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ABSTRACT

This thesis is a development of previous works done by [2] on capability of
neural controller to efficiently track prescribed paths. Equipped with ‘knowledge on
optimal preview control obtéined from [1], the initial weights of linear and nonlinear
neural controller are initialized to the optimal gains. The irhplemented neural
controller will in turn minimize a performance index, which includes the lateral and

attitude angle errors of vehicle models with respect to the paths.

The thesis differs from [2] in a sense that different types of neural controller
are established to achieve a better path following accuracy. Two algorithms, gradient
descent and quasi-Newton which utilize a batch training method, are introduced as
comparison to the gradient descent method that  incorporates the online {or
mcremental) training method. The class of leamning (whether good or bad) of the
neural controllers is evaluated from the obtained percentdge of average weight
change, maximum path and yaw attitude angle errors as well as the maximum steering
wheel angle. The behaviors of learning rates and updated weights are given special
attention in this thesis. To conduct the specified works, the MATLAB programs

written by [2] have been exiended and modified.
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CHAPTER 1

INTRODUCTION

1.1  Problem Definition

Many researches on automated car control have been conducted during these.
past few years. Qﬁite a number of efforts have been concentrated on the capability of
the self-guided vehicles to accurately follow various types of paths. A vital factor in
realizing the aim is steering control.

Various approaches have been carried out for this purpose, including optimal
preview control and neural network. Optimal preview control is capable to portray the
driver’s vision of the path and process the knowledge so that the vehicle can follow
the path as accurately as possible. A controller that utilizes the technology of neural
network has the ability to ‘learn’ from past errors and adjust the network to obtain
specific target output. In other words, provided that suitable weights are used, a neural
controller will achieve a more precise path following,

Thus study aims to develop a neural network controller that could control both
linear and nonlinear vehicle mbdels to fbllow prescribed paths with the smallest
errors. Different types of neural controller are introduced for comparison purposes.

The behaviours of the learning rates and updated weights are also investigated.

1.2 Brief Qutline on Previous Works
This thesis has been conducted with reference to works by Sharp and
Valtetsiotis [1] on optimal preview control and Dandré [2] on the upgraded

performance of the optimal preview control with the use of neural network.



The first reference is about representation of driver’s vision, in which road and
linear vehicle information (in discrete time equation) are combined and assessed by
the linear quadratic cost function. The impleménted.opﬁﬁlal conirol minimizes the
cost (lateral errors and attitude angles relative o the path) according to its priority,
which is path following.

The se_cond reference shows comparison of weights initialized to zero, and
weighis obtained as optimal. gains from works of Sharp and Valtetsiotis {1] to
implement sihgie and multi-layered neural controller. The algorithm used is gradient
descent, and the traming mode is identified as online (or incremental) training.

Tracking simulations are done on linear and nonfinear car models.

1.3  Outline of Thesis

Chapter 2 is a reyiew on neural networks; its definition, training methods
(batch or online) and algorithms (gradient descent and Quasi-Newton).

Chapter 3 is a review on previous works by Sharp [1] and Dandré [2]. This
chapter summarizes the linear and nonlinear car models, path models as well as the
optimal preview controller, which has the ability to drive a linear car model on
simulated paths.

Ch&pter 4 outlines the implementation of a linear neural network that could
conirol the; linear car to accurately follow the simulated paﬂls. Two types of training
are introduced. online training and batch traifling. Two algorithms are introduced:
gradient descent method and Quasi-Newton method. The learning ability of the neural
controller is judged by the average percent weight change by learning and the

maximum esrors obtained through the MATL AB simulations.



Chapter 5 revolves around implementation of a nonlinear neural network that
is désigned to control nonlinear car to follow prescribed paths. Researches and
simulations for the nonlinear network are conducted similarly as for the hnear
network (Chapter 4).

Chapter 6 concludes the study and outlines recommendations for future

works,

14  Contribution of the Thesis

= Proves that the training of neural network for more than one epochs would
increase the controller performance in most situation

= Shows that the batch training, namely using the gradient and quasi-Newton
methods, could be implemented to several situations, in which better
outputs are achieved with a shorter training time

=  Confirms that the behaviours of the learning rates play a vital role in
shaping the behaviours of the updated weight; in which the learning rates
will slowly reduced towards zero, leading small variations of | updated

weights after several epochs



CHAPTER 2

REVIEW ON NEURAL NETWORKS FOR CONTROL

This chapter is an overview on basic structure of neural network, its training
schemes and algorithms, which are significant factors in implementing the neural

controller for the simulated paths and car models.

2.1 BACKGROUND OF NEURAL NETWORK

Neural networks, inspired by biological nervous system, are composed of
simple elements operating in parallel. Demuth and Beale [3] described, "Neural
networks are adjusted, or trained, so that a particular input leads to a specific target

output”. The particular situation is as shown in Figure 2.1: Target

Neural network
including connections
— (called weights) *( Compare
between neurons Qutput

Adjust
weights

Figure 2.1: Adjustment of neural network o obtain specific target output

Neural Network performs two major functions: Learning and recall. Learning
is the process of adapting the connections in a neural network to produce a desired

output vector in response 1o a stimulus vector presented in the input buffer. Recall, on



the other hand, is the process of accepting inpuf stimulus and producing output

response in accordance with the network weight structure.

2.2 NEURAL NETWORK TRAINING

Neural networks could produce desirable outputs by having sufficient training.
Commonly the networks are adjusted, or trained so thaf a particular inpul leads to a
specific target output.

There are two different styles of training, which are incremental training and
batch training. The training styles differ in terms of how the weighis and biases are
adjusted.

o Online Training

Online training updates weights and biases as each input is presented to the
network. By setting a value of network learning rate, the weights will change at each
subsequent time step (instance). Thus, weights are updated more than once per entire

presentation of training data (epoch).

* Batch Training
According to Bersetkas and Tsitsiklis [5], baich aigorithm is a conventional
numerical optimization fechnique. By implementing batch training, weights and
biases are aceumulated over an epoch before being updated. Thus, in each epoch, the
weights are only updated once. Another alternative (but similar mode of operation) to
batch iraining is mini-batch training. In this case, weight changes are accumulated

over some number of instances before being updated.

L



2.2 NEURAL NETWORK ALGORITHM

The most commonly used neural network learning algorithm is back
propagation. The term refers t.o the manner in which the gradient i1s computed 'for |
nonlinear multilayer networks [6]. Standard back propagation is a gradient descent
algorithm, in which the network weights are moved along the negative of the gradient
of the performance function.

This algorithm has different variations based on the standard optimization
techniques. The:ifariations include the gradient descent, conjugate gradient descent,
Newton, Quasi-Newton and Levenberg-Marquardt method. The applications of these
algorithms rely on the scale of the network to be used. Gradient descent method is
typically for a large scale network, conjugate direction is for a medium scale, Quasi-
Newton and Levenberg-Marquardt (preferred for low residual regression problems)
for small scale while Newton method is for a tiny scale network [7]. Two methods
were used for this project, and are described in this section. The methods are gradient

descent and Quasi-Newton method.

2.2.1 Gradient Descent Method

In neural network, the gradient descent learning is applied to determine
network weights that rm’n_imize error functions. The two parameters (weight and eﬁor
functions) create an error surface. This algorithm. usually initializes at a commonly
random point in the weight space and points along the line of steepest descent until a
minimum in the error surface is found. As the sequences of the points reaching to the

minimum, the changing rate from the previous to next points decreases.



This particular manner is due to the formulation of the gradient descent

learning itself:
al
AW =y — 2.1
W=y — (2.1)

where w is the weighting v.ectqr, } is the performance and ¥ is the learning rate. The
negative sign implies that the gradient descent is approximated by taking small but
finite steps in the direction of steepest descent. As soon as the weights just start to
change in the direction of the gradient at the measured point, the true gradient itself
will start to change. [8]. Thus, as the algorithm progresses, the leamning rate will be
getting smaller and approaches zero.

A gradient descent algorithm by itself has a slow response. To increase the
rate of response, momentum term is combined with the basic algorithm This
combination results in movement in fixed direction. Thus, if several steps are pointed
towards the same direction, the rate of response of the algorithm wilj-inc‘rease.

Another mode of the gradient descent algorithm that is apphed in this research
is gradient descent with adaptive learning rate back propagation. Without adaptive
learning, the learning rate is kept constant. throughout leaming. Selection of high
léaming rate may lead the algorithm to oscillate and become unstable, while selection
of small learning rate will result in longer time taken for the algorithm te converge to
the desired minimum point.

By applying adaptive leaming, the learning rate is allowed to change during
the training process. This algorithm will keep the learning step size as large as
possible while keeping learning stable [6]. The leaming rate is changed in such a way

that it will be increased if stable leamning is obtained per instance or decreased when

the learning becomes unstable.



2.2,2 Quasi-Newion Method
Qua_si—Newton method is a recommended technique for small sized networks
(weighfs and input's are less than hundred). Quasi-Newton is a batch update algorithm, -
As referred to [9], it works out the average gradient of the error surface across all
cases before updating weights once at the end of an epoch. Since this is a bafch
update algorithm, it is unnecessary to select momentum or adaptive learning rates,
which makes this method €asy.
Generally, the updated variable is adjusted according to the following formula:
x=x+a dX | (2.2)
where x are weight / bias variables, dX is search direction and a is the selected line
search algbrithm There are various line search algorithm that could be used with
Quasi-NeWton method, which includes Brent search, secant, golden section and
backtracking search. For this research, backtracking search is set as default for the
network training. In this search routine, the step multiplier is initialized at 1 and then
it backtracks until an acceptable reduction in the performance s obtained.
The first search direction is the negative of the gradient performance while in
the succeeding iterations, the search direction is obtained by the following formula:
dX=-H/gX (2.3}

where gX is the gradient and H is the approximated Hessian matrix.



CHAPTER 3
REVIEW ON CAR MODELS, ROAD PREVIEW MODELS AND

OPTIMAL PREVIEW CONTROLLER

In previous work by [1], an oplimal preview controller is implemented to
follow simulated paths. Linear and ﬁonlmear car models are designed to incorporate
With the controller, as have been described by [2]. The first section of this chapter
outlines the two car models, the next section describes the road preview models and
the final section explains the optimal préview controller. Detailed explanation on the

car models, road preview models and optimal controller could be retrieved from [2].

