
i) Continuous loads: All loads that required continuously operate on the platform at normal operation mode. This is critical load that may jeopardise the process operation in case there is any electrical power outage or shutdown
ii) Intermittent loads: All process and utility loads required for normal operation but neither operating simultaneously or continuously. The load will operate on the process demand or need as a supplementary to the duty unit in order to boost up the operational system.
iii) Standby loads: All loads required when the duty (continuous) system are under maintenance program or during abnormal condition. Act as a replacement to the duty load.

The emergency diesel generator is installed to provide electricity during emergency (to vital loads) and black start conditions. A vital service is safety-related. The failure of the service during operation or when failing if called upon can cause major damage to the installation. The energy source, lines of supply and the equipment performing a vital service shall be duplicated. Vital loads include:

- LQ life support loads.
- Emergency lighting and escape lighting.
- Safety pressurisation and ventilation systems.
- AC UPS systems.
- Potable water supply system.
- Compressed air system.

2.3 Platform operation philosophy

TBCP-A platform comprises of $3 \times 6 \mathrm{MW}$ gas turbine generators $6.6 \mathrm{kV}, 50 \mathrm{~Hz}, 3$ phase generators. Two units of the gas turbine generators are capable in operating with either fuel gas/ diesel fuel in case of gas supply disruption. Generated electrical power will then be fed into 6.6 kV switchgear for main power distribution of 6.6 kV loads [11].

For the low voltage system, four transformers are installed. Transformers are rated 2.5 MVA, $6600 / 420 \mathrm{~V}$. These transformers are divided into two separate 400 V low voltage
system with $2 \times 100 \%$. The buses of the switch board will be linked using Automatic Transfer Switch Logic ATSL which is normally closed.

For emergency vital loads and black start purpose, emergency diesel generator 1500 kW (1875 kVA), $400 \mathrm{~V}, 50 \mathrm{~Hz}$, 3phase is installed. The emergency diesel generator is connected to an Air Circuit Breaker which is open during normal condition. On detection to a dead bus, emergency diesel generator will automatically start.

2.4 Power system analysis

2.4.1 Short circuit analysis

When a short circuit occurs, a high fault current will flow from source to fault point which leads to dissipation of thermal energy and mechanical damage to installations. Two common factors causing short circuit condition are failure of insulation within equipment and wrong connection of termination [27]. All electrical systems are vulnerable to short circuits and the abnormal current levels they create. Therefore, it's important to protect personnel and equipment by calculating short circuit currents during update and design [3].

The protection for an electrical system should not only be safe under all service conditions but, to insure continuity of service, it should be selectively coordinate as well. A coordinated system is one where only the faulted circuit is isolated without disturbing any other part of the system. Once the short circuit levels are determined, the engineer can specify proper interrupting rating requirements, selectively coordinate the system and provide component protection [8].

A short circuit study is basically performed to:

- Calculate the fault current at various locations in the plant.
- Ensure power system components can withstand mechanical and thermal stresses that occur during a fault.
- Specify the ratings of the equipments for future expansions.
- Improve the reliability of the system.

Circuit breakers and fuses come with an over current rating (or size), and a short circuit interrupting rating. The over current rating specifies the amount of electrical current the device should tolerate without the fuse blowing, or circuit breaker tripping. The short circuit rating is the maximum electrical current the device can tolerate before it fails [6].

To provide the required protection, we must determine the extent of short circuit current at various points of our power distribution system. This determination requires a calculation. We must calculate the maximum 3 phase fault current the breaker will be required to interrupt. This current can be defined as the short circuit current available at the terminals of the protective device. We can assume that 3 phase short circuits are bolted or have no impedance. In addition, a 3 phase short circuit can be considered a balanced load, which means we can use a single phase circuit to analyze one of the phases and the neutral [3].

Distribution equipment, such as circuit breakers, fuses, switchgear, and MCCs, have interrupting or withstand rating defined as the maximum rms values of symmetrical current. A circuit breaker cannot interrupt a circuit at the instant of inception of a short circuit. Instead, due to the relay time delay and breaker contact parting time, it will interrupt the current after a period of five to eight cycles, by which time the DC component will have decayed to nearly zero and the fault will be virtually symmetrical [3].

2.4.1.1 Characteristics of short circuit

i) Sources of fault current

Fault current basically comes from rotating electric machinery, usually in the form of synchronous generators, synchronous motors and condensers, induction machines, and electric utility systems. The magnitude of fault current from these sources is limited by the impedance between the machine and the fault itself.

As a synchronous generator has a prime mover and an externally excited field, its fault current will continue unless interrupted by some switching means, Synchronous motors and condensers supply current to a fault in much the same way as synchronous generator, however, their fault current diminishes as their magnetic fields decay. Induction motor fault current is generated by inertia that is driving the motor in the presence of a field flux, which is produced by induction from the motor's stator [1].

Short circuit calculations should be done at all critical points in the system. These would include [8]:

- Service entrance
- Panel boards
- Motor control centers
- Motor starters
- Transfer switches
- Load centers
- Disconnects
- Motor starters

ii) The basics

A balanced 3 phase fault implies that all three phases of the power system are simultaneously short circuited to each other through a direct or bolted connection. Although the probability of this happening is small, relative to the probability of other types of unbalanced fault occurring, we still use a balanced 3 phase fault for a short circuit study for the following reasons [1].
a) Often, a 3 phase fault produces the larges short circuit current magnitude; thus this worst case result is then used as the basis to select the short circuit capabilities of switchgear from the manufacturer's tables.
b) Short circuit calculations are simplest for a balanced 3 phase fault because symmetry of the fault connection permits us to consider only one of the three phases.

Figure 2.1: Short circuit current components
This figure shows the short circuit current to be made up of two components:
a) The symmetrical alternating current component.
b) The direct-current component which decays with time

This total current as pictured is called the "asymmetrical current". The root mean square (rms) value of the asymmetrical short circuit current waveform is the basis for the selection of the short circuit capabilities of circuit breakers and fuses. Calculation of the precise rms value of an asymmetrical current at any time after the inception of a short circuit may be very involved. Accurate decrement factors to account for the DC component at any time required, as well as factors for the rate of change of the apparent reactance of the generators. This precise method may be used, if desired, however simplified methods have evolved whereby the DC components is accounted for by the simple multiplying factors. These multiplying factors convert the rms value of the symmetrical AC component (symmetrical rms current) into rms current of the asymmetrical waveform, including the DC component (asymmetrical rms current or short circuit current duty) [1].

2.4.1.2 Method of calculation

Short circuit calculation shall be prepared by means of theoretically or using digital computer utilizing a commercially available software package. In this paper work, basic point to point procedure will be considered. In order to determine the fault current at any point in the system, first draw a one line diagram showing all the sourced of short circuit current feeding into the fault, as well as the impedances of the circuit components.

To begin the study, the system components, including those of the utility system are represented in the diagram. The impedance tables include three phase and single phase transformers, cable and busway. These tables can be used if information form the manufacturers is not available.

It must be understood that short circuit calculations are performed without current limiting devices in the system. Calculations are done as though these devices are replaced with copper bars, to determine the maximum available short circuit current. This is necessary to project how the system and the current limiting devices will perform [8].

The application of the point to point method permits the determination of available short circuit currents with a reasonable degree of accuracy at various point for either 3phase or 1phase electrical distribution system. The result obtained can be compared to the result from digital computer software in order to analyze the accuracy [8].

Computer based software

The study calculates the maximum short circuit current at the various points throughout the system. The chosen software is EDSA Electrical Power System Design and Simulation Software. EDSA's Short Circuit Analysis program delivers a first-of-a-kind solution to allow power system specialists to calculate the short circuit current based on IEEE or IEC standards. The Short Circuit Analysis program has integrated EDSA's Protective Device Evaluation (PDE) program for checking the interrupting capabilities of the switching devices, such as CBs, fuses, and switches. EDSA's Short Circuit Analysis program is a very powerful and proven tool for electrical engineers, having been proven in demanding, real-world applications and in precise software testing based on long hand calculation. Both 3-phase and single-phase networks can be modeled, and any type of fault can be simulated: 3P, L-L, L-L-G, L-G. Only EDSA Short Circuit Analysis program calculates sliding faults, an important feature for impedance protection operation or for calculating the L-G faults needed for towers grounding [9].

Some of the program features are listed below:

- Unlimited bus simulation ($50,000+$).
- IEEE and IEC standards;
- 3-phase and single-phase network on the same model.
- All types of faults: 3P, L-L, L-L-G, L-G: solid faults or via an fault impedance,
- Integrated Protective Device Evaluation (PDE) program.
- Short circuit current calculation inside MCC schedule.
- Considering the lines mutual couplings.
- Sliding faults and series faults.
- Program fully integrated with electrical one-line diagram.
- Flexible, fast and accurate.
- Flexible selection of faulted bus, directly on the one line diagram or text driven selection.
- User-defined groups of faulted buses.
- Fault at all buses or selected buses - user defined.
- Online back annotation or customized text output report.
- Fast and reliable solution technique.
- Easy-to-use and results are at a glance as per user selection.
- Comprehensive monitoring of the bus short circuit results.

The short circuit study that will be done comprised of the following steps:

1) Data collection - Information on all the components is obtained from electric utility, vendors or calculated from field data.
2) Single line diagram - A power system diagram that show how all components are electrically connected. Additional data needed for the study such as cable impedances can be obtained with information from this diagram.
3) Computer analysis - Using EDSA software, the system data is input and the short circuit currents at various points in the system are calculated.

2.4.2 Motor starting study

A motor starting study is performed to determine the voltages, currents, and starting times involved when starting large motors. Such a study is critical before installing a large motor to make certain that your system can start the motor successfully. It may also be performed anytime a change in the power supply is implemented [23]. In general, a motor starting study should be made if the motor's horsepower exceeds approximately 30% of the supply transformers base kVA rating. If a generator is supplying the motor, use $10-15 \%$ of the generator kVA rating. Motor starting studies can vary from basic voltage drop on the system to a detailed waveform presentation of motor bus voltage, motor speed and motor torque, acceleration torque, load torque, power factor, rotor and stator currents, motor slip, real, reactive and total power [23].

A motor starter is an electrical or electronic circuit composed of electro mechanical and electronic devices which are employed to start and stop an electric motor. Regardless of the motor type (AC or DC), the type of starters differ depending on the method of starting the motor. Two most common starting methods are Direct On Line (D.O.L) method and soft starting method. A D.O.L starter connects the motor terminal directly to the power supply. Hence, the motor is subjected to the full voltage of the power supply. Consequently, high starting current flows through the motor [21]. A soft start method starts the motor at lower voltage and slowly ramping up to operation voltage [23].

2.4.2.1 Direct-On-Line start (D.O.L)

This method of starting is by far the most common starting method available in the market. The components consist of only a main contactor and thermal or electronic overload relay. The disadvantage with this method is that it gives the highest possible starting current. A normal value is between 6 to 7 times the rated motor current but values of up to 9 or 10 times the rated current exist. During a direct on line start, the starting torque is also very high, and is usually higher than required for most applications. The torque is the same as the force, and an unnecessary high force unnecessary high stresses on couplings and the driven application. Naturally, there are cases where this starting method works perfectly and in some cases also the only starting method that works [20].

Figure 2.2: DOL starting

Figure 2.3: DOL motor start characteristics

Disadvantages of D-O-L method [19]:

- High inrush current (typically 6 times full load which can cause several problems).
- Necessities over sizing of installation
- Limit expansion
- Reduces service life of electrical components
- Excessive applied starting torque (typically 2.5 times full load)
- Increases wear on drive chain components
- Reduces service life of mechanical components

2.4.2.2 Star - Delta

This method requires both connections for each phase to be taken to the starter. Three contactors are used to first connect the motor in star and then to delta after a given time. Connecting the motor in star reduces the voltage applied to each winding to about 60% of the line voltage. This reduces the starting torque and current, typically 3.5 times full load current [19]. To reach the rated speed, a switch over to delta position is necessary, and this will very often result in high transmission and current peaks [20] . Its main advantages are that it is relatively simple and low cost.

The major problem in using this method is that the reduced voltage level is in a single stage and it is also fixed. In some cases, this voltage is not ideal, the torque it produces may be too small and the motor stalls or does not give complete acceleration. If the torque is too large, the motor still starts with a pronounced snatch [19]. This starting method only works when the application is light loaded during the start. If the motor is heavily loaded, there will not be enough torque to accelerate the motor up to speed before switching over to delta position. Applications with load torque higher than 50% of the motor rated torque will not be able to start using the star-delta starter [20].

Figure 2.4: Star-delta starter

2.4.2.3 Auto transformer starter

This method uses transformer action to reduce the voltage applied to the motor and current seen by the supply [19]. Auto transformers are generally equipped with taps at each phase in order to adapt the starting parameters to the application starting requirement. During starting, the motor is connected to the auto transformer taps. With the star and auto transformer contactors closed, the motor is under reduced voltage. Consequently, the torque is reduced as the square of the applied voltage. When the motor reaches the 80 to 90% of the nominal speed, the star contactor opens. Then the line contactor closes and the auto transformer contactor opens. The motor is never disconnected from the power supply during starting and this eliminates transient phenomena [20].

Normally, the voltage is applied to the motor in voltage steps through the transformer with the taps being selected through contactors. Typical tappings are $50 \%, 70 \%$, followed by full voltage being applied to the motor. The major disadvantages are size and cost and also mechanical snatch at switch is not controllable and can still cause problems [19].

Figure 2.5: Auto transformer starter

2.4.2.4 Soft starter

A soft starter has different characteristics to the other starting methods. It has thyristors in the main circuit, and the motor voltage is regulated with a printed circuit board. The soft starter makes use of the fact that when the motor voltage is low during start, the starting current and staring torque is also low. During the first part of the start, the voltage to the motor is so low that it is only able to adjust the play between the gear wheels or stretching driving belts or chains etc. This eliminates unnecessary jerks during the start.

Gradually, the voltage and the torque increase so that the machinery starts to accelerate. One of the benefits with this starting method is that the possibility to adjust the torque to the exact need, whether the application is loaded or not. Another feature of the soft starter is the soft stop function which is very useful when stopping pumps where the problem is water hammering in the pipe system at direct stop as for direct-on-line starter. The soft stop function can also be used when stopping conveyor belts to prevent material from damage when the belts stop too quickly [20].

Figure 2.6: Soft starter
The advantages of soft starts are [23]:

- Reduced starting current, starting torque and mechanical stress.
- Lower inventory of spare mechanical parts and operating costs.
- Increased production rates by reducing machine maintenance downtime.
- Prolonged life of electrical switchgear with lower inrush currents.
- Soft stops on pumping applications reduce piping system stresses and "hammer" effect.
- Energy optimizing reduces motor energy losses when operating motor below maximum capacity.

Figure 2.7: Motor current

Figure 2.8: Torque

CHAPTER 3

METHODOLOGY/ PROJECT WORK.

3.1 EDSA work flow

Figure 3.1: EDSA work flow

The load analysis will be done using excel spread sheet and the electrical power simulation will be done using EDSA software.

3.2 Short circuit comparison work flow

Figure 3.2: Short circuit comparison work flow

3.3 Motor starting study comparison work flow

Figure 3.3: Motor starting comparison work flow

3.4 Producing Single line diagram

In power engineering, a single-line diagram is a simplified notation for representing a three-phase power system. The single-line diagram has its largest application in power flow studies. Electrical elements such as circuit breakers, transformers, capacitors, bus bars, and conductors are shown by standardized schematic symbols. Instead of representing each of three phases with a separate line or terminal, only one conductor is represented [17]. The following are some of data and calculations involve in producing TBCP-A single line diagram.

1) Gas turbine generator (GT-7510, GT-7520, GT-7530)

- ISO rating $=5750 \mathrm{~kW}, 7188 \mathrm{kVA}$
- System voltage $=6600 \mathrm{~V}, 50 \mathrm{~Hz}$
- Power factor $=0.80$

Reactance (taken from vendor catalogue)

- Subtransient reactance, X " $\mathrm{d}=15 \%$
- Transient reactance, $X^{\prime} d=22.3 \%$
- Synchronous reactance, $\mathrm{Xd}=138.9 \%$
$-\mathrm{X} / \mathrm{R}$ ratio $=42.7$
- Neutral earthing = resistance earthing

2) Transformer (TF-7540, TF-7550, TF-7560, TF-7570)

- Rating $=2500 \mathrm{kVA}$
- Voltage $=6600 \mathrm{~V} / 400 \mathrm{~V}$

Reactance and resistance (taken from vendor catalogue)

- Reactance, $\mathrm{X}=6.4 \%$
- Resistance, $\mathrm{R}=0,8 \%$
$-\mathrm{X} / \mathrm{R}$ ratio $=8$

3) Emergency diesel generator (GD-7700)

- Rating $=1500 \mathrm{~kW}, 1875 \mathrm{kVA}$
- System voltage $=400 \mathrm{~V}, 50 \mathrm{~Hz}$
- Power factor $=0.80$
- Subtransient reactance, $X " d=14.6 \%$
- Transient reactance, $\mathrm{X}^{\prime} \mathrm{d}=22.3 \%$
- Synchronous reactance, $\mathrm{Xd}=138.9 \%$
$-\mathrm{X} / \mathrm{R}$ ratio $=42.7$

4) Feeder

- Library = IEC- Data from COPARI in Europe
- Cable's power factor, number of phase, length, size and phase are taken from the voltage drop and cable sizing calculation.
- Cable resistances and reactance are taken from vendor catalogue.

5) Circuit breaker

- The ampere rating for each circuit breaker is calculated using the following formula:

$$
\mathrm{I}=\underline{\mathrm{P}}
$$

$\sqrt{3} \mathrm{~V}$

- The circuit breaker rating will be chosen based on the nearest higher value available in the market.

After all the components and its respected data had been inserted, error checking is done to every bus and load branches to make sure that the components and feeders are correctly connected.

3.5 Short circuit analysis

3.5.1 Case 1: Three phase single transformer system

In order to determine the fault current at any point in the system, we need to draw a single line diagram consisting all of the sources of short circuit current feeding into the fault and also the impedances of the circuit components. The following figure is the single line diagram that will be analyzed using three different methods namely; ohmic method, point to point method and also using EDSA software. The results will later be compared and analyze.

Figure 3.4: 3 phase single transformer system.

3.5.1.1 Ohmic method calculation procedure

Step 1. Calculate the utility impedances using the following formulae:
X utility $\Omega=1000(\mathrm{KV} \text { secondary })^{2}$
S.C. KVA utility

Step 2. Calculate the transformer impedances using the following formulae:

$$
\begin{gathered}
\text { Xtrans } \Omega=(10)(\% \mathrm{X})(\mathrm{KV} \text { secondary })^{2} \\
\text { KVA trans }
\end{gathered} \quad \text { Rtrans } \Omega=\frac{(10)(\% \mathrm{R})(\mathrm{KV} \text { secondary })^{2}}{\text { KVA trans }}
$$

Step 3. X cable and bus $\Omega ; \quad$ R cable and bus Ω.

Step 4. Total all X and all R in system to point of fault.

Step 5. Determine impedance (in ohms) of the system by:

$$
\mathrm{ZT}=\sqrt{(\mathrm{RT})^{2}+(\mathrm{XT})^{2}}
$$

Step 6. Calculate short-circuit symmetrical RMS amperes at the point of fault.

$$
\begin{gathered}
\text { I S.C. sym RMS }=\frac{\text { E secondary line-line }}{\sqrt{3}(\mathrm{ZT})}
\end{gathered}
$$

Step 7. I sym motor contrib. $=(4) \times(I$ full load motor $)$

Step 8 I total S.C. sym RMS = (I S.C. sym RMS $)+($ I sym motor contrib. $)$

Step 9. Determine X / R ratio of the system to the point of fault.

$X /$ R ratio $=\underline{X}$ total Ω
R total Ω

3.5.1.2 Basic Point-to-Point Calculation Procedure

Step 1. Determine the transformer full load amperes (F.L.A.) from either the nameplate, the following formulas :
$3 \emptyset$ Transformer $\mathrm{I}_{\text {FL.A. }}=\underline{\mathrm{KVA} \times 1000}$

$$
\mathrm{E}_{\mathrm{L}-\mathrm{L}} \times 1.732
$$

$1 \emptyset$ Transformer $\mathrm{I}_{\text {F.L.A. }}=\underline{\mathrm{KVA} \times 1000}$

$$
\mathrm{E}_{\mathrm{L}-\mathrm{L}}
$$

Step 2. Find the transformer multiplier.

Multiplier = \qquad
*\%Ztransformer

Step 3. Determine by formula or Table 1 the transformer let-through short-circuit current.
$I_{\text {S.C. }}=$ Transformer $_{\text {F.L.A. }} \times$ Multiplier

Step 4. Calculate the " f " factor.

30 Faults $\quad f=1.732 \times \mathrm{L} \times 130$
$\mathrm{Cxnx} \mathrm{E}_{\mathrm{L}-\mathrm{L}}$
$1 \varnothing$ Line-to-Line (L-L) Faults

$$
\mathrm{f}=\underline{2 \times \mathrm{L} \times \mathrm{I}_{\mathrm{L}-\mathrm{L}}}
$$

$\mathrm{Cxnx} \mathrm{E}_{\mathrm{L}-\mathrm{L}}$
$1 \varnothing$ Line-to-Neutral (L-N) Faults

$$
\begin{aligned}
\mathrm{F}= & \frac{2 \times \mathrm{L} \times \mathrm{I}_{\mathrm{L}-\mathrm{N}} \mathrm{I}}{} \quad \mathrm{C} \mathrm{\times n} \mathrm{\times E}_{\mathrm{L}-\mathrm{N}}
\end{aligned}
$$

Where:

$\mathbf{L}=$ length (feet) of conductor to the fault.
$\mathbf{C}=$ constant from Table 4 of "C" values for conductors and Table 5 of "C" values for busway.
$\mathbf{n}=$ Number of conductors per phase (adjusts C value for parallel runs)
$I=$ available short-circuit current in amperes at beginning of circuit.

Step 5. Calculate "M" (multiplier)

Step 6. Calculate the available short-circuit symmetrical RMS current at the point of fault. Add motor contribution, if applicable.
$I_{\text {S.C. } \operatorname{sym} \text { RMS }}=I_{\text {S.C. }} \times M$

Step 6A. Motor short-circuit contribution, if significant, may be added at all fault locations throughout the system. A practical estimate of motor short-circuit contribution is to multiply the total motor current in amperes by 4 . Values of 4 to 6 are commonly accepted

3.5.2 Case 2: TBCP-A single line diagram

For TBCP-A, the short circuit analysis is performed to the single line diagram using AC IEC 60909 standard. Three phase, half cycle symmetrical configuration will be chosen to calculate the short circuit current. Half cycle of the short circuit current component will give the maximum short circuit value. The short circuit ratings of equipment and cables, including the short circuit making and breaking capacity of circuit switching devices, shall be based on the parallel operation of all supplies [24].

3.6 Motor starting study using EDSA

During starting of direct on line motors, the voltage at the motor terminal shall not deviate by more than $+10 \%$ or -20% from rated equipment voltage. Transient voltage deviations occurring at switchgear busbars during motor starting shall be maintain a minimum of 90% voltage on switchgear busbars and at least 80% but not more than 110% of rated equipment voltage on all consumers [24].

The voltage dip for motor starting shall be limited to (as per PTS 33.64.10.10.):

At the GTG Terminal	10%
At the Switchgear Bus	10%
At the Motor Terminal	20%

Soft starter starting method is chosen for starting of the largest motor. For Soft Starter method, the starting current is 2.5 times of the full load current in EDSA. Other motors in the 6.6 kV System shall be by Direct-On-Line starting method with 5.5 times of the full load current. The voltage dip will be calculated using EDSA and also manually [12]. The result will then be compared in order to prove the reliability of both methods.

3.6.1 Method of calculation

Step 1.Calculate the total current during starting excluding the largest motor to be started

$$
\mathrm{I}=\frac{\text { Total KVA prior to start up of largest motor }}{\sqrt{3} \times V}
$$

Step 2.Calculate voltage generated by EDG

$$
\mathrm{E}=\sqrt{ }\left(\mathrm{Vph} \cos \theta+\mathrm{I}^{*} \mathrm{RG}\right)^{2}+\left(\mathrm{Vph} \sin \theta+\mathrm{I}^{*} \mathrm{XD}\right)^{2}
$$

Step 3.Calculate current \& voltage dip during starting of largest motor-soft starter method
i) Voltage dip at EDG terminal

```
\(\mathrm{E}^{2}=\left(\mathrm{VGT} \cos \theta+\mathrm{IT}^{*} \mathrm{RG}\right)^{2}+(\mathrm{VGT} \sin \theta+\mathrm{IT} * \mathrm{XD})^{2}\)
\(\% \mathrm{Vdip}=\underline{\mathrm{V}(\mathrm{L}-\mathrm{L})-\mathrm{VGT} X 100}\)
    V (L-L)
```

ii) Voltage dip at switchgear bus terminal

Vdip in the cable $=\sqrt{3} x$ IS $(R C \cos \theta+X C \sin \theta)$
Voltage at bus $=$ VGT $(\mathrm{L}-\mathrm{L})-$ Vdip in the cable
Voltage dip at bus $=\underline{V(L-L)}-$ Vbus $X 100$
V (L-L)
iii) Voltage dip at motor terminal

Vdip in the cable $=\sqrt{3} \times I S(R C \cos \theta+X C \sin \theta)$
Voltage at motor terminal $=$ Voltage at bus - Vdip in the cable
Voltage dip at motor terminal $=\underline{\mathrm{V}}(\mathrm{L}-\mathrm{L})-$ Vmotor $\times 100$
V (L-L)

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Single line diagram.

Please refer to appendix E for $\mathrm{TBCP}-\mathrm{A}$ single line diagram.

