Integrated XML and GML in Geographical Information System

By

Mardiana Binti Abdul Rahman

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Technology (Hons)

(Information System)

JUNE 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzunan

£
L
O

N VNS SN
R XA NN

\') (ﬂwTh&\N‘u l\\-"(@'M‘—\“U‘r‘ %\@,\W"h
Wy RTINS ey

CERTIFICATION OF APPROVAL

Integrated XML and GML in Geographical Information System

by

Mardiana Binti Abdul Rahman

A project dissertation submitted to the
Information System Programme
Universiti Teknologi PETRONAS
in partial fulfiliment of the requirement for the
BACHELOR OF TECHNOLOGY (Hons)
(INFORMATION SYSTEM)

Approved by,

5

(Justin Dinesh Devaraj)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
JUNE 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that
the original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

[7?@ .

MARDIANA BINTI ABDUL RAHMAN

i

ABSTRACT

This project basically concentrated on the study of eXtensibie Markup Language
(XML) and Geography Markup Langnage (GML) in Geographical Information
System (GIS). The objective of the project is to convert the spatial data (e.g.:
coordinates, area, etc) by using the XML and GML and then coding will be
ntegrated and viewed in the web browser by using the Scalable Vector Graphic
(SVG) technology. Basically, this project is done to find a new way to overcome the
weaknesses of map digitizing and taking advantage of the GML technology in
Geographical Information System. The project scope is concentrate on the usage of
XML and GML in GIS. Research is done on XML technologies, which are provided
for GML. The technologies included technology for encoding and data modeling
(Data Type Definition, XML Schema), technology for transforming (XSLT) and
technology for graphic rendering (SVG). Research on GML is focused on
manipulation of spatial data to convert to simple features such as point, line and
polygon. This project combines XML, GML and SVG technologies in order to meet
the project objectives. In completing this project, waterfall model is use as the
methodology for the system development. The project is developed according to the
four phases of system development, which are planning, analysis, design and
implementation. The discussion of this project will be more on GML compatibility
and the advantages of using SVG to view the map. The simple display of map
created will be able to show that GML is suits for handling geo-spatial data over the
Internet. The user would be able to view the map and zooming feature is provided
by SVG.

iv

ACKNOWLEDGEMENT

Bismillah ar-Rahmani Ar-Raheem
In the Name of Allah, The Most Compassionate, the Most Merciful

First and foremost I would like to recite my greatest gratitude to the Most
Merciful Allah for giving me the opportunity in completing this manuscript on time
and without much hassle or problem. Without His observance in giving me the
chance in finishing the report, there might be major problem which can resulted in
delay of turning in the report in the time constrain.

In completing this preliminary report, there are some people that had been
the backbone of the activities done in the complete of this text. I wouldn’t have been
able to finish up without their assistance, encouragement, and support either in terms
of material, or spiritual. With this [would like to put some credit to them who has
helped me through this time duration. They are as listed as beneath:

1. Mr. Justin Dinesh Devaraj — my supervisor (for giving me the guidelines
and ways in producing a good output and full support in terms of knowledge
mput along this project)

2. The Backbone Of This FYP Committee — Ms Vivian, Mr. Shuib, and all
IT/1S lecturers, (for giving full commitment in term of providing info about
the final year project)

3. Universiti Teknologi PETRONAS - all UTP staff (for the full cooperation
and providing me very convenient places to complete the project with the
provided utilities)

4. Parents and families (for giving the full moral support in completing the
report in addition to the consultation they have given during my troubled
times)

5. Friends (as they have been there for me during the good and bad times as we
stay together under the same varsity)

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL.
CERTIFICATION OF ORIGINALITY. .
ABSTRACT. .

ACKNOWLEDGEMENT. .

LIST OF FIGURES. .

LIST OF TABLES. .

ABBREVIATION AND NOMENCLATURES.

CHAPTER 1: INTRODUCTION. .
1.1 Background Of Study .
12 Problem Statement.
1.3 Objectives Of The Project.
1.4 Scope Of Study.

CHAPTER 2: LITERATURE REVIEW. .

2.1 Geographical Information System.

2.1.1 GIS Components.
2,12 GIS Data Models.
2.1.3 @IS Data Store.
224 (IS Software. .

2.2 eXtensible Markup Language.
221 XML Document.
222 Data Type Definition. .
223 XML Schema..
224 XSLT..

2.3 Geography Markup Language.

vi

1

1i

iv

X

oW W

CHAPTER 3:

CHAPTER 4 :

CHAPTER S :

REFERENCES.

2.3.1 GML Conceptual Framework. .
2.3.2 GML Application Schema.

24 Scalable Vector Graphic (SVG).

2.5 OpenGIS Consortium, Inc,

METHODOLOGY. .

3.1 System Development Methodology. .
32 Waterfall Model.

32.1 Planning.

322 Analysis.

323 Design.

324 Implementation.

325 System Operation and Support.
3.3 Tools and Hardware Required.

RESULT AND DISCUSSION.

41 XML and GML in GIS.
4.1.1 Developing XSLT.
4.1.2 Discussion on GML Map Result.
4.1.3 Discussion on the GML
Compatibility. .
42 GML Graphical Representation.
4.2.1 Scalable Vector Graphic (SVG).
422 Discussion on SVG Pro &
Cons Result.

CONCLUSION AND RECOMMENDATION.

vil

16
17
18
19

21

21
2
23
23
24
26
26
27

28

28

28

29

32

33

33

34

38

APPENDICES

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5

Appendix 6

Appendix 7
Appendix 8
Appendix 9
Appendix 10
Appendix 11

: Project Schedule.

: GIS Data Storage.

: GML As A Core Framework.

: GML Class Hierarchy.

: UML Representation Of The Geometry

Schema.

: UML Representation Of The Feature

Schema.

: Point.xml.

: Line.xmi.

- Polygon.xml. .
: Building.xsl. .

: Line.xsl.

viit

42
44
45
46

47

48
49
50
52
55
62

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5

Table 2.1
Table 3.1
Table 4.1
Table 4.2

LIST OF FIGURES

GIS Components
GIS Data Model -
GIS Data Store

: General Structure of a XML Document

General Structure of a DTD Document

Overview of the XSLT

General Structure of a GML Document

Base Schemas As Packages

System Development Life Cycle for Waterfall Model
UML Design

Transformation of GML to SVG Using Saxon

: A Simple Display Of Locations In A Web Browser Using SVG

A Simple Display Of Walking Path In A Web Browser Using
SVG

A Simple Display Of Building In A Web Browser Using SVG

A Simple Display Of Zoom In Capabilitics In A Web Browser
Using SVG

LIST OF TABLES

Basic Geometry Properties

Tools and Hardware For The Project

Comparison Between GML and SVG
Correspondence Between GML and SVG Elements

X

ABBREVIATIONS AND NOMENCLATURES

CRS : Coordinate Reference System

CT : Coordinate Transformation

ESRI : Environmental Systems Research Institute Inc.
GIS : Geographical Information System
GML : Geography Markup Language
GUI : Graphical User Interface

HTML : Hypertext Markup Language
WMS : Web Map Server

WES : Web Feature Server

OGC : OpenGIS Consortium

SVG : Scalable Vector Graphics

SDLC : System Development Life Cycle
SGML : Standard Generalized Markup Language
UML : Unified Modeling Language
USGS : U.S. Geological Survey

UTP : Universiti Teknologi PETRONAS
VML : Vector Markup Language

XML : eXtensible Markup Language
XSD : XML Schema Definitions

XSL : eXtensible Stylesheet Language
XSLT : eXtensible Stylesheet Langunage
X3D : eXtensible 3D graphics

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

Chapter 1 explains the fundamental information of the project, which consists of
background of study, problem staterment, objective and scope of the project. A brief
explanation of GIS also included in this section. This report basically gives details
information about the GML history and its current development. The roles of XML
and GML for the project are stated in this section since XML and GML are the main

tools to accomplish the project.

1.1 Background of Study

Geographical Information System (GIS) is a computer based information system
used to digitally represent and analyse the geographic features present on the Earth'
surface and the events that taking place on it. GIS is also defined as “a computer
system capable of capturing, storing, analyzing, and displaying geographically

referenced information; that is, data identified according to location™ [1].

A large part of Internet progress depends on the suitable approaches of dealing with
data and information, and Markup Languages (MLs) play the main role in this
progress. A Markup Language is 2 way of describing a document by placing tags in
the document. Markup Languages vary from other programming languages, in
containing loops, conditional logics, subroutines and some other programming
structures. There are many Markup Languapes with different applications these days
such as HTML, XML, SGML, and VML.

The eXtensible Mark-up Language (XML) has been developed to compliment
HTML, which uses the same tag structure as HTML. With XML, the element can
declare its associated data to be an address or posts code, a point value with
associated attribute data or any other desired data element. As in GIS area, the use of
XML will make users able to search and manipulate on-line data, regardless of
derived application. Retrieval of such data can allow for manipulation in spatially

enabled web browsers or local XML-aware GIS applications.

GML is a markup language that is based on the XML standard to construct
structured spatial and non-spatial information to enable data sharing and interchange
over the Web. On June 13, 2000, OpenGIS Consortium has published the first public
release of a recommendation defining the Geography Markup Language (GML),
Version 1.0. The Geography Markup Language (GML) is defined as an XML
encoding for the transport and storage of geographic information, including both the
geometry and properties of geographic features [3]. GML will make a significant
impact on the ability of organizations to share geographic information with one
another, and to enable linked geographic datasets. This specification defines the
mechanisms and syntax that GML uses to encode geographic information in XML.

GML has become the common base for many applications and give many
advantages. Before this, user needs to have a heavyweight desktop GIS in order to
do GIS work. But this has been reduced since GML provided standardized way of
graphic features and a new way of dealing geographic information via the Internet.
For example visualization does not require a GIS tool at all, because a simple
transformation of the GML to another XML based format like Scalable Vector
Graphics (SVG) or eXtensible 3D graphics (X3D) can be accomplished through
some scripting and a XSL (eXtensible Stylesheet Language) file describing how to
represent the GML features and a commonly available transformation engine which
most platforms have built in today [2]. Since GML is best represent the geographic
data content, so GML also suitable for making maps.

1.2 Problem Statement

For developing web pages there are ever-expanding numbers of hypertext mark-up
language (HTML) tags that can be used to format the way items look on pages. At
the same time, it might be possible to define a hyperlink that can be used to open a
spatially-enabled application, or to link to an internet mapping system, which can be
ttme consuming to imptement and difficult to extend. As today's web browsers excel

at viewing data on the Internet, there is a growing need to evolve beyond this.

When reviewing to the past years, user needs to digitize the map i order to get the
desired data from the maps. Digitizing is one of the tools to convert spatial data to
digital format and one of the oldest techniques of digital input. Digitizing cause a
problem since maps are not designed to be digitized. This technique also relies on
the skill of operators entering data and usually deals with the overshoot problem,

and incorrect data input.

This project is basically focusing on manipulating the data (coordinates) by using
XML and GML technology. XML and GML will be use to plot up the data to point,
line and polygon object and then the code will be transformed into SVG in order to

visualize it.

1.3 Objectives The Project

This project is done in two phases. In the first phase, the research has been done to
understand the concept of XML and GML in GIS. In the second phase, the design
and development of the map by implementing the XML and GML are to be carried

out. Objectives of the project to be achieved are as follow:

i. To understand the concepts of XML and GML in GIS.
ii. To do aresearch on both technologies, which are XML and GML in GIS area.
iii. To create a simple display of map by converting the spatial data (¢.g..
coordinates, area, etc) using the XML and GML. and view it in the web

browser.

14 Scope Of Study

The research area for this project will cover the Geographic Information System
regarding the use of XML and GML. Research is done on XML technologies, which
are provided for GML. The technologies included technology for encoding and data
modeling (Data Type Definition, XML Schema), technology for transforming
{XSLT) and technology for graphic rendering (SVG). Research on GML is focused
on manipulation of spatial data to convert to simple features such as point, line and
polygon. The data (coordinates) is obtained from the Internet. The data such as
coordinates for the building will be plotting using XML and GML. The code then
will be transform into SVG by using the XSLT. Then it will be visualized in the web
browser (Internet Explorer). Basically, this project is to approve that the data
(coordinate) can be plot up to build the point, line, and polygon object by using
XML and GML. This project focused on developing simple display of map (point,

line or polygon) in a web browser using SVG.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2. LITERATURE REVIEW AND THEORY

This chapter contains a more focused scope on XML and GML in Geography
Information System. It provides the information about how XML and GML is
implementing over the Internet. This chapter contains the acknowledged findings on
this field, consisting of relevant theories, hypothesis, facts and data, which are
relevant to the objective and the research of this project. An overview of GIS, its
components and software also is introduced in this chapter. More elaborations are
given on XML, GML, SVG and the open source for GIS.

2.1 Geography Information System (GIS)

A GIS is a computer system capable of capturing, storing, analyzing, and displaying
geographically referenced information; that is, data identified according to location
[1]. The power of a GIS comes from the ability to relate different information in a

spatial context and to reach a conclusion about this relationship.

GIS stores descriptive information about features along with the spatial data. The
descriptive data can be used to make maps, which show how a phenomenon such as
clevation, soil type, or temperature varies from place to place. Usually, the data is
store in the form of layers connected by a common geographical frame of reference

where each layer holds data about a particular kind of feature.