3.1 CAR MODELS
3.1.1 Linear Car Model

As illustrated by [1] and repeated by [2], the vehicle model is of standard yaw
/ sideslip type. It is assumed that the car is a rigid body, moves on flat paths with three
degrees of freedom: forward, lateral (side) and yawing (side to side) motions. There
are four types of forces of the vehicle model: front axle Iongitudinal force, front axle
lateral force, rear.axle longitudinal force and rear axle lateral force. Aerodynamic
forces are discarded for this study, as they are considerably insignificant at normal
speed for normal cars. The input to the car is the steering wheel angle.

In practice, speed should be reduced if the vehicle is nearing a curve or
changing direction. However, for simplicity, the car moves only in forward direction
with a constant speed throughout the whole path.

The parameters of the vehicle are as in the following Table 1:

9



ody : g
Yaw Inertia (L) 1500 kgm’
Distance from center of gravity to 0.92
front axle (a)
Distance from center of gravity to rear 1.38
axle (b)
Cornering stiffness of front axle tyres 1.2x10° Nead™
€
Comering stiffness of rear axle tyres 8x10" Nrad™
(&) |
Fixed Steering Ratio (Hand wheel / 17
road wheel), G

Table 3.1: Vehicle Model Parameters

The state space equations of motion of the car modei isx = Ax + BS,, with
the state vectors:
x=[x1 X2 x xi wherex; is global lateral positiony,
X is global lateral speed ¥,
. %3 is global attitude angle P,

X4 18 global attitude rate yf

and

o 1 0 0 0

0 —(C,+C)Mu (C,+CHM  (bC,~aC,) Mu C,IMG
"o o 0 1 2o

0 (C,—aC) 1y (@C,~bCHI, ~(aC,+b°C,) 1u aC,/1,G

The equations of motion are transformed to dﬁ.crgt_e time using the MATLAB
command ‘c2d’. Taking A4 and By as discrete matrices, the équati_on of motion
becomes x (k+1) = Agx(k) + Bad,, (k) in which k is the sampling time_. and T is the
sampling interval. The sampling period is initially set as 0.05 s, and could be reduced
when vehicle moves in higher speed to increase the number of preview points for the

car controfler. The preview points will be explained in the next section.

10



3.1.2 Non-Linear Car Model

The assumptions as well as the parameters of the non-linear car model are set
to be similar as the previous linear car model. The difference between both models is
the calculation of lateral tyre forces, which according to [2], are calculated using the
Magic Formula by Bakker, Nyborg and Pacejka. All the Magic Formula parameters

are considered constant and correspond to dry surface. The parameters of the formula

are given as in Table 2 below:
Stiffness, one tyre (by) 17.5
Shape, one tyre (Cm) 1.68
Peak, one front tyre (duw) 3840
Peak, one rear tyre (du) 2560
Curvature () 0.6

Table 3.2: Magic Formula Parameters

In discrete state-space model, the non-linear car model is repeated from [2],

given by the following forms:
xy(k+1) = xy(k) + T.x2(k)

3.1)
Xkt 1) = xy(k) + T[E]Z (Fygk)* Fyr (k)]
Xa(k+1) = x3(k) + T.xa(k)

k1) = XK) + T[- @) bFye (O

z

11




3.2 ROAD PREVIEW MODEL

Four paths are considered for the sfudy: sinus path, lane change, sudden
change of direction and smooth random path. By considering constant forward speed,
the paths can be described by the latera} deviation, y;, from a fixed straight line (x-
axis) at sampling time KT.

In the global point of view, the road information is stored in the lateral
deviations y., from a fixed x-axis at the time kT, corresponding to a specified forward
speed uF 1gure 3.1 shows the path errors in the global frame.

Taking n as the number of preview values, the lateral deviations at time kuT
meters ahead of the car could be represented as Veet(K) = [0 Va1 ... Vel The uT
is the x spacing, in which u is the speed of the vehicle. Figure 3.1 shows the car and
the road at mstant k. At the next instant (k+1)T, the first road preview sample is
discarded and the second sample of yr(k) becomes the first value for y.s(k+1) and so
on. For simplicity, the last sample value becomes the input to the system and the other

n samples are regarded as states.

X axis

¥e2 Y

.r\r

road T—

Figure 3.1: Car and Road at instant k (adapted from [2])
Taking y.r as the state vector and y,; as the input to the road system, the state
space equation for the road preview model is vk +1) = D. v;e(k) + E.y;;. The vectors
of D and E are:

12
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0

0

0

1
0

andE=|..|.

1

In the local point of view, the road information is stored in the lateral

deviations y, from the local x-axis of the car, as depicted in Figure 3.2:

Figure 3.2: Road Preview Model Local Point of View (from [1])

33 OPTIMAL CONTROLLER

The purpose of the controller impiementation is to establish a connection

between the road preview model and the car. In other words, the car is to be driven

along the path with the aid of the optimal controller. The state space equation of the

car and the road ¢having no connection between both) is as follows:

x(k+1).=[Ad 0
yk+H] |0

(3.2)

D

|

x(k)
y.k

0
E

e[

The Linear Quadratic Gaussian (LQG) is then assessed with the following cost

function;

13



I= Lim Zn:zT (k).R.z(k)+ &, (k).R,.6, (k) with Z ={X vl

n—>a k=0

(3.3)

o N _ .
in which R, = C*.Q.Cwithc= |~ ° @0 -1 0 0 O mag=|%
00 1 0 1ul —1/uT 00 0

0 . . |
. } corresponding to the state vector Z=[y ¥ ¢ @ Yo Ya - Va 1", with
2

Rz=1
R, reflects the path following priorities, namely the path errors and the atiitude angle
errors while R, represents the importance attached to the control input. It is assumed
that the pair (A, B) is stabilizable to guarantee existence, pair (A, Q"2C) is detectable
for stability and R to be positive definite to ensure finite control energy.

The works by Louam [10] and Prokop [11] show that the time-invariant

optimal control, minimizing the cost function Jis &, (k) =-K z(k). The vector gain K.

is determined by first solving the non-preview model, x = [y ).).qp q;:v] ¥ Using the
obtained result, the remainder of K which represents the preview control

Vi={Veo Ya - Va 1" is solved.

Several controllers can be set up by changing the priorities in the cost
function. If the priority is path following, ¢; is set to be 100 and g, is 0. If the priority
is to keep the car tangential to the path, q; is set to be 0 and.qy is 100. On the other -
hand, if priority is based on controlling the steer input and roughly following the path,
q1 is 0.05 and g is 0. For all cases, R is set 10 unity.

In this study, the priority is concentrated on path following. According to

simulation results obtained by [1} and repeated by [2], as the speed of vehicle 1s

14



increased, the preview gain will be more oscillatory. Figure 3.3 shows the simulation

result for the optimal preview gains of path following.

0.2y

Ty

st PR et
mis ' 50imis -

- appmmcen g

SRR

preview gain value
S
M

1 =100 o2 =4, 150 p

re\uew points |-

30 40 50 60 70
distance ahead, m

80

20

100

Figure 3.3: Optimal Preview Gains for Path Following for Five Different Speeds |

(from [1])

It should be noted that the controller is optimal as it is able to minimize the

cost (3.3). However the optimal gain K is obtained due to the selection of matrices Q

and R, which are the cost priorities. Without further adaptation, the matrices selection

might not be the best selection. Therefore further modification to gain K can be

implemented to obtain a better performance minimization. The final values of K may

differ from the initial values of K. The gain update could be implemented using

learning algorithms that will be highlighted in the next chapters.
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CHAPTER 4
NEURAL NETWORK STEERING CONTROL OF A LINEAR

CAR MODEL

Four paths (sinus shaped, lane change, sudden change of direction and smooth

random path) were simulated and tracked with the use of an optimal controller. From

_previous works done by Sharp in [1), it is proven that the optimal controller has the
capability to precisely irack reasonable paths.

Dandré [2] has continued the research by tracking the similar paths using
neural networks. The coefficients obtained through the optimal control theory were
taken as the initial weighting parameters for the neural controller. The results proved
that most of the time, neural controllers can perform significantly better than the
conventional optimal coniroller.

This section is an upgraded version of works done by [2] for a linear car
model. Previously, the network was trained using the online gradient method. Batch
training (Gradient and Quasi-Newton) is now introduced for comparison. Updated

weights, learning rates and time taken after final epochs are discussed.

41 IMPLEMENTATION USING GRADIENT METHOD
4.1.1 Neural Network Controller Implementation

The controller 1s set to be a linear, smgle processing neuron. The input to the
controller is the augmented state z=fx  v;]". x is obtained from the equations of

motion of the car model while v, is the local lateral preview errors. The output of the

16



neuron is the steerihg wheel angle, o, which was represented by [2], in the following
formula: |
8, = Wilk).z1(K)+waAk). (k) ... Wars (k). Zars(k) (4.1)

By considering n preview points, there would be 4+n+1 weighting parameters
and one bias for the single neuron. The weighting parameters are set in such way as
there are four non-preview system (states x) and n+1 preview points at instant k. As it
1s desired that all path following errors be minimized, the best steering wheel angle
would be zero when the car is moving on a straight path. Thus the bias b is set to zero.

Using linear quadratic cost function, the vehicle performance is evaluated
according to formula (3.3). From the equation, the partial derivatives of the cost with

respect 1o the augmented state (8J(z(k),0,,(k)/8z(k)) and the partial derivatives of
the cost with respect to control variable (&7 (z(k),8,, (k))/ 0,,(k)) can be obtained. As

the car is supposed to follow the simulated paths, the cost priorities are set as:

0
=100, g, = 1, R = 1 and R1= P }
0 g,

As was done in previous works, the initial weighting parameters W, for the
neural controllers were taken from coefficients obtamed from the optimal control
theory. Alternatively the initial weighting parameters could also be set either to zero,
or chosen r#ndomly. However, 1t is preferred to take the obtained coeﬂicients from
the optimal control theory as it gives the best representation of the path tracking
optimization.

A high learning rate may lead to instability of the algorithm whilst a low
learning rate may cause longer time for the algorithm to converge to desired

performance. By running the simulation for a number of times, the best initial
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learning rates were chosen based on the least maximum y-path error obtained after the
simulation. To ensure an improved performance of the steepest gradient. descent
algorithm, the learning rate is allowed to .be adaptive, ie 1t is altowed to change
during the training process. By using [4], the leamning rae is multiplied by 1.05 if the
cost ratio between the present cost and previous cost 1s less than 1. On the other hand,

it is multiplied by 0.7 if the cost ratio is more than 1.005.

