AN INTEGRATED APPROACH FOR THE BEST SELECTION OF OFFSHORE POWER GENERATION

By

MOHD ZHAFRI BIN NASARUDIN

FINAL YEAR PROJECT FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

> Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

> > © Copyright 2005 by

Mohd Zhafri Bin Nasarudin, 2005

CERTIFICATION OF APPROVAL

AN INTEGRATED APPROACH FOR THE BEST SELECTION OF OFFSHORE POWER GENERATION

by

Mohd Zhafri Bin Nasarudin

A project dissertation submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

Approved:

Ir. N. Perumal Senior Lecturer, Electrical & Electronic Engineering Academic Block No 22 Universiti Teknologi PETRONAS Bandar Seri Iskandar B1750 Tronoh, Perak Darul Ridzuen, MALAYSIA

Ir. Perumal a/l Nallagownden Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Mohd Zhafri Bin Nasarudin

ABSTRACT

This project is in collaboration with PETRONAS Carigali Sdn Bhd. and was selected for the 16th Engineering Design Exhibition (EDX 16) of UTP. The main target or objective of this project is to develop a methodology and process to select the best and most suitable power generation technology specifically for remote or offshore facilities because currently, there is neither definitive methodology nor guideline for electrical engineers to select the type of generator suitably to meet the requirement of offshore applications. This is the first ever attempt to standardize the selection method. Studies on designing power generation and also on new and suitable technologies of power generators for offshore application have been conducted together with data collection from the internet. It can be conclude that there are two main factors have to be considered during the selection process. The factors are the technical parameter and the other one is the decision factor, which pretty much related to the structural limitations of a platform. As an addition, a system or selection tool software is developed as an aid to the engineers for selecting the best generator during the design stage. The software also serves the purpose as a database where all information and specifications from different types of generators can be safe-kept there.

ACKNOWLEDGEMENT

Using this opportunity, the author would like to express his gratitude to all who have been assisting during the execution of this project. Thank you Allah the Almighty for

His will and guidance, this project is now complete. Profound appreciation and sincere thanks goes to my university supervisor Ir. N. Perumal for all the tremendous effort given in assisting and guiding throughout conducting the whole project. Million thanks to the industrial supervisor from PETRONAS, Principal Electrical Engineer Ir. Mohd Faudzi Bin Mohd Yasir, for his advices, information and co-operations. All of them are highly appreciated. My special gratitude goes to Mr. Mohd Khairul Zarir Bin Ahmed Lokman for his hand and expertise in the software development of this project. Not to forget all Electrical & Electronics Engineering lecturers and support staffs for being very helpful. Last but not least the author would like to thank all his colleagues, friends, and especially his family for all their endless support and motivations along the way; and keeps me going all the way. Again, thank you all!

TABLE OF CONTENTS

LIST OF TABLES	ix
LIST OF FIGURES	X
CHAPTER I INTRODUCTION	1
1.1 Project Background & Problem Statement	1
1.2 Objectives	
CHAPTER 2 LITERATURE REVIEW	4
2.1 Types of Offshore Platforms and Facilities	4
2.1.1 8-legged Central Processing Platform (ANPG-A)	6
2.1.2 8-legged Drill Riser Platform (ANDR-A)	6
2.1.3 4-legged Drilling Platform (ANDP-B)	7
2.1.4 3-legged (Tripod) Drilling Platforms (ANDP-C & A	ANDP-E).8
2.2 Different Types of Small and Large Power Technologies	
2.2.1 Microturbines.	9
2.2.2 Close-cycle Vapour Turbogenerator	
2.2.3 Thermal Electric Generators	
2.2.4 Reciprocal Engines	
CHAPTER 3 PROJECT OVERVIEW AND METHODOLOGY	
3.1 Project Overview	
3.2 Project Methodology	
3.2.1 Software & System Development Tools Selection	
CHAPTER 4 FINDINGS AND DISCUSSION	
4.1 Results of Study	
4.2 Software & System Development	
4.3 Software & System Demonstration.	
CHAPTER 5 CONCLUSION	
5.1 Conclusion	
5.1.1 Benefits of This Project	
5.2 Summary	
REFERENCES	

APPENDICES	
Appendix A Load Study	
Appendix B ANGSI Development Plan	
Appendix C Programming Coding	41
Appendix D Database and Equipment Specs (Examples)	

LIST OF TABLES

Table I Example of Types Of Offshore Platforms and Its' Power Requirement......35

LIST OF FIGURES

Figure 1: ANPG-A Process Platform and ANDR-A Drill Riser Platform	6
Figure 2: ANDP-B Drilling Platform	7
Figure 3: ANDP-C and ANDP-E Drilling Platform	8
Figure 4: Recuperated Microturbine Systems	10
Figure 5: Inside a CCVT	13
Figure 6: Actual CCVT Units	13
Figure 7: TEG Solid State Device	14
Figure 8: Thermopile	15
Figure 9: Internal Combustion Engine Installation	17
Figure 10: Cross Section of IC Engines	19
Figure 11: Programming Algorithm for the Software	25
Figure 12: User Interface of the Power Generation Selection Software	
Figure 13: Example of Input Parameters	
Figure 14: Example of Output Result	30
Figure 15: 'Add New Data' Function Page	
Figure 16: 'Edit Data' Function Page	32

CHAPTER 1 INTRODUCTION

This project is initiated during the Industrial Internship Programme at PETRONAS Carigali Sdn. Bhd. (PCSB) KLCC from June 2004 to January 2005. It is offered by PCSB as the Final Year Project (FYP) for the university to explore new technology applications in offshore Oil & Gas industry. This FYP is a joint project, incollaboration with PCSB. Principal Electrical Engineer Ir. Mohd Faudzi Mohd Yasir is the representative or industrial supervisor form PCSB together with Ir. N, Perumal as the lecturer supervisor from the university.

1.1 Project Background and Problem Statement

This project focuses on the selection of power generation technology for offshore facilities which requires electricity supply. Selection of power generation is part and parcel of facilities design for electrical engineers at PCSB. The design for offshore power generation offers many challenges. Among them are the changes in technologies (generators) and the varying load of facilities at different platforms. Recently, there are several numbers of technologies of power generators available in the market. A detailed study and analysis is required to determine the best offshore power generation types for all the facilities on-board. Currently, there is no establishing methodology for engineers to optimize the selection.

Different types of offshore platforms require different types of power generation depending on the size, facilities on-board, and load consumptions. For the time being, PCSB has 3 types of platforms which are 8-legged, 4-legged, and 3-legged. The bigger the platform means more power required to cater the loads such as drilling facilities, lighting, and Distributed Control System (DCS). Smaller platforms require smaller

power which can be generated by smaller generators such as from Microturbine Generator (MTG) and Close-cycle Vapour Turbogenerator (CCVT). Besides producing self generation, few others satellite platforms tap electrical power from their mother or main platforms via Submersible Power Cable.

1.2 Objectives

The main objective of this project is to develop a methodology or process to select the best and most suitable power generation technology specifically for remote or offshore facilities in the oil & gas business. Currently, there is neither definitive methodology nor guideline for electrical engineers to select the type of generator suitably to meet the requirement of offshore applications.

CHAPTER 2 LITERATURE REVIEW

Because this is a collaborative project with PCSB, all historical data and information on the various types of offshore facilities together with its' type of power generator technologies and power requirements will be input by PCSB itself. Besides that, references from the internet, journal and product catalog from vendors will also be required. There are three main sources for literature which are:

- PETRONAS Technical Standards (PTS). PTS 33.65.11.32 (Package Unit AC Generator Sets) and PTS 33.64.10.10 (Electrical Engineering Guidelines).[1]
- Types of Offshore Platforms and Facilities
- · Different Types of Small and Large Power Generation Technologies

2.1 Types of Offshore Platforms and Facilities

PCSB has many oil fields or wells throughout the Malaysian waters particularly at the South China Sea. Besides that, PCSB also has interests in other countries such as Vietnam and Indonesia, to name a few. To get the knowledge on typical offshore facilities, the ANGSI field has been selected as the main reference and example because it has a complete facilities for offshore applications within its' five platforms.

ANGSI field is situated at the South China Sea offshore of Kerteh, Terengganu. This field already has five operational platforms; whereby ANPG-A (process platform) and ANDR-A (drill riser platform) act as mother platforms with three satellite drilling platforms namely ANDP-B, ANDP-C and ANDP-E (please refer appendix, ANGSI Field Development Plan). For info, the ANGSI field produced about 100,000 barrels of

crude oil per day, which justify that this field is the largest in production of crude oil for PETRONAS at South China Sea.

2.1.1 8-legged Central Processing Platform (ANPG-A)

Typical installed power capacity: 3 MW to 5 MW Typical voltage rating: 6600 VAC Frequency: 50Hz Typical offshore facilities: Production, Processing and Living Quarters

2.1.2 8-legged Drill Riser Platform (ANDR-A)

Typical installed power capacity: 100 kW Typical voltage rating: 400 V AC Frequency: 50Hz Typical offshore facilities: Drill Riser, Flare Tower

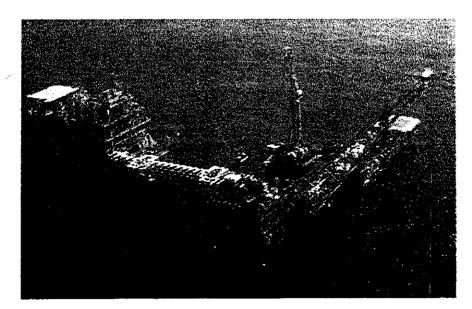


Figure 1: ANPG-A Process Platform and ANDR-A Drill Riser Platform

2.1.3 4-legged Drilling Platform (ANDP-B)

Typical installed power capacity: 100 kW to 150 kW Typical voltage rating: 400 V AC Frequency: 50Hz Typical offshore facilities: Drilling Rig

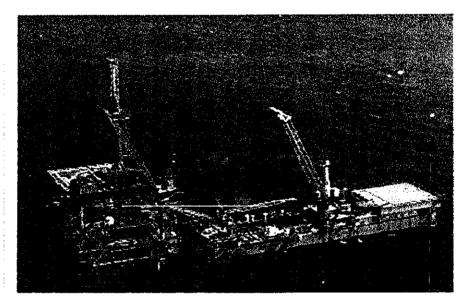


Figure 2: ANDP-B Drilling Platform

2.1.4 3-legged (Tripod) Drilling Platforms (ANDP-C & ANDP-E)

Typical installed power capacity: 2 kW to 4 kW

Typical voltage rating: 24 VDC

Frequency: -

Typical offshore facilities: Drilling Rig



Figure 3: ANDP-C and ANDP-E Drilling Platform

2.2 Different Types of Small and Large Power Generation Technologies

Currently, there are many types of power generation technologies available in the market. Study on the characteristics, working principles and specifications are also necessary to make sure whether the equipment is viable for offshore practice. A power output is considered small when the rated power produced is below 1000 kW or 1 MW. Above that ranges is considered as large or high power output. These are a few examples of technologies which have been identified suitable for offshore usage.

2.2.1 Microturbines [6]

Microturbines are small combustion turbines that produce between 25 kW and 500 kW of power. Microturbines have a common shaft on which mounted a compressor, turbine, and generator. These components are mounted on air bearings, so no lubrication is required; because friction is eliminated, the cost of maintenance is significantly reduced. Most microturbines are single-stage, radial flow devices with high rotating speeds of 90,000 to 120,000 revolutions per minute. The frequency may vary from 1,300 to 1,600 Hz. This AC power may be converted to DC power and later re-converted via inverters into AC power at 240 or 480V and 50 or 60 Hz.

Microturbine generators can be divided into two general classes: (i) Recuperated microturbines, that recover the heat from the exhaust gas to boost the temperature of combustion and increase efficiency; and (ii) Unrecuperated (or simple cycle) microturbines, which have lower efficiencies, but also lower capital costs. While some early product introduced in the market has featured unrecuperated designs, the bulk of developers' efforts are focused on recuperated systems. The recuperator recovers heat from the exhaust gas in order to boost the temperature of the air stream supplied to the combustor.

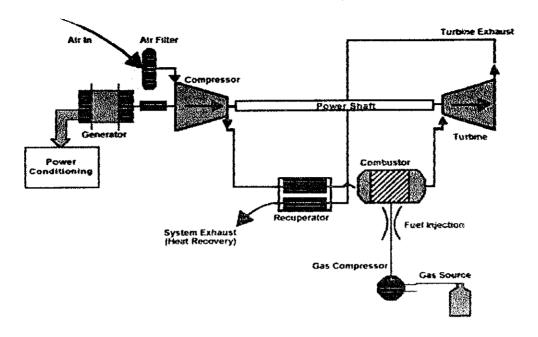


Figure 4: Recuperated Microturbine Systems

Further exhaust heat recovery can be used in a cogeneration configuration. The figure above illustrates a recuperated microturbine system. In the recuperated microturbine systems, units are air cooled, with air brought in through an inlet to cool the generator set. The air is then compressed before it is ducted through the regenerator into the combustion chamber. Once the air is compressed, it is sent to the recuperator to raise its temperature, passing to the combustion chamber, and mixing with fuel. Ignition of the mixture creates the combustion gases that enter the turbine, making it rotate. The gases leave the turbine at 1,100°F and return to the recuperator, which transfers a large fraction of the heat to the compressed air before the compressed air enters the combustion chamber. Exhaust gases at 450°F may be sent to a heat exchanger in order to heat water for industrial, commercial, and residential purposes, as well as for the production of steam.

2.2.2 Close-cycle Vapour Turbogenerator [8]

Closed Cycle Vapour Turbogenerator or CCVT is another of many types of power generating equipment offshore platforms. ORMAT is one of the manufacturers whom named its CCVT product as The ORMAT Energy Converter (OEC). This OEC unit is suitable for remote power system and certified for operations in Class 1, Division 2 (Zone 2, Group II) conditions in offshore applications.

Usually, a CCVT is only used to produce small power at an unmanned platform. For OEC, basically a self-contained power package consisting of a combustion system, a vapor generator, a turbo alternator, an air-cooled condenser, a rectifier, alarms and controls housed in a shelter. It will supply 200 to 3000 Watts of filtered DC power on a continuous 24-hour-per-day basis for periods of up to 20 years with virtually no maintenance or repairs.

The ORMAT concept utilizes a hermetically sealed Rankine cycle generating set which contains only one smoothly rotating part – the shaft on which the turbine wheel and the brushless alternator rotor are mounted. The turbo alternator shaft is supported by working fluid film bearings, which eliminate any metal-to-metal contact, resulting in years of trouble-free operation. Unlike any other generators, this OEC unit can operate with natural gas with high NCG content and low LHV.

System Operation of a CCVT

The burner heats the organic working fluid in the vapour generator where some of it vaporizes and expands through a turbine wheel thereby producing shaft power to drive the alternator. The vapour then passes into a condenser where it is cooled, condensed back into the liquid state and driven back into the vapour generator, cooling the alternator on its way, and lubricating the bearings. The cycle continues as long as heat

is applied to the vapour generator. Because the vapour/liquid stainless steel envelope is sealed, none of the organic fluid is loss during the process.

Furthermore, the working fluid is totally immune to climatic conditions outside the sealed envelope. The turbo-alternator produces three-phase AC power, which is then rectified and filtered. The DC power is regulated for varying load by automatically controlling the amount of fuel supplied to the burner. The system is equipped with a digital turbine control unit with safety controls to protect it against any abnormalities, including overheating.