4.2 Load analysis

Electrical load list is prepared and shall form the basis for provision of the necessary electrical supply and distribution system capacity. The preparation of an electrical load list involved the followings:

- Calculating the magnitude of each load
- Determining the characteristics, load factor and diversity loads.
- Compiling the loads to obtain the total power required on the platform.

Note: Please refer to appendix A for the electrical load list.

4.3 Configuration of equipment

4.3.1 Configuration of Gas Turbine Generator

TBCP-A platform comprises of $3 \times 575 \mathrm{MW}$ gas turbine driven $6.6 \mathrm{kV}, 50 \mathrm{~Hz}, 3$ phase generator. The gas turbines will be operated continuously and unattendedly. Two of the generators will operate with either fuel gas or diesel fuel incase of fuel gas disruption.

Generated electric power will then feed into 6.6 kV switchgear with bus-tie closed for main power distribution to the 6.6 kV loads. Other low voltage loads shall be powered via dedicated MCC. Standard form PTS 05.00 .10 .80 gives formulae for determining the total electric load as:

Peak load $=100 \% \mathrm{E}+30 \% \mathrm{~F}+10 \% \mathrm{G}$

Ehere	$=$	Total Continuous Load
F	$=$	Total Intermittent Load
G	$=$	Total Standby Load
Minimum required	$=$	125% Peak Load
power generation		

The spare capacity of 25% is a requirement to cater the future loads. Number of generating sets to be installed depends on:
i. Maintenance requirement.
ii. Economic size.
iii. Unit reliability.
iv. Availability.

Calculation

Generator configuration $=3 \times 50 \%$
Peak load $=7481.40 \mathrm{~kW}, 3819 \mathrm{Kvar}$

$$
\begin{aligned}
& =\sqrt{ }\left(7481.40^{2}+3819^{2}\right) \\
& =8400 \mathrm{kVA}
\end{aligned}
$$

Considering peak loads + heating medium heater,

Total $\mathrm{kVA}=8400 \mathrm{kVA}+4000 \mathrm{kVA}$

$$
=12405.69 \mathrm{kVA} .
$$

For this configuration, the load will be shared between 2 gas turbine generators. Each gas turbine generator must meet minimum site rating power of 6202.85 kVA . Therefore we choose 7500 kVA that is the rating available in the market.

4.3.2 Configuration of transformer.

For 400 V loads, 6.6 kV supply is stepped down to 400 V at SB-7710 \& SB-7720 by 4 distribution transformer. (TF-7540, TF-7550, TF-7560, TF-7570). Two transformers are identical in kVA rating for emergency reason. ATSL is used to automatically open \& close the bus-tie breaker in the event of switch over from one transformer to the other. Busducts are used for power connection to accommodate full load current.

Calculation

TRANSFORMER TF-7540 and TF-7550

$$
\begin{aligned}
\text { Total kVA for SB-7710 } & =\quad 1380.37 \mathrm{kVA}+561.44 \mathrm{kVA} \\
& =1941.81 \mathrm{kVA}
\end{aligned}
$$

Considering 10\% spare, for future load growth

$$
\begin{aligned}
& =1941.81 \times 1.1 \\
& =\quad 2135.99 \mathrm{kVA}
\end{aligned}
$$

Therefore selected Transformer size is 2500 kVA each.

TRANSFORMER TF-7560 and TF-7570

Total kVA for SB-7720 $=\quad 1,823.32 \mathrm{kVA}+179.07 \mathrm{kVA}$

Considering 10\% spare, for future load growth

```
= 2002.39 x 1.1
= 2202.629 kVA
```

Therefore selected Transformer size is 2500 kVA each.

4.3.3 Configuration of emergency diesel generator.

Diesel generator used to start up one of dual fuelled gas turbine generator. Gas turbine generator will be transferred to fuel gas once stabilize and synchronized with emergency diesel generator. Load will be shared and transferred to gas turbine generator. Emergency diesel generator will shutdown and remain on standby mode for vital loads in case of power generator failure.

Calculation

Total kVA $=1376.6 \mathrm{kVA}$
Considering 15% spare, for future load growth

```
= 1376.6 VA x 1.15
= 1583.09 kVA
= 1875 kVA (round-up to the rating available in the market)
```

Therefore selection of Emergency Diesel Generator (EDG) shall be based on size 1875 kVA.

4.4 Nominal high voltage selection.

The selection of operating voltages is governed by PTS 33.64.10.10 Electrical Engineering Guidelines section 3.3.1. The selection basis of motor voltages and power ratings should conform to the following (as stated in the PTS 33.64.10.10):

Table 4.1: Selection basis of motor voltages and power ratings

Switchgear Nominal Voltages	Maximum LV motor rating	Minimum HV motor rating
3.3 kV	110 kW	132 kW
6.6 kV and higher	185 kW	200 kW

4.5 Power generation simulation.

The design shall minimise the short circuit fault levels within the ratings of standard commercially available equipment as well as keep voltage dips during large motor starting within allowable limits to avoid affecting the operation of other loads supplied from the same power busbars.

A short circuit study shall be performed to establish the short circuit fault levels on both the 6600 V and 400 V power systems to ensure that short circuit current withstand and power interrupting ratings of electrical equipment are correctly specified. Motor starting study is performed in accordance to the deviations in supply voltage and frequency as stated in PTS 33.64.10.10.

4.5.1 Short circuit analysis

4.5.1.1 Case 1: Simple single line diagram

i) Ohmic method

Fault at X1

Calculate resistances and reactances
i) Utility
S.C MVA $100000,480 \mathrm{~V}$,

```
X=1000(KV sec)}\mp@subsup{)}{}{2}=1000(0.48\mp@subsup{)}{}{2}=0.000002
    S.C KVA 100,000,000
```

```
ii) Transformer
1500 kVA, 480 V, 3phase,
3.5% z, 3.45% x, 0.56 %R(refer to appendix F table 1.2)
X=10(%X)(kV sec)}\mp@subsup{)}{}{2}=\underline{10(3.45)(0.48)}\mp@subsup{)}{}{2}=0.005
    kVA 1500
R=10(%R)(kV sec)}\mp@subsup{}{}{2}=\underline{10(0.56)(0.48)}\mp@subsup{}{}{2}=0.0008
    kVA 1500
iii) Conductors in steel conduit
25'-500kcmil, 6 per phase (refer to appendix F table 5)
X=\underline{25',}X\underline{0.0379}=0.000158
    1000 6
R= 25,}\times\underline{0.0244}=0.00010
    1000 6
iv) Fuse
KRP - C -2000 SP (refer to appendix F table 3)
\(X=0.00005\)
Total resistance and reactance
\(\mathrm{R}=0.00086+0.000102=0.000962\)
\(\mathrm{X}=0.0000023+0.0053+0.000158+0.00005=0.00551\)
\(Z\) total per phase \(=\sqrt{ }(0.000962)^{2}+(0.00551)=0.0056 \Omega\)
```

```
I S.C sym RMS = E sec line- line = _ 480__= = 49489 A
    \sqrt{}{3(ZT)}\quad\sqrt{}{3}(0.0056)
```

I sym motor contrib. $=4 \times$ I full load $=4 \times 1804=7216 \mathrm{~A}$
I total S.C sym RMS (fault X1) $=49489+7216=56705 \mathrm{~A}$

Fault at X2

Resistance and reactance up to point X1:
$\mathrm{R}=0.000962 \quad \mathrm{X}=0.00551$
i) Fuse

LPS - RK - 400SP (refer to appendix F table 3)
$X=0.00005$
ii) Feeder in steel conduit
$50^{\prime}-500 \mathrm{kcmil}$ (refer to appendix F table 5)
$X=\underline{50^{\prime}} X \quad 0.0379=0.00189$ 1000
$R=\underline{50} \times 0.0244=0.00122$ 1000

Total resistance and reactance

$$
\begin{aligned}
& \mathrm{R}=0.000962+0.00122=0.002182 \\
& \mathrm{X}=0.00551+0.00008+0.00189=0.00748 \\
& \mathrm{Z} \text { total per phase }=\sqrt{ }(0.00218)^{2}+(0.00748)^{2} \\
& \qquad=0.00778 \Omega \\
& \text { I S.C sym RMS }=\underline{\text { E sec line- line }=}-480 \quad \sqrt{3}=35621 \mathrm{~A} \\
& \qquad \sqrt{3(\mathrm{ZT})}
\end{aligned}
$$

I sym motor contrib. $=4 \times$ I full load $=4 \times 1804=7216 \mathrm{~A}$

I total S.C sym RMS (fault X2) $=35621+7216=42837 \mathrm{~A}$

ii) Point to point method

Fault at X1

I full load $=\underline{\text { KVA X } 1000}=\underline{1500 \times 1000}=1804 \mathrm{~A}$ EL-LX 1.732480×1.732

Multiplier $=\underline{100}=\underline{100}=28.57$
$\%$ Z trans 3.5
I S.C $=$ I full load X Multiplier $=1804 \times 28.57=51540 \mathrm{~A}$
$\mathrm{f}=\underline{1.732 \times \mathrm{L} \mathrm{x}}=\underline{1.732 \times 25 \times 51540}=0.0349$ (refer appendix F table 6 for value of C)
$\mathrm{Cxnx} \mathrm{E}_{\mathrm{L}-\mathrm{L}} \quad 6 \mathrm{X} 22185 \mathrm{X} 480$

$$
M=\frac{1}{1+f}=\frac{1}{1+0.0349}=0.9663
$$

I S.C sym RMS $=51540$ X $0.9663=49803 \mathrm{~A}$
I sym motor contrib. $=4 \times$ I full load $=4 \times 1804=7216 \mathrm{~A}$
I total S.C sym RMS (fault X1) $=49803+7216=57019 \mathrm{~A}$

Fault at X2

Use I s.c sym RMS at point X1 to calculate " f "
$\mathrm{f}=\underline{1.732 \times \mathrm{L} \times \mathrm{I}}=\underline{1.732 \times 50 \times 49803}=0.4050($ refer appendix F table 6 for value of C$)$ $\mathrm{CxnxE} \mathrm{E}_{\mathrm{L}-\mathrm{L}} \quad 22185 \mathrm{X} 480$

$1+\mathrm{f} \quad 1+0.4050$

I S.C sym RMS $=49803 \times 0.7117=35445 \mathrm{~A}$
I sym motor contrib. $=4 \times$ I full load $=4 \times 1804=7216 \mathrm{~A}$
I total S.C sym RMS (fault X2) $=35445+7216=42661 \mathrm{~A}$

Tabulated result for case 1:

Table 4.2 : Short circuit tabulated result

Point	Ohmic (A)	PTP (A)	EDSA (A)
X1	56,705	57,019	52070
X2	42,837	42,661	46192

From the table, we can observe that all three methods of short circuit analysis give acceptable range of result. This verifies the reliability of each method. The suitable method
of calculation shall be chosen based on the power system complexity. For a simple single line diagram as in case 1 , it is practical enough to use manual calculation. However, for a more complicated power system, it is efficient and practical to use the computer software. EDSA software method is preferred because it is a proven tool in the demanding, real-world applications and in precise software testing based on long hand calculation. It also offers wide range of fault simulation such as 3 Phase, line-line, line-line-ground and line-ground. This software also offers flexible, fast and accurate solution techniques. It is easy-to-use and the results are at a glance as user selection, in report or annotation form.

4.5.1.2 Case 2: TBCP-A single line diagram

In this short circuit analysis, only worst case scenario is carried out which represents the highest fault level condition. This scenario happens in a very short time during the interchange of operation between two transformers for example during maintenance of transformer. By means, during this time the transformers will be in parallel operation, but only for a short time. Hence the busbar will be rated for both transformers connected in parallel.

Worst case scenario:

- 3 turbine generators are running.
- Emergency Diesel Generator is not running.
- All four transformer and tie breakers are closed.

Parameters for the various equipment used in the calculations (EDSA) are as follows:
Alternator for Turbine Generators

ISO Rating	$:$	$5750 \mathrm{~kW}(7188 \mathrm{kVA}$ at $0.8 \mathrm{p} . \mathrm{f})$
System Voltage	$:$	$6600 \mathrm{~V}, 50 \mathrm{~Hz}$
Subtransient reactance X"d	$:$	15%
Transient reactance X'd	$:$	22.3%
Synchronuos reactance Xd	$:$	138.9%
X/R ratio	$:$	42.7
Neutral earthing	$:$	Resistance earthing

Emergency Diesel Generator		
Site Rating	:	1500 kW (1875 kVA at $0.8 \mathrm{p} . \mathrm{f})$
System Voltage	:	$400 \mathrm{~V}, 50 \mathrm{~Hz}$
Subtransient reactance X "d	:	14.6 \%
Transient reactance $\mathrm{X}^{\prime} \mathrm{d}$:	22.3 \%
Syncronuos reactance Xd	:	138.9 \%
X/R ratio	:	42.7
Neutral earthing	:	Solidly earthed
Transformers (TF-7560 \& TF-7570		
Rating	:	2500 kVA
Voltage	:	$6600 \mathrm{~V} / 400 \mathrm{~V}$
\% Reactance X	:	6.4 \%
\% Resistance R	:	0.8 \%
X / R ratio	:	8
Transformers (TF-7540 \& TF-7550)		
Rating	:	2500 kVA
Voltage	:	$6600 \mathrm{~V} / 400 \mathrm{~V}$
\% Reactance X	:	6.4 \%
\% Resistance R	:	0.8 \%
X / R ratio	:	8

Summary of EDSA calculation 3phase fault current level is as follows:

Table 4.3: Summary of EDSA calculation 3phase fault current level

Bus ID	Volt (kV)	Current (kA)
A-2500A	6.6	14.65
A-2500B	6.6	14.65
P-6940A	6.6	14.92
GT-7510	0.4	16.67
GT-7520	0.4	16.65
GT-7530	0.4	16.53
MCC-7810	0.4	10.68
MCC-7820	0.4	33.61
MCC-7830	0.4	72.53
MCC-7840	0.4	25.96
P-2510A	6.6	17.8
P-6910A	6.6	15.33
SB-7710 BUS B	0.4	79.13
SB-7710 BUS A/P	0.4	79.1
SB-7720 BUS A	0.4	79.66
SB-7720 BUS B	0.4	79.61
SG-7500 BUS A	6.6	16.78
SG-7500 BUS B	6.6	16.77

The result of short circuit current obtained by EDSA based on the worst case scenario will then be compared to vendor's available equipment short circuit rating. For high voltage system, the available equipment short circuit ratings are $40 \mathrm{kA}, 31.5 \mathrm{kA}, 25 \mathrm{kA}$, and 10 kA . As for the low voltage system, the available equipment short circuit ratings are $100 \mathrm{kA}, 80$ $\mathrm{kA}, 65 \mathrm{kA}$ and 50 kA .

The highest fault level at the HV bus, SG-7500 is 17 kA , which is within the short circuit rating of 25 kA , RMS symmetrical. The highest fault level at the LV 400 V switchboards for SB-7710 and SB-7720 are 79 kA and 80 kA respectively. These values are within the switchboards short circuit current rating of 100 kA RMS , symmetrical. This condition happens when both transformer from respective LV systems are in parallel. The highest fault level at MCC level is 72.53 kA that is at MCC 7830. The busbar short circuit current rating for this MCC should be at 80 kA .

Changes in short circuit current will take place when there is an equipment addition or deletion. More equipment especially motor will cause the short circuit current value to be higher. From the results obtained, the engineer can specify proper interrupting rating requirement based on vendor's data. Also, using the information gathered, we can selectively coordinate the system and provide component protection.

4.5.2 Motor starting study

In this analysis, emergency scenario for TBCP-A platform will be considered. During this condition, only emergency diesel generator will be operating to cater for all vital loads on the respective bus bar. The scenario shall be described as follow:

- Only Emergency Diesel Generator (EDG) is running to cater all vital loads on SB-7710 Bus A/P.
- Air compressor K-5510 is to started.
- Soft starter method is used.

Manually calculation will be done to calculate value of voltage dip at EDG terminal, switchboard bus terminal and motor terminal voltages. The results will then be compared to results obtained using EDSA. The value of voltage dip calculated using both methods should be in the range of PTS 33.64.10.10 requirement.

4.5.2.1 Manual calculation

Calculate the total current during starting excluding the largest motor to be started Total KVA prior to start up of largest motor $=1217.98+\mathrm{j} 698.64$

$$
=1404.13 \mathrm{kVA}
$$

$$
\begin{aligned}
\operatorname{Tan} \theta= & \underline{698.64}=0.5736 \\
& 1217.98 \\
\theta & =29.84
\end{aligned}
$$

```
I = Total KVA prior to start up of largest motor
    \(\sqrt{3} \mathrm{xV}\)
\(=1404.13 \times 1000=2026.7 \mathrm{~A}\)
```

 \(\sqrt{3} \times 400\)
 Calculate voltage generated by EDG

```
Vph = 400= 230.9 V
    \sqrt{}{3}
XD = 14.6% (from catalogue, refer appendix G)
    =0.146\times(400) 2}=0.01
        1875 x 1000
X/R=9
RG = 14.6% = 1.62%
    9
    = 0.0162 x (400)2}=0.0014
        1875 x 1000
```

$$
\begin{aligned}
\mathrm{E} & =\sqrt{ }(\mathrm{Vph} \cos \theta+\mathrm{I} * \mathrm{RG})^{2}+(\mathrm{Vph} \sin \theta+\mathrm{I} * \mathrm{XD})^{2} \\
& =\sqrt{ }(230.9 \times 0.87+2026.7 \times 0.0014)^{2}+(230.9 \times 0.5+2026.7 \times 0.01) \\
& =244.87 \mathrm{~V}
\end{aligned}
$$

Calculate current \& voltage dip during starting of largest motor - soft starter method Motor starting power factor $\cos \theta=0.30$

$$
\operatorname{Sin} \theta=0.9539 \text { (general rule for } L V \text { motor) }
$$

KVA of motor $=\underline{185}=215 \mathrm{kVA}$

$$
0.86
$$

KVAR of motor during starting $=3 \times 215 \times 0.9539=615 \mathrm{kVAR}$
$K W$ of motor during starting $=3 \times 215 \times 0.30=194 \mathrm{~kW}$

$$
\begin{aligned}
\text { Total KVA during starting as seen by generator } & =1217.98+\mathrm{j} 698.64+194+\mathrm{j} 615 \\
& =1411.98+\mathrm{j} 1313.64 \\
& =1928.6
\end{aligned}
$$

$\operatorname{Tan} \theta=\underline{1313.64}=0.9304$
1411.98
$\theta=42.93$
$\cos \theta=0.732$
$\operatorname{Sin} \theta=0.681$
$\mathrm{IT}=\underline{1928 \times 1000}=2783.7 \mathrm{~A}$
$\sqrt{3} \times 400$
i) Voltage dip at EDG terminal

```
E
```



```
VGT = 222.4 V
VGT(L-L)}=222.4\times\sqrt{}{3}=385.2 V
%Vdip = V (L-L)-VGT }\times100=\underline{400-384.5 }\times100=3.88
    V (L-L) 400
```

ii) Voltage dip at switchgear bus terminal

Cable selected $=4 \times(1 \mathrm{C} \times 630) \mathrm{sq} \mathrm{mm}$
Estimated cable length $=50 \mathrm{M}$

No of cable runs $=4$

```
Resistance Rc \(=0.04 \times \quad 50=0.5 \times 10^{\wedge}-3 \Omega\)
    \(4 \times 1000\)
Reactance Xc \(=0.09 \times \quad 50=1.125 \times 10^{\wedge}-3 \Omega\)
    \(4 \times 1000\)
```

Vdip in the cable $=\sqrt{3} \times$ IS $(R C \cos \theta+X C \sin \theta)$

$$
\begin{aligned}
& =\sqrt{3} \times 2783.7\left(0.5 \times 10^{\wedge}-3 \times 0.732+1.125 \times 10^{\wedge}-3 \times 0.681\right) \\
& =5.46 \mathrm{~V}
\end{aligned}
$$

Voltage at bus $=$ VGT $(\mathrm{L}-\mathrm{L})-$ Vdip in the cable

$$
\begin{aligned}
& =384.5-5.46 \\
& =379.04 \mathrm{~V}
\end{aligned}
$$

$$
\begin{gathered}
\text { Voltage dip at bus }=\frac{\mathrm{V}(\mathrm{~L}-\mathrm{L})-\text { Vbus } \times 100=\underline{400-379.04} \times 100=5.24 \%}{\mathrm{~V}(\mathrm{~L}-\mathrm{L})} \mathrm{400}
\end{gathered}
$$

iii) Voltage dip at motor terminal

Cable selected $=(3 \mathrm{C} \times 240) \mathrm{sq} \mathrm{mm}$
Estimated cable length $=50 \mathrm{M}$
Resistance $R c=0.0984 \times 50=4.92 \times 10^{\wedge}-3 \Omega$

1000
Reactance $\mathrm{Xc}=0.089 \times \underline{50}=4.45 \times 10^{\wedge}-3 \Omega$

1000
$R C \cos \theta+X C \sin \theta=\left(4.92 \times 10^{\wedge}-3 \times 0.3+4.45 \times 10^{\wedge}-3 \times 0.9539\right)=0.0057$

$$
\begin{aligned}
& \text { Im }=\frac{185 \times 100}{\sqrt{3} \times 400 \times 0.86 \times 0.96}=323.43 \mathrm{~A} \\
& \text { Is }=3 \times \operatorname{Im}=3 \times 323.43 \mathrm{~A}=970.3 \mathrm{~A}
\end{aligned}
$$

Vdip in the cable $=\sqrt{3} \times$ IS $(R C \cos \theta+X C \sin \theta)=\sqrt{3} \times 970.3 \times 0.0057=9.58 \mathrm{~V}$

Voltage at motor terminal $=$ Voltage at bus - Vdip in the cable

$$
=379.04-9.58=369.46 \mathrm{~V}
$$

Voltage dip at motor terminal $=\underline{\mathrm{V}(\mathrm{L}-\mathrm{L})-\mathrm{Vmotor}} \times 100=\underline{400-369.49} \times 100=7.64 \%$

V (L-L) 400

Tabulated result for motor starting:

Table 4.4: Motor starting study tabulated result

Description	EDSA	manual
At the EDG Terminal (\%)	3.43	3.88
At the Switchgear Bus (\%)	9.21	5.24
At the Motor Terminal (\%)	10.64	7.64

Please refer to appendix E for EDSA result. Based on the tabulated result, it is observed that voltage dip at all the relevant buses was found to be within the specified limits. The value of the voltage dip at these generator terminals was verified with manual calculation, and the result is acceptable within the same order of range. Soft starter method is used for the largest motor to be started in order to obtain lower value of voltage dip. Recommendation for improving the accuracy of results is to undertake this motor study during design period with actual motor designed data instead of using the values given by EDSA.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In this project, I have conducted research on power system fundamental, design requirement, short circuit and motor starting studies in order to achieve better understanding on power system configuration and analysis. I have performed short circuit and motor starting calculation manually and made comparison with the results obtained in EDSA software. It was found that the results are within the acceptable limits. I have concluded that EDSA software is the most practical solution especially considering complicated power system design. The objective to familiarize with the flow and method used in preparing short circuit analysis and motor starting study of an offshore platform in the oil and gas industry is achieved.

5.2 Recommendation

For future work, I would recommend verification of TBCP-A power system short circuit analysis using various manual calculation methods. Other than that, study on other scenario for both short circuit analysis and motor starting study should also be done. Other power system analysis such as power flow, harmonics analysis and transient stability study can be done in order to obtain further understanding on power system analysis.