4.1.2 Simulation by Online Training

Tn works by Dandré [2], the network was trained for one epoch. One epoch is
equivalent to one whole simulated path fength minus the number of preview points.
The preview points are arbitrarily set to 40 for all cases. For some paths, network
training for one epoch would be sufficient, but in some cases, by training for several
epochs, thg network performance would be improved, which in tumn reduces the
maximum y-path error. The behaviour of the leaming rates and the updated weights
per epochs could also be observed. For this section, the number of training epochs is

set to five.

A Sinus Path (at 20m/s, 40 preview points)
The path following is as shown in Figure 4.1(]). Initially, after the first epoch,
.me.maxinmm steady-state path error s 6.5x10°* m (Figure 4.1(ii)). At the first epoch,
the learning rate and the updated weights oscillate a little and significantly reduced to
some steady-state values (Figures 4.1Gii, iv). By training the network up to five
epochs, the maximum steady-state path error is reduced to 2x10™* m (Figures 4.1 (v)).
The path errors during the first and final epochs are significantly less that the errors
generated by the optimal controller. The learning rates become very small while the
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updated weights seitle to some constant values after certain epochs (Figures 4.1(vi,
vii)). The maximum steering wheel angle is 0.2 radians (Figure 4.1 (vii). The

observations for the sinus path are summarized in the following Table 4.1

Initial Learning Rate :

Path Distance 900m
Maximum y-path Error (First Epoch) 6.5x10" m
Maximum y-path Error (Final Epoch) 2x10" m
Final Learning Rate (First Epoch) 1.1113e-017
Final Learning Rate (Final Epoch) 1.8971e-256
Learning Time (s) —~ First Epoch 10.215
Learning Time (s) — Final Epoch 48.388
Final Weight (at 10 Point) -0.9813

Table 4.1: Summarized Observations for Sinus Path Following

B. Lane Change (at 20m/s, 40 preview points)

The path following is as shown in Figure 4.2(i). The maximum y-path errors
for the first and final epochs are similar, at 8x10” m (Figure 4.2(ii)). Simlar to the
sinus path, the learning rate increases and the updated weighis osciliate a little before
reducing tremendously to steady-state values during the first epoch, as shown in
Figures 4.2(iti, iv). After the first epoch, the learning rate continues to decrease while
the updated weights vary insignificantly (Figures 4.2(v, vi)). The maximum steering
wheel angle is shown in Figure 4.2 (vil). Table 4.2 summarizes the whole

observations:
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Initial Learning Rate ' 0.05
Path Distance 300m
Maximum y-path Error (both cases) $x10° m
Fmal Learning Rate (First Epoch) 1.3608e-016
Final Learning Rate (Final Epoch) 7.4652e-075
Learning Time (s) ~ First Epoch 4.637
Learning Time (5) — Final Epoch 16.745
Final Weight (at 10™ Point) -0.9813

Table 4.2: Summarized Observations for Lane Change Path Following

C. Sudden Change of Direction (at 20my's, 40.preview points)

The path following is as sﬁown in Figure 4.3(i). The maximum y-path errors
are similar during the first and final epochs (Figure 4.3 (ii)). The neural network
controlier has a stightly Setter performance than the optimal cqmrol]er, judging by the
obtained path errors. The behaviour of the learning rates and the updated weighis are
also parallel to the behaviours observed from the previous path foﬁowing (Figures 4.3

(111 — vi)). The summary of the observation is as shown in Table 4.3:

Initial Learning Rate 03
Path Distance 200m
Maximum y-path Error (both cases) 0.065 m
Final Leaming Rate (First Epoch) 6.7641e-008
Final Leamning Rate (Final Epoch) 7.2805x10°*
Learning Time (s) — First Epoch 3.465
Learning Time (s) ~ Final Epoch 9955
Final Weight (at 10 Point) -0.9813

Table 4.3: Summarized Observations for Sudden Change of Direction

D. Random Path (at 20my/s, 40 preview points)
The path following is as shown in Figure 4.4(1). The maximum y-path error
after the first epoch reduces from 3x10° m to 2.48x10™ m after the fifth epoch as

shown in Figures 4.4 (ii, iii). The behaviour of the learning rates and the updated
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weights is also paralle] to the behaviour observed from the previous path following

(Figures 4.4 (iv — v)). The summary of the observation is as shown in Table 4.4:

Initial Learning Rate 0.1

Path Distance 900m
Maximum y-path Error (Flrst Epoch) 3x107 m
Maximum y-path Error (Final Epoch) 2.48x10° m.
Final Learning Rate (First Epoch) _ 1.8633x10"
Final Leaming Rate (Final Epoch) 5.8885x10°2%°
Learning Time (s) — First Epoch | 8.393
Learning Time (s) - Fmal Epoch 40.344
Final Weight (at 10® Point) -0.9813

Table 4.4: Summarized Observattons for Random Path
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Figures 4.1: Sinus Path at 20m/s, 40 preview points
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Figure 4.1(i): Path Following (follows up until K-n-1 )
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Figure 4.1(ii): Maximum y-path error at first epoch (blue: neural controller, green:
optimal controller}
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Figure 4.1(iii): Plot of Learning Rate at First Epoch
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Figure 4.1(iv): Plot of Updated: Weight at First Epoch
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Figures 4.2: Lane Change at 20m/s, 40 preview peoints
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Figure 4.2(iii): Plot of Learning Rate at First Epoch
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~ Figures 4.3; Sudden Change of Direction at 20my/s, 40 preview points
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Figure 4.3(i): Path following (follows up until K-n-1)
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Figures 4.4: Random Path at 20m/s, 40 preview points
(Solid: Neural Network, Dashed: Optimat Controller)
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4.13: Simulation by Batch Training

The gradient method with adéptive learning rate could aléo be used for
training in baiches. The batch size is set to be the total distance of path minus the
number of preview points, while the adaptive rate is set as default using MATLAB
command ‘traingda’. The network training will stop either when the maximum
number of epochs is reached or the performance has reached the goal. For this
training, the epochs are set to 10 while the performance goal is set to 1x10™°. As the
network deals with a linear car fnodel, the transfer function that calculates the layer’s

output from its input is set as ‘purehin’.

A Sinus Path (at 20nys, 40 preview points)

Using the similar path (as in Figure 4.1(i)), the maximum y-path error
increases to 3x10° m with batch training (Figure 4.5(i)). The neural network
controller has a slightly better performance than the optimal controller judging from
the obtamed maximum y-path error. It takes four epochs to converge to the
performance goal (Figure 4.5(i1)). The maximum steering wheel angle remains at 0.2
m/s (Figure 4.5 (iii)). The training time is however shorter with batch learning as

compared to the online learning.

B. Lane Change and S'udden Cﬁmge of Direction (at 20my/s, 40 pre\_:iew points)
The maxlmum y-path errors are reduced to 0.0075 m and 0.061 m for lane

change and sudden change of direction respectively. For both paths, the leaming takes

less than one epoch to achieve the performance goal. The maximum steering wheel

angles are similar between the batch and online training. The times taken for training
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are also shorter. Figure 4.6 and Figure 4.7 illustrate the simulated lane change and

sudden change of direction.

C. Random Path (at 20m/s, 40 preview points})

The path following is as shown in Figure 4.8(1). The maxtmum y-path error is
2.3x10”°m (Figure 4.8(ii)). The performance goal at 1x107%is unachievable even after
more than ten epochs. The maximum steering wheel angle is 0.18 radians, as shown

in Figure 4.8 (i1).
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Figures 4.5: Sinus Path at 20m/s, 40 preview points
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Figures 4.6: Lane Change at 20m/s, 40 preview points
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Figures 4.7: Sudden Change of Direction at 20m/s, 40 preview point
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Figure 4.7 (i) - (top): Y-path error
Figure 4.7 (j) - (bottom): Yaw Antitude Angle Error
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Figures 4.8: Random Path at 20my/s, 40 preview point
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4.2 IMPLEMENTATION USING QUASI-NEWTON METHOD
4.2.1 Neural Network Control_lér Iinplementatioﬂ |

The neural controlier is set siin’ilaﬂy as described in the previous section. The
algorithm for network training differs in such a way that Quasi-Newton method can
only be tramed by batch [6]. According to [7], for a small-scaled network, Quasi-
- Newton method would be a good algorithm to use.

One batch is equivalent to one epoch, which is set to be the path distance
minus the preview points. The MATLAB command ‘tranbfg’ is applied to the
original coding. The one-dimensional minimization using backtracking method is set
as the search routine default. For all four paths, the initial leaming rates, initial
weights, number of preview points, speed and path distances are similar to the
previous cases. Similar to the previous batch training, the transfer function used for

the network is ‘purelin’.

4.2.2 Simulation Results
A. - Sinus Path (at 20mv/s, 40 preview points)

The maximum y-path error is 3x10”m, which is exactly equivalent to the
maximum error obtained from gradient (batch) method (Figure 4.9(1)). However, the
optimal controller has é slightly better performance than the neural controller. The
maximum steering wheel angle is also 0.2 radians as obtained previously (Figure -
4.9(i1)). However, it takes one epoch less with Quasi-Newton method as compared to
the gradient method for the controller performance to converge to the specified goal

(Figure 4.9(iii)). Table 4.5 summarizes the observations.
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POINTS OF COMPARL GRADIEN QUASI-NEWTON
Maximum y-path Error 3x10” - 3x10% m
Performance 1.02327e-011 1.20082e-011
Epoch to reach target 4 3
Leaming Time (s) 8.051 8.011
Weight after last epoch (at 10™ -0.9812 -0.9812
point) -

Table 4.5: Comparisons for Sinus Path between gradz’ent and Quasi-Newton

B. Lane Change (at 20m/s, 40 preview points)

The maximum y-path error is 0.0075 m, which is exactly similar to the

observation of the gradiemt method (batch training), and slightly smaller than the

result obtained through the online training. In comparison to the optimal controfler,

the neural controller has a slightly better performance. Both batch simulations only

take less than one epoch to converge to the performance goal. The training time for

the Quasi-Newton is however slightly greater than the gradient method (batch

training), but absolutely less than for the online iraining. The final weight updated for

both batch simulations are almost the same, which resulis in similar network output,

which is the steering wheel angle history. The summarized result is in Table 4.6.