General Specifications of CCVT:

- Output power: 200 to 3000 W (per unit)
- Output voltage: 24 or 48 or 125 VDC (nominal)
- Voltage variation: 3.5% of voltage setting
- Protections: short circuit, over voltage, low voltage, motive fluid over temperature
- Area of installation: Zone 2, Group II, Temperature Class T3 / Class 1, Division 2, Temperature Class T3

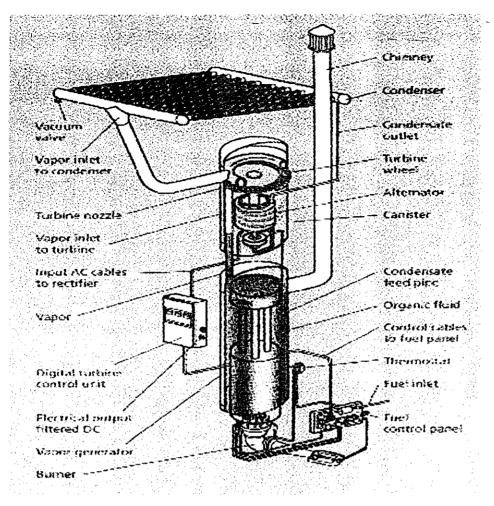


Figure 5: Inside a CCVT

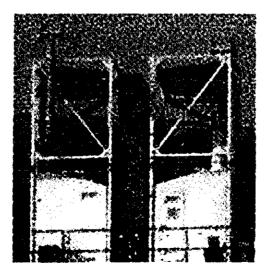


Figure 6 Actual CCVT Units

2.2.3 Thermal Electric Generators [9]

Known as TEG, is another highly robust and reliable product which produced electricity from the conversion of heat. It is low in maintenance as there are no moving or rotating parts inside this unit. Initially, this technology is develop by 3M for the Apollo space program, but later was commercialized by Global, as one of the main manufacturer and supplier worldwide. A standard TEG unit is designed for 20 years lifetime.

A TEG solid state comprises of 3 key components which are burner, sealed thermopile and heat sink. The burner acts as the main heat source of the unit. The sealed thermopile is the energy conversion device which converts the heat produced by the burner to electricity. The heat generated is cooled by heat sink in the form of cooling fins or heat pipes.

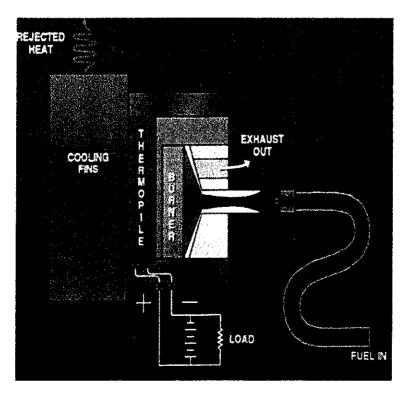


Figure 7: TEG Solid State Device

System Operation of a TEG

The main conversion unit of this TEG unit is the hermetically-sealed thermopile. This is where the heat is converted directly to electricity. DC current is produced when there is a difference in temperature across the thermopile, just like the concept of thermocouple. This small DC current is then amplified and regulated to produce the amount of power needed, in this case, according to the unit's rating. The elements of this thermopile are lead-tin-telluride.

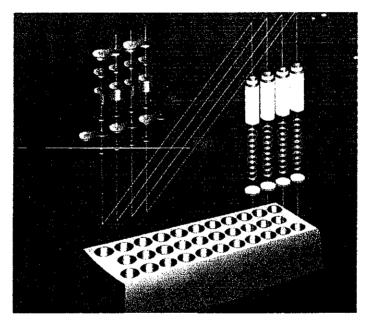


Figure 8: Thermopile.

TEG Features

- Standard 12 VDC, 24 VDC
- · Generators can be connected in parallel or series for larger loads
- Systems can be designed for load requirements from 10 W to 5000 Watts
- Gaseous Fuels natural gas, propane

2.2.4 Reciprocal Engine

Reciprocating or internal combustion (IC) engines are part of our everyday life. There are over a million IC engines installed for electricity backup applications worldwide, and over 100 million engines in operation counting cars, trucks, planes, and boats. IC engines are best suited for backup, intermediate, peaking, and combined heat and power (CHP) applications where unit sizes with electrical output requirements range from a few kW up to roughly 10,000 kW. Besides applicable to offshore power generation, IC engines are installed in manufacturing facilities, office buildings, universities, hospitals, retail stores, distribution centers, and small utilities. IC engines are generally characterized as having:

- Low initial capital cost
- Proven reliability
- Strong maintenance support networks
- Rated output that is not impacted by higher ambient temperatures or elevations
- High partial load efficiency
- Heat recovery capabilities for combined heat and power
- No requirements for external inlet fuel compression

IC engines are divided into two basic types: spark ignition and compression ignition engines. The spark ignition engine is common in the form of gasoline powered car engines. Below 75 kW they are produced in large volumes, but are also seeing rapid acceptance above 300kW for natural gas fired power generation with heat recovery (CHP). Excluding the lowest output models, these engines typically have four-stroke combustion cycles, operate at medium to high speed, and are powered by liquid fuels or natural gas. Higher engine speeds allow for greater engine efficiency. Natural gas is often required for longer run hours to meet environmental regulations for applications with longer run hours.

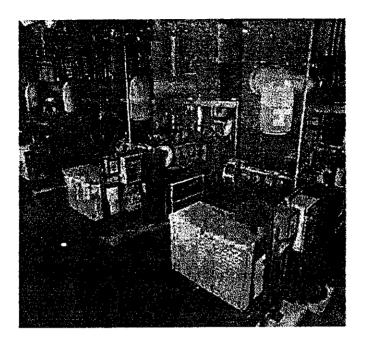


Figure 9: Internal Combustion Engine Installation

The compression ignition engine, often called a diesel engine, is used in heavy trucks or buses. Diesel engines can have two- or four-stroke combustion cycles and can operate at any speed. Heavy fuels such as diesel are used extensively for power production in Africa, Asia, and many islands. IC engines provide the best combination of efficiency and cost effectiveness in smaller scale applications compared to other power generation technologies. IC engines are found in the following cycles:

1) Simple Cycle - This is the standard operational method of IC engines. Simple cycle indicates that cogeneration or combined heat and power is not being employed. They have high simple cycle efficiencies, low capital cost and start-up times typically of less than ten seconds. These attributes make IC engines well suited for back-up power.

2) Cogeneration or Combined Heat and Power - Combined Heat Power (CHP) is a leading configuration for supplying electricity while capturing thermal energy in the form of process steam or hot water for industrial and commercial applications. IC engines are not as efficient as combustion turbines in converting waste heat to steam

(less than 50% thermal energy can be converted to steam), but are very well suited for applications requiring small amounts of steam at low pressure or small to large volumes of hot water. Reciprocating engine CHP installations have been steadily increasing.

Technology of IC

IC engines and combustion turbine technologies both use the energy of combustion and convert it into rotating mechanical energy. The basic operation of an IC engine is similar to a combustion turbine in that both convert combustion gases into a rotating shaft (crank). However, combustion turbines use a continuous combustion process, whereas IC engines follow discrete steps in the energy conversion process. A typical four-stroke IC engine cycle consists of the following four steps:

- Intake
- Compression
- Power (Combustion)
- Exhaust

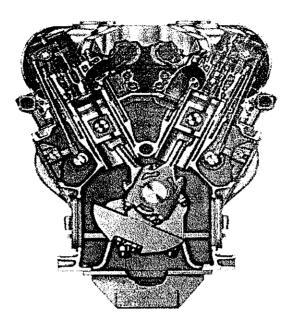


Figure 10: Cross Section of IC Engines

A four-stroke process requires two complete revolutions of the crank shaft to complete its cycle versus a two-stroke machine which completes the four cycles in one revolution of the crankshaft. During the Intake step, air and fuel are inducted into a cylinder when the piston is near or at its downward stroke (assumes a vertically oriented engine) and the intake valves or ports (located at the top of the engine block) open to draw in air. Intake air is always filtered to remove particles and extend the life of the engine. Once the air and fuel mixture is in the cylinder, the compression step occurs by an upward stroke of the piston that reduces the combustion volume and compresses the mixture. The piston is connected to the crankshaft by a connecting rod that pushes the piston upward as the crankshaft rotates. The piston travels upward until it reaches the end of its stroke.

The combustion or power step in the four-stroke cycle occurs when either compression is high enough (16:1) to cause the mixture to self ignite, or an external spark is introduced. The pressure ratio is the ratio of the pressure at full compression, or minimum volume, divided by the pressure of the cylinder at its maximum volume. The expanding exhaust gases push the piston downward, creating mechanical energy that causes the connecting rod to rotate the crank shaft. In the exhaust step, the valves or ports in the exhaust manifold open to allow hot exhaust gases to escape, completing the cycle.

In contrast to the four-stroke cycle, two-stroke machines complete their cycle in one revolution. For this reason, two-stroke air aspirated engines generate more mechanical power than their four-stroke counterpart with the same cylinder volume. Both types of engines go through the four steps listed above. When the piston moves downward, the two-stroke engine exposes an exhaust port that allows exhaust to escape and then introduces a fresh air/fuel mixture into the cylinder. The mixture is compressed with a subsequent upward stroke of the piston, followed by the combustion process that drives the piston back downward and creates mechanical power through the crankshaft. The exhaust valves or ports in the exhaust manifold open to allow hot exhaust gases to escape. Although two-strokes can generate more power than a four-stroke with equivalent displacement (cylinder volume), they are also less efficient and have higher emissions.

CHAPTER 3 PROJECT OVERVIEW AND METHODOLOGY

3.1 Project Overview

In Malaysia, electricity or electrical power supply is obtained by two methods. First, the supply is received from the source that generates its own power and supplies it to consumers as their core business such as Tenaga Nasional Berhad (TNB) or other Independent Power Producers (IPPs). Secondly, the electricity required for own usage is produced by self generation using various types of power generators. For example, PETRONAS produced its own power for self utilization through their power plants from PETRONAS Gas Berhad (PGB) through its Central Utility Facilities (CUFs).

Offshore platforms and facilities generate its' own electricity. Currently, PCSB had spent an incurred high cost of investment on power generation systems offshore by undertaking substantial engineering activity and inventory to cater the changes of load. Therefore, PCSB is looking at an optimize method or philosophy in selecting the type of power generation technology for their facilities, hence reducing the front end cost of engineering works. Selecting of a power generator for offshore is normally based on these criteria:

i) Load Demands:

To cater all the required power on-board for process, instrumentation, drilling, accommodation and other equipment such as various types of pumps, lighting and also Distributed Control System (DCS).

ii) Space:

Whether the footprint of the power generator is able to fit in the space provided onboard.

iii) Weight:

To match the equipment's weight with the structural limitations of the platform.

iv) Reliability:

The reliability and performance of the generators must be taken into account during the design stage and technical evaluation. To check whether the generators comply with all the technical requirements and are robust enough to withstand the harsh offshore environment.

3.2 Project Methodology

The methodology on conducting this project is divided into four parts:

i) Data gathering and collection:

Information on types of power generations for offshore applications are searched and collected from PCSB's vendors and suppliers. The information on types of offshore platforms is to be obtained from PCSB through the project collaborator. Besides, other relevant information can be gathered from the PCSB's archive at KLCC [5] (*please refer appendix, Load Study*).

ii) Study, research, and data analysis:

Studies on how to determine offshore power generation design by referring to the PTS together with frequent consultation with the industry supervisor. All the data obtained are also analyzed in terms of suitability and cost effective.

iii) Data compilation and arrangement:

With the aid and advices from the project collaborator together with project supervisor, all the data had been arranged and compiled according to criteria that will be discussed later. A small database containing all the relevant information also being constructed as reference (*please refer appendix*, *Equipment Database and Specifications*).

iv) Software development on power generation selection:

This is just an extra, not an objective of the project. According to plan, the software or system should serve two main purposes, first as a 'mini library' or database whereby additional data can be stored into later. Second, it will act as the selector of the best power generator to assist the engineers during the designing stage in a project.

,

3.2.1 Software & System Development Tools Selection

After conducting some survey and readings on software, it is concluded that only two programs are more suitable to develop the system for this project; first is MATLAB and second is Microsoft Visual Basics.NET (VB). Comparing both of them in terms of data management and accessibility, is it decided that VB is the better selection of the two.

VB harnesses Microsoft Access (Access) to store data. In other words, a new database must be constructed using Access by transferring all the data obtained earlier. But after considering back all other factors such as time constrain and complexity, it is decided that the database should be created directly in the VB itself using the .txt format, and then be stored inside the bin folder.

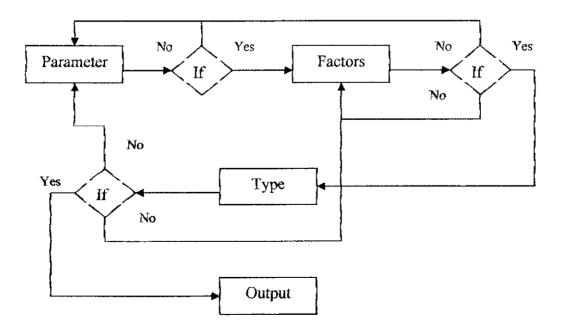


Figure 11: Programming Algorithm for the Software

CHAPTER 4 FINDINGS AND DISCUSSION

4.1 Results of study

From the study conducted, it is found that there are standard specifications and also variable specifications of a particular power generator for offshore or remote applications. The standard specifications or requirements for offshore installation are:

i) Hazardous Area Classification:

Although the power generator should be placed at safe area (according to standards IP Part 15, usually the equipment is required to be configured for Zone 1 adaptability.

ii) Ingress Protection (IP):

This is a protection against solid and water criteria. Normally, the generator has to comply with IP 56, which is the protection against medium size solid and jet spray of water.

Most of the manufacturers of these products can customize the standard specifications required. The variable specifications are the one where electrical engineers have to consider during the design stage. After further discussions with both supervisors and studies conducted, two things must be taken into account:

i) Technical Parameters:

Consist of which type of fuel source to be used, what are the ranges of output power needed, the voltage output whether AC or DC together with its frequency.

ii) Factor Decision:

This factor includes the maximum weight of the generator which the platforms can withstand and also the maximum footprint or size that can accommodate by the space limitation of the platform.

