
IPv6 Network Monitoring Tool

by

Yogita Kanesin

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Technology (Hons)

(Information Systems)

JUNE 2004

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

-t

I- (pnuMw v^WxkIcj- mr^l^si\

(\ [{% -~\\ri-9\Z

Approved by,

CERTIFICATION OF APPROVAL

IPv6 Network Monitoring Tool

By

Yogita Kanesin

A project dissertation submitted to the

Information Systems Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirements for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION SYSTEMS)

(Miss. Rozana Kasbon)

UNIVERSITI TEKNOLOGI PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that original work contained herein have not been undertaken or done by

unspecified sources or persons.

Jfyvdk
(YOGITA KANESIN)

in

ABSTRACT

IPv6 is a new version of the internetworking protocol designed to address the scalability

and service shortcomings of the current standard, IPv4.Unfortunately, IPv4 and IPv6 are

not directly compatible, so programs and systems designed to one standard can not

communicate with those designed to the other. Consequently, it is necessary to develop

smooth transition mechanisms that enable applications to continue working while the

network is being upgraded. In this paper the author presents the design and

implementation of a network monitoring tool for the latest Internet Protocol; IPv6

which is designed for Microsoft Windows platform. The development of network has

increased the need to monitor the nodes that is operating across the same network. The

network monitoring tool aims to capture and analyze IP related packets (IPv6 packets)

before executing report on the results found.

IV

ACKNOWLEDGEMENT

I would like to take this opportunity to thank those who have helped make this project a

success. First and foremost, I would like to acknowledge God for it is through Him that

I garner the strength to proceed during times of difficulty. I would also like to thank my

parents for their unwavering support and encouragement. They have been and always

will be there for me through thick and thin and for that I will be eternally grateful. I

would also like to extend my greatest gratitude to my supervisor, Miss Rozana Kasbon,

for her guidance and support throughout the duration of this project. Coupled with your

patience and understanding, I have managed to accomplish this task with minimum

difficulty. Finally, I take this opportunity to thank all those who have helped me in one

way or another in completing this task. Although I am unable to list down all your

names, your assistance is greatly appreciated. Thank you.

Certification

Abstract

Acknowledgement

Table of Contents.

List of figures

List of tables

Abbreviations

CHAPTER 1:

CHAPTER 2:

TABLE OF CONTENTS

INTRODUCTION

1.1 Background of Study

1.2 Problem Statement

1.3 Objectives and Scope of Study

LITERATURE REVIEW AND THEORY

2.1 Linux Based Monitoring System

2.2 Enabling Ethernet card into promiscuous mode.

2.3 Generating report in Linux

2.4 Socket Binding in Linux

2.5 Packet Sniffer (Sniffem application)

2.6 Packet Capturing Technologies

VI

n

IV

v

VI

Vll

vni

IX

CHAPTER 3: Methodology or Project Work 12

3.1 Procedure Identification 12

3.2 Project Work 15

3.3 Tools Required 22

CHAPTER 4: Results and Findings 23

4.1 Winpcap Installed into developer's computer 23

4.2 Packet Capturing using packet.dli function 23

4.3 Packet filtering and analysing 26

4.4 Application of NPF driver in the networkmonitoring tool

30

CHAPTER 5: Conclusion 31

REFERENCES 34

APPENDIXES 35

Vll

LIST OF FIGURES

Figure 1 Sample of Report Generated Via the Wireless Monitoring Tools on *

Linux Platform

Figure 2 Server socket binding under Linux platform

Figure 3 Flow Chart of project work for semester

Figure 4 Example of an IP datagram carrying ICMP message for

transmission over Ethernet

Figure 5 Protocol stack for IP over Ethernet

Figure 6 NPF inside NDIS

Figure 7 Components of Winpcap

Figure 8 IPv6 Header

Figure 9 Display of total packets captured

LIST OF TABLES

Table 1 Project Methodology

Table 2 Pcap functions used in the program

Table 3 Type of ICMPv6 messages

vm

BPF

IPv4

IPv6

ICMP

ICMPv6

LAN

MAC

NDIS

NPF

OS

OSI

TCP

TCP/IP

UDP

WAN

ABBREVIATIONS

BSD Packet Filter

Internet Protocol version 4

Internet Protocol version 6

Internet Protocol Control Message

Internet Protocol Control Message version 6

Local Area Network

Medium Access Layer

Network Driver Interface Specification

Netgroup Packet Filtering

Operating System

Open Systems Interconnect

Transmission Control Protocol

Transmission Control Protocol/Internet Protocol

User Datagram Protocol

Wide Area Network

IX

CHAPTER 1

INTRODUCTION

1.1 Background of Study

IETF, Internet Engineering Task Force, started looking for a successor to IPv4 in late

1990 when projections indicated that the address field of IPv4 would become a limiting

resource. In 1993 IETF investigated several proposals a described the technical criteria

for choosing the successor. In January 1995 was published and it describes a

recommendation for the Internet Protocol Next Generation, IPng, as IPv6 was called

back then. A specification for IPv6 was published in the end of 1995.

IPv6 (Internet Protocol version 6) is a new version of the internetworking protocol

designed to address the scalability and service shortcomings of the current standard,

IPv4 (Internet Protocol version 4). The current internetworking protocol, IPv4

eventually will be unable to adequately support additional nodes or the requirements of

new applications. IPv4's 32-bit address was generous when it was first introduced, but

the addresses are running out fast. This shortage has caused serious difficulties

particularly in companies- that have gone ahead and allocated made-up addresses for

their internal networks. This works of course until the company decides that it needs to

be connected to the global Internet, at which point some unpleasant things can start

happening. If those made-up IP addresses are unallocated, then the chances are that the

Internet connection would not be problematic, until of course they are allocated. By

expanding the address space we make the allocation of legal addresses easier, and

remove the need for network managers to make up addresses to new host and

workstations.

IPv6 is a new network protocol that features improved scalability and routing, security,

ease-of-configuration, and higher performance compared to IPv4. IPv6 increases the IP

addresses from 32 bits to 128 bits to support more levels of the addressing hierarchy, a

much greater number of addressable nodes, and simpler auto-configuration.