POINTS OF COMPARISON GRADIENT QUASLI-NEWTON
Maximum y-path Error 0.0075m 0.0075 m
Performance 1.64141x10°™ 1.64141x107"
Epoch to reach target Lessthan } "Lessthan 1
Learning Time (s) 2.804 2.894
Weight afler last epoch (at 10™ -0.9813 -0.9813
point) -

Table 4.6: Comparisons for Lane Change between gradient and Quasi-Newton
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C.  Sudden Change of Direction (at 20mys, 40 preview points)

The maximum y-path error is similar for both batch training, and slightly less

than the previous online training. It takes less than one epoch for both batch

stmulations to converge to the performance goal. The time taken with Quasi-Newion

method is however greater than the previous gradient (batch) method, but less than the

online training time. The final weights obtained for both batch simulations are almost

the same, which resulis in almost similar network output. The summary is in Table

4.7 below;
POINTS OF COMPARISON
Maximum y-path Error 0.061 m 0.061 m
Performance , 4.78561e-017 4.78561e-017
Epoch to reach target Less than one epoch | Less than one epoch
Learning Time (s) 2213 3.335
Weight after last epoch (at 10® -0.9813 -0.9813
point)

Table 4.7: Comparisons for Sudden Change of Direction between gradient and

Quasi-Newton

D. Random Path (at 20mvs, 40 preview points)

The observations between both batch training methods are similar except that

it takes less training time for the Quasi-Newton method as compared to the gradient

method (both batch and online training). Another significant behaviour is that by

Quasi-Newton, the performance goal could be achieved within only one epoch, but

was unachievabie with the gradient method (Figure 4.10). The neural controller has a

shightly better performance than the optimal controller. The observation summary is

as shown in Table 4.8.
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{ POINTS OF COMPARISON GRADIEN QUASI-NEWTON
Maximum y-path Error 2.3x107 ©3x10¥
Performance Performance goal is 1.7641x107"

not achieved
Epoch to reach target - Less than one epoch
Learning Time () 8.242 8.102
Weight after last epoch (at 10% -0.9813 -0.9813
point)

Table 4.8: Compan'sonsl Jor Random Path between gradient and Quasi-Newton
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Figure 4.9: Sinus Path at 20m/s, 40 preview point
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Figure 4.9() - (top): y-path error (dashed: optimal controller, solid: neural
controller)
Figure 4.9(i) - (bottom): Yaw Attitude Angle Error
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Figure 4.9 (ii) - (top): Steering Wheel Angle (Network Output)
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~ Figures 4.10: Random Path at 20m/s, 40 preview point
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43 PERCENTAGE OF AVERAGE WEIGHT CHANGE
For all cases, the percentages of average weight change were calculated to see

how much the weights were updated at the last epoch. The formula used is as follows:

x100%

i (me ~Woc J
i WOC(J') |

=
n

Average Weight Change = (4.2)

where Wiy 1s the updated weight by neural network controller
Wac is the oniginal weight of the optimat controller, and
n is total number of weights

~ The summarized calculation of the percentage is as shown in the following

Table 4.9:

1) Sinus 46,7337 69 4258 7.6762
2) Lane Change 2.3245 2.3245 3.4057
3) Sudden Change 23245 2.3245 7.4521
4) Random Path 12.262 12.2544 3.6942

Table 4.9: Linear Car Model: Percentage of Average Weight Change

44  DISCUSSIONS

Through online training with gradiemt method, the final weight oscillates
before decreasing rapidly during the first epoch and later settles to some steady values
m the subsequent epochs. This is in p_aiallel with the behaviour of the leaming rates.
As the trial progresses, the léaming rates will either jump up or oscillate, depending
on the type of path, béfore decreasing rapidly in the first epoch. For the next epochs,
the rate decreases slowly, which results in insignificant changes to the updated

weights. This in turn led to similar network output (the steering wheel angle) for the
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successive epochs. However, through few iterations, the path following_ could be
improved, as proven through the sinus and randorﬂ paths.

For batch training, although the path following error and the maximum angle
of the steering wheel are similar for gradient and Quasi-Newton methods, the training
time and the ability to converge to the performance goal makes the latter superior to
the former. This proves the theory that although Quasi-Newton requires more
computation in éach iterati(;n, it usually converges in fewer iterations.

The percentage of average weight change could be compared between the
three modes of training (gradient-online, gradient-batch and Quasi-Newton) for every
simulated path (Figure 4.9). Ideally, the best neural controller performance {in terms
of having a smaller y-path error as compared to the optimal coniroller) would have the
highest percentage of weight change. However, for lane change and sudden change of
direction, the maximum path errors conflict with the obtained average weight change
percentage. The neural controllers for both batch-training methods have better
performances than the gradient-online method. The conflict is due to the fact that
there were more epochs simulated for the online training method as compared to the
batch training methods.

The remark on the average weight change percentage is also inapplicable for
the sinus path. The neural controller with online training method has better
performance than the batch training methods, although the percentage of average
weight change of the former is smaller than the latter. The reason for this behaviour is
that in some parameter space, the accumulated weight changes for batch traming

become large. As written in {8], this leads batch training to use unreasonably large
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steps, which subsequently results to unstable learning and to the overshooting of
curves and local minima in the error landscape.

The use of batch training, for some paths, can improve the accuracy of the
controller. Apart from that, most of the time, batch training involves less training time
than the online training. These results are achievable as the network for the controller

is small scaled (judged by its number of weights).

4.5  CONCLUSIONS

In this chapter, a neural network controller has been implemented and trained
n three different conditions. Each of the three conditions has its own limitations and
capabilities. While it might take longer training time with online training, the
algorithm 1s able to find a good set of weights and achieves a global minimum. On the
other hand, even if the batch training is proven to be faster and more accurate, it may
not perform very well if the controller network is upgraded to a larger scale.

So far, the car model has been trained with a low speed of 20 m/s, with not so
much effect on the lateral or yaw acceleration. In the next chapter, a new car model is
introduced and it will be trained with a higher speed to yield a non-linear behaviour of

the car.
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CHAPTER S
NEURAL NETWORK STEERING CONTROL OF A NONLINEAR

CAR MODEL

This chapter is another advancement of works done by [2]. Previously a
nonlinear system was controlled by a non-linear network trained using the online
gradient method. Similar to the linear system discussed in the previous chapter, batch
training (Gradient and Quasi-Newton) is introduced for comparison. Updated weights,
learning rates and time taken after final epochs are considered in the study.

The first part of the chapter examines the learning processes' using the
gradient method (online and batch training modes). The second part of the chapter
involves learning processes using the Quasi-Newton method. A comparison of
average weight change percentage for the three types of training is highlighted in the
third section. The next and final parts of this chapter discuss and conclude the

observation for controlling a nonlinear system by nonlinear neural networks.

5.1 IMPLEMENTATION USING GRADIENT METHOD
5.1.1 Neural Network Controller Implementation

The controller is set to be a single processing neuron. As the system to be
controlled is nonlinear, the activation function of the neural network is replaced from
the MATLAB command ‘purelin’ (previously for linear system) to a tan-sigmoid
function. A tan-sigmoid function will result in output value to fall within interval [-

1,1]. This function originates from hyperbolic tangent function, which has the same
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shape. As speed is important in training neural networks, this function is a good trade
off
As in the linear network, the input to the controller is the augmented state z =
[x v:]*. The output of the neuron is the steering wheel | angle, &, which is
represented by:
S, = Wikk).2i(R)+wolk). za(k)+ ... W5 (k). 7e5(K) (5.1)
The vehicle performance is evaluated using the linear quadratic cost function
as in Chapters 3 and 4:
Tz, 8, (K) = 2/ (k).R.z(k) + 6,,(k).R,. 6, (k) (5.2)
From the equation, the partial derivatives of the cost with respect to the
augmented state (&(z(k),8,,(k)/&(k)) and the partial derivatives of the cost with
respect to control variable ( &7 (z(k), 5W(k))/ &, (k)) can be obtained. By knowing the
previous derivatives at time kT, the derivatives of the augmented state and the conirol
variable with respect to the weighting vector w at time (k+1)T can be determined.

The sensitivity matrices of @ with respect to the state vector elements,
(@ ®/dz(k)) and control variable (dD/dS,, (k) have been included in [2], and will

not be repeated in the report. The derivatives of the side forces with respect to the
state vector elements and control variable can be obtained using thé MATLAB
function “diff".

As was done for the linear system, the initial weighting parameters W, for the
neural controllers were taken from coefficients obtained from the optimal control

theory.
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5.1.2 Simulation by Online Training

Tﬁe network is trained for different numbers of epochs depending on types of
path. For some paths, small number of -epocﬁs for network training would be
sufficient, but in some cases, it takes more epochs to mmprove the network

performance. For all cases, the speed of the vehicle is set to 40 m/s.

A Sinus Path (40 preview points)

Initially, after the first epoch, the maximum steady-state path error is 1.5x10
m (Figure 5.1(i)). By training the network up to three epochs, the maximum steady-
state path error is reduced to 1.2x107% m (Figures 5.1 (ii)). The path errors during the
first and final epochs are significantly less than the errors generated by the optimal
controller. The learning rates become very small while the updated weights settle to
some constant values after certain epochs (Figures 5.1(iii, iv)). The maximum steering
wheel angle is 0.2 radians (Figure 5.1 (v). The observations for the sinus path are

summarized in the following Table 5.1:

Epo 3
Initial Learning Rate 0.008
Path Distance 900m
Maximum y-path Error (first epoch) ~ L5x107m
Maximum y-path Error (final epoch) 1.2510° m
| Final Learning Rate 2.869x10°°
Learning Time (s) 300,231
Final Weight (at 10) 20.8712

Table 5.1: Summarized Observations for Sinus Path Follov?ing



B. Lane Change (40 preview points)

Maximum y-path error decreases from 7x10”m in the first epoch to 6x10”m
in the final epoch) using the neural controller. Hoﬁever, the maximum y-path error
for the optimal controller is lower than the neural comroller even afier the final epoch
(Figureé 5.2(, ).