Map is one of the most common products of GIS. By using GIS, maps are
commonly easy to make. Maps are often the most effective means of conveying the
results of the GIS process. Therefore, GIS is usually a productive producer of maps.
Data capture is putting the information into the system that involves identifying the
objects on the map, their absolute location on the Earth's surface, and their spatial
relationships. Software tools that automatically extract features from satellite images
or aerial photographs are gradually replacing what has traditionally been a time-
consuming capture process. Objects are identified in a series of attribute tables,
which is the information part of a GIS. Spatial relationships, such as whether

features intersect or whether they are adjacent, are the key to all GIS-based analysis.

2.1.1 GIS Components

GIS relies on five important components, which are hardware, sofiware, data,
system, and people. GIS relies on a computer for storage and processing of data. The
size of the computing system will depend on the type and nature of the GIS. A small
scale GIS will only need a small personal computer to run on, while a large
enterprise wide system with larger computers and a host of client machines to
support multiple users. Data for GIS comes in two forms geographic or spatial data,
and attribute or spatial data. Spatial data are data that contain an explicit geographic
location in the form of a set of coordinates. Attribute data are descriptive sets of data

that contain various information relevant to a particular location.

GIS systems are designed and developed to aid the data management and decision
support processes of an organization. The operation of any organization is based on
a set of practices and business logic unique to that organization. While some
organizations may use a GIS on an ad-hoc basis with each user formulating their
own standards of work and methods of analysis others define their business logic
into the GIS to streamline certain aspects of their operations. GIS system lies the
GIS software itself providing the functionality to store, manage, link, query and
analyze geographic data. The system users - those who will use the GIS to solve
spatial problems - are most often people who are well trained in GIS, perhaps in a

specific application of GIS. System operators are responsible for the day-to-day

operations of the system, more often performing tasks that allow the system users to
function efficiently.

‘“ GIs

Figure 2.1: The GIS components

2.1.2 G1S Data Models

in GIS, all graphical features on the earth can be represented by only three identities
that are line, point and polygon. The layers of data are stored in the GIS using one of
two distinctly different data models, known as raster and vector. In raster model, a
feature is defined as a set of cells on a grid. All of the cells on the gnd are of the
same shape and size and each one is identified by a coordinate location and a value
which acts as its identifier, features are represented by a cells or groups of cells that
share the same identifier. Raster data are applied in at least four ways, which are
models describing the real world, digital image scans of exisiing maps, compiling
digital satellite and image data and automatic drawing driven by raster output units.
The raster model is particularly useful for working with continuous forms of features

such as soil types, vegetation etc.

In vector, a feature is represented as a collection of begin and end points used to
define a set of points, lines or polygons which describe the shape and size of the

feature. The vector model is particularly useful for representing highly discrete data

types such as roads, buildings, boundaries and the lake. A point can be used to
represent an area such as a city, or an earthquake epicenter. The line is used to portray
linear features such as highways, and earthquake fault zones. If several lines are joined
into a closed figure, a polygon is created. National boundaries, vegetation, or geologic
formations are typically mapped as polygons. Vector GIS can store corresponding
information of complex objects more efficiently. In this project, the data model will

be more focused on vector data model.

Figure 2.2: GIS Data Models

2.1.3 GIS Data Store

GIS stores a representation of the world in the form of layers connected by a
common geographical frame of reference. Each of the features on a layer has a
unique identifier, which distinguishes it from the rest of the features on the layer and
allows you to relate it to relevant information stored in external databases. This
simple yet powerful mode of abstraction, a GIS allows us to capture only those

elements of the world that are of interest to us. Different views and data about the

world e.g., streets, soils, pipes, cables, vegetation, etc. can be captured and stored in
the (IS over time to accommodate the needs of various different users and to reflect

changes in the landscape over time.

PoliticalfAdminigtrative
Districts

Utiiity

Qrthephoto
Base Map

Topographic
Contours

ST T

Reference Grid

Gentetic/Survey
Cantral

Figure 2.3: GIS Data Store

214 Geospatial Data

Geospatial data has both spatial and thematic components. Spatial information is
presented in two ways: as vector data in the form of points, lines, and areas or
polygons; or as grid data in the form of uniform, systematically organized cells.
Conceptually, geographic data can be broken up in two elements, observation or
enfity and attribute or variable. GIS is able to manage both elements. Spatial
component observations have two aspects in its localization: absolute localization

based in a coordinates system and topological relationship referred to other

observations. A GIS is able to manage both while computer assisted cartography
packages only manage the absolute one. Thematic component 1s considered as the
variables or attributes studied considering the thematic aspect (statistics), the locational
aspect (spatial analysis) or both (GIS).

215 GIS Software

GIS software typically includes tools for creating and editing spatial data such as
from a database of latitude/longitude coordinates or by tracing aerial photographs or
paper maps. It also includes tools for measuring distances and calculating the area

and perimeter of features.

GIS software provides the functions and tools needed to store, analyze, and display
information about places. There are four key components of GIS software which are
tools for entering and manipulating geographic information such as addresses or
political boundaries, a database management system (DBMS), tools that create
intelligent digital maps which can analyze, query for more mformation, or print for

presentation and an easy-to-use graphical user interface (GUI),

GIS software ranges from low-end business-mapping software appropriate for
displaying sales territories to high-end software capable of managing and studying
large protected natural areas. [5]

2.1.5.1 Arcview3.2/8

ArcView is sofiware that can be used to display and print data and to carry out
analysis. ArcView also has some limited data creation and editing capabilities.
ArcView can import data from a limited number of GIS data formats. Arcview
has no features of GML data import. This software is produced by
Environmental Systems Research Institute, Inc. (ESRI).

10

2.1.52 ArcGIS

ArcGIS is a family of software products that form a complete GIS for
geographic data creation, management, integration, and analysis. This
software is produced by Environmental Systems Research Institute, Inc.
(ESRI).

2.1.5.3 Maplinfo Professional v7.0

MapInfo Professional is the GIS leading business mapping solution, which lets
user to perform sophisticated and detailed data analysis to increase revenue,
lower costs, boost efficiency and improve service with location-based
intelligence. It is use to create highly detailed maps to enhance presentations
and aid in decision making and reveal patterns and trends in data that may
otherwise be impossible to see. Sophisticated and extensive data analysis also
can be performed by using Maplnfo. It also can import data from a large
number of GIS data formats included GML.

2.2 eXtensible Markup Language (XML)

XML is a markup language, which is an enhancement of the HTML. XML stands
for eXtensible Markup Language and it was designed to describe data or to create
structured documents. It is basically created to structure, store and to send
information. It uses the same tag structure as HTML. It also allows everyone to
create his own information, send anything to anywhere for anybody. This means that
it only focus on data and what data is without having the predefined defining tags
and data. User may define the tags according to their aims and preference [7]. XML
also has the capability of SGML and simplicity of HTML. XML also is used to
create other markup languages for particular applications such as GML and VML.
XML document has three main components, which is the structure of XML
document, DTD or schema, and XSLT. These components are briefly explained

below.

11

2.2.1 XML Document

XML document includes of a prolog and elements. The prolog for an XML
document states some information to the parsers. This information expresses that the
document is marked up in XML and can contain XML processor instruction. The
prolog also includes text encoding, declaration of special pieces of text, and the
DTD or schema being used [7]. The elements come after the prolog and XML tags
will be define here.

<Ixml version="1.0"7>
<!IDOCTYPE statement SYSTEM “fyp.dtd”>
<statement>
<title>Final Year Project </title>

</statement>

Figure 2.4: General Structure of a XML Document

2.2.2 Data Type Definition (DTD)

DTD can be defined as the grammar of the XML page. It actually is a tool to create
and describe XML tags. Once a DTD is created and a document has been written
based on that DTD, the document will be compared to the DTD that will cause the
validation of the document. If the XML document follows the rules listed in the
DTD, then the document is said to be valid, otherwise it is called invalid.

<Ixml! version="1.0"7>

<IDOCTYPE statement [
<IELEMENT statement (title,.....)>
<IELEMENT title = (#PCDATA)>

Figure 2.5: General Structure of a DTD Document

12

223 XML Schema

Schema has the capability of DTD but differs in some characteristics; such as it is
predefined for a specific application. In general terms a schema defines the
characteristics of a class of objects; in XML a schema also describes how data 1s
marked up. In this project, XML Schema standard is used to describe GML
definitions. The rules and format to use for encoding the spatial features, such as
points, lines and polygons in GML is stated in the XML Schema files. By using
XML schema, GML also can be use for data modeling besides being as encoding
language for geographic information. This schema also fits within an object-oriented
framework.

GML schema documents are XML Schemas that define XML types and XML
elements to encode GML objects with identity, elements to encode GML properties
of those objects, and XML attributes qualifying those properties [3]. Usually the
selection of schema depends on the features that we want to build. As example if we
are modeling geographic features than we will need the feature.xsd, which is
provided by the OGC.

The Unified Modeling Language (UML) offers a fairly general means of visually
representing the elements of an application schema; a class diagram presents a
concise overview of defined types, and a package diagram depicts higher-level
groupings of mode! elements. UML representation of the geometry schema and

feature schema are shown in Appendix 5 and Appendix 6.

XML Schema offers several advantages when it comes to constraining GML
encodings such as it enables the intermingling of different vocabularies using
namespaces, it permits finer control over the structure of the type definition
hierarchy; and it confers extensibility and flexibility via derived types and

substitution groups.

13

222 Extensible Stylesheet Language Transformations (XSLT)

A natural programming language for performing transformation is Extensible
Stylesheet Language Transformations (XSLT). XSLT has become a standard means
of transforming XML documents. Even beyond data transformation, XSLT is robust
enough as a processing language to implement complete application logic for most
web-based software requirements. In this project, SVG graphics are written in XSLT
in order to transform the GML data to a SVG map since XSLT is a powerful and
highly flexible tool for transforming GML data into SVG.

/,‘BM'\. frﬁﬁ}{\\‘

request

= File XLST HTML -
Generator Transformey Serializer

Figure 2,6: Overview of the XSLT with pipeline technology

23 Geographic Markup Langunage (GML)

Traditionally, geographic information has been developed and used by geographic
community only. Increasing technology in today’s world make geographic
information available via the Internet. Currently, there is a new language which
known as Geography Markup Language or GMI. which created for handling geo-
spatial data over the Internet. Geography Markup Language (GML) is a standardized
means of storing geographic information in eXtensible Markup Language (XML)
encoded files specified by the openGIS Consortium (OGC). XML, an open, ASCH
based, format uses descriptive tags to store data doing away with any proprietary

vendor specific formats. Tags may be nested within each other and may be extended

14

in an object oriented like manner to suit your own data model, while maintaining
compatibility with the standard [2].

GML as a kind of Markup Languages is a new way to deal with geographic
information via the Internet. It is an XML encoding for the transport and storage of
geographic information, including both the spatial and non-spatial properties of
geographic features [3]. GML is a very useful and is a simple markup language for
GIS applications that is extended by XML. GML defines the various entities such as
features, geometries, topologies etc. through a hierarchy of GML objects as shown
in the UML diagram in Appendix 4.

GML provides and XML-based encoding of geo-spatial data; it can be viewed as a
basic application framework for handiing geographic information in an open and
non- proprietary way. By leveraging related XML technologies, a GML dataset
becomes easier to process in heterogeneous environments, and it can be readily
intermixed with other types of data: text, video, imagery, etc. Since GML documents
are both human - readable and machine parsable, they are easier to understand and

maintain than proprietary binary formats [13].

GML 1s suited for distribution over the network since the files may be streamed so
that user does not have to wait for downloading an entire file before opening. With
this advantage, it allow usability enhancement in a network environment. The
interpretation of the GML content usually involves using graphical symbols, lines
styles, and area or volume fills, and often some sort of transformation of the
geometry of the GML data into the geometry of the visual presentation [4]. Figure
2.7 shows the general structure of GML document.

Since GML is an XML application, it can be teadily styled into a variety of
presentation formats including vector and raster graphics, text, sound and voice.
Generation of graphical output such as maps is one of the most common
presentations of GML. This presentation can be accomplished in a variety of ways
including direct rendering by graphical applets or styling into an XML graphics
technology such as SVG or eXtensible 3D Graphic (X3D). By using GML, the map

that contains geographic information can be distributed over the Internet.

15

<pex:House>
<pex:noRooms>8</ pex:noRooms >
<pex:sellingPrice>120000</pex:sellingPrice>
<pex:floorArea>2800</floorArea>
<gml:extentOf>
<gml:Polygon srsName =“ ... “ />
<gml:outerBoundaryls>
<gml:LinearRing>
<gml:coordinates>. ... </gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryls=>
</gml:Polygon>
</gml:extentOf>
</ pex:House >

Figure 2.7 General Structure of a GML Document

2.3.1 GML Conceptual Framework

GML provides a variety of kinds of objects for describing geography including
features, coordinate reference systems, geometry, topology, time, units of measure

and generalized values.

A geographic feature is an abstraction of a real world phenomenon; it is a
geographic feature if it is associated with a location relative to the Farth. So a digital
representation of the real world can be thought of as a set of features. The state of a
feature is defined by a set of properties, where each property can be thought of as a
{name, type, value} triple.