The implementation of IPv6 over the network has brought some major changes in the

network environment. These features have made IPv6 more robust and convenient.

These features include;

• Stateless and stateful Configuration - IPv6 supports both stateful and stateless

address configurations. IPv6 will work with or without a DHCP server. With

stateless address configuration, hosts on a link automatically configure

themselves with IPv6 addresses for the link (called link-local addresses) and

with the addresses derived from prefixes advertised by local routers. Even in the

absence of a router, hosts on the same link can automatically configure

themselves with link-local addresses and communicate without manual

configuration.

• Packet Authentication is mandatory - Security will be improved as the IP

stack now natively supports extensions for authentication, data-integrity and

confidentiality (encryption).

• Streamlined IPv6 headers - IPv6 header has a new format that is designed to

keep header overhead to a minimum. This format is achieved by moving both

nonessential fields and option fields to extension headers that are placed after

the IPv6 header. The streamlined IPv6 header provides more efficient

processing at intermediate router.

• Built-in Security - Support for IPSec is an IPv6 protocol suite requirement.

This requirement provides a standards-based solution for network security and

promotes interoperability between different IPv6 implementations.

Real-Time Performance- IPv6 offers a packet prioritization feature that

provides the real-time and near real-time applications an improved response

time. Consequently, IPv6 will become the protocol of choice for those

applications.

Better Support for QoS (Quality of Standard) - New fields in the IPv6

header define how traffic is handled and identified. Traffic identification using a

flow label field in the IPv6 header allows routers to identify and provide special

handling for packets belonging to a flow, which is a series of packets between a

source and destination. Because traffic is identified in the IPv6 header, support

for QoS can be achieved even when the packet payload is encrypted through

IPSec.

1.2 Problem Statement

1.2.1 Problem Identification

Most of the network monitoring tools designed is available for IPv4 only. As IPv6 will

be deployed in the near future, current applications used such as the network monitoring

tool for IPv4 is not directly compatible for IPv6. Thus, a network monitoring tool

embedded with functions to capture IPv6 packets in the network.

1.2.2 Significant of the Project

In the long term, the main goal of IPv6 is to replace IPv4 due to the deficiency in this

protocol designed in the 1970. During this transition time, IPv6 services must be

deployed in the Internet for organisations to slowly but steadily move their network to

IPv6 protocol. Thus, this application will be usable to the network administrators to

capture and analyse all the IPv6 packets in a network as well for monitoring purposes.

1.3 Objectives and Scope of Study

1.3.1 Objectives

The objectives thatare to be achieved bythe end of thisproject:

1. To develop an agent that captures IPv6 packets in the network.

2. To develop an agentthat analyses and categorizes the captured packets.

1.3.2 Scope of Study

The scope of study for this project will cover on the research on IPv6 packet capturing,

socket programming, analyzing and categorizing the captured packets on the network.

Study will also be carried out on how to collaborate all the resources to develop a

functioning network monitoring tool for IPv6. This project is relevant to be carried out

as IPv6 will be deployed in a few years time, we should be ready to accept and use it.

Thus in a way of preparation to deploy IPv6 in the network field, it is better to beready

with appropriate application such as the network monitoring tool. This monitoring tool

is similar to other monitoring tools butis expanded to read IPv6 packets on the network.

Since IPv6 uses long address representation and stateless address configuration method,

this tool is essential to monitor the number of nodes (computers) on a network and the

source and destination of the sent packets.

CHAPTER 2

LITERATURE REVIEW AND THEORY

"Years ago, nay Sayers claimed that the IP address system would soon run out of

addresses and that we would be stuck in an Internet Protocol version four (IPv4) world,

teetering towards disaster. The only way out was to migrate to the next-generation

address paradigm, IPv6. But few have made that migration, particularly in the U.S., and

the sky has yet to fall, thanks to tricks such as Network Address Translation (NAT),

which helps organizations conserve IP addresses. But now more and more IPv6-

compatible products are hitting the market, sparking more interest in the technology."

(Jim Rendon, News Writer, 29 Dec 2003)

2.1 Linux Based Monitoring System

This monitoring tool was built in Linux platform to enable real time monitoring to be

done. With the use of 3rd party device drivers and libpcap, the system was able to be

built without much complication. With the resources and raw packets provided, further

analysis on the packets can be executed. The usage of libpcap is mainly to enable

packet capturing to be done across the network.

2.2 Enabling Ethernet card into promiscuous mode (in Linux platform)

The basic design and architecture of Wifi (in this research project, researcher worked

with wireless network cards) network cards varies from one vendor to another. The

behavior each react with the operating system is another issue, for example most cards

do not support "promiscuous" mode. The tool becomes dependent to device drivers

that come from each vendor to provide with the communication tools. Most of these

drivers also have limited access and functions inhibiting us from developing monitoring

tools with it. Developing or creating your own device driver is not an easy task as a

substantial amount of expertise in device driver development is needed. At the end, the

tool is dependent on 3rd party device drivers which are scarce. This issue is more

apparent in Microsoft Windows operating systems as there are very few open source

resources. Fortunately, Linux operating systems provide more open sources and has 3rd

party device drivers to support multiple Wifi devices. These drivers allow us to retrieve

raw packets from the wireless network interfaces as if they are Ethernet cards with

promiscuous capabilities.