In terms of yaw attitude angle, the neural controller has better performance
than thé optimal controller (Figure 5.2 (iif)). Maximum steering wheel angle is 0.22
radians with neural controller as compared to 0.3 radians with optimal controller. The
attrtude angle following also has a better performance with the neural controller as
compared 1o the optimal controller (Figure 5.2 (iv)). The learning rates become very
small while the updated weights settle to some constant values after certain epochs

(Figures 5.2(v, vi)). Table 5.2 below summarizes the whole observations:

P 15
Initial Leaming Rato 0.05
Path Distance 300m
Maximuin y-path Error (first epoch) 7x10” m
Maximum y-path Error (final epoch) 6x10° m
Final Learning Rate 1.472e-075
Final Weight (at 10) -0.8716

Table 5.2: Summarized Observations for Lane Change Path Following

C. Sudden Change of Direction (40 preview points)

Judging from the maximum y-path error, the neural comtroller has better
performance as compared to the optimal controller. The error reduces from 2.5x102 m
at the first epoch to 2x10” m at the last epoch (Figures 5.3(i,i1)). The steering wheel
angle 15 lower with the neural controller than with the optimal controller (Figure

5.3(u1)). Towards the final epoch, the learning rate decreases to some small vatues
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summary of the observation is as shown in Table 5.3:

No of Epochs

resulting in insigntficant changes to the updated weighis (Figure 5.3(iv, v)). The

5
Iniital Learnmng Rate 0.1
Path Distance 300m
Maximum y-path Error (first epoch) 2.5x10% m
Maximum y-path Error (final epoch) 2x10”% m
Final Learning Rate 6.5631x10™°
Final Weight (at 10) -0.8713

Table 5.3: Summarized Observations for Sudden Change of Direction

D. Random Path (40 Preview Points)

The y-path error decreases from 5x10” m at the first epoch to 2x10° m
at the final epoch using the neural controller. Howéver, the errors are similar to the
ones obtained using the optimal controller (Figures 5.4 (i, ii)). The leaming rates and
the updated weights pbsses simmlar -behaviour as in previous cases (Figures 5.4 (i,

iv)). The summary of the observation is as shown in Table 5.4:

'No of Epochs

3
Initial Leaming Rate 0.1
Path Distance 900m
Maximum y-path Error (first epoch) 5x10° m
Maximum y-path Error (final epoch) 2107 m
Final Learning Rate 3.9622x10°%
| Final Weight (at 10) -0.8712

Table 5.4: Summarized Observanons for Random Path
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Figures 5.1: Sinus Path at 40m/s, 40 preview points

(Dashed: Optimal Controller, Solid: Neural Controller)
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Figures 5.2: Lane Change at 40m/s, 4ﬁ preview points
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Figures 5.3: Sudden Change of Direction at 20m/s, 40 preview points
(Solid: Neural Network, Dashed: Optimal Controller)
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Figures 5.4: Random Path at 40m/s, 40 preview points
(Solid: Neural Network, Dashed: Optimal Controller)
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4.1.3: Simulation by Batch Training

The simulation is set in the similar manner as in the linear system. The batch
size is the total distance of path minus the number of preview pomnts. The maxirmum
number of epochs is 10, and the performance goal is 1x10™. The preview points are
arbitrarily set to 40 for all cases. The training will stop when the maximum number of
epochs is reached or the performance goal is achieved.

For all four types of paths, the observations are similar. Although the obtained
maximym y-path errors are small, the maximum errors are the same between the
neural contro]ler and the optimal controller. Apart from that, the performance goals
are unachievable even if the maximum number of epochs is increased to 20. Tables
and Figures 5.5-5.8 summarize and iilustrate the observations obtained from the

ining,
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Initial Learning Rate 0.008

Path Distance 900m

Maximum y-path Error 0.035m-
Performance 0.00108494

Epoch to reach target Performance goal is not achieved
Learning Time (s) 41.029

Final Weight (at 10™ Point) -0.8712

Table 5.5: Summarized Observations for Sinus Path Following

Initial Learnmg Rate

0.05
Path Distance 300m
Maximum y-path Error 7x10” m
Performance +1.25186e-005
Epoch to reach target Performance goal is not achieved
Learning Time (5) 11.587
Final Weight (at 10" Point) -0.8711

Table 5.6: Summarized Observations for Lane Change Path Following

ial Learning Rate 0.01
Path Distance 200m
Maximum y-path Error 0.055m
Performance 1.30427¢-006
Epoch to reach target Performance goal is not achieved
Learning Time (s) 6.849
Final Weight (at 10" Point) -0.87112

Table 5.7: Summarized Observations for Sudden Change of Direction

Initial Leaming Rate 0.1

Path Distance 900m

Maximum y-path Error 5x10° m
Performance ' 1.09739e-009

Epoch to reach target ~ Performance goal is not achieved
Learning Time (5) B 47.138

Final Weight (at 10" Point) -0.8712

Table 5.8: Summarized Observations for Random FPath

57




vaw-angle error
-]

02
AL ]

steering wheel angle , rad

Figures 5.5: Sinus Path at 40m/s, 40 preview points

Y PATH FOLLOWING ERROR -

PO P

JRL.

500}
distance, m

YAW ATTITUDE ANGLE ERROR

Figure 5.5(i) -top: y-path error at final epoch

Figure 5.5(i) - bottom: Yaw Attitude Angle Error

STEERING WHEEL ANGLE

A5 50
distance, m

AFTITUDE ANGLE FOLLOWING

I D Zai: S R S S ]
S N ]
A A AN ]
IS R S S ]
i s

g. 62 %\?\ ; \"‘*x :
g . S et RN
§ 02} 3 \ i ff ------------- \ ---------- -
-1 S N S ]
= L] SRR -+ SR S -
R i i i m

0

600

Figure 5.5(ii) - top: Steering Wheel Angle (Network Output)
Figure 5.5(ii) - bottom: Attitude Angle Following

58



Figures 5.6: Lane Change at 40m/s, 40 preview points
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Figures 5.7: Sudden Change of Direction at 40m/s, 40 preview points
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Figures 5.8: Random Path at 40m/s, 40 preview points
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Figure 5.8(i) - top: y-path error at final epoch
Figure 5.8(i) - bottom: Yaw Attitude Angle Error
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Figure 5.8(ii) - top: Sreering Wheel Angle (Network Output)
Figure 5,8(ii) -bottom: Attitude Angle Following
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5.2 IMPLEMENTATION USING QUASI-NEWTON METHOD
5.2.1 Neural Network Controller Implemenfation

To implement the controller, all details described in the previous section are
adopted. The MATLAB command ‘traingda’ for the gradient-batch traning is
switched to ‘trainbfg’, which is the command for BFGS Quasi-Newton back
- propagation. According to the MATLAB toolbox [6], this command can train any
network provided that its weights, net inputs and transfer functions have derivative
function. Similar for the linear system in the previous chapter, the line search
algorithm to locate the minimum point is the one-dimensional minimization using
Backtracking method. |

The maximum number of epochs is set to 10. One epoch is exactly one batch,
which is equivalent to the path distance minus the preview points. For all four paths,
the initial learning rates, initial weights, number of preview points, speed and path
distances are similar to the previous cases. Similar to the previous batch training, the

transfer function used for the network is tan-sigmoid.

5.2.2 Simulation Results

For all four types of paths, the observations are similar to the previous
gradient-baich method. Although the obtained maximum y—path errors are small, the
maximum errors are the same between the neural controller and the optimal.
controller. However by training the network using the Quasi-Newton method, the
performance targeis are achievable. Tables and Figures 5.9-5.12 sumnarize and

illustrate the observations obtained from the training.
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Initial Learning Rate 0.008
Path Distance 900m
‘Maximum y-path Error 0.035 m

| Performance 2.5311e-015
Epoch to reach target 3
Leaming Time (s) 47.178
Final Weight (at 10 Point) -0.8712

Table 5.9: Summarized Observations for Sinus Path Following

Tnitial Learning Rate 0.05
Path Distance 300m
Maximum y-path Error 7x10” m
Performance 4. 77988e-019
Epoch to reach target 1
Learning Time (s) 13.018
| Final Weight (at 10™ Point) -0.8711

Table 5.10: Summarized Observations for Lane Change Path Following

Initial Leaming Rate 0.01
Path Distance 200m
Maximum y-path Error 0.055 m
Performance 1.30427¢-006
Epoch to reach target 1
Learning Time (5) 7.14
Final Weight (at 10" Point) -0.87112

Table 5.11: Stonmarized Observations for Sudden Change of Direction

ial Learning Rate 0.1
Path Distance _ 900m
Maximum y-path Error 5x107 m
Performance 4.40456e-013
Epoch to reach target 2
Learning Time (5) 41.41
Fina! Weight (at 10" Point) ~0.8712

Table 5.12: Summarized ObServarionsfor Random Path
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Figure 5.9: Sinus Path at 40m/s, 40 preview point
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Figure 5.9(i) -top: y-path error at final epoch
Figure 5.9(i) - bottom: Yaw Attitude Angle Error
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Figure 5.9(ii) -top: Steering Wheel Angle (Network Output)
Figure 5.9(i) - bottem: Attitude Angle Following
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Figure 5.10: Lane Change at 40m/s, 40 preview point
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Figure 5,11: Lane Change at 40my/s, 40 preview point

Y PATH FOLLCAWING ERROR

e

=0
distance, m

Figure 5.11(i) - top: y-path error at final epoch
Figure 5.11(i) - bottom: Yow Attitude Angle Error

=]
-
[}

STEERING WHEEL ANGLE
' ;

'g 04

%’;az k--....-v..-.-.‘.-_-q;i.;{ff.' .-.-’.-..-.-7-.....5 .................................................. ]
§ o e '}-ﬁk-/“\//_i.\vf—“m__‘d—w-., -------------- .
£ N | / o

Dozl ERRLIEEECTY. CPRR (S, T B RGaT TR
B ; !

1‘;";"&”‘: 3] 1cr|u & T T gy

1
distance, m

1=
-

aftitucle angle | rad
. &

&
&

ATTITUDE ANGLE FOLLOWING

st i =)

distance, m

Figure 5.11(ii) - top: Steering Wheel Angle (Network Output)

Figure $.11(ii) - bottom: Attitude Angle Following
P Paformance is A. 7706 D19, Soal iz 1e-010
te® | —
e TS L B
%_ 1™
& o} -
:g k1t

L=
One Epccih

L By oY a7

Figure 5.11(ii): Training Result



TrapioBlts GroatBlack

Figure 5.12: Lane Change at 40m/s, 40 preview point
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5.3 PERCENTAGE OF AVERAGE WEIGHT CHANGE

To determine weiglht changes between the original weights obtained through |

the lmmear optimal control theory and the weights at the final epochs, the percentages

of average weight change were calculated. The obtained percentages are useful in

determining whether the networks have experienced ‘good” or ‘bad’ learning.

Leaming is considered ‘good’ if the obtamed percentage is high and the neural

controller has better performance than the optimal comiroller. On the other hand,

learning is ‘bad” when the percentage is high but the performance of the neural

contsoller is similar to or worse than the optimal controller.