The number of properties a feature may have, together with their names and types,
are determined by its type definition. Geographic features with geometry are those
with properties that may be geometry-valued. The formal and descriptive names for
the basic geometric properties are listed in Table 2.1; these names appear in the
Feature schema to designate common geometric properties. A feature collection is a
collection of features that can it be regarded as a feature; as a consequence a feature
collection has a feature type and thus may have distinct properties of its own, in

addition to the features it contains.

16

Formal name Dreseriptive name Geowmetry tvpe
boundedBy - Box
patitProperty tocation. position, centerQf Poing
iineSiringProperty centerLine(. edgeOf LineString
polygonProperty extenl{H] coverage Polvyon
geometryProperty - any
multiloiniProperty multiLocation, multiPosition. mubiCenterOF | MuliiPoint
multiLineStringPropery | muliiCenterLineOf, muliEdgeOr MultiLincString
multiPolveonProperty multiExtentf, mubltiCoverage MultiPolygon
mudtiGeometryPropoty | - MultiGeometry

Table 2.1 Basic Geometric Properties

2.3.2 GML Application Schema

GML. is designed to support interoperability and does so through the provision of
basic geometry tags (all systems that support GML use the same geometry tags), a
common data model (features/properties), and a mechanism for creating and sharing
application schemas. Most information communities will seek to enhance their
interoperability by publishing their application schemas; interoperability may be

further improved in some cases through the use of profiles.

From the application point of view, it simplifies and standardizes the operations in
many sectors, from map building to data format transformation, from spatial query
to geographical analysis, including the emerging applications in mobile systems
[31]. Since the GML data structure is XML-compliant, it can be transformed in a
SVG document format and then easily displayed on a standard web browser.

17

Feature Geomeiry XLinks

Figure 2.8: Base schemas as packages

24 Scalable Vector Graphic (SVG)

A main goal of GML is to represent the content of geographical data. This language
can be used also to represent these data as maps, by using a rendering tool to
interpret the GML data. In other words, it is necessary to "re~- code" the GMIL
clements in a suitable way so that they can be represented, for example, by the
graphical display of a web browser (map styling). This operation interprets the GML
contents by means graphiéal symbols, line styles, areas filling, sometime also the

transformation of the data geometry according to the representation requested

Generally the graphical rendering process transforms the GML data in a XML

graphical format. Some major vector graphical formats for viewing is:

i. Scalable Vector Graphics (SVG);
ii. Vector Markup Language (VML);
iii. Web 3D by X3D Consortium.

Today a variety of graphical render programs are available for the various XML
graphical formats, both as native in the web browser, as plug-in for the browser, as
stand-alone viewer, or as library of functions. Geography Markup Language (GML)
depends on a viewing format such as SVG for rendering GML objects to the
browser. SVG is an XML grammar for describing 2-D graphics, which includcs
clements for vector shape features, raster images, animation and text [8]. SVG
represents a fundamental extension of the Internet, allowing vector design files to
have full access to the Web.

18

This XML grammar, or tag language, can be processed with standard XML tools,
such as validating parsers, editors and browsers. SVG is already supported by
several browsers and provide by Adobe. In the map styling process, the SVG
Explorer application transforms the GML elements in SVG elements in order to
 tepresent them in a graphical way. This operation assigns to each GML tag, referred
to the geometrical property of a geographical element, a SVG tag and establishes a

sort of correspondence between these tags.

SVG also integrates standard image formats, such as GIF, PNG and JPG. SVG
vector features can be overlaid on raster images, making hyhrid raster/vector
displays possible. SVG is compatible with the full range of XML specifications that
are becoming available to the Intemnet. XPath, XPointer, XQuery, XForm, XHTML
and XSLT are a few of the XML technologies that provide basic infrastructure for a
web. As part of this XML infrastracture, SVG stands firmly centered in the flow of

current Internet technologies.

The SVG Explorer application is running on a web browser (Microsoft Explorer).
The application's main goal is the processing of GML documents and their
visualization in a graphical way, with the interaction of the user. A set of basic
functionalities handling the graphical (zoom, pan, symbols, styles, etc), the
geographical and the thematic aspects (multilayer organization, elements
classification and aggregation by attributes) has been developed.

25 OpenGIS Consortium, Inc (OGC)

Open GIS Consortium, Inc or also known as OGC is an international industry
consortium of 259 companies, government agencies and universities involve in a
consensus development to produce publicly available interface specifications. OGC
mission is to deliver spatial interface specifications that are openly available for
global user, which supports interoperable solutions that “geo-enable” the Web,
wireless and location-based, services, and mainstream IT. The specifications
empower technology developers to make complex spatial information and services

available and practical with all kinds of applications.

19

OpenGIS® is a Registered Trademark of the OGC and is the brand name associated
with the Specifications and documents produced by the OGC. OpenGIS
specifications are developed in a unique consensus process supported by OGC
industry, government and academic members to enable geoprocessing technologies

to interoperate, or "plug and play" [10].

The Open GIS Consortinm Inc. (OGC), has recently approved and released
Geography Markup Language version 3.0 (GML 3), which defines a data encoding
in XML that allows geographic data and their attributes to be moved among
disparate systems. The new release is modular, meaning that users can select out
only the parts necessary for use, which simplifies and minimizes the size of
implementations. New additions in GML 3 include support for complex geometries,
spatial and temporal reference systems, topology, and units of measure, metadata,
gridded data, and default styles for feature and coverage visualization [11]. GML 3
is almost entirely backwards compatible with GML 2, so developers and users who
familiar with GML 2 can begin working immediately with GML 3.

20

CHAPTER 3

METHODOLOGY AND PROJECT WORK

3. METHODOLOGY AND PROJECT WORK

This chapter features the detailed description of methodology and procedure of
completing this project. This methodology is implemented in order to ensure that the
project is running as required. An overview of system development methodology is
also described in this chapter. The methodology used for this project is waterfall

model.

3.1 System Development Methodology

An information system development methodology is defined as a collection of
procedures, techniques, tools, and documentation aids which will help the systems
developers in their efforts to implement new information system. A methodology
will consist of phases, themselves consisting of sub-phases, which will guide the
systems developers in their choice of techniques that might be appropriate at each
stage of the project and also help them plan, manage, control and evaluate

information systems projects [16].

System Development Life Cycle (SDLC) refers to a methodology for developing
systems. The SDLC methodology tracks a project from an idea developed by the
user, through a feasibility study, systems analysis and design, programming, pilot
testing, implementation, and post-implementation analysis. Documentation
developed during the project development is used in the future when the system is

reassessed for its continuation, modification, or deletion.

21

In this project, the methodology chosen was waterfall model. The decision was
made after analyzing the advantages and disadvantages implementing the
methodology in the project development. It provides a consistent framework of tasks

and deliverables needed to develop the system.

3.2 ‘Waterfall Model

Methodology plays a vital role in completing any project. Waterfall model is used as
the methodology to plan and manage the system development process for this
project. All the phases in the system development life cycle (SDLC) applies to this
model in order to develop the project as shown in Figure 3.1. The waterfall model

consist of 5 important phases that are:

Planning

s ®

Analysis

o

Design
Implementation & Testing

A

¢. Operation & Support

Planning

Analvsis

| Desien
r

[Implementation

& TFestino

p
Operation & Support]
\,

Figure 3.1: System Development Life Cycle for Waterfall Model

22

3.2.1 Planning

System planning begins with a formal proposal or request for the project. Proposal
was developed and submitted to the FYP committee. Scope of study was also
established during this period. In this phase, the purpose is to identify clearly the
nature and scope of the business opportunity or problem by performing preliminary
investigation or also called as feasibility study. This phase expands on the high-level
project outline and provides a specific and detailed project definition. The outcome
from this study is project scope. The project scope is concentrate on the study of
Geographic Information System regarding the use of XML and GML.

This preliminary investigation is a critical step since the ontcome will affect the
entire of development process. The feasibility study is used to determine if the
project should get the go-ahead. The study included the technical aspect for the
project such as the hardware and software requirement, and also the possible sources
or references for the project. OGC or OpenGIS Consortium has been identified as
the main resources for this project since the consortium is the one who initiated
GML. The project proceeded with producing a project plan and project schedule for
the future stages of development.

3.2.2 Analysis

The purpose of this phase is to understand the requirements and build a logical
model for the system. As implement in this project, this is the phase of doing
research and analysis. Information, findings, relevant theories, hypothesis, facts and
data, which are relevant to the objective and the scope of research for this project

were collected as much as possible during this stage.

Researches on XML and GML were done during this stage. The integration between
both markup language were identified and their pro and cons were discussed.
Research is done on XML technologies, which are provided for GML. The

23

technologies included technology for encoding and data modeling (Data Type
Definition, XML Schema), technology for transforming (XSLT) and technology for
graphic rendering (SVG). Research on GML is focused on manipulation of spatial

data to convert to simple features such as point, line and polygon.

Several projects regarding the topic also were analyzed in order to come out with a
good product analysis. Galdos Inc was identified as the main company, which
provided the GML technology and done many research on this technology. The
company also provided list of tools needed for the project. The tools were analyze
and reviewed against in order to check the availability status. Tools that are used for
the project are XML editor; XMLSpy, XML parser; Xerces-J] v1.3.1, XSLT

processor; Saxon, and graphics rendering; Adobe SVG Viewer.

At this stage, the preliminary report was sent to the supervisor as required. It
contains the project details such as the scope, project objectives and requirements of

the project, project plan and analysis done for the project.

3.2.3 Design

In this phase, all necessary outputs, inputs, interfaces, and processes were identified.
The tools needed for the design phase were downloaded and installed. Some of the
tools are free download from Internet such as XML parser - Xerces, XMLSpy from
Altova, Inc, Adobe SVG Viewer, and XSLT processor - Saxon. The development
started with developing the GML documents.

All the XMI. Schemas needed were identified and download from the open source.
The Unified Modeling Language (UML) was developed during this phase as it was
done in order to model the GML document. The data used for this project is
obtained from the Internet. The coordinates then were constructed by using GML
and simple features were created from the data. The maps created were in form of

SVG files that contained point, line and polygon.

24

The process of graphical rendering took part after developing the GML document.
The GML can be transform in three ways such as SVG, VML, and X3D. For this
project, SVG is most suited since it transforms vector maps, which only involved
simple features. The transformation was developed using SVG in XSLT format. The
design is developed specific to the requirements and objective of the project.

Progress report was submitted during this phase. It described how the research is
done, the facts and finding regarding the project, the result for the project progress

and the discussion against the entire finding,

AbstractFeatureCollection
7
FinalYearProject
h 4 ¥ N
Point Line Polygon
Descriplion: String Building: String
Place: String LineStringProperty Usage: String
r
AbstractFeature

Figure 3.2 Unified Modeling Language (UML) Design

25

3.24 Implementation

Based on the XML standard, the GML handles both the geometry and the properties
of the geographical elements; this allows the various data providers to share
heterogencous data sets and the users to access the data in a completely transparent
way. From the application point of view, it simplifies and standardizes the
operations in many sectors, from map building to data format transformation, from
spatial query to geographical analysis, including the emerging applications in mobile
systems. Since the GMI. data structure is XML-compliant, it can be transformed in a
SVG (Scalable Vector Graphics) document format and then easily displayed on a

standard web browser.

The implementation's main goal is the processing of GML documents and their
visualization in a graphical way. A set of basic functionalities handling the
graphical, the geographical and the thematic aspects has been developed for the

project.

3.2.5 System Operation and Support

During system operation and support, the maintenance will maintain and enhance
the system. Maintenance changes correct etrors and adapt to changes in the
environment. While enhancements provide new features and benefits. The objective
during this phase is to maximize return on the IT/IS investment. The system
developed shall be well-designed system that is reliable, maintainable, and scalable.
During this stage, the drawback of the project will be identified and future

enhancements will be made.

26

3.2 Tools And Hardware Required

There are many tools and hardware required for completing the project. These tools
can significantly improve productive development and deployment of GML and

merease the project performance. These are the best tools selected for the project:

PC

Arcview 3.2x/ Arcview 8.0
Parser: Xerces-J v1.3.1

Editor: XML Spy

XSLT Processor: Saxon
Graphics: Adobe SVG Viewer

$ & & & & &

27

CHAPTER 4

RESULT AND DISCUSSIONS

4. RESULT AND DISCUSSIONS

This chapter compiles the current findings of the project work. There are several
important and informative facts and information which coming from journals and
online resources. This chapter also discussed about the GML compatibility in
developing map. The transformation from GML data to SVG also was discussed

here in order to review the positive and negative impact in creating the map.

41 XML and GML in GIS

GML does not exactly define the rules of the attribute definition for non-
geographical elements. These attributes can be expressed in the XML format,
defining a specific application schema describing the structure and the types of the
geographical and alphanumerical data used by the application. In this project, the
focus is developing the GML document and transforms it into graphical

representation by using XSLT and SVG.

4.1.1 Developing XSLT

XSL Transformations (XSLT) defines the process to transform the XML document

into an Formatting Object (FO), and describes the semantics and rendering of each

28

formatting object and property. XSLT was designed to be more general than for use
within XSL, allowing the transformation of documents into documents of any XML
type, not only FO. In this project, the SVG was developed in together with XSLT in
order to transform the GML document into the basic geometry features. Figure 4.1
shows the transformation of GML to SVG by using XSLT processor, which is

Saxon.