2.3 Generating report in Linux

vishs! S8BU HJK
> 1 No 1 Source Destination 'j Protocol | Information ' g

Start-
4w— 'lll'd. I lid. UllMIUlfll

(body) unhandled IEEEB02.11 frame type (3) ffi
® 36 n/a n/a unknown (body) unhandled IEEE802.11 frame type (3) m
stop 37 n/a n/a IEEE802.11b assoc request *.:

(body) unhandled IEEEB02.11 frame type (3) |
€

36

39 n/a n/a unknown (body) unhandled IEEE802.11 frame type (3) §
Close 40

41

n/a

n/a

n/a

n/a

unknown

unknown

(body) unhandled IEEE802.11 frame type (3) |
(body) unhandled IEEE802.11 frame type (3) |

A? n/a n/a unknown (body) unhandled IEEE802.11 frame type (3) j
43 n/a n/a unknown (body) unhandled IEEE802 11 frame type (3) J
44 n/a n/a unknown (body) unhandled IEEEB02.11 frame type (3) i
45 n/a n/a IEEE302.11b assoc request |j
4fi 30:6:4:0:1 tftf:0:20 9c:13 unknown (body) unhandled IEEE8Q2.11 frame type (3) H
47 n/a n/a unknown (body) unhandled 1EEE602.11 frame type (3) ffl
4a n/a n/a unknown (body) unhandled IEEE802.11 frame type (3) M
43 n/a n/a unknown (body) unhandled IEEE302.11 frame type (3) M
50 n/a n/a unknown (body) unhandled IEEE802.11 frame type (3) m
51 n/a n/a unknown (body) unhandlad IEEE802.11 frame type (3) 9

<| I* !

No
Packet

Size (byte)
Type Subtype BSS!D

Destination

Address

Source•

Address

Header
Length

timestam'jj ^j

1 60 unknown 77.0:6.601 ff:fft0:4:76:de 8:0:6:4:01 0 - |f
? 92 unknown n/a n/a n/a 0 m

3 60 unknown n/a n/a n/a 0 "ffl
4 243 unknown n/a n/a n/a 0 |j
R 92 unknown n/a n/a n/a 0 S|

1 6 EG management assoc request n/a n/a n/a 24 - M

1 7 60 unknown 5a:6c:8:6:0:1 ff:fr'0:20:3c-13 6:0:6:40-1 0 - |j
a 60 unknown n/a n/a n/a 0 "11

1 a 93 unknown n/a n/a n/a 0 - 1
m 60 unknown n/a n/a n/a 0 " ffi
n 93 unknown n/a n/a n/a 0 - g
i? EC unknown n/a n/a n/a 0 - |
i rt 60 unknown n/a n/a n/a 0 "1
14 96 unknown n/a n/a n/a 0 1
15 216 unknown n/a n/a n/a 0 &

1£_ 9? Jioj&nw . n/a .n/s no ,n • •- - - Z

*t -' Zm&k&aM : *'' "Sr- »*;.,.-,&. 1.1:..- ^v,,^;^:-a^iw^r^:'i^ft^^^»^^^^ap^iJ^

Figure 1: Sample of report generated via the wireless monitoring tool on Linux

platform

The report generated shows the source address, destination address and the type of

packets passed through the network. The report generated is on real time basis, and

generated as an on going process for the given time extend (for example 30-40

seconds).

2.4 Socket Binding in Linux

Unlike the usual WinPcap used in normal windows environment, Linux uses netstat for

socket binding purposes in order to sniffthe packets in network. Example of retrieved

packets from the network under Linux is as Figure 2 below;

netstat -nlptu
Active Internet connections <only servers)
Proto Recv-Q Send-Q Local Address
-* PID/Program name
top 0 0 0.0.0.0:32768
-i 1258/rpc.statd
tcp 0 0 0.0.0,0:32769
-. 1502/rpc.mounts
tcp 0 0. 0.0.0.0:515
-f 22433/lpd Waiting
tcp 0 0 1.2.3.1:139

-. 1746/smbd
tcp 0 0 0.0.0.0:111
-f 1230/portmap
tcp 0 0 0.0.0.0:6000

-* 3551/X
tcp 0 0 1.2.3.1:8081
-i 18735/junKtouster
tcp 0 0 1.2.3.1:3128
-i 18822/(squid)
tcp 0 0 127.0.0.1:953
-t 30734/named
tcp 0 0 ::ffff;1.2.3.1:993

-» 6742/xinetd-ipv6
tcp 0 0 : s:13
-> 6742/xinetd-ipv6
tcp 0 0 ;:f£ff:1.2.3.1:143
-i 6742/xinetd-ipv6
tcp 0 0 :::53
-i 30734/named

tcp 0 0 :::22
-. 1410/sshd
tcp 0 0 :::6010

Foreign Address State

0.0.0,0;* LISTEN

Q.0.0.0:* LISTEN

0.0.O.O:* LISTEN

0.0.0.0;* LISTEN

0.0.O.O:* '. LISTEN

0.0.0.0:* listen

0.0.0.0:* . LISTEN

0.0.0.0:* LISTEN

0.0.0.0;* listen

... * LISTEN

. ;.* LISTEN

... * • LISTEN

:•:: * .LISTEN

... * LISTEN

:::* , LISTEN

Figure 2: Server socket binding under Linux platform

The packet captured shows the type of header (TCP or UDP) and exhibits the status of

the node in the network. A monitoring tool in Linux based platform uses the same

concept as Winpcap in sniffing the packets across the network, and decoding them

according to the IP header. The difference though is due to the usage of OS platform. In

a windows based system, packet capturing is best appliedusing Winpcap.

2.5 Packet Sniffer (Sniff em application)

A packet sniffer is a wiretap device that plugs into computer network to capture the

information on the packets sent over the network. Most popular way of connecting

computers is through Ethernet. Ethernet protocol works by sending packet information

to all the hosts on the same segment. The packet header contains the address of the

destination and source machine. Packets are sniffed by allowing the network card to be

in a promiscuous mode. A machine that is accepting all packets, no matter what the

packet header says, is said to be in promiscuous mode. Sniffem application uses the

promiscuous mode in the NDIS driver to enable the card to listen to data traffic. NDIS

is a Windows device driver interface that enables a single network interface card (NIC)

to support multiple network protocols. For example, with NDIS, a single NIC can

support TCP/IP, IPX, and more protocols. Sniffem application supports both high and

low level protocols. High level protocol includes IP6 Header Compression, IPv6

Control Message Protocol and low level protocol includes CMP and IGMP. The

requirement to implement the Sniffem technology includes a network card which is set

into promiscuous mode.

2.6 Packet Capturing Technologies

"The ability to capture and reconstruct a network conversation is a crucial component to

any security administrator needing to investigate potential security incidents. A well

executed packet capture or "wire tap" can be instrumental in determining what activity

a hacker is up to on your network, what trade secrets are being transmitted illegally or

what the latest malware is upto onyour network." - Stevie Hendrie, steviehendrie.com

Stevie Hendrie.com has reviewed on two sufficientpacket capturing tool in the market,

TCPDump and Ethereal.