REFERENCES

[1] Mercede, Frank J, "How to perform short-circuit analysis".
[2] Tan Yan Choon, first edition, Design and Specification of Power Distribution and Protection Systems in Building, Amos Technologies PTE LTD.
[3] Massimo Mitolo, Ph.D., Chu \& Gassman Consulting Engineers, "Short-Circuit Calculation Methods".
[4] Viv Cohen Circuit Breaker Industries, P.O. Box 881,Johannesburg 2000, South Africa."Induction motors- Protection and starting"
[5] Mark McGranaghan, EPRI Solutions, and Fred Kinder, Dranetz-BMI,"Evaluating motor and transformer inrush currents".
[6] http://www.midwest-ps.com/svc_shortcircuit.htm
[7] http://www.electricalpowerengineering.com/short-circuit-study.php

[8]

http://www.bussmann.com/library/indcon/System\ available\ fault\ currents.pdf
[9] http://www.edsa.com/short_circuit_analysis.php
[10] http://www.cpeinc.net/PDFs/Procedures_SSCS.pdf
[11] SHORT CIRCUIT STUDY (TBCP-A)
[12] MOTOR STARTING STUDY (TBCP-A)
[13] ELECTRICAL DESIGN BASIS (TBCP-A)
[14] http://www.geocities.com/angolano/OS_PLATFORMS_DESIGN.html
[15] http://esd.mit.edu/esd_reports/winter2006/offshore_wind_power.html
[16] Lisa Lavie, Dave Burns, P.E., John Ventura, P.E." Electrical safety for an offshore power system".
[17] http://en.wikipedia.org/wiki/One-line_diagram
[18] Josph Nevelsteen and Humberto Aragon, Member, IEEE, "Starting of Large MotorsMethods and Economics".
[19] http://www.softstartdirect.com/whysoftstarts.aspx
[20] Schneider Electric, Technical Bulletin, Vol 4 2006, "Different Motor Starting Methods".
[21] http://en.wikipedia.org/wiki/Direct_on_line_starter
[22] http://www.eng-tips.com/faqs.cfm?fid=1064
[23] http://www.la-engineering.com/MotorStarting.html
[24] PTS 33.64.10.10

TBCP-A FULL LOAD CASE (LY LOADS)CCO2 HEMUVAL BTDicim wn.:

TBCP-A FULLL LOAD CASE LLV LOADS $)$-CO2 REMOVAL SYSTEM ND. 1

TBCP-A FULLL LOAD CASE (LV LOADS) COZ HEMUYAL ataicm in.,

TBCP-A FULLL LOAD CASE (LY LOADS Y-CO2 REMOVAL SYSTEM NO. 1

TACP-A FULL LOAD CASE (LV LOADS) -CD REMOVAL SYSTEM NO. 1

tecp-a full load case (LV Loads)-Coz Removal system no. 1

TBCP-A FULLL LOAD CASE (LV LOADS HCOZ REMOVAL SYSTEM NO. 1

TBCP-A FULL LOAD CASE (LV SWITCHBOARD LOADS)

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \& \& \multirow[t]{3}{*}{EQUTRMENT
DESCRIPTION} \& \multicolumn{18}{|c|}{CONSUMEDLOAD} \\
\hline \& \& \& \multicolumn{2}{|l|}{continuos} \& \multicolumn{2}{|l|}{intermittent} \& \multicolumn{2}{|l|}{Stand-by} \& \multicolumn{3}{|c|}{maximum} \& \multicolumn{3}{|c|}{PEAK} \& \multicolumn{3}{|l|}{PEAK (WITH 10\% MARGIN)} \& \multirow[t]{2}{*}{\(\underset{\substack{\text { transformer } \\ \text { LOAD }}}{\substack{\text { KVA }}}\)} \& \multicolumn{2}{|l|}{TRANSFORMEA fecommended} \\
\hline \& \& \& kN \& kVAT \& kW \& kVAr \& kW \& kV/Ar \& kN \& kVAC. \& kVA \& kW \& EVMA \& kVA \& kW \& kVAs \& KVA \& \& aTY \& KVARATING \\
\hline - \& Se-7710 \& 400V LV SWITCHBOARD Bus.P \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline T \& 8.5010 A \& AAR COMPAESSOR \& 179.17 \& 106.31 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 179.17 \& 108.31 \& 209.33 \& 179.178 \& 106.34 \& \({ }^{208.33}\) \& 197.08 \& 116.94 \& \& \& \& \\
\hline \(\frac{2}{3}\) \& \(\frac{E .50108}{\text { M C } 7210}\) \& AIR COMPRESSOR \& \& -0.00 \& 0.00
4.00 \& 0.00
0.00 \& \begin{tabular}{|c}
179.17 \\
35.67
\end{tabular} \& 106.31
24.42 \& \& \& 0.00
44.42 \& \& 10.63
27.00 \& \& 499.74 \& \[
\begin{aligned}
\& 11.69 \\
\& 29.70
\end{aligned}
\] \& \[
\begin{aligned}
\& 22.92 \\
\& 53.62
\end{aligned}
\] \& \& \& \\
\hline \(\frac{3}{4}\) \& \& EOLOADS \& 35.82

10 \& -24.56 \& 4.00

62.31 \& - ${ }^{0.006}$ \& | 35.67 |
| :---: |
| 27.97 | \& 24.42

150.50 \& \begin{tabular}{c}
37.02

229.58

\hline

 \& ${ }_{141.26} 24.56$ \& ${ }_{269.56}^{44.42}$ \&

252.58

\hline 258
\end{tabular} \& \$67.31 \& ${ }_{296.87}^{48.75}$ \& 277.62 \& -29.70 \& - ${ }^{53.62}$ \& \& \&

\hline 5 \& Mc-7.780 \& WTAL LOAD --...- --- \& 704.26 \& 354.64 \& 51.42 \& 18.15 \& 370.40 \& 245.93 \& 719.69 \& 360.09 \& B94.74 \& 756.73 \& 384.68 \& 848.89 \& (1) 833.40 \& 423.15 \& 933.78 \& \& \&

\hline \& \& - TOTAL \& 1,130.13 \& 620.27 \& 117,73 \& 3.83. \& 13.2 \& 527.16 \& 1,165.45 \& 632.22 \& 1,327.06 \& 1,246.77 \& 684.93 \& 1,423.67 \& 1,371.45 \& 753.43 \& 1,566.03 \& \& 1 \& 2500 AN

\hline \& Sentio \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 6 \& MCC7 780 \& | LO NORMAL LOAD |
| :--- |
| TOTAI | \& \[

$$
\begin{aligned}
& 292.32 \\
& 292.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 169.12 \\
& 189.12
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 571.97 \\
& 571.97
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 230.00 \\
& 230.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 252.95 \\
& \\
& 252.95
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
173.67 \\
173.67
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 465.91 \\
& 483.91
\end{aligned}
$$
\] \& 258.12

258.12 \& $$
\begin{gathered}
530.68 \\
530.88
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 469.20 \\
& 489.20
\end{aligned}
$$

\] \& \[

275.49

\] \& \[

$$
\begin{gathered}
561.44 \\
561.44
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 533.12 \\
& 538.12
\end{aligned}
$$

\] \& 303.03 303.03 \& \[

$$
\begin{aligned}
& 677.58 \\
& 617.58
\end{aligned}
$$
\] \& 2183.61 \& 1 \& 2500 AN

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 7 \& E-b04ai \& FUE GAS SUPERHEATER \& ${ }^{400.000}$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 400.00 \& 0.00 \& 400.00 \& 400.00 \& 0.00 \& 400.00 \& 440.00 \& 0.00 \& \& \& \&

\hline B \& E-8010 \& FUE GASPSEEMEATER \& ${ }^{2000.00}$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 200.00 \& 0.00 \& 200.00 \& 200.00 \& 0.00 \& 200.00 \& 220.00 \& 0.00 \& 220.00 \& \& \&

\hline 9 \& P-2510A \& Reg enteraticn gas blowera \& 178.95 \& 105.18 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 176.95 \& 106.18 \& 200.08 \& 178.95 \& 106.18 \& 209.08 \& 196.84 \& 116.80 \& 228.89 \& \& \&

\hline 10 \& P. 25108 \& Regenerationgas blowerb \& t79.95 \& 105.18. \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 178.95 \& 106.18 \& 209.08 \& 178.95 \& 106.18 \& 208.08 \& 196.84 \& 116.80 \& 228.69 \& \& \&

\hline 11 \& MCC-7850 \& NOPMAL LOAD - --. \& 364.35 \& 243.74 \& 17.94 \& 12.33 \& 81.32 \& 26.73 \& 369.73 \& 247.44 \& 444.89 \& 377.86 \& 250.11 \& 453.14 \& 415.65 \& 275.12 \& 498.46 \& \& \&

\hline \& MCC7880 \& NORMALIOAD - \& 97.14 \& 63.32 \& 47.56 \& 32.47 \& 267.13 \& 132.83 \& 111.44 \& 73.08 \& 133.23 \& 138.12 \& 86.36 \& 152.89 \& 151.93 \& 94.98 \& 179.18 \& \& \&

\hline 13 \& Mcci 7870 \& BOOSTE COMP. PACKAGEİ- \& 170.68 \& 114.30 \& 46.48 \& 11.54 \& 265.01 \& 150.97 \& 184,02 \& 117.76 \& 218.47 \& 210.52 \& 13265 \& 248.94 \& 231,58 \& 146.14 \& 273.83 \& \& \&

\hline \& \& Total \& 1,580.08 \& 633.73 \& 108.99 \& 56.31 \& 613.46 \& 310.53 \& 1,623.05 \& 650.62 \& 1,812.75 \& 1,684.40 \& 681.67 \& 1,881.12 \& 7,85284 \& 749.84 \& 2,069.24 \& 2,262.94 \& 1 \& 2500 AN

\hline \& -7720 \& AOOV LV SWITCHEOATO EUS \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 14 \& E-60408 \& FUEL GAS SUPEPHEATER \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 400.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 40.00 \& 0.00 \& 40.00 \& 44.00 \& 0.00 \& 44.00 \& \& \&

\hline 15 \& P-2510C \& EEGENERATION GAS BLOWERC \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 177.08 \& 105.08 \& 0.00 \& 0.00 \& 0.00 \& 17.71 \& 10.51 \& 20.59 \& 19.46 \& 11.56 \& 22.65 \& \& \&

\hline 16 \& MCC-7880 \& BOOSTEA COMP, PACKAGE ${ }^{\text {de }}$ \& 50.09 \& 34.12 \& 26.48 \& 11.51 \& 402.67 \& 230.76 \& 58.04 \& 37.57 \& 59.14 \& ${ }^{98.31}$ \& ${ }^{60.65}$ \& ${ }_{1}^{115.51}$ \& 108.14 \& ${ }_{78.27}^{66.71}$ \& ${ }_{127}^{127.06}$ \& \& \&

\hline \& \& total \& 50.09 \& 34.12 \& 26.48 \& 11.51 \& 979.75 \& ${ }^{335.84}$ \& 58.04 \& 37.57 \& 69.14 \& 156.01 \& 71.15 \& 178.10 \& 171.62 \& 78.27 \& 193.71 \& 2,262.94 \& 1 \& 2500 AN

\hline \& SB-7730 \& AOOVLV SWITCHBOATO \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 17. \& E. 56664 \& HEATING MEDIUM TIIISA \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& \&

\hline \& \& TOTAL \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& --0.00 \& - 0.00 \& 0.00 \& 0.00 \& -0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& \&

\hline \& SB-7440 \& 400 V LV SWITCMBOAA ${ }^{\text {a }}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 18 \& E-56608 \& HEATING MEOUM THIMS \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.06 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& -- 0.00 \& 0.00 \& 0.00 \& \& \&

\hline \& \& TOTAL \& 0.00 \& 0.00 \& 0.00 \& 0.000 \& 0.00 \& 0.00 \& 0.000 \& 0.00 \& 0.0 .00 \& 00.00 \& 0.00 \& 0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& \&

\hline \& SB-7750 \& AOOV LV SWITCHEOAAİ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 19 \& E-S660C \& HeATING MEDUM TRMA \& 0.00 \& 0.00 \& 0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 二 0.00 \& 0.00 \& 0.00 \& - 0.00 \& 0.00 \& 0.00 \& \& \&

\hline \& \& TOTAL \& 0.00 \& 0.00 \& 0.00 \& -0.00 \& 0.00 \& Q 0.0 \& 0.00 \& 0.00 \& 0.00 \& --0.00 \& 0.00 \& -0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& \&

\hline \& SB-7760 \& 400VLV SWITCHBOAFD \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 20. \& E-5660A \& Heatiog medum taima \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& - 0.00 \& \& \&

\hline \& \& --...-.-.-TOTAL \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& --0.00 \& 0.00 \& 0.00 \& 0.00 \& -0.00 \& -0.00 \& 0.00 \& 0.06 \& 0.00 \& - 0.00 \& 0.00 \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& TOTAL LOADS \& 3,052.6 \& 1,477.2 \& 826.2 \& 337.6 \& 2,659.4 \& 1,347.2 \& 3,310.5 \& 1,578.5 \& 3,739.8 \& 3,576.4 \& 1,713.2 \& 4,042.3 \& 3,934.0 \& 1,884.6 \& 4,446.6 \& \& \&

\hline
\end{tabular}

TBCP-A FULL LOAD CASE (LOAD SUMMARY)-CO2 REMOVAL SYSTEM OPTION 1

	EQUIPMENT	CONSUMEDLOAD											
	DESCRIPTION	CONTINUOS		INTERMITTENT		STAND-BY		MAXIMUM			PEAK		
		kW	KVAr	kW	kVAr	kW	kVAr	kW	kVAr	kVA	kW	kVAr	kVA
1	HV LOADS	4,269.53	2,419.66	0.00	0.00	2,455.21	1,391.43	4,269.53	2,419.66	4,907.51	4,515.05	2,558.80	5,189.72
2	LV LOADS	3,062.60	1,477.24	826.17	337.64	2,659.36	1,347.19	3,310.45	1,578.53	3,667.54	3,576.39	1,713.25	3,965.57
	-										(1)		
	TOTALLOADS	7,332,14	3.896.89	826.17	337.64	5,114,57	2,738.62	7,579.99	3.998.19	8,575.05	8,091.45	4,272.05	9,155.29
	OTAL LOADS (25% SPARE CAPACITY)	9,165.17	4,871.11	1,032.71	422.05	6,393.21	3,423.27	9,474.99	4,997.73	10,718.81	10.114 .31	5,340.06	11.444.12

TBCP-A EMERGENCY LOAD CASE (LOAD SUMMARY)-SCENARIO 2

EQUIPMENT	CONSUMEDLOAD											
	CONTINUOS		INTERMITTENT		STAND-BY		MAXIMUM			PEAK		
DESCRIPTION	kW	kVAr	kW	kVAr	kW	kVAr	kW	kVAr	kVA	kW	kVAr	kVA
1 HV LOADS 2 LV LOADS	$\begin{array}{r} 0.00 \\ 1,127.24 \end{array}$	$\begin{array}{r} 0.00 \\ 649.98 \end{array}$	$\begin{array}{r} 0.00 \\ 96.67 \end{array}$	$\begin{gathered} 0.00 \\ 25.79 \end{gathered}$	$\begin{array}{r} 0.00 \\ 796.53 \end{array}$	$\begin{array}{r} 0.00 \\ 515.52 \end{array}$	$\begin{array}{r} 0.00 \\ 1,156.24 \end{array}$	$\begin{array}{r} 0.00 \\ 657.72 \end{array}$	$\begin{array}{r} 0.00 \\ 1,330.22 \end{array}$	$\begin{array}{r} 0.00 \\ 1,235.90 \end{array}$	$\begin{array}{r} 0.00 \\ 709.27 \end{array}$	$\begin{array}{r} 0.00 \\ 1,424.96 \end{array}$
										(3)		
TOTAL LOADS	1,127.24	649.98	96.67	25.79	796.53	515.52	1,156.24	657.72	1,330.22	1,235.90	709.27	1,424.96
TOTAL LOADS (15% SPARE CAPACITY)	1,296.33	747.47	111.17	29.66	916.01	592.85	1,329:68	756.37	1,529.75	1.421.28	815.66	1,638.70

TBCP-A EMERGENCY CASE (LOAD SUMMARY) - FOR TRANSIENT STABILITY / MOTOR STARTING STUDY SCENARIO 2

			\％	\％	\％	\％\％	\％			\％	\％$\%$	\bigcirc	\％\％							5	\％					\％	\bigcirc	\％					¢			
			：	\％	：	：$:$	：			：		二：	：							2	a					\％	\％	\％					\％			
			8	${ }^{5}$	碞	\％	\％				崖	号	景品							－	－					\％		${ }_{5}^{\circ}$					${ }^{2}$			
			：	8	\％	\％	\％			．	\％	\％\％	\％\％							\％	：					\％	\％	\％					号			
			：	\％	8	\％	\％			：	砣	\％	\％							\％	\％					\％	\％	8					\％			
			犃	离 ${ }^{\text {\％}}$	总	总	菏			袁	言总	等鼻															令	\％					堂			
			－	\％	：	：	\％			：	－	\because	\％ 2							\bigcirc	\because					\because	\％	：					：			
\％	$\check{\square}$	\％					5	$\%$	8						$z_{5}^{5} \% 85$		\％		$\check{\square}$	\％	\％	\％	\％			¢	¢	\％	\％\％			\％	\％	\％	\％	\％
金	管	咅							部部									皆		厚	2	\|	㽞		先年	匋		厦	边	吕	年	\％	嵒	\％	？	\％
\％	\％	：							85						$53_{5}^{5} 585$		8	：	：	：	：	\bigcirc	$\stackrel{y}{8}$		8	8 ：	：	\％	8 \％	\％	：	8	8	8	：	．
\％	\％	\％						8	8									5	\％	\％	砍	\％	\％		新尔	部㝑	年	番		窝	䨖	\％	\％	8	咢	\％
\％	\％	\％		\％	\％	\％	3_{3}	$\square_{6}{ }^{\text {b }}$	\％ 8	\％	${ }_{5}$	\％	$5{ }^{\circ}$	8	$55_{5}^{5} 5$		${ }_{5}$	$\square_{6} 8$	\％	\％	\％	\％	\％		$\bigcirc 5$	5.	\％	$\%$	3%	\％	\％	\％	¢	\％	\％	${ }^{6}$
8	吕	8		\％\％	\because	\％	\％${ }^{\circ}$	$\square^{\text {m }}$	8	\％	）	\because	\％	\％	$8{ }^{5} 8$		$\stackrel{\square}{2}$	8 \％	：	\％	\％	\％	\％		$\square_{5}{ }^{\text {\％}}$	${ }^{3}$	\because	－	\％	：	8	5	9	\％	8	$\stackrel{\square}{2}$
5	$\stackrel{\square}{2}$	$\%$		\％	\％\％	$\stackrel{\square}{\square}$	$3{ }^{\circ}$	$5{ }^{5}$	¢ 0^{5}	令	\bigcirc	\％${ }^{\text {g }}$	： 2	$2{ }^{2}$	$3{ }^{3}$		$\%$	\because	$:$	\％	${ }^{\circ}$	${ }^{2}$	$\stackrel{\square}{0}$		\because	8	5	\％	$\stackrel{\square}{-}$	\because	5	\％	\％	？	\％	\％
\％	\％	\％		雱总	彭	咢	\％${ }_{5}^{6}$	\％	\％${ }^{\text {g }}$	\％	${ }^{\text {\％}}$	咅	彦咅	部			8	\％	\％	\％	\％	\％	咅		碚	號空	\％	\％	${ }_{8}^{8}$ \％	\％	\％	云	\％	\％	8	\％
\％	${ }^{8}$	\％		颜旁	\％\％	\％	\％${ }^{\circ}$	$\overbrace{\text { 8 }}^{8}$	8_{8}^{88}	\％	\％	\％\％	\％\％	\square^{5}	88_{8}^{888}		\％	咅	\％	\％	\％	号	名		号		\％	\％	8	8	\％	\％	亳	崖	$\stackrel{8}{-1}$	穴
\％	号	\％		\％	咅	言	言	\square^{5}	$\overbrace{\text { \％}}^{5}$	\％	5	\％	：	嫆	$5{ }^{3}$		亳	\％	5	8	\％	5	\％		¢ ${ }^{\text {b }}$	\％	宕	\％	言	${ }^{5}$	\％	\％	言	\％	\％	亏
亳	\％	咅		$\stackrel{\square}{\circ}$	菂	辰	\％	${ }^{\text {\％}}$	命言	\％	\because	\％	\％	\％${ }^{\text {a }}$				\％	5	！	\％	\％	5		$\%$	\％	5	5	¢	亏	合	5	亏	\％	5	5
\％	\％	\％		${ }^{8}$ \％	立	\％	咅	\％	\％	\％	\％${ }^{\text {g }}$	\％	5 \％	$3{ }^{3}$			\％ั่	部	\％	穷	\％	\％	咅		${ }^{\frac{2}{8}}$	\％	\％	$\stackrel{\square}{6}$	\％	\％	$\frac{7}{3}$	\％	융	\％	\％	$\frac{8}{6}$
\％	\％	\％		\％	\bigcirc	\bigcirc	\bigcirc	0	\square_{0}	\％	${ }^{\circ} \mathrm{j}$	\％${ }^{\text {¢ }}$	${ }^{3}$	$5{ }^{5}$			\％	\％	\％	\％	\％	\％	\％		$\overbrace{}^{\circ} \mathrm{b}$	$\stackrel{3}{6}$	\％	\％	\bigcirc \％	\％	\％	\％	\％	\％	\％	${ }^{\text {B }}$
\％	骂	彦		\％	貫			${ }^{\circ}$	Et		8	易莒	号	\％	5		号	®	\％	产	$\stackrel{3}{3}$	令	\％			${ }^{5}$	包	\％	令	\％	$\stackrel{\square}{2}$	\％	\％	免	\％	号
$\stackrel{\text { O}}{ }$	兑	兑		显	显	家	晏商	\％${ }^{\text {a }}$	商昜	E	$\stackrel{\circ}{\circ}$	曷	－	\％			\％	\％	\％	\％	－	景	\bigcirc		－	\％	\％	\％	家	\％	\％	\％	\％	$\stackrel{\text { or }}{ }$	$\stackrel{8}{\circ}$	$\stackrel{8}{8}$
$\stackrel{\circ}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\circ}{\square}$		宗	三	三）	\％	秐离	部等	\％	\％${ }^{8}$	\％	¢ \％				䂸	豆	管	－	知	\％	$\stackrel{\square}{3}$		詨	9	\％	$\stackrel{\square}{8}$	晾	\％	\％	管	$\stackrel{\square}{\text { \％}}$	令	咅	2
\sim	－	\sim		－－	－－	－－	－－	－－					－－						\sim			，	－				－	－	－			\sim	－	\cdots	－	\sim
\bigcirc	：	\％		\cdots	\cdots	：$:$	8	\because	8	\cdots	\bigcirc	$\stackrel{\square}{8}$	：	S			\％	2	2	\％	\％	\％	＊		\％	2－	8	${ }^{2}$	号	\pm	8	\％	$\underline{\square}$	\cdots	\because	8
－	－	－		－	\cdots	－	－	\cdots	－	\cdots	－	\cdots	－	\cdots	$\ldots \ldots$			－	－	\cdots	\cdots	－	－			－	－	\cdots	－		－	－	－	－	，	－
\％	\％	E		\％	\％ 5	5 \％	\％ 5	5	\％	5	5	\％	\％	5n				5	5	ミ	：	5	：		\％ 5		\％	\％	$5:$	\％	\％	S	g	5	：	：
${ }^{\circ}$	：	－		8	$8:$	82	$2 \cdot$	3.	\％$\%$	8	$3:$	\because	：	$8{ }^{2}$	$\because{ }^{\circ}: 8:$		8	8	${ }^{5}$	8	8	${ }^{5}$	$:$		$2:$	3	s	－	$\because:$	$\%$	：	\because	2	\％	：	：
栄	岁	产		罗受	訔	等嵩	亥	\％	\％	\％	栄	賋賋	先	品	5		\％	告	${ }^{2}$	${ }^{2}$	萣	\％	复		䍖党	賋	害	苃	管嵏	罗	蒔	賋	㟶	管	䍖	\％
\cdots	－	－		－	－	\cdots	－-			－	2.	－-	－	－	－mom		\cdots	－	－	－	\cdots	\cdots	\cdots		－-	－	－	\rightarrow	－		\cdots	－	－	－		－
\％	$\frac{8}{8}$	\％		${ }^{3}$	\％	\％	\％		風为	\％	8.8	8	显				8	88	8	\％	$\stackrel{\square}{\square}$	8	$\stackrel{8}{8}$		$\stackrel{8}{7}$	8	$\stackrel{8}{4}$	$\stackrel{8}{-1}$	8	$\stackrel{\square}{2}$	8	8	8	8	\％	－
8	$\stackrel{8}{8}$	8		ิิ	\％	\％\％	50	88	$8:$	3	\％ 5	\％\％	：${ }^{\text {\％}}$		83.								\％				\％	\％	\％			$\overline{5}$	¢	\％	：	\％
\％	\％	\％		5	5	\％${ }^{\text {\％}}$	5		88	85	\％${ }^{\text {s }}$	\％ 5	5		888		\％	\％	\％	\＃		\％	\％		\％	8	\％	\％	8	8	－	\％	\％	8	8	\％
${ }^{*}$	－	${ }^{*}$		$=$	$=$	$=$	${ }^{\circ}$		\cdots	＝	：$=$	$=$	＝				${ }^{\circ}$	${ }^{4}$	＂$=$	$=$	：	＂	＂			－$=$	＝	＝	${ }^{4}$		\cdots	${ }^{*}$	＊	${ }^{\circ}$	＂	＊
${ }_{5}$	$\stackrel{\square}{8}$	亳		$\%$	\％：	\because	吕啇	${ }^{\text {为 }}$		\％	\bigcirc	\square°	：		$8_{9}^{8} 8_{8}^{88} 8$			\because	$\stackrel{\square}{\sim}$	\％	－		$\frac{8}{8}$		－	\％	\because	\＃	85		\％	\％	\because	${ }_{3}$	$\stackrel{\square}{\square}$	$\stackrel{7}{7}$
		bix																						Be								券		受		\％
${ }^{\frac{1}{8}}$	震	㗁			詨竞	咅 ${ }^{\frac{2}{2}}$	妾妾	0°	砫			誊 ${ }^{\text {a }}$	靖 ${ }^{\circ}$								㗊		告								管喜				－	㜢