Figure 4.1: Transformation of GML to SVG Using Saxon

4.1.2 Discussion on GML Map Result

There are several considerations to be taken care of, before developing on the map
itself. Fields such as bounding box, coordinates, SVG size, and the map style need to
be checked on, as wrong settings will make these resources unusable and wasted.
This project basically focused on developing simple display of map (point, line or

polygon) in a web browser using SVG.

29

There are three main geometry objects that have been used in this project which are
point, line and polygon. The development of GML documents mainly used the GML
version 1.0 since it already describes the simple way of the geometry features.
Figure 4.2 shows the GML map produced in SVG. This map shows the basic
geometry feature in GML, which is point. A Point is defined by a single coordinate.

2 C:\My Documents\a¥ C1as \FIN; IR

al Yeaifinal | ysas urojeci\zource codstocean and roads\lestZvpoint] - Nu:minlk lr;tsrrmt E

lJ Fo EGi Yew Favoites Todls® “lép - “
J“"M = - 3 ﬁﬂ|a5nr¢h (& Favor!tes @Muﬁia i | B QED’HB} o ; .- s
i Agd:m|@)c "My Documentsin ClosS\FIMal Year\fival year prujecf\sourcz ende\ocean and roadstest2\pointlsvg =] @6 HLirk? »
|| Gosge- 7 x| @psearch web ~ R v | | @ | Rloprions 1 - # -
r3
Police Station
P1
Schoot P.S
Hospitat
P2
y Pa
Mosque .
Post Qffice
B 1 [O 1=+ L

Figure 4.2: A simple display of locations in a web browser using SVG.

Referring to Figure 4.3, the map is produced from the coordinates that are plot up as
line. Basically in GML there consist many type of line such as LineString and
MultiLineString. LineString consist of two or more coordinates; with linear
interpolation between them while MultiLineString consist of zero or many
LineString. While in Figure 4.4 shows the map of a building that consists of polygon

features.

30

4.1.3 Discussion on GML Compatibility

GML was developed with a number of explicit design goals, a few of which overlap
the objectives of XML itself which provide a means of encoding spatial information
for both data transport and data storage, especially in a wide-area Internet context. It
also will be sufficiently extensible to suppost a wide variety of spatial tasks, from
portrayal to analysis and establish the foundation for Internet GIS i an incremental

and modular fashion.

GML allows for the efficient encoding of geo-spatial geometry (e.g. data
compression) and provide easy-to-understand encodings of spatial information and
spatial relationships, including those defined by the OGC Simple Features model.
GML will be able to separate spatial and non-spatial content from data presentation
(graphic or otherwise) besides permitting the easy integration of spatial and non-
spatial data, especially for cases in which the nonspatial data is XML-encoded.
GML 1s able to readily link spatial (geometric) elements to other spatial or non-
spatial elements. It provides a set of common geographic modeling objects to enable

interoperability of independently developed applications.

Features GML SVG

It is based on XML

It is text

It is stylable

It is concerned with the representation df the

T [| B
LS L

geographic data content
It is a graphical vector data format J

It encodes feature geometry and properties \!

Table 4.1: Comparison between GML and SVG

32

42 GML Graphical Representation

Vartety of graphical render programs is available for the various XML graphical
formats, both as native in the web browser, as plug-in for the browser, as stand-alone
viewer, or as library of functions. Geography Markup Language (GML) depends on
a viewing format such as SVG for rendering GML objects to the browser. Graphical
objects can be grouped, styled, transformed and composited into previously rendered

objects.

4.2.1 Scalable Vector Graphic (SVG)

In the map styling process, the SVG Explorer application transforms the GML
elements in SVG elements in order to represent them in a graphical way. This
operation assigns to each GML tag, referred to the geometrical property of a
geographical element, a SVG tag and establishes a sort of correspondence between
these tags. This correspondence is not always unique but in some cases there are
more than one SVG tag that can represent a GML geometrical property tag. Table
4.2 describes the SVG elements used by SVG Explorer in the map styling operation
to produce the map. While Figure 4.5 shows the building map which has been zoom.
This zooming capability is provided by SVG.

GML Geometry Element SVG Element
Box rec

Point rec,circle or path
LineString polytine, path
Polygon path

Table 4.2: Correspondence between GML and SVG elements

33

; My Dacw SAFIN L YearSlin an and spadste.
if Ho B Vew Egtos. Tooh Hep . _ _ ‘
| ek - - QB Qb GlFveres @heds BBy BT ED _ . : o
Address Iﬁ&\h’n}r Dwmn@\rny CTnsS\FINai‘er\ﬂml vear prajeci\source codehocean and reads\test2\building.svg __:J (?Eo “ka: »
Google ~ | -] Wsswiwed - @Soart e | G | - | Bloptions w - A) R

y,/‘"” ~kacture Hall
{
!

C02'03 . ’

Lecture H 02-06
Letture Hali

. v - Higher Quality

al yeir projectisource redehote: 2t 2Abailde - MiciosolUipl

. e : 7
A R
Co2- : -
Lectu re?éa!l o

o Smefved.

/ Help

j About Adcbe 5VG Viewsr,. -

{ !
1
P
P fN2-nK

T i e

Figure 4.5: A simple display of Zoom In capability in a web browser using SVG.

4.2.2 Discussion on SVG Pro & Cons Result

SVG vector maps enhanced with customizable events come alive with dynamic
capability not found on raster map publishing systems. In addition, interface designs
are completely flexible, providing useful graphical Internet interfaces to legacy
database systems. SVG-enabled browsers allow users to control their ﬁew with
zoom and pan the same way they do so in GIS software. As the GIS community sees
an expanding need for Internet extensions, SVG will play an important role in

providing powerful, yet economical, solution.

SVG is mainly oriented to vector data but can define also raster data as JPEG, PNG
files containing georeferenced images; with this approach the overlay of vector data
on a raster data background is allowed. All the functionalities are operating in an
ECMA Script environment, making use of libraries implementing base primitives

working on GML and SVG data structures.

34

SVG also has its shortcomings. For example, although the Flash plug-in is prevalent
among more than 95 percent of Internet users, a much lower percentage currently
have the SVG plug-in [9]. These numbers will continue to grow, partly because
Adobe is combining the SVG 3.0 plug-in with Adobe Acrobat. Overall, because
SVG is an official W3C standard and based on XML, it's popularity is likely to

compete with Flash in coming years.

SVG has been developed to handle vector graphics data and decreases some GIS
facilities concerning specifically with the representation of geographiéal data. In
particular it cannot handle the geographical coordinate system transformations and
consequently cannot merge dynamically GML data with different coordinate
systems on the same layer and on the same map. This transformation has to be done

by specific functions operating on the GML data.

35

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

S. CONCLUSION AND RECOMMENDATIONS

The introduction of Geography Markup Language (GML) in Geography Information
System has increased the geographic information distribution over the Internet.
GML provides better quality maps are produced with editable features and query
capabilities. GML will enable the geographic information to take part in the Spatial
Web. GML also allows data integration easily between other data providers even if
they are using different Geography Information System (GIS) package with its
vendor specific storage format, GML is designed to support interoperability and
does so through the provision of basic geometry tags (all systems that support GML
use the same geometry tags), a common data model (features/propertics), and a
mechanism for creating and sharing application schemas. Most information
communities will seek to enhance their interoperability by publishing their
apphication schemas; interoperability may be further improved in some cases

through the use of profiles.

This project relates on how XML and GML is use in Geographical Information
System. Simple displays of map (point, line and polygon) have been developed and
can be viewed in a web browser using SVG. Since the Internet revolution for all
technology, this project reatly suits for current situation that needs more advanced
technologies and ideas in geographic information areas. Too relying on old
technology such as digitizing may give many disadvantages not only for user but

also for the community. Specific applications can be created and

36

distributed to users for their own GIS needs. As the applications are running on the

browser, no commercial GIS software must be purchased.

At present, the GML is oriented to vector data only and no specific element is
defined to manage raster data (such as the geo-referenced images). This is a strong
limitation because it does not allow the superimposition of vector data on a raster
background. This restriction can be overcome specifying the raster image by means
of an XML tag.

Several future expansions have been identified for this project. Since this project is
more focused on the findings on how the spatial data is convert by using XML and
GML, the next step can be developing the GML application that integrates the entire
SVG maps. The features such as pan, and dynamic zooming also can be added to the
system. The data also can be focused on UTP new academic building. Since the
structure of the new building is complex and hard for GPS to connect with the
satellite, the data can be obtained by using the theodolite technique. The new
features of GML also can be considered such as complex features and voice

representation.

In order to carry out this project, proper project management skills needed in order
to ensure the project is developed according to requirement and within the
timeframe. Proper sources need to be identified earlier since GML is a new
technology in today’s world. This is to avoid the lack of needed material and
resources that will effect the development time. A combination of perseverance,
endurance, persistence and carefulness is tremendously important in developing and

completing this project.

Hopefully this project will benefit many organizations and overcome the drawback
of digitizing map by using or manipulating the result of the research done in

Geography Markup Language.

37

[1]

i2]

[3]

[4]

(5]

[6]

[71

[8]

[

REFERENCES

“Geographic Information Systems”, Feb 28 2003.
<http://erg.usgs.gov/isb/pubs/gis_poster/>

Prins, Mark. Feb 10, 2003 “Is GML Only for Internet GIS?”
<http://www.directionsmag.com/article.php?article id=280>

OpenGIS Consortium Inc., 2003. “Geography Markup Language
(GML) Implementation Specification”, OpenGIS Implementation

Specification

Ron Lake, 2000. "Making Maps with Geography Markup Langunage
(GML)”, Galdos Systems, Inc.

“GIS Software” Febl2, 2003.
<http://www.gis.com/software/index html >

Vincent Dessard, 2002. “GML & Web feature Server”, IONIC
Software s.a.

Ehsan Muhammadi, Ali Aein, and Ali A. Alesheikh, 2003, “Developing
an Internet GIS Application Using GML”, University of Technology
Vali_asr St, Tehran, Iran

George, Randy. Dec 2002, “Maximize Online Mapping with
SVG/XML” < http://www.geoplace.com/gw/2002/0212/0212svg.asp>

Fitzgerald, Brian. Jan 2003. “Developed Online Demographic

Visnalization and Interaction With SVG”
<http.//www.geoplace.com/gw/2003/0301/0301svg.asp>

38

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

“About Us - OGC”, Mar 13, 2003 <http://www.opengis.org/about/>

“OGC Approves GML 3, Demonstrates Web Services” Mar 14, 2003
<http://www.geoplace.com/gw/2003/0304/0304nws.asp>

Toon, Matt. Apr 99. “XML As A New Web Language”
<http://www.geoplace.com/ma/1999/0499/499tch.asp>

“GML Technology” Feb 4, 2003 <http://www.galdosinc.com/>

“OpenGIS® Geography Markup Language (GML) Implementation
Specification, version 2.1.2, 2002”, Open GIS Consortium, Inc.

“Location Organization Folder in GML”, OpenGIS© Consortium
Discussion Paper 01-037, 2001, Open GIS Consortium, Inc.

“Project and Process Management - Methodology” Mar 15, 2003
<http://www.sdmagazine.com/forums/thread . htmi?forumid=39&threadid
=2343>

Ron Lake, 2000. “Location-Based Services & GML 2.0 - Laying the
Geo-spatial Web Foundations”, Galdos System, Inc.

Ron Lake, 2000. “GML 2.0 Enable the Geo-spatial Web”, Galdos

System, Inc.