4.2 Software & System Development

Referring to the project planning before, the data are grouped according to types of generation such as gas turbines, diesel generators etc. Each of this group contained the following parameters of all the respective brands:

- power produces (output power)
- footprint (size)
- weight
- URL (website link)

This main objective of this system software is to assist the engineers to select the best generator according to the technical parameters and the decision factors. So the user interface should include the mentioned details or input:

- i) Technical Parameters:
- fuel source heat, gas, liquid
- power output in kilowatts
- voltage output AC or DC
- frequency 50 or 60 Hz

ii) Decision Factors:

- maximum size or footprint length, width, height
- maximum weight in kilogram

4.3 Software & System Demonstration

This is the first page interface whereby the user needs to input all the parameters required in order to perform the selection

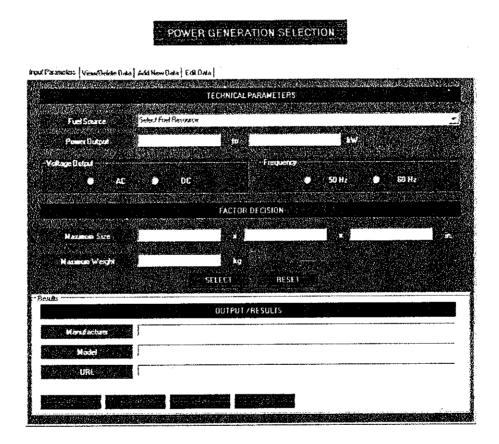
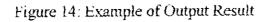


Figure 12: User Interface of the Power Generation Selection Software


The user will then fill out all the needed parameters of the generator (Figure 13). After that, the 'SELECT' button is push. The software then will filter out from its database and come out with the best matched equipment. The results will display the manufacturer's and model name, together with the website address or URL of the manufacturer for more detail descriptions and reference to the engineers (Figure 14).

na Parameters View/Delete Dat	a Add New Data Edit	Dala		an a
Subscience, realities between the	and and all a sum and difference	TECHNILA: PARAMI F	EHS	ettellenet førs det del har er fa
a Ng masang sang sang sang sang sang sang sang		an organist states in the		
FuetSource	Gas		in the state of the second frequencies of the second second second second second second second second second s	
Porrer Output	33	to (100	۱ ۳	
Vo#sgeDatpat			eni	
	DC		O 50 H₂ 1	6 7 Ha
DA O			an a	
	CREATENCE (*	FACTOR DECISION		a kanan dari tersebili di sa kana sa
Maximum Size	100	* 100	001 - TW	
Maximum Wenght	2000	ka		
	Marijana North		ESET	
		OUTPUT / RESULTS		
Handactura		· · · · · · · · · · · · · · · · · · ·	······································	· · · ·
Model				, ·
URL	[
	a alam ang kanalang ang kanalang kanalang kanalang kanalang kanalang kanalang kanalang kanalang kanalang kanala			

Figure 13: Example of Input Parameters

	Same and the second			
BETTALETATION	National de la composition de la compos	TECHNICAL PARAMETER	2 2	
FuelSearce	Ge:			
	250 250	10 TOT	٤v	
VoR∋geÜutpuk		Frequen		e contrar e s
AC	DC	이 이 같은 않는 것을	ें D 50 Hz	873 Hz
		erne zone naven en en e		
	eyterligin (23 - 27 - 24 Aug	FACTOR DECISION	and the second	ny farmen y carge de la 1998 de s
Maniman Size	100	100	7 100	
MANDAR SARE				
Mazzinano Wenghi	2000	Ly Article		
		SELECT BES		
A.				
		GUTPUTZRESULTS		
Manufacture	Capstone			
Model	C60 High Piessure	Natural Gao		
URL	www.napstoretatbi	19: L(AR		

As an addition or extra for this software, some new functions are planned and develop to make the software more user-friendly and useful. Those functions are 'Add New Data' (Figure 15) where users can update the database with new models and types of generators in the future; and users or engineers can also modified current or existing data using the 'Edit Data' function (Figure 16).

POWER GENERATION SELECTION

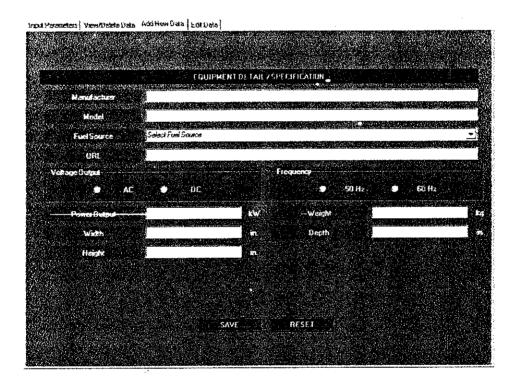


Figure 15: 'Add New Data' Function Page

POWER GENERATION SELL CRONE

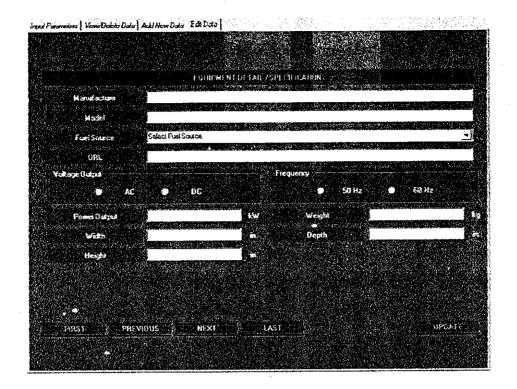


Figure 16: 'Edit Data' Function Page

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

All in all, this entire project has met its main objective. The objective of the exercise is to develop systematic approach and methodology to select the optimum generator on the offshore facilities. The methodology will facilitate engineer to identify and select the right generators for power source at any facilities and at anytime, therefore it could minimize the design time of power generation. In future, the electrical design engineers just need to input all the relevant parameter to get the right generators. After further discussions with both supervisors from the industry and the university, the two parameters which must be taken into consideration during the selection process that has been finalized are:

- i) Technical Parameters fuel source, power output, voltage output, and frequency.
- ii) Decision Factors the maximum weight and size

In addition to this, an integrated system using the Microsoft Visual Basics.NET software has been developed as an initiative to improve this project. This system can store all the different types of data together with its specifications in its database. Selection of the best selection of the offshore power generators can be done by this software by inputting all the above mentioned parameters. The software will filter out from its database and came out with the most suitable output of the required generator.

5.1.1 Benefits of This Project

From all the studies conducted and the results produced, this project will eventually benefit both the design engineers and also the company itself. Among those benefits are:

- Reduce the man hour to select the most suitable generators during the design stage of a particular project development plan.
- ii) Reduce the front-end cost of the engineering works. This means that the generators selected will be most efficient; not more or not less that the required rated output power. Thus, this will save the initial cost by minimizing the chance of selecting generators with excess power ratings.

5.2 Summary

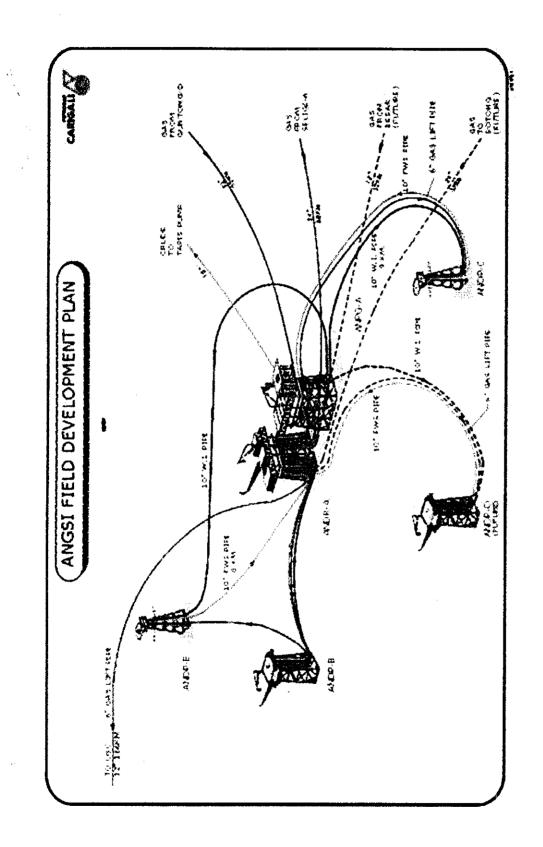
Most of the offshore platforms generate its' own power from various types of generation units. Usually, the satellite platforms require power from as low as 3kW to 150kW. These types of platforms perform drilling operations. Whereas, the mother or main platforms can consume more power up to a few megawatts to cater for the load demands which include on-board crude oil & gas processing. The table is just a short summary on some examples of the types of offshore facilities platforms together with its power demands or requirements.

Types of platforms	Functions and On-board Facilities	Approx.Power Consumption	Ex. of Generation Types
Central Processing Platform (8-legged)	Production, Process, and Living Quarters	3MW-5MW	Gas Turbine
Drill Riser Platform (8-legged)	Drill Riser, Flare Tower	100kW-150kW	Diesel Generator
Drilling Platform (4-legged)	Drilling Rig	100kW-150kW	Microturbine
Drilling Platform (3-legged)	Drilling Rig	2.5kW-4kW	Close-cycle Vapour Turbogenerator

Table 1: Example of Types of Offshore Platforms and Its' Power Demands

REFERENCES

- [1] PETRONAS Technical Standards (PTS 33.64.10.10) (2002) Electrical Engineering Guidelines.
- [2] PETRONAS Technical Standards (PTS 33.65.11.32) (2003) Packaged Units AC Generators Sets.
- [3] ANGSI D Design Basis Memorandum (ANDP-D DBM) (2004)
- [4] ANGSI A Upgrade Design Basis Memorandum (ANPG-A Upgrade DBM) (2004)
- [5] PETRONAS Carigali Website (CARING) info on assets of SKO; BOB, BON, BOS and assets of PMO; PM9, Dulang, ANGSI, POD
- [6] EPC Malaysia (Capstone) Product Info & Catalogue (2004) Microturbine Generator
- [7] Caterpillar (Reciprocal Engines) Website www.caterpillar.com
- [8] ORMAT Energy Converter Product Catalogue, ORMAT Inc. (2004) Close-cycle Vapour Turbogenerator (CCVT)
- [9] Thermo Electric Generators CD, Global International (2004) Thermo Electric Generators(TEG)
- [10] PETRONAS Carigali Sdn Bhd (PCSB) Archive ANGSI drawings, data, and specifications.
- [11] Microsoft Visual Basics.NET online tutorials Microsoft Studio.NET
- [12] American Electrical Consumer Forum Website


APPENDIX A

PCSB LOAD STUDY

Mile Mile Mile Mile Mile Mile Mile 113.30 113.30 113.30 113.30 113.30 113.30 Mile Mile 113.30 113.30 113.30 113.30 113.30 113.30 Mile Mile </th <th></th> <th>ក្រុម ក្រុម ក្រ</th> <th></th> <th>ଜ୍ଞା ନରେନ ୮୦୫୩</th> <th></th> <th>an Constant examinate e</th> <th></th> <th>'සුwo^ල, bateranaයි අප</th> <th>(%) əcu</th>		ក្រុម ក្រ		ଜ୍ଞା ନରେନ ୮୦୫୩		an Constant examinate e		'සුwo ^ල , bateranaයි අප	(%) əcu
13.00 MM 37.01 MM	Project Name	98 3		590	۲uu ۲	₩	₩nU	юо¥ (
1330 MM 1333 MM 1336 MM 1336 MM 1336 MM 1336 MM	Winners of Linearity Products - Olugoascaret Hill and Marketing Area	182,04		204	KW SA	AN AN	xver XVer	#VALUEI	
(68.17) KW (68.02)		413,80		3.80	WA C	4N	KVA.	#VALUEI	
(5.34) (K/a) (6.73) (K/a) (6.73) (K/a) (7.33) (K/a)	: MLMG 3 Pipeline Project - BCCT & BSTABS 3 / 4 Areas	(1 t)	5	8.02	kw i	YN.	Ŵ	#VALUE!	
128 MA 1284 MA 1284 MA MA <t< td=""><td>-</td><td>63.47</td><td>4. 4. 1. 1.</td><td>4.78</td><td>kVar</td><td>NA</td><td>kVar</td><td>#VALUEI</td><td></td></t<>	-	63.47	4. 4. 1. 1.	4.78	kVar	NA	kVar	#VALUEI	
3.00 MM 3.00 MM 1.95 MM MA VM 7.00 VM 10.1 VM VM MA VM 7.01 VM 10.1 VM VM VM MA VM 71.1 VM 11.1 VM VM VM 7.3.3 VM 31.3 VM 31.4 VM VM VM 7.3.3 VM 31.3 VM 31.3 VM VM VM VM 7.3.3 VM 31.3 VM 31.3 VM VM VM VM 7.3.4 VM 27.33 VM 27.33 VM		123.69		5.94	kva.	¥۲.	KVN	#VALUÉI	
Nik Nik <th>Rehmat (Pakialan)</th> <th>3.00</th> <th>art to the second s</th> <th>3.00</th> <th>kv</th> <th>8</th> <th>Ŵ</th> <th>1.10</th> <th></th>	Rehmat (Pakialan)	3.00	art to the second s	3.00	kv	8	Ŵ	1.10	
No. No. <td></td> <td>NN</td> <td></td> <td>NA</td> <td>HVer S</td> <td>5</td> <td>+Var</td> <td>#VALUEI</td> <td></td>		NN		NA	HVer S	5	+Var	#VALUEI	
Table Plettom Z.2.2 WW 31.71 WW NM NM <td></td> <td>XVN-SALE SALES</td> <td></td> <td>NWA.</td> <td>AN AN</td> <td>NN AND AND AND AND AND AND AND AND AND A</td> <td>K X</td> <td>#VALUE!</td> <td></td>		XVN-SALE SALES		NWA.	AN AN	NN AND AND AND AND AND AND AND AND AND A	K X	#VALUE!	
T.5.3 Kval 21.40 Kval 21.40 Kval 21.40 Kval Nike Kval Nike Kval Kval Nike Kval Kval Nike Kval Kval Nike	CPOC - Secondary Platform	22,82		1.71	kw	MN	KWA	#VALUE!	
DPA Criting Platform 250,36 KW 273,36 KW KM <		15.26		\$ 1 2	KVB/	NA	KV Br	#VALUE	
JOPA Criting Platform 263.36 KW 273.36 KW MS		12.12		2C 12	WA Not		KX.	#VALUE	
17083 Mail 180.85 Mail 180.85 Mail 180.85 Mail 180.85 Mail 180.85 Mail 180.85 Mail 17080 Mail M	Sumendak A - SUDPA Drilling Platform	260.80		3.26	kw -	NIN	K	#VALUEI	
31.81 MA 227.06 MA 237.06 MA 2.1700.00 KM 1700.00 KM 1700.00 MA 1.1.00.00 KM MA 1700.00 MA MA 1.1.00.00 KM 1.700.00 MA MA MA 1.1.00.00 KM MA MA MA MA 1.1.00.00 KM MA MA MA MA 1.1.00.00 KM MA MA MA MA MA 1.1.01 MA MA MA MA MA MA MA 1.1.01 MA MA MA MA MA MA MA 1.1.01 MA MA <td></td> <td>170.93</td> <td></td> <td>N0.85</td> <td>KABL SHOW</td> <td>NIA</td> <td>KVer</td> <td>#VALUE!</td> <td></td>		170.93		N0.85	KABL SHOW	NIA	KVer	#VALUE!	
3.700.00 KV 3.700.00 NA KV 1.700.00 NA KV 1.700.00 NA KV 1.66 NA KV 1.66 <		311, 81		1,69	KVA C	¥¥.	¥.¥	#VALUE!	
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	Dulang B (DL-B)	2,700.00		80	kw i	ş	KW	#VALUEI	
NA KA NA KA NA KA 3,000,00 KW 3,000,00 KW NA NA NA 10,000,00 KW NA NA NA NA NA NA 10,000,00 KW NA NA NA NA NA NA 10,000,00 KW NA		NN State			KVar (1997)	NN	KVBr	#VALUEI	
9,000,00 NA NA NA NA NA NA NA NA NA NA				YA I	KVA V	¥N.	KVA	#VALUE!	
No. No. <td>Dulang (Oversil)</td> <td>\$,000.00</td> <td></td> <td>80</td> <td>kw -</td> <td>KN</td> <td>KW</td> <td>#VALUEI</td> <td></td>	Dulang (Oversil)	\$,000.00		80	kw -	KN	KW	#VALUEI	
NA KAA		NN	Kar Contraction	NA	kVar 200	N/N	KVar	#VALUE!	
3 600 00 KW 3 600 00 KW 1 (000 00 KW NA NA <th>•</th> <th></th> <th>WA N</th> <th>N/A</th> <th>kva.</th> <th>Ś</th> <th>KVA</th> <th>#VÁLUE</th> <th></th>	•		WA N	N/A	kva.	Ś	KVA	#VÁLUE	
NA KVA VA NA VA VA NA VA VA NA VA NA VA VA VA VA VA VA VA VA VA VA VA VA	DUYONB (Dvarail)	3, 600,00		000		00000	KW	2,600,00	27.777775
NA MA		NN.	kVar	KitA	kVar	N/N	kV8r	#VALUEI	
16,000,00 kvv 16,000,00 kvv 7,000,00 kvv 7,000,00 kvv 16,000,00 kvv 16,000,00 kvv 16,000,00 kvv 10,000,00 kvv 10,000,000,00 kvv 10,000,00 kvv 10,000,000,000,00 kvv 10,000,000,000,000,000,000,000,000,000,	• •	YN NA	K/A	NUA NUA	KA KVA		KVA	#VALUEI	
Nuk Kvar Nuk Nuk Nuk Nuk Nuk Nuk Kvar	And all the second s	48:000 En					NN	a rinn m	
NA K/A NA K/A NA K/A 10,500.00 K/V 10,500.00 K/V 1,200.00 K/V 10,10,10,10,10 K/A K/A K/A K/A K/A		MIN		NN.		-	KVar	#VALUE!	
10,500,00 KVV 10,500,00 KVV 1,200,00 KVV 1,200,00 KVV 1,200,000 KVV 10,500,000 KVV		3	KVA SA	MA	s, Ka	N	KVA	#VALUEI	
NA KVar VVA KVar VVA	Research (Civerall)	11,500,00	he i	900		and on	Š	ng me g	
		NA		NIN		VIN	HVBr	#VÁLUEI	

APPENDIX B

ANGSI FIELD DEVELOPMENT PLAN (LOCATION)

APPENDIX C

VISUAL BASIC NET PROGRAMMING CODINGS

Public Class Form1 Inherits System.Windows.Forms.Form

'declaration'

```
Structure ProductDetails

Fublic Manufacturer As String

Fublic Model As String

Fublic FuelSource As String

Fublic FoworCutput As String

Fublic VoltageCutput As String

Fublic Frequency As String

Fublic Frequency As String

Fublic Dopth As String

Fublic Height As String

Fublic Weight As String

Fublic Weight As String

Fublic URL As Stoing

Fublic URL As Stoing

Fublic URL As Stoing
```

Dim udtProductDetails(300) As productDetails Dim intNumRecord As Integer Dim intNumRecord2 As Integer Dim intIndon As Integer Dim IntEntry As Integer Dim udtRightRecord(100) As Integer

`:e:e::

```
et in joldset om
Svöttt far <del>Reset ()</del>
    ubxFuel.Text = "Select Fuel Resource"
    LxtPower1.Text = ""
    tribuwer2.Text = ""
    rbtAC.Checked = false
    rbtDC.Checked = Falsa
    rptbUHz.Checked = liste
    rbtbUHz.Checked = Salas
    txtMaxWiath.Text = **
    txtMaxDepth.Text = """
    txtMaxHeight.Text - ""
    txtMaxWeight.Text - ""
    bonFirst.Enabled - Folse
    ptnPrevious.Enabled = Fallet
    prnNext.Snapled = Talst
    btnLast.Enabled = Faire
    txtManufacturer.Text = ""
    tatModel.Teat = ""
    taturi.Teat - "";
```

Ξť Val(udtProductDetails(intIndex).Height) <= Val(txtMaxHeight.Text)</pre> Then If (adtFroductDetalls(intIndex).Weight) <= Val(txtMaxWeight.Text) Then udtRightRecord (intNumRecord2) - intIndex intNumRecord2 +- 1 End If End If End If End IC Ind If End If 프로운 프립 End If Next LoadOutput() End eve Nitza zurgizek Bublic Bub Ecadoutput() intEntry = U lf intNumRecord2 − 0 Then MsgBox("No product iound", MsgBoxStyle.Information, "Search Result") $= \sum_{i=1}^{n} \sum_{j \in \mathcal{I}} (a_i - a_j) = \sum_{i=1}^{n} \sum_{i=1}^{n} (a_i - a_j) = \sum_{i=1}^{n} \sum_{i=1}^{n} (a_i - a_j) = \sum_{i=1}^{n} (a_i$ 문화는 것은 LoadControl() LoadOutput2() The Aspe

```
'load control'
Public sub LoadControl ()
        If intNumRecord2 > 1 Then
            If intEntry = 0 Then
                btnPrevious.Enabled = False
                htnFirst_Enabled = False
                btmNext.Bnabled - True
                blubast.cnabled = True
            Sleeff incEntry > 0 And incEntry < inthumRecordZ - i
ೆರಿ ಎಂದ
                htpPrevious.Enabled = True
                StmPfrot.Smabled - True
                btnNext.Enabled - True
                bunnast.shabled = True
            Elself intentry = intNumRecord2 - 1 Then
                btnPrevious.Enabled = True
                htmFirst.Enchled = True
                btnNext.Enabled - Selse
                ptnEast.Enabled = False
            End If
        End If
   Eni Pub
```

```
'itse'
```

Scousse aut rommi_Closing(Synal sender As System.Object, Synal e As

System.ComponentModel.CancelEventArgs/ Handles MyEase.Closing

```
Cin intResponse As Integer
IntResponse ≈ MsgBox("Bo you really want to exit this
application?", 276, "Exit?")
If intResponse - 6 Then
End
End
Else
e.cancel = Thus
E of
End Sub
```

```
11.11.14
```

```
Private Sub burselect Click (ByVal sender As System. Object, ByVal e
As System.EventArgs) Handles btnSelect.Click
        Dix PowerTypeCheck As Boolean
        Dis FrequencyCheck As Boolean
        FowerTypeCheck = True
        FrequencyCheck = True
        If ibbRC.Checked ~ False And ibbDC.Checked ~ False Then
            PowerTypeCheck = False
        End If
        If rbt58Hz.Checked - False And rbt68Hz.Checked - False Then
            FrequencyCheck = False
        End II
        txtManufacturer.Text - ""
        txtModel.Text = ""
        LACORD.Text = ""
        II obxFael.Text = "Jelect Fael Resource" Or obxFael.Text >
** Or txtPowerl.Text = **
        of txtPowerZ.Text = "" Or txtMaxWidth.Text = """ Or
uxtMaxnelght.Text = """
        Or txtMaxDepth.Text = "" Or txtMaxWeight.Text = "" Then
            MagBor("Please enter all the neressary date before
proceed", MogBoxStyle.Information, "Incomplete Parameters")
            Exit Sub
        End If
        If FowerTypeCheck - Palse Or FrequencyCheck - False Then
            MsgBox("Please cneck the required radio button before
proceed", MagBoxStyle.Information, "Incomplete Parameters")
            Exit Sub
        rilterData()
    End Poly
```

```
Srivate Sur bthFirst_Click(ByVal sender As System.Object, SyVal e As
System.EventArgs) Handles bthFirst.Click
    intEntry = 0
    LoadControl()
    LoadColput2()
End Sub
```

Private Sub btnNext_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnNext.Click
 intFat.ry += 1
 LoadControl()
 LoadControl()
 End Sub

APPENDIX D

DATABASE AND EQUIPMENTS SPEC (EXAMPLES)

	Deted	·• N and a grade €	Installed Cost
Product	Rated Output	Fuel Source	(est.)
Capstone C30 Low Pressure Natural Gas	28 kW	Natural Gas	\$8,400 - \$30,800
Capstone C30 Liquid Fuels	29 kW	Diesel, Kerosene, Liquid Fuel	\$8,700 - \$31,900
Capstone C30 Biogas	30 kW	Biogas	\$9,000 - \$33,000
Capstone C30 High Pressure Gaseous Fuels	30 kW	Natural Gas. Propane, Alternative Gas	\$33,000 - \$33.000
Capstone C60 High Presure Natural Gas	60 kVV	Natural Gas	\$54,000 - \$66.000
Ingersoli-Rand Energy Systems 70LM	70 kW	Natural Gas. Biogas	\$21,000 - \$77,000
Ingersoll-Rand Energy Systems 70SM	70 kW	Natural Gas. Biogas	\$21.000 - \$77.000
Bowman Power Systems TG80BG	80 kW	Natural Gas. LPG, Butane. Propane, Alternative Gas	\$24,000 - \$88.000 .
Bowman Power Systems TG8005	80 kW	Natural Gas. LPG, Butane. Propane, Alternative Gas	\$24,000 - \$88,000
Bowman Power Systems TG80SC	80 kW	Natural Gas. LPG, Butane. Propane, Alternative Gas	\$24.000 - \$88.000
Elliott Energy Systems TA 80R	80 kW	Natural Gas	\$24.000 - \$88.000
Turbec T 100	105 kW	Natural Gas	S31.500 - \$115.500
Pratr & Whitney ST5 Recuperated	395 kW	Natural Gas	\$256.750 - \$355.500
Pratt & Whitney ST5 Simple Sycle	457 kW	Natural Gas	\$297.050 - \$411.300
Pratt & Whitney ST6L-T21	508 kW	Natural Gas. Liquid Fuel	\$330 200 - \$457 200

Pratt & Whitney ST6L-795	678 kW	Natural Gas, Liquid Fuel	\$440,700 - \$610,200
Pratt & Whitney ST6L-813	848 kW	Natural Gas, Liquid Fuel	\$551,200 - \$763,200
Pratt & Whitney ST6L-90	1,175 kW	Natural Gas, Liquid Fuel	\$763,750 - \$1,057,500
Turbomach Industrial Energy Systems TBM-S20	1,204 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$782,600 - \$1,083,600
Solar Turbines Saturn 20	1,210 kW	Natural Gas. Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$786,500 - \$1.089,000
Pratt & Whitney ST18A	1,961 kW	Natural Gas, Liquid Fuel	\$1,274,650 - \$1,764,900
Centrax KB3	2,682 kW	Natural Gas, Liquid Fuel, and Natural Gas/Liquid Backup	\$1.743,300 - \$2.413,800
Orenda Aerospace Corporation DGT 2500	2,720 kW	Natural Gas	\$1.768,000 - \$2.448,000
Praft & .√hitney ST30	3,340 kW	Natural Gas, Liquid Fuel	\$2,171,000 - \$3.006,000
Solar Turbines Centau: 40	3,515 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$2,284,750 - \$3,163,500
Turbomaon Industrial Energy ⊳ystems TBM-C40	3.515 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha. LPG, LNG. Refinery Gas, Liquid Fuel. Alternative Gas	\$2.284,750 - \$3.163,500
Centrax KHS	3,811 kW	Natural Gas, Liquid Fuel, and Natural Gas/Liquid Backup	\$2.477,150 - \$3.429,900
Centrax KB5	3,902 kW	Natural Gas. Liquid Fuel. and Natural Gas/Liquid Backup	\$2.536,300 - \$3.511,800
Pratt & Whitney ST40	4,039 kW	Natural Gas, Liquid Fuel	\$2.625,350 - \$3.635,100
Sofar Turbines Mercur, 50	4,200 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$2.730,000 - \$3.780,000
		· · ·	

.

Alstom Typhoon	4,350 kW	Natural Gas, Liquid Fuel	\$2,827,500 - \$3,915,000
Centrax KN5	4,495 kW	Natural Gas, Liquid Fuel, and Natural Gas/Liquid Backup	\$2,921,750 - \$4,045,500
Turbomach Industrial Energy Systems TBM-C50	4,598 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG. Refinery Gas, Liquid Fuel, Alternative Gas	\$2,988,700 - \$4,138,200
Solar Turbines Centaur 50	4,600 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$2,990,000 - \$4,140,000
Aistom Fyphoen	4,700 kW	Natural Gas, Liquid Fuel	\$3,055,000 - \$4,230,000
Histom Typhoon	5,050 kW	Natural Gas, Liquid Fuel	\$3,282,500 - \$4,545,000
GE Power Systems, Oil & Gas PGT5	5,220 kW	Natural Gas, Liquid Fuel, Biogas	\$3,393,000 - \$4,698,000
Centrax KB7	5,240 kW	Natural Gas. Liquid Fuel, and Natural Gas/Liquid Backup	\$3,406,000 - \$4,716,000
Aistom Typhoon	5,250 kW	Natural Gas, Liquid Fuel	\$3,412,500 - \$4,725,000
GE Power Systems, Aero Energy GES (DEN)	5,500 kW	Natural Gas	\$3,575,000 - \$4,950,000
GE Power Systems, Oil & Gas GE5	5,500 kW	Natural Gas	\$3,575,000 - \$4,950,000
Selar Turbines Taurus ())	5,500 kW	Natural Gas, Diesel Oil, Landfill Gas. Propane, Naphtha. LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$3.575,000 - \$4.950,000
Turbomach Industrial Bhergy Systems TBM-T60	5,500 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$3.575,000 - \$4.950,000
Centrax KN7	5,805 kW	Natural Gas, Liquid Fuel, and Natural Gas/Liquid Backup	\$3,773,250 - \$5.224,500
Alstom Tomado	6,750 kW	Natural Gas, Natural Gas/Liquid Backup Distillate Fuel, Liquid Fuel	\$4.387,500 - \$6,075,000

Turbomach Industrial Energy Systems TBM-T70	7,515 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$4,884,750 - \$6,763,500
Solar Turbines Taurus 70 CED	7,520 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$4,888,000 - \$6,768,000
Alstom Tempest	7,900 kW	Natural Gas, Liquid Fuel	\$5,135,000 - \$7,110,000
Turbomach Industrial Energy Systems TBM-M90	9,438 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$6,134,700 - \$8,494,200
Solar Turbines Mars 90	9,450 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane. Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$6,142,500 - \$8,505,000
GE Power Systems, Oil & Gas PGT10	10,220 kW	Natural Gas	\$6,643,000 - \$9,198,000
Turbomach Industrial Energy Systems TBM-M100	10,681 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane. Naphtha, LPG, LNG, Refinery Gas. Liquid Fuel, Alternative Gas	\$6,942,650 - \$9,612,900
Solar Turunes Mars 100	10,690 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG. Refinery Gas, Liquid Fuel, Alternative Gas	\$6,948,500 - \$9,621,000
GE Power Systems, Oil & Gas GE10	11.250 kW	Natural Gas, Distillate Oil, Liquid Fuel, Biogas	\$7,312,500 - \$10,125,000
GE Power Systems, Aero Energy GE10 (DLN)	11,300 kW	Natural Gas	\$7,345,000 - \$10,170,000
Mitsubishi Heavy Industries MF-113A Fuel Or	12.220 kW	Fuel Oil, Liquid Fuel	\$7,943.000 - \$10,998,000
Mitsubishi Hea∨y Industries MF-111A Naturai Gas	12,610 kW	Natural Gas	\$8,196,500 - \$11.349,000
Alstom Dycione	12,900 kW	Natural Gas, Liquid Fuel	\$8,385,000 - \$11,610,000
e de la d e	13.500 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG. Refinery Gas. Liquid Fuel, Alternative Gas	\$8,775, 00 0 - \$12.150,000

GE Power Systems, Aero Energy LM1600PA	13,615 kW	Natural Gas	\$8,849,750 - \$12,253,500
GE Power Systems, Oil & Gas PGT16	13,735 kW	Natural Gas	\$8,927,750 - \$12,361,500
Turbomach Industrial Energy Systems TBM-T130	14,000 kW	Natural Gas, Diesel Oil, Landfill Gas, Propane, Naphtha, LPG, LNG, Refinery Gas, Liquid Fuel, Alternative Gas	\$9,100,000 - \$12,600,000
Mitsubishi Heavy Industries MF-111B Fuel Oil	14.210 kW	Fuel Oil, Liquid Fuel	\$9,236,500 - \$12,789,000
Ωrsubishi Heavγ Industries MF-111Β Natural Gas	14,570 kW	Natural Gas	\$9,470,500 - \$13, 113,0 00
Alstom GT35	17,000 kW	Natural Gas, Liquid Fuel	\$11,050,000 - \$15,300.000
GE Power Systems, Aero Energy LM2000PE	17,650 kW	Natural Gas	\$11,472,500 - \$15,885,000
GE Power Systems, Aero Ehergy LM2500PE	22.400 kW	Natural Gas	\$14,560,000 - \$20,160,000
GE Powe: Systems, Oil & Gas PGT25	22.417 kW	Natural Gas	\$14.571.050 - \$20.175,300
Ais/om GT10B	24.770 kW	Natural Gas, Liquid Fuel-	\$16,100,500 - \$22,293,000
GE Power Systems, Aero Energy LM2500PH	26.725 kW	Natural Gas	\$17,371,250 - \$24,052,500
Mitsubish: Heavy Industries MFT-8	26,780 kW	Natural Gas	\$17,407,000 - \$24,102,000
GE Power Systems: Oil & Gas MS5001	26,830 kW	Natural Gas	\$17,439,500 - \$24,147,000
Ishikawajima-Harima Heavy Industries LM2500 Plus	27,000 kW	Natural Gas	\$17,550,000 - \$24,300,000
Aistom GT10C	29,100 kW	Natural Gas, Liquid Fuel	\$18,915,000 - \$26,190,000
GE Power Systems, Aero Energy JM2500PK	29.250 kW	Natural Gas	\$19,012,500 - \$26.325,000

Product	Rated Output	Fuel Source	Installed Cost (est.)
Honda Power Equipment EM5000SXK1	4.5 kW	Gasoline, Liquid Fuel	\$2,700 - \$5,400
Honda Power Equipment EX5500K2	5 kW	Gasoline, Liquid Fuel	\$3,000 - \$6,000
Cummins DNAC 50 Hz	5.4 kW	Diesel, Liquid Fuel	\$2,700 - \$5,400
Honda Power Equipment EB6500SX	5.5 kW	Gasoline, Liquid Fuel	\$3,300 - \$6,600
Honda Power Equipment ES6500K2	6 kW	Gasoline, Liquid Fuel	\$3,600 - \$7,200
Generac SD008 with 1.0DN Engine	6.4 kW	Diesel, Liquid Fuel	\$3,200 - \$6,400
Cummins DNAC 60 Hz	6.8 kW	Diesel, Liquid Fuel	\$3,400 - \$6,800
Cummins ONAD 50 Hz	8.1 kW	Diesel, Liquid Fuel	\$4,050 - \$8,100
Genera: SD010 with 3.0DN Engine	δ.2 kW	Diesel, Liquid Fuel	\$4,100 - \$8,200
Honda Power Equipment EB 11000	9 5 kW	Gasoline, Liquid Fuel	\$5,700 - \$11,400
Cummins ONAD 60 Hz	10.4 kW	Diesel, Liquid Fuel	\$5.200 - \$10,400
Oeurz F2M-1008	10.7 kW	Diesel, Liquid Fuel	\$5,350 - \$10.700
Broaderovin BCY13P 50 Hz	10.8 kW	Diesel, Liquid Fuel	\$5.400 - \$10.800
Cummins DKAC 50 Hz	11 kW	Diesel, Liquid Fuel	\$5,500 - \$11,000
Cummins DNAE 50 Hz	11.3 kW	Diesel, Liquid Fuel	\$5,650 - \$11,300
Generac SD015 with 3.0DN Engine	11.8 kW	Diesel, Liquid Fuel	\$5,900 - \$11.800

Diesel, Liquid

Diesel, Liquid

Fuel

Fuel

13.3 kW

13.5 kW

\$6,650 - \$13.300

\$6.750 - \$13 500

Broadcrown

Constation Spars(or Scattering)

BCY13P 60 Hz

Cummins DNAE 60 Hz	14.4 kW	Diesel, Liquid Fuel	\$7,200 - \$14,400
Cummins DKAE 50 Hz	14.5 kW	Diesel, Liquid Fuel	\$7,250 - \$14,500
Cummins DNAF 50 Hz	15 kW	Diesel, Liquid Fuel	\$7,500 - \$15,000
Deutz F3M 1008	15 kW	Diesel, Liquid Fuel	\$7,500 - \$15,000
Breadcrown BCY20P 50 Hz	16.2 kW	Diesel, Liquid Fuel	\$8,100 - \$16,200
Generac SD020 with 3.0DN Engine	16.4 kW	Diesel, Liquid Fuel	\$8,200 - \$16.400
Breadcrown BCY22P 50 Hz	17.6 kW	Diesel, Liquid Fuel	\$8,800 - \$17.600
Broadcrown BCJD22P 50 Hz	18 kW	Diesel, Liquid Fuel	\$9,000 - \$18,000
Cummins DKAE 60 Hz	18 kW	Diesel, Liquid Fuel	\$9,000 - \$18,000
Cummins DKAF 50 Hz	18 kW	Diesel, Liquid Fuel	\$9,000 - \$18,000
Curamins DNAF 60 Hz	18 kW	Diesel, Liquid Fuel	\$9,000 - \$18.000
Broaddrown BCY20P 60 Hz	19.4 kW	Diesel, Liquid Fuel	\$9,700 - \$19,400
Deutz Filt 1011 F	20 kW	Diesel, Liquid Fuel	\$10,000 - \$20.000
Fedd az Fodd 1008	20 kW	Diesel. Liquid Fuel	\$10,000 - \$20.000
Generac SD025 with 3.0DN Engine	20.5 kW	Diesel, Liquid Fuel	\$10,250 - \$20,500
Broadcrown BCJD22P 60 Hz	22 kW	Diesel, Liquid Fuel	\$11,000 - \$22.000
Broadcrown BCJD28P 50 Hzr	22 kW	Diesel, Liquid Fuel	\$11,000 - \$22,000
Breadcrown BCh 22P 6J Hz	22 kW	Diesel, Liquid Fuel	\$11,000 - \$22.000
Cummins DKAF 60 Hz	23 kW	Diesel. Liquid Fuel	\$11,500 - \$23,000
Breadcrown BCuD30S 50 Hz	24 kW	Diesel. Liquid Fuel	\$12,000 - \$24,000
Cummins DGBB 50 Hz	25 kW	Diesel, Liquid Fuel	\$12,500 - \$25,000

Cummins DGGD 50 Hz	25 kW	Diesel, Liquid Fuel	\$12,500 - \$25,000
Generac SD030 with 3.0DT Engine	25 kW	Diesel, Liquid Fuel	\$12,500 - \$25,000
Deutz BF4M 1008	25.9 kW	Diesel, Liquid Fuel	\$12,950 - \$25,900
Broadcrown BCJD28P 60 Hz	26 kW	Diesel, Liquid Fuel	\$13,000 - \$26,000
Broadcrown BCJD30S 60 Hz	28 kW	Diesel, Liquid Fuel	\$14,000 - \$28,000
Generac SD035 with 3.0DT Engine	28.5 kW	Diesel, Liquid Fuel	\$14,250 - \$28,500
Cummins DGBC 50 Hz	29 kW	Diesel, Liquid Fuel	\$14,500 - \$29,000
Cummins DGHD 50 Hz	29 kW	Diesel, Liquid Fuel	\$14,500 - \$29,000
Deutz F3L912 E	29 kW	Diesel, Liquid Fuel	\$14,500 - \$29,000
Cummins DGGD 60 Hz	30 kW	Diesel. Liquid Fuel	\$15,000 - \$30,000
Deutz F3L 1011 F	30 kW	Diesel, Liquid Fuel	\$15,000 - \$30,000
Broadcrown BCJD40P 50 Hz	32 kW	Diesel, Liquid Fuel	\$16,000 - \$32,000
Cummins DGBB 30 Hz	32 kW	Diesel, Liquid Fuel	\$16,000 - \$32,000
Deutz FBM norm F	32 kW	Diesel, Liquid Fuel	\$16,000 - \$32.000
Generac SD040 with 3.3DTA Engine	32 kW	Diesel, Liquid Fuel	\$16,000 - \$32.000
Generac SD040 with 4 8DT Engine	32 kW	Diesel, Liquid Fuel	\$16,000 - \$32,000
Broader Jwn BCJD44S 50 Hz	35 kW	Diesel, Liquid Fuel	\$17,500 - \$35,000
Cummus DGBC 60 Hz	35 kW	Diesel, Liquid Fuel	\$17,500 - \$35,000
Cummins DGCA 50 Hz	36 kW	Diesel, Liquid Fuel	\$18,000 - \$36.000
21 MM 2 21 MI - Col M2	36 kW	Diesel, Liquid Fuel	\$18,000 - \$36,000
the second	37 kW	Diesel, Liquid	\$18.500 - \$37,000

	Fuel	
39 kW	Diesel, Liquid Fuel	\$19,500 - \$39,000
40 kW	Diesel, Liquid Fuel	\$20,000 ~ \$40,000
40 kW	Diesel, Liquid Fuel	\$20,000 - \$40,000
40 kW	Diesel, Liquid Fuel	\$20,000 - \$40.000
40 kW	Diesel, Liquid Fuel	\$20,000 - \$40,000
41.4 kW	Diesel, Liquid Fuel	\$20,700 - \$41,400
42 kW	Diesel, Liquid Fuel	\$21,000 - \$42,000
43.8 kW	Diesel, Liquid Fuel	\$21,900 - \$43,800
45 kW	Diesel, Liquid Fuel	\$22,500 - \$45,000
45 kW	Diesel, Liquid Fuel	\$22,500 - \$45,000
45 kW	Diesel, Liquid Fuel	S22,500 - \$45,000
48 kW	Diesel, Liquid Fuel	\$24,000 - \$48,000
48 KW	Diesel, Liquid Fuel	\$24,000 - \$48,000
48 kW	Diesel, Liquid Fuel	\$24,000 - \$48,000
48 kW	Diesel, Liquid Fuel	\$24,000 - \$48,000
54 kW	Diesel, Liquid Fuel	\$27,000 - \$54,000
55 kW	Diesel, Liquid Fuel	S27,500 - \$55,000
56 kW	Diesel, Liquid Fuel	\$28.000 - \$56.000
56 kW	Diesel, Liquid Fuel	S28,000 - \$56,000
60 kW	Diesel, Liquid Fuel	\$30,000 - \$60,000
	40 kW 40 kW 40 kW 40 kW 40 kW 41.4 kW 42 kW 42 kW 43.8 kW 45 kW 45 kW 45 kW 48 kW 48 kW 48 kW 54 kW 55 kW	39 kWDiesel, Liquid Fuel40 kWDiesel, Liquid Fuel40 kWDiesel, Liquid Fuel40 kWDiesel, Liquid Fuel40 kWDiesel, Liquid Fuel41.4 kWDiesel, Liquid Fuel42 kWDiesel, Liquid Fuel43.8 kWDiesel, Liquid Fuel45 kWDiesel, Liquid Fuel45 kWDiesel, Liquid Fuel45 kWDiesel, Liquid Fuel48 kWDiesel, Liquid Fuel48 kWDiesel, Liquid Fuel48 kWDiesel, Liquid Fuel55 kWDiesel, Liquid Fuel56 kWDiesel, Liquid Fuel56 kWDiesel, Liquid Fuel56 kWDiesel, Liquid Fuel

Deutz F6L912 E	60 kW	Diesel, Liquid Fuel	\$30,000 - \$60,000
Broadcrown BCJD80P 50 Hz	64 kW	Diesel, Liquid Fuel	\$32,000 - \$64,000
Generac SD080 with 3.9DTA Engine	64 kW	Diesel, Liquid Fuel	\$32,000 - \$64,000
Generac SD080 with 4.8DTA Engine	64 kW	Diesel, Liquid Fuel	\$32,000 - \$64,000
Broadcrown BCJD70S 60 Hz	66 kW	Diesel, Liquid Fuel	\$33,000 - \$66,000
Deutz BF4 M 1012 EC	67 kW	Diesel, Liquid Fuel	\$33.500 - \$67,000
Broadcrown BCJD80P 60 Hz	72 kW	Diesel, Liquid Fuel	\$36,000 - \$72,000
Broadcrown BCUD90S 50 Hz	72 kW	Diesel, Liquid Fuel	\$36.000 - \$72,000
Cummins DGDA 50 Hz	72 kW	Diesel, Liquid Fuel	\$36,000 - \$72,000
Broadcrown BCJD100P 50 Hz	80 kW	Diesel, Liquid Fuel	\$40,000 - \$80,000
Broadcrown BCJD90S 60 Hz	80 kW	Diesel, Liquid Fuel	\$40,000 - \$80,000
Cummins DGDB 50 Hz	80 kW	Diesel, Liquid Fuel	\$40.000 - \$80,000
Generac SD101 with 3 sDTA Raga	80 kW	Diesel, Liquid Fuel	\$40.000 - \$80.000
General SD100 with 4.8DTA Engini-	80 kW	Diesel, Liquid Fuel	\$40.000 - \$80,000
Deutz - BF4 M 1013 E	81 kW	Diesel, Liquid Fuel	\$40,500 - \$81,000
Broadcrown BCJD110S 50 Hz	88 kW	Diesel, Liquid Fuel	\$44.000 - \$88,000
Cummips DGDE 60 Hz	90 kW	Diesel, Liquid Fuel	\$45.000 - \$90,000
Cummens DGDK 50 Hz	90 kW	Diesel, Liquid Fuel	\$45,000 - \$90,000
Broadcrown BCJD100P 60 Hz	92 KW	Diesel, Liquid Fuel	\$46.000 - \$92,000
Broadcrown BCJD120P 50 Hz	96 kW	Diesel, Liquid Fuel	\$48.000 - \$96,000
Broaderowe	100 kW	Diesel, Liquid	\$50.000 - \$100.000

BCJD110S 60 Hz		Fuel	
Deutz BF4 M 1013 EC	100 kW	Diesel, Liquid Fuel	\$50,000 - \$100,000
Broadcrown BCJD120P 60 Hz	104 kW 🕚	Diesel, Liquid Fuel	\$52,000 - \$104,000
Broadcrown BCJD130S 50 Hz	104 kW	Diesel, Liquid Fuel	\$52,000 - \$104,000
Generac SD130 with 7 5DMTA Engine	105 kW	Diesel, Liquid Fuel	\$52,500 - \$105,000
Deutz BFSL913	106 kW	Diesel, Liquid Fuel	\$53,000 - \$106.000
Broadcrown Brou©140P 50 Hz	112 kW	Diesel, Liquid Fuel	\$56.000 - \$112.000
Curomins DGDK 60 Hz	113 kW	Diesel, Liquid Fuel	\$56,500 - \$113,000
Broadcrown HCJD150P 50 Hz	120 kW	Diesel, Liquid Fuel	\$60,000 - \$120,000
Broadcrown BCUD (508-50 Hz	120 kW	Diesel, Liquid Fuel	\$60.000 - \$120,000
Deutz BF6M 1013 E	122 kW	Diesel, Liquid Fuel	\$61,000 - \$122,000
Generac SD150 with 7 SDMTA Engline	123 kW	Diesel, Liquid Fuel	\$61.500 - \$123.000
Broadcrown RCJD100S 60 Hz	125 kW	Diesel, Liquid Fuel	\$62,500 - \$125,000
	125 KW	Diesel, Liquid Fuel	\$62.500 - \$125.000
Sa Bacrown Reug n 68 50 Mz	132 KW	Diesel, Liquid Fuel	\$66.000 - \$132.000
olionomas Elicitika kiu Hiz	135 kW	Diesel, Liquid Fuel	\$67.500 - \$135,000
Calumins DGFB 50 Hz	135 kW	Diesel, Liquid Fuel	\$67.500 - \$135,000
Deutz BF6L913 C	137 kW	Diesel, Liquid Fuel	S68.500 - S137,000
Bruadclovin Did 15160P (SS Hu	140 kW	Diesel, Liquid Fuel	\$70.000 - \$140.000
Generacione Sol 30 with 7 5DMTA Engine	147 kW	Diesel, Liquid Fuel	\$73,500 - \$147,000
General: SD180v/th 13 3DT Engine	147 kW	Diesel, Liquid Fuel	\$73.500 - \$147.000

Deutz BF6M 1013 EC 148 kW Diesel, Liquid Fuel \$74,000 - \$148,000 Broadcrown BCJD1855 60 Hz 150 kW Diesel, Liquid BCJD200P 50 Hz \$75,000 - \$150,000 Broadcrown BCJD200P 50 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Cummins DGFE 60 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Cummins DGFE 50 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Cummins DGFE 50 Hz 160 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Generad SD200 with 13.0DT 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Broadcrown BCJD205 50 Hz 176 kW Diesel, Liquid S88,000 - \$176,000 \$88,000 - \$180,000 Cummins DGFC 00 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 \$180,000 Broadcrown BCJD206 P6 Hz 184 kW Diesel, Liquid S92,000 - \$184,000 \$92,000 - \$184,000 Broadcrown BCJD235 Jum 12 JDTA 185 kW Diesel, Liquid S92,500 - \$185,000 \$92,500 - \$185,000 Broadcrown BCJD250 P6 Hz 192 kW Diesel, Liquid S92,500 - \$185,000 \$92,500 - \$185,000 Broadcrown BCJD250 P6 Hz 120 KW				
BCJD165S 60 Hz 130 kW Fuel \$73,000 - \$183,000 Broadcrown BCJD200P 50 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Cummins DGFB 60 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Cummins DGFC 50 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Generac SD200 with 13.3DT 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Generac SD200 with 7,5DMTA 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Broadcrown BCJD205 50 Hz 176 kW Diesel, Liquid Fuel \$88,000 - \$176,000 Cummins DFAB 50 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD200P 50 Hz 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Br		148 kW	,	\$74,000 - \$148,000
BCJD200P 50 Hz 180 kW Fuel 560,000 - \$160,000 Cummins DGFB 60 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Cummins DGFC 50 Hz 160 kW Diesel, Liquid Fuel \$80,000 - \$160,000 Generac SD200 with 13,3DT 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Generac SD200 with 7,5DMTA 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Generac SD200 with 7,5DMTA 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Gummins DGFA 50 Hz 176 kW Diesel, Liquid Fuel \$80,000 - \$180,000 Cummins DGFC 60 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Cummins DGFC 60 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD20P 50 Hz 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Generac SD23C umm 12,0DTA Engine 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Generac SD23C umm 12,0DTA Engine 185 kW Diesel, Liquid Fuel \$90,000 - \$200,000 Ge		150 kW		\$75,000 - \$150,000
DGFB 60 Hz I60 KW Fuel \$80,000 - \$160,000 Cummins DGFC 50 Hz 160 KW Diesel, Liquid Fuel \$80,000 - \$160,000 Generac SD200 with 13.3DT 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Generac SD200 with 7.5DMTA 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Broadcrown BCJD220S 50 Hz 176 kW Diesel, Liquid Fuel \$80,000 - \$180,000 Cummins DFAB 50 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Cummins DGFC 69 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD20P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 50 Hz 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 60 Hz 192 kW Diesel, Liquid Fuel \$96,000 - \$192,000 Broadcrown BCJD250P 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadc		160 kW		\$80,000 - \$160,000
DGFC 50 Hz HOK KW Fuel S80,000 - \$160,000 Generac S0200 with 13.30T 163 kW Diesel, Liquid \$81,500 - \$163,000 Generac S0200 with 7,5DMTA 163 kW Diesel, Liquid \$81,500 - \$163,000 S0200 with 7,5DMTA 163 kW Diesel, Liquid \$81,500 - \$163,000 Broadcruwn BCJD2208 50 Hz 176 kW Diesel, Liquid \$88,000 - \$176,000 Cummins BCJD2208 50 Hz 180 kW Diesel, Liquid \$90,000 - \$180,000 Cummins Bodcrown Broadcrown Besel, Liquid \$90,000 - \$180,000 Broadcrown BCJD220P 50 Hz 180 kW Diesel, Liquid \$90,000 - \$180,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid \$92,500 - \$185,000 Generac SD236 onth 12 0DTA 185 kW Diesel, Liquid \$92,500 - \$185,000 Supple Broadcrown BCJD250P 60 Hz 192 kW Fuel \$92,500 - \$185,000 Broadcrown BC		160 kW		\$80,000 - \$160,000
SD200 with 13.3DT 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Generac SD200 with 7,5DMTA 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Broadcruwn BCJD209S 50 Hz 176 kW Diesel, Liquid Fuel \$88,000 - \$176,000 Cummins DFAB 50 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Cummins DGFC 00 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Generac SD23C with 12.0DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 50 Hz 192 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD220S 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD220P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000		160 kW		\$80,000 - \$160,000
SD200 with 7.6DMTA 163 kW Diesel, Liquid Fuel \$81,500 - \$163,000 Broadcrown BCJD220S 50 Hz 176 kW Diesel, Liquid Fuel \$88,000 - \$176,000 Cummers DFAB 50 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Cummers DGFC 00 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Generac SD236 with 12.0DTA Engine 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 60 Hz 192 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 </td <td>SD200 with 13.3DT</td> <td>163 kW</td> <td></td> <td>\$81,500 - \$163,000</td>	SD200 with 13.3DT	163 kW		\$81,500 - \$163,000
BCJD220S 50 Hz 176 kW Fuel \$86,000 - \$176,000 Cummins DFAB 50 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Cummins DGFC 60 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Generati SD230 with 12.0DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250 P 60 Hz 192 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250 P 60 Hz 192 kW Diesel, Liquid Fuel \$96,000 - \$192,000 Broadcrown BCJD250 P 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD250 P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummins DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummins DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000	SD200 with 7.5DMTA	163 kW		\$81,500 - \$163,000
DFAB 50 Hz T80 kW Fuel \$90,000 - \$180,000 Cummens DGFC 60 Hz 180 kW Diesel, Liquid Fuel \$90,000 - \$180,000 Broadcrown BCJD200P 60 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Generac SD236 web 12.0DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Ganerac SD236 web 12.7DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 60 Hz 192 kW Diesel, Liquid Fuel \$96,000 - \$192,000 Broadcrown BCJD220S 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD220S 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Lama		176 kW		\$88,000 - \$176,000
DGFC 60 Hz180 kWFuelS90,000 - \$180,000Broadcrown BCJD200P 60 Hz184 kWDiesel, Liquid Fuel\$92,000 - \$184,000Broadcrown BCJD230P 50 Hz184 kWDiesel, Liquid Fuel\$92,000 - \$184,000Generati SD236 with 12,0DTA185 kWDiesel, Liquid Fuel\$92,500 - \$185,000Generati SD236 with 12,0DTA185 kWDiesel, Liquid Fuel\$92,500 - \$185,000Generati SD236 with 12,0DTA185 kWDiesel, Liquid Fuel\$92,500 - \$185,000Generati SD236 with 12,0DTA185 kWDiesel, Liquid Fuel\$92,500 - \$185,000Broadcrown BCJD250P 60 Hz192 kWDiesel, Liquid Fuel\$96,000 - \$192,000Broadcrown BCJD220S 60 Hz200 kWDiesel, Liquid Fuel\$100,000 - \$200,000Broadcrown BCJD250P 50 Hz200 kWDiesel, Liquid Fuel\$100,000 - \$200,000Cummins DFAC 51 Hz200 kWDiesel, Liquid Fuel\$100,000 - \$200,000Cummins DOAD 50 Hz200 kWDiesel, Liquid Fuel\$100,000 - \$200,000Cummins DOAD 50 Hz200 kWDiesel, Liquid Fuel\$100,000 - \$200,000		180 kW		\$90,000 - \$180,000
BCJD200P 60 Hz 184 kW Fuel \$92,000 - \$184,000 Broadcrown BCJD230P 50 Hz 184 kW Diesel, Liquid Fuel \$92,000 - \$184,000 Senerac SD230 with 12.0DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Generac SD230 with 12.0DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Generac SD230 with 12.7DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BCJD250P 60 Hz 192 kW Diesel, Liquid Fuel \$96,000 - \$192,000 Broadcrown BCJD220S 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BCJD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DCAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000		180 kW		\$90,000 - \$180,000
BCJD230P 50 Hz T84 KW Fuel \$92,000 - \$184,000 Generac SD236 with 12.0DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Generac SD236 with 12.0DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Generac SD236 with 12.7DTA 185 kW Diesel, Liquid Fuel \$92,500 - \$185,000 Broadcrown BC JD256/P 60 Hz 192 kW Diesel, Liquid Fuel \$96,000 - \$192,000 Broadcrown BC JD256/P 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BC JD256/P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadcrown BC JD256/P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DFAC 51 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000		184 kW		\$92,000 - \$184,000
SD236 with 12.0DTA 185 kW Diesel, Liquid \$92,500 - \$185,000 Generac SD230 with 12.7DTA 185 kW Diesel, Liquid \$92,500 - \$185,000 Broaderown 192 kW Diesel, Liquid \$92,500 - \$185,000 Broaderown 192 kW Diesel, Liquid \$96,000 - \$192,000 Broaderown 192 kW Diesel, Liquid \$96,000 - \$192,000 Broaderown 200 kW Diesel, Liquid \$100,000 - \$200,000 Cymmins		184 kW		\$92,000 - \$184,000
SD236 bith 12 7DTA 185 kW Diesel, Liquid \$92,500 - \$185,000 Broadcrown 192 kW Diesel, Liquid \$96,000 - \$192,000 Broadcrown 192 kW Diesel, Liquid \$96,000 - \$192,000 Broadcrown 200 kW Diesel, Liquid \$100,000 - \$200,000 Cummins 200 kW Diesel, L	SD236 with 12.0DTA	185 kW		\$92,500 - \$185,000
BC JD250P 60 Hz T92 kW Fuel \$96,000 - \$192,000 Broadch MA BC JD220S 60 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Broadch WA BC JD250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000	S0230 July 12 70TA	185 kW		\$92,500 - \$185,000
BCJ0220S 60 Hz 200 kW Fuel \$100,000 = \$200,000 Broadcruwn BCJ0250P 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 = \$200,000 Cummins DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 = \$200,000 Cummins DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 = \$200,000 Cummers DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 = \$200,000 Cummers DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 = \$200,000 Cummers DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 = \$200,000		192 kW		\$96,000 - \$192,000
BCJD250P 50 Hz 200 kW Fuel \$100,000 - \$200,000 Cummus DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DFAC 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummus DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000		200 kW		\$100,000 - \$200.000
DFAC 5: Hz 200 kW Fuel \$100,000 - \$200,000 Cummers DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummers DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummers DOAD 50 Hz 200 kW Diesel, Liquid Fuel \$100,000 - \$200,000 Cummers Diesel, Liquid Fuel \$100,000 - \$200,000 \$200,000		200 kW		\$100,000 - \$200.000
DOAD 50 Hz 200 kW Fuel \$100,000 - \$200,000 Literenal Literenal Diesel, Liquid \$102,500 - \$205,000 Coll 51 metric 12:00TA 205 kW Diesel, Liquid \$102,500 - \$205,000		200 kW		\$100,000 - \$200,000
Ended and 12.00TA 205 kW Evel \$102,500 - \$205.000		200 kW		\$100,000 - \$200,000
	n 21. 5 - Sen 12.00TA	205 kW		\$102,500 - \$205.000

Generac SD250 with 12.7DTA Engine	205 kW	Diesel, Liquid Fuel	\$102,500 - \$205,000
Broadcrown BCJD260S 50 Hz	208 kW	Diesel, Liquid Fuel	\$104,000 - \$208,000
Cummins DFAB 60 Hz	210 kW	Diesel, Liquid Fuel	\$105,000 - \$210,000
Deutz BF6M 1015	211 kW	Diesel, Liquid Fuel	\$105,500 - \$211,000
Broadcrown BCJD275S 50 Hz	220 kW	Diesel, Liquid Fuel	\$110,000 - \$220,000
Cummins DQAD 60 Hz	220 kW	Diesel, Liquid Fuel	\$110,000 - \$220.000
Broadcrown BCJD275S 60 Hz	225 kW	Diesel, Liquid Fuel	\$112,500 - \$225,000
Cummins OFAC 60 Hz	225 kW	Diesel, Liquid Fuel	\$112,500 - \$225,000
Cummins DFBF 50 Hz	227 kW	Diesel, Liquid Fuel	\$113,500 - \$227,000
Cummins DQAE 50 Hz	227 kW	Diesel, Liquid Fuel	\$113,500 - \$227,000
Generac SD275 with 12 0DTA Engine	233 kW	Diesel. Liquid Fuel	\$116.500 - \$233,000
Generad SD275 with 12.7 DTA Engine	233 kW	Diesel, Liquid Fuel	\$116,500 - \$233,000
Generac SD300 with 12.0DTA Engine	245 kW	Diesel, Liquid Fuel	\$122,500 - \$245,000
Generac SD300 with 12 7DTA Engine	245 kW	Diesel, Liquid Fuel	\$122.500 - \$245.000
Cummins DFBF 60 Hz	250 kW	Diesel, Liquid Fuel	\$125,000 - \$250,000
Curenns DQAE 60 Hz	250 kW	Diesel, Liquid Fuel	\$125,000 - \$250,000
Cummins DQAF 50 Hz	250 kW	Diesel, Liquid Fuel	\$125.000 - \$250,000
Broadurown BCD315P 50 Hz	252 kW _	Diesel. Liquid Fuel	\$126,000 - \$252.000
Deutz BF3M 1015	255 kW	Diesel, Liquid Fuel	\$127.500 - \$255,000
Generad SD350 with 12 7DTA	260 kW	Diesel, Liquid Fuel	\$130,000 - \$260,000

.

ingine				,
enerac D350 with 14.0DTA ngine	260 kW	Diesel, Liquid Fuel	\$130,000 - \$260;000	
Senerac SD350 with 16.0DTA Engine	260 kW	Diesel, Liquid Fuel	\$130,000 - \$260,000	
Cummins DQAF 60 Hz	270 kW	Diesel, Liquid Fuel	\$135,000 - \$270,000	
Deutz SF6M 1015C	271 kW	Diesel, Liquid Fuel	\$135,500 - \$271.000	
Broadcrown BCD345S 50 Hz	276 kW	Diesel, Liquid Fuel	\$138.000 - \$276,000	
Broadcrown BCD315P 60 Hz	280 kW	Diesel, Liquid Fuel	\$140.000 - \$280.000	
Broadcrown BCD350P 50 Hz	280 kW	Diesel, Liquid Fuel	\$140,000 - \$280,000	
Lummins DF CC 50 Hz	282 kW	Diesel, Liquid Fuel	\$141.000 - \$282,000	
Senerac SD400 with 14 0DTA Engine	300 kW	Diesel, Liquid Fuel	\$150,000 - \$300,000	
Generac SD400 with 16 0DTA Engine	300 kW	Diesel, Liquid Fuel	\$150.000 - \$300.000	
Broaderown 20D345S 80 Hz	304 kW	Diesel, Liquid Fuel	\$152.000 - \$304,000	
- ceαcic //h s003608-60 Hz	304 kW	Diesel, Liquid Fuel	\$152.000 - \$304.000	
ວມຕາກແຄຣ DFCC 60 Hz	315 kW	Diesel, Liquid Fuel	\$157.500 - \$315.000	
Cummins DFEG 60 Hz	320 kW	Diesel, Liquid Fuel	\$160,000 - \$320,000	
Deutz 3F6M 1015CP	320 kW	Diesel, Liquid Fuel	\$160.000 - \$320,000	
Derroit Diesel R0837K05-G50	330 kW	Diesel, Liquid Fuel	\$165.000 - \$330,000	
hoadorown BCD430P 50 Hz	344 kW	Diesel, Liquid Fuel	\$172.000 - \$344,000	
Cummina DFEH 60 Hz	350 kW	Diesel, Liquid Fuel	\$175.000 - \$350,000	
Dummins Dhéh 50 hz	352 kW	Diesel. Liquid Fuel	\$176.000 - \$352.000	
Senerac 35450 with 16 (DTA)	360 kW	Diesel, Liquid Fuel	\$180.000 - \$360.000	

Engine

2.1.9.1.9			
Deutz BF8M 1015C	362 kW	Diesel, Liquid Fuel	\$181,000 - \$362,000
Detroit Diesel R0837K08-G60	365 kW	Diesel, Liquid Fuel	\$182,500 - \$365,000
Detroit Dieseł R0837K38-G60	365 kW	Diesel, Liquid Fuel	\$182,500 - \$365,000
Broadcrown BCD430P 60 Hz	372 kW	Diesel, Liquid Fuel	\$186,000 - \$372,000
Broaddrown BCD475 50 Hz	380 kW	Diesel, Liquid Fuel	\$190,000 - \$380,000
Broadcrown BCD500P 50 Hz	400 kW	Diesel, Liquid Fuel	\$200,000 - \$400,000
Cummins DFCE 60 Hz	400 kW	Diesel, Liquid Fuel	\$200.000 - \$400,000
Cummins DFEJ 50 Hz	400 kW	Diesel, Liquid Fuel	\$200,000 - \$400,000
Cummins DHEK 50 Hz	400 kW	Diesel, Liquid Fuel	\$200.000 - \$400,000
Generad SD500 with 16 0DTA Engine	400 kW	Diesel, Liquid Fuel	\$200,000 - \$400,000
Broadcrown 800475.60 Hz	408 kW	Diesel, Liquid Fuel	\$204,000 - \$408,000
Cummins DFEJ 60 Hz	410 kW	Diesel, Liquid Fuel	\$205,000 - \$410,000
Detroit Diesel R0837K1/6-G81	410 kW	Die sel , Liquid Fuel	\$205,000 - \$410,000
Generat: SD500 with 18.0DTA Engine	416 kW	Diesel, Liquid Fuel	\$208.000 - \$416,000
Deutz BF8M 1015CP	426 kW	Diesel, Liquid Fuel	\$213,000 - \$426,000
Broadcrown BCD500P 60 Hz	428 kW	Diesel, Liquid Fuel	\$214,000 - \$428,000
Deutz TBD 616 V8	432 kW	Diesel, Liquid Fuel	\$216,000 - \$432,000
Breadorown BC055US 50 Hz	440 kW	Diesel, Liquid Fuel	\$220.000 - \$440,000
Broadcrown+ BC 0550P	442 KW	Diesel, Liquid Fuel	\$221,000 - \$442,000
Communs DFEK 60 Hz	455 kW	Diesel, Liquid Fuel	\$227,500 - \$455,000
Detron Dresei	455 kW	Diesel, Liquid	\$227,500 - \$455,000

R0837K35-G70		Fuel	
Detroit Diesel R0837K36-G80	465 kW	Diesel, Liquid Fuel	\$232,500 - \$465,000
Broadcrown BCD550S 60 Hz	468 kW	Diesel, Liquid Fuel	\$234,000 - \$468,000
Broadcrown BCP600P	480 kW	Diesel, Liquid Fuel	\$240,000 - \$480,000
Detroit Diesel R1237K05-G50	489 kW	Diesel, Liquid Fuel	\$244,500 - \$489,000
Broadcrown BCC625S	500 kW	Diesel, Liquid Fuel	\$250,000 - \$500,000
Cummins DFGB 50 Hz	500 KW	Diesel, Liquid Fuel	\$250,000 - \$500,000
Broadcrown BCC630P	506 kW	Diesel, Liquid Fuel	\$253,000 - \$506.000
Broadcrown BCP650P	520 kW	Diesel, Liquid Fuel	\$260,000 - \$520.000
Broadcrown BCC670S	536 kW	Diesel, Liquid Fuel	\$268,000 - \$536,000
Croadcrown BCP670S	536 kW	Diesel, Liquid Fuel	\$268,000 - \$536.000
Erbadorown BCC650P	540 kW	Diesel, Liquid Fuel	\$270,000 - \$540.000
Gummins DFGB 60 Hz	545 kW	Diesel, Liquid Fuel	\$272,500 - \$545.000
Detroit Diesel R1237K08-G60	545 kW	Diesel, Liquid Fuel	\$272,500 - \$545.000
Centra Diesel Antari North 660	545 kW	Diesel, Liquid Fuel	\$272,500 - \$545.000
Generac SDS00 with 22.0DTA Engine	547 kW	Diesel, Liquid Fuel	\$273,500 - \$547,000
Cummins DFH# 50 Hz	560 kW	Diesel, Liquid Fuel	\$280,000 - \$56 0.000
Detroit Diesel R0837K36-G81	571 kW	Diesel, Liquid Fuel	\$285,500 - \$571.000
Broadcrown BCP700S	572 kW	Diesel, Liquid Fuel	\$286,000 - \$572,000
Bruaderown BCP720P	576 kW	Diesel, Liquid Fuel	\$288,000 - \$576.000
El cladrown Pluch NBS	600 kW	Diesel, Liquid Fuel	\$300,000 - \$600.000
l⊶ isrex Li El de 24.0DTA	600 kW	Diesel, Liquid Fuel	\$300,000 - \$600.000

_		
F:	no	ine
_	1.23	

снуше			
Detroit Diesel R1237K35-G70	614 kW	Diesel, Liquid Fuel	\$307,000 - \$614,000
Detroit Diesel R1237K06-G21	619 kW	Diesel, Liquid Fuel	\$309,500 - \$619,000
Broadcrown BCC800P	638 kW	Diesel, Liquid Fuel	\$319,000 - \$638,000
Broadcrown BCP800P	640 kW	Diesel, Liquid Fuel	\$320,000 - \$640,000
Broadcrown BCP800S	640 kW	Diesel, Liquid Fuel	\$320,000 - \$640,000
Cummins DFHB 50 Hz	640 kW	Diesel, Liquid Fuel	\$320,000 - \$640,000
Deutz TBD 616 V12	648 kW	Diesel, Liquid Fuel	\$324,000 - \$648,000
Detroit Diesel R1637K05-G50	668 kW	Diesel, Liquid Fuel	\$334,000 - \$668,000
Cummins DFHA 60 Hz	680 kW	Diesel, Liquid Fuel	\$340,000 - \$680,000
Broadcrown BCC880S	703 kW	Diesel, Liquid Fuel	\$351,500 - \$703,000
Broadcrown BCP880S	704 kW	Diesel, Liquid Fuel	\$352,000 - \$704,000
Detroit Diesel R1637K08-G60	720 kW	Diesel, Liquid Fuel	\$360,000 - \$720,000
Deiron Diesel R 1337K38-G80	720 kVV	Diesel, Liquid Fuel	\$360,000 - \$720,000
Oummins OFHB 50 Hz	725 kW	Diesel, Liquid Fuel	\$362,500 - \$725,000
Cannus N'HC 55 Hz	725 kW	Diesel, Liquid Fuel	\$362,500 - \$725,000
Breadcrown BCP900P	728 kW	Diesel, Liquid Fuel	\$364,000 - \$728,000
Broadcrown BCC900P	729 kW	Diesel, Liquid Fuel	\$364,500 - \$729,000
Broadcrown BCC1000P	800 kW	Diesel, Liquid Fuel	\$400,000 - \$800,000
Broadcrown BCC1000S	800 kW	Diesel, Liquid Fuel	\$400,000 - \$800,000
Bioadcrown BCC1010P	800 kW	Diesel, Liquid Fuel	\$400,000 - \$800.000
Breadcrown BCP1000P	800 kW	Diesel, Liquid Fuel	\$400,000 - \$800,000
Binadelown	800 kW	Diesel, Liquid	\$400,000 - \$800,000

BCP1000S		Fuel	
Cummins DFDG 50 Hz	800 kW	Diesel, Liquid Fuel	\$400,000 - \$800,000
Generac SD1000 with 32.0DTA Engine	800 kW	Diesel, Liquid Fuel	\$400,000 - \$800,000
Detroit Diesel R1637K35-G70	810 kW	Diesel, Liquid Fuel	\$405,000 - \$810,000
Detroit Diesel R1637K06-G61	814 kW	Diesel, Liquid Fuel	\$407,000 - \$814,000
Cummuns DFHC 60 Hz	818 kW	Diesel, Liquid Fuel	\$409,000 - \$818,000
Detroit Diesei R1237K36-G81	836 kW	Diesel, Liquid Fuel	\$418,000 - \$836,000
Deutz TBD 616 V16	864 kW	Diesel, Liquid Fuel	\$432,000 - \$864,000
Broadcrown BCC1100P	880 kW	Diesel, Liquid Fuel	\$440,000 - \$880,000
Broadcrown BCC1100S	880 kW	Diesel, Liquid Fuel	\$440,000 - \$880,000
Broadcrown BCP1100S	888 kW	Diesel, Liquid Fuel	\$444,000 - \$888,000
Generac SD800 with 33 9DTA Engine	890 kW	Diesel, Liquid Fuel	\$445,000 - \$890.000
Broadcrown BOC11253	900 kW	Diesel, Liquid Fuel	\$450,000 - \$900.000
Caracas DEHC SC Hz	900 kW	Diesel, Liquid Fuel	\$450.000 - \$900,000
Ceaerlan OFIE 30 M2	900 kW	Diesel, Liquid Fuel	\$450,000 - \$900,000
Broadcrown BCC1130S	905 kW	Diesel, Liquid Fuel	\$452,500 - \$905,000
Broadcrown BCC1020F	915 kW	Diesel, Liquid Fuel	\$457,500 - \$915.000
Detroit Diesei R 1637K36-G80	915 kW	Diesel, Liquid Fuel	\$457.500 - \$915,000
Deutz TBD 620 V8	960 kW	Diesel, Liquid Fuel	\$480.000 - \$960,000
Broadcrown BCC1250S	1,000 KW	Diesel, Liquid Fuel	\$500.000 - \$1.000,000
Cummuns DFLC 50 Hz	1,000 kW	Diesel, Liquid Fuel	\$500,000 - \$1 000 000
Generac	1.000 kW	Diesel, Liquid	\$500.000 - \$1 000.000

SD1250 with 49.0DTA Engine		Fuel	
Broadcrown BCP1250P	1,016 kW	Diesel, Liquid Fuel	\$508,000 - \$1,016,000
Broadcrown BCC1250P	1,021 kW	Diesel, Liquid Fuel	\$510,500 - \$1,021,000
Cummins DFMB 50 Hz	1,070 kW	Diesel, Liquid Fuel	\$535,000 - \$1,070,000
Detroit Diesel T1237K38-G21	1,070 kW	Diesel, Liquid Fuel	\$535.000 - \$1,070,000
Broadcrown BCP1350P	1.080 kW	Diesel, Liquid Fuel	\$540.000 - \$1,080,000
Cummins Of EC GO Hz	1,100 kW	Diesel, Liquid Fuel	\$550.000 - \$1,100.000
Cummins DFLE 50 Hz	1,100 kW	Diesel. Liquid Fuel	\$550.000 - \$1,100,000
Detroit Diesel R1637K36-G81	1,115 kW	Diesel, Liquid Fuel	\$557,500 - \$1,115,000
Broadcrown BCP1400S	1,122 kW	Diesel, Liquid Fuel	\$561.000 - \$1,122.000
Bruaddrown BCC1400P	1,132 kW	Diesel, Liquid Fuel	\$566.000 - \$1.132,000
Brosectown BCC1430S	1,150 kW	Diesel, Liquid Fuel	\$575,000 - \$1,150,000
Broadcrown BCP1500S	1,188 kW	Diesel, Liquid Fuel	\$594.000 - \$1,188,000
Broadcrown BCC1500P	1,200 kW	Diesel, Liquid Fuel	\$600.000 - \$1,200,000
Broadurown BCPh 500P	1,200 kW	Diesel, Liquid Fuel	\$600.000 - \$1,200,000
lentera. Sar5D werke.00™A Eisgi ^{ne}	1,200 kW	Diesel, Liquid Fuel	\$600.000 - \$1,200.000
Cummuns DFLE 60 Hz	1.250 kW	Diesel, Liquid Fuel	\$625.000 - \$1,250,000
Cumnuus DFMB 60 Hz	1,250 kW	Diesel. Liquid Fuel	\$625.000 - \$1,250.000
Detroit Diesel Th137K36-G41	1,255 kW	Diesel. Liquid Fuel	\$627.500 - \$1,255,000
Broadcrown BCC1960P	1,287 kW	Diesel, Liquid Fuel	\$643.500 - \$1,287,000
Broadorown BCC1600S	1.288 kW	Diesel, Liquid Fuel	\$644.000 - \$1,288,000
Broadcrown	1 326 kW	Diesel. Liquid	\$663 000 - \$1,326,000

BCP1650S		Fuel	
Detroit Diesel T1237K38-G60	1,330 kW	Diesel, Liquid Fuel	\$665,000 - \$1,330,000
Broadcrown BCC1670	1,341 kW	Diesel, Liquid Fuel	\$670,500 - \$1,341,000
Cummins DOKB 50 Hz	1,350 kW	Diesel, Liquid Fuel	\$675,000 - \$1,350.000
Deutz BV6M 628	1,350 kW	Diesel, Liquid Fuel	\$675,000 - \$1,350,000
Broadcrown BCC1700P	1,368 kW	Diesel, Liquid Fuel	\$684,000 - \$1,368.000
Broadcruwn BCP1750P	1,400 kW	Diesel, Liquid Fuel	\$700,000 - \$1,400.000
Senerac SD1750 with 65.0DTA Engine	1,400 kW	Diesel, Liquid Fuel	\$700,000 - \$1,400.000
Broadcrown BCP1800P	1,440 kW	Diesel, Liquid Fuel	\$720,000 - \$1,440.000
Deutz FBD 620 V12	1,440 kW	Diesel, Liquid Fuel	\$720,000 - \$1,440.000
Detroit Diesel 11237K36-G80	1.490 kW	Diesel, Liquid Fuel	\$745,000 - \$1,490.000
Broadcrown BCC1860P	1,500 kW	Diesel, Liquid Fuel	\$750,000 - \$1,500.000
Broadcrown BCC1975S	1,500 kW	Diesel, Liquid Fuel	\$750,000 - \$1,500.000
Cammins DQKC 50 Hz	1,500 kW	Diesel, Liquid Fuel	\$750,000 - \$1,500.000
Detroit Dieser 11637K38-G21	1,533 kW	Diesel, Liquid Fuel	\$766,500 - \$1,533 000
Friadoriwa BCC1920S	1.536 kW	Diesel, Liquid Fuel	\$768,000 - \$1.536.000
Closderown Holeffaulis	1.543 kW	Diesel, Liquid Fuel	\$771,500 - \$1,543.900
Broadcrown BCC1950P	1,597 kW	Diesel, Liquid Fuel	\$798,500 - \$1,597.000
Broadcrown BCC2000P	1.600 kW	Diesel, Liquid Fuel	\$800,000 - \$1,600.000
Broadcrown BCP2000S	1,600 kW	Diesel, Liquid Fuel	\$800,000 - \$1,600.000
Cummios - OKB 46 Hz	1,600 kW	Diesel, Liquid Fuel	\$800,000 - \$1,600 000
leneral 1990- with 65 0DTA	1,600 kW	Diesel, Liquid Fuel	\$800,000 - \$1,600.000

£	~	- 1	~ ~
<u>ب</u>	11	. j 1.	i i e

Engine			
Broadcrown BCP2000P	1,640 kW	Diesel, Liquid Fuel	\$820,000 - \$1,640.000
Detroit Diesei T1637K36-G41	1,730 kW	Diesel, Liquid Fuel	\$865,000 - \$1,730.000
Detroit Diesel T1637K38-G60	1,760 kW	Diesel, Liquid Fuel	\$880,000 - \$1,760.000
Broadcrown BCC2200S	1,765 kW	Diesel, Liquid Fuel	\$882,500 - \$1,765.000
Broadcrown BCC2250S	1,800 kW	Diesel, Liquid Fuel	\$900,000 - \$1,800.000
Broadcrown BCP2250S	1,800 kW	Diesel, Liquid Fuel	\$900,000 - \$1,800.000
Ceutz BV8M 628	1,800 kW	Diesel, Liquid Fuel	\$900,000 - \$1,800.000
Bicadorown BCC2250P	1,825 kW	Diesel, Liquid Fuel	\$912,500 - \$1,825.000
Cummins DQKC 60 Hz	1,825 kW	Diesel, Liquid Fuel	\$912.500 - S1,825.000
Deutz TBD 620 V16	1,920 kW	Diesel, Liquid Fuel	\$960,000 - \$1,920.000
Detroit Diesel F1837K35-G80	1,990 kW	Diesel, Liquid Fuel	\$995,000 - \$1,990.000
Broadcrown BCC25008	2,000 kW	Diesel, Liquid Fuel	\$1,000,000 - \$2,000.000
Neutz BV9M 628	2,025 kW	Diesel, Liquid Fuel	\$1,012,500 - \$2,025,000
Deutz BV12M 628	2,700 kW	Diesel. Liquid Fuel	\$1,350,000 - \$2.700 000
Deutz GV16M 628	3,600 kW	Diesel, Liquid Fuel	\$1,800,000 - \$3,600.000
Mitsubishi Heavy Industries 12MACH-30G	3,650 kW	Diesel, Liquid Fuel	\$1,825,000 - \$3.650.000
Mitsubišni Heavy Polistoas 12KU30A	3,750 kW	Diesel. Liquid Fuel	\$1.875.000 - \$3.750 000
Mitsubishi Heavy industries 14MACH-30G	4,250 kW	Diesel, Liquid Fuel	\$2,125,000 - \$4,250,000
Mitsubishi Heavy Industries 14KU30A	4,350 kW	Diesel, Liquid Fuel	\$2,175,000 - \$4,350,000
Mitsubis's Heavy accustoes	4,900 kW	Diesel, Liquid Fuel	\$2.450,000 - \$4.900.000

16MACH-30G

Mitsubishi Heavy Industries 16KU30A	5,000 kW	Diesel, Liquid Fuel	\$2,500,000 - \$5,000,000
Mitsubishi Heavy Industnes 12KU30B	5,180 kW	Diesel, Liquid Fuel	\$2,590,000 - \$5,180,000
Mitsubishi Heavy Industries 18MACH-30G	5,500 kW	Diesel, Liquid Fuel	\$2,750,000 - \$5,500,000
Mitsubishi Heavy Industries 18KU20A	5.650 KW	Diesel, Liquid Fuel	\$2,825,000 - \$5,650,000
Mitsubishi Heavy Industries 12KU34	5.900 kW	Diesel, Liquid Fuel	\$2,950,000 - \$5.900,000
Mitsubishi Heavy Industries 14KU308	6,050 kW	Diesel, Liquid Fuel	\$3,025,000 - \$6,050,000
Mitsubishi Heavy Industries 14KU34	6,900 kW	Diesel, Liquid Fuel	\$3,450,000 - \$6,900,000
Masubise: Heavy Industries 16KU308	6,910 kW	Diesel, Liquid Fuel	\$3,455,000 - \$6,910,000
Mitsubisto Heavy Industries 18KU308	7,780 kW	Diesel. Liquid Fuel	\$3,890,000 - \$7,780.000
Mitsubian Heavy Incustries 16KU34	7,900 kW	Diesel. Liquid Fuel	\$3,950,000 - \$7,900,000
Mitsubisti: Heavy Industries 18KU34	8,900 kW	Diesel, Liquid Fuel	\$4,450,000 - \$8.900,000
fviitsubiste Heavy Industries 12KU44	10,300 kW	Diesel, Liquid Fuel	\$5,150.000 - \$10,300,000
Mitsubi⊱s Heavy intustries 14KU44	12,000 kW	Diesel, Liquid Fuel	\$6,000,000 - \$12,000,000
Mitsubishi Heavy Industries 18KU44	13,700 kW	Diesel, Liquid Fuel	\$6,850,000 - \$13,700.000
Mitsubish: Heavy In Justices 18KU44	15.400 KW	Diesel, Liquid Fuel	\$7.700.000 - \$15.400.000

Probletinio Manufacturer :	Elliott Energy Systems
Model Name & Number :	TA 80R
Detail Description of Product :	Recuperated gas turbine. 4 pole permanent magnet generator. Synchronous output inverter.
Additional Information :	1.7 lbs/s exhaust gas flow rate at 450 degrees F.

Paginical Pase initian	
Product Technology :	Gas Turbine
Rated Electrical Output AC (kW) :	80
Standard 3 Phase Voltages for 60 Hz AC Frequency :	480
Standard 3 Phase Voltages for 50 Hz AC Frequency :	
Heat rate (Btu/kWh) :	12200
Power GenerationEfficiency (%) :	
Can be used for Cogeneration :	Yes
Practical Load Duty :	Peaking, Intermediate, Baseload
Fuel or Source of Energy :	Natural Gas

Eennemies - Anna III	
Low Range for Installed Cost (\$/kW) :	300
High Range for Installed Cost (\$/kW) :	1,100
Estimated Low Range Installed Cost for Technology (\$US) :	24,000
Estimated High Range Installed Cost for Technology (\$US) :	88,000

installation/mo			
Footprint by Area or Width x Depth :	110 x 32 in.		
Height :	52 in.		
Weight	1890		

Other	
Pros of Technology :	Convenient size, low emissions, efficient, low maintenance, and well suited for cogen or combined heat and power. Natural gas is efficient, easy to use, and convenient in areas with a distribution network.
Cons of Technology :	High initial capital cost and operating cost is sensitive to gas price fluctuations.
Commercially Available :	Yes

Address and Contact Information :	2901 SE Monroe St. Stuart, FL 34997 Tel: (772) 119-9499 Fax: (772) 119-9448
URL :	www.elliott-turbo.com/new

Manufacturer :	Pratt & Whitney
Model Name & Number :	ST5 Simple Sycle
Detail Description of Product :	Free turbine engine with single stage centrifugal compressor.
Additional Information :	5.1 lbs/s exhaust flow at 1089 degrees Fahrenheit. 563 kW peak power rating.

Product Technology :	Gas Turbine
Rated Electrical Output AC (kW) :	457
Standard 3 Phase Voltages for 60 Hz AC Frequency :	
Standard 3 Phase Voltages for 50 Hz AC Frequency :	
Heat rate (Btu/kWh) :	14510.52
Power GenerationEfficiency (%) :	23.5
Can be used for Cogeneration :	Yes
Practical Load Duty :	Peaking, Intermediate, Baseload
Fuel or Source of Energy :	Natural Gas

ન ભર્મમાં મેળે મો[ભર વાલ્યમાં મેળે મો[ભર	
Low Range for Installed Cost (\$/kW) :	650
High Range for Installed Cost (\$/kW) :	900
Estimated Low Range Installed Cost for Technology (\$US) :	297.050
Estimated High Range Installed Cost for Technology (\$US) :	411,300

/ Ref.

Installation Info

Footprint by Area or Width x Depth :

Height :

Weight :

800

Other

Pros of Technology :	Low cost, efficient and proven technology with established service channels. Well suited for cogen or combined heat and power. Natural gas is efficient, easy to use, and convenient in areas with a distribution network.
Cons of Technology :	Operating cost is sensitive to natural gas and liquid fuel price fluctuations. Decreased efficiencies when operated at partial load.
Commercially Available :	Yes

Address and Contact Information: Suite 300 Marietta, GA 30067

URL :

www.pratt-whitney.com

Tel: (866) 723-6374

127001141MG	
Manufacturer :	Pratt & Whitney
Model Name & Number :	ST6L-721
Detail Description of Product :	4 stage turbine with single stage compressor and power turbines.
Additional Information :	6.6 lbs/s exhaust flow at 957 degrees Fahrenheit. 567 kW peak power rating.

Varinga Description

	and the second secon
Product Technology :	Gas Turbine
Rated Electrical Output AC (kW) :	508
Standard 3 Phase Voltages for 60 Hz AC Frequency :	
Standard 3 Phase Voltages for 50 Hz AC Frequency :	
Heat rate (Btu/kWh) :	14605.36
Power GenerationEfficiency (%) :	23.4
Can be used for Cogeneration :	Yes
Practical Load Duty :	Peaking, Intermediate, Baseload
Fuel or Source of Energy :	Natural Gas, Liquid Fuel

Low Range for Installed Cost (\$/kW) :	650
High Range for Installed Cost (\$/kW) :	900
Estimated Low Range Installed Cost for Technology (\$US) :	330,200
Estimated High Range Installed Cost for Technology (\$US) :	457,200

Insellation mo	
Footprint by Area or Width x Depth :	53 x 21 in.
Height :	21 in.

and the state of a state of

229

Other	
Pros of Technology :	Low cost, efficient and proven technology with established service channels. Well suited for cogen or combined heat and power. Natural gas is efficient, easy to use, and convenient in areas with a distribution network.
Cons of Technology :	Operating cost is sensitive to natural gas and liquid fuel price fluctuations. Liquid fuel units typically have lower reliability and higher cost than natural gas fired units. Decreased efficiencies when operated at partial load.
Commercially Available :	Yes

URL :	www.pratt-whitney.com
	Mariesta, GA 30007 Mel: 1866) 123-0014
	Suite 300
Address and Contact Information :	1167 Northchase Parkway,
Contequinterent	

ProductInfo

Manufacturer : Model Name & Number :

Detail Description of Product :

Ingersoll-Rand Energy Systems

70LM

Grid parallel cogeneration system. Recuperated gas turbine with integrated, variable-output waste heat recovery system and fuel gas booster.

Additional Information :

CONTRACTOR AND CONTRACTOR AND ADDRESS AND ADDRESS ADDRESS

1.6 lbs/s exhaust gas flow rate at 450 degrees F.

BRUKET BRUKETER STREET BARRIER

Product Technology :	Gas Turbine
Rated Electrical Output AC (kW) :	70
Standard 3 Phase Voltages for 60 Hz AC Frequency :	480
Standard 3 Phase Voltages for 50 Hz AC Frequency :	
Heat rate (Btu/kWh) :	13080
Power GenerationEfficiency (%) :	29
Can be used for Cogeneration :	Yes
Practical Load Duty :	Peaking, Intermediate, Baseload
Fuel or Source of Energy :	Natural Gas, Biogas

Economics	
Low Range for Installed Cost (\$/kW) :	300
High Range for Installed Cost (\$/kW) :	1,100
Estimated Low Range Installed Cost for Technology (\$US) :	21,000
Estimated High Range Installed Cost for Technology (\$US) :	77,000

installation info		
Footprint by Area or Width x Depth :	71 x 43 in.	
Height :	87 in.	
Weight :	4100	

	$ \frac{1}{2} \sum_{i=1}^{n} 1$
Pros of Technology :	Convenient size, low emissions, efficient, low maintenance, can operate grid connected or stand alone, and well suited for cogen or combined heat and power.
Cons of Technology :	High capital cost. Biogas units require a source of biogas and output dependent on quality of fuel. Operating costs for natural gas units are sensitive to fuel price fluctuations.
Commercially Available :	Yes

Contraction	
Address and Contact Information :	810-D Beaty Street Nevidson, NC 28036 Noll Free:1-807-470-6887 Tel: (704) 696-5377 Sax: (704) 696-4827

URL :

www.irpowerworks.com

Eroduct Info Manufacturer :	Ingersoll-Rand Energy Systems
Model Name & Number :	70SM
Detail Description of Product :	Grid parallel cogeneration system with sunchronous generator. Recuperated gas turbine with integrated, variable-output waste heat recovery system and fuel gas booster.
Additional Information :	1.6 lbs/s exhaust gas flow rate at 450 degrees F.

	and a second state of the second state of the second second second states and second states are presented as a
Product Technology :	Gas Turbine
Rated Electrical Output AC (kW) :	70
Standard 3 Phase Voltages for 60 Hz AC Frequency :	480
Standard 3 Phase Voltages for 50 Hz AC Frequency :	
Heat rate (Btu/kWh) :	13500
Power GenerationEfficiency (%):	28
Can be used for Cogeneration :	Yes
Practical Load Duty :	Peaking, Intermediate, Baseload
Fuel or Source of Energy :	Natural Gas, Biogas

Economics	
Low Range for Installed Cost (\$/kW) :	300
High Range for Installed Cost (\$/kW) :	1,100
Estimated Low Range Installed Cost for Technology (\$US) :	21,000
Estimated High Range Installed Cost for Technology (\$US) :	77,000

Installation info		
Footprint by Area or Width x Depth :	71 x 43 in.	
Height :	87 in.	
Weight :	4850	

Other	
Pros of Technology :	Convenient size, low emissions, efficient, low maintenance, can operate grid connected or stand alone, and well suited for cogen or combined heat and power.
Cons of Technology :	High capital cost. Biogas units require a source of biogas and output dependent on quality of fuel. Operating costs for natural gas units are sensitive to fuel price fluctuations.
Commercially Available :	Yes

Contact Info

Address and Contact Information :

800-D Beaty Street Davidson, NC 28036 Toll Free:1-877-477-6937 Tel: (704) 896-5373 Fax: (704) 896-4327

URL :

www.irpowerworks.com

Product Info

Manufacturer :

Model Name & Number :

Detail Description of Product :

Bowman Power Systems

TG80BG

Single shaft engine rotor. Four pole permanent magnent alternator. Microporcessor controlled engine management and system monitoring.

Additional Information :

Feoninical Description

Product Technology :	Gas Turbine
Rated Electrical Output AC (kW) :	80
Standard 3 Phase Voltages for 60 Hz AC Frequency :	380-480
Standard 3 Phase Voltages for 50 Hz AC Frequency :	380-480
Heat rate (Btu/kWh) :	
Power GenerationEfficiency (%) :	21
Can be used for Cogeneration :	Yes
Practical Load Duty :	Peaking, Intermediate, Baseload
Fuel or Source of Energy :	Natural Gas, LPG, Butane, Propane, Alternative Gas

Economics	
Low Range for Installed Cost (\$/kW) :	300
High Range for Installed Cost (\$/kW) :	1,100
Estimated Low Range Installed Cost for Technology (\$US) :	24,000
Estimated High Range Installed Cost for Technology (\$US) :	88,000

Installation Info

Footprint by Area or Width x Depth : Height :

Weight :

Other	
Pros of Technology :	Low cost, efficient and proven technology with established service channels. Well suited for cogen or combined heat and power. Natural gas is efficient, easy to use, and convenient in areas with a distribution network.
Cons of Technology :	Operating cost is sensitive to natural gas and liquid fuel price fluctuations. Liquid fuel units typically have lower reliability and higher cost than natural gas fired units. Biogas units require a source of biogas and output is then dependent on quali
Commercially Available :	Yes

Contact Info

Address and Contact Information :	Ocean Quay Belvedere Road Southhampton, SO14 5QY England Tel: +44 (0)23 8023 6700 Fax: +44 (0)23 8022 1128
URL :	www.bowmanpower.com