									\％	\％			\％\％	\％	\％	\％	\％	\％	\％	\％		$\%$	\bigcirc	\square	5	\％		¢	5	\％		\％			
									2	3			：：	－	z	\％	－	\because	－	\bigcirc		\cdots	\therefore	7	7	的		\％	27	\％	\cdots	\％			
									\％	\％			：	－	\％	\％	\％	5	：	5		穴	－	5	5	号		砍	8	\％	管	\％			
									$\stackrel{\square}{\circ}$	\％			${ }^{\circ}$	\％	\％	\％	\％	\％	\％	\％		：	\％	\％	\％	\％		$\stackrel{5}{8}$	滈号	2	\％	\％			
									\％	${ }^{\text {a }}$			\％${ }^{\circ}$	\％	\％	\％	g	：	：	\％		$\stackrel{3}{8}$	\％	\％	\％	\％		：$\%$	8	\％	\％	${ }^{8}$			
									$\stackrel{\square}{\underline{\underline{L}}}$	㫛				${ }_{3}^{8}$	\％	\％	\％	\％	\％	\％		$\stackrel{\square}{5}$	\％	皆	\％	管		\％	部 ${ }^{\frac{8}{2}}$	管	景	\％			
									z	z			\geq	z	\geq	$=$	\geq	：	2	z		2	Σ	z	2	\％		z	z	\square	2	\％			
\％		г			\％		\％		\％	\％		\％\％	${ }^{\circ} \mathrm{z}$	\％	\％	\％	\％	\％	\％	${ }^{5}$		\％	\％	\％	\％	\％		\％	$\%^{\circ} \mathrm{z}$	\％${ }^{\text {\％}}$		\％	\％	$\%$	$\%^{\circ}$
䘷		咢			\％		总		\％	\％	\％	\square°	\cdots	${ }^{\circ}$	昜	䂞	宕	$\stackrel{\square}{\square}$	\％	\％		$\stackrel{\circ}{3}$	曷	${ }^{\frac{8}{3}}$	\％	8		莫	\％	\％	\％	碝	\％	祳	零
\bigcirc		8			$\stackrel{\square}{-}$		$\stackrel{8}{8}$		$\stackrel{8}{8}$	：	：	：	：	\％	：	：	：	：	：	5		\square	\％	\％	5	\％		\％	5	8	\％	\％	\％	：	\％
亳		䲞			等		穴		$\stackrel{8}{2}$	$\stackrel{8}{8}$	\％	8	\％	O	$\stackrel{\square}{\square}$	을	8	$\stackrel{\square}{\text { ® }}$	寠	号		：	\square°	号	$\stackrel{8}{3}$	8	8	5	哏	碞	\％		\％	量	量
\％		\％			\％		\％		\％	\％	\％	\％	\％	\％	\％	\％	г	\％	\％	\％		\％	\％	\％	\％	\％		\％	\％\％	\％\％	\％	\％	\square	\％	78
\％		\because			$\stackrel{\square}{2}$		：		：	${ }_{5}$	号	\％	$\stackrel{5}{8}$	\％	8	$\stackrel{3}{8}$	\because	\％	：	\％		5	5	8	$\underline{8}$	$\stackrel{8}{8}$		3	3	3	$\stackrel{1}{2}$	2	\％	\％	硡
\geq		$\stackrel{\square}{\square}$			\because		\because		$\stackrel{1}{8}$	$\stackrel{\square}{\circ}$	？	$\stackrel{\square}{-}$	$\stackrel{\square}{2}$	$\stackrel{\square}{3}$	\％	z	$\stackrel{\square}{\square}$	$\stackrel{\square}{2}$	5	$\stackrel{\square}{2}$		$\stackrel{3}{2}$	：	：	8	\％		$\stackrel{\square}{\square}$	\bigcirc	\％	\％	\％	$\stackrel{\square}{\square}$	\pm	5
\％		\％			8		\％		\％	\％	\％	\％	\％	8	\％	\％	\％	号	g	咅			\％	हิ．	5	ั		\％	힐	\％	\％	令言	\％	\％	彦
$\stackrel{8}{8}$		$\stackrel{8}{8}$			$\stackrel{8}{9}$		\％		\％	名	8	\square°	\％	\％	\％	8	${ }_{8}$	\％	咅	\％		$\stackrel{\square}{8}$	\％	\％	8	${ }^{\text {\％}}$		\％	培总	\％${ }^{\text {g }}$	咅	\％	$\stackrel{8}{8}$	空	脰
\％		产			5		5		\％	\％	\％	¢	\％	P	$\stackrel{\square}{6}$	$\stackrel{3}{3}$	${ }^{8}$	立	\％	\％		立	－	\％	${ }^{3}$	$\stackrel{8}{\square}$		言	5\％	5	$\stackrel{\square}{\square}$	$\overbrace{0}^{\circ}$	篂	\％	号
\％		\％			\％		\％		宕	咅	${ }^{3}$	號	\％	\％	\％	亳	\％	\％	言			$\stackrel{5}{5}$	\％	\％	$\stackrel{\circ}{5}$	\％		\％	誩皆	\％	${ }^{\text {g }}$	部	\％	言	言
\％		\％${ }^{\text {z }}$			\％		${ }^{\circ}$		\％	吕	吕	\％	咅	\％	总	\％	$\stackrel{5}{3}$	\％	\％	咅		总	墨	总	${ }_{5}$	号		号	部吕	硡总	吕	咅	咅	㐫	令
$\stackrel{\text { ¢ }}{ }$		$\stackrel{\square}{ }$			$\stackrel{\square}{3}$		$\stackrel{\%}{ }$		\％	¢	¢	¢ ${ }^{\text {¢ }}$	\％	\％	\％	\％	\％	$\stackrel{3}{ }$	${ }_{5}$	\％		$\stackrel{\square}{\square}$	\bigcirc	\％	\％	\％		\％	\bigcirc	\％	$\%$	\％	$\stackrel{\square}{\square}$	\％	5
宫		总			\％		咢		\％	\because	\％	\％	8	E	$\bar{\square}$	$\bar{\square}$	$\%$	\％	\％	5			気	\％	8	\％		\％	\％	\％	\＃	\％		咢	$\frac{\square}{2}$
号		量			\％		\％		\％	\％	！	\％	\％		$\stackrel{\square}{8}$	\％	g	！	\％	\％		：	号	\％	$\stackrel{\circ}{8}$	\％		\％	\％	\because	\％	0	－	克	號
\％		\％			㫛		\％		$\stackrel{\circ}{8}$	：	－	－	\＃	\＃	\％	\％	\％	\because	${ }^{\circ}$	\％		：	：	－	\％	\％				$\overbrace{3}$	$\stackrel{\square}{\square}$	\％	\％	\％	\％
－		＊			－		－			－		－	－	－	－	－			－	－			－	－	－	－		－	－	－	－	－－	－		－
\bigcirc		$\stackrel{\square}{8}$			8		$\stackrel{8}{3}$		－	－	\bigcirc	$\cdots \cdot$	－	\cdots	－	$\stackrel{-}{-}$	\bigcirc	－	$\stackrel{-}{\circ}$	－		\cdots	．	\％	－	－		2	$2:$	9		\cdots	\square	\％	8
＂		＊					－		\cdots	－	－	\bigcirc	\square	\cdots	\cdots	－	－	\cdots	－	\cdots		－	－	－	－	－		\cdots	\cdots	－	－	\cdots	－	\bigcirc	－
$\stackrel{5}{8}$		：			：		\％		\％	${ }^{5}$	5	\％	51	5	\％	g	：	：	5	g		5	5	：	：	5		\％	2	$5:$	5	58	g	\％	\％
：		8			8		8		\cdots	\cdots	\％	\％	$\stackrel{ }{\sim}$	$\%$	＊	\cdots	\sim	\％	：	\cdots		－	－	8	，	：		\％	$\because \%$	\％ 8	8	58	：		－
管		㟺			罗		岁		容	晏	圌	㒸	賋等		笋	岁	岁	詈	4	号		${ }^{2}$	范	詈	賋	寝		罗	蔓	岁	㟶	賋	紂	\％	
\cdots										－		－	－	－	\cdots	\sim		－		－			－	．	．	－				－					
8		$\stackrel{8}{7}$			－		$\stackrel{\circ}{8}$		$\stackrel{\%}{7}$	\％	\％	\％	$\stackrel{8}{-1}$	$\stackrel{8}{-1}$	8	8	\％	\％	\％	\％		$\stackrel{7}{\square}$	\％	\％	\％	$\stackrel{1}{-}$		8	$\stackrel{\square}{\square}$	\％\％	$\stackrel{8}{8}$	88	－	：	\％
\％		\％			\％		\％		\％	8	：	\％	\％		\％	\％	¢	¢	馬	\％		吕	\％	\％	\％	亏		\％		${ }^{5}$	g	名	玄	5	\％
8		$\stackrel{\square}{8}$			$\stackrel{8}{8}$		$\stackrel{\square}{\square}$		\％	：		\bigcirc	\％	\％	\％	：	\％	\％	\％	\％		\because	：	\％	\％	：		\％	${ }_{5}^{8}$	\％	\％	\％${ }^{\circ}$	：	\％	\％${ }^{\circ}$
${ }^{*}$		${ }^{*}$			＂		u		$=$	＝	＂	$\cdots=$	$=$		＝	$=$	＝	$=$	$=$	：		：	：	＝	：	－		：	$\because=$	$=$	＝	\％	＂	＂	＂
\％		\％			\％		\％		8	8	\％	\％	8		\％	\％	哭	8	\％	$\stackrel{\circ}{8}$		$\stackrel{3}{4}$	$\stackrel{\square}{\square}$	量	\％	$\stackrel{\square}{2}$		\％	部䫆	8	$\stackrel{8}{8}$	践	\％	\％	
\％	－				（evi	部窝	－																												
蔀		旁			喽		复		亳	䌜	告	\％	量	空	數	苼		号		部			䒼	迨	亳			遥				誉落	晨	亳	

							\％									\％			\％	\％			\％			\％$\%$			
							\cdots									：：			\because										
							8_{8}^{8}				P1	－	8	\％		\％			8	${ }_{3}$	\％	\％	$\stackrel{\square}{\square}$			\％	\％	，	
							\％ 8									8 \％			${ }^{\circ}$										
							${ }^{\frac{8}{3}}$				$\stackrel{3}{3 \frac{8}{8}}$	$\stackrel{\square}{8}$	$\frac{3}{3}$	：		\％			8	\％			\％			$\stackrel{8}{81}$	$\square_{8} 8^{\circ}$	${ }^{\text {B }}$	
														1		\％			\％		\％		，			\％			
																z $=$			$=$							z $=$			
																			8							5			
\％	${ }^{3}$	B				8	8_{8}^{8}	${ }^{\frac{2}{3}}$		In	＋	：	8	\％	$8{ }^{\circ}$	\％	1		S		\％	3		1		H			
8	：	：$:$	：	\because	8	\％${ }^{5}$	8	8	：$:$	\％	88	\％	8	5	$8:$	：	${ }^{5}$	：	${ }^{5}$		，	：		\bigcirc		$8:$			
！	${ }^{-}$	\％	\because	： 2	8	：	88	8	B	\％	8	${ }^{3}$	\％		88	8	\％	E	8		8	－		\％		\％			
		\％	： 8	\checkmark	8	8.		8	8^{8}	：	8^{8}			8	8.	${ }^{8} 8$	${ }^{5}$	\％	\％		${ }^{8}$	${ }^{8} 8$		：	\％	${ }^{5} 8$			
						\square^{3}	S	3	8	3^{3}	3	：	3	\％	\％	3	5	\％	－		\％	：		\％	${ }^{3}$	B			
	3	${ }^{\text {B }}$	B：	： 8	8	5	：							${ }^{\circ}$	2						3	\because		\％		$\because:$			
		$8^{\text {\％}}$	${ }^{5} 8$	8	${ }^{\circ}$	$\stackrel{5}{5}$	${ }^{83}$	${ }^{\frac{1}{3}}$	$\stackrel{\square}{8}$	$\frac{\square}{8} \frac{\square}{8}$	\％	8	8	${ }^{\text {b }}$	18	${ }_{5}^{5}$	$\stackrel{\square}{18}$		\％		s^{8}	8				$\stackrel{8}{8}$			
		8^{8}	8	${ }^{81} 8$	$\stackrel{8}{8}$	8	$8{ }^{3}$	\％	\％	－	8	${ }_{5}$	${ }^{\text {B }}$	${ }^{\text {B }}$	！	8	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{1}{\square}$	砣		हf	－	$\stackrel{\square}{\text { i }}$	${ }^{\text {\％}}$	${ }^{3}$	${ }^{1}$			
	5		$\square^{\text {a }}$	${ }^{5}$	\％	\％ 5^{3}	\square_{8}^{8}	${ }^{3}$	部	\％	${ }_{5}^{5}$	${ }^{\frac{5}{3}}$	：	\％	\％	8	${ }^{8}$	${ }_{5}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$		：	$\stackrel{8}{5}$		\％	5_{5}^{8}	${ }_{8}^{8}{ }_{8}^{8}$	\％		
${ }^{1}$	\square_{1}^{8}	$\stackrel{5}{5}_{5}^{5}$	$\stackrel{\square}{\square}$	5	${ }_{5}$	$\frac{8}{5} \frac{5}{5}$	${ }^{8}$	${ }^{\text {B }}$	${ }_{5}^{5}$	\square_{5}^{5}	5_{5}^{5}	：	$\stackrel{\text { i }}{ }$		\％ 5^{5}	${ }^{3}$	${ }_{5}^{5}$	5	${ }_{5}^{5}$		\％ 5_{5}^{8}	\square_{5}^{5}	${ }^{\frac{1}{3}}$	${ }_{5}$	5_{5}^{5}	${ }_{5}^{5}$	\％ 5_{5}^{8}		
\％		牙家	\％	\％	\％	\％	\％	${ }^{3}$	${ }^{\frac{8}{3}}$	${ }^{\frac{3}{8}}$	8	：	1	1	\％	\％	5	${ }^{\circ}$	\％		\％	\％	？	${ }^{\frac{3}{8}}$	${ }^{8}$	${ }^{8}$			
	8	$8^{8} 8$	： 5	5.	8	${ }^{5} 8$	8_{8}^{8}	．	$8_{8} 8$	8_{8}^{8}	$8_{8} 8$	：	：	8	8.8	8_{8}^{8}	${ }^{8}$	${ }^{\circ}$				．		\％	${ }_{8} 8$				
	\bigcirc	\％	\because	－	：	：	：${ }^{\text {\％}}$	\％	8	$\stackrel{8}{8}$	3	＝	：	\％	S^{3}	${ }^{3} \mathrm{~s}$	${ }^{\circ}$	：	3		：$\%$	：		$\stackrel{3}{8}$	it	T			
	5	$8:$	S	：	：	3_{3}	$8 \cdot$	\％	\because	유를	\％	\％	\％	$:$	\because	\because	\％					$\stackrel{3}{9}$		${ }^{3}$		$\stackrel{\square}{\square}$			
	＂	＝$=$	\％$=$	＝	＊	\％	：		\％	\square_{3}^{5}	${ }^{1}$			${ }^{-1}$	\％	${ }^{\frac{2}{2}}$	\％	T	？			\cdots		－		3			
									\square^{3}						\％		\％	－	\％			．		\％	8	\％			
		${ }^{\text {P }}$			${ }^{\circ}$	\％												${ }^{5}$								$5:$			
	${ }^{2}$	${ }^{\frac{1}{2}}$	${ }^{1}$	${ }^{2}$	${ }^{2}$	${ }^{2}$	告妾	年	先	先受	${ }^{\frac{1}{2}}$	\％	员	\％	$\square^{\frac{1}{4}}$	考多	䍃	${ }^{2}$	2	${ }^{5}$	每碞	\％		\％	${ }^{2}$	${ }^{\frac{5}{2}}$			
	－	\because	：	－ 8	\％	？	\％	：	\cdots	8_{8}^{8}	8	－	：	8	88	\cdots	${ }^{8}$	8	8	：	：	\％		\％	8	\cdots			
	－	83	33^{5}	88	88	88^{8}	5_{5}^{5}	5^{5}	：	：	8	5	5	$\stackrel{5}{5}$	88	5_{5}	\％	：			$8:$	$5:$		8	$8 \cdot$				
		8	88	88	8	88	8	\％	：$:$	：	5	8		${ }_{5}$	8	\％	：	\％	5		：	\％	\％	8		：			
								\cdots	＝$=$	＝														＝					
	－	S_{5}^{8}	$8:$	8	\％	5			$\frac{8}{4} \frac{8}{8}$	8	8			8	\％	为	\％	$\stackrel{8}{8}$			\％	\％				8			

	\％	\％	\％$\%$	3 \％	\％	\％	\％			\％\％	\％$\%$	\％$\%$	\％	\％	\％	\％	\％	\％	\％		$\%$	\％	$\%$ \％	5	\％	\％	\％	\％	\％								
	：	：	\％	2%	I	\％	$=$		$=3$	\because	$=$	$=$	\because	\geq	－	12	2	＝	－		7	\geq	＝	．	F	：	－	＝	－								
	\sim	\％	\％	$\overline{\mathrm{s}}$ \％	\％	\％	：		\％	氝	号	二人	\％	\％${ }^{5}$	号	\％	5	－	\％				4	\％	－	\％	\％	2	总								
	8	\％		\％\％	\％	\％	\％		\％	8	：	\％${ }^{\circ}$	\％	\％	：	\％	\％	\％	：		：	．	\bigcirc	\％	\％	\％	\％		吕	\％							
	8	\％	）	：	\％	\％	\％		${ }^{8} 8$	렬	：$\%$	：${ }^{\circ}$	：${ }^{\circ}$ ：	：$:$	\％	：	：	：	：		$\%$	\％	${ }^{\circ}$	\％	：	：	：	：	\％	\％							
	을	\％	曷	曾	号	${ }^{3}$	$\stackrel{\square}{\square}$		${ }^{\circ}{ }^{\circ}$	合	$\stackrel{\square}{\square}{ }_{\square}^{\circ}$	咅沯		$\stackrel{\square}{\square}$	吕	\％	迷	咅	\square°		．		\％	\mid	\％	\％	脂		答	㡫							
	z	12	\because	≥ 2	\pm	2	\geq		22	≥ 2	\％	≥ 2	≥ 2	≥ 2	z	2	\geq	\geq	z		\geq	2	2	：	\％	\sim	2		＝	2							
\％	\％	\％	\％	5%	\％	\％		\％	\bigcirc	5	\％\％	${ }^{\text {\％\％}}$ \％	\square_{0}^{5} \％	5	\％	${ }_{5}$	${ }^{3}$	${ }^{\circ}$	${ }^{2}$		${ }^{\text {\％}}$		$\check{\square}$	\bigcirc	\％	\％	\％	\％	5%	\bigcirc	\％	\％	\％	\％	\％	\％	\％
${ }^{2}$	言	\％	苞	总	星	曷	${ }^{2}$	$\stackrel{\square}{\square}$		总产	彦	号	商总	总高	$\stackrel{\square}{\square}$	总	㖆	－	\％	吕	\％		量	要	$\stackrel{\square}{6}$	$\stackrel{\square}{\square}$	－	要	辌	$\stackrel{\circ}{6}$	令	\％	\％	$\stackrel{\square}{3}$	${ }^{8}$	\％	号
8	：	：	\％	：	g	8	：	：	\％	：	：	：\quad ：	：${ }^{\text {g }}$	：$:$	：	：	：	$\stackrel{3}{8}$	\％	：	名	\％	：	：	：	\％	\％	：	\％	$\stackrel{3}{8}$	$\stackrel{5}{5}$	\％	：	\％	$\stackrel{\square}{5}$	：	\％
号	克	\％	\％	\bigcirc	\％	\％	\％	$\stackrel{8}{2}$	\％${ }^{\frac{1}{6}}$	\％	8	\％${ }_{6}^{\text {g }}$	\％${ }^{\frac{8}{6}}$	8	\％	\％	$\stackrel{8}{7}$	：	\％	\％	8	8	${ }^{\circ}$	$\frac{8}{3}$	8	是	量	$\underline{5}$	号	\％	\％	$\stackrel{\square}{7}$	吕	\％	\％	$\stackrel{8}{2}$	8
$\stackrel{3}{\square}$	\％	\％$\%$	\％	¢	\％	\％	\％	${ }^{\circ}$	\bigcirc	\square°	\square°	$\overbrace{}^{\circ} \mathrm{O}$	${ }_{7}^{7}{ }^{\text {\％}}$	\％$\%$	\％	${ }^{5}$	\％	${ }^{\text {¢ }}$	${ }^{\circ}$	5	\％	\％	\％	\％	\％	\％	\square	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％
$\stackrel{\square}{0}$	\％	\％	8 \％	\％	咅	5	或	S	F 5	－	2－	\％	$\underline{5}$	E	－	：	\％	：	：	1	\％	\％	E	E	？	－	\％	\％	2	3	5	\％	5	\％	\％	5	ก
5	：	\pm	2	5.	8	8	${ }^{8}$	\％	$\stackrel{\circ}{\square}$	\％	\because	\％	\bigcirc	\because	\bigcirc	\pm	$\stackrel{\circ}{\circ}$	${ }^{\circ}$	\pm	\％	\because	：	$\%$	㟺	：	\％	$\stackrel{\square}{\sim}$	\％	\％	\％	$\stackrel{\square}{2}$	\％	\％	\％	\％	$\stackrel{\square}{2}$	g
\％	：		5 \％	\％	\％	\％	号	\％	\％	5	\％	\％	\％	5	䁍	管	盛	\％	\％	\％	\％	咢	\％	\％	\％	合	\％	\％	厓	\％	\％		\％	号	呂	号	\％
8	\％	亳	\％	童	\％	${ }^{8}$	\％	2	\％	嬴	号	咅	\％	咅	号	宫	咅	\％	咅	\％	\％	\％	\％	咅	畐	\％	总	8	8	\％	总	\％	8	$\stackrel{3}{8}$	\％	\％	$\stackrel{8}{8}$
\％	：	\％	\％	§	¢	\％	\％	－	咅	彦	言	${ }^{\frac{5}{3}}$	言	言	空	咢	\％	\％	\％	\％	\％	\％	\％	\％	$\frac{2}{6}$	\％	\％	\％	咅	：	\％	\％	\％	\％	\％	\％	：
\％	\％	${ }^{\text {\％}}$	䂞	言	\％	5		\％	5	気学	矿咅	咅言	言	5	咅	5	5	\％	\％	言	${ }^{8}$		管	5	砍	\％	5	5	．	\％		5	5	\％	¢	玄	\％
吕	膏	总	\％	5	\％	\％	\％	\％	\％	\％	咅咅	咅高	\％	5	亲	管	\％	咢	卨	${ }^{\text {\％}}$	辟	咢	\％	\％	$\stackrel{\square}{2}$	亳	兹	管	$\stackrel{\square}{\square}$	${ }^{\circ}$	8	\％	\％	$\stackrel{3}{3}$	$\stackrel{8}{9}$	号	咢
${ }^{\circ}$	\bigcirc	5	\％	\square° \％	\％	\％	\％	${ }^{\circ}$	\bigcirc	$\%$	\％${ }^{\text {\％}}$	\％\％	\％\％	z_{\square}	\％	$\check{\square}$	\％	\％	5	${ }^{\circ}$	\％		\％\％	\％	\％	\％	\％	\％	\％		\％	\％	\％	\％	\％	\％	\％
\％	$\frac{\square}{3}$	${ }^{2}$	${ }^{\circ}$	$3{ }^{3}$	：	$\bar{\sim}$	\cdots	${ }^{\circ}$	家	號	${ }^{\circ}{ }^{\circ}$	$\stackrel{\square}{3}$	咅言	${ }^{5}{ }^{\circ}$	$\stackrel{9}{3}$	3	令	5	$\bar{\square}$	${ }^{\circ}$	\％		－	\％	3	${ }_{\square}^{\circ}$	尔	\％	\％${ }^{\circ}$		咢	\％	令	\％	$\stackrel{\square}{8}$	\％	\％
\％	\because	：	\because	－	：			\％	号	\bigcirc	\％	$\stackrel{\circ}{\square}$	䱏兰	－	：	\％	\％	\％	\％	\％			－	－	\％	$\stackrel{\square}{\square}$	：	－	\％		${ }^{\circ}$		－	：	\％	\％	\％
$\stackrel{\square}{\circ}$	$\stackrel{1}{2}$	\％	\％	品	\％	\cdots	\bigcirc	\％	\％ 1	：$\%$	$\stackrel{\circ}{8}$	\bigcirc	：\％	\bigcirc	\％	皁	产	${ }^{\circ}$	\because	\％			：	\％	$\stackrel{\square}{2}$	\％	\％	\％	\％		5		交	\％	－	\％	\％
－		－	－	－－			－	－	－	－－	－－	－－	－－	－－	－	－	－							－			－									－	－
\because	－	－	－	$\because{ }^{\circ}$	\cdots	2	2	－	－	$\bigcirc \cdot$	－${ }^{-}$	－：	\square	$\because 0$	－	\％	5	$\stackrel{\square}{2}$	2	－	－	\％	2	\sim	－		\sim	，	－		：	＊	\％	$=$	\because	\bigcirc	－
－	\cdots	－	\cdots	－${ }^{-}$	\cdots	\cdots	－	－	－	－	－	－-	\cdots	\cdots	．	－	\cdots	\cdots	\cdots				\cdots	－	－	－	－		－				－	－		－	
：	：		5	\％	\％	5	5	5	：	：	：$:$	8	\％	\％	\％	5	\％	\％	\％	：			： 5	5	\％	\％	15	5	5		5	：	\％	：	\％	\％	：
\square	：	．	8	$\stackrel{3}{ }$	$8:$	8	8	\because	8.	：	\because	： 8	$8:$	：$\%$	8	\bigcirc	\bigcirc	\％	－	\％		\％	8	8	8	：	\％		8		8	\sim	：	7	8	\because	\square
媔	产	岁	岁啰	賋	圌	\％			罗営	皆皆	等䍚	傢愛	家罗		殅	賋	岁	峔	竞	曼	${ }^{2}$		啰	堂	啰		茪		．		管		容	岁	${ }^{2}$	㟺	－
\bigcirc	－	－	－	\cdots				－	－	\cdots	\cdots	－	－	\cdots	－	－	－						－	－													－
$\stackrel{8}{7}$	8	\％	\square_{8}^{8}	8	$\stackrel{8}{7}$	8	$\stackrel{8}{8}$	8	$\stackrel{8}{8}$	$\stackrel{8}{\square}$	88	8	\％${ }^{\text {\％}}$	$\stackrel{8}{7}$	\％	8	8	－	8	8	$\stackrel{8}{\square}$	8	88	$:$	8	8	$\stackrel{8}{8}$	$\stackrel{8}{7}$	8		8	8	8	8	8	8	$\stackrel{8}{3}$
\％	8	8 \％	\％	\％${ }^{\text {g }}$	亏			\％		\％ 8	88	\％${ }^{2}$	z ${ }^{\text {g }}$	\％${ }^{8}$	\％	g	\％	\％	\％	\％			\％	：	\％	\％	：	\％	8	\％		：	\％	${ }^{2}$	\％	8	枵
$\stackrel{8}{2}$		5．	\％	号号	\％			8	\％	！	\％\％	\％${ }^{\circ}$	${ }^{2}$ \％	\％\quad	\％	\％							\％	\％	\％	：	！		\％		5	\because	－	\％	\％	\％	${ }^{\frac{8}{8}}$
\sim	$=$	＝	$=$	：	$=$				z $=$	$z=$	$z=$	$z=$	z $=$	z $=$	＝			$=$	：	－	：	\％	\％	$=$	：	：	：	$=$	2		，		＂	4	${ }^{*}$	\sim	＂
\％	8	8	8	\％					8	8	8	8	\％	88	\％	\％	\％												\％		\％			$\stackrel{\square}{3}$	\ddagger		$\stackrel{8}{7}$
	$\begin{aligned} \\ 0 \end{aligned}$																																				
郘	先	咢		䆡	晨		8	$\frac{8}{2}$	寻								$\frac{8}{8}$	$0{ }_{0}^{0}{ }^{2}$			号	5	\mid								晨		亳	妾	亳	部	晨