The calculation formula is similar as with the linear systems:

i (me - Wocm)

i=1 oct)

x100%

Average Weight Change = (5.3)

n

where Wyy is the updated weight by neural network controller
Wac iS the original weight of the optimal controller, and
n is total number of weights

The summarized calculation of the percentage is as shown in the following

Table 5.13:

DSins | 104643 10.36%0 105278
2) Lane Change _ 5.3685 45638 37.7701
3) Sudden Change 2.3992 - 2.2801 . 257712
4) Random Path 8.8116 12.5952 2.9375

Table 5.13: Nonlinear Car Model: Percentage of Average Weight Change
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5.4 msctisSIONs

From the obtained plots and percentage calculations, it seems that network
fraining by batch method is not really suitable for nonlinear systems. According to
Barto [12], nonlinear models can generate error surfaces with many local minima.
This makes it impossible for the network to achieve global convergence. Linear
systems, on the other hand, do not face this complexity because no matter what fixed
presentation is used, its mean square error is a quadratic function of the parameters
with a unique minimum.

Another reason that may have contributed to inability of batch traiming to
produce better results is due to the behaviour of the method of training itself In batch
training, large accumulated weights after one epoch can lead to unreasonably large
steps. This m turn will result in unstable learning and to the overshooting of curves
and local minima in the error landscape.

In contrast to the observation obtained in the previous chapter, the
percentages of average weight change tally with the observed plots. Higher
percentage indicates better performance of the neural controller. This means that the
particular network has experience a ‘good’ training, as have been observed with the
lane change and sudden change of direction.

However, for sinus path, although the percentages of average weight change
vary a little betwefen the three modes of training (gradient — online, gradient — batch
and Quasi-Newtpn),. the controller performances differ. While the maximum y-path
error generated by the neural controller is less than the one generated by the optimal
controller using the online training method, there seems to be no network learmning

with the batch mode. The maximum y-path errors between both controllers are the
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same. This is because for an oscillating type of path, network training in batches
accumulates large weight, which results in inaccuracy.to follow curving gradient
throughout each epoch. This makes learning become inefficient. While it is safer to
use a higher leaming rate for online training, the controller performance generated by
batch training will suffer even more.

Another observation that is worth mentioning is the inability of the vehicle to
follow the path for speed greater than 40 mv/s. Many trials on reduction of learning
rate, reduction of sample time and increment of preview points have been done, but
no improvement was achieved. A sensible solution for this matter is probably to
introduce a multilayer network that incorporates tan-sigmoid transfer function in
hidden layer and linear transfer function at the output layer. This will make the
network become more capable with nonlinear system, and the network outputs can
take on any value without limitation to any range.

As observed in the preirious chapier, the behaviour of the updated weight is
parallel with the behaviour of the learning rates. Depending on type of path, the
learning rates will either jump up or oscillate, before decfeasing rapidly in the first
epoch. In the successive epochs, the rates decrease slowly, having little influence on
the updated weights. This means that as training progresses, the weight changes will

eventually settle to a constant value.
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5.5 CONCLUSIONS

In this chapter, the implementation and the simulation Tesulis of a single
proceésing neuron to control a nonlnear car model have been discussed thoroughly.
Similar to the linear system, the controller has been trained in three different
conditions and compared to the optimal controller.

The simulation by online training gives a better performance than the optimal
controller in terms of maximum y-path errors, maximum steering wheel anglé and
yaw attitude angle error. On the other hand, although simulation by batch training
produces acceptable results and shorter training time, there are no perforinance
improvements when being compared with the optimal controller.

The maximum allowable speed to ensure the vehicle follows the paths in both
modes of training is considerably low. It might be possible to implement a mechanism
that allows the network to reduce speed when the vehicle could not follow curvatures

and sharp turns, and return to the original speed when the path is smoother.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 CONCLUSIONS

This thesis emphasized comparisons of neural controllers trained in two
different modes: online training (Gradient method) and batch training (Gradient and
Quasi-Newton methods). The neural controllers were implemented to operate both
lingar and nonlinear cars, moving on simulated paths. The study also puts much
exposure on behaviour of learning rates and updated weights.

The capabilities and limitations of the two modes of training depend on factors
such as vehicle type (linear or nonlinear), type of path, size of learning rate as well as
number of epochs. A controller that is trained in baich mode can perform really weil
in a linear system in such a way that it produces smaller maximum errors (as
compared to the optimal controller) and shorter train@ng time (as compared to online
training).

On the other hand, in nonlinear system, the capability of online training
surpasses the capability of batch tréining. The neural controller trained by online
training has smalier maximum errors than the optimal controller. The baich training
experienced ‘bad .learnjhg’ in nonlinear system because the performance of the neural
controller remains similar as with the optimal controller, eveﬁ though the network
weights are updated and changed throughout the epéchs. To date, the implementeci
ne;ural controller is still unable to deal with the nonlinearity of the car regardless of

different algorithms used (Gradient and Quasi-Newtori methods}.
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For both linear and nonlinear systems, the controller performances depend
heavily on suitable sele(_;tion on learning rates, which enable the updated:Weights to

converge to the best minimum.

6.2 PROPOSALS FOR FURTHER WORK
Several recommendations on future works for expansion and continuation of

the project are as follows:

6.2.1 Additional neural control of the forward speed

This additional feature will enable the car to move in non-constant speed. This
way, the network will reduce the velocity of the car when moving at sharp curves or
turns and return to the original velocity when the path is smoother. Thus better path

following will be achieved.

6.2.2 Improvement of neural network efficiency

The improvement could be achieved by adding extra layers to_the network.
Although this addition will increase the network’s complexity, it will probably work
very well, because, as written by Tsoukalas and Uhrig [13], the multi-layer networks
have greater representational power than the single-layer network fo_r nonlinear
systems. Apart from that, different search routines for the Quasi-Newton method

could be tried out to improve the efficiency of the network.
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6.2.3 Implementation of different leaming process

So far, two types of learning process have been tried out: Gradient-descent and
Quasi-Newton method. It is possible to use other different learning process to
improve the performance of the controller such as cqnjﬁgate gradient method or

Newton’s method.

6.2.4 'Tmplementation of different types of path
It would be interesting to see the car models able to follow paths that have
obstacles such as holes on the road, children crossing the road or heavy truck ahead of

the car, to name a few.

Taken from [2], other opportunities for further research may include:
» Car model could be improved by decoupling right and left wheels on one axle as
well as considering aerodynamic forces.
» Qther parameters for performance index J could be introduced such as lateral or
vaw acceleration,
» The sample time and the number of preview points can be decoupled to allow a

suitable selection of preview points.
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APPENDIX 1: MATLAB CODE

Neural Control of Linear Car Model (Online Training)

S R T B S L S ST

% . : LinearNN.m %
%0 00 00 0o ()0 00 00 00 0%%%0 00 0%0 0%%0 00 0%0 00 0%%
disp(’ ' )
disp('’  One Single Processing Element, Lincar Car Model ')
disp(' : y)
disp(")

clear all;close all;clc

% forward speed . :
v=input('which speed ? (using 20 par (default))’);
if isempty(u), v=20; disp('Using u=20m/s (default)’), end

% sampling period T
T=0.05;

% number of preview points
n=input('how many preview points (using 20 par (default))");
if isempty(n), n=2/T; disp('Using a number corresponding to 1sec ahead (default)’), end

%car parameters definition
C=120000;

Cr=80000;

a=092;

b=1.38;

M=1200;

G=17;

Iz=1500;

000 % Yo% e % %% % Y% Y0 %% Yo% Road Model Matrices%%%%%%%%%%%%%% %%

D=[zeros(n,1) eye(n), zeros(1,n+1)];
E=[zeros(n,1); 1];
%E=[0,0,0,0;0,0,0,0;0:1];

%6%0%6% %% % %% % %Y 00_00 6% %0 %Y 'o%Linear Car Model
%% %% %% %6 % % %% % %" 0%%%0%%

Linear car_model

disp(")

%% % %% % %% %% %% %% % %% Linear control gain calculaton
% %% %% %% % %% %% %% %
%cost prioritites (Priority is on PATH FOLLOWING)
Q=[1000;
01]
R2=1; _
%compute the LQG gain Kt
LQRgain
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Yo% %% %% %0 %% Y0 %0 %" 2% %% %Y YoLincar cost parameters
%0 00 00 00 ﬁq ()0 On 0%0 00 00 00 00 0% (

%4the cost to be minimised is the folowing one :
%J=Z(:,kY*Rlcost*Z(: J+delta(k)*R2cost*deltatk)

Rlcost=R1;
R2cost=R2;

tic % Start a stopwatch timer
disp(’ Loading path information .....")

%%‘_’ 2209 26 %0Y 0%e%% Ay %% %o %% Path information
%% %% %% oY% e%e %Y %% 0% %% %%

for epoch = 1:5 % Setting iteration to 5 times
ifepoch==1
circuits_2
else
circuit_iterations
end

[K.nb] = size(yref’) % Array size for yref

% %% %% %% %% %% State definition & initialisation %%%? 6% %% %% %% % %%
%, At each tiime siep, a new global frame is defined

o/ The statc is based on a frame comprising the local x and y-axes of the vehicle

v Z=[ local lateral displacementv }

% | vdot ]
% [ local angle phi 1
% | phidot

% [ local lateral preview errors |

% The notations A and B represents the optimal controller and
9% the single processing clement respectively.

ZA = zeros(4+n+1,X-n-1);

ZA(1,1) = yref(1);

ZA3,1) = (yref(2) - yref(D)Y(u¥T);
ZA(@+H1:4+n+1 1) = yref(Lnt1)}

ZB = zeros(d+n+1,K-n-1};
ZB(1,1) = yref(1);
ZB(3,1) = (yref(2) - yref(1))/(u*T);

ZB(4+1:4+n+1,1) = yref(1:nt1)';

%augmented E matrx

Ebis={zeros(4,1); EI;

0 e Y%V %Y Y Paramaters Initialisation %%6%%%% %% % % %% % e Yo %o
o, sensitivity functions initialized to 0

dzdw = zeros(n+3n+3), %
dudw = zeros(1,n+5); %
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dJdw = zeros(1,n+5); % to be multiplied with gama to obtain deltaw for gradient
mtd _ ' '
prevdldw = zeros(1,n+3); _
deltaw = zeros(1.n+5); % to be added to w to obtain w(k+1)
prevdeltaw = zeros(1,n+5);

%other parameters
phiA(D)=(yref(2)-yref(1))/(u*T); .
phiB(1)=(yref(2)-yref(1))/(v*T);

deltaA(L)=0;
deltaB(1)=0,

lateral_accelerationA(1)=0;
lateral_accelerationB(1)=0;

global_positionA(1)=ZA(1.1);
global_positionB(1)=ZB(1,1);

ZinitA = zeros{(4+n+1.1);
ZinitB = zeros(4+n+1,1);

ZstepA = zeros(d+n+1, 1);
ZstepB = zeros(4+n+t1, 1);

%%% %% Y0%% %% % %" +%% Neural network implementation%%" 2% %% %% %% % %%
disp(’ . neural network implementation.....")