TCPDump is perhaps the most widely used packet capturing software in the Unix

environment. Originally developed by the Network Research Group at Lawrence

Berkeley National Laboratory, it is now available under the Open Source BSD License.

TCPDump utilizes the libpcap packet capture library which makes it a robust system

that is independent as a packet capturing tool. In addition to the available Unix ports, it

has also been ported to Windows as WinDump. Like its Unix counterpart, it utilizes an

independent packet capture library called WinPCAP.

Though, the application is a completely command line driven application without user

interface being provided. This howevercauses discomfort among the users who are not

familiar with command line formatting. With over 100 possible command line

arguments and expressions, TCPDump can be extremely overwhelming to people who

are either not very familiar with TCP/IP concepts or comfortable with command line

interfaces.

The strength of TCPDump includes;.

1. Robust command line options allow for extremely granular filtering of packet

captures. The command line allows user to easily capture as little or as much

information as you want. Additionally, the tool can display only the headers of

the communication or optionally write the entire payload to a file.

2. Supports most network protocols. Specifically ethernet, fddi, token ring, ip,

ipv6, arp, rarp, decnet, tcp and udp.

3. Excellent filtering capabilities. It allows user to filter based at incredible

granularity on source, destination, protocol, interface, host, network, and size.

Ethereal on the other hand is still officially a beta product. It is well known as "The

world's most popular network protocol analyzer" with support for multiple platforms

and a graphical user interface. It uses Win32 port, like WinDump requires the

WinPCAP packet capture library in order to be functional. The primary interface for

Ethereal is graphical; however, it does offer some command line support for data and

capture manipulation. The significant advantage of the graphical interface is the ability

to viewthe capture files within the same application. The GUI offers easy conversation

navigation as well as colorcoded search and identification. The graphical interface does

10

allow for both capture and viewing filtering allowing for quick and easy data viewing

within the capture window. The strength of Ethereal includes;

1. Supports numerous packet capture software's files including tcpdump and a

number of other commercial and freeware packages.

2. Dissection support of over 440 protocols.

3. Excellent platform support.

4. Packet capturing on real time basis.

However the shortcomings of Ethereal are in regards to its filtering capabilities. Though

Ethereal is a graphical application, the filtering configuration is still handled through

regular expression type syntax. This syntax can be confusing to a newcomer and

consists of hundreds of possible combinations.

11

CHAPTER 3

METHODOLOGY/ PROJECT WORK

3.1 Procedure Identification

There are five phases in doing this project. The phases involved are preliminary study,

analysis, design, development, testing and evaluation. Table 3.1 discuses on the

activities carried out during each phases;

i. Preliminary Study

2. Analysis

Topic Selection

• Studies carried out to find a suitable

project title.

• Define the project's problem

statement, objective, and scope of

study.

Literature Review

• Read and study the existing ideas and

comments on IPv6, existing network

monitoring tool, winpcap (packet

capturing), and C#.net.

Information Gathering

• Looking up for sources of information

such as the internet, written research

papers and related books.

Depth of analysis

12

Design

Development

Testing and Evaluation

Study on the design and development

methods and concept by reflecting on

the resources collected.

Design the network monitoring tool for IPv6.

Develop application:

• Network monitoring tool developed

using C#.net

• Packet capturing using Winpcap

• Socket Programming to bind network

card into a promiscuous mode.

Testing

• Conducted to test the system

functionality and stability.

• Users to test run the system

Evaluation

• Feedback from users after testing the

application.

• Evaluate whether or not this project

has met its objectives

• Suggest recommendations for the

research project.

Table 1: Project Methodology

13

Submission of Project Title

Proiect Beeins

Literature Research and Understanding on Socket Programming

Download WinPCAP user manuals and libpcap usage

Design of interface

Set network card to promiscuous mode

Set socket to listento packetsrunningacross the network
Packet a

Development of packet/ raw datafiltering (according to packet header) Packet tl

Analyses of packetscapturedafter beingfiltered and generate report

Performancetesting carried out to comparewith the objectivesset

Dissertation Report Oral Presentation

Project Completes

Figure 3: Flow Chart of project work for semester

14

3.2 Project Work

After the implementation of Winpcap in capturing the packets running on the network,

the system used in packet filtering is shown below. The results are discussed in

Chapter 4. The IP datagrams are transmitted by encapsulation in Ethernet packet

(Medium Access Control (MAC) frames). An example of an ICMP packet that is

encapsulated is shown Figure 4 below.

Ethernet

Header
User Data

Figure 4: Example of an IP datagram carrying ICMP message for transmission

over Ethernet

The first layer that the packet will pass through is the data link layer (MAC layer)

before it is processed in the following layers. The protocol stack is shown in Figure 5

below together with the position of each protocol in each layer within the Open System

Interconnection (OSI) reference model.

15

OSI laver

Layer 3
Network Layer

(NL)

Layer 2
Data Link Layer

(DL)

Layer 1
Physical Layer

(PL)

-—-^__^ Medium
T^*Access

"**^ Control

IP •

Logical Link Control (LLC)

Framing ~~ —

Figure 5: Protocol stack for IP over Ethernet

The following summary shows the processes performed by an Agent in an IPv6

network. It is assumed that the agent is residing on a node that is connected to an

Ethernet network. The raw packets captured using the pcap library will be processed as

follows (to filter for ICMPv6 packets)

i) MAC Protocol

• The source MAC address and the destination MAC address will be

retrieved from the Ethernet packet.

• The type field in the packet will be checked. Only type field value of

0x86dd (IPv6) will be processed. If the types are other than IPv6

such as value 0x0806 for Address Resolution Protocol (ARP), the

packet will not be processed.

• The protocol type will be checked to confirm that it is IPv6 packet. It

is stated in the version field in the IPv6 header (Deering, S., Hinden,

R., 1998).

16

• The packet will be checked if the nextheader is the ICMPv6 header.

This can be obtained by checking the next header field in the packet.