										\％				\％	$\%$	\bigcirc	8	\％	8	\％	${ }^{\circ}$		\％	\％					\％					
													\％	$:$	＝	＝		3	－	＝		：	：	，								＝	\％	
										\％		，	会	5	5	E	5	5	5	－	5	：	－	－	－	：			5	－		：	5	－
												S	8	$\stackrel{5}{5}$	\％	5	：	：	\％	：	5		5	\％	8									
												$\stackrel{\square}{\circ}$	\％	8	${ }^{8}$	\％	\％	8	8	$\stackrel{8}{8}$	\％		\because	8	$\stackrel{3}{8}$							：		：
										宫		$\stackrel{5}{9}$		\square_{3}	3	$\stackrel{3}{3}$	\％	$\stackrel{3}{4}$	${ }^{3}$	$\stackrel{\square}{3}$	3	8	${ }^{2}$	${ }^{2}$	$\stackrel{3}{\square}$	${ }_{\square}^{8}$			$\stackrel{\square}{\square}$	${ }_{3}^{3}$		$\frac{8}{4}$	${ }^{2}$	${ }^{\frac{5}{8}}$
													：	：	：	2	＝		\geq	$=$	－		2	\％	$=$				＝			z		$=$
万			ヶ	${ }^{*}$	\％\％	$\%^{\circ}$	\％\％	\％\％	8		$\%$	\checkmark	5	5	5	8	${ }^{\circ}$	\bigcirc	\％	\％	${ }^{\circ}$			5					\％	\％				\％
\％	5	星	－	\％	\％	总 ${ }^{\text {¢ }}$	\％	\＄	$\stackrel{8}{3}$	$\stackrel{8}{8}$	${ }^{\circ}$	？	－	［	？	－	\％	显	5	$\stackrel{\square}{\square}$	\％	${ }^{2}$	量	$\stackrel{\circ}{\square}$	\％				？			量		${ }^{\circ}$
$\stackrel{8}{8}$	：	5	5	：	：	！	：	8	：	${ }^{5}$	：	：	\％	：	8	5	\％	：	：	${ }_{5}$	8	5	\％	：							\％			\％
$\underset{B}{B}$	－	\％	8	\％	量		${ }^{3}$	$\stackrel{\square}{8}$	$\stackrel{\circ}{\square}$	$\stackrel{\square}{\square}$	\％	8	．			8	${ }^{8}$	？	8	？	\％	？	－	8										8
$\%$	5	8	8.8	${ }^{8} 8$	8%	${ }^{\circ}$	\％ 8	z	${ }^{5}$	${ }^{5}$	\％	${ }^{\circ}$	${ }^{\circ}$	\％	8	5	${ }^{5}$	$\stackrel{5}{8}$	\％	\％	5	5	5	${ }^{5}$	8.									8
8	8	${ }^{\circ}$	5	\％	${ }^{\circ}$	$\stackrel{8}{1}$	8	O	2	2	－	：	：	：	：	\％	\％	－	－	$\stackrel{\square}{2}$	\％	5	5		\％	E			\％	：	\％	\％	\％	3
5	2	\％	\because	${ }^{2}$	\because	\because	\square^{2}	${ }^{\circ}$	8	：	：	：	${ }_{5}$	\square_{5}	5_{5}	5	5	：	\％	5	5	\because	5	5．	5							－		\％
巻	${ }^{\circ}$	\％	\％ 8	$\stackrel{8}{8}$ \％	\％	立	咅	登	5	8	\％	8	8	\％	${ }^{8}$	\％	\％	5	E	－	．	¢	－	5	5	－						\％	－	－
\％	${ }^{\circ}$	8	$\stackrel{8}{5}$	$\overbrace{2}^{8}$	8	${ }^{8}$ \％ 8	8_{5}^{8}	${ }^{8}$	${ }^{8}$		B	$\stackrel{8}{8}$	\％	8	\％	8	${ }^{8}$	\％	8	8	8	$\stackrel{1}{6}$	\％	${ }^{8}$	8	$\stackrel{8}{8}$				\％		咅		\％
5		\％${ }^{\text {\％}}$	\％${ }^{\text {g }}$	\％	\％${ }^{\text {g }}$	$\stackrel{5}{8}$	${ }_{5}^{5}$	${ }_{5}^{8}$	${ }^{\circ}$	$\stackrel{\square}{\circ}$	5	\％	\％	\％	${ }^{\frac{8}{3}}$	${ }^{\circ}$	\％	$\stackrel{\square}{8}$	\％	立	5	${ }^{\circ}$	${ }^{\circ}$	\％	${ }^{\circ}$	－						8		容
5	\％	¢	言	$\frac{\square}{8}$	${ }_{5}^{5}$	5	\％	5	$\stackrel{\square}{\circ}$		\％	\％	\％	奢	8	g	：	$\stackrel{\square}{8}$	\％	${ }^{2}$	\％	：	\％	5	${ }^{2} 8$	$\frac{8}{2}$ \％						E	－	$\frac{3}{8}$
$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \end{array}$	${ }^{\text {a }}$	8	5\％	${ }^{\text {\％}}$	${ }^{\text {\％}}$	\％	8	\square^{8}	${ }^{2}$		$\stackrel{\square}{\square}$	${ }^{8}$	\％	\square^{5}	\％	8	${ }^{\circ}$	$\stackrel{\square}{3}$	8	\％	$\stackrel{8}{2}$	${ }_{5}$	$\stackrel{8}{9}$	－	．	$\stackrel{3}{3}$	${ }^{3}$						\％	宫
z	${ }_{5}$	\％	\％	${ }_{5}^{8}$	${ }_{5}^{8}$	\％\％	\％	${ }^{\circ} \mathrm{O}$	8	\％	\％	${ }_{5}$	$\stackrel{\square}{\square}$	8	8%	5	\％	${ }^{\circ}$	$\stackrel{\square}{8}$	－	5	\bigcirc	8	${ }^{\text {z }}$	${ }_{8} 8$							\％		\％
8	\bigcirc	8	$\stackrel{\square}{8}$	\％	8	\％	\％	：	\because	$\stackrel{\square}{\square}$	\％	三	\％	B	\％	三	\cdots	\bigcirc	\％	$\stackrel{\square}{2}$	\bigcirc	\because	\％	\％	3.	－						E		8
\because	\because	家	\％	\bigcirc	\bigcirc	\because	\because	\％	8	8	9	：	\because	$\stackrel{\circ}{8}$	8	\％	\because	$\stackrel{8}{8}$	\％	8	－	${ }^{\circ}$	\％	\bigcirc	$\%$							\％		\bigcirc
\bigcirc	－	：	：	\％	\％	${ }^{\circ}$	\％	：	$\stackrel{1}{2}$	\％	\％	：	：	：	：	：	：	\％	\％	$\stackrel{1}{2}$	－	2	8	${ }^{2}$	－	\％						：	\％	$\stackrel{8}{8}$
			－	－－	－－							－	－	－	－				－															
	－	－	－	$\because 8$	88	$8:$	\％	－	－		－	＂	\sim	\cdots	2	：	2	－	－	－														
		$\cdot 1$	－	－	\cdots								－	－	\cdots				－	－	－													
	8	${ }^{2}$	5	5	5	\％	\％	a	5	5	5	\％	\％	\％	！	号	\％	：	5	5	：	？	：	\％	： 2							：		
	8	－	$:$	8.	\because			：	－	\％	－	－	－	－	－	－	－	：	＊	＊			：	\cdots	－						：	：		
2		罠	罗罗	罗罗		${ }^{4}$	${ }^{4}$							${ }^{\text {品 }}$	\％	\％	\％																	受
		\bigcirc	$\stackrel{\square}{\square}$	$\stackrel{\square}{8}$	\square°	$\stackrel{\square}{\square}$	\cdots	\bigcirc						8	\square_{8}																	$\stackrel{\square}{\square}$		
$\overline{5}$	－	8	8 \％	\％	¢ $\overline{5}$	\％	5	5	$\stackrel{5}{5}$		5	：		：	5	\％	：	\％	\％	：	：								8	：				
		\％ 8	$\overbrace{}^{2} 8$	3^{5}	5	\％	5	\％				：		8		8	\％	$\stackrel{5}{8}$	5		${ }^{\circ}$			\％								：		\％
		4	－	－	－								－	$=$	$=$	－																		
		8	$\frac{8}{8}$	$\frac{8}{\square} \frac{8}{8}$	${ }^{\frac{8}{8}}$	\％	${ }^{\frac{2}{2}}$	8				\％		$\stackrel{5}{8}$	${ }^{2}$	${ }_{5}^{\circ}$																		
					（\％																						Cisig							
		\％	咅	\％				家				${ }^{\text {P }}$		宰																				部

\bigcirc	\％		$\%^{\circ}$	$\%^{5}$	．		．	\％${ }^{\text {\％}}$	\％	\％	58	\％	${ }^{7}$ \％	－		．	，			\％					$\stackrel{\square}{8}$	\％	．	，	．		
\pm	：		$=$	$\because=$	：		＝	＝	：$=$	－	：	$:=$	$=$	：		＝	：							＝	$=$	－${ }^{\text {a }}$	－	：	\％：		
5	5		5	5	－		5	5	5	\％	\bigcirc	5	㐌号	号	$\stackrel{5}{8}^{5}$	5	．	䂞		？			5	5	5	8^{8}	\％	${ }^{8}$	5		
$\stackrel{\square}{8}$	\％		\％${ }^{\circ}$	5	\％		\％	\％	号	$\stackrel{\square}{8}$	3	8	：	\％	\％	8	：	号		\％			8	8	$\stackrel{1}{5}$	$8{ }^{8}$	\％	：	8		
\％	\％		\％${ }^{\circ}$	${ }^{8} 8$	\％		\％\％	8	$8:$	\％	8	\％	8	8	\％	\％	\％	：		${ }_{8}^{8}$	\％		3	g	8	$88^{85} 8$	${ }^{\circ} \mathrm{g}$	8			
$\stackrel{1}{\square}$			$\square^{\frac{8}{3}}$	${ }_{8}^{8}$	$\stackrel{\square}{4}$			吕	\square_{3}^{8}	${ }^{\frac{2}{3}}$ \％	\％	部竞	部妾	㫫	宰	部	\％	${ }^{\text {E }}$		咅				$\stackrel{\square}{\square}$	\％	\％	\％		部		
$=$	\％		＝	\because	\geq		$=$	\％	$\because 2$	$\because 8$	2 z	$z=$	$2=$	：	2	2	\geq	z		F	：			＝	－		：	z	－		
$\%$	\％			\％	\％		$\%$	\％\％	\％\％	\％	\％	\％\％	\％			＊	${ }^{\circ}$	\％		$\check{\square}$					$\%$				5%		
${ }^{\circ}$	部		\％	景最	${ }^{2}$	咅	？	［	？	？	\％		8	${ }^{-}$	8	${ }^{\frac{8}{2}}$	－			\％	\％		${ }^{\circ}$	\because	$\stackrel{\square}{\square}$		\square°	号	\square°		
\％	：		$\stackrel{8}{8}$	8	\％	8	¢ \％	5	\because	\％：	： 5	：	\％	－	：	\％	\％			\％			s	¢	$\stackrel{3}{2}$	85^{8}	5	：	8		
${ }^{\circ}$	－		穴	\％	${ }_{5}^{4}$	$\stackrel{8}{8}$	$\stackrel{\square}{\square}$	\because	\because	\because	$\%$	$\stackrel{\square}{7}$	8		$\stackrel{\square}{\%}$	\bigcirc	－	\％		\％				\％	\％	\square_{5}^{8}	－	8	88		
$\%$	$\stackrel{\square}{6}$		$\%$	${ }_{5} \mathrm{y}$	¢	${ }^{\circ} \mathrm{f}$	58	${ }^{8} 8$	${ }^{8}$ \％	8 \％	${ }^{\circ} \mathrm{z}$	${ }^{\circ} \mathrm{z}$	${ }^{7} 3$	$\%$		\bigcirc	\％	${ }^{2}$		γ					8	${ }_{5}^{5} 5$	$\stackrel{\square}{5}$	\％	8^{8}		
8	\％		3	\％	8	${ }^{3}$	55	5	¢	\％	5	9	${ }^{5}$	S	5	5	8	2		：				\％	s	55^{585}	\％	号	5		
－	5		\because	$\%$	：	1	5	85	$5{ }^{5}$	：	8	吕	\because	\％	${ }^{\circ}$	$\stackrel{\square}{2}$	\cdots	$\stackrel{\square}{2}$		\％				\％	$\%$	$8{ }^{8} 8$	8	，	8	${ }^{5}$	
5	\％		5	5	5	${ }_{8}$	\％	${ }^{5}$	${ }^{8}$	${ }^{\frac{8}{8} \text { \％}}$	${ }_{8}^{8}$	\％	5	E	\％	E	E	\％		$\stackrel{\square}{3}$	$\stackrel{3}{3}$		f	5	5	［気言合	5	－	8		
$\stackrel{\square}{6}$	咅		\％${ }^{\text {\％}}$	8	\％	8	8	8	${ }_{5}^{8}$	$8{ }^{8}$	8	\％	部咅	咅	\％	令	部	8		${ }^{2}$				8	${ }_{5}$	（i）\square_{8}^{8}	$\stackrel{8}{8}$		8		
${ }^{3}$	咅		部部	\％		：	\％	\％${ }^{\text {g }}$	\％	$\frac{8}{8}$ \％	\because	号	\％	\％	$\frac{\square}{3}$	，	\％	8		\％			8	$\stackrel{3}{8}$	\％	\％${ }^{\text {¢ }}$	\％	\％	\％		
5			\％${ }_{\text {z }}$	咅		\％${ }^{8}$	\％${ }^{\text {g }}$	\％	8	\％${ }_{5}^{8}$	8	¿\％	\％	\％	\％		\％	${ }^{5}$		5				5	${ }^{\text {a }}$	$55^{5} 5$	！	$\frac{8}{5}$	$5^{\frac{3}{8}}$		
${ }^{5}$	ह		8	2	8_{4}	${ }^{\frac{8}{2}}$	${ }^{\frac{8}{8}}$	\square^{5}	${ }^{8}$	${ }^{8}$	${ }_{5}^{\circ}$	$\stackrel{8}{3}$	号	－	${ }^{\frac{2}{3}}$	${ }^{1}$	部	$\stackrel{3}{3}$		\％				$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	8^{8}	\％	令	$8{ }^{8}$		
${ }_{5}$			$\stackrel{5}{5}$	\％	8.	¢	${ }^{5} 8$	8.	${ }^{5}$	$\%$	\％	\％\％	$\%^{8}$	\bigcirc	\％	\bigcirc	${ }_{5}$	${ }^{\circ}$		\％				\％	\checkmark	8 \％ 8	8	${ }^{8}$	${ }_{5}^{8} 8$		
5	3		${ }^{2}$ \％${ }^{2}$	2	：	$\stackrel{\square}{\text { ：}}$	三	\＃	三	：	\％	$\%$	：	：	\because	：	${ }^{3}$	\％					\％	$\stackrel{\square}{8}$	2	司気	\％	：	$\stackrel{\square}{8}=$		
$\stackrel{\square}{\square}$	－		$8:$	$\because 8$	S	－	2	\％${ }^{2}$	$\square^{\circ} \mathrm{8}$	\because	\because	\because	8	：	$\stackrel{\square}{2}$	\because	\because	\bigcirc		$\stackrel{\square}{\square}$						晹家	－	．	$\square_{8}{ }^{\circ}$		
：	5		$\stackrel{8}{2}$	\bigcirc	${ }^{\circ}$	\％	：$=$	： 5	\％	\％	\because	：	9	：	\because	－	\％	${ }^{2}$		P					\％	$\square^{5} 8$	\％	$\stackrel{3}{3}$	8		
			－	－			－	－	－			－																			
－	\cdots		\bigcirc	－	\because	－	\sim	\because	$\because:$	\because	\because	$=$	\because	－	：	：	．	－		\％						x^{x}			－		
	\cdots		\cdots	－	－		，	\bigcirc	－	－		－	－		－			\cdot									－				
$\stackrel{3}{5}$	\％		g^{5}	$\stackrel{\square}{8}$	\％	2	58	58	55	5	85	5	${ }^{\circ} \mathrm{g}$	\％	：	5	5	5		5			S	5	5		：	：	5		
	${ }^{8}$		8	$\%$	\％	\％	－	\cdots	${ }^{2}$	＊	\because	$\stackrel{\square}{2}$	${ }^{-} \cdot$	${ }^{2}$	－	\cdots	－	2		8						是	－		－		
$\stackrel{*}{2}$	䍖		詈		罗	景	詈罗	罗妥	发罗	罗受	奖	賋罗	罗罗	岁	宸	岁	告	罗		罗			\％			罠罗妥			发罗这		
			$\stackrel{\square}{81}$	＂－8＂	8	$\stackrel{\square}{8}$	\cdots	\because	\cdots	－	\because	－	${ }^{\circ}$																		
															$\stackrel{8}{8}$			$\stackrel{8}{8}$		\％						$8^{8}+8$					
5			8	$8{ }^{\circ} \mathrm{z}$			5	$5:$	\％\％	\％\％	\％ 5	\％ $\bar{\square}$	\％				$\stackrel{8}{8}$									38					
				\because	${ }^{\circ}$	88	88	88	8%	$\frac{8}{8}$	${ }^{\circ} \mathrm{g}$	g	\because				$\stackrel{\circ}{8}$	\because		\％						$00^{\circ} \mathrm{y}$			\square^{3}		
			$=$	$3=$	：	${ }^{*}$	$=$	$=$	$=$	$=$	$=$	z $=$	$=$	＝	：	2	＝										$=$	：	\％$=$		
			8	8	：	${ }^{\frac{8}{8}}$	\bigcirc	：	：	$\stackrel{5}{8}$	${ }^{\circ}$	8^{8}	8		${ }_{8}^{8}$	${ }_{8}^{8}$				－						$\frac{8}{85}$	${ }^{8}$	\％	8		
	5																												景		
									\％																	${ }^{\circ}$					

			\％	\％ 5	\％${ }^{\circ}$	8	\％	\％										\％		\％		\％	\％	\％	\％	\％	\％	\％		\％		5		\square	\％		
			：	\because	\because	\square	\square	$\stackrel{\square}{2}$									2	\cdots		＝		\％	－	：	$=$	－	$=$	－		\％	\because	：	\because	：	\because		
			\％	㫛号	昱	昱	券号	号										\％		：		5	\％	：	\％	：	g	5		\％		\％	\％	$\stackrel{\text { \％}}{\sim}$	号		
			号	\％	\％	\％	\％	\％										$\stackrel{\text { \％}}{ }$		\％		\％	8	\％	\％	\％	8	\％		$\stackrel{8}{8}$	8	3	\％	\％	号		
			：	\％${ }^{\circ}$	\％	：${ }^{\circ}$	：${ }^{\text {\％}}$	\％										8		\％		\％	\％	：	${ }^{8}$	：	：	\％		$\stackrel{8}{8}$	\％	：${ }^{\text {B }}$	\％	\％	$\stackrel{8}{8}$		
			京	产	言	要豆	咅 $\frac{2}{2}$	妾										宫		${ }^{3}$		${ }^{8}$	\％	\％	$\frac{8}{3}$	\％	\％	篂		尔	宕	願	$\left.\frac{8}{4} \right\rvert\, \frac{5}{2}$	亳	总		
			z	≥ 12	2	2 z	≥ 2	z									：$=$	\％		\％		\geq	$=$	\pm	：	：	\geq			＝		\％	2	\geq	＝		
\％				\％	\％	\％\％	\％	\％	${ }^{3}{ }^{\text {\％}}$	${ }^{3}{ }^{3}$									\％	\％			\％	\％	$\%$	\％		\％		\％		¢ \％		\％	\％		${ }^{6}$
${ }^{8}$			名	号 总	${ }^{3}$	咢	彦总	豊总	总咅	\％	\％	易	${ }^{\text {㦹 }}$	易	${ }^{\frac{8}{8}}$	\％	\％	${ }^{2}$	$\stackrel{\square}{\square}$	号		\％	${ }^{2}$	穴	穴	\％	晃	穴		\％		昜	管	常	总	\％	部
\％			8	8	$\stackrel{5}{8}$	：	\because	\％	：${ }^{5}$	\bigcirc	${ }^{8}$	吕	\％	${ }^{\circ}$	：	\％	吕	\％	\％	：		：	$\%$	$\stackrel{\square}{8}$	\％	\＆		\％		$\stackrel{3}{3}$		${ }^{5}$	！	\％	\％	\％	5
\bigcirc			\％	品 욲	\％	\％${ }^{\text {\％}}$	$\stackrel{\square}{\square}$	$8{ }^{8} 8$	$\bigcirc{ }^{2}$	$\because 8$	8	$\stackrel{\square}{\square}$		号	8	：	\bigcirc	8	8	8		8	\％	：	$\stackrel{\square}{\square}$	\because	$\stackrel{ }{\sim}$	\％		\％	\％	${ }^{\text {为 }}$	${ }^{8}$	8	\％	\bigcirc	\bigcirc
$\stackrel{\square}{\square}$			\bigcirc	$\stackrel{\square}{8}$	\％	z^{8} \％	\％	\％\％	${ }^{\text {\％}}$	${ }_{5}^{5}$	\％	\％		\％	万	\％	3	\％	\％	\％		\％	\％	\％	\％	\％		\％		\％	\％	$\bigcirc \%$	\％	$\stackrel{\square}{\circ}$	\％	\％	\％
\％			$\stackrel{3}{3}$	$\stackrel{3}{3}$	5	E	\pm	\bigcirc	\％${ }_{\text {¢ }}^{5}$	5ig	\％	8		8	\because	\％	\％	Б	\％	5		5	\％	8	g	言	亏	5		－		19		\pm	\ni		\％
\％			8	\％	8	8	$8{ }^{8} 8$	$\stackrel{8}{8}$ \％	\％${ }^{\circ}$	8	言	\％	\％	\％	\div	\％	${ }^{2}$	\％	\because	\％		$\stackrel{\square}{*}$	$:$	\％	\％	$\stackrel{\square}{\sim}$	\％	${ }^{3}$		吕	：	\％	\％	8	8	9	\square
言			氹	䂞	豈	言	言	\％	\％	8	号	咅	咅	云	\％	䂞	5	5	\％	\％		${ }^{8}$	\％	\％	免	\％		\％		I	\％	\％	！	\％	：	$\stackrel{3}{8}$	\％
总			号	穻	咅	\％\％	旁 旁	咅	\％ 8	8	\％	－	吕	\％	${ }^{8}$	吕	\％		8	\％		${ }_{5}^{8}$	旁	\％	吕	${ }^{8}$	咢			${ }^{8}$	${ }^{\text {g }}$	\％	\％	\％	\％		8
\％			咅	咅	咅	会咢	咅咅	咅	\％${ }_{5}^{\circ}$	\％	\％	\％	号	\％	${ }^{8}$	\％	${ }_{5}^{\circ}$	${ }^{8}$	\％	家		\％	\％	$\stackrel{8}{\square}$	令	¢	\％	¢		空	\％	${ }^{\text {s }}$	令	咅	言	\％	8
产			\％	\％	5	5	5 5	5 \％	${ }^{8}$	$\overbrace{}^{\circ} \mathrm{B}$	\％	䁍	5	言	\％	¢	\％	\％	宕	容		\％	8	\％	¢	I	\％	\％		\％	\％	\％	言	¢	亏	$\stackrel{\square}{2}$	\％
$\stackrel{5}{\square}$			$\stackrel{\square}{3}$	卨	\％	$5{ }^{5}$	5 \％	合咢	－	\％	各	\％		\％	$\stackrel{\square}{\square}$	呂	$\stackrel{\square}{2}$	${ }^{3}$	$\stackrel{\square}{2}$	总		${ }^{\text {zin }}$	\％	亳	${ }^{3}$	\％	$\stackrel{\square}{3}$	\％		$\stackrel{\square}{3}$	$\stackrel{3}{3}$	3 \％	苭	言	\％	咢	\％
\％			\％	\％${ }^{\circ}$	\％	${ }^{3}$ \％	${ }^{\circ}$	$\mathrm{z}_{8} \mathrm{z}$	${ }^{3}$ \％	${ }_{5}{ }^{5}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	¢	\％	\％		\bigcirc	5	$\%^{\circ}$	\％	\％	\bigcirc	－	5
\％			\％	－	\％	${ }^{5}$	\％	令 $\overline{5}$	$\bar{\square}$	$\bar{\square}{ }^{\circ}$	5	\％	3	8	$\stackrel{\square}{\square}$	\％	$\stackrel{\square}{\square}$	\bigcirc	$\stackrel{3}{2}$	E	E	$\stackrel{3}{3}$	\％	$亏$	$\stackrel{\square}{8}$	\％	\％	\％		\％	\％	－	\％	－	啇	二	二
\％			$\stackrel{8}{8}$	：	\％	\％	宫	\％	\％${ }^{\text {a }}$	\％	\％	$\stackrel{\square}{\square}$	－	－	8	\％	\％	8	－	\％	\％	\％	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\square}$	\％	\％	！	\％		$\stackrel{\square}{\square}$	$\check{\square}$	\％		㫛	－		\％
$\%$			\％	\％	${ }^{\circ}$	\％	：	：$:$	$\because 3$	28	－	\％	：	\％	\％	$\stackrel{\square}{8}$	${ }^{\circ}$	\bigcirc	$\underline{\underline{O}}$	\because	\pm	I	\％	：	$\stackrel{\circ}{\square}$	$\stackrel{\circ}{8}$		？		\％	9	9	\％	\％	${ }^{\circ}$	\％	－
－			－－	－－	－	－	－	－	－	－－	－	－	－	－	－	－	－	－	－						－			－				－		－	－		\because
\because			－	\bigcirc	－	\％	\cdots	\square	5.	$2 \cdot$	－	：	9	S	\because	\bigcirc	2	\because	－	－	－		\sim	$\stackrel{\square}{\sim}$	$=$	－		－		\bigcirc	－	－	，	$\stackrel{\square}{\square}$	－		2
－			－	－	－	－\quad－	－－	－-	－－	$\cdots \cdot$	－	－	－	\cdots	－	－	\cdots	\cdots	\checkmark	－			－	\cdots	－							\cdots		－	\cdots	－	－
：			：	：	\％	\％ 5	5	\because	\％	\bigcirc	\％	：	$\stackrel{\square}{8}$	\％	5	8	$\stackrel{5}{5}$	${ }^{2}$	：	${ }^{2}$	5	8	5	$\stackrel{3}{5}$	\％	I		\％		\％	！	B	\％	\％	5	：	：
8			\because	－	－	$\bigcirc \cdot$	\because	－	$9:$	\because	\square	$\stackrel{-}{2}$	\sim	\sim	\％	－	8	8	\because	－	\％	：	－	$\stackrel{\square}{\square}$	$\stackrel{\square}{8}$	：	\sim	5		\％	－	$\cdots:$	－	：	\bigcirc	\bigcirc	－
\％			宸		圌	管	管䍖			${ }^{2}$	㟶	岁	峴	妟	\％	\％	${ }^{2}$	\％	賋	岁	免	d	晏	罗	桨	暑		岁		啰	管	齐妥	蔓	先	罗	萝	家
\cdots			－	－	－	－	－	\cdots	\cdots	\cdots	－	－	－	－	－	\cdots	－	\cdots	－	－	－	－		\cdots	－	－		－				－		－			
$\stackrel{\square}{8}$			$\stackrel{3}{8}$	\％	8	8	88	8 \％	8	88	$\stackrel{8}{-1}$	8	$\stackrel{8}{-7}$	8	8	－	$\stackrel{7}{8}$	8	8	$\stackrel{8}{8}$	\％	\％	${ }^{-}$	$\stackrel{\square}{\square}$	$\stackrel{8}{7}$	8	8	8		－		${ }^{8}$	\％	8	8	8	5
\％				\％${ }^{\text {a }}$	：	\％${ }_{\text {\％}}^{\text {\％}}$	\％	${ }^{\frac{8}{2}}$ \％	$\%$	5	\square^{8}						\％		：	¢		5		\％	5	\％		\％		岢		\％${ }^{\text {z }}$	：	${ }^{\text {a }}$	\％	$\%$	${ }^{\circ}$
：			\％	\％	突	\％\％	\％	\％${ }^{\text {：}}$	88	88	8	\％	${ }^{\circ}$	${ }_{3}$	\％	\％	\％	${ }^{\circ}$	8	\％			8	$\stackrel{8}{8}$	${ }_{5}$	：		$\%$		${ }_{5}$	${ }_{5}$	\％		\％	：	8	8
＂			$=$	$=$	$=$	$:$	$=$	$={ }^{-}$	${ }^{-}$	\checkmark	－	${ }^{*}$				${ }^{-1}$	$=$	＝	${ }^{\circ}$					：	＝					＝		$=$		\％	$=$		
\％			8	年寊	属	宮	8	8	a	8	$\stackrel{\square}{\square}$	\％	\％	\％	\％	要	过	\％	${ }^{3}$			$\stackrel{\square}{8}$		$\stackrel{\square}{8}$	\％	E		${ }^{\circ}$		$\stackrel{8}{3}$	${ }^{\text {\％}}$	䉼		\％	\％	D	－
$\begin{array}{\|l\|l} \text { 宩 } \end{array}$			号		号	量旁		㝘	菨童		曷	㕸	咢			$\begin{aligned} & \frac{0}{2} \\ & \frac{2}{3} \end{aligned}$	要	${ }^{\text {㻃 }}$	$\left.\begin{array}{\|l\|} \frac{0}{2} \\ \hline \end{array} \right\rvert\,$			咙		$\begin{aligned} & \text { 亳 } \end{aligned}$	喑	$\begin{aligned} & \frac{0}{2} \\ & \frac{8}{2} \end{aligned}$				gix		告		旁	咅	旁	