“Geometry and Toplogy Schema” , Jan 5, 2003
<http://www.ordnancesurvey.co.uk/oswebsite/xml/schema/OS Geometry
Topology.xsd>

Macgill, James. “GML Example Map”, Jan 6, 2003
<http://www.ccg.leeds.ac.uk/geotools/demos/gml/>

39

[21]

[22]

[23]

24]

[25]

[26]

[27]

[28]

[29]

[30]

http://webgisserver.cnuce.cor.it/centroS/progetti/pdf/mobile gis data vi
ewer.pdf

Chimezie Ogbuji, June 04,2003 “Visualizing XSLT in SVG”
<http://www.xml.com/pub/a/2003/06/04/xslt-svg html>

Mansfield ,Philip A. May 2002. “Graphical Stylesheets, Using XSLT
To Generate SVG ”
<http://www.schemasoft.com/gcatools/gcaZhtml/output/05-05-02 . htmi >

Anderson ,Geoff “The Door Opens Open-Source GIS”, Feb 4, 2003
<http://www.geoplace.com/gw/2003/0306/03060pn1 .asp>

Dr. Winnie S. M. Tang, and Selwood, Jan Robert. “The Development
and Impact of Web-based Geographic Information Services” Feb 4,
2003 <hitp://www.gisdevelopment.net/technology/gis/mi03002c. htm:>

J.D. Wilson, “The Internet Dominates-—-Even in GIS”, Febl15, 2003
<hitp://www.geoplace.com/gw/2000/0200/0200gbw.asp >

Berry, Joseph K. “Use a Map-ematical Framework for GIS
Modeling” Febl5, 2003
<http://www.geoplace.com/gw/2004/0403/0403bmp. asp>

Johnny, Marshall, “Developing Internet Based GIS Applications”,
INDUS Corporation, Vienna, VA
<htip.//www.giscafe.com/technical papers/Papers/paper058/>

Lewis D. Hopkins, Nikhil Kaza, and R. Varkki George Pallathucherl,
July 2003, “Planning Markup Language: Representing the
Meanings of Plans and Regulations”, University of lllinois

McKeown ,John and Grimson, Jane “SVG: putfing XML in the
picture”, Trinity College Dublin, Dublin, Ireland

40

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4
APPENDIX 5

APPENDIX 6

APPENDIX 7
APPENDIX 8
APPENDIX 9

APPENDIX 10
APPENDIX 11

APPENDICES

PROJECT SCHEDULE

GIS DATA STORAGE

GML AS A CORE FRAMEWORK

GML. CLASS HEERARCHY

UML REPRESENTATION OF THE GEOMETRY
SCHEMA

UML REPRESENTATION OF THE FEATURE
SCHEMA

POINT.XML
LINE. XML
POLYGON.XML

BUILDING.XSL
LINE.XSL

41

L
ALY TR BT M

G FI RS

k_\.,w. gt
& rewrm s f—— sn

PROJECT SCHEDULE

WEIELL (TR ‘. TR
RIS S YRR L SPEREN S G R TER 4T 1

BUHEYES

)

EHIER WOT

- PG I 10

i

bheblp

Hl

R L

TR b SRS

ot R

L PR

L ENONESS | VNEHE VM

I T D508 B Aspuium By § REIE e

emesi wesanys AgiesBinac: e pee yigs peelions,

123rodd 4v3s 1o

APPENDIX 1

YD BENE SRR
2Ok 020 ief 8 R RINIG

@th?ﬂww’z‘h}p‘m?

HEREEA TEEE

S0k
1AL PR IRy MR
A PRIR A

4F I S

‘ TG IR RS [S
WU L b TR * FATEAEY

Gk e

s L

1045

UL

PSR el

iR AR), R RS

PO] WA] gIo | BhE | B& sit N T O B Pl] Al | s | Arm 1 SV | B¥ | 4 SEl gL [T
et | g ey | sl Al G At

DR
e unyirvapy FleSones 1 e P R PR,
1J3roxd ¥ 934 TN

43

APPENDIX 2 GIS DATA STORAGE

W

&

&

L3 glreefs
r

r

a elpadion
5

t

a farwd usage
Y

APPENDIX 3 GML AS A CORE FRAMEWORK

Schemal

1

i

1

1

1

1

¥ I P
' -
1

1

]

1

'

Map Application Framework

Schemal | - -

Temporal

Wetadata

GML framework

'ginl' namespace

A

Feature

]

Topeioay

(3aodasy

W[]

Geometry

45

APPENDIX 4

Object
aml:_Object

‘i‘

GML, Object
aml:_GML

A

GML CLASS HIERARCHY

GML Metadata
gmi:_MetaData

GML Feature
ol Feature

GML Geometry
oml: Greometiy

(ML Topology
ol Topology

GML Value
ainl: Value

A

GML Observation
emi:_Observation

GML Coverage

gml_Coverage

GML Coverage
gml;_Coverage

GMLL Temporal
gml;_TimeObject

GML Coordinate Reference Sysiem
gml:_CRS

GML Definition
gl Definition

GME Unit Definition
emb: UmtDefinition

GML StyleDeserptor

|} gl StyleDeseriptor

GML Temporal Reference System
ol TimeReferenceSyster

APPENDIX 5 UML REPRESENTATION OF THE GEOMETRY SCHEMA

-nnerBoundams

~geom eiyMemizer
|

47

APPENDIX 6 UML REPRESENTATION OF THE FEATURE SCHEMA

=arpetfiction==
oy Wil

—
-featureMamber

sqrastriction=»

48

APPENDIX 7 POINT. XML

<?xml version="1.0"7>
<IDOCTYPE FeatureCollection SYSTEM "gmifeature.dtd™>

<FeatureCollection typeName="Parcels">

<boundedBy>
<Box srsName="EPSG: ">
<coordinates>538336.0,1246940.0 530038.0,1247382. 0</coordinates>
</Box>
</boundedBy>

<featureMember typeName="Point11">
<Feature typeName="Point1">
<!—name>P1</name—>
<property typeName="PLACE">Schoal</property>
<geometricProperty typeName="Boundary">
<Point srsName="EPSG: XXXX">
<coordinates>
538623.800,1247250.484 538623.800 1247250.484 </coordinates>
<fPaint>
</gecmetricProperty=>
</Feature>
</featureMember>
<featureMember typeName="Point2">
<Feature typeName="Point2">
<l--name>P2</name—>
<property typeName="PLACE">Mosque</property>
<geometricProperty typeName="Boundary">
<Point srsName="EPSGXOMX">
<coordinates>
538372.205,1247075.120 538372.205,1247215.106 </coordinates>
<fPoint>
</geometricProperty>
</Feature>
<ffeatureMember>
<featureMember typeName="Point3">
<Feature typeNarne="Point3">
<l-pame>P3</name-->
<property typeName="PLACE">Police Station</property>
<geometricProperty typeName="Boundary™>
<Point srsName="EPSG: O
<coordinates>
538550.272,1247361.098 538616.342,1247215.106 </coordinates>
</Point>
</geometricProperty>
</Feature>
</featureMember>
<featureMember typeName="Paint4">
<Feature typeName="Point4">
<l-name=>P4</name-->
<property typeName="PLACE">Pest Office</property>
<geometricProperty typeName="Boundary*>
<Point srsName="EPSE XXXX">
<eoordinates>
£538552.299,1247065.532 538550.589,1247075.467 </coordinates>
</Point>
</geometricProperty>
</Feature>
<ffeatureMember>
<featureMember typeName="Point5">
<Feature typeName="Point5">
<l—namerP5<name—>
<praperty typeName="PLACE">Hospital</property>
<geometricProperty typeName="Boundary">
<Point srsName="EPSG XXXX">
<coordinates>
538648.414,1247232.950 5386486.339,1247075.497 </coordinates>
</Point>
</geometricProperty>
</Feature>
<ffeatureMember>
</FeaturaCollection>

49

APPENDIX 8 LINE XML

<?xmt version="1.0" encoding="utf-8"7>

<! Project - Integrated XML and GML in Geography Information System
Developer : Mardiana Binti Abdu! Rahman
D . 1809
Institution . University Technologi PETRONAS
Document Description : This document consist of GML documant for describing line
feature—>

<i— SCHEMA DECLARATION —>

<exp: FeatureCollection xmins="hitp:/Awww. opengis. netfexp” xmins:gml="http:/iwww.opengis.net/gmi”
xmins:xsi="http:/iwww.w3. org/2000/1 0/XMLSchema-instance” xmins:exp="http:/fiwww, opengis. net/examples”
xmins:xlink="http:/fwww. w3.orgl1899/dink" xskschemal.ocation="http./imww. opengis.net/exampies fyp.xsd">

<I—DEFINING BOUNDINGBOX -->

<gmi:boundedBy xmins:gml="http:/fwww.opengis.net/gmi'>
<gml;Bax>
<gmil: coordinates>482000,5449000 505000,5472000</gmi:coordinates>
<fgml:Box>
</gml:boundedBy>

<l--BODY >

<gmkfeatureMember>
<exp:RL1YU fid="RL1U10644">
<gmi:description>Roads rL1U</gml:description>
<gmi:name/>
<gmi:centerLineOf xmins:gmi="http://www. opengis.net/gml>
<gmt:LineString>
<gml:coordinates>492298.900099489,5453174.99963225
492314,998999480,5453173,80963225 492334, 90900049,5453172,99863225
492352.999089492 6463172 99963225 492373.999999495 5453171.99963225
497395.999999489,5453170.99963225 492415.999599499 5453168.08963225
492433,9999995,5453168.99963225 492452.999999463,5453167.99963225
492454.999909400,6453167.09963224</gml coordinates>
<tgmi:LineString>
</gml:centerLineOf>
<fexp:RL1U>
<fgmi:featureMember>
<gml-featureMember>
<exp:RL1U fid="RL1U10645">
<gml: description>Roads rL1U</gm!:description>
<gml: names>
<gmi:centerLineOf xmins:gml="http: /fwww. opengis. net/gmi">
<gml:LineString>
<gmi:coordinates>492454 999999499,5453167 99963224
452472.959998404,5453167.99963224 482493.9900900503,5453166.50963225
492514,999999501, 5453166 99963225 492535.098990503,5453166.90963225
492554.999999507,5453165.09963225 492563.998000508,5453165.99963225</gmt coerdinates™
<fgmi:LineString>
</gml;centerLineQf>
<fexp:RLIU>
<fgmi:featureMember:-
<gmkfeatureMember:
<exp:RLIU fid="RL1U10647">
<gmi: description>Roads rL1U</gmi:description>
<gml names>
<gmit: centerLineCf ximins:gmi="http:/iwww.opengis. net/gm(">
<gmi:LineString>
<gmi:coordinates>492565.999990504, 5453265.99963228
492546.998699504,5453265,99963227 482526.899599505,5453265. 99963227
492505.999599504,5453266.59963227 492484 999989497 5453266,00863228
492465.999999498 5453267 99963227 492452.9999995,5453267.99963228</gml.coordinates>
<fgmt:LineString>
</grni:centerlineGf>
<jexp:RL1U>
</gmi-featureMember>
<gml featureMember>
<exp:RLIU fid="RL1U10648">
<gmt description>Roads rl.1U</gmi:description=
<gml:name/>

50

<grl; centerLineOf xmins:gmi="http./faww. apengis. net/gmi'>
<gmiLineString>
<gmi:coprdinates>4823(2 99999849, 5453325,899963229
492206.99999649 5453325, 99963229 402276.909999485,5453325.99963228
492255 999999478 5453326.99963229 492234 990959470 5453327 89963229
492212.998089485,5453328.99963229 492191,980890482, 5453320, 69963229
492171.999999476,5453330.99963229 492149,99999948,5453331.89963229
492127.989953481,5453332.89963229 402125.999998471,5453332.50963229</gml: coerdinates>
</gml: LineString>
</gmi.centerLineOf>
<fexp:RLTU>
</gml:-featureMember>
<gml.featureember>
<gxp:RL1U fid="RL1U10655">
<gml:description>Roads rL1U</gml:.description>
<gml:name/>
<gml. centerLineQf xmins:gml="http: fwww. cpengis.net/gml">
<gmkLineString>
<gml:coordinates>491598.99999944 5453162.99963224
491600.908959436,5453'162.80963224 401620.050988445 5453160.98963224
491641.099980438,5453158.90063224 491662 899099444, 5453157 98963225
491682.099999440,5453156.99963224 491702.959090451,5453154, 99983224
491721.999999451,5453152.99863224 491742 990899448,5453150.59963224
491?60.999999451,5453149.99963224</gm!:coordinates>
<fgmk LineString>
</gmi:centerLineOf>
<fexp:RL1U>
</gml.featureMember>
<gmkfeatureMember>
<gxp:RL1TU fid="RL1U10736">
<gmil:description>Roads rL.1U</gml.description>
<gmkname/>
<gmi: centerLineOf xmins: gmi="http: fwww. opengis. netfgml"
<gmi: LineString>
<gml:coordinates>492651.992999508,5452546. 99963208
492651.9990999513,5452531.90063207 492650.999999508,5452510. 99963207
492650.999999512, 5452485 99863206</gml:coordinates>
</gmi:LineSting>
</gml:centerLineOf>
</exp:RLIU>
<fgmi:featureMember>
<gmi-featureMermber>
<exp:RL1Y fid="RL1L10738">
<gmk description~Roads rl.1t)</gml.description>
<gml:name/>
<gmil; centerk.ineOf xmins: gml="http: /fww.cpengis.net/gml">
<gml:LineString>
<gmil:coordinates>492648.999999511,6452386.99963203
492648,09900051,5452368. 999683203 492647.999999512,5452348.88063202
492647 99089951 5452338.85863202</gml: coordinates>
<fgml:LineString>
</gmi:centertineOf>
<fexp:RL1U>
<fgmtfeatureMember>
<fexp.FeatureCollection=

51

APPENDIX 9 POLYGON.XML

<7xmi version="1.0"?>
<IDOCTYPE FeatureCollection SYSTEM "gmifeature. did"™>

s Project - Integrated XML and GML in Geography Infermation System
Developer . Mardiana Binti Abdul Rahman
D : 1809
Institution . University Technologi PETRONAS
Document Description : This document consist of GML document for describing polygon--»