%choose an input layer with n+4 (number of staies) neurons
input=[-50*ones(n+3,1) 50%*ones(n+5.1)]; '

Ynet=newfl(input,1,{'tansig'});
pet=newlin{input, 1),

o initialize the vector W(;) containing all weights and biases. -
if epoch ==1 '
for jg=1:4+n+1
W(ig=Kijg); % Weight based coeff obtained from optimal ctr] theory
W_init=W; % Storing the initial weight
end
%fixed learning rate
gama=0.1;
gama_init=gama;, % Storing the initial learning rate
gama_next(1)=gama,
else
W =W _last; % Last Updated Weight from Previous Epoch
gama=gama_last, % Last Updated Learning Rate from Previous Epoch
gama_next(l) = gama,
end
%initialize neural network weightings
net. TW{1,1}=W;
net.b{1} ={0];
toc % rcads the stopwatch timer
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disp( mainloop.....")
tic % starts another stopwatch timer

%0 0%%0 0%0 0%%0 00 00 00 00 00 00 0‘.!/0(%.}ﬂ Do 0%0 00 0%0 00 (1] %
% MAIN LOOP %
%0 0%0 00 00 00 0%%0 00 00 00 00 0%0 0%0 00 00 0%%%0 0%%%0 0

for k= 1:K-n-1
9% definition of a new global frame based on local x and y axes of the car
% definition of the states of the car

ZinitA = ZAC.K);
YdotA = ZA2,K);

ZinitB = ZB(,X);
YdotB = ZB2,k);

ifk>1
ZinitA(2) = ZinitA(2)-u*sin(phiA(k)-phiA(k-1))); %the local y-axis
changed
ZinitB(2) = ZinitB(2)-u*sin((phiB(k)-phiBk-1)));
%ZinitC(2) = ZinitC(2)-u*sin((phiC(k)-phiC(k-1)));
-else
ZinitAQ2)= 0;
ZinitB(2)= 0;
%%ZinitC(2)= 0;
end

o, due to the choice of the frame, absolute positions become zgro
ZinitA(1) = 0;
ZinitA(3) =0;
ZinitB(1) = 0;
ZinitB(3) = 0;

9/, absolute to relative road data transformation
local_yrefs = yref(lck+n+1);

for j = L:(n+2),
local yrefsA(j) = local _yrefs(j) - global_positionA(k)- ...
G-1y*phiAG)*u*T; '
local_yrefsB(j) = local_yrefs(j) - global _positionB(k)- ...
G-1*phiBR)*u*T;
end
% definition of the remaining states (preview path errors)

ZinitA(4+1:4+n+1) = local_yrefsA(lartl);
ZinitB(4+1:4+n+1) = local_yrefsB(lm+1);

0% 04 %% %% %% %% % %% Y% Yo%V Yostate error
%% %% %0 %" 0o %% 2% % %% 0% %% %o
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epsA=ZinitA,
epsB=ZiniiB;
96%0%%0 0% %% %0 %% % Y0 %Y 0%6%%% steer angle
%0 Bo 00 00 00 00 00 0%0 0%0 0%0 0%0 00 0%%%
deltaAdk) = -Kt*epsA;
deltaB(k) = sim(net,-epsB);

%state update

ZstepA = A *ZinitA+ B*deltaA(k) + Ebis*local_yrefsA(n+2);
ZstepB = A *ZinitB+ B*deltaB(k) + Ebis*local_yrefsB(n+2);

%0 00 00 00 0%%0 0%0 D%o 00 00 00 0%%%0 00 0%0 0%
% Weighting update %

%0 ﬂo 00 00 0%%0 00 Bo 00 00 0%%%%%%0 00 ﬂ%o 0%%

%dudw(k) calculation
dudw= ~( ZstepB' + W*dzdw);

%dJdw(k) calculation and keeping the previous derivative of the cost
prevdldw=dldw;
dJdw=2*ZstepB"*R 1 cost*dzdw~+2*deltaB(k) *R2cost*dudw;

%dzdw{l+1) calculation
dzdw=A*dzdw+B*dudw;

%adaptive learning rate - to improve convergence speed and accuracy

if dTdw/prevdldw<1 % Cost ratio
gama=1.05%*gama;

end

if dldw/prevdIdw=>1.003
gama—=0.7*gama,

end

deltaw=-gama*dJdw; % value for deltaw

gama_next(k+1) = gama;

Y%weighting update
W=W-deltaw; % Incremental training
netIW{1.1} = W;

0400 eV % %% %% Y% % END OF WEGHTINGS UPDATE%%
%0 00 00 00 0o 00 O%%o 00 00 (1]
%lateral_acceleration calculation
lateral_accelerationA(k+1) = (ZstepA(2,1 }-YdotAY T+u*ZstepA(4,1);
lateral_accelerationB(k+1) = (ZstepB(2, 1)-YdotB)/ T+u*ZstepB(4,1);

%update absolute positions
global_positionA(k+1) = global _positionA(k) + u*T*phiA(k) + ZstepA(l,1);
global_positionB(k+1) = global _positionB(k) + w*T*phiB(k) + ZstepB(1,1);
phiA(k+1) = phiA(K) + ZstepA(3,1);
phiB(k+1) = phiB(k) + ZstepB(3,1);
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%estore the state

ZA( k+]) = ZstepA;

ZB( k+1) = ZstepB;
end :

if epoch ==
plot_plot
end

toc

gama_last = gama_next(K-n);

gama. end(epoch) = gama_Jast,

W_last=W;

W_end{epoch,1:4+n+1) =W _last(1,1:4-+n+1);
end

Ws =W _init+0.0001;
xyz=[};
forr=1jg;
% xyz(r) =(W_lastB(r)-W_initB(r));
xyz(r) =abs((net IW{1,1}(r)-Ws(@)/Ws(1))*100,
end
weight change=(sum(xyz))/jg;

04%% %% %% % %% % %% %6 % %% % END OF MAIN LOOP

%%0 00 00 00 00 0%%0 00 00 00 ﬁo 0%%0 0

figure(2)

plot(gg)

xlabel('No. of Epoch’);
ylabel('Learning Rate');
title('Plot of Learning Rate")
grid on

figure(3)

wwi=W_end(,,10)’

ww = [W_init(10) wwl];

figure(3) '

plot(ww)

xlabel{'No. of Epoch’);

ylabel('Weight");

title('Plot of Updated Weight vs No. of Epoch’)
grid on .

Plottings2inoneshot

0049049409490 % %% % % Y% %% % % Y% END OF LinearNN.m

%0 00 00 00 00 00 0%%0 0%0 Oﬂ 00 0%0 0o (1]
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APPENDIX 2: MATLAB CODE

Neural Control of Nonlinear Car Model (Batch Training)

Y%7 %% %% % %% % %% %o Yo% % %6 % % % % %% Yo %
% NonLinearCarNN.m %

%0 00 0%%%0 00 0%0 0%%0 0%%0 ()0 00 00 00 0%0 00 ()0 00 ﬂ%

disp(’ : )
disp(’ NN with I neuron, NON Linear Car Model )
disp(’ )
disp(");

clear all;close alt;

% forward speed
u=input(*which speed ? (using 20 par (default))"):
if isempty(u), u=20; disp(‘Using u=20m/s (default)"), end

% sampling period T
T=0.05; '

% number of preview points
n=inputChow many preview points (using 20 par (default))");
if isempty(n), n=2/T; disp('Using a number corresponding to 2sec ahead (default)’), end

Yocar parameters definition
Cf=0.8*282240;
Cr=0.8*188160;

8=092;

b=1.38;

M=1400;

G=17;

[2=3040;

%Magic Formula Parameters

bm=17.5; %magic formula stiffness parameter, one tyre
cm=1.68; %magic formula shape parameter, one tyre
dmf=0.8%4800; %=3840

dmr=0.8%3200; %=2560

em=0.6; Y%magic formula curvature parameter, one tyre

Y% %% % %% % %% %% %% % %% Road Model Matrices
Y% %Y %% % Yo% Yo% %% %% % %
D=|zeros(n,1) eye(n),
zeros{1,n+1)];
E={zeros(n,); 11;

2%%% % %% %% %% 0% %% %% o%Linear Car Model
0% %% %% % % %% % % %% Yo% % Y %'

Linear car_model

Y%disp(™
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% %% %% %6 %0 % %0’ V%% %%% Linear control gain calcalaton
%0 Dn 00_ 00 00 00 0%%0 0o 00 00 00 0%
%cost prioritites
Q={1000;
017,
R2=1,

%compute the LQG gain Kt
LQRgain

04%%% %% %% Y% %00 %0% 0% %" 2%a%%% Linear cost parameicrs
%%0 0o 00 0%0 00 0%0 00 00 00 00 0%

94the cost to be minimised is the folowing one :

%I=Z(: k)" *Ricost*Z(: Jk)+delta(k) *R2cost*deltak)

Rlcost=R1,
R2cost=R2;

tic
disp(’ Loading path information.....")

040005 00040490%6%% % Y %% Yo% +%%% Path information
%%0 00 00 0%0 00 0%0 0%%%0 0%0 00 Dﬂ 00 0%

circuits 2

[K.nb] = size(yref) % Amay size for yrefl

9/,04% %% %% % %% %% % 0040404 State definition & initialisation

%0 00 00 0%0 00 00 0%0 00 00 0%0 0

v, The augmented state comprises the states of the car and the states of the road model
9% The notations A and B represents the optimal controller and
% the single processing element respectively.

ZA = zeros{d+nt+1 . K-n-1);
ZA(1,1) = yref(1);

ZA3,1) = (yref(2) - yref(1))/(n*T);
ZA@+ L 4+n1,1) = yref(Lint 1)

ZB = zeros(4+n+1, K-n-1};
ZB(1,1) = yref(1);

ZB(@3,1) = (yref(2) - yref(1))/(u*T);
ZB(4+1:4+n+1,1) = yref(1:n+1);

%angmented E matrix
Ebis=[zcros(4.1); E]; :
%% %% %% %o Yo% %% 0% %% Paramaters Initialisation
0 %% %% Yo% Y% % Y6 Yo% % % %o
dzdwB = zeros{n+3,n+5);
dudwB = zeros(l,n+3);
dJdwB = zeros(1,n+5);
prevdldwB = zeros(1,n+3);
deltawB = zeros(1,n+5);
prevdeltawB = zeros(1.n+5);
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Yoother parameters
phiA(L)y=(yref(2)-yref(1))/(u*T);
phiB(1)=(yref(2)-yref(1))/(u*T);

deltaA(1)=0;
deltaB(1)=0;

lateral _accelerationA(1)y=0;
lateral_accelerationB(1)=0,

global_positionA(1)=ZA(1,1);
global_positionB(1)=ZB(1,1);

ZinitA = zeros(4+n+1,1);
ZinitB = zeros(4+n+1,1);

ZstepA = zeros(4+nt+1, 1);
ZstepB = zeros(4+n+1, 1),

%%%%%% %% %% %% %% Yopartial derivative of the side forces
%%‘) 00 0o 0%0 OO 0%0 00 00 00 00 0%

syms varl % symbolic steer angle

syms var2 % symbolic local speed

syms var3 % symbolic rate

Yslip angles
alphaf=varl/G-atan((var2+a*var3)/abs(w));
alphar=-atan((var2-b*var3)/abs(u));
Yefront and rear lateral forces
Fyf=2*dmf*sin{cm*atan(bm*alphaf-coo™* (bm*alphaf-atan(bm*alphaf))));
Fyr=2*dmr*sin(cm*atan(bm*alphar-em*(bm*alphar-atan(bm*alphar))));
Yopartial derivatives
dFyfdu=diff(Fvf,varl);
dFyfdx2=diff(Fyf,var2),
- dFyfdx4=diff(Fyf,var3);
dFyrdx2=diff(Fyr,var2);
dFyrdx4=diff(Fyr,var3),

F0% %% %% %% % Neural network implementation; single processing element '
%0 00 0%%0 00 00 0% .

disp(' neural network implementation.....")

%choose an input layer with n+5 (number 6f states) neurons
mpwB=f-50*ones(n+5,1) 50*ones(n+3,1)j;

net=newil(inputB, 1, {'tansig'},'trainbfg");
net.trainParam. searchFen = 'srchbac’;
net.frainParam.Ir = 0.008;
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net.trainParam epochs = 20;
net trainParam.show = 1;
‘net trainParam. goal = 1e-10;
o initialize the vector W(;) containing all weights and biases.
for jg=1:4+n+1
WB(ig)=Kig),
W_init=WB,
end

%initializc neural network weightings

net IW{1,1}=WB;
net.bi1} =[01;

toc

disp(’ main loop.....")

tic
{yoo OD 0%%%0 ﬂo 0%0 OD 00 00 00 0%0 00 00 OD 00 0%0 00 0(:I 0%0 0
% MAIN LOOP %
%0 (}0 Bﬂ 00 00 Oo 00 00 00 ﬂ%o 00 00 0%0 00 00 00 0%%%0 00 0{’ 0%

for k=1:(K-n-1})

%Weight_nextB(k,4+n+1)=WB(1,4+n+]);

%, definition of 2 new global frame based on local x and y-axes
%, definition of the states of the car

ZinitA = ZAG.k);
YdotA = ZAZ,K);

ZinitB = ZB(.K);
YdotB =ZB(2 k),

k=1
ZinitA(2) = ZinitA(2)-u*sin((phi AK)-phiAk-1))); %the local y-axis changed
ZinitB(2) = ZinitB(2)-u*sin((phiB (k)-phiBk-1));
else
ZinitAQ2)= 0,
ZinitB(2)= 0,
end

% due to the choice of the frame, absolute positions become zero

ZinitA(1) = 0;
ZinitA(3) =0,
ZinitB(1) = 0;
ZinitB(3) = 0;

o/, absolute to relative road data transformation
local_yrefs = yref(k:k-+n+1);
for j = 1:(n+2),
local_yrefsA(j) = local_yrefs() - global_positionA(k)- ...
(-1y*phiAdcy*u*T;
local_yrefsB(j) = local _yrefs(j) - global _positionB(k)- ...
G-1y*phiBk)y*u*T;
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end
o definition of the remaining states (preview path errors)
ZinitA(4+1:4+n+1) = local_yrefsA(1:n+1);
ZinitB(4+1:4+n+1) = local_yrefsB(1:n+1);

%% 2%0%% Yo% oY% %Yo 0" 6%0%0%%Y o% state error
%% %% % %Y 2% %% % %% 0%%0%% %% %%
epsA=ZinitA,
epsB=ZinitB;

%6%% %% % %% %% % %0 %Y 0%%0%% %o steer angle %% %% %% %% % %% 2% %%% %% %%
deltaA(k) = -Kt¥epsA,;
deitaB(k) = sim(net,-epsB),

0406 % Yo% %% Y% Yo% %% %6 %Yo %o % Yo% % %6 % % %o % % Yo
% Weighting update single processing element %
%0 0%%%%0 00 0%0 00 00/00 00 0%0 00 00 OD 00 00 00 00 00 0D 0?/0%0 0

net IW{1,1} =WB;

%dF3du calculation
dF3duB={0; ‘
(T/My*subs(dFyfdu, {varl var2,var3}, {deltaB(k),ZinitB(2),ZinitB(4)}) ;
0;
(T/I2)*a*subs(dFyfdu, {varl var2,var3}, {deltaB(k),ZinitB(2),ZinitB(4)}) :
zeros(nt1,1)];

%dF3dz calculation
FiB=11 T 0 o

0 L+(T/My*(subs(dFyfdx2, {varl,var2,var3}, {deltaB(k),ZinitB(2), ZinitB@#)}) ...
-+ subs(dFyrdx2, {var2,var3}, {ZinitB(2),ZinitB(4)}) ) 0 (T/MY*(
subs(dFyrdxd, {var2,var3}, {ZinitB(2),ZinitB(4)}) ...
+ subs(dFyfdx4, {varl,var2,var3},
{deltaB(k),ZinitB(2),ZinitB(4)}) )

0 0 1 T

0  (T/IZ)*( a*subs(dFyfdx2, {varl,var2,var3}, {deltaB(k),ZinitB(2),ZinitB(4)}) ...
b* subs(dFyrdx2, {var2,var3}, {ZinitB(2),ZinitB(4)}) ) 0
1+H(T/Iz)*( a*subs(dFyfdx4, {varl,var2,var3}, {deltaB(k),ZinitB(2),.ZimitB(4)}) ...
-b* subs(dFyrdx4, {var2,var3},
{ZinitB(2),ZinitB(4)}) ) 1;

dF3dzB=|F3B zeros(4,nt1); zeros(n+1,4) D ],
dzdwB=dF3dzB*dzdwB+dF3duB*dudwB,

00UV %% %% %% % END OF WEGHTINGS UPDATE

%0 0u 0%%0 00 00 0%0 00 00 00 00 L]
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%side forces
%F1=2*dm*sin(cm*atan(bm*alpha-em*(bm*alpha-atan(bm*alpha))));

frontmslijangleA=de1taA(k)/G-atan((ZinitA(2)+a*Zi11itA(4))/u);
Z13A=bm*front_slip_angleA-atan(bm*front_slip_angleA);

FyfrontA=2*dmf*sin(cm*atan(bm*front_slip angleA-em*Z13A));

rear_slip_angle A=-atan({(ZinitA(2)-b*ZinitA(4))/u),
Z25A=bm*rear_slip angleA-atan(bm¥rear slip angleA);

FyrearA=2*dmr*sin(cm*atan{bm*rear_slip_angleA-em*Z25A));

front_slip angleB=deltaB(k)/G-atan{(ZinitB(2)+a*ZinitB(4))/u),
Z13B=bm*front_slip angleB-atan(bm*front_slip_angleB);

FyfrontB=2*dmf*sin{cm*atan(bm*front_slip_angleB-em*Z13B));

rear_slip_angleB=-atan{(ZinitB(2)-b*ZinitB(4))/u),
Z25B=bm*rear_slip_angleB-atan(bm*rear slip_angleB});

FyrearB=2*dmr*sin(cm*atan(bm*rear_slip_angleB-em*Z25B)),

Y%acceleration equations

Yodifferential equation & state update
ZstepA(D)=ZinitA(1)+ T*ZinitA(2);
Zstep AQ)=Zinit A(2)+T*((I/M)*(FyfrontA+FyrearA));
Zstep A(3)=Zinit A(3)+T*ZinitA(4);
ZstepA(D)=Zinit A(H+T*(1/Izy*(a*Fyfront A-b*Fyrear A);

ZstepB(1)y=ZinitB(1)+T* ZinitB(2);
ZstepB(2)=ZinitB(2)+T*((1/M) *(FyfrontB+FyrearB));
ZstepB(RZinitB(3)+T*ZinitB(4);
ZstepB(H=ZinitB(d)+T*(1/1z)*(a*FyfrontB-b*FyrearB);

%lateral acceleration calculation
lateral_accelerationA(kt1) = (ZstepA(2,1)-YdotA) T+u*ZstepA4,1);
lateral_accelerationB(k+1) = (ZstepB(2,1)-YdotB)/T+u*ZstepB(4.1},

%updatc absolute positions
global_positionA(k+1) = global positionA(k) + w¥*T*phiA(K) + ZstepA(l,1);
global _positionB(k+1) = global_positionB(k) + u*T*phiB(k) + ZstepB(1,1);

phiA(k+1) = phiA(k) + ZstepA(3,1);
phiB(k+1) = phiB(k) + ZstepB(3,1);

%store the state

ZA( k+1) = ZstepA,

ZB(: k+1) = ZstepB;
end
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net = train(net,-epsB);
toc

Ws =W _init-+0.00001;
xyz=[};
forr=1;jg;
xyz(r) =abs((net. [W{ 1,1 }{r)-Ws(D)/Ws(r))*100;
end
weight_change=sum(xyz)/jg;

0 0400 %% Y% % %% % %Y END OF MAIN LOOP

%0 00 00 00 00 00 00 0%0 0%%%0 o%%a Do 0
Plottings2inoneshot

YoY% %% %% % %% %% %% %% % % END OF NonLinear Car NN

%0 0%0 00 00 00 00 0%0 0%%%%
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