					\％	$\stackrel{\square}{\square}$		\％	\％	\％	\％														\％	\％		\％	\％	\％	\％	\％	\％	\％	\％	\％	
					$\stackrel{\sim}{*}$	8		\pm	\because	$\bar{\square}$	$\bar{\square}$														7	\％		\％	等	\％	\％	\％	$\%$	\％	\％		
					\％	등		\％	F	号	吕														\％	宫		㗊	宫	8	8	9	$\stackrel{\square}{2}$	$\stackrel{\circ}{3}$	$\stackrel{\square}{2}$	$\stackrel{9}{6}$	\％
					号	吕		\％	\％	呂	\％														：	\％		$\stackrel{\circ}{\circ}$	8	\％	\％	\％	总	范	\％	\％	
					\％	\％		名	\％	\％	$\stackrel{\square}{3}$														gi	\％		！	\％	\％	：	：	呂	：	\％	号	\％
					$\stackrel{0}{\underline{E}}$	$\stackrel{\circ}{\stackrel{\circ}{\bullet}}$		涨	㽞	\％	$\underset{\sim}{*}$														\％	雩		\％	\％	\％	$\stackrel{\square}{\sim}$	号	豆	登	\％	品	尔
					：	：		$\stackrel{7}{2}$	$\stackrel{\sim}{\sim}$	\＃	\approx														2	2		\％		z	\％	7	：	\％	\％	\approx	\％
\％	z	\％	\％	\％	б	z	\％	z	z	\％	${ }^{\text {¢ }}$	\％	\％	\％	\％				${ }^{\circ}$	\％	\％		\％	\％	\％$\%$	\％	\％	\％	\％	\％	$\check{5}$	\％	\％	\％	\％		
䋄	\％	\％	\％	$\stackrel{8}{8}$	\％	吕	吕	景	品	：		8	$\stackrel{\square}{\square}$	最	\％		彦苞	\％	$\stackrel{\square}{0}$	茍	晏	㕫	号	8	䫆		号	\％	落	苞	\％	\％	呂	\％	号	骂	暏
$\stackrel{y}{3}$	号	：	\％	\％	号	号	吕	：	8	8	咢	\％	\％	吕	范		\％	号	：	\％	\％	\％	吕	吕	8	\％	$\%$	$\stackrel{8}{8}$	\％	：	$\stackrel{\square}{\circ}$	：	\％	！	：	¢	8
8	8	$\stackrel{\%}{6}$	5	8	$\stackrel{8}{8}$	$\stackrel{8}{8}$	：	\％	\％	\％	8	$\stackrel{\square}{\sim}$	$\stackrel{\circ}{-}$	$\stackrel{\circ}{\sim}$	을		\％	\％	\％	\％	\％	\％	\％	\％	號	\％	\％	\％	\％	2	2	\％	\％	$\stackrel{\square}{2}$	\％	$\stackrel{\square}{9}$	暏
\％．	\％	¢	\％	\％	\％	\％	3	\％	\％	\％	\％	\％	\％	\％	\％		$\%^{\circ}{ }^{\text {\％}}$	$\check{\square}$	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％	\bigcirc	¢	\％	\％	¢	5
\％	\％	8	$\stackrel{\square}{2}$	总	－	－	g	\％	${ }^{\text {\％}}$	$\stackrel{8}{8}$	$\stackrel{3}{\circ}$	Б．	馬	$\stackrel{\square}{\square}$	玉		－	\％	\％	\％	$\stackrel{\square}{\circ}$	\％	$\stackrel{\square}{\circ}$	\％	\％ 5	－	$\stackrel{*}{2}$	－	2	\％	：	$\stackrel{\square}{2}$	\％	z	\＃	\％	？
$\stackrel{\square}{6}$	9	\％	\％	$\stackrel{\square}{6}$	\％	\＃	$\stackrel{\square}{2}$	$\stackrel{\text { ® }}{ }$	\％	$\stackrel{\square}{\square}$	$\stackrel{\square}{5}$	\cdots	$\stackrel{\square}{4}$	7	$\stackrel{\square}{2}$		88	8	\％	\％	5	\because	8	$\stackrel{3}{2}$	－	奖	\％	\％	\％	：	\％	$\stackrel{5}{5}$	${ }_{5}^{\circ}$	䨓	\％	5	：
－	\％	商	合	\％	䂞	\％	\％	\％	\％	\％	星	\％	䁍	\％	筥		\＃	\％	\％	\％	膏	吕	\％	餢	\％	\％	\％	\％	喜	\％	\％	答	\％\％	\％	\％	管	\％
	啝	总	\％	\％	离	骨	8	容	\％	\％	\％	䔬	\％	吕	参		骨	总	呂	\％	8	\％	\％	\％	砣	睲	8	\％	\％	产	\％	吕	呂	\％	\％	\％	d
薷	\％	管	\％	$\stackrel{\square}{0}$	\％	今	吕	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\square}$	$\stackrel{\text { \％}}{\square}$		管	咢		\％		\％	$\frac{5}{3}$	\％	\％	！	$\stackrel{\square}{\square}$	\％	$\stackrel{\square}{\circ}$	－	謽	－	\％	\％	\％	\％	\％	吕	$\stackrel{5}{6}$	5	\％	免
\％	\％	5	：	咢	\％	\％	${ }_{8}^{\text {g }}$	\％	\％	\％	$\stackrel{\text { \％}}{\circ}$	\％	営	号	宕		名 吕		穴	${ }^{\circ}$	\％	\％	\％	\％	\bigcirc	${ }_{5}^{\circ}$	覀	总	总	\％	\％	\％	${ }^{\circ}$	喜	离	\％	免
憵	\％	\％	$\stackrel{\square}{7}$	吕	辟	熩	吕	暨	\％	吕	絮	冎	鬲	$\stackrel{8}{8}$	乭		总 ${ }_{\text {\％}}^{\text {\％}}$	号	膏	总	$\stackrel{\square}{2}$	昭	厓	咢	\％	号	哭	跉	㓪	㓪	要	\％	${ }^{\circ}$	鲇	总	$\stackrel{\circ}{\sim}$	${ }^{8}$
\％	${ }^{3}$	\％	\％	\％	¢	\％	\％	r	\％	\％	\％	\％	\％	¢	ð		$\%$ \％	\％	\％	\％	\％	\％	\％	\％	\％	\％\％	\％	\％	\％	\％	\％	\％	\％	ธ̆	\％		
$\bar{\square}$	菏	\％	守	\％	暏	\％	\％	\％	－	$\bar{\square}$	\cdots	\％	管	\％	\％		\％${ }^{\circ}$	妾	\％	\％	守	\％	\％	茡	\％	范	$\stackrel{\circ}{8}$	\＃	二	－	$\bar{\square}$	\％	\％	\％	$\stackrel{\circ}{\text { \％}}$		\％
㕺	$\stackrel{\circ}{0}$	$\stackrel{\circ}{\square}$	\％	\％	\％	\％	号	号	$\stackrel{\circ}{\text { \％}}$	$\stackrel{\circ}{\text { ® }}$	$\stackrel{\circ}{9}$	\％	\％	\＆	\％		导	耍	\％	\％	\％	\％	\％	\％	为	\％	\％	\％	\％	\％	\％	\％	\％	\％	\％		\％
\％	$\stackrel{\square}{5}$	\％	吕	号	\％	\％	$\stackrel{\text { \％}}{\sim}$	\geq	\＃	\％	$\stackrel{\square}{0}$	\％	$\stackrel{\square}{\text { ®．}}$	\％	$\stackrel{\square}{8}$		$\stackrel{\square}{6}$－	\％	\％	\％	\pm	：	$\stackrel{\square}{i}$	\％	\％	\％	E．	\＃	\pm	：	5	\％	等	$\stackrel{\square}{8}$	$\stackrel{\circ}{8}$	\％	\％
－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－		－－	－	－	－	－	－	－	－			－	－	－	－	－	－	－	－	－		
9	$\stackrel{\square}{\circ}$	\％	－	\bigcirc	\bigcirc	\bigcirc	\bullet	\checkmark	＊	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\sim}$	\because	－	\because	－		－ 0	\cdot	－	\bigcirc	\％	\because	$\stackrel{\square}{\circ}$	\bigcirc	0	\％	－	\because	\sim	\％	\％	\bigcirc	\because	\bigcirc	－		
\checkmark	－	－	＋	\checkmark	\cdots	\cdots	\square	\cdots	\％	\cdots	\cdots	＂	\cdots	\cdots	\cdots		－	\bigcirc	\checkmark	－	－	－	－	－	\cdots	\cdots	\checkmark	－	\cdots	\％	\cdots	＂	\cdots	\cdots	\cdots		
5	5	5	\％	5	\％	$\stackrel{8}{8}$	\square	\％	\％	5	？	5	5	2	5		515	5	8	5	\％	3	$\%$	$\%$	12	$\stackrel{8}{8}$	E	$:$	$\stackrel{5}{6}$	2	\％	\％	5	\％	8	\％	\％
8	$\stackrel{\square}{3}$	7	\％	\％	$\stackrel{1}{2}$	$\stackrel{\square}{2}$	\because	－	$\stackrel{1}{2}$	：	－	：	－	¢	2		：	\bigcirc	\％	－	$\%$	\because	－	\％	\sim	\bigcirc	－	$\%$	$\stackrel{\square}{\square}$	\％	$\stackrel{\square}{-1}$	\％	$\stackrel{\square}{*}$	$\%$	\bigcirc		
晏	炎	羂	訔	装	巒	峴	晏	容	岁	咢	晏	景	岀	笠	萝		这受	炭	栄	\％	装	咢	炭	䍐	2	浆	劳	等	嵏	笭	等	㟎	炭	嶒	㞺	$\stackrel{4}{2}$	8
\cdots	\cdots	\cdots	\sim	\cdots	－	\cdots	\cdots	\cdots	\cdots	－	\cdots	\cdots	\cdots	\cdots	\cdots		－	\cdots	m．	\cdots	\bigcirc	\cdots	\cdots	－	，	\cdots	－	\cdots	－	－	－	－	\cdots	－	－		
8	8	星	\％	$\stackrel{\square}{4}$	－	\％	8	8	8	$\stackrel{\square}{\square}$	\％	8	8	8	8		$\stackrel{8}{8} \frac{8}{8}$	8	8	\％	\％	\％	\％	8	8	8	8	$\stackrel{8}{-}$	8	8	\％	8	8	$\stackrel{8}{4}$	\％	8	8
\％	云	馬	핳	5．	岢	\％	吕	譀	\％	\％	\％	\％	名	云	家		可	－	¢	\％	8	${ }_{6}^{8}$	\％	\％	\％	\％	\％	8	\％	\％	\％	\％	ร	\％	8	\％	\％
8	\％	\％	\％	\％	\％	㔛	8	\％	感	呂	\％	\％	\％	咢	䢒			\％	：	${ }^{\circ}$	\％	\％	\％	\％	8	吕	8	\％	\％	8	\％	\％	\％	：	\％	\％	\％
$\stackrel{ }{4}$	＂	4	4	＂	：	＝	${ }^{4}$	z	玉	：	＝	：	＝	z	：		4	4		－	${ }^{4}$	${ }^{4}$	4		2	z	4	＝	\％	：	$=$	＝	＝	＝	＝		
$\stackrel{\square}{8}$	$\stackrel{\circ}{\square}$	$\stackrel{\circ}{0}$	\％	哭	易	單	를	\％	\％	K	\％	号	$\stackrel{\circ}{\square}$	各	$\stackrel{8}{\square}$		8	\％	$\stackrel{8}{\square}$	8	8	$\stackrel{\circ}{3}$	สี่	吕	\％		${ }^{\text {c }}$	\％	\％	\％	：	${ }_{8}^{8}$	\％	$\stackrel{8}{7}$	$\stackrel{8}{\square}$	\％	\％
$\begin{aligned} & 0 \\ & 0 \\ & \text { 若 } \\ & \hline \end{aligned}$	嫊			$\begin{aligned} & \text { 品 } \\ & \text { 首 } \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{0}{2} \\ \text { 豆 } \end{array}$	$\frac{0}{6}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{5}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\frac{8}{6}$			蓅	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \hline \end{array}$				5	8	1		$\begin{array}{\|c} \frac{0}{2} \\ \frac{8}{2} \\ \hline \end{array}$	$\frac{0}{2}$		容			雨		$\begin{aligned} & 9 \\ & \frac{2}{2} \\ & \frac{2}{2} \end{aligned}$	黒	\％	京	卷	\％	咢	号

	\％		$\%^{\circ}$	\％		${ }_{5}{ }^{\circ}$	\square^{5} \％	$\overbrace{6} \mathrm{~b}$	$\check{\square}$	$\square^{5} 5$	\％${ }^{\circ}$	$)^{\circ}$	\square_{0}	$\square^{\circ} \mathrm{B}$	\％$\%$	\％$\%$	$\bigcirc \bigcirc$	5%	\％	\％	\％		¢．	\％			\％	\％	¢	\％	\％	\％	\％	\％		
	2		：$:$	：		：-1	$\bigcirc=$	$=5$	：	： 8	：	： 2	$2 \sim$		52	20	二：	2	\％	I	－		\geq				：	：		\％	：	：	\sim	\％		
	9		？	\＆		\％	\％	\％	$\underline{\square}$	$2 \geqslant$	\because	\geq	碛	氞 5	$\underline{\square}$	言立	言	是等	5	\％			合					\％		曾		\％	\％	ส		
	8		\％	\％		\％	\％	\％	\％	\％	号	\％	\％	\％\％\％	）	：	\％	号号	\％	\％	吕		\％	：				\％			\％	\％	：	：		
	：		g ${ }^{\circ}$	：		\％	：	：${ }^{\circ} \mathrm{B}$	$\stackrel{3}{8}$	：${ }^{\text {a }}$	：${ }^{\text {a }}$	열 ${ }^{\text {a }}$	혈		：$: \frac{\square}{8}$	\％${ }^{\text {\％}}$	：${ }^{\text {g }}$	${ }^{\text {\％}}$	\％	\％	\％		\％${ }^{\text {g }}$	：			${ }^{\circ}$	\％		\％	\％	\％	\％	\％		
	\％		意总	管		\％\％	号	\％	\％$\%$	\％\％	\％\％	$\stackrel{\square}{7}$	咅蔀	咅管童	童皆	离离	离管	\％	\％	号	咢		$\stackrel{\square}{3}$	$\stackrel{3}{3}$			\％	\％	管	\％	\％	發	\％	$\stackrel{\text { \％}}{\text { \％}}$		
	\approx		\％ 2	z		≥ 2	2 z	22	$2 \sim$	$\because 2$	22	22	$\because 2$	$2 \mathrm{E}=$	2 z	≥ 12	22	2 F	2	\％	2		$z=$	\％				\％		\％	＝	\pm	\％	：		
	\％		3 \％	\％\％	$\partial^{\circ} \mathrm{z}$	\succ°		$\check{y y}$	z^{2}	${ }^{\text {\％\％}}$	${ }^{\text {\％\％}}$	3^{5}	$\therefore 8$	$z^{2} \mathrm{z}$ \％	5%	${ }^{5}$ \％${ }^{\text {\％}}$	$\%^{\circ} \%$	$\%^{\circ} \mathrm{z}$	\％\％	\％			5	\％	\％		\％	\％			¢	\％	\％	\％		\％
景	$\stackrel{\circ}{6}$		${ }^{\frac{3}{8}}$		咢咅	\％	\％	豆	\％	？	－	总	总	誊	\％	咅总	部旁	彦言	\％	量	${ }_{6}$		¢	$\stackrel{\circ}{\square}$	耪		\％	号	言	\％	${ }^{2}$	管	\％	\％	：	管
${ }^{5}$	：		3	：$:$	$\stackrel{5}{8}$	5	：$:$	\％	\％	： 5	： 1	58	$\stackrel{8}{8}$	\％	\％	\％	\％$\%$	： 5	吕	8	\％		\％${ }^{\circ}$	$\stackrel{\square}{8}$	：		\％	\％		：	：	\％	：	！	$\stackrel{\square}{8}$	\％
8	\％		$\stackrel{\square}{\square}$	号 ${ }_{\text {\％}}$	\％${ }^{\circ}$	\bigcirc	\bigcirc	8	\％${ }^{\text {8 }}$	$8{ }^{2}$	8^{5}	8.	鄂号	\％${ }^{\text {\％}}$	\％\square_{8}	咅呂	呂易		$\stackrel{8}{-8}$	－	\％		\％\％	\％	辟		$\stackrel{\square}{\square}$	号	\％	\％	\％	\％	\％	$\stackrel{\circ}{\circ}$	\％	量
$\stackrel{5}{6}$	\％		$\overbrace{6}$	¢	\％	${ }^{5} 5$	${ }^{\circ} \mathrm{z}$	z^{5}	\％	$\stackrel{3}{*}$	\％	\％	$\%^{\circ} \mathrm{f}$	${ }_{5}{ }^{5} 5$	\％\％	\％\％	${ }^{2} 8$	\％	\％	\％	\％		\％	${ }_{5}$	\％		\％	\％	\％	\％	3	\％	\％	\％	\％	\％
$\underset{\sim}{\square}$	$\underline{\square}$		$\underline{\underline{5}}$	5	\％	O	\％	$\stackrel{\circ}{3}$	\％${ }^{\circ}$	$\stackrel{5}{8}$	\％	\bigcirc	\％${ }^{\text {g }}$			롱	\％	\because	$3:$	$\stackrel{\square}{-}$	三		5	\because	\％		－	\％	I	$\underline{\square}$	\because	\％	\％	\％	\tilde{z}	玉
8	\％		\％${ }^{\circ}$	\％	\％${ }^{\text {m }}$	\％${ }^{\text {a }}$	\％	35	： 5	\％${ }^{\text {\％}}$	\％	5	${ }_{5}^{5}$	${ }^{8}$	涪吕	8	5	砣	\％	\％	\％		P	？	$\stackrel{\square}{\square}$		\％	Ti	？	\pm	$\stackrel{\square}{\square}$	\％	\％	3	\％	\％
\％	\％		${ }^{5}$	\％${ }^{5}$	\％	\％	咅咅	\％	흥․․	\％	部咅	\％	\％	5	童望	\％	咅䫆	\％	竜	！	号		\％	\％			\％	\％		\％	\％	ธ	\％	\％	\％	铬
豆	2		\％	$\stackrel{8}{8}$	8	\％	\％	\％	\％	\％	\％	骨	\％${ }^{2}$		硣怘		吕無	\％	\％	${ }^{\frac{3}{3}}$			8	\％	${ }^{8}$		\％	\％	\％		\％	鲇	\％	8	8	${ }^{\text {g }}$
${ }_{5}^{5}$	号		${ }^{\circ}$	$\frac{8}{\square}{ }^{\circ}$	\％	咅宫	穴管	号	\％	号		\％\％	\％${ }^{\text {\％}}$	\％${ }^{\circ} 5$	\％	咅言	$\overbrace{}^{\text {\％}}$	\％	\％	\％	宕		\％	害	\％		\％	亏		\％	产	\％	$\stackrel{3}{2}$	\％	\％	言
吾	${ }^{\text {a }}$		\％	\％	\％$\frac{1}{2}$	立 $\frac{\square}{\text { \％}}$	言吕	\％${ }^{\text {g }}$	8	E ${ }^{\text {b }}$	\％	\％${ }_{5}$	言	$5{ }^{5}$ ）	잘	言	言空	\square_{5}^{8}	\％	${ }^{5}$	\％		\％	\％	！		\％	言	\％		\％	容	咅	\％	\％	5
号	总		${ }_{3}{ }^{\text {号 }}$	号竞		咢咅	\％	號吕			量要	\％${ }_{5}^{5}$	\％${ }^{5}$	立号总	㗜盛	合离	\％	$\stackrel{8}{7}$		㦹	总		\％	高	$\stackrel{8}{3}$		\％	\％	点	喜	品	$\stackrel{\square}{3}$	\％	咢	咅	\％
$\stackrel{\square}{6}$	\％		\square°	\square_{0}°	${ }_{\square}{ }^{\circ} \mathrm{z}$	\bigcirc	\square	\square_{0}^{5}	$\%^{\circ} \mathrm{b}$	$\%$	\％\％	¢ \％	\square	\bigcirc	${ }^{\text {¢ }}$ \％	${ }^{3}{ }^{\text {z }}$	\square^{5} \％	${ }^{\circ}$	\％	\％	\％		\％\％	\％	\％		\％	\％	\％	\％	\％	\％	\％	\％	z	5
$\stackrel{\square}{3}$	${ }^{\circ}$		枵	\bigcirc	$\stackrel{\square}{\square}{ }^{\circ}$	$\bar{\square}$	\cdots	二 $\bar{\square}$	$\overline{\bar{j}}$	\cdots	\％	\square^{5}	这	司 $\%$	${ }^{\circ} \mathrm{B}$	部		\％${ }^{\circ}$	5	\％	5		－	－	立			$\stackrel{\square}{4}$	\％	\％	三	$\stackrel{\square}{\square}$	三	$\bar{\square}$	冗	\％
\％	\％		${ }^{8}$ \％	\％$\%$	\bigcirc	：$\square_{\text {¢ }}$	$\stackrel{\square}{\circ}$	\because	\％$\%$	\％${ }_{\square}^{\circ}$	$\stackrel{\circ}{\circ}$	\bigcirc	$\stackrel{\square}{0}$	\bigcirc	\％	硈	－	\％	\％	\because	\％		\％	g	\％		－	\％	\％	\％	$\stackrel{\square}{\circ}$	\％	\％	$\%$	\％	号
$\stackrel{\square}{9}$	\％		$\stackrel{8}{\square}$	$\%$	\％	\cdots	\div	\bigcirc	－	5	\％	5.	$\stackrel{\square}{8}$	\％$\%$ \％	8 B	\％	：${ }^{\text {\％}}$	$\stackrel{\square}{2}$	\％	\geq	－		\because	\＃	\％			\％	：	\％	：	${ }^{\sim}$	－	－	：	\％
－	－		－	－	－－	－	－	－	－	－－	－－	－	－	－－		－－	－－	－－																－		
\bigcirc	－		\because	$\because \cdot$	－${ }^{-1}$	5	\％	：$:$	：	5	3	\because	\cdots	\because	，	：	$\square 1$.	－		－				－	\because			8		－	－	$=$	：	\％		\square
\cdots			－	$\cdots \cdot$	－－	－	\cdots	\cdots	－	－	－	－	－－	－	\cdots	\cdots	－	－										－						－		
$\stackrel{5}{5}$	5		5	8	${ }^{2} \mathrm{~B}$	5	5	$3:$	\％	5	\％	5	${ }_{5}^{5}$	E 5	\％${ }^{\circ}$	\％	5	\％	！	\％			5	\％	：		\％	\％	\％	：	：	5	：	：	\％	\％
$\stackrel{7}{7}$	\bigcirc		－	\cdots	$\because 2$	28	： 8	4	\because	\because	\because	\because	\because	$\because \because$	：	\％	－$:$	$\because:$	\cdots	\because	8		8.	－	\％		：	：	：	：	8	8	\％	－	\because	\bigcirc
詈	罗				妥离	受罗	罠免	䍐免	受 ${ }^{\text {晨 }}$	栄离	复峔	賋妾	囬賋	暑	訔嵏	罗受	受㟥	\％		\％				蔓	罗		訔	㟶	\％	㟶	㟶	产	岁	罗	${ }^{\text {U }}$	等
	－		\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	－．${ }^{-}$	\cdots	\cdots	－${ }^{\text {－}}$－	\cdots		\cdots				－	－											
$\stackrel{8}{8}$	8	8	8	88	88	8.	8	8.	88	8.8	8	－\square^{-1}	： 8	88	88	8	$8{ }^{8} 8$	8	\％	8	8		$\stackrel{8}{8}$	$\%$	\％			$\stackrel{8}{8}$	\％	\％	8	$\%$	8	\％		8
8					\％${ }^{\text {\％\％}}$	部产	5¢	$5:$	\％：	\％	\％\％	\％\％	\％${ }^{\text {g }}$	88	88	\％\％	\％\％	8		5				5	亏		：	\％	\％	\％	：	\％	！	\％	\％	5
$\stackrel{y}{\circ}$			\％	8	8 \％	8	8%	\％\％	\％\％	8	\％	\％${ }^{\circ}$	\％	\％$\%$	\％	\％	\％	\％	\％	\％				\％	\％		z	\％		名	g	\％	：	\％	8	：
：	＝	$=$	$=$	$\cdots \sim$	$\square \leq$	$=12$	＝$=$	z z	$=1$	z $=$	$=2$	：$=$	$=$	$=3=$	z $=$	$\therefore=$	$=2$	$z=$							＂			＝		：				＝		
\％	$\stackrel{1}{2}$		${ }_{8}^{8}$	\％${ }_{8}^{8}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$	\％$\%$	\because	5\％	：${ }^{\circ}$		8	$\frac{8}{8} \frac{8}{8}$	88	$\frac{8}{2}$	\％	高	8						\％	－		\％	总		8			\％	\％	8	\％
																															－					
				妾	4			部紊	缕 ${ }^{2}$	部靖	京沯	颜咅	部旁			䓂旁								总	㨞			旁				竞	\％	亳	苼	亳