<FeatureCollection typeName="Parcels">
<botindedBy>
<Box srsName="EPSG: XXXX">
<goordinates>538336.0,1246940.0 530038.0, 1247382, 0«/coordinates:
</Box>
</poundedBy>
<featureMember typeName="Parcelt">
<Feature typeName="Parcel1">
<name>93-21-21-155-027</name>
<property typeName="BUILDING">C02-05</proparty>
<property typeName="USAGE">Lecture Hall</property>
<gecmetricProperty typeName="Boundary>
<Polygon sreName="EPSGE XXX X">
<guterBoundaryls>
<i inearRing>
<coordinates>
538668.269,1247362.009 538782.855,1247362.896 538762.840,1247282.225 538655.423,1247217 867
538653.402,1247223.764 538651.955,1247226.939 538650.280,1247230.007 538648.414,1247232 850
538846.330,1247235.756 538644.072,1247238.400 538641.626,1247240.809 538639.013,1247243.211
53B636.244,1247245.336 538633.334,1247247.262 638630.206,1247248.081 538627.146,1247250.484
538623.899,1247251.763 538620.571,1247252.813 538617.178,1247253.627 538616.342,1247361.607
538668.269,1247362.008 </coordinates>
<fl.inearRing>
<fouterBoundary!s>
</Polygon=>
</geometricProperty>
<fFeature>
<ffeatureMember>
<featureMember typeName="Parcel2">
<Feature typeName="Parcel2">
<name>93-21-21-165-026</name>
<praoperty typeName="BUILDING">C02-04</property>
<property typeName="USAGE">Lecture Hall</property>
<geometricProperty typeName="Boundary">
<Polygon srsiName="EPSG: XXXX">
<guterBoundaryis>
<LinearRing>
<coprdinates>
538560.272,1247361.006 538616.342,1247361.607 5368617.178,1247253.627 538611.003,1247254.487
538607.516,1247254.631 538604.028,1247254.531 538800,555,1247254.187 538507.114,1247253 602
53B503.723,1247252.779 538500.397,1247251.721 538587.153,1247250.434 538584.007,1247248.024
538580.974, 1247247 197 538578.069,1247245,264 538575.305,1247243.132 538572.697,1247240.813
538570.257,1247238.318 538567.008, 1247235.658 538410.315,1247355.013 538550.311,1247356.096
538550.272, 1247361.086 </coordinates>
</LinearRing>
</outerBoundaryls>
</Polygon>
</geametricProperty>
<{Feature>
</featureMember>
<featureMember typeName="Parcel3">
<Feature typeName="Parcel3">
<name>93-21-21-155-026</name>
<property typeName="BUILDING">C02-03</property>
<property typeName="USAGE">Lecture Hall</property>
<geametricProperty typeName="Boundary">
<Polygon srsName="EPSGXXXX">
<outerBoundaryis>
<linearRing>
<goordinates>
538410.315,1247355.013 538567.998,1247235.658 538564.810,1247231.206 538563.153,1247228.281
538561.611,1247225.150 538560.291,1247221.910 538559.199,1247218.605 538558.341,1247215.222
53B557.722,1247211.787 538557.343,1247208.318 538557.207,1247204.831 538557 315,1247201.342

52

538652.932,1247196.717 538549.940,1247193.423 538547.005,1247190.077 538544.130,1247186.680
538541.314,1247183.233 538538.559,1247179.738 538535.865,1247176.185 538533.234,1247172.608
538530.665,1247168.971 538528.161,1247165.283 538525.721,1247161.571 538523.346, 1247157.806
538521.037,1247154.002 538518.796,1247150. 157 538372.295,1247215.106 538370.316,1247354.703
538410.315,1247355.013
<fcoordinates™
<{l.inearRing>
</outerBoundaryis>
</Polygon>
</geometricProperty>
<fFeature>
</featureMember>
<featureMember typeName="Parcel4">
<Feature typeName="Parcel4">
<natme>83-21-21-155-028</name>
<property typeName="BUILDING">C02-06</properiy>
<property typeName="USAGE">_ecture Hall</property>
<geometricProperty typeName="Boundary™>
<Polygon srsName="EPSGX0(">
<guterBoundaryls>
<LinearRing>
<coordinates>
538762.840,1247282.225 538763.009,1247255.226 538763.802,1247162.230 538637.547,1247161.948
538640.239,1247167.087 538642.777,1247169.492 538645.142,1247172.059 538647.321,1247174.785
538649.306,1247177.656 538651.085,1247180.658 538652.650,1247183.777 538653.694,1247186.098
538655.110,1247190.305 538656.993,1247193.681 538656.638,1247197.111 538657.042,1247200.578
538657.204,1247204.084 538657.121,1247207.553 538656,796,1247211.027 538656.229,1247214.471
538655.423,1247217.887 538762.840,1247282.225
</coordinates>
</LinsarRing>
</outerBoundaryls>
</Palygon>
</geometricProperty>
</Feature>
</featureMember>
<featureMember typeName="Parcel5">
<Feature typeName="Parce!5">
<name>93-21-21-155-024</name>
<property typeName="BUILDING">C02-02</property>
<property typeName="USAGE">Lecture Hali</property=>
<geometricProperty typeName="Boundary">
<Polygon srsName="EPSG: XXXX">
<outerBoundaryts>
<LinearRing>
<caordinates>
538372.295,1247215.106 538518.796,1247150.157 538516.515,1247146.080 538514.412,1247142.157
538512.378,1247138.199 538510.413,1247134.206 538508.518,1247130.179 538506.694,1247126.119
538504.941,1247122.028 538503.289,1247117.908 538501.650,1247113.758 538500.114,1247109.581
538498.650,1247105.378 538497,260,1247101.150 538495,944,1247096.899 538494.703,1247092 625
538493.536,1247088.330 538492.445,1247084.016 §38491.428,1247079.683 538490.488,1247075.333
538374.279,1247075.120 538372.295,1247215.108
<fcoordinates>
</LinearRing>
</outerBoundaryis>
</Polygon>
</geometricProperty>
</Feature>
</featureMember>
<featureMember typeName="Parcels">
<Feature typeName="Parcel§">
<name=93-21-21-155-029</name>
<property typeName="BUILDING">C02-07</property>
<property fypeName="USAGE">Lecture Hall</property>
<geometricProperty typeName="Boundary">
<Potygon srsName~"EPSG:X 00" >
<outerBoundaryls>
<LinearRing>
<coordinates>
538763.992,1247162.230 538764.050,1247155.230 538764,827,1247075.234 538656.132,1247075.368
538552.299,1247075.497 538553.287,1247078.943 538554.288,1247082.217 538555.347,1247085.472
538556.462,1247088.708 538557.634,1247081.925 538558.861,1247085.121 538560.144,1247088.294
538561.483,1247101.445 538562 876, 1247104.572 538564.323,1247107.674 538565.824,1247110.750
538567.379,1247113.800 538568.987,1247116.822 538570.647,1247119.816 538572.360,1247122.780
538574.123,1247125.714 538575.938,1247128.617 538577.803,1247131.487 538579.718,1247134.325
538581.682,1247137.128 538583.605,1247139.897 538585.756,1247142.631 538587.864,1247145.328

53

538580.019, 1247147988 538592.220,1247150.609 538594.466,1247153.192 538596.757,1247155.736
538603.167,1247154.795 538606.853,1247154.635 538610.142,1247154.718 538613.617,1247155.044
538617.060,1247155.612 538620.456,1247156.419 538623.787,1247157.461 538627.037,1247158.732
538630.190,1247160.227 538633.232,1247161.938 538637.547,1247161.948 538763.992,1247162.230
</coordinates>
<fLinearRing>
<fouterBoundaryis>
</Polygon>
</geometricProperty>
<ff-eature>
<ffeatureMember>
<featureMember typeName="Parcei7">
<Feature typeName="Parcel7">
<pame>93-21-21-155-030</name>
<property typeName="BUILDING">C02-08</property>
<property typeName="USAGE">Lecture Hall</property>
<geometricProperty typeName="Boundary">
<Polygon srsName="EPSG.XXXX">
<outerBoundaryls>
<LinearRing>
<coordinates>
538552.2090,1247075.457 538656.132,1247075.368 538655,883,1246955.208 538545.983,1246955.179
538545.207,1247021.192 538545.204,1247024.789 538545.261,1247028.211 538545.379,1247031.632
538545.556,1247035.051 538545.793,1247038.466 538546.089,1247041.876 538546.445 1247045.281
538546 860, 1247048.679 538547 .334,1247052.069 538547.868,1247055.451 538548.460,1247058.822
538549.111,1247062.183 538549.821,1247065.532 538550.588,1247068.868 538551.415,1247072.180
538552.299,1247075.497 <jcoordinates>
</l.ingarRing>
<fouterBoundaryls>
</Polygon>
</geometricProperty>
</Feature>
<ffeatureMember>
<featureMember typeName="Parcal8">
<Feature typeName~"Parcel8">
<name=>93.21-21-1568-031</name>
<property typeName="BUILDING">C02-09</property>
<property typeName="USAGE">Lecture Hall</property>
<geometricProperty typeName="Boundary">
<Polygon srsName="EPSGXXXX">
<oyterBoundaryis>
<lLinearRing=
<coordinates>
538656.132,1247075.368 538764.827,1247075.234 538765.019,1247055.235 538765.978,1246855.240
538655.983,1246855.209 538656.132,1247075.368 </coordinates>
</LinearRing>
<fouterBoundaryls>
</Palygon>
<fgeometricProperty>
</Feature>
</featureMember>
<featureMember typeName="Parceld">
<Feature typeName="Parcel9">
<name>93-21-21-155-023</name=>
<property typeName="BUILDING">C02-01</property>
<property typeName="USAGE">Lecture Hall</property>
<geometricProperty typeName="Boundary™>
<Polygon srsName="EPSGXXXX">
<guterBoundaryls>
’ <LinearRing>
<coordinates>
538374.279,1247075.120 538490.488,1247075.333 538480.323,1247069.343 538488.563,1247064,958
538487.860, 1247060.560 538487.274,1247056, 151 538486.745,1247051.732 538486.293,1247047.305
538485.918,1247042.870 538485.622,1247038,429 538485.402,1247033.984 536485.260,1247029.536
538485196, 1247025.086 538485.210,1247020.635 538485.979,1248955. 162 538375.979,1246955.132
538374.278,1247075.120
<{conrdinates>
</LinearRing>
</outerBoundaryls>
</Potygon>
</geometricProperty>
</Feature>
</featureMermber>
</FeatureCollection=

54

APPENDIX 10 BUILDING.XSL

<?xmi version="1.0"?>
<xsl:stylesheet version="1.0" xmins:xs|="http:/www.w3.orgM 999/ XSLTransform">

R Project - Integrated XML and GML. in Geography Information System
Developer . Mardiana Binti Abdu! Rahman
D 1809
Institution - University Technologi PETRONAS
Document Description . This document consist of eXtensible Styiesheet Language

Transformation{XSLT). This stylesheet will transform the GML.
into SVG and will be viewed in-'web browser —>

<xshpreserve-space elements="*"/>
<!-- The root template >
<xsltemplate match="/">
<! Use xskelement to add the computed atinbute value for the viewBox —>
<xsl:elernent name="svg" namespace=">
<xsh attribute name="width">800</xs!: attribute>
<xsl:attribute name="height">600</xsl aftribute>
<xsk attribute name="viewBox"><xsl|.call-template name="get-bounding-box"/></xsl:altribute>
<!~ The feature template adds the text —>
<xsl:apply-templates select="//Feature"/>
<!— This template does the drawing of the parcels ~>
<xsl| apply-templates select="//Polygon/outerBoundaryls/LinearRing"/>
<t Finaily we mark the points >
<xshapply-templates select="//Feature//coordinates"/>
</xsl.element>
<fxsltemplate>
<l

frensform-x Transforms the % {right value - mathematical coordinate system)
Parameters coordinate pair comma separated list of coordinates xy

x-offset x-coerdinate {right-value) af the upper left cormner
scale scale, assumes g screen resolution of 72 dpi
—== —_— e e i -
<xsl:template name="transform-x">
<xs.param name="coerdinate-pair’/>
<xsl:param name="x-offset" select="538336"/>
<xsl.param name="scale" select="2000"/>
<xsl:value-of select="(substring-before($coordinate-pair,',') - $x-offset) * 2835 div $scale’/>
</xsl:tempiate>
<l-u
transtorm-y. Transforms the y (up value - mathematical coordinate system)
Parameters: coordinate par comima separated st of coordinates x.y
y-offset y-coordinate (up-value) of the upper teft corner
scale scale, assumes a screen resolution of 72 dpl
i R e i e - e -
<xsl:template name="transform-y">
<xsl:param hame="coordinate-pair"/>
<xsl:param name="y-offset" select="1245940"/>
<xsl:param name="scale" select="2000"/>
<xsl:value-of select="(substring-after($coordinate-pair,',") - $y-offset) * -2835 div $scale + 600"/>
</xsl:template>
(i‘ —======== = — L OETIT —
get-bounding-box: returns space separated list of the {screen!) coordinates of the
dpper left and bottom right corner.
T e o B i im s e -

<xsktemplate name="get-bounding-box">
<l- First we concatenate all coordinates inte one lis{ >
<xsl:variable name="all-ccords">
<xs!:for-each seiect="//Feature//cocrdinates">
<xslhvalue-of select="."/>
<xsl.for-each>
</xs|variable>
<l— Now we get the minimum x, y etc. one after the other —>
<xsl:call-template name="get-min-x">
<xshwith-param name="list" select="%all-coords"/>
<xsl:with-param name="cval" select="100000"/>
</xsl. calltemplate>
<\- And add whitespace as separator >
<xsl-text/>

55

<xsi:call-template name="get-min-y">
<xst:with-param name="list" select="%all-coords"/>
<xsl:with-param name="cval' select="100000"/>

</xsl:calltemplate>

<xsltext/>

<xsi.calltemplate name="get-max-x">
<xsl:with-param name="list" select="$all-coords"s>
<xsl-with-param name="cval" select="0"/>

</xstcail-template>

<xsl:text/>

<xsl:cail-template name="gef-max-y">
<xsi:with-param name="list" select="$ali-coords"/>
<xshwith-param name="cvaf" select="0"/>

</xsl:call-template>

<fxsl:template>

T T D S T T R e e e e i e et e mrm e =

get-min-x: gets the minimum x (screen-)coordinate of a list of coordinates.
Parameters. list space-separated st of coordinate pairs X,y
oval used for recursion, must be initizlized to a big value

<xsitemplate name="get-min-x">
<xsl.param name="list"/>
<xsl:param name="cval"f>
<xsl:variable name="wilist" select="normalize-space{$list)'/>
<xsl:variable name="cpair" select="substring-before{$wiist,’ ")"/>
<!— First we transform from reai world to screen coordinates and store x-vaiug —>
<xsl:variable name="x">
<xsi: cafl-template name="transform-x">
<xsl:with-param name="coordinate-pair" seiect="$cpair"/>
<fxsl.call-template>
</xslvariable>
<!— Now the same recursion as in the exampie. -->
<xsl.variable name="rest" select="substring-after(Swiist,' } "/>
<xsl:choose>
<xsl:when test="string-length{$rest) » 0"
<xsl:choose>
<l—-the template is cailed recursively with the either the parameter passed fo it
or the current ¥ value shouwld this be iower -->
<xsl:when test="%x > $eval’>
<xsl.call-template name="get-min-x">
<xsl:with-param name="list" select="$rest'/>
<xstwith-param name="gval" select="$cval"f>
<fxsl:call-template>
<fxshwhen>
<xsl atherwise>
<xsl:call-template name="get-min-x">
<xshwith-param name="list" sefect="$rest"/>
<xsl:with-param name="cval" select="%x"/>
<fysh:cali-template>
<fxsl.otherwise>
</xsl.choose>
</xsh:when>
<xsi:otherwise>
<xshvalue-of select="8cval - 5"/>
</xs|:otherwise>
<fxsl.choose>
<fxsl:template>

<} TEmmmTooommmis s

get-min-y. gets the minimum y {screen-jcoordinate of a list of coordinates.
Parameters. list space-separated st of coardinate pairs x, ¥
cval used for recursion, must be initialized to a big value

<xsl:template name="get-min-y">
<xsl:param name="list'/>
<xsh:param name="cval"/>
<xsl.variabte name="wlist" select="normalize-space($list)s>
<xshvariable name="cpair" sefect="substring-befora($wlist,' 'V'/>
<xsh:variable name="y">
<xs!:call-template name="transform-y"'>
<xsl:with-param name="coordinate-pair" sefect="$cpair'/>
<fxsl.call-template>
<fxsl-variaple>
<xsl:-variable name="rest" select-"substring-after($wlist,' '} "/>
<xsl:.choose>
<xsl:when fest="string-length{$rest) > 0>

56

<xsl:.choose>
<xsl:when test="3y > Scval">
<xsk callHemplate name="get-min-y">
<xshwith-param name="list" select="$rest"/>
<xsl:with-param name="cval" select="$cval"/>
</xsl:call-template>
<fxstwhen>
<xsl:otherwise>
<xsl: catl-tempiate name="get-min-y">
<xslwith-param name="list" select="frest'/>
<xskwith-param name="cval" select="§y"/>
<fxsi:cal-template>
<fxsl.atherwise>
<fxsl.choose>
<fxslwhen>
<xsl:otherwise>
<xsl:value-of select="$cval - 5"/>
</xsl:otherwise>
<fxsl:choose>
<fxsltemplate>

<! ==

get-max-x gets the maximum x (Screen-Jcoordingte of & list of coordinates.
FParameters: list space-separated list of coordinate pairs x,y
cval used for recursion, must be intialized to a small value (0}

<xsltemplate name="get-max-x">
<xsl:param name="list"/>
<xsi:param name="cval"/>
<xsl:variable name="wlist" select="normalize-space({$list}"/>
<xs!:variable name="cpair" select="substring-hefore($wlist," ')"/>
<xsi:variabie name="x">
<xsl:call-template name="transformn-x">
<xsi:with-param name="coordinate-pair select="Scpair"/>
<fxsl.call-template>
<fxsivariable>
<xshvariable name="rest" select="substring-after($wiist,' ') "/>
<xsh:choose>
<xs|:when test="string-length($rest) > 0">
<xsl.choose>
<xsh:when test="%x > $cval'>
<xsl:call-tempiate name="get-max-x">
<xshwith-param name="list" select="$rest"t>
<xsl:with-param name="cval" select="%x"/>
<fxsl|:call-template>
</xsl:-when>
<xsi:otherwise>
<xsl call-template name="get-max-x">
<xsiwith-param name="list" select="$rest"/>
<xs!with-param name="¢val" select="S$cval"/>
<fxslcall-template>
</xsl.otherwise>
<hisl.choose>
</xsl:when>
<xsi otherwise>
<xslvalue-of select="$eval + 5"/>
</xsiotherwise>
<fxsl.choose>
</xsl:template>

<1

get-max-y gets the maximum x {screen-jeoordinate of a list of coordinates.
Parameters. list space-separated kst of coordinate pairs x,y.
tval used for recursion must be inifialized to a smal! value (0)

<xshtemplate rame="get-max-y'>
<xsh-param name="list"/>
<xsl.param name="cval"/>
<xsl:variable name="wlist" select="normalize-space{$list)'/>
<xslvariable name="cpair’ select="substring-before{Swlist," />
<xsl.variable name="y">
<xslcailtemplate name="transform-y">
<xsh:with-param name="coordinate-pair" select="3cpair"/>
</xsl:call-template=
<fxsl-variable>
<xshvariable name="rest" select="substring-after($wlist,’ ") />
<xsl.choase>

57

<xskwhen test="string-length($rest) > 0">
<xsl.choose>
<xsl:when test="$y > $cval™>
<xsl:call-template name="get-max-y">
<xsl;with-param name="list" select="$rest"/>
<xshwith-param name="cval" seleci="$y"r>
<fxstcall-template>
</xshwhen>
<xsl:otherwise>
<xs! call-template name="get-max-y"=
<xslwith-param name="list" seleci="$rest"/>
<xsl:with-param hame="¢val" select="$cval"/>
<fxsl:cal-template>
<fxsl-otherwise>
<fxsl:.choose>
<xstwhen>
<xsl-otherwise>
<xslvalue-of select="$cval + 5>
<fxsl:otherwise>
</xsl:choose>
<fxsltemplate>

e D S| S T £ R L e R A RS R S S S S m S R R e S En nmE T s s E— S

Ternpiate Feature. draws the text attributes associated with each parcel.
= e jnum il == — —mm—_———= >
<xsl:tetnpiate match="Feature">
<!~ First we store the x and y coordinate of the center of gravity of the points as an
approximation of the center of the polygon.—>
<xsl:variable name="x">
<xsl:call-template name="center-of-gravity-x">
<xshwith-param name="[ist"
select="./geometricProperty/Polygon/outerBoundaryls/LinearRing/coordinates"/>
</xsl.cail-template>
<fxshvariable>
<xsl:variable name="y">
<xsl:catl-template name="center-of-gravity-y"=
<xsl;with-param name="list"
select="./geometricProperty/Polygon/outerBoundaryis/LinearRing/coordinates/>
<fxsl:.calltemplate>
</xsl.variable>
<!— match a template to position the name of the parcel just above the center -
<xsl.apply-templates setect="./name">
<xsh:with-param name="x" select="§x"/>
<xsl:with-param name="y" select="3%y -~ 5"/>
<ixsl.apply-templates>
<!—maich the property elements, bui onty those with typename altribute set to owner -->
<xsl:apply-templates select="./property[@typeName = 'BUILDING'T">
<xshwith-param name="x" select="$x"/>
<xsl:with-param name="y" select="%y + 10"/~
<fxslapply-templates>
<t~ match the property elements, this fime for the EZ's ~->»
<xsl:apply-templates select="/property{@typeName = 'USAGE]">
<xsl:with-param name="X" sefect="§x"/>
<xsl:with-param name="y" select="$y + 20"/>
</xslapply-templates>
</xsltemplate>

< P

Template property. Craws addiionat text attributes
<xsl:tempiate match="property">
<xsl:param name="x"/>
<xsl.param name="y"/>
<xst element name="text" namespace="">
<xsl:attribute name="x"><xsl:value-of select="$x"/></xst attribute>
<xslattribute name="y"><xs!:value-of select="3$y"f></xs| attribute>
<xsl.attribute name="style">font-farnily: Verdana;font-size: 12;fill: blue-</xst: attribute>
<xsl.attribute name="text-anchor">middle</xslattribute>
<xsh:value-of select="normalize-space(.)"/>
</xshelement>
</xsl:template>
< mmmmmmmmmmmm e ==

Yemplale linearRing: Draws the border of the parceis
- e s e o i et e o e e
<xsl:template match="LinearRing">
<xsl:variable name="clist" select="./coordinates'/>
<xsl:variable name="tclist" select="normalize-space{S$clist}'/>

58

<xsl.variable name="cpair" select="substring-before($tciist, Y
<! Again we transform from real world 1o screen coordinates otiver than that if is pretty
much the same as in the exampie. —>
<Xsl.variable name="x">
<xshcall-template name="transform-x">
<xsl:with-param name="coordinate-pair" select="$cpair'/>
<fxslcall-template>
</xsl:variabie>
<xsl:variable name="y">
<xsl:call-template name="transform-y">
<xsl:with-param name="goordinate-pair" select="$cpair'/>
<fxsl call-Hemplate>
<fxstvariable>
<xsl:variable name="start" select="concat('M ", $x, ', $y}/>
<xsl:variable name="rest" select="substring-after($tclist,"*)"/>
<xsl:variable name="all">
<xsl:call-template name="gmlicoords-to-svgpath™>
<xshwith-param name="list" select="§rest"/>
<fxsl:calitemplate>
</xsl.variable>
<xsl:variable name="all2" select="concat{concat{$start Sall)’ Z'y/>
<xsl.element name="path">
<xsl:attribute name="style">stroke: black:fill: none; stroke-width: .5;</xs)attribute>
<xsl:aftribute name="d"><xstvalue-cf select="%all2"f></xs| attribute>
<fxsl-efement>
</xsl:template
<l === = = === —=
gmicoords-to-svgpath. Template from the example slightly modified
{addad the coordinate transformation)

Py SN L ooTSSTIToNoooozzEs

<xsttemplate name="gmicoords-to-svgpath'>
<xsl:param name="list"/>
<xsl:variable name="wlist' select="normalize-space($listy"t>
<xsi.variable name="cpai" select="substring-before($wiist,' 'y/>
<xsl.variable name="x">
<xsl.call-template pame="transform-x">
<Xslwith-param name="coordinate-pair’ select="$cpair/>
<fxsl cali-template>
<fxsl:variable>
<xslvariable name="y">
<xsl:call-template name="transform-y">
<xslwith-param name="coordinate-pair” select="$cpair"/>
<fxsl:call-template>
</xsl variable>
<xslvariable name="rest" select="substring-after{$wlist,' e
<xsichoose>
<xsl:when test="string-length($rest) > 0">
<xsl:.variable name="ali">
<xsi:call-template name="gmicoords-fo-svgpath">
<xsl:with-param name="list" select="$rest"/>
<fxskealltemplate>
<fxslvariabie>
<xstvalue-of select="concat{' L., $x,' ", $y, $ally'/>
<fxsl:when>
<xst.otherwise>
<xstvariable name="ix">
<xst:cali-template name="transform.x">
<xsl:with-param name="coordinate-pair" select="Swiist"/>
<fxstcall-template>
<Ixgl variable>
<xshvariable name="ly">
<xsl.call-template name="transform-y"=
<xskwith-param name="coordinate-pair* select="$wlist"/>
</xskecall-template>
<Ixslvariable>
<xsl:value-of select="concat(' L ', $lx," ', $ly)"/>
<Ixslotherwise>
</xsl.choose>
<fxsl template>

<j—= == ===o=
Parameters: fist space separated list of coordinate-pairs x,y

aceX used for recirslar;, accumuiated sum of x vatues {default = 0)

accy used for recursion, accurmnuiated sum of y values {default = 0)

nuimb used for recursion; number of coordinates so far {default = §)

e R T A o T R T T 0 2 0 e 0 s 0 e 2 o e et 0 o oo s e e T

59

<xsltemplate name="center-of-gravity-x'>
<xsl:param name="list"/>
<xsi:param name="accX" select="0"/>
<xsl:param name="accY" select="C"/>
<xsi:param name="riumb" select="0"/>
<xsl:variable name="wlist" select="normalize-space($list)'/>
<xsl:variahle name="cpair’ select="substring-before{$wlist, y7>
<|-- works itke that. ¥, y screen coordinates are stored —>»
<xslvariable name="x">
<xsl: call-template name="transform-x">
<xs|:with-param name="coordinate-pair" select="$cpair"/>
</xsl-call-template>
</xslvariable>
<xsl.variabfe name="y">
<xsl:call-template name="transform-y">
<xsl:with-param name="coordinate-pair* select="$cpair'/>
</xslcall-template=
<fxsi:variable>
«xshvariable name="rest" select="substring-after($wlist,' ') "/>
<xsh.choose>
<!—template is called recursively, adding the current to the accumulated vaiues —>
<xsl:when test="string-length($rest) > 0">
<xshcall-temptate name="center-of-gravity-x">
<xsl:with~-param name="list" select="$rest"/>
<xsi:with-param name="aceX" select="8accX + $x*/>
<xsl:with-param name="accY" select="$accY + $y"/>
<xst:with-param name="numb" select="$numb + 1"/>
</xsl.caltHtemplate>
<fxsl:when>
<xslotherwise>
<xsi value-of select="round{$accX div $numb}'/>
</xsl.otherwise>
<fwsl.choose>
</xsttempiate>

<l mmwmmEw = == ===
center-of-gravity-y. calculates the center of gravity of a set of points. The same remark as
center-of-gravity-x applies.
Parameters: list space separated list of coordinate-pairs x,y
acch used for recursion; accumuiated sum of x vatues {default =)
accY used for recursion; accumuiated sum of y values (default =)
numb used for recursion; number of coordinates so far {default = G}
<xsl-template name="center-af-gravity-y">
<xsl:param name="list"/>
<xsl:param name="accX" select="0"/>
<xsl:param name="accY" select="0"/>
<xskparam name="numb" select="0"/>
<xsl:variable name="wlist" select="normalize-space{$list)r>
<xsl:variable name="cpair’ select="substring-before($wlist,’ ')"/>
<xslvariable name="x">
<xsl: call-temptate name="transform-x">
<xsl:with-param name="coordinate-pair' select="$cpair"/>
<fxsl:cal-template>
<fxslvariable>
<xsh:variable name="y">
<xsl call-template name="transform-y">
<xsl'with-param name="coordinate-pair" select="$cpair"/>
<fxsl calltemplate>
</xshvariable>
<xsl:varable name="rest" select="substring-after($wiist’ ") "/
<xsi:choose>
<xshwhen test="string-length($rest) > 0">
<xsl:call-template name="center-of-gravity-y'>
<xsl;with-param name="list" select="$rest"/>
<xsl:with-param name="accX" select="$accX + $x'/>
<xsl:with-param name="accY" select="$accY + $y'/>
<xs!:with-param name="numb"” sefect="$numb + 1°/>
</xsl cail-template>
<fxs\:when>
<xsl.ctherwise>
<xsl:value-of select="round($accy div $numb)"f>
<fxsl:otherwise>
<fxsl:choose>
</xsl'template>
PO e e n

60

Tempiate coordinates: used to mark peints

<xsltemplate match="coordinates">
<xsf:cal-template name="mark-points">
<xsl:with-param name="list" setect=""/>
</xslcall-template-
</xsltemplate>

<!
mark-points: marks point with circles
Parameters: list space separated list of coordinate-pairs x,y

<xskiemplate name="mark-points">
<xs}.param name="list"/>
<xshvariable name="wlist” select="normalize-space($list)'/>
<xshvariable name="cpair’ select="substring-befora($wiist, 'y"/>
<xsl:variable name="x">
<xslcall-template name="transform-x">
<xsl:with-param name="coordinate-pair” select="$cpair'/>
</xs!.call-template>
</xslvariable~>
<xsl:variable name="y">
<xsl: cali-template name="transform-y">
<xskwith-param name="coordinate-pair" select="$cpair/>
<fxsi:cal-template>
</xsl.variable>
<xsl.variable name="rest’ select="substring-after{$wilist,' '} "/>
<xs!:choose>
<xshwhen test="string-length($rest) > 0">
<xst.eall-template name="mark-points">
<xstwith-param name="{ist" select="%rest"/>
<ixskecalHemplate>
<xsl-element name="circle" namespace="">

<xsl:attribute name="cx"><xsl:value-of select="$x"/></xslattribute>
<xshattribute name="cy"><xs!:value-of select="3y"/></xsl.attribute>

<xsi:attribute name="r">1</xsl:attribute>

<xsi:attribute name="style">fill: red; stroke:red; stroke-width:.10; </xsl attribute>

</xsl element>
<fxsl:when>
<xst otherwise/>
<txsl.choose>
</xs|.template>
</xsl:stylesheet>

61

APPENDIX 11 LINE.XSL

e Project - Integrated XML and GML in Geography Information System
Developer : Mardiana Binti Abdut Rahman
D - 1808
Institution : University Technologi PETRONAS
Document Description . This document consist of eXtensible Stylesheet Language

Transformation{XSLT). This stylesheet will transform the GML
into SVG and will be viewed in web browser >

<!-- SCHEMA DECLARATION —>

<xsl:transform xmins:xs]="hitp:/fwww.w3.0org/1998/X 8L Transform™ version="1.0"
xmins:saxon="http:/ficl. com/saxon” xmins: Extfun="/org.opengis. gmi.StyleExt"
xralns:dink="http: fvww. w3.org/1888/xiink" xmins: gmi="http:/fwww. opengis. net/grl”
xmins:gml. tm="http:/fwww. opengis. net/gmitemporal” xmins:wis="http:/f/www. galdos. cominwfs"
xmins:exp="nttp:./fwww.opengis. net/examples">

<l-- DEFINE BOUNDING BOX ELEMENT -->

<xsloutput indent="yes"/>

<xsl:param name="CONVTYPE">pixel</xsl:param>
<xsl:param name="WIDTH">500</xs): pararr>
«<xsl:param name="HEIGHT">400</xs1. param>

<|- BODY —>

<xslvariable name="sumY">
<xsl:applytemplates select="exp:FeatureCollection/gml-boundedBy/gml: Box/gmi coordinates”
mode="sumY'/>
</xsl variable>
<xsl.variable name="scaleX">
<xshapply-templates setect="exp:FeatureCollection/gml: boundedBy/gml:Boxfgml:coordinates”
mode="scaleX"/>
</xskvariable>
<xshvariable name="scaleY">
<xslapply-templates select="exp:FeatureCollection/gml: boundedBy/gmi: Bax/gml:coordinates”
mode="scaleY"/>
<fxshvariable>
<xsl:variable name="x1">
<xsl:apply-templates sefect="exp:FeatureCallection/gml: boundedBy/gmi: Box/gml.coordinates”
mode="x1"/>
<fxstvariabte>
<xshvariable name="y1">
<xsl:apply-templates select="exp:FeatureCollection/gml:boundedBy/gml: Box/gml-coordinates"
mode="y1"/>
</xskvariable>
<xshvariable name="minus">-1</xsl:variable>
<xslvariable name="one">1</xskvariabie>
<xshvarable name="inverseScale">
<xshvalue-of select="$one div $scaleX’/>
<fxsl.variable>
<xsktemplate match="/">
<xs|:.efement name="svg">
<xsl-atiibute name="width"><xskvalue-of select="SWIDTH"/></xsl attribute>
<xsl:attribute name="height"><xsl:value-of select="SHEIGHT"/></xsl attribute>
<xsl-element name="defs">
<xsl.element name="g">
<xstattribute name="id">Lib1_S</xs|. attribute>
<xslif test="3CONVTYPE="pixet”>
<xsl:attribute
name="transform">scale(0.25}</xshattribute>
<fxskif>
<xskif test="§CONVTYPE="user">
<xs!:attribute name="transform">scale{<xsl:value-of
select="$inverseScale'/>} scale{0.25) matrix{1 0 0 -1 0 70)</xsl:attribute>
<fxskif>
<xslelement name="path">
<xsl:attribute name="sfyle">fill-
rule:nonzero; fill#EBF322; stroke:#000000; stroke-miterlimit:4; </xs. attribute
<xsi:attribute
name="d">M68.262,74 51H0.5V37.255n67.762V74.51z</xsl attribute>
</xskelement>

62

<xstelement name="path">
<xsi:attribute name="style">fill-
rule:nonzero: fill. #EBF322; stroke: #000000; stroke-miterlimit:4; </xsl. attribute=
<xslattribute
name="d'>M13.783,17.647h41.176</xs| altribute>
<fxsi element>
<xsl:element name="path">
<xsl:attribute name="style">fill-
rule:nonzero; fill- #EBF322; stroke: #000000; stroke-miterlimit. 4; </xsk atiribute>
<xsl:attribute
name="d">M31.44,0v35.294</xs attribute>
</xsl element>
</xsl element>
<fxslelement>
<xskif test="$CONVTYPE = 'pixel">
<xsl:apply-templates select="ffexp:RL1U/gm!centerLineOf'
mode="Ling"/>
<fxslif>
<xskif test="SCONVTYPE = 'user">
<xsl.element name="g">
<xsl-attribute name="{ransform">scaie{<xs value-of
select="$scaleX /> <xshvalue-of select="$scaleY"/>) translate(<xsl.value-of setect="$minus*$x1"/> <xshvalue-of
select="$minus*$y1"/>) matrix(1 ¢ 0 -1 0 <xsl.apply-templates select="/gml: boundedBy/gml:Box/gml:cocrdinates"
mode="sumY"/>)</xslaftribute>
<xsl:apply-templates select="Hexp:RL1U/gmi centerLineOf"
muode="Ling"/>
</xsl-element>
<fxshif>
<fxstelement>
</xsl template>
<xsltemplate maich="gml:boundedBy/gm!|:Box/gml:coordinates” mode="scaleX">
<xsl.value-of
select="Extfun:getScaleX{string{3WIDTH), string{text()}, string{@decimal), string(@cs), string{@ts))" />
</xskiemplate>
<xsktemplate match="gml: boundedBy/gm!:Box/gml:coordinates” mode="scaleY">
<xsl:value-of
select="Extfun:getScaleY (string{SHEIGHT), string(text(}), string{@decimal), string(@cs), string(@ts))'/>
<fxsliemplate>
<xsltermplate match="gml:boundedBy/gml:Box/gml:coordinates” mode="x1">
<xsl:value-of select="Extfun:getX1(string(text(}) string{@decimal),string(@cs),string(@ts))" />
<fxshtemplate>
<xsltemplate match="gml:boundedBy/gml:Box/gmt:.coordinates" mode="y1">
<xsl:value-of select="Extfun;getY 1(string(texi(}),string(@decimal), string{@cs),string(@ts))'/>
<fxsl:template>
<xsltemplate match="gml: boundedBy/gmi:Box/gml:coordinates” mode="sumY">
<xsl:value-of
select="Bxtfun:getsumY (string({text()), shing(@decimal), string{@cs), string{ @ts))"'/>
<fxsl template>
<xsl.template match="gml:boundedBy/gml:Box/gml:coordinates” mode="inverseScale">
<xsl:value-of
select="Extfun:getinverseScale{string({text(}), string(@decimal), string{ @os), string(@ts))"/>
<fxsltemplate>
<xsl:template match="exp:RL1U/gml.centerLineOf' mode="Line">
<xsl:variable name="strokeWidth">
<xshvalue-of select="1"/>
<fxslvariable>
<xsi:variable name="rSiroke">
<xsl;value-of select="255"/>
</¥skvariable>
<xsl:variabte name="gStroke">
<xsl-value-of select="0"/>
</xslvariable>
<xskvariable name="hStroke">
<xshvalue-of sefect="0">
</¥shvariable>
<xsl:variable name="idVar">
<xsh call-template name="getAnc">
<xsl:with-param name="featureNama" select=""exp:RL1U"/>
</xsl call-template>
<fxstvariable>
<xsi:element name="path">
<xskif test="$CONVTYPE="pixel">
<xsl:attribute name="style">stroke-width: <xsi: value-of
setect="§strokeWidth'/> filk none; stroke: rgb(<xsl value-of select="§r8troke"/> <xslvalue-of
select="8gStroke"/>, <xsl-value-of select="$bStroke"/>); </xshattribute>

63

<xskif>
<xskif test="3CONVTYPE="user"'>
«<xsk attribute name="style">stroke-width: <xslvaive-of

select="$strokeWidth*$inverseScale '/~ il none; stroke: rgb(<xsl:value-of select="$§rStroke"/, <xsT value-of
select="$gStroke"/>, <xst value-of select="$bStroke"/>}, </xsh attribute>

<fxsl#>

<xslattribute name="id"><xsl:value-of select="8idVar'/></xs!:attribute>

<xsl.attribute name="d"><xst:apply-templates select="_/gmi.coordinates”
mode="Path"/></xslattribute=

<fxsl.element>
<fxsltemplate>

<xs!:template name="getAnc">
<xsl:param name="featureName"/>
<x¢l:.choose>
<xsi:when test="name{.) = $featureName">
<xshvalue-of select="/@ID"/>
</xslwhen>
<xsl.otherwise>
<xs|:-for-each select="_">»
<xskcall-template name="getAnc">
<xsl:with-param name="featureName"
select="$featureName"/>
</xsl.calHemplate>
</xsl.for-each>
<fxsl: otherwise>
</xsl:choose>
<frsttemplate>
<fxsl:transform>

<i—END -->

64