The next header value for ICMPv6 is 58. If it contains other protocol,

the packet will be dropped.

• The IPv6 source and IPv6 destination address will then be retrieved

from the packet.

Below are the descriptions of work done at each phase of the methodology:

3.2.1 Preliminary Study

At this stage, research is conducted to find a suitable project title. The selected title is

then submitted to the Final Year Project (FYP) Committee in order to be approved.

Once approved, the problem statement, objectives and scope of study of the project will

be defined.

3.2.2 Analysis

During the analysis phase, researches are conducted in order to view and study on

experienced people's comment on the particular topic and area of study. Apart from

reading, reliable sources are gathered in order to further support the idea applied in

developing the monitoring tool. Other developed application with similar concept is

referred to improvise and strengthen the studydone.

3.2.3 Design

At this phase of the methodology, the application will be designed. Scripting style, the

user interface and methods used in order to capture the packets and analyze them will

be identified and defined.

17

3.2.4 Development

In the development phase, the application designed will be developed. WinPCAP

header files will be used in order to capture the packets running in a network. In order to

capture the packets, socket programming will be needed to bind the network cards into

promiscuous mode which is implied to listen for packets running in a network and

receive and dissect the packet. WinPcap offers a kernel-level programmable monitoring

module which is able to calculate simple statistics on the network traffic. The statistics

can be gathered without the need to copy the packets to the application, which simply

receives and displays the results obtained from the monitoring engine. This allows the

avoidance of great part of the capture overhead in terms of memory and CPU clocks.

The monitoring engine is made of a classifier followed by a counter. The packets are

classified using the filtering engine of NPF that provides a configurable way to select a

subset of the network traffic. The data that pass the filter go to the counter, that keeps

some variables like the number of packets and the amount of bytes accepted by the filter

and updates them with the data of the incoming packets. These variables are passed to

the user-level application at regular intervals whose period can be configured by the

user. Buffers are not allocated at kernel and user level.

• NPF and NDIS driver

NDIS (Network Drive Interface Specification) is a standard that defines a

communication between a network adapter and the protocol driver (that implements for

example TCP/IP). The main purpose of NDIS driver is to act as a wrapper that allows

protocol drivers to send and receive packets on to the drivers (either LAN or WAN).

Whereas the NPF driver acts at the protocol driver allowing reasonable independence

from the MAC layer and as well as complete access to the raw traffic. NPF is able to

perform a number of different operations: capture, monitoring, dump to disk, packet

injection. Figure 6 shows theposition of NPF driver in theNDIS stack.

Application

» _.

:-fiKBd£h!' "Ofc
»""***».

NIC
DrWer

I-

Application
User

Kernel

Lew el

Figure 6: NPF inside NDIS

Events like the arrival of a new packet are notified to NPF through a callback function

(PacketJapO). Furthermore, the interaction with NDIS and the NIC driver takes place

by non blocking functions: when NPF invokes a NDIS function, the call returns

immediately; when the processing ends, NDIS invokes a specific NPF callback to

inform that the function has finished. The driver exports a callback for any low-level

operation, like sending packets, setting orrequesting parameters ontheNIC.

• Packet Capturing

During a capture, the driver sniffs the packets using a network interface and delivers

them intact to the user-level applications. The packet capture process is the most

important process of NPF. The capturing process using the NPF relies based on the

packet filtering. Packet filter is programmed to decide whether an incoming packet has

to be accepted and copied into the listening application. . A packet filter is a function

19

with boolean output that is applied to a packet. If the value of the function is true the

capture driver copies the packet to the application; if it is false the packet is discarded.

NPF packet filter is a bit more complex, because it determines not only if the packet

should be kept, but also the amount of bytes to keep. The filtering system adopted by

NPF derives from the BSD Packet Filter (BPF), a virtual processor able to execute

filtering programs expressed in a pseudo-assembler and created at user level. The

application takes a user-defined filter (e.g. "pick up all UDP packets") and, using

wpcap.dll, compiles them into a BPF program (e.g. "ifthe packet is IP and the protocol

type field is equal to 17, then return true"). The monitoring program is executed for

every incoming packet, andonly the conformant packets are accepted.

• Packet filtering

The Agent will capture IPv6 packets in the network and dissect the packet to get the

necessary information. The IPv6 packet will be captured using the pcap library, which

isdefined in FreeBSD. Pcap provides high level interface to packet capture system. It is

used to grab or sniffpackets on a network. Some of the functions defined in pcap as

shown in Table 2 will be used in decoding the packets. The reason for capturing the

raw IPv6 packets is to retrieve necessary information that will be used later for further

requesting the nodes information such asthe source and the destination address.

20

Function Description

pcap_lookupdev(c/zar *errbuf); This is used to set the Ethernet card that

will be used.

pcap_open_live(c/7<2r *device, intsnaplen,

intpromise, int tojns, char *errbuj)\

This function is used to make the Ethernet

card in promiscuous mode

pcap_compi!e(pC(3p t *p, struct

bpf_program *fp, char *str, intoptimize,

bpf u int32 netmask);

This is used to compile the string str into

a filter program.

pcap_setfilter(pc<3p_/ *p, struct

bpf_program *fp);

This function is used to specify a filter

program. We can filter the packets that

need to be captured from the network.

pcap_\oop(pcap_t *p, int cnt,

pcap handlercallback, u char *user);

It will continuously read packets from the

network until someone terminate the

application.

Table 2: Pcap functions used in the program

3.2.5 Testing and Evaluation

Testingis done to test the functionality and usabilityof the developedapplication. Thus,

the application is tested by users (students) and feedback is given by the users whether

the application has met the objectives of the research study. The system is tested by

allowing user to test it on network by copying the .exe form into user's pc.

21

3.3 Tools Required

• Free BSD, NetBSD, OpenBSD

• Windows XP, Windows 2000, and Win95/98/ME with Winpcap library

preinstalled into the Operating Systems

• NPF driver preinstalled (npf.sys installed into windows)

1 C#.Net programming tool

22

CHAPTER 4

RESULTS AND FINDINGS

4.1 Winpcap library installed into developers computer

In order to allow packets to be listened across the network, Winpcap library needs to be

installed into the computer. The main component in the Winpcap that needs to be

installed is theNPF driver. NPF is installed as the protocol driver, though it is indicated

as not the best solution in allowing packet capturing, but it allows reasonable

independence in the MAC layer as well as complete access to the raw traffic. NPF
driver is installed by downloading the setup file from Winpcap's official website. And
NPF driver is installed into the network simply by running the .exe file from the

Winpcap website.

4.2 PacketCapturing usingthe packet.dli function

WinPcap is an architecture for packet capture and network analysis for the Win32

platforms. It includes a kernel-level packet filter, a low-level dynamic link library
(packet.dli), and ahigh-level and system-independent library (wpcap.dll).

WinPcap is used more as an "architecture" rather than "library", because packet capture

is a low level mechanism that requires a strict interaction with the network adapter and

with the operating system, in particular with its networking implementation, so a simple
library is not sufficient. The following figure shows the various components of

WinPcap.

23

ApoljcaHcn

'" 't
Wpcap.dll

r

Packet.'

Packets

User Level

Kernel Level

Network

Figure 7: Components ofWinpcap

First, a capture system needs to bypass the protocol stackin orderto access the rawdata

transiting on the network. This requires a portion running inside the kernel of OS,

interacting directly with the network interface drivers. This portion is very system

dependent, and it is known as a device driver, called Netgroup PacketFilter(NPF).NPF

driver offers both basic features like packet capture and injection, as well as more

advanced ones like a programmable filtering system and a monitoring engine (which

will be very applicable in the IPv6 monitoring tool). In the IPv6 monitoring tool, the

filtering system will be programmed to filter IPv6 headers (tcp, udp or ICMPv6). The

first one is used to restrict a capture session to a subset of the network traffic (e.g.

capturing IPv6 packets on the network), the second one provides a powerful but simple

to use mechanism to obtain statistics on the traffic (e.g. it is possible to obtain the

network load or the amount of data exchanged between two hosts).

24

Second, the capture system must export an interface that user-level applications will use

to take advantage of the features provided by the kernel driver. WinPcap provides two

different libraries: packet.dli and wpcap.dll.

The first one offers a low-level API that can be used to directly access the functions of

the driver, with a programming interface independent from the Microsoft OS.

The second one exports a more powerful set of high level capture primitives that are

compatible with libpcap, the well known UNIX capture library. These functions allow

capturing packets in a way independent from the underlying network hardware and

operating system.

In implementing Winpcap into the Network Monitoring Tool as a Windows Based

Application, packet.dli is preferred. Packet.dli is a dynamic link library that offers a set

of low level functions to:

• Install, start and stop the NPF device driver

• Sniff the network traffic

• Send packets to the network

• Obtain the list of the available network adapters

• Retrieve various information about an adapter, like the description and the list of

addresses and netmasks

• Set various low-level parameters of an adapter

The other importance of the packet.dli function is the handling of the NPF driver.

Packet.dli transparently installs and starts the driver when an application attempts to

access an adapter. This avoids the manual installation of the driver through the control

panel. In order to create an application that uses the packet.dli function;

• Include the file packet32.h at the beginning of every source file that uses the

functions exported by the dll. Packet32.h is distributed both with the packet.dli

source codeand withthe WinPcap developer's pack. It is platform-independent.

25

• Include packet.lib in the project. Packet.lib is generated compiling the packet

driver and can be found in the developer's pack.

In the application however, packet.dli is called using the Packet32h.cs class. The class

is then called in the main application form to allow the capture process to take place. An

example of a .dll function being imported into a class is shown below.

[Dlllmport("kernel32.dir)] public extern static int

GetVersionEx(ref Function.OSVERSIONINFO IpVersionlnformation);

The kernel32.dll function is imported here to get the IP address version (version 4 or 6)

to identify or differentiate IPv6 packets to IPv4 packets.

4.3 Packet filtering and analysing

The following summary shows the processes performed by an Agent in an IPv6

network. It is assumed that the agent is residing on a node that is connected to an

Ethernet network. The raw packets captured using the pcap library will be processed as

follows (to filter for ICMPv6 packets)

4.3.1 MAC Protocol

The source MAC address and the destination MAC address will be retrieved from the

Ethernet packet. The type field in the packet will be checked. Only type field value of

0x86dd (IPv6) will be processed. If the types are other than IPv6 such as value 0x0806

for Address Resolution Protocol (ARP), the packet will not be processed.

26

4.3.2 IPv6 Header

4 bits 4sbjts 8 bits :: ,-.' leblts -

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Fields:

Version 4-bit Internet Protocol Version = 6

Traffic Class 8-bit

Flow Label 20-bit

Payload Length 16-bit Length of the IPv6 payload

Next Header 8-bit Identifies the header immediately following the IPv6 header

Hop Limit 8-bit Decremented by 1 by each node that forwards the packet

Source Address 128-bit Address of the source node

Destination Address 128-bit Address of the destination node

Figure 8: IPv6 Header

27

The protocol type will be checked to confirm that it is IPv6 packet. It is stated in the

version field in an IPv6 header, shows a 6 or a 4 depending on the type of protocol that

it carries. (Version 4: IPv4 and Version 6: IPv6)

4.3.3 Next header

The packet will be checked if the next header is the ICMPv6 header. This can be

obtained by checking the next header field in the packet. The next header value for

ICMPv6 is 58. If it contains other protocol, the packet will be dropped. A node that

sends an ICMPv6 message has to determine both the Source and Destination IPv6

Addresses in the IPv6 header before calculating the checksum. If the node has more

than one unicast address, it must choose the Source Address of the message as follows:

• If the message is a response to a message sent to one of the node's

unicast addresses, the Source Address of the reply must be that same

address.

• If the message is a response to a message sent to a multicast or

anycast group in which the node is a member, the Source Address of

the reply must be a unicast address belonging to the interface on

which the multicast or anycast packet was received.

• If the message is a response to a message sent to an address that does

not belong to the node, the Source Address should be that unicast

address belonging to the node that will be most helpful in diagnosing

the error. For example, if the message is a response to a packet

forwarding action that cannot complete successfully, the Source

Address should be a unicast address belonging to the interface on

which the packet forwarding failed.

28

Otherwise, the node's routing table must be examined to determine

which interface will be used to transmit the message to its destination,

and a unicast address belonging to that interface must be used as the

Source Address of the message.

Type Meaning

1 Destination Unreachable

2 Packet Too Big

3 Time Exceeded

4 Parameter Problem

128 Echo Request

129 Echo Reply

130 Group Membership Query

131 Group Membership Report

132 Group Membership Reduction

133 Router Solicitation

134 Router Advertisement

135 Neighbor Solicitation

136 Neighbor Advertisement

137 Redirect

Table 3: Type of ICMPv6 messages

TheIPv6 source and IPv6 destination address will then be retrieved from the packet.

29

4.4 Application of NPF driver in the network monitoring tool

NPF driver allows not only the filtered packets to be displayed but it also determines the

amount of bytes to be kept. Thus, the application of the NPF driver in developing the

monitoring tools allows the application to display the source and the destination address

as well as the bytes transferred by the packets. Figure 9 shows the source and the

destination address of the captured packets as well as the bytes transferred.

i 01 DisplayTotals ;H^3HEFH1
Copy

Source ' 'fD'estinatiorv' - jiBjites ^J
00-02.a5.9b:e .1S0.0.108.25 180

00:50:ba:c2:d |160.0.108 25 ,180
160.0.108.25 1160.0.10825 1G933

00:08:a1:27:1 11G0.0.108.25 |300
00:04:38:13:2 [01:00:81:00:0 [GO '!'
00-80:48:15:9 ;160.0.i08.25 J240 , '
160.0.108.72 j00:02;3f:b9:a ;GG

00:04:38:13:2 !01:80:c2:00:0;360

160.0.108.71 hG0.ai08.25 f906

1G0.0.108.25 ;160.0.108.72 ;312
160.0.108.72 iiedo.10S.25 [301
00.0a eG.GS.a 1160.0108 25 L294
00-04-3S-13 2 |0100:81:00 0 60

00 02 3fb9.a '160 0.108.72 132 tJ

i
i ' I

"

i

'[
- i

i

•

1 ,, i

<l

Figure 9: Display of total packets captured

30

CHAPTER 5

CONCLUSION

The implementation of a networkmonitoring tool that can be extended to capture IPv6

packet on the network is applicable with the combination of Winpcap and NPF driver

being preinstalled in the operating systems. The application of NPF driver allows

reasonable independence from the MAC layer and as well as complete access to the raw

traffic. NPF is able to perform a number of different operations: capture, monitoring,

dumpto disk, packet injection. Though in developing the network monitoring tool, NPF

driver is used to capture and monitor packets running over the network.

The author proposes the development of a network monitoring tool that extends to

capture the latest Internet Protocol which is referred to as IPv6 using the inner functions

of Winpcap (NPF driver). The extension of the networkmonitoring tool to capture IPv6

packets as well over the network is relevant as many network users have changed their

IP addresses to IPv6, which compared to the previous IP address (IPv4), provides more

network facilities. Current Network Monitoring Tools designed does not cater to the

need of users to capture IPv6 packets running over the network.

The network monitoring tool proposed by the author allows users to capture the packets

running over the network and hence display statistics on the percentage of the particular

header running over the network. The captured packets are then displayed by indicating

the source and the destination address of the packet as well as the amount of bytes

carried by the packet. This complies with the objective of the project.

From the discussion in Chapter 4, it can be deduced that NPF driver is the most suitable

protocol driver that is chosen by author to be used in capturing packets over the

network. With reference to the results obtained, it can be said that NPF driver is an

31

attractive tool to be used to capture IPv6 packets over the network. With further study

and research on IPv6 implementation and transition of IPv4 to IPv6, the packets

captured can be decoded so that user can view the transmitted packets messages and

also detect the packet loss over the network.

Two objectives have been outlined for the semester. First is the development of an

agent that captures IPv6 packets over the network. Secondly to develop an agent that

filters the captured packets into packet headers, source address and the destination

address carried by the packets over the network. Both the agent were developed using

C#.Net as the programming tool and NPF driver is used as the protocol driver to allow

the network card to be in a promiscuous mode.

In future the network monitoring tool that has been designed by author can be further

developed to meet the standards of the growing network technology. Expansions that

can be done to the monitoring tool include the ability of the monitoring tool to observe

any packet loss duringthe packet transmission over the network. User can also be given

capture options, in order to choose the type of packet filtering (choose the protocol

options that user wants the tool to filter) and also the maximum number of packets to be

captured at a given time set by the user.

In addition to that, future expansion can also be done by adding buffer decoding to the

network monitoring tool. Buffer Decoding does additional clustering, reassembly and

decoding routines to offer a broad overview over the Network usage and Network

captures currently within the Buffer.

Thus, referring to the study done by the author, it is essential that applications such as

the network monitoring tool for IPv6 needs to be implemented in the near future as IPv6

will be taking over IPv4. Network users should be provided with proper application and

tools to implement and use the latest Internet Protocol - Ipv6.

32

REFERENCES

1. S. Deering and R. Hinden. Internet Protocol, Version 6. RFC 1883, December

1995.

2. J. McCann, S. Deering, and J. Mogul. Path MTU Discovery for IP version 6,

RFC 1981, Aug. 1996.

3. R. E. Gilligan, S. Thomson, J. Bound, and W. R.Stevens. Basic Socket Interface

Extensions for IPv6. Work In Progress.

4. Wireless Monitoring Tool in Linux Platform (research paper): Chua Kim Yong,

Lim Siew Ching, Phang Tze Shu (BScCS), School of Computer Science,

Universiti Sains Malaysia.

5. Deering, S. and R. Hinden, "Internet Protocol, Version 6, (IPv6) Specification",

December 1998.

6. S. McCanne and V. Jacobson, The BSD Packet Filter: A New Architecture for

User-level Packet Capture. Proceedings of the 1993 Winter USENIX Technical

Conference (San Diego, CA, Jan. 1993), USENIX.

7. A. Begel, S. McCanne, S.L.Graham, BPF+: Exploiting Global Data-flow

Optimization in a Generalized Packet Filter Architecture, Proceedings of ACM

SIGCOMM '99, pages 123-134, Conference on Applications, technologies,

architectures, and protocols for computer communications, August 30 -

September 3, 1999, Cambridge, USA

33

8. Eric Marin, EMEA Senior Consulting Engineer, "The Challenges of Filtering

IPv6 Packets", RSA Conference 2003.

9. http://www.ipv6.org/

10. http://www.ipv6forum.com/

11. http://www.bieringer.de/linux/IPv6/

12. http://www.nwfusion.com/research/ipv6.html

13. http://nrg.cs.usm.my/~tcwan/

34

APPENDICES

35

Code Values

netsourceforge.ipcap.net.EtheraetProtocols

public static final int AARP 33011

public static final int ALL 3

public static final int ARP 2054

public static final int ATALK 32923

public static final int AX25 2

public static final int BPQ 2303

public static final int CONTROL 22

public static final int CUST 24582

public static final int DDCMP 6

public static final int DEC 24576

public static final int DECDNS 32828

public static final int DECDTS 32830

public static final int D1AG 24581

public static final int DNA DL 24577

public static final int DNA RC 24578

public static final int DNA RT 24579

public static final int ECHO 512

public static final int INFTH 34925

public static final int IP 2048

public static final int IPV6 34525

public static final int IPX 33079

public static final int IRDA 23

public static final int LANBRIDGE 32824

public static final int LAT 24580

public static final int LOCALTALK 9

public static final int LOOP 96

public static final int LOOPBACK 36864

public static final int MASK 65535

public static final int MOBITEX 21

public static final int N802 2 4

public static final int N802 3 1

public static final int M8Q21Q 33024

public static final int NS 1536

public static final int PPP 34827

public static final int PPP MP 8

public static final int PPPOED 34915

public static final int PPPOES 34916

36

public static final int PPPTALK 16

public static final int PUP 1024

public static final int RARP 32821

public static final int SCA 24583

public static final int SNAP 5

public static final int SPRITE 1280

public static final int STBPDO 38

public static final int TR 802 2 17

public static final int TRAIL 4096

public static final int VEXP 32859

public static final int VPROD 32860

public static final int WAN PPP 7

public static final int X25 2053

net.sourceforge.jpcap.net.IPProtocols

public static final int AH 51

public static final int COMP 108

public static final int DSTOPTS 60

public static final int EGP 8

public static final int ENCAP 98

public static final int ESP 50

public static final int FRAGMENT 44

public static final int GRE 47

public static final int HOPOPTS 0

public static final int ICMP 1

public static final int ICMPV6 58

public static final int IDP 22

public static final int IGMP 2

public static final int INVALID -1

public static final int IP; 0

public static final int IPIP 4

public static final int IPV6 41

public static final int MASK 255

public static final int MTP 92

public static final int NONE 59

public static final int PIM 103

public static final int PUP 12

public static final int RAW 255

public static final int ROUTING 43

public static final int RSVP 46

37

public static final int TCP 6

public static final int TP 29

public static final int UDP 17

net.sourceforge.ipcap.net.IPVersions

public static final int IPV4 4

public static final int IPV6 6

38

Class Address

Held Siimm:ir\

|static Java.lang.String ATM

static Java.lang.String E MAIL

static Java.lang.String

1

IPV4 ADDR

[static Java.lang.String IPV4 ADDR HEX

i

static Java.lang.String IPV4 NET

static Java.lang.String IPV4 NET MASK

static Java.lang.String IPV6 ADDR

;static Java.lang.String IPV6 ADDR HEX

|static Java.lang.String IPV6 NET

static Java.lang.String IPV6 NET MASK

static Java.lang.String LOTUS NOTES

static Java.lang.String MAC

static Java.lang.String SNA

static Java.lang.String UNKNOWN

static Java.lang.String VM

39

PCAP Function

int pcap findalldevs ex (char *host, char *port, SOCKET sockctrl, struct pcap rmtauth *auth,
pcap if t **alldevs, char *errbuf^

It creates a list of network devices that can be opened with
pcap ooenf).

int pcap createsrcstr (char *source, int type, const char *host, const char *portf const char
*name, char *errbuf)

Accepts a set of strings (host name, port, ...), and it returns the complete
source string according to the new format (e.g. 'rpcap://1.2.3.4/eth0').

int pcap parsesrcstr (const char *source, int *type, char *host, char *port, char *name, char
*errbufl

Parses the source string and returns the pieces in which the source can
be split.

pcap t * pcap open (const char *source, int snaplen, int flags, int read_timeout, struct pcap rmtauth
*auth, char *ejrbjjf)

It opens a generic source in order to capture / send (WinPcap only)
traffic.

int pcap remoteact accept (const char *addressf const char *port, const char *hostlist, char
*connectinghost, struct pcap rmtauth *auth, char *errbuf)

It blocks until a network connection is accepted (active mode only).

int pcap rempteact close (const char *hosJ, char *errbuf)

It drops an active connection (active mode only).

void pcap remoteact cleanup ()

Cleans the socket that is currently used in waiting active connections.

int pcap remoteact list (char *hostlist, char sep, int size, char *errbuf)

Returns the hostname of the host that have an active connection with us

(active mode only).

char fakeerrbuf [PCAP_ERRBUF_SIZE+1]
activehosts * activeHosts

Keeps a list of ail the opened connections in the active mode.

SOCKET sockmain

Keeps the main socket identifier when we want to accept a new remote
connection (active mode only).

40

Packet types

Network Layer protocol

l.IPv4

2. IPv6

3.ARP

4.x75

5.RevARP

6. DEC LAN Bridge

7. Apple Talk

8. Apple Talk ARP

9. MPLS

10. IPX

11. Spanning Tree

12. NetBIOS

13. Others

IP based protocol (transport)

l.TCP

2. UDP

3. ICMP

4. IGMP

5.EGP

6.IGRP

7. RSVP

8.GRE

9. ESP

10. VINES

ll.OSPF

12. SCTP

41