APPENDIX 2 : CURRENT CARRYING CAPACITY OF XLPE CABLE

Fibumatice crues				Current Carrying Capacity XLDE $\operatorname{lnsmated} 6 / 10 \mathrm{KV}$					
								50 Hz	
$\begin{aligned} & \text { Cable } \\ & \text { Sits? } \end{aligned}$	In air at $40^{\circ} \mathrm{C}$			In ground at $25^{\circ} \mathrm{C}$			Sch	？	x
	1－core（trefoll	i－coref（lat）	3 core	1－core	2－core	3／4 core	（ $\mathrm{s}^{\text {\％}}$	chate	doman
	A	A	A	A	A	A			
4			145				36	0.927	0.1240
38			175				497	3658	0.166
30	235	295	220				7.0	6.65	0．176
7	285	370	270				9.9	6.342	0.1000
（19）	360	455	330				3 3，${ }^{3}$	6.34	6． 10
2	415	520	375				97.08	969	60973
憬	470	600	430				21.38	6 6，䛌	0034
198	540	690	490				\％ 36	0.28	0.080
26	640	820	570				34.40	0098	36
320	740	940	650					0073	0 0 50
4 d	840	1100	740				52.8	0.638	6030
50	940	1280	－				71， 0		
620	1110	1500	－				呇：		

ITED GENERATOR PERFORMANCE VALUES

7-5000 SOLID		ROTOR						
-	KVA	PF	TAMB	TRISE	POUS	RP\4	81078	H2
0.	8125.	0.8	40	80	4	1500	60	50
3-PE	VOIMIS-ITS	AMPS-PH	ANPS -LIN	Bask 2	025	026	PSASE/	2TIT
1	6600	710.8	710.8	5,361	00033 SRI	00022	3 P	Y

1 PER UNIT PTHCH

ANCES		SAT	UNSAT		HI ROT VALUES	VOLTS	
HRONOUS					BTATOR	14200	
GCT AXIS	Xc	138.9	276.5		ROTOR	1500	
DRATURE AXIS	Xg	76.3	102.7		EXCITER FIELD	1500	
ISIENT					EXCITER ARM	2500	
MCT AXIS	X'd	22,3	25.4				
DRATURE AXIS	X'9	76.3	102.7		MOTOR STARTING	0 P.F.	
RAKSTENT						INRUSH	8 VOLT
BCN AXIS	X"d	14.6	37.2		SKVA AT GENERATIOR	SKVA	DIP
DRATURE AXIS	X"g	14.0	16.5		TERMINALS	3560.3	10
PTVE SEQJENCE	X2	14.3	16.8			5654.6	15
3 SEQUENCE	X0	1.7	2.0			8010.7	20
cage rmactance	XI	7.527	8.553			$\begin{gathered} 10681 . \\ 0 \\ \hline \end{gathered}$	25
						13732	30
监ANCES © $25 \mathrm{C}-$	RDCa	0,01463					
	RDCf	0.4410					

VOLTAGE DIP AT RATED P.F. $=14.7 \%$
XID $=25.4 \%$ FOR DIP CALCULATION.

CONSTANTS (SECONDS)		
IS 3-PH S.C. TRANSIENT	$\mathrm{T}^{\text {' } \mathrm{d}^{\text {3 }} \text { d }}$	0.946
IS O.C. TRANSIENT	T'd0	5.609
IS 3-PH S.C. SUB-TRANS	T ${ }^{\text {d }}$ 3	0;037
IS O.C. SUB-TRANS	T"d0	0.056
CKI (ASYMMETRICAI S.C.)	TA	0.555

TRANSTENT TORQUES				KW		HEAT RE'J
	TORQUE	$\begin{aligned} & \text { MAX } \\ & \text { TORQUE } \end{aligned}$		@0.8P.F.	8EFF	BTO/HR
ITION	P.U.	FTT-IBS				
3.C.	6.9	261389	FL	6500.0	97.4	587847
S.C.	9.0	342961	3/4I	4875.0	97.2	485076
			1/2L	3250.0	96.4	408905
			1/4L	1625.0	93.9	358618

IIENGY CALCULATED AT 95.0 C

$\overline{\mathrm{KORT}}$ zCUIT 3RENT	INSTANTANEOUSSYMMETRICAL FAULTCURRENT		INSTANTANEOUS ASYMMETRICAL FAULT CURRENT	
	P.U.	AMPS	Q.U.	AMPS
	6.86	4875	11.88	8445
	6.00	4265	10.39	7387
	9.80	6968	16.98	12070

SREED: 1875.0 REM FOR 1 MINUTE. MINIMUM 3 PHASE MOTORING PONER: 650.00 KW
\& COEFF $14680 \mathrm{KW} / \mathrm{RAD} 7730 \mathrm{KW} / \mathrm{RAD}$
LACEMENT ANGLE: 27.3 DEGREES

BY \qquad

ATA CAN BE TRANSFERRED TO CUSTOMER DATA SHBETS WHEN APPLICABLE
TED GENERATOR PERFORMANCE VALUES

7-50	SOLID	ROTOR						
	KVA	P\%	HAM, ${ }^{\text {a }}$	MRISE	POTAS	REM	STOTS	等2
0.	8125.	0,8	40	80	4	1500	60	50
-PR	VOLn'S-IT	AMPS-EH	ANPS -1.1	Enge 2	025	026	ERaSE/	Hix
1	6600	710.8	710.8	5.361	000335 R 1	00022	3 P	YE

IG: DEV

OMSTANTS (SECONDS)			
S $\mathrm{J}-\mathrm{N}$	S.C. TRANSIENT	TID2	1.068
B 工-L	S.C. TRANSIENT	ITDI	1.108
S 3-2H	S.C. TRANSIMNT	TI03	1.122
S	O.C. TRANSIENT	TIO	1.122
S $\mathrm{L}-\mathrm{N}$	S.C, SUB-IRANS	TIID2	0.044
S L	8.C. SUB-TRANS	TIID1	0.045
S 3-PH	S,C. SUB-TRANS	TITQ3	0.004
S	O.C. SUB-TRANS	TIIQO	0.028

CAPACITANCE-GRD	0.214	MICRO-FARAD
	25103	VOLTS
ATION EACTOR	1.20	
100064 * WKK*2		KW-SEC/KVA
(STIT	42.7	
CIRCUIT RATIO	0.720	

YTANCES	OHMS	PERCENT
SEQUENCE	RO	0.0439
PIVE SEQUENCE \quad R1	0.0183	0.818

GATED LOSSES	(KW)	
	6500.0	NO
	28.6	28.6
	61.7	61.7
RA	$\frac{31.0}{}$	0.0
Y	9.3	0.0
RF	36.1	6.4
TER	5.4	1.0
L	172.1	97.7

IIENT TOROUES

ITION	RORQUE	MAX RORQUE
OUT OF PH	P.U.	ET-LBS
NCA W/INF BUS	17.8	679107.7
OUT OF RA		6
NCH W/INF BUS	19.4	738977.9

```
* 148.7 vours 0.0
    246.7 AMPS 0.0
```

NEUTRAL GROUNDING REACTOR (XR) IS REQUIRED TO LIMIT THE L-N CURRENT GE 3-RH FAULT CURRENT, THEN THE PROPER VALDE OF REACTANCE IS 0.23 OHMS (XR)

```
ECOND CURRENT RATING = 4143 AMPS
gCOND CURRENT RATING = 1029 AMPS
```


PROPRIEIARE DAIA FOR FANGINTERING TECENICAL TNFORMATION

THIS DATA CAN BE TRANSFERRED TO CUSTOMER DATA SHEEXS WHEN APPLICABLE

PREDICTED GENERATOR PERFORMANCE VALUES

4P7-2950TEEC IR 56		EDG \#GD-7700-7BCP-A -			poLes		SIOTM	ह12
KH	KVA	97	LAMB	TRISE				
1500.	1875.	0, B	40	80	4	1500	72	50
VOLTS-PB	VOLIS-EL	AMPS-5H	AMPP-IN	BASE 2	025	026	PH2AE/	ST0
231	400	2706.3	2706.3	0.085	70036	70024	3 F	

VENTING: DEV

D-AXIS L-N	S.C. TRMASIENT	TID2	1.082
D-AXIS L-L	S.C. TRANSIENT	TIDI	1.132
Q-AXIS 3-PH	S.C. TRANSIENT	TIO3	2.099
Q-AXIS	O.C. TRANSIENT	TIOO	1.099
D-AXIS L-N	S.C. SUE-2RANS	TIID2	0.049
D-2XIS L-L	S.C. SUB-TRANS	TITD1	0.049
Q-AXIS 3-PH	S.C. SUB-TRANS	TIIO3	0.005
Q-AXIS	O.C. SUE-TRANS	TIIQ0	0.027

3-PH CAPACITANCE-GRD	0.244	MICRO-FARAD
BIL	3182	VOLTS
SATURATION EACTOR	1.06	
H二=0.000277 * Wiर**2		KO-SEC/KVA
X/R RATIO	27.9	
SHORT CIRCUIT RATIO	0.823	

RESISTANCES	OHMS	QERCENT
ZERO SEQUEANCE RO	0.0008	0.996
POSITIVE SEQUENCE RI	0.0004	0.415

SEGREGATED LOSSES (KW)		
KN	2500.0	HO LOAD
ECW	43.9	43.9
CORE	25.1	15.1
I**2RA	8.7	0.0
STRAY	14.2	0.0
I**2R \bar{F}	5.9	1.4
EXCITER	0.9	0.2
momas	88.6	60.6

TRANSIENT TORQUES

CONDITION	TOROUE	MAX TORGUE
3-EH OUT OF PH		E.
SYNCH W/INE BUS	22.4	197059.7
$1-$ PH OUT OF PH		
SYNCH W/INF BUS	23.3	204485.3

* NOTE: PU torque based on rated kVA, not rated kw.

VOLTS	65.0	VOLTS	0.0
AMPS	111.9	AMPS	0.0

IF A NEUTRAL GROUNDING REACTOR (XR) IS REQUIRED TO LIMIT THE L-N CURRENT TO THE 3-PH FAULT CURRENT, THEN THE PROPER VAUUE OF REACTANCE IS 0.00 OHMS (XR)
10 SECOND CURRENT RATING $=$
60 SECOND CURRENT RATING $=$

PRORRIETARY DATA FOR ENGINEERING TFCHNICAL INFORMATION

4E7-2950TEFC IR56 EDG \$GD-7700- TBCP-A -								
KM	KVA	Pr	Tams	TR土的	COLIS	RPM	STOTS	Hz
1500.	1875.	0.8	40	80	4	1500	72	50
VOLTS-7H	VOLTS-LIT	AMPS-PH	dMps-in	BA85 2	025	026	PHASE/CONTECTION	
231	400	2706.3	2706.3	0.085	70036	70024	3 F	

SATURATYON DATA

Voums		CAMCULAMED FIEID AMPS			EXPECTSD FIETCD AMP3		
P.0.	LINE	O.C.	0.8 9.F.	ZERO P.F.	O.C.	$0.8 \mathrm{P} . \mathrm{F}$.	2ERO P. ${ }^{\text {F }}$.
0.00	0	0.35	58.52	58.52	0.00	58.52	58.55
0.25	100	13.29	67.17	71.49	10.25	65.32	68.91
0.50	200	26.39	77.18	84.63	20.90	73.45	79.89
0.75	300	39.71	88.26	98.03	32.78	83.75	92.71
1.00	400	56.49	105.51	118.44	48.15	98.97	110.75
1.10	440	69.74	122.01	138.05	56.44	107.87	121.12
1.20	480	97.37	162.10	188.21	65.90	119.57	134.66
1.30	520	183.15	324.60	425.42	80.58	135.39	152.94
1.40	560	657.84	1065.12	1298.27	99.05	157.31	178.23

RTAACTANCES AND TMME CONSTANNS AT 1875 KVA BASE

OTHER CONSTANSS			
		FULL LOAD	NO LOAD
SYNCHRONIZING COEFEICIENT (kN/RAD)		4110.5	2499.5
DISPLACEMENT ANGIE (DEGREES)		22.5	
REACTANCE EACTOR (KILGORE	X	1.280	
ARMATURE LEAKAGE (KUHLMAN)	XI	5.845	
ARMATURE LEAKAGE (KILGORE)	XI	5.730	

RREDICTED GENERATOR RERFORMANCE VALUES

4R7-2950TEEC IP56 EDG \#GD-7700-TBCP-A -								
$\underline{1}$	KVA	PF	TAXB	TRISE	POLES	RPN	SIOTS	H8
1500.	1875.	0.8	40	80	4	1500	72	50
VOLTS-8H	VOIMS-TI.	AMPS-PH	AMPS-IN	BASE	025	026	PHASE/CONINEMCM	
231	400	2706.3	2706.3	0.085	70036	70024	3 P	

0.6667 PER UNIT PITCH

REACTANCES		SAT	ONSAT	HI POT VALUES	V0ITS	
SYACHRONOUS				STATOR	1800	
DIRECT AKIS	Xd	121.5	142.7	ROTOR	1506	
QUADRATURE AXIS	X	61.0	74.3	EXCITER EIELD	1500	
TRANSIENT				EXCITER ARM	1500	
DIEECT AXIS	x^{\prime}	14.7	16.6			
QUADRATURE AXIS	$\mathrm{X}^{1} \mathrm{~g}$	81.0	74.3	MOTOR STARTING	0 P.E.	
SUBTRANSIENT					INRUSH	BVOLT
DIRECT AXIS	$\mathrm{X}^{\text {n }} \mathrm{d}$	11.6	23.6	SKVA AT GENERATOR	SKVA	DIP
QUADRATURE AXIS	X79	13.4	15.7	TERMINALS	1251.3	10
NEGATIVE SEQUENCE	X2	12.5	14.7		1987.4	15
ZERO SEQUENCE	X 0	1.6	1.9		2815.5	20
IEAKAGE REACTANCE	XL	5.73	6.511		3754.0	25
					4826.5	30
RESISTANCES 6 25C-	RDCa	0.00028				
	RDCf	0.9322				

NL-FL VOLTAGE DIP AT RATED P.F. \quad 10.4\%
USED XID= 16.6 FOR DIP CALCULATION.

TIME CONSTANTS (SECONDS)		
D-AXIS 3-PH S.C. TRANSTENI	T'd3	0.782
D-AXIS O.C. TRANSIENI	T'do	5.495
D-AXIS 3-PH S.C. SUB-TCANS	T"d3	0.043
D-AXIS O.C. SUB-TRANS	$\mathrm{T}^{\text {"do }}$	0.055
ARM CKT (ASYMMBTRICAL S.C.)	TA	0.079

TRANSIENT TORQUES				KW		REAT REJ
	TORQUE	MAX TORQUE		80.8P.F.	4 SFF	BTU/HR
CONDITION	P. O.	ET-LBS				
3-PH S.C.	8.6	75848	EL	1500.0	94.4	302671
L-I S.C.	10.8	94902	3/4I	1125.0	93.6	262328
			1/2L	750.0	91.7	232905
			1/4L	375,0	85.7	214399

EEEICIENCY CALCULATED AT 95.0C

SHORT CIRCUIT CURRENT	INSTANTANEOUS SYMMETRICAL FAOLT CURRENT		INSTANTANEOUS ASYMMETRICAL FAULT CURRENT	
TYEE	P.U.	AMPS	R.U.	AMPS
3-Ph	8.63	23343	14.94	40432
L-L	7.19	19471	12.46	33726
L-N	11.69	31642	20.25	54807

OVERSPEED: 1875.0 RPM FOR 1 MINOTE. MINIMUM 3 PHASE MOTORING POWER: 150.00 KH

EJLL LOAD NO LOAD
SYNCH COEEE A110KW/RAD 2499KW/RAD
DISPLACEMENT ANGLE: 22.5 DEGREES

BY \qquad

	Page : 1
	Date : 02/25/2008
	Time : 12:58:00PM
	Company :
SHORT CIRCUIT FINAL	Engineer :
$1:$	Check by :
100.00	CheckDate:
	Cyc/Sec : 50

.ectrical One-Line 3-Phase to Single-Phase IEC project

System Summary

E Activate Nodes	$:$	86
E Branches	$:$	87
ve Sources	$:$	3
ve Motors	$:$	8
ag Busses	$:$	0
sformers	$:$	8
ve Islands	$:$	1
erature (${ }^{\circ} \mathrm{C}$)	$:$	25.0

```
tults : at All Buses or Mult-Buses
Idard : 1988 Version
stwork: 3 ghases 3 Wires system
#fined: by Standard
Ir to Generators
nethod: B
ages : Use System Voltage
ages : Adjusted by Tap/Turn Ratio
```


EDSA

3-Phase Short Circuit v5.50.00

	Page	2
	Date	02/25/2008
	Time	12:58:001PM
	Company	
	Engineer	
SHORT CIRCUIT EINAL	Check by	
$1:$	CheckDate:	
100.00	Cyc/sec	50

lectrical One-Line 3-Phase to Single-Phase IEC project

Results: 0.5 Cycle--Symetrical-3P, LL,LG, \& LJG Faults

	$\begin{gathered} \text { Pre-Fit } \\ \text { kV } \end{gathered}$	$\begin{gathered} 3 P \text { Flt. } \\ \text { KA } \end{gathered}$	LL Flt. KA	$\underset{K A}{L G} \text { FIt. }$	$\begin{aligned} & \text { LLG FIt } \\ & \text { KA } \end{aligned}$	Thevenin $z+(p u)$	Imped.	$\begin{aligned} & \text { Complex } \\ & \hline 3 P \text { X/R } \end{aligned}$
	7	15	13	14	14	0.60	0.66	2.37
	7	15	13	14	14	0.60	0.66	2.37
	0	34	30	35	36	4.22	4.13	1.20
	0	43	37	44	46	3.36	3.04	3.80
	7	17	14	16	16	0.52	0.58	21.43
	7	17	14	16	16	0.53	0.59	20.86
	7	17	14	16	16	0.53	0.59	18.34
	0	28	24	28	29	5.14	5.28	1.28
	0	5	5	5	6	26.35	26.63	0.22
	0	25	22	25	26	5.70	5.61	1.17
	0	38	33	25	36	3.84	9.98	2.66
	0	21	18	21	22	6.93	6.62	2.65
	0	23	20	23	24	6.27	6.18	1.15
	0	16	14	16	16	8.91	8.91	0.83
	0	17	15	17	17	8.45	8.44	0.84
	0	8	7	8	8	17.54	17.63	0.56
	0	11	9	11	11	13.51	13.75	0.29
	0	34	29	34	35	4.29	4.20	1.23
	0	73	63	72	84	1.99	2.41	6.34
	0	26	22	26	27	5.56	5.25	2.98
	0	36	32	37	38	3.96	3.81	1.54
	0	34	29	34	35	4.30	4.20	1.24
	0	24	21	24	24	6.09	6.05	0.97
	0	12	11	12	12	11.87	11.94	0.62
	0	18	15	18	18	8.11	8.51	0.77
	0	17	14	16	17	8.62	9.08	0.75
	7	15	13	15	15	0.57	0.63	3.06
	7	15	13	14	15	0.59	0.65	2.59
$1 / 8$	0	79	69	86	89	1.82	1.46	8.82

EDSA

3-Phase Short Circuit v5.50.00

	Page	3
	Date	02/25/2008
	Time	12:58:00PM
	Company	
	Engineer	
SHORT CIRCUIT FINAL	Check by	
1 :	CheckDate	
100.00	Cyc/sec	50

lectrical One-Line 3-Phase to Single-Phase IEC project

Results: 0.5 Cycle--Symmetrical--32, LL,LG,s ILG Faults

Page	$: 1$
Date	$: 02 / 25 / 2008$
Time	$: 01: 03: 51 \mathrm{pm}$
Company	$:$
Engineer	$:$
Check by	$:$
Date	$:$

Line 3-Phase to Single-Phase IEC project

Starting Motor Info

ne	Type	System Volts	Running kVA	Load PF (\%)	Start PF (\%)	LRA Amps	MF	StartMethod
	Z Load	6600	802.20	87.00	25.00	210.52	3.00	Fullvoltage
	Z_Load	400	224.08	86.00	25.00	646.86	2.00	Fullvoltage
	Z_Ioad	6600	1017.72	87.00	25.00	512.14	5.75	Fullvoltage

Bus Voltage Result

| Type | System
 Volts | V (PU)
 Before | V (PU)
 During | VDip
 $\%$ | V (PU)
 After | StartMethod |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

MDSA Advanced MOcor srarinity rauyiam vo....v

	Page : 2
	Date $: 02 / 25 / 2008$
Time : 01:03:51 pm	
	Company :
notor starting final	Engineer :
	Check by :
	Date $:$

Line 3-Phase to Single-Phase IEC project

$1{ }^{1}$	Type	System Volts	v (PU) Before	V (PU) During	vDip \%	V (PU) After	StartMethod
	None	400	0.9565	0.9075	5.12	0.9506	
	None	400	0.9488	0.8958	5.59	0.9430	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	0.9563	0.9077	5.08	0.9505	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	0.9549	0.9062	5.10	0.9491	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	

EDSA Advanced Motor Starting 上rogram vu. 4 U. vu

notor starting final	Engineer :
1 -	Check by :
	Date
-Line 3 -Phase to Single-Phase IEC project	

me	Type	System Volts	V (PU) Before	v (PU) During	$\begin{aligned} & \text { VDip } \\ & \text { \% } \end{aligned}$	V (PU) After	StartMethod
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	0.9417	0.8917	5.31	0.9360	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	z_Load	6600	1.0000	1.0000	0.00	1.0000	Fulivoltage
	P_Load	6600	1.0000	1.0000	0.00	1.0000	
	PrIoad	400	1.0000	1.0000	0.00	1.0000	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	P_Ioad	400	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	z_Load	400	0.9565	0.8936	6.58	0.9377	Fullvoltage
	P_Load	400	0.9415	0.8840	6.11	0.9364	
	P_Load	400	0.9351	0.8848	5.38	0.9295	
	P_Ioad	400	0.9358	0.8862	5.30	0.9301	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	p_Load	400	1.0000	1.0000	0.00	1.0000	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	P_Ioad	400	1.0000	1.0000	0.00	1.0000	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	None	400	0.9489	0.8958	5.59	0.9431	
	None	400	0.9419	0.8920	5.30	0.9363	
	None	400	0.9546	0.9059	5.11	0.9488	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	Fone	400	1.0000	1.0000	0.00	1.0000	
	None	400	1.0000	1.0000	0.00	1.0000	
	Fone	400	1.0000	1.0000	0.00	1.0000	
	P_Load	400	1.0000	1.0000	0.00	1.0000	
	p_Load	400	1.0000	1.0000	0.00	1.0000	
	Z_Load	6600	1.0000	1.0000	0.00	1.0000	Fullvoltage
	P_Ioad	6600	1.0000	1.0000	0.00	1.0000	
	P_Load	6600	1.0000	1.0000	0.00	1.0000	
$1 / 2$	Nothe	400	0.9565	0.9079	5.08	0.9507	
3	None	400	1.0000	1.0000	0.00	1.0000	
1	None	400	1.0000	1.0000	0.00	1.0000	

EDSA Advanced Motor Starting Program va. 1 U.Uu

notor starting final l -			Page :				
			Date :		02/25/2008		
			Time		01:03:51 pm		
			Company				
			Engineer				
			Check by				
			Da	-			
-Line 3-Phase to Single-Phase IBC project							
me	TYpe	System	$V(P U)$Before	V (PU)	VDip	V (PU)	StartMethod
		Volts		During	\%	After	
	None	400	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	
	None	6600	1.0000	1.0000	0.00	1.0000	

ıpedance and Reactance Data-Transformers and Switches

1.1. Transformer Impedance Data ratio of Transformers - Based on ANSI/AEEE C37.010-1979)

able has been reprinted from IEEE Std 141-1986, IEEE Recommended ice for Electric Power Distribution for Industrial Plants, Copyright© 1986 io Institute of Electrical and Electronics Engineers, Inc with the ission of the IEEE Standards Department.
e 1.2. Impedance Data for Three Phase Transformers

	$\% R$	$\% X$	$\%$	XR
	3.7600	1.0000	3.8907	0.265
	2.7200	1.7200	3.2182	0.632
	2.3100	1.1600	2.5849	0.502
	2.1000	1.8200	2.7789	0.867
	0.8876	1.3312	1.6000	1.5
	0.9429	1.4145	1.7000	1.5
5	0.8876	1.3312	1.6000	1.5
0	0.5547	0.8321	1.0000	1.5
0	0.6657	0.9985	1.2000	1.5
0	0.6657	0.9985	1.2000	1.5
0	0.6657	0.9985	1.2000	1.5
0	0.6317	1.0816	1.3000	1.5
0.0	0.6048	3.4425	3.5000	5.45
0.0	0.5617	3.4474	3.5000	5.70
0.0	0.7457	3.4546	3.5000	6.15
0.0	0.7457	4.9441	5.0000	6.63

e: UL Listed transformers 25KVA and greater have a $\pm 10 \%$ tolerance on r nameplate impedance.
Ile 1.3. Impedance Data tor Single Phase Transformers

4	Suggested X/R Ratio for Calculation	Normal Range of Percent Impedance (\%Z)*	Impedance Multipliers** For LIne-to-Neutral Faults for \%X for\%R	
0	1.1	1.2-6.0	0.6	0.75
5	1.4	1.2-6.5	0.6	0.75
0	1.6	1.2-6.4	0.6	0.75
0	1.8	1.2-6.6	0.6	0.75
3.0	2.0	1.3-5.7	0.6	0.75
7.0	2.5	1.4-6.1	1.0	0.75
0.0	3.6	$1.9-6.8$	1.0	0.75
3.0	4.7	2.4-6.0	1.0	0.75
0.0	5.5	2.2-5.4	1.0	0.75

tional standards do not speciify $\%$ Z for single-phase transformers. Consult mnufacturer for values to use in calculation.
ised on rated current of the winding (one-half nameplate kVA divided by condary line-to-neutral voltage).
ste: UL Listed transformers $\mathbf{2 5}$ KVA and greater have a $\pm \mathbf{1 0 \%}$ tolerance on 3ir impedance nameplate.
lis table has been reprinted from tEEESid 242-1986 (R1991), IEEE zcommended Practice for Protection and Coordination of Industrial and ommercial Power Systems, Copyrighto 1986 by the Institute of Electrical id Electronics Engineers, inc. with the permission of the IEEE Standards epartment.

Table 1.4. Impedance Data for Single Phase and Three Phase Transformers-Supplement ${ }^{\dagger}$

KVA		\%	Suggested XIR Ratlo for Calculation
16	30		
10		1.2	1.1
15		1.3	1.1
	75	1.11	1.5
	150	1.07	1.5
	225	1.12	1.5
	300	1.11	1.5
333		1.9	4.7
500		2.1	5.5

\dagger These represent actual transformer nameplate ratings taken from field installations.
Note: UL Listed transformers 25KVA and greater have a $\pm 10 \%$ tolerance on their impedance nameplate.

Table 2. Current Transformer Reactance Data Approximate Reactance of Current Transformers*

Primary Current	Reactance in Ohms for Various Voltage Ratings		
Ratings - Amperes	$\mathbf{6 0 0 - 5 0 0 0 \mathrm { V }}$	$\mathbf{7 5 0 0 \mathrm { V }}$	$\mathbf{1 5 , 0 0 0 \mathrm { V }}$
$100-200$	0.0022	0.0040	-
$250-400$	0.0005	0.0008	0.0002
$500-800$	0.00019	0.00031	0.00007
$1000-4000$	0.00007	0.00007	0.0007

Note: Values given are in ohms per phase. For actual values, refer to manufacturers' data.

This table has been reprinted from IEEE Std 241-1990, IEEE Recommended Practice for Commercial Building Power Systems, Copyrighte 1990 by the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE Standards Department.

Tabie 3. Disconnecting Switch Reactance Data
(Disconnecting-Switch Approximate Reactance Data, in Ohms*)

Switch Size (Ampetes)	Reactance (Ohms)
200	0.0001
400	0.00000
600	0.00008
800	0.00007
1200	0.00007
1600	0.00005
2000	0.00005
3000	0.00004
4000	0.00004

Note: The reactance of disconnecting switches for low-voltage circuits (600 V and below) is in the order of magnitude of $0.00008-0.00005$ ohm/pole at 60 Hz for switches rated $400-4000 \mathrm{~A}$, respectively.
*For actual values, refer to manufacturers' data.
This table has been reprinted from IEEE Std 241-1990. IEEE Recommended Practice for Commercial Building Power Systerns, Copyright@ 1990 by the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE Standards Department.

าpedance \& Reactance Data-circuit Breakers and Conductors

14. Circuit Breaker Reactance Data
lactance of Low-Voltage Power Clicult Breakers

㢈-Breaker upting	Circuit-Breaker	Reactance (ohms)	
$\begin{aligned} & \mathbf{g} \\ & \text { ares) } \\ & \hline \end{aligned}$	Rating (amperes)		
0	15-35	0.04	
	50-100	0.004	
0	125-225	0.001	
	250-600	0.0002	
0	200-800	0.0002	
	1000-1600	0.00007	
0	2000-3000	0.00008	
00	4000	0.00008	
pical Molded Case Clrcult Breaker Impedances			
ad-Case It-Breaker			
\mathbf{g} eres)	Resistance (ohms)	Reactance (ohms)	
	0.00700	Negligible	
	0.00240	Negligible	
	0.00200	0.00070	
	0.00035	0.00020	
	0.00031	0.00039	
	0.00007	0.00017	

s:

Ue to the method of rating low-voltage power it breakers, the reactance of the circuit breaker h is to interrupt the fault is not included in lating fault current.
thove 600 amperes the reactance of molded case it breakers are similar to those given in (a)
ctual values, refer to manufacturers' data.
table has been reprinted from \{EEE Std 241-1990, Recommended Practice for Commercial Building ir Systems, copyright © 1990 by the institute of trical and Electronics Engineers, Inc. with the ission of the IEEE Standards Department.

Table 5. Impedance Data - Insulated Condactors
($0 \mathrm{hms} / 1000 \mathrm{ft}$. each conductor -60 Hz)

Size AWG or kc留	Resistance (25C)				Reactance - 600V - THHN			
	Copper		Aluminum		Single Conductors		1 Multiconductor	
	Metal	NonMet	Metal	Nonmet	Mag.	Nonmag.	Mag	Nonmag.
14	2.5700	2.5700	4.2200	4.2200	. 0493	0394	. 0351	. 0305
12	1.6200	1.6200	2.6600	2.6600	. 0468	. 0374	. 0333	. 0290
10	1.0180	1.0180	1.6700	1.6700	. 0463	. 0371	. 0337	. 0293
8	. 6404	. 6404	1.0500	1.0500	. 04775	. 0380	. 0351	. 0305
6	. 4100	. 4100	. 6740	. 6740	. 0437	. 0349	. 0324	. 0282
4	. 2590	. 2590	. 4240	. 4240	. 0441	. 0353	. 0328	. 0235
2	. 1640	. 1620	. 2660	. 2660	. 0420	. 0336	. 0313	. 0273
1	. 1303	. 1290	. 2110	. 2110	. 0427	. 0342	. 0319	. 0277
1/0	. 1040	. 1020	. 1680	. 1680	. 0417	. 0334	. 0312	. 0272
210	. 0835	. 0812	. 1330	. 1330	. 0409	. 0327	. 0306	. 0266
$3 / 0$. 0668	. 0643	. 1060	. 1050	0400	. 0320	. 0300	. 0261
$4 / 0$. 0534	. 0511	. 0844	. 0838	. 0393	. 0314	. 0295	. 0257
250	. 0457	. 0433	. 0722	. 0709	. 0399	. 0319	. 0299	. 0261
300	. 0385	. 0362	. 0602	. 0592	. 0393	. 0314	. 0295	. 0257
350	. 0333	. 0311	. 0520	.0507	. 0383	. 0311	. 0290	. 0254
400	. 0297	. 0273	. 0460	. 0444	. 0385	. 0308	. 0286	. 0252
500	. 0244	. 0222	. 0375	. 0356	. 0379	. 0303	. 0279	. 0249
600	. 0209	. 0185	. 0319	. 0298	. 0382	. 0305	. 0278	. 0250
750	. 0174	. 0185	. 0264	. 0240	. 0376	. 0301	. 0271	. 0247
1000	. 0140	. 0115	0211	0182	. 0370	. 0298	. 0260	. 0243

Note: Increased resistance of conductors in magnetic raceway is due to the effect of hysteresis losses. The increased resistance of conductors in metal non-magnetic raceway is due to the effect of eddy current losses. The effect is essentially equal for steel and aluminum raceway. Resistance values are acceptable for $600 \mathrm{volt}, 5 \mathrm{KV}$ and 15 KV insulated Conductors.

Size AWG or kcM	Reactance - 5KV				Reactance - 15KV			
	Single Conductors		1 Muiticonductor		Single Conductors		1 Muiticonductor	
	Nag.	Nonmag.	Mag.	Nonmag.	Mag.	Nonmag.	Mag.	Nonmag.
8	. 0733	. 0586	. 0479	. 0417	-	-	-	-
6	. 0681	. 0545	. 0447	. 0389	. 0842	. 0674	. 0588	. 0508
4	. 0633	. 0507	. 0418	. 0364	. 0783	. 0626	. 0543	. 0472
2	. 0591	. 0472	. 0393	. 0364	. 0727	. 0582	. 0505	. 0439
1	. 0571	. 0457	. 0382	. 0332	. 0701	. 0561	. 0487	. 0424
1/0	. 0537	. 0430	. 0360	. 0313	. 0701	. 0561	. 0487	. 0424
210	. 0539	. 0431	. 0350	. 0305	. 0661	. 0561	. 0458	. 0399
$3 / 0$. 0521	. 0417	. 0341	. 0297	. 0614	. 0529	. 0427	. 0372
4/0	. 0505	. 0404	. 0333	. 0290	. 0592	. 0491	. 0413	. 0359
250	. 0490	. 0392	. 0323	. 0282	. 0573	. 0474	. 0400	. 0348
300	. 0478	. 0383	. 0317	. 0277	. 0557	. 0458	. 0387	. 0339
350	. 0469	. 0375	. 0312	. 0274	. 0544	. 0446	. 0379	. 0332
400	. 0461	. 0369	. 0308	. 0270	. 0534	. 0436	. 0371	. 0326
500	. 0461	. 0369	. 0308	. 0270	. 0517	. 0414	. 0357	. 0317
600	. 0439	. 0351	. 0296	. 0261	. 0516	. 0414	. 0343	. 0309
750	. 0434	. 0347	. 0284	. 0260	. 0500	. 0413	. 0328	. 0301
1000	. 0421	. 0337	. 0272	. 0255	. 0487	. 0385	. 0311	. 0291

These are only representative figures. Reactance is affected by cable insulation type, shielding, conductor outside diameter, conductor spacing in 3 conductor cable, etc. In commercial buildings meduin voltage impedances normally do not affect the short circuit calculations significantly.

This table has been reprinted from IEEE Std 241-1990, IEEE Recommended Practice for Commercial Building Power Systems, copyright © 1990 by the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE Standards Department.

;" Values for Conductors and Busway

6. "C" Values for Conductors and Busway

er											
Three Single Conductors						Three-Conductor Cable					
Condult						Conduit					
Steel			Nonmagnetic			Steel			Nonmagnetic		
600 V	5KV	15KV	600 V	5KV	15KV	600 V	5 KV	15KV	600 V	5KV	15KV
389	389	389	389	389	389	389	389	389	389	389	389
617	617	617	617	617	617	617	617	617	617	617	617
981	981	981	981	981	981	981	981	981	981	981	981
1557	1551	1557	1558	1555	1558	1559	1557	1559	1559	1558	1559
2425	2406	2389	2430	2417	2406	2431	2424	2414	2433	2428	2420
3806	3750	3695	3825	3789	3752	3830	3811	3778	3837	3823	3798
4760	4760	4760	4802	4802	4802	4760	4790	4760	4802	4802	4802
5906	5736	5574	6044	5926	5809	5989	5929	5827	6087	6022	5957
7292	7029	6758	7493	7306	7108	7454	7364	7188	7579	7507	7364
8924	8543	7973	9317	9033	8590	9209	9086	8707	9472	9372	9052
10755	10061	9389	11423	10877	10318	11244	11045	10500	11703	11528	11052
12843	11804	11021	13923	13048	12360	13656	13333	12613	14410	14118	13461
15082	13605	12542	16673	15351	14347	16391	15890	14813	17482	17019	16012
16483	14924	13643	18593	17120	15865	18310	17850	16465	19779	19352	18001
18176	16292	14768	20867	18975	17408	20617	20051	18318	22524	21938	20163
19703	17385	15678	22736	20526	18672	19557	21914	19821	22736	24126	21982
20565	18235	16365	24296	21786.	19731	24253	23371	21042	26915	26044	23517
22185	19172	17492	26706	23277	21329	26980	25449	23125	30028	28712	25916
22965	20567	47962	28033	25203	22097	28752	27974	24896	32236	31258.	27766
24136	21386	18888	28303	25430	22690	31050	30024	26932	32404	31338	28303
25278	22539	19923	31490	28083	24887	33864	32688	29320	37.197	35748	31959
Inum											
236	236	236	236	236	236	236	236	236	236	236	236
375	375	375	375	375	375	375	375	375	375	375	375
598	598	598	598	598	598	598	598	598	598	598	598
951	950	951	951	950	951	951	951	951	951	951	951
1480	1476	1472	1481	1478	1476	1481	1480	1478	1482	1481	1479
2345	2332	2319	2350	2341.	2333	2351	2347	2339	2353	2349	2344
2948	2948	2948	2958	2958	2958	2948	2956	2948	2958	2958	2958
3713	3669	3626	3729	3701	3672	3733	3719	3693	3739	3724	3709
4645	4574	4497	4678	4631	4580	4686	4663	4617	4699	4681	4646
5777	5669	5493	5838	5766	5645	5852	5820	5717.	5875	5851.	5771
7186	6968	6733	7301	7152	6986	7327	7271	7109	7372	7328	7201
8826	8466	8163	9110	8851	8627	9077	8980	8750	9242	9164	8977
10740	10167	9700	11174	10749	10386	11184	11021	10642	11408	11277	10968
12122	11460	10848	12862	12343	11847	12796	12636	12115	13236	13105	12661
13909	13009	12192	14922	14182	13491	14916	14698	13973	15494	15299	14658
15484	14280	13288	16812	15857	14954	15413	16490	15540	16812	17351	16500
16670	15355	14188	18505	17321	16233	18461	18063	16921	19587	19243	18154
18755	16827	15657	21390	19503	18314	21394	20606	19314	22987	22381	20978
20093	18427	16484	23451	21718	19635	23633	23195	21348	25750	25243	23294
21766	19685	17686	23491	21769	19976	26431	25789	23750	25682	25141	23491
- 23477	21235	19005	28778	26109	23482	29864	29049	26608	32938	31919	29135

e: These values are equal to one over the impedance per foot for impedances found in Table 5, Page 26.

pacity	Busway				
	Plug-tn	Feeder		High Impedance	
	Copper	Aluminum	Copper	Aluminum	Copper
	28700	23000	18700	12000	-
	38900	34700	23900	21300	-
1	41000	38300	36500	31300	-
1	46100	57500	49300	44100	-
10	69400	89300	62900	56200	15600
10	94300	97100	76900	69900	16100
0	119000	104200	90100	84000	17500
10	129900	120500	101000	90900	19200
0	142900	135100	134200	125000	20400
0	143800	156300	180500	166700	21700
10	144900	175400	204100	188700	23800
0	-	-	277800	256400	-

usway Impedance Data

17. Busway Impedance Data (Ohms per 1000 Feet - Line-to-Neutral, 60 Cycles)

In Busway						
	Copper Bus Bars			Aluminum Bus Bars		
are Rating	Reslstance	Reactance	Impedance	Resistance	Reactance	Impedance
	0.0262	0.0229	0.0348	0.0398	0.0173	0.0434
	0.0136	0.0218	0.0257	0.0189	0.0216	0.0288
	0.0113	0.0216	0.0244	0.0179	0.0190	0.0261
	0.0105	0.0190	0.0217	0.0120	0.0126	0.0174
	0.0071	0.0126	0.0144	0.0080	0.0080	0.0112
	0.0055	0.0091	0.0106	0.0072	0.0074	0.0103
	0.0040	0.0072	0.0084	0.0065	0.0070	0.0096
	0.0036	0.0068	0.0077	0.0055	0.0062	0.0083
	0.0033	0.0062	0.0070	0.0054	0.0049	0.0074
	0.0032	0.0062	0.0070	0.0054	0.0034	0.0064
	0.0031	0.0062	0.0069	0.0054	0.0018	0.0057
	0.0030	0.0062	0.0069	-	-	-
	0.0020	0.0039	0.0044	-	-	-
Impedance Feeder Busway						
	0.0425	0.0323	0.0534	0.0767	0.0323	0.0832
	0.0291	0.0301	0.0419	0.0378	0.0280	0.0470
	0.0215	0.0170	0.0274	0.0305	0.0099	0.0320
	0.0178	0.0099	0.0203	0.0212	0.0081	0.0227
	0.0136	0.0082	0.0159	0.0166	0.0065	0.0178
	0.0110	0.0070	0.0130	0.0133	0.0053	0.0143
1	0.0090	0.0065	0.0111	0.0110	0.0045	0.0119
1	0.0083	0.0053	0.0099	0.0705	0.0034	0.0110
I	0.0067	0.0032	0.0074	0.0075	0.0031	0.0080
1	0.0045	0.0032	0.0055	0.0055	0.0023	0.0060
1	0.0041	0.0027	0.0049	0.0049	0.0020	0.0053
1	0.0030	0.0020	0.0036	0.0036	0.0015	0.0039
I	0.0023	0.0015	0.0027	-	-	-

[^0]
ble 8. Asymmetrical Factors

tort Circult swer Factor, srcent*	Short Circuit X/R Ratio	Ratio to Symmetrical RMS Amperes		
		Maximum 1 phase Instantaneous Peak Amperes Mp	Maximum 1 phase R*NS Amperes at 1/2 Cycle Mm_{m} (Asym.Factor)*	Average 3 phase RMS Amperes at $1 / 2$ Cycle Ma^{*}
	∞	2.828	1.732	1.394
	100.00	2.785	1.697	1.374
	49.993	2.743	1.662	1.354
	33.322	2.702	1.630	1.336
	24.979	2.663	1.599	1.318
	19.974	2.625	1.569	1.302
	16.623	2.589	1.540	1.286
	14.251	2.554	1.512	1.271
	13.460	2.520	1.486	1.256
	11.066	2.487	1.461	1.242
1	9.9301	2.455	1.437	1.229
	9.0354	2.424	1.413	1.216
'	8.2733	2.394	1.391	1.204
1	7.6271	2.364	1.370	1.193
I	7.0721	2.336	1.350	1.182
;	6.5932	2.309	1.331	1.172
;	6.1695	2.282	1.312	1.162
+	5.7947	2.256	1.295	1.152
!	5.4649	2.231	1.278	1.144
,	5.16672	2.207	1.278	1.135
)	4.8990	2.183	1.247	1.127
	4.6557	2.160	1.232	1.119
?	4.4341	2.138	1.219	1.112
3	4.2313	2.110	1.205	1.105
F	4.0450	2.095	1.193	1.099
;	3.8730	2.074	1.181	1.092
;	3.7138	2.054	1.170	1.087
'	3.5661	2.034	1.159	1.081
3	3.4286	2.015	1.149	1.076
)	3.3001	1.996	1.139	1.071
)	3.1798	1.978	1.130	1.064
\|	3.0669	1.960	1.122	1.062
?	2.9608	1.943	1.113	1.057
3	2.8606	1.926	1.106	1.057
1	2.7660	1.910	1.098	1.050
;	2.6764	1.894	1.091	1.046
3	2.5916	1.878	1.085	1.043
,	2.5109	1.863	1.079	1.040
3	2.4341	1.848	1.073	1.037
	2.3611	1.833	1.068	1.034
1	2.2913	1.819	1.062	1.031
\|	2.2246	1.805	1.058	1.029
?	2.1608	1.791	1.053	1.027
3	2.0996	1.778	1.049	1.024
1	2.0409	1.765	1.045	1.023
;	1.9845	1.753	1.041	1.021
3	1.9303	1.740	1.038	1.019
\%	1.8780	1.728	1.035	1.017
3	1.8277	1.716	1.032	1.016
,	1.7791	1.705	1.029	1.014
)	1.7321	1.694	1.026	1.013
3	1.5185	1.641	1.016	1.008
)	1.3333	1.594	1.009	1.004
;	1.1691	1.517	1.005	1.001
)	1.0202	1.517	1.002	1.001
;	0.8819	1.486	1.0008	1.0004
)	0.7500	1.460	1.0002	1.0001
\%	0.6198	1.439	1.00004	1.00002
10	0.0000	1.414	1.00000	1.00000

leprinted by permission of National Electrical Manufacturer's Association from VEMA Pubsication AB-1, 1986, copyright 1986 by NEMA.

Selective Coordination (Blackout Prevention)
Having determined the fauts that must be interrupted, the next step is to specify Protective Devices that will provide a Selectively Coordinated System with proper Interrupting Ratings.

Such a system assures safety and reliability under all service conditions and prevents needless interruption of service on circuits other than the one on which a fault occurs:

The topic of Selectivity will be Discussed in the next Handbook, EDP II.

Component Protection (Equipment Damage Prevention)

Proper protection of electrical equipment requires that fault current levels be known. The characteristics and let-through values of the overcurrent device must be known, and compared to the equipment withstand ratings. This topic of Component Protection is discussed in the third Handbook, EDP III.

ross-sectiona vievis

raniran

Cross-sectional view of $3.8 / 6-18 / 30 \mathrm{KV}$ XLPE/AWiWAPVC \& XLPE/SWA/PVC power caivo incio に:

-itage (Duration: 5 minutes)

sction Factor for Varlois Dasio
fent Temperatures

Eaying

mection Fagtor for Thermal Resistivity of Soil

	vonaucio	Thermal resistivity ("Limyy,						
	mas	¢. 8	05	10	1.5	2.0	: 2.5	3.4
		1.i6	i.i:	:0\%	nnt	Osi	0.73	U. 0.1
		1.17	1.12	1.07	0.30	0.80	0.72	0.66
		¢ 4	1.13	i.08	0.40	0.79	0.71	0.65
	up to 16	1.09	1.06	1.04	0.3\%	U-5	2.?	n74
兌	25-150	i, is	10	1.07	0.93	0.84	0.75	0.70
5	-iv	$\because \because$	\bigcirc	08	0.02	097	0.74	0.08

Hing Factor of Current Carrying Gapacity for Gioup hintallation Muticore

s spactry is not appicubte tor snme brger diameter cables.
ting Factor of Curent Carrying Capacity for Group installation of 3 Singlewore

[^1]ctrical Characteristics for $3.6 / 6 \mathrm{kV}$ and 6 h 10 kV Armoured Cables

*Sincle-core unarmoured cable with codoer wire scresi..
? 눈

ARMOU宏ED XLIECABLE

a Copper wire screened, unaithuiteu

- Not adolicable to all voltages. See dimension tables tor avaitamiar

[^0]: above data represents values which are a composite of those obtained by a survey of industry; values tend to be on the low side.

[^1]:

