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ABSTRACT

Refinery optimisation requires accurate prediction of crucial product properties and yield

of desired products. Neural network modeling is an alternative approach to prediction

using mathematical correlations. The project is an extension of a previous research

conducted by the university on product yield and properties prediction using non-linear

regression method. The objectives of this project are to develop a framework for the

application of neural network modeling in predicting refinery productyield and properties,

to develop neural network model for three case studies (predicting crude distillation yield,

diesel pour point and hydrocracker total gasoline yield) and to evaluate the suitability of

usingneural networkmodelingfor predicting refinery product yield and properties.

The project methodologies used are literature research and computer modeling using

MATLAB neural network toolbox. The framework development for neural network

modeling include aspects such as process understanding, data collection and division, input

elements selection, data preprocessing, network type selection, design of network

architecture, learning algorithm selection, network training, and network simulation using

new data set. Various configurations of neural network model were tested to choose the

best model to represent each case study. The model selected has the smallestmean squared

error when simulated using test data.

The results are presented in the form of the network configuration that gives the smallest

MSE, plots comparing the actual output with the output predictedby the neural network, as

well as residual analysis results to determine the range of deviationbetween the actual and

predicted output. Although the accuracy of the output predicted by the neural network

model requires further improvement, in general, the study has shown the tremendous

potential for the use of neural networkfor predictingrefineryproduct yield and properties.

Suggestions for future study in the area include improvement of the model accuracy using

advanced methods such as cross-training and stacked network, integration of neural

networkwith plant's Advanced ProcessControl as inferential property predictor, and study

on inverted network for use in a neural network-based controller.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

The ability to predict crucial product properties and yield of desired product is vital to a

refinery in the effort to reduce cost and improve refining margin. A typical refinery has the

goal of converting as much barrel of crude oil into transportation fuels (gasoline, kerosene

and diesel) as is economically possible. Although a refinery can produce many profitable

products, transportation fuels have the highest demand in terms of volume. The quality of

refinery feedstocks (crude oil) affects the yield and properties of various products that can

be obtained from the refining process. Crude assay data published by crude oil producers

provide information on the crude properties, as well as the expected yield andproperties of

various fractions that can be obtained from crude distillation. The fractions correspond to

boiling point ranges of products that refineries wish to produce. For processing units

further downstream, the yield andproperties of the products can also be predicted based on

the unit feed properties.

In crude assays, a True Boiling Point (TBP) distillation provides the yield andproperties of

discrete crude fractions obtained by batch distillation of specific crudes. However, in actual

operation, refineries usually run a mixture of different kinds of crudes as feedstock to the

process units. The mixture changes frequently in terms of crude types and proportions

depending on factors such as crude price and availability, as well as product requirements.

Performing the TBP distillation is an expensive and time-consuming process, so a refinery

cannot afford to run the test every time the proportions of the crude mixture are changed.

Therefore, there is a need for a method to accurately estimate the yield and quality of

products distilled from crude oils based on the properties of the crude. Previously, models

to predict product yield and properties from crude distillation are formulated using

mathematical correlations.

Development of mathematical correlations for predicting refinery product properties and

yield was researched by a group of Universiti Teknologi Petronas lecturers in a study

1



entitled "Development of a Systematic Methodology for Predicting Crucial Properties or

Yield for the Optimisation of Refinery Operation". The study introduced a framework for

developing mathematical correlations using non-linear regression method, which could be

used for a wide range of applications in refinery operation. As a mean to illustrate the

application of the framework, two case studies were researched; prediction of diesel pour

point, and prediction of distillate yield for atmospheric crude distillation (Abdul Mutalib,

2004).

This study aims to develop a systematic methodology for predicting refinery yield and

properties using neural network. To illustrate the application of the methodology in a

refinery-wide application, three case studies were conducted; prediction of crude

distillation product yield based on crude properties, prediction of diesel pour point based

on crude properties, and prediction of hydrocracker total gasoline yield based on gas oil

feed properties. The complexity and non-linearity of the systems makes them good

candidates for neural network modeling. Neural network is one of a group of intelligence

technology for data analysis that differs from classical analysis methods by learning about

the system from the data provided, rather than being programmed by user. A neural

network models the system by detecting pattern and relationship in data, learning from the

relationship, and adapting to change (Manning, 1998). Neural network has been applied

successfully in process engineering for various applications such as predicting inferential

properties from easily measurable parameters, monitoring and interpretation of process

trends, and generating non-linear models for the design of model-predictive control

system.

1.2 PROBLEM STATEMENT

1.2.1 Problem Identification

The ability to predict crucial product properties and yield for optimisation of refinery

operation is vital to reduce cost and improve refinery profit margin. To tackle issues such

as meeting customer's product specification and reducing quality giveaway, a refinery

requires a reliable and accurate method for predicting product yield and properties based

on the feedstock quality. Neural network modeling provides an alternative method to



generation of mathematical correlations. A refinery produces a wide range of products with

many crucial properties; hence a systematic methodology is required to provide a

framework for development of the neural network model for different types of products

and properties.

1.2.2 Significance of Project

The project will study the application of neural network modeling for predicting crucial

product properties and yield for a refinery-wide application. The results could be applied

for in-house generation of neural network model by refinery personnel for optimisation of

refinery operation. This would require less cost compared to use of commercially

developed software, as well as being able to take into consideration any special

characteristics of the refinery's process and unit operation.

1.3 OBJECTIVES AND SCOPE OF STUDY

The objectives of the study are:

i. To develop a systematic methodology for the application of neural network modeling

for prediction ofproduct yield and properties in a refinery

ii. To develop neural network model for three case studies:

Case Study 1: Prediction of Product Yield for Crude Distillation based on Properties of

Crude Oil

Case Study 2: Prediction of Product Property (Diesel Pour Point) based on Properties

of Crude Oil

Case Study 3: Prediction ofTotal Gasoline Yield for Hydrocracker Unit based on

Properties of Gas Oil Feed and Hydrogen Consumption

iii. To evaluate the feasibility of using neural network model for predicting refinery

product yield and properties

The scope of study will focus on developing a systematic framework for the application of

neural network modeling in refinery optimisation, illustrating the application of the

framework by creating neural network model for the three case studies, and analysing the

suitability of neural network modeling for predicting refinery productyieldand properties.



1.3.1 The Relevancy of the Project

The project is an opportunity for the author to utilise the knowledge and insights obtained

during industrial internship regarding refinery operation. From the university's perspective,

the project will be an extension to the previous study using non-linear regression method.

It will provide an alternative framework for development of prediction model for refinery

product yield and properties.

1.3.2 Feasibility of the Project Within the Scope and Time Frame

The scope of the project is viable for completion in a one-semester research project.

Approximately one-third of the duration was spent on studying the fundamentals,

principles, applications and method of implementations of neural network modeling,

another one-third on understanding the processes to be modeled, and the final one-third for

actual computer modeling work.



CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 ARTIFICIAL NEURAL NETWORK

2.1.1 Definition

Artificial neural networks are inspired by the architecture of biological nervous systems,

which consists of a large number of relatively simple nerve cells or neurons. The neurons

function in parallel to facilitate rapid decisions. Similarly, artificial neural networks consist

of a large number of computational elements, arranged in a massively parallel structure

(Aldrich, 2001). Schalkoff (1997) defined artificial neural network as a structure composed

of a number of interconnected units, also known as artificial neurons. Each unit has an

input/output characteristics and implements a local computation or function. The output of

any unit is determined by its input/output characteristics, its interconnection to other units

and external inputs. The network develops an overall functionality through one or more

form of training.

Neural networks follow some sort of training rule whereby the weights of connections

between the units are adjusted based on the patterns existing in the data set presented to the

network. In other words, neural networks learn from example, just like a child would learn

to recognize a cat from examples of cats or a bird from examples of birds. Commonly,

neural network is trained so that a particular input leads to a specific target outputs. The

network is then adjusted based on comparison of the network output and the target until the

network output matches the target (Demuth, 1998).

Inpu t

Neural Network
including connections
(called weights)
between neurons

Adjust
weights^

"arget I

^ f Compare 1
Output V. J

Figure 1: Training a Neural Network



In addition to taking its cue from biological neural network, neural network also has its

basis in statistical problem solving. According to Bishop (1995), statistical framework is

the most general and natural framework to formulate and understand solutions in neural

network modeling. This is because statistical framework recognises the probabilistic nature

of the information to be processed, and of the form in which the result is expressed. This is

apparent in the set of data used for training the network. In most cases, it is impossible to

collect all the data set representing the problem (in statistical terms, what is called the

population). Consequently, the data set used for training the network must be a fair

representation of the system to be modeled as a whole (a good sample of the population).

2.1.2 Neuron Model

To summarise Aldrich (2001) and Demuth (1998), fundamental understanding of the

neuron model is required to understand how a neural network processes data. Neuron is

the basic processing unit of a neural network. The neuron receives inputs from other

neurons in the network, or from the outside, which are subsequently weighed and summed.

A scalar bias, b is added to the weighted sum to become the argument n to the transfer

function/ The transfer function/is typically a step function or a sigmoid function which

takes the argument n and produces the output a. The weights, w and the bias, b are

adjustable scalar parameters. The central idea of neural networks is that the weights and

bias can be adjusted so that the network exhibits some desired behaviour. Hence, the

network can be trained to perform a particular task by adjusting the weight and bias

parameters to achieve a desired end.

Input Neuron with bias

*\

a

Figure 2: Simple Neuron Model



2.1.3 Network Architecture

The architecture of a neural network consists of a description of how many layers a

network has, the number of neurons in each layer, the transfer function in each layer, and

how the layers are connected to each other. The best architecture to be used depends on the

type of problem, or input/output mapping represented by the network.

In a single layer network with multiple neurons, each element of the input vector p is

connected to each neuron through the weight matrix W. Each neuron performs its own

summing function to sum the weighted inputs and bias and form its own scalar input, n(i).

The various n(i) from all the neurons taken together form the net input vector n. The net

input vector becomes the argument to the transfer function/and the neuron layer outputs

form a column vector a (Demuth, 1998). The network configuration is shown below:

In put Layer of N eurons

f

a--=f (Wp-I~U)

Where...

R = number of
elements in
input vector

.&' = number of
neurons in layer

Figure 3: Single Layer Network

A network can also have several layers, in which case the outputs of each intermediate

layer are the inputs to the next layer. To differentiate between weight matrices connected

to inputs and weight matrices connected between the layers, the terms input weights and

layer weights are used. The layers of a multilayer network play different roles. The layer



that produces the network output is called the output layer, while all other layers are called

hidden layer.

Input Layer 1

r~\ t

ai -f (IWup-i-bi) a^ - f^LW^aJ 4-fc) & P (LWw»J+lP)

aj =P(LWwf2 (LWrifl(IWup4bi)i bfhb*)

Figure 4: Multiple Layers Network

2.1.4 General Application of Neural Network

Neural network can be used to solve problems that cannot be tackled effectively using

conventional computing approaches, which depends heavily on programming and specific

instructions from user. Specifically, neural network is most useful to solve these types of

problems:

Function Approximation

In certain cases, it is known that a relationship exists between some influencing factors or

inputs and the observed behaviours or the outputs. However, due to the complexity or high

degree of non-linearity of the problem, the relationship cannot be modeled mathematically.

Neural network is useful to solve this type of problem, especially if a large number or

examples of historical data which describes the relationship can be collected.



Pattern Recognition/Classification

Neural network is useful to perform tasks such as handwriting recognition and signal and

image identification by classifying and associating the inputs with a specific class of target.

Prediction of Trends and Future Events

Time-series prediction of future trends can be done using neural network, provided a lot of

historical data is available. This is useful in fields such as the stock market for predicting

share prices.

Clustering or Grouping of Data

A special type of neural network, the self-organising map, can be used to determine

whether there is any structure or class/cluster/similarity within the values in a data set.

2.1.5 Application in Process Engineering

In process engineering, neural network has been applied in various problems such as

process identification, inferential property prediction and model-based control strategy

development. Various papers and studies have been published regarding the use of neural

network modeling in refinery optimisation. Barsamian and Macias (1998) in their work on

inferential property predictors studied the use of neural network to produce non-linear

property correlation equations for boiling point, flash point, freeze point, Reid Vapour

Pressure, asphalt penetration, yield and octane number prediction. They also designed an

Inferential Property Estimation Software tool using neural network embedded in Excel

spreadsheet. The results from the study indicate that their correlations for flash point and

freeze point are accurate up to 3°C and the prediction for octane number is accurate up to

0.3 octane number. The findings from the study emphasised the importance of data validity

and filtering to obtain high quality results and avoid the phenomenon of "garbage in-

garbage out".

Ramos and Cunha (1998), two researchers from a Brazilian refinery studied two methods

for predicting LPG 95% evaporation point, the inference curve method and neural network.

For the neural network, they used a three-layer perceptron neural network with back



propagation. The neural network outperformed the inference curve method, efficiently

predicting the evaporation point with little error margins.

Barbosa et.al. (2002) applied Bayesian neural networks on the inference of diesel 85%

ASTM distillation from process operating conditions, and compared the results with

traditional multi-layered perceptrons. Bayesian neural network uses probability densities

instead of frequencies, assumes a particular model for the probability densities of data and

network weights, and uses Bayes' rule to infer the optimum weights, given the available

data. From the results, the best inference was obtained using a one-neuron Bayesian neural

network with six input variables.

2.2 PETROLEUM REFINING

2.2.1 Refinery Feedstock

The basic raw material for refineries is petroleum, also known as crude oil. Crude oil is a

naturally occurring mixture of hydrocarbon compounds that may include compounds of

sulfur, nitrogen, oxygen, metals and other elements. The compounds boil at different

temperatures, thus can be separated into fractions by distillation (Speight, 2001). The

elementary composition of crude oils is quite uniform, falling within the following ranges:

Table 1: Elementary Composition of Crude Oils

Element Percent by Weight
Carbon 84-87

Hydrogen 11-14

Sulfur 0-3

Nitrogen 0-0.6

Source: Petroleum Refining Technology and Economics

In terms of chemical composition, crude oil is a mixture of various hydrocarbon

compounds. The hydrocarbons present in crude oil are classified into three classes:

i) Paraffins: saturated hydrocarbons with straight or branched chain, but without any

ring structure, such as methane, ethane and propane

10



ii) Naphthenes: saturated hydrocarbons containing one or more rings, such as

cyclopentane, cyclohexane and methylcyclopentane

iii) Aromatics: unsaturated hydrocarbons containing a benzene ring such as benzene,

toluene and ethylbenze

Wide variations in composition and properties are exhibited by crude oils, not only among

those from different oilfields, but also in crude oils taken from different production depth

in the same field. The differences in composition will affect the physical properties

exhibited by different type of crude oils, as well as the expected yield and properties of

various product fractions obtained after refining. Therefore, knowledge on the properties of

the crude will allow a refinery to optimise its conversion to valuable products.

Evaluation of a crude for use as a refinery feedstock involves an examination of a few

important properties. The value and suitability of a particular type of crude to a refinery

depends on its quality and whether the refinery can obtain a satisfactory product yield and

properties that meet market demand. Usually, the refinery is not concerned with the actual

chemical nature of the crude, but is more interested in methods of analysis that would

provide sufficient information to assess the potential quality of the crude in terms of

product slate and suitable method for processing. This information can be obtained from

one of two ways:

1. Preliminary assay inspection data

2. Full assay including preparation of a true boiling point curve and analysis of product

fractions throughout the full range of the crude oil

The preliminary assay provides general data on the crude based on tests that are routine,

simple and can be completed in a short time, such as specific gravity, pour point, sulfur

content, viscosity and water content (Speight, 2001). The preliminary assay provides a

useful general picture of the crude quality, but does not provide adequate data for the

refinery to predict the yield and properties of the products obtained from the crude after

processing.

11



A.full assay of a crude is basedon a true boiling point distillation of the crude, from which

sufficient data is obtained to assess the yield and properties of the straight-run products

obtained from distilling the crude. The distillation is carried out using the ASTM D-2892

method, also known as the true boilingpoint distillation (TBP) method. The method uses a

column with 15 theoretical plates and a 5:1 reflux ratio; hence it is also known as the

"15/5" method (Maples, 1997). Preparing a full assay is an expensive and time-consuming

process, and a large quantity of sample is required to perform the TBP distillation.
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The important physical properties of crude oils include density (or API gravity), pour point

and sulfur content. The properties are discussed below:

API Gravity

In the petroleum industry, the density of crude oil is usually expressed as API gravity

rather than specific gravity. API gravity is related to specific gravity in such a way that an

increase in API gravity corresponds to a decrease in specific gravity:

141 5
°API= — 131.5

specific gravity

The API gravity of a crude oil refers to a liquid sample of the crude at 60°F or 15.6°C.

Crude oil gravity usually ranges between 10° API to 50° API. API gravity is used as an

indicative measure of the proportions of various products that can be obtained from

distilling the crude. A lighter crude with a higher API gravity, hence lower density, is

expected to produce a higher yield in the low-boiling range upon distilling. Similarly, a

heavier crude oil with lower API gravity, hence higher density, is expected to produce a

higher yield in the high-boiling range.

Pour Point

Pour point is defined as the lowest temperature at which petroleum oil will flow or pour

when it is chilled without disturbance at a controlled rate. The pour point of a crude oil is a

rough indicator of the relative paraffinicity and aromaticity of the crude. The lower the

pour point, the lower the paraffin content and the greater the content of aromatics.

Sulfur Content

Sulfur content and API gravity are the two properties which have the greatest influence on

the value of crude oil. Sulfur content is expressed as percent sulfur by weight and usually

varies from less than 0.1% to greater than 5%. Crudes with sulfur content more than 0.5%

requires more extensive processing than those with lower sulfur content, and are known as

"sour" crude.
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2.2.2 Overall Refinery Process Flow

Each refinery has a unique processing scheme, which is determined by the process

equipment available, crude oil characteristics, operating costs and product demands. The

optimum flow pattern for any refinery is dictated by economic considerations. However, in

general, the processing sequencing in a typical refinery follows the general pattern as

described by Gary (2001).

Crude oil is heated in a furnace and charged to an atmospheric crude distillation tower,

where it is separated into light gas, light naphtha, heavy naphtha, kerosene, diesel or

atmospheric gas oil and reduced crude. The reduced crude is sent to a vacuum distillation

tower and separated into vacuum gas oil streams and vacuum residue. The vacuum residue

from the vacuum tower bottom is then thermally cracked in a delayed coker to produce wet

gas, coker gasoline, coker gas oil and coke.

The atmospheric and vacuum crude distillation unit gas oils, along with the coker gas oil

are used as feedstocks for the catalytic cracking or hydrocracking units. These units crack

heavier molecules into lower molecular weight compounds boiling in the middle distillate

fuel ranges. The light naphtha streams from atmospheric crude distillation, coker and

cracking units are sent to an isomerisation unit to convert straight-chain paraffins into

isomers that have higher octane number. The heavy naphtha streams are fed to a catalytic

reformer to improve their octane number. The streams from the isomerisation unit and the

catalytic reformer unit are blended into gasoline.

The gas streams are separated in the vapor recovery section into refinery fuel gas, liquefied

petroleum gas (LPG), normal butane, isobutane and unsaturated hydrocarbons. The fuel

gas is burned as fuel in refinery furnaces and the normal butane is blended into gasoline or

LPG. The isobutane and unsaturated hydrocarbons are sent to an alkyllation unit, which

uses sulfuric or hydroflouric acid as catalyst to react olefins with isobutanes to form

isoparaffins boiling in the gasoline range. The middle distillates from the crude distillation

unit, coker, and cracking units are blended into diesel and jet fuel (kerosene).
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2.2.3 Crude Distillation Unit

The atmospheric crude distillation unit, the first major processing unit in a refinery, is

used to separate crude oils into fractions by distillation according to boiling points. The

TBP cut points for the various fractions corresponding to specific products will vary

slightly among different refineries; however, the typical values are given inTable 2:

Table 2: TBP Cut Points for Various Crude oil Fractions

Cut Initial Boiling Point (°C) Final Boiling Point(°C)
Fuel Gas CI C2
LPG C3 C4
Light Naphtha 36 180
Heavy Naphtha 180 320
Kerosene 320 450
Diesel 450 690
Reduced Crude 690 690+

Source: Philippine National Oil Company Reference Manual

The yields and properties ofthe desired fractions that can be obtained from a specific crude

can be predicted from the TBP distillation curve and full assay. However, it is rare for a

refinery to process only a single crude at a given time. Instead, a blend of a few different

crudes is usually charged as the feedstock to the crude distillation unit. Performing a full

assay of a crude is an expensive and time-consuming procedure. Furthermore, the crude

blend being charged into crude distillation unit could change significantly interms ofcrude

types and proportions before an assay can be completed. Therefore, it would be

impossible for a refinery to perform a full assay and TBP distillation each time there is a

change in the crude blend. This creates a need for other means to estimate the yields and

properties of the desired products that can be obtained from processing a specific blend of

crude.

2.2.4 Hydrocracker

Hydrocracking is a catalytic cracking process conducted with a high hydrogen partial

pressure. The objective ofthe process is to produce higher-value, lower molecular weight

products such as gasoline, kerosene and diesel from low quality gas oils, which would

otherwise have to be sold as low-priced distillate fuels. Hydrocracking increases the yield
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of gasoline components, and produces gasoline blending components with a quality not

obtainable from other process by recycling the gas oils through the cracking process that

generated them (Leffler, 1979). In contrast to coking and deasphalting processes,

hydrocracking decreases the carbon-to-hydrogen ratio by the addition of hydrogen, rather

than the removal of carbon. An important feature of the hydrocracker is the gain in

product volume compared to the feed volume, usually up to 25%. The

cracking/hydrogenation process results in products whose average density is a lot lower

than the feed. The primary product is a gasoline blending components called

hydrocrackate.

2.2.5 Estimating Product Yield and Properties

In contrast to the full assay, a preliminary assay of a crude or a blend of crude can be

completed in a short time since the tests required are relatively simple and routine. For

this reason, various studies were conducted to predict the yield and properties of products

distilled from a crude based on the properties of the crude itself. The approach used by

most researchers is to correlate the yield and properties of selected products from the

crude distillation unit to the properties of the crude obtained from the preliminary assay.

For example, Al Soufi et. al. (1986) generated a linear correlation model for predicting

distillate yield based on crude API gravity. In another study, non-linear regression

method is used to correlate more crude properties (API gravity, sulfur content, pour point,

viscosity, total acid number and Reid vapour pressure) to the yield of selected distillate

products (Abdul Mutalib, 2004).

In both studies, the process operating conditions of the crude distillation unit is ignored in

the development of the correlation. This is because the idea here is to come up with a

generic correlation that does not depend on the specific conditions of the crude distillation

unit, but is only dependent on the crude properties. Consequently, the model can be

applied at any refinery for any crude distillation unit, instead of being valid only for the

specific unit for which the model was developed. A similar approach is taken in this

study, such that the neural network model will be developed to estimate the yields and
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CHAPTER 3

METHODOLOGY AND PROJECT WORK

There are two major stages involved in carrying out the project. The first stage is to

develop a systematic framework or methodology for designing a neural network model for

the system. The second stage is the computer simulation of the neural network model using

a commercial neural network software available in the market.

To accomplish the first stage, research and literature review was done to learn and

understand the fundamental, principles and method of application of neural network

modeling. The objective of the first stage is to come up with possible network

configurations suited to model the problem, which would then be tested in the computer

simulation stage to determine the best network configuration for the problem. The project

methodology is summarised in the diagram included in Appendix II.

3.1 SYSTEMATIC METHODOLOGY FOR NEURAL NETWORK MODELING

3.1.1 Process Understanding

As is the case in any modeling approach, the first step in designing a neural network is to

study and understand the process to be modeled. This starts by classifying the input/output

problem to be solved as function approximation, pattern recognition, time-series

prediction, or data clustering. The type of input/output mapping will have an impact on the

type of network as well as network architecture that is suitable for modeling the process.

For refinery optimisation problems, the input/output mapping generally falls under the

function approximation classification, where the objective is to predict the value of certain

output parameters, given the values of other parameters that are known to have an impact

on the output. Sufficient understanding on the nature of the process, as well as the

characteristics of the inputs and outputs are necessary prerequisites before proceeding to

the next steps.

Process understanding will also helps in determining the characteristics of the model to be

created. For example, for problems having multiple outputs, a decision must be made
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whether to model each output separately using individual network, or to use a single

network with multiple outputs. There are some limitations in neural network for modeling

multiple output process. Bishop (1995) stated that defining a single network with multiple

output variables causes the network to suffer from cross-talk, where the hidden neurons

experience difficulty in learning as they are attempting to model at least two functions at

once. However, for some process, the nature of the outputs is such that modeling each

output individually is not suitable. Ultimately, the final decision can only be made after

both approaches have been tested to determine which one gives a better output prediction.

3.1.2 Collection And Division Of Data

The data set available is divided into two sets; training data and testing data. The training

data is used during the training phase to adjust the weights and biases of the network in

order to minimise the mean squared error (MSE) between the network output and the

target. After the training phase is completed, the network is run using testing data to see

how well it performs. For network utilising the early stopping feature to improve

generalisation, the data is divided into three different sets; training, testing and validation.

In this case, training is interrupted periodically to run the network on the validation data.

The data for training must be representative of the process to avoid extrapolation when the

model is used to predict output for data it has not seen before. Heuristics suggests an 80% -

20% division between the training data and the testing data (Schalkoff, 1997). However, in

the case where limited data set is available, the proportion of the training data may be

increased to ensure that the trained network is able to find a generalised pattern in the data

set.

3.1.3 Selection Of Input Elements

In cases where the dimension of the input vector is large, some of the elements are

probably highly correlated and redundant. Having redundant inputs to a network will

reduce the performance of the network, as well as making the network unnecessarily large

and complex. This effect is termed "the curse ofdimensionality" by Bishop (1995), and the
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end effect is that the number of training data required to specify the mapping increases

exponentially with additional input elements.

The selection of which input elements to be included is done using the following

approaches:

1. Based on multivariate analysis to eliminate elements that are highly correlated

2. Based on prior knowledge on the process to be modeled

Multivariate analysis is conducted by performing a linear regression for each input element

with all the other elements, one after the other. When two input elements are found to be

highly correlated with one another (having a high value of r2), one of them is omitted from

the model. The choice of which of the two elements is eliminated will depend on other

factors such as the relative importance of the input element to the output, which in turn is

to be determined from understanding of the process to be modeled.

Aldrich (2001) suggested that fundamental knowledge of the process to be modeled should

always be included in the network. This can be done either by making use of hybrid neural

network systems, in which neural networks are explicitly combined with first-principle

process models, or by structuring the inputs to the network in such a way that previous

knowledge on the process is incorporated in the network through the training process.

3.1.4 Data Preprocessing

According to Bishop (1995), data preprocessing is one of the most important stages in the

development of a neural network model, and the choice of preprocessing steps has

significant effects on generalisation performance. One form of preprocessing involves a

reduction in the dimensionality of the input data by a process called feature extraction, in

which modified inputs are formed from collections of the original inputs which might be

combined in linear or non-linear ways. Another approach is to scale the inputs and targets

so that they always fall within a specified range. This is relevant in cases where different

input elements have values that differ by several orders of magnitude. If the data is not
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scaled, the difference in magnitude may not reflect the relative importance of the input

elements in determining the required outputs.

Data preprocessing also addresses the issue of data set with incomplete input values.

Bishop (1995) suggested that if the quantity of data is sufficiently large, then the simplest

solution is to omit the data sets with missing values from the network. However, when

limited data set is available for training the network, it is important to make full use of the

information that is potentially available from the incomplete sets. Various heuristics have

been proposed for dealing with missing input data. The most basic is to replace the missing

value with the mean of the variable over the available data sets. More complicated

approaches include integration over the corresponding variables, weighted by the

appropriate distribution, and filling in the missing data points with values drawn at random

from available data sets.

3.1.5 Selection Of Network Type

Neural network can solve various problems classified as either function approximation,

pattern recognition or classification problems. The problem for the case studies, which is to

estimate the values of various outputs of a process, given certain inputs, can be classified

as a function approximation problem. Based on literature review from previous research on

neural network application in industry (Barbosa, 2002, Ramos, 1998), as well as heuristics

given in the neural network toolbox manual (Demuth, 1998), two types of network have

been identified as being suitable for modeling the yield prediction from crude properties;

multilayer feedforward network with backpropagation algorithm, and Bayesian

regularisation network.

Feedforward Network

Feedforward networks are layered, acyclic networks in which there is no path from a

neuron back to itself. The neurons are partitioned into subsets called layer, where a

connection is allowed from layer/ to k only if layer/ precedes layer k (Mahrotra, 1997).

Some literature also refers to the feedforward network as multilayered perceptron (MLP).

The network consists of one or more hidden layers with tangent-sigmoid or log-sigmoid
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transfer function, and an output layerwith a linear transfer function. The multiple layers of

neurons with nonlinear differentiable transfer functions allow the network to learn

nonlinear and linear relationships betweenthe input and output vectors (Demuth, 1998).

Standard backpropagation utilises gradient descent algorithm to update the weights. Each

neuron calculates its error derivatives which consist of partial derivatives of the neuron's

error, E with respect to one of its weights, wi. The error derivatives computedpropagate

backwards such that each hidden neuron uses the error information from the neuron ahead

of it to calculate its own error derivative. The error derivatives are used to calculate the

amount to adjust the weights of the links (Winston, 1993).

Bayesian Regularisation

Bayesian regularisation is a special type of network in which the weights and biases of the

network are assumed to be random variables with specified distribution. The parameters

are estimated using statistical techniques. Bayesian network is created as a way to improve

network generalisation by using a network that is just large enough to provide an adequate

fit. Oneof the problems that occurduring network training is calledoverfitting. A network

that is overfitted has a very small erroron the training set, but the error becomes very large

when new data is presented to the network. In short, the network has memorised the

training examples, but it has not learn to generalise to new situations. Bayesian networks

ensure that the network size is just enough to learn the training data, and will not have

enough power to overfit the data.

3.1.6 Formulation Of Network Architecture

The architecture of a neural network consists of a description of how many layers a

networkhas, the number of neurons in each layer and the transfer function in each layer.

Number of Layers

For this project, neural networks with 1 and 2 hidden layers were tested. The basis for this

choice is that the neural network toolbox manual claimed that a feedforward network with

a single hidden layer could approximate any function, given sufficient number of neurons

(Demuth, 1998). However, several researchers have indicated that two hidden layers
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would work better, especially for problems with multiple outputs, which is the case here

(Smith, 1993).

Number of Neurons in Each Layer

The number of neurons in the output layer must be equal to the number of elements in the

output vector. The number of neurons in the hidden layers is determined from trial-and-

error. The objective is to find the smallest number of neurons that will allow a specific

network architecture to converge. Currently, no guideline or heuristics can be found with

regards to determining the number of neurons in the hidden layers, and trial-and error is the

prevalent method used. The approach used here is to determine a minimum and sufficient

number of neurons for the task at hand. If too few neurons are used, the network will not

converge during the training phase. However, if too many neurons are used, overfitting

will occur, i.e. the network will model the training data well, but it will perform poorly

when presented with data it has never seen before. To avoid overfitting, the number of

weights must be kept smaller than the number of training data.

Transfer Function in Each Layer

The transfer function in the output layer is set as the linear transfer function to ensure that

the outputs can take on any values, not just restricted to 0 and 1. The transfer function in

the hidden layers must be a sigmoid function due to its differentiability. The

differentiability property is an importantrequirement for the backpropagation algorithm to

work, since the weights and biases are adjusted in the direction of the negative of the

gradient of the function. If the function is not differentiable, the algorithm could not

compute its gradient; hence the weights and biases cannot be adjusted. There are two

options for the sigmoid functions, tangent-sigmoid and log-sigmoid, and both were tested

to see which one gives a better model. For the two hidden layers group, 4 different

combinations of the transfer functions are used:

i) log-sigmoid transfer function in both hidden layers

ii) tangent-sigmoid transfer function in both hidden layers

iii) log-sigmoid in the first hidden layer and tangent-sigmoid in the second hidden

layer
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iv) tangent-sigmoid in the first hidden layer and log-sigmoid in the second hidden

layer

3.1.7 Training Of Network

12 different learning algorithms which seem to be suitable to the problem at hand are

tested. The learning algorithms differ in terms of how the weights and biases of the

network are calculated. The algorithms can be classifiedinto 4 main categories:

i) Basic gradient descent algorithm (batch-gradient descent, 'traingd' and batch

gradientdescentwith momentum, 'traingdm')

ii) Variable learning rate algorithm (variable learning rate method, 'traingda',

variable learning rate method with momentum, 'traingdx' and resilient

backpropagation, 'trainrp')

iii) Conjugate gradient algorithm (Fletcher-Reeves Update, 'traincgf, Polak-

Ribiere Update, 'traincgp', Powell-Beale Restarts, 'traincgb' and scaled

conjugate gradient, 'trainscg')

iv) Quasi-Newton algorithm (BFGS algorithm, 'trainbfg', one step secant

method, 'trainoss', and Levenberg-Marquardtalgorithm, 'trainlm')

Each network configuration is also trained under two conditions; with early stopping, and

without early stopping. Early stopping is another method used to improve generalisation.

In this method, the data is divided into training, validation and testing sets. The training

data is used for computing the gradient and updating the weights and biases. The error of

the validation data is monitored during the training process. When the network starts to

overfit the data, the error of the validation data set will increase. Training is stopped when

the validation data error increases for a specific number of iterations, and the weights and

biases at the minimum of the validation error are returned.

From the framework development of neural network model, a set of possible network

configurations to model the casestudies is obtained, summarised in Figure 8.
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Figure 8: Process Flowsheet for Testing Network Configurations

TAN

TAN

3.2 COMPUTER SIMULATION AND MODELING

The second stage is computer simulation of the various network configurations to

determine which configuration results in the best model for the process. The software

chosen for this purpose is Neural Network Toolbox in MATLAB. The sample coding for

creating, training and simulating the network is included in Appendix V.
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The trained network is simulated using the test data to see how well it can predict the

product yields from inputs it has not seen before. The different network architectures are

compared and evaluated based on the following criteria:

i) Mean Squared Error (MSE) testing data set

ii) Size of network, i.e number of neurons in hidden layers

iii) Number of epochs required for convergence

iv) Speed of convergence

3.3 CASE STUDIES

The Case Studies are modeled to demonstrate the application of the systematic framework

in predicting product yield and properties for refinery optimisation. The Case Studies are

selected in such a way to illustrate the practical application of some of the issues touched

upon in the framework development. For example, Case Study 1 shows the multiple

networks versus single network with multiple outputs dilemma in action. Case Study 3

illustrates the effect of including data sets with missing values, while comparison between

Case Study 2 and Case Study 3 can be used to demonstrate the effect of the amount of

training data available on network performance.

3.3.1 Case Study 1: Prediction of Crude Distillation Product Yield

The objective of the model is to predict the product yield obtained from crude distillation,

using crude properties as inputs to the model. For this case study, the data used is the same

data that was used in the non-linear regression study, which was originally obtained from

crude assay of 36 different crudes published in the Philippine National Oil Company

Reference Manual (PNOC, 1987). Due to the limited availability of data, most of the data

is reserved as training data, i.e. 30 data is used as training set, 3 for validation set and 3 for

testing set. The division is done randomly.

For modeling the yield prediction of crude distillation products based on crude properties,

the input vector is the properties of crude, and the output vector is the yield (in volume

percent) of the various products. There are 7 elements in the output vector, corresponding
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to the yield of the products, which are fuel gas, LPG, light naphtha, heavy naphtha,

kerosene, diesel and reduced crude. The TBP cut points for the products are as given in

Table 2. Two approaches are used for modeling the process, creating a single network

havingmultipleoutputs, and creating individual networkfor each product yield.

There are 9 crude properties reported in the PNOC assay; API gravity, pour point, sulfur

content, basic sediment and water (BS&W), salt content, Reid vapor pressure (RVP), total

acid number (TAN), viscosity at 100°F and viscosity at 122°F. From the multivariate

analysis, it was found that the two viscosities at 100°F and 122°F are highly correlated (r2 =
0.8617). The viscosity at 122°F is omitted from the model since it contains more missing

data compared to the viscosityat 100°F. However, correlation results between API gravity

with viscosity at 100°F and at 122°F also indicate some correlation between API gravity

with viscosity (r2 = 0.4273 for viscosity at 100°F and r2 = 0.4500 for viscosity at 122°F).

Compared to the r2 values for the other elements, which are mostly less than 0.1, there

appears to some justification for omitting viscosity altogether from the input. Moderately

strong correlations were also found between sulfur content and viscosity, between basic

sediment and water (BS&W) and salt content, and between salt content and total acid

number (TAN). The result of the multivariate analysis is summarised in Appendix IV.

Incorporating the concept of prior knowledge regarding the process, the input elements to

be included in the network are chosen based on consideration of the crude distillation

process, i.e. what are the properties of crude that are expected to affect the yield of

products most strongly?

Based on previous studies, API gravity is found to have the greatest impact on the

expected yield of products from distillation. In fact, some researchers developed

correlations using only API gravity as the input (Al Soufi, 1986, Maples, 1997).

Therefore, API gravity is included as one of the input elements to the network. Pour point

is also included because it has an effect on the relative paraffinicity and aromaticity of the

crude, which in turn affects the product distribution.
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The selection of input elements is also influenced by data availability factor. The crude

assay set obtained from the PNOC Reference Manual contains many missing or

unrecorded data for some of the properties. The data set is complete for all 36 crudes only

for 3 properties, API gravity, pour point and sulfur content. Cursory examination of crude

assay data from other sources also indicates that these 3 properties are the ones that are

available for most assays, regardless of the source. Since the purpose of designing the

neural network model is to predict product yield based on easily measurable crude

properties, it is important to include only crude properties that are commonly recorded in a

preliminary assay of a crude. This way, the modelcan be applied for a variety of situations.

Properties such as total acid number, basic sediment and water, salt content, viscosity and

Reid vaporpressure are less commonly included in the preliminary assay.

Based on the multivariate analysis and process understanding, API gravity, pour point and

sulfur content are selected as inputelements for the neural network model. Sample data set

for the training data is included in Table 3. The complete data sets for training, testing and

validation are included in Appendix III.
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... ... ... ... ...

Notes:

1. API - API gravity ofcrude (°API)

2. Pour = Pour point of crude (°F)

3. Sulfur = sulfur content of crude (wt%)

4. FG = Fuel gas (C1/C2) yield (vol %)

5. LPG = LPG (C3/C4) yield (vol%)

6. LN = Light Naphtha (36-180°C) yield (vol%)

7. HN = Heavy Naphtha (180-320°C) yield (vol%)

8. Kero = Kerosene(320-450°C) yield (vol%)

9. Diesel = Diesel (450-690°C) yield (vol%)

10. Red.Crude = Reduced crude (690+) yield (vol%)

For the approach of creating a single network with multiple outputs, the output vector

contains 7 elements, which are the percent yield of the various products. Therefore, the

number of neurons in the output layer is set as 7. The data is preprocessed using the

MATLAB function premnmx, which scale the inputs and outputs to values between -1 and
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1. Neural network models using the configurations shown in Figure 7 are created and

simulated in MATLAB, and the best model that gives the smallest Mean Squared Error

(MSE) for the test data is selected.

3.3.2 Case Study 2: Prediction of Diesel Pour Point

The objective of the model is to predict the pour point of diesel product from crude

distillation based on the properties of crude. The data is again obtained from PNOC assay,

and consists of 9 crude properties that can be used to predict the pour point of diesel

obtained from the crude distillation process. The crude properties are API gravity, pour

point, sulfur content, basic sediment and water (BS&W), salt content, Reid vapor pressure

(RVP), total acid number (TAN), viscosity at 100°F and viscosity at 122°F. This case

study illustrates the possibility of predicting certain properties of a product from a unit

operation, using the properties of the feed as the inputs.

The same rationale as in case study 1 applies for selection of input elements and

preprocessing of data. Based on the multivariate analysis results, the input elements to the

network are selected as crude API gravity, pour point and sulfur content. However, the

output contains a single element, diesel pour point, so the number of neuron in the output

layer is set as 1. From the 36 data sets available, 30 were used for training the network, 3

for validation and 3 for test data. The complete data set is includedin Appendix III.

For division of data, instead of doing random division as in Case Study 1, for this case

study, the test data were selected carefully to ensure that the values fall within the range of

the training data. This means that the trained network is only asked to perform

interpolation, not extrapolation. This is done to illustrate the effect of training data and test

data range on the predictive capability of the network. It is expected that the prediction for

Case Study 2 will be better than Case Study 1, since neural network performs better when

predicting outputs for new inputs whose values are close to data sets that the network has

been trained with.
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3.3.3 Case Study 3: Prediction of Hydrocracker Total Gasoline Yield

The objective of the model is to predict the total gasoline yield from hydrocracking

process, using gas oil feed properties and hydrogen consumption as the inputs. An

important feature of hydrocracking process is the increase in volume of the product

compared to the feed volume. Hence, the product yield is measured in liquid volume

percent of feed (LV%), and the values can be more than 100%, owing to the increase in

volume. The data is obtained from Maples (2000). The input elements are feed API

gravity, feed K value (Watson characterisation factor), and amount of hydrogen consumed

in standard cubic feet per barrel of feed (SCFB). The output is the total gasoline yield,

which consists of the light hydrocrackate (C5-180°F) and heavy hydrocrackate (180°F-

450°C) fractions.

Some of the hydrocracking yield data from Maples contains missing values. There are 128

complete data sets, and 69 data sets with one or more missing values. The first approach

taken is to omit the data sets containing missing values. The 80%-20% heuristics is

followed such that 25 data sets are used for testing, and the rest for training and validation.

The second approach used is to replace the missing values with the average of the

corresponding variables, and to add the newly filled data sets to the training data. For

example, for the API gravity of feed, the average value is 24.4. This value is used to fill in

any missing API gravity value. For the first approach, 93 data sets are used for training, 10

for validation and 25 for testing. For the second approach, 162 data sets are used for

training, 10 for validation and 25 for testing. Since the data sets are arranged according to

decreasing hydrogen consumption in Maples (2000), random distribution of the data into

training, validation and testing sets would results in data distribution that is not reflective

of the system. The method used is to take every fifth and tenth data on the list as testing

data, every ninth data as validation data, and the rest as training data.
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CHAPTER 4

RESULTS AND DISCUSSION

The network performance was compared using the mean squared error (MSE) between the

actual outputs and outputs predicted by the network for the test data. The mean squared

error measures the error or difference between the output predicted by the neural network

and actual output. The smaller the MSE, the better the network is at predicting the output.

The mean squared error is given by the equation:

MSE =1 £ e(kf =I £ (t(k) -a(k))'

Q = number of input patterns

t(k) = target (actual) output

a(k) = network output

To facilitate comparison betweenthe differentcase studieson an equal basis, the MSE was

computed for the preprocessed data (scaledto be within the interval -1 to 1).For each case

study, the network configuration that gives the smallest MSE was selected as the best

model for the problem.

For the models selected as the best network configuration for each case study, the results

are also represented in the form of plots of predicted output versus actual outputs. If the

model is able to predict the outputs perfectly, the plot will take the form of a straight line

with slope of 1, and y-intercept of 0. Otherwise, the points will scatter across the line.

Residual analysis was also conducted to find the absolute error as well as maximum

deviation between the actual and predicted outputs. The purpose is to determine the

accuracy of the model in predicting the outputs, i.e to estimate the confidence bound of the

prediction.
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4.1 NEURAL NETWORK MODEL FOR CASE STUDIES

4.1.1 Case Study 1: Prediction of Crude Distillation Product Yield

The modeling process for Case Study 1 was done using two different approaches; first by

using a single network with multiple outputs, and then by using separate networks for each

product yield. Various network configurations, as laid out in Figure 8, were tested and

simulated in MATLAB to select the networkwhich gives the smallest MSE. For the single

network with multiple output approach, the configuration that gives the smallest Mean

Squared Error (MSE) of the testdata is a feedforward network withtwo hidden layers, 5-5-

7 neurons configuration, tangent-sigmoid transfer function in both hidden layers,

Levenberg-Marquardt learning algorithm, with early stopping. The network architecture is

shown in Figure 9:

INPUT

3 Input
Elements

HIDDEN LAYER 1

5 Neurons,
Tangent-
Sigmoid
Transfer

Function

HIDDEN LAYER 2

5 Neurons,
Tangent-
Sigmoid
Transfer

Function

OUTPUT LAYER

7 Neurons,
Linear

Transfer

Function

Figure 9: Selected Neural Network Architecture for Case Study 1

The networkwas trained for 104 epochsbefore stopping due to the increase in error in the

validation data set. With early stopping, when the network was simulated using the

training data, the MSE between the target (actual output) and the network output is 0.1397

and for testing data is 0.2157. The training data MSE is found to be larger when the

network is trained using early stopping compared to without early stopping., which means

that the network is not fitting the training data exactly. However, the advantage of using

early stopping is that the MSE for the testing data is smaller, which means the network has

a better generalisation and predictive capability when faced with data it has not seen

before. To illustrate this, Table 4 shows the comparison between the MSE values for
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network trained with early stopping, and without early stopping, using the same network

configuration as described above.

Table 4: Comparison between Early Stopping and No Early Stopping Network

Network

Early Stopping
No Early Stopping

MSE (Training)
0.1397

9.86E-04

MSE (Testing)
0.2157

2.0104

For comparison with the second approach (individual network with a single output for each

product yield), MSE for each output element were also determined. The same network

configuration was used to run the individual networks, with the exception that the number

of neurons in the output layer is now reduced to 1. Comparison of the MSE values between

the two approaches is shown in Table 5:

Table 5: Comparison of MSE for Multiple and Single Output Networks

^nroducriiV;:^
Fuel Gas 0.851 5.064

LPG 0.561 0.118

Light Naphtha 0.279 0.699

Heavy Naphtha 0.313 0.058

Kerosene 0.278 0.474

Diesel 0.462 0.472

Reduced Crude 0.078 0.044

Based on the MSE comparison in Table 5, it is seen that using individual network for each

product yield does not significantly improve the prediction. In fact, for some products, the

individual networks actually give a worse prediction (fuel gas, light naphtha, kerosene and

diesel) than the single network with multiple outputs. Improvement in prediction is

observed for LPG, heavy naphtha and reduced crude. Theoretically, it is expected that

using a separate network for each productyield would improve the predictive capability of

the network. This is because by using a separate network with only one output, the network

size, which is the number of weights in the network, is reduced from 75 to 45. The number

of weights is calculated as follows:

34



No of weights = (No of elements in input vector) x (No of neuron in first layer) +

(No of neuron in first layer) x (No of neurons in second layer) +

(No of neurons in second layer) x (No of neurons in output layer)

For the network with multiple outputs, the output layer has seven neurons, corresponding

to the seven outputs of the network, while the individual network has only one neuron in

the output layer. The reduction in the network size is expected to increase the

generalisation capability of the network and avoid overfitting. However, in this case, the

number of training data is so limited (30 data sets) that the reduction in network size does

not guarantee an improvement in the network performance.

The plots of actual yield the yield predicted using the two approaches are shown in Figures

10-16. The straight line represents the ideal situation where the predicted output is equal to

the actual output. From the graphs, it is seen that for both approaches, the worst prediction

is for fuel gas, and the best is for reduced crude. The unsatisfactory prediction for fuel gas

yield is probably due to the fact that the actual yield is equal to or very close to zero, which

causes difficulty for the network to adjust the weights and biases during training.

0.01 0.02 0.03 0.04

Actual Yield (vol% of crude)

0.05

♦ Single Network

• Individual Network

— Predicted = Actual

Figure 10: Actual versus Predicted Yield of Fuel Gas
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Figure 12: Actual versus Predicted Yield of Light Naphtha
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Figure 13: Actual versus Predicted Yield of Heavy Naphtha
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Figure 14: Actual versus Predicted Yield of Kerosene
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Figure 15: Actual versus Predicted Yield of Diesel
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Figure 16: Actual versus Predicted Yield of Reduced Crude
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Appendix VI shows the values for the actual and predicted yield, as well as deviation

between the actual and predicted. Residual analysis is conducted to calculate the range of

deviation for each product, as shown in Table 6:

Table 6: Deviation Range For Case Study 1

+0.04 to+0.09 +0.04 to+0.79

LPG 1.10 -0.91 to+0.95 -0.11 to+1.09

LN 3.44 +0.59 to +2.54 +1.18 to+8.84

HN 11.86 -3.63 to+2.69 -3.99 to+5.37

Kerosene 16.18 -8.98 to+ 3.01 -10.7 to+2.81

Diesel 29.62 •13.37 to+1.24 -10.25 to+2.70

Reduced Crude 37.78 +2.46 to+14.00 +4.88 to+10.33

For the purpose of refinery optimisation, the large range in the deviation between the

actual and predicted value shown above is clearly not satisfactory. However, it has to be

noted that the result is obtained for a data set that has some very important constraints. The

main constraint is the very small number of data sets used for training the network. The

second constraint involves the spread of the data, i.e. whether the data set is representative

of the whole range of possible input/output combinations. In an actual refinery, the data set

available would be significantly larger, and consequently more representative of the whole

population.

4.1.2 Case Study 2: Prediction of Diesel Pour Point

The network configuration which gives the smallest MSE for test data is a feedforward

network with two hidden layers, 5-10-1 neurons configuration, log-sigmoid transfer

function in both hidden layers, Levenberg-Marquardt learning algorithm, with early

stopping. The network was trained for 66 epochs before stopping due to increase in MSE

of validation data. The MSE for training data is 0.1088, for validation data is 0.0027 and

for testing data is 0.0392. Thenetwork architecture is shown in Figure 17:
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Figure 17: Selected Neural Network Architecture for Case Study 2

Comparison between actual and predicted diesel pour point is shown in Table 7 and the

plot in Figure 18. The selected model gives prediction which is consistently lower than the

actual values. The maximum deviation is -7.0°F.

Table 7: Deviation Results for Case Study 2

40.0

| 35.0 -1
f 30.0 -I
¥ 25.0

Actual Predicted * Deviation

25 20.1 -4.9

35 29.3 -5.7

20 13.0 -7.0

15.0 20.0 25.0

Actual Pour Point (degree F)

40.0

Figure 18: Actual versus Predicted Diesel Pour Point

Compared to thefirst case study, the prediction for the diesel pour point is slightly better in

terms of MSE and maximum deviation. Division of data into training, validation and
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testing data for Case Study 1 was done randomly, and some of the test dataare outside the

range of the training data. On the other hand, for the prediction of diesel pour point, the

test data were carefully selected to ensure that they are within the range of the training

data. This confirms the hypotheses that neural network model performs better when tested

with data that is within the range of the data that the networkwas trained with.

The better prediction for Case Study 2 compared to Case Study 1 could also be attributed

to the relative characteristics of the data. For Case Study 1, the output values, which are the

yields of various products, are more distributed across many different values. For diesel

pour point, the network is trained using data with outputs having values that are fairly

consistent, i.e. multiples of five. The consistent characteristics of the outputs used to train

thenetwork probably made it easier for theneural network to adjust the weights and biases

during the training process, resulting in a better prediction.

4.1.3 Case Study 3: Prediction of Hydrocracker Total Gasoline Yield

The network configuration which gives the smallest test data MSE prediction of

hydrocracker total gasoline yield is a feedforward network with two hidden layers, 3-5-1

neurons configuration, log-sigmoid transfer function in both hidden layers, Levenberg-

Marquardt learning algorithm, with early stopping. The network was trained for 162

epochs before stopping due to increase in MSE of validation data. The MSE for training

data is 0.0720, for validation data is 0.2409 and for testing data is 0.2461. The network

architecture is shown in Figure 19:
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Figure 19: Selected Neural Network Architecture for Case Study 3
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Using the same network configurations asabove, the training data was increased to include

data sets containing missing values of one of the input parameters. The missing values are

substituted with the average of the variables across the whole data set. For example, for

API gravity, the average value is 24.4, so if a data set does not contain the value of API

gravity, 24.4 is used as its API gravity. The average value for Watson characterisation

factor, K, and hydrogen consumption in SCFB is 11.5 and 1990, respectively. The network

was trained for 136 epochs before stopping due to increase in MSE of validation data. The

MSEfor training data is 0.1133, for validation data is 0.1321 and for testing data is 0.2229.
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Table 8: Comparison of Results using Original and

Additional Data for Case Study 3

-• "|ir.V' .""""." i• •

:--- '.-lYo'porly*!-.. " —
OriuuiiiJ WilhAdded

" 0.2229"MSE 0.2461

Maximum Negative Deviation -47.9 -62.1

Maximum Positive Deviation 71.0 75.4

Comparing the results obtained using the original and additional training data set (Table 8),

it is observed that the additional data set gives a slightly better prediction in terms of the

mean squared error value. However, the spread in terms of maximum positive and

negative deviation is slightly larger for the case with additional data set. Comparison ofthe

plots of predicted versus actual output (Figures 20 and 21) indicates that the outputs

predicted bythenetwork in both cases do not differ by much, except for a few data points.

This is confirmed by the plot in Figure 22, which plots the two predictions on the same

graph.
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4.2 COMPARISON OF FEEDFORWARD NEURAL NETWORK TO BAYESIAN

REGULARISATION

For all three case studies, multilayered feedforward network with early stopping gives a

better prediction than Bayesian regularisation for the same network architecture (same

number of hidden layers, number of neuron, and transfer function). Table 9 shows the

comparison between the results obtained using feedforward network with early stopping,

and Bayesianregularisation, for the same networkconfiguration as selectedbefore:

Table 9: Comparison of MSE between Early Stopping and Bayesian Regularisation

Gase'StudyV:
*>Early5ropping,v -• BayesranfRegtflans'atipn....

Case Study 1 0.1397a 0.1465a
Case Study 2 0.0392 0.0825

Case Study 3 0.2461b 0.2625b

Note: a: Refers to MSEfor the single network withmultiple outputs approach

b: Refers to MSE for training with the original data set

Early stopping and Bayesian regularisation are both methods for improving the

generalisation capability of the network, i.e. to avoid the network from overfitting the

training data. The advantage of Bayesian regularisation is that no data sets have to be set

aside for validation purpose, as is the case for early stopping This means more data can be

used for training purpose, since the validation data is nowincluded in the training data set.

For the case studies used in this project, the number of dataused for validation is small (3

each for Case Study 1 and 2, and 10 for Case Study 3), so the effect of increasing the

number of training data by using Bayesian regularisation is not very pronounced.

However, the difference in the MSE values are not very significant, so Bayesian

regularisation should also be considered as a good option for the model.

4.3 COMPARISON OF DIFFERENT NETWORK ARCHITECTURE

4.3.1 One Hidden Layer versus Two Hidden Layers

For all three case studies, networks with two hidden layers perform better than networks

with 1 hidden layer in terms of the MSE of test data. The disadvantage of the two hidden
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layer, however, lies in terms of the slightly longer time required for the solution to

converge, due to the increase in the number of weights and biases. However, this

difference in convergence time is almost negligible, especially if the network is simulated

on a computer with high memory capacity.

4.3.2 Number of Neurons

The optimal number of neurons is selected on a trial-and-error basis. The goal is to find the

minimum number of neuron for a given configuration that will give the smallest MSE

when the network is simulated using the test data. For the case studies, for each network

configuration, the number of neurons tested starts from 1 neuron, and is increased

consecutively by 1 neuron each time. It is observed that as the number of neurons is

increased initially, the MSE of both training data and test data decreases. However, as the

number of neurons increases beyond a certain point, the MSE of test data starts to increase

even as the MSE of training data continues to decrease. This indicates that the networksize

has become too large, and the network is no longer generalising the function, but merely

fitting the training data (as indicated by the increase in test data MSE and decrease in

training data MSE). The optimum number of neurons for the network configuration is the

one where the test data MSE is at a minimum. This is illustrated in Table 10, which shows

the MSE for different number of neurons for the single hidden layer configuration for Case

Study3. The shadedpart shows the optimum number of neurons, which is 5 in this case:

Table 10: Effect of Number of Neurons on Network Performance

• Number of......
Neurons

SlSL-'Iraining Daui •7\"lS»v"lcsiJ)at;ir

1 0.0759 0.2849

2 0.0490 0.2352

3 0.0443 0.2988

4 0.1225 0.2755

5 0.1382 0.2501

6 0.0637 0.2904

7 0.0323 0.3032

8 0.0287 0.3206
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4.3.3 Transfer Function

For network that uses backpropagation algorithm for updating the weights and biases, the

type of transfer function used in the hidden layers must be a sigmoid function. The

software used in modeling the case studies, MATLAB Neural Network Toolbox provides

two options, the tangent-sigmoid function, and the log-sigmoid function. The tangent-

sigmoid transfer function squashes the inputs to nonlinear range -1 to 1, while the log-

sigmoid to range 0 to 1. From modeling the case studies, it is observed that the choice of

transfer function in the hidden layer does notaffect thenetwork performance very much.

4.3.4 Training Algorithm

The choice of which training algorithm is used does not affect the network performance

very much in terms of the test data MSE. The effect is more on the time required for the

network to converge. For modeling the case studies, it is observed that for most of the

network configurations tested, the Levenberg-Marquardt learning algorithm gives the

fastest convergence.

4.4 FURTHER OPTIONS FOR IMPROVING MODEL PERFORMANCE

Various methods are suggested in literature to improve to performance of network with

limiteddata set, such as cross-training (leave one out basis) and stacked neural network. In

cross-training, the network is trained on all available data, except one which is held out for

validating the performance of the network. This procedure is repeated until the network has

been validated against all the data. The purpose is to use as much of the data as training

data as possible in order to provide sufficient information for close simulation of the

input/output mapping (Aldrich, 2001). To address the problem of limited data set, Zhang

(2001) proposed the method of bootstrap aggregated neural network model, in which the

process data is randomly re-sampled to form a number of different training and testing data

sets. Neural networks are then developed for each re-sampled data set. However, instead of

selecting the network perceived as the best, several networks are combined to form the

model for prediction purposes. The combined network is called "stacked network".

Unfortunately, due to time constraint, these approaches could not be incorporated in the

project.
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4.5 FEASIBILITY OF NEURAL NETWORK MODELING FOR REFINERY

OPTIMISATION

At this point, it would be appropriate to comment on the suitability of using neural network

modeling for the purpose of predicting refinery product yield and properties. In general,

the prediction results obtained for the 3 case studies above are not very satisfactory.

However, the results have to be interpreted within the context of the constraints faced

during the project implementation. The author has elected to use data available from

literature instead of data from an actual plant. The advantage of this approach is that the

study is able to benefit from the insights provided by the respective authors on the

processes modeled in the case studies. Consequently, theoretical and analytical

understanding of the process can be included in the formulation of the neural network

model, as opposed to proceeding in a purely empirical manner. On the other hand, the

major disadvantage is that a limited number of data sets are available for training the

network, which severely affects the predictive capability of the model. The other

constraint is to complete the project within the three months duration (1 university

semester).

As stated in the objectives, the main goal of this project is to focus on the systematic

methodology for neural networkmodeling. The aim is to gain sufficient insights regarding

the theoretical background and fundamental principles of neural network modeling, its

methods of implementation, as well as how the results should be interpreted, for the

purpose of using neural network modeling to predict product yield and properties for

refinery optimisation. The case studies are included to illustrate how the methodology can

be implemented. As such, the results from the case studies, in terms of the accuracy of the

predicted outputs, cannot be interpreted as representative of how neural network models

for other processes will behave. In a modern refinery, the widespread use of computerised

data storage and management means that the historical data available for any process to be

modeled will be very large, going back years into the past. Therefore, problem of limited

data set will not occur.
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As is the case in most modeling method, whenever the model output does not predict the

actual result very well, the cause can be traced to either one of two factors. The first factor

is a mismatch or incompatibility between the process characteristics and the modeling

approach itself. An example would be using linear regression technique to model a process

that is inherently non-linear. The second factor is related to the degree to which the

characteristics of the process are accurately represented in the model. A model is

essentially a simplification of the actual process, and it would be impossible to include all

the characteristics of the actual process. However, enough informationmust be retained in

the model so that the model does not become a gross oversimplification of the actual

process. To this end, a high degree of understanding of the process is essential. In neural

network modeling, process understanding is especially important during the inputselection

stage, in order to determine which inputs actually have an effect on the process output.

The basic assumption in neural network modeling is that a relationship actually exists

between the network inputs and the network outputs. The relationship could be very

complex or weak, but it mustbe there. Otherwise, the network outputwill fall victim to the

garbage in, garbage outphenomena.

These two factors must be weighed carefully when determining the suitability of a

particular modeling approach for solving a problem. The fundamental question here seems

to be; is the prediction inaccurate due to the inherent incompatibility between the process

and the modeling approach, or is it due to flaws and shortcomings in incorporating the

process characteristics into the model, as well as during the modeling process itself? In

this case, since the research was carried out by a beginner student in the field of neural

network, as well as in the study of refinery processes used in the case studies, the latter

would be the more probable reason.
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CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS

The study has achieved its objective of developing a systematic methodology or

framework for designing neural network model for product yield and properties prediction

in a refinery. The framework focuses on aspects such as data collection and division, input

elements selection, design of network architecture, learning algorithm selection, network

training, and network simulation using new data set. The methodology was applied for the

problem ofpredicting product yield and diesel pour point from crude distillation unit based

on properties of crude, and the prediction of gasoline yield from hydrocracker based on

feed properties andhydrogen consumption. The network architecture was designed and the

network created, trained and simulated using Neural Network Toolbox in MATLAB

software.

To evaluate the performance of the neural network model, the trained network was

simulated using data that the network has not seen before (the test data). The output

predicted by the neural network model is compared with the actual output. The mean

squared error (MSE) between the predicted and actual outputs provides an indication of

how well the model is predicting the output. For the three case studies, the MSE ranges

from 0.1397 for the first case study, 0.0392 for the second case study and 0.2461 for the

case studies.

Several conclusions can be drawn based on the results obtained from modeling the three

case studies. It is found that in general, the performance of a neural network model is

limited when the number of data available for training the network is small. The network

also performs worse when asked to predict the output for test data whose input values do

not falls within the range of the training data. On the other hand, when presented with test

data whose value is close to specific data set with which the network is trained, the

network predicts the output withgreater accuracy. The specific network configuration most

suitable for a specific problem will depend on the nature of the problem itself.
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In conclusion, the study has shownthe tremendous potential of neural networkmodeling in

predicting crucial product yield and properties. Careful considerations of the limitations of

neural network, some of them illustrated in this study, will allow for the formulation of a

better model with greater accuracy.

RECOMMENDATIONS FOR FUTURE WORK

Future studyon application of neuralnetworkmodeling for prediction of product yield and

properties in a refinery could focus on several aspects, as follows:

• Incorporation of techniques for improving the performance of network with limited

data set, such as the cross-training method, and stacked neural network.

• Integration of neural network model into plant's Advanced Process Control

strategy. The neural network model could be used to analyse process data available

from Distributed Control System (DCS) to get inferential property predictions for

properties that are hard to measure on-line, such as composition, flash point etc.

This will translate to savings in terms of time and cost from reduction in lab

analysis or use of on-line analysers.

• Study on the inversion property of neural network. The inversion process takes a

neural network that maps input to output and invert it. The inverted network will

give the set of inputs necessary to achieve a desired output. The invertedmodelcan

be used to control the process in a neural network-based controller.
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APPENDIX II: PROJECT METHODOLOGY

PROCEDURE

2 Major Stages

Framework/systematic
methodology for designing

neural network model

Computer simulation of
neural network model

using MATLAB

Type of input/output mapping -
function approximation

Testing Data

Multivariate Analysis

Scale Data

Feedforward

Network

Transfer Function

Backpropagation
Algorithm

Process

Understanding

Data Collection

and Division

Selection

of Inputs

Data

Preprocessing

Selection of

Network Type

Formulation of

Network

Architecture

Training of
Network
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Output
Characteristics

Training Data..

Validation Data

Prior Knowledge of
Process

Feature Extraction

Bayesian
Regularisation

No of Layers

No of Neurons

Early Stopping

Bayesian
Regularisation



APPENDIX III: DATA SET FOR CASE STUDIES

Case Study 1: Prediction of Crude Distillation Product Yield

Training Data Set

-30 1.1 0

BwMMsBifii

2.6

•tojaSaniLffl

15.7 25.4

faftMiJy^jrigffiEsPflrai

38.8 7.6 14.4 34.3

30.8 -45 2.43 0.04 2.07 6.82 12.66 11.81 21.08 45.52

23 60 1.12 0.02 0.3 1.64 4.09 5.1 16.79 72.06

21.8 -35 3.34 0.33 1.81 3.74 9.88 9.35 18.68 56.21

46.2 -30 0.6 0.03 1.62 13.13 29.08 17.27 29.77 9.1

44.8 40 0.06 0.02 0.82 3.7 18.13 23.82 38.31 15.1

35.3 95 0.07 0 0.65 2.33 8.44 10.36 23.73 54.49

47.6 0 0.023 0.07 2.92 10.25 35.36 23.15 24.29 3.96

21.1 54 0.21 0 0.02 0.48 3.2 6 14.7 75.6

32.5 -5 1.68 0.06 2.45 6.63 12.33 13.67 24.82 40.04

36.3 34 0.08 0.03 2.57 10 26.2 20 29.7 11.5

31.4 -5 2.56 0.12 3.09 6.63 11.54 11.95 20.44 46.23

33.9 5 1.44 0.26 1.48 5.97 14.88 14.79 24.74 37.88

42.1 -10 0.028 0.04 3.12 8.82 29.85 22.92 26.54 8.71

39.3 -30 0.81 0.1 1.44 6.63 18.01 16.08 27.22 30.52

33.9 -15 2.03 0 0 6.5 12.5 11 22 48

41.3 5 1.37 0.05 3.9 10.65 15.7 15.8 24.6 29.3

35.2 75 0.105 0.5 2.1 7.96 17.65 13.25 27.68 30.88

27.2 20 2.03 0.03 0 0 10.97 14 38 37

34.8 -10 0.97 0.04 0.82 6.11 13.45 14.07 25.08 40.43

31.3 90 0.08 0.07 1.02 1.37 9.8 14.5 35.5 37.73

38 -15 0.49 0 0 0.43 16.63 22.96 34 25.98

33.5 -25 1.41 0.37 2.3 6.83 13.2 11.67 21.53 44.1,

36.2 -20 1.95 0 2.48 7.21 15.58 15.19 24.36 35.18

36.2 35 0.07 0.07 1.66 8.27 16.15 19.59 33.02 21.24

33.3 0 1.95 0.06 2.1 7.96 13.29 13.33 23.07 40.19

38.9 -45 1.79 0.01 1.4 6.48 14.13 13.55 24.62 39.81

36.9 55 0.1 0.09 2.55 6.25 18.16 17.38 30.1 25.47

44.5 45 0.64 0.08 0.89 7.87 24.58 21.61 31.03 13.94

28 -30 2.82 0.09 2.35 5.9 10.45 10.2 20.53 50.48

Validation Data Set

40.4 30 0.21 0.04 2.37 8.76 16.53 14.72 24.34 33.24

35.4 20 0.68 0.02 0.71 4.78 15.94 16.93 29.98 31.64

31 0 1.62 0.04 2.73 6.73 12.9 11.18 19.22 47.2
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Testing Data Set

26.5 25.2 0.13 0 0 1 6.3 22.7 31 39

33.1 50 0.08 0.02 0.55 4.32 18.61 13.4 37.9 25.2

28 -35 2.85 0.04 2.75 5 10.68 12.43 19.95 49.15

Case Study 2: Prediction of Diesel Pour Point

Training Data Set

38.8 -30 1.1 5.00

30.8 -45 2.43 10.00

23 60 1.12 20.00

21.8 -35 3.34 5.00

46.2 -30 0.6 20.00

44.8 40 0.06 20.00

35.3 95 0.07 40.00

47.6 0 0.023 5.00

21.1 54 0.21 5.75

32.5 -5 1.68 10.00

36.3 34 0.08 8.60

31.4 -5 2.56 15.00

33.9 5 1.44 10.00

42.1 -10 0.028 25.00

39.3 -30 0.81 20.00

33.9 -15 2.03 20.00

41.3 5 1.37 20.00

35.2 75 0.105 65.00

27.2 20 2.03 40.00

34.8 -10 0.97 5.00

31.3 90 0.08 16.00

38 -15 0.49 5.00

33.5 -25 1.41 15.00

36.2 -20 1.95 16.00

36.2 35 0.07 16.00

33.3 0 1.95 5.00

38.9 -45 1.79 10.00

36.9 55 0.1 25.00

44.5 45 0.64 15.00

28 -30 2.82 10.00
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Validation Data Set

40.4 30 0.21 15

35.4 20 0.68 15

31 0 1.62 10

Training Data Set

26.5 25.2 0.13 25

33.1 50 0.08 35

28 -35 2.85 20

Case Study 3: Prediction of Hydrocracker Total Gasoline Yield

Training Data Set

6.4

;"' JtlpEjE" !4".-—: •"sl.-li^"-- •••J'Si.S

••IIkot jffi^
&y*:s

•m\Mv j||p •i'tW^MWl

i lirfimHEl • •., ^^lffikSfi'^"Efl*ffi
10.40 3700 40.10

18.0 10.70 3650 93.60

18.0 10.70 3380 112.40

18.0 10.70 3350 104.10

22.2 11.22 2950 113.60

18.5 10.60 2715 110.00

20.4 10.94 2690 108.90

29.7 11.20 2570 115.60

17.0 11.50 2543 116.40

28.9 11.35 2500 107.40

21.9 10.70 2460 101.60

21.2 11.77 2437 110.30

20.3 11.37 2430 112.40

22.5 11.40 2425 36.40

25.8 11.30 2400 110.80

23.4 10.83 2400 12.40

23.3 11.00 2380 93.20

25.8 11.23 2320 63.40

22.3 11.75 2310 105.30

21.9 10.70 2267 104.10

23.2 10.80 2240 101.00

22.8 11.75 2180 100.70

24.2 11.00 2160 104.40

22.3 11.75 2150 110.80
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29.0 11.33 2150 108.90

22.3 11.85 2150 110.80

24.1 11.10 2143 91.90

24.0 11.00 2130 92.20

20.3 11.37 2110 50.90

25.4 11.30 2100 109.10

29.6 11.50 2100 96.30

29.8 11.35 2100 93.20

21.4 11.30 2100 52.00

21.4 10.97 2090 87.70

22.6 11.45 2090 109.60

27.8 11.30 2050 104.30

24.1 11.10 2036 102.10

18.8 11.40 2020 23.40

19.2 11.45 2020 39.70

27.6 11.30 1950 104.90

20.3 11.37 1950 52.40

24.0 11.00 1950 103.20

22.3 11.74 1930 37.20

19.7 11.80 1920 36.30

25.8 12.08 1900 107.60

29.6 11.50 1900 99.70

17.7 10.45 1900 69.00

25.8 12.10 1900 107.60

23.3 12.70 1900 67.90

32.8 11.67 1876 96.90

21.2 11.77 1833 51.40

30.1 11.66 1820 99.80

... 27.4 11.68 1815 108.40

27.1 11.25 1800 71.00

27.1 11.25 1800 71.00

32.2 11.80 1800 107.90

23.3 12.70 1800 60.50

19.7 11.80 1780 23.40

21.2 11.77 1769 42.10

27.3 11.85 1760 59.10

20.3 11.37 1750 64.10

29.7 11.28 1730 102.20

21.2 11.77 1705 26.00

30.1 11.66 1700 103.10

22.4 11.93 1675 16.70

22.3 11.75 1660 45.20

18.8 11.40 1648 23.30

29.2 11.25 1640 85.50

31.8 12.16 1640 106.00

22.3 11.85 1630 46.10
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22.3 11.75 1600 39.50

23.3 12.70 1600 23.10

27.5 11.45 1581 105.90

25.8 11.65 1580 32.00

22.4 11.93 1550 10.50

21.2 11.77 1541 44.10

27.3 11.85 1530 23.40

32.8 11.69 1526 101.20

37.0 11.86 1500 93.90

20.0 11.30 1500 17.80

28.7 11.75 1500 69.00

22.3 11.75 1480 31.10

22.3 11.75 1450 23.00

32.2 11.80 1410 55.90

22.3 11.74 1400 27.30

27.1 11.25 1400 50.00

29.7 11.28 1390 78.80

21.8 11.85 1350 13.30

22.3 11.85 1350 25.40

29.5 11.12 1340 100.50

28.6 11.30 1840 100.10

19.2 10.85 2380 107.30

22.2 11.20 1760 55.00

Additional Training Data (Missing values substituted with average of variables)

17.1 11.50 2705 111.10

21.4 11.50 2410 107.90

22.8 11.50 2410 111.40

22.8 11.50 2370 111.10

19.2 11.50 2305 110.50

22.8 11.50 2250 103.30

22.8 11.50 2225 109.50

22.8 11.50 2165 110.40

23.0 11.50 2160 114.90

5.8 11.50 2105 23.12

26.8 11.50 2090 106.70

28.2 11.50 2070 107.00

24.2 11.50 2060 104.40

19.7 11.50 2000 38.20

25.5 11.50 1790 105.30

21.1 11.50 1650 26.90

27.6 11.50 1550 108.00

5.8 11.50 1530 13.81
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29.2 11.50 1520 104.20

19.3 11.50 1500 12.70

20.8 11.50 1490 27.20

28.6 11.50 1360 36.70

5.8 11.50 1335 10.36

27.6 11.50 1310 60.50

28.1 11.50 1300 8.80

29.2 11.50 1990 26.80

29.7 11.44 1990 104.30

8.4 10.70 1990 40.60

19.2 11.50 1990 107.30

30.1 11.42 1990 104.40

28.6 12.33 1990 22.30

31.1 11.47 1990 105.70

30.7 11.42 1990 105.80

29.7 11.44 1990 103.00

34.8 11.62 1990 98.00

21.7 11.85 1990 2.40

18.6 10.50 1990 109.90

25.5 11.50 2170 113.00

23.0 11.50 2260 104.00

23.3 11.50 2250 102.00

23.0 11.50 220 100.00

22.8 11.50 2170 110.40

25.5 11.50 1790 105.30

26.8 11.50 1565 104.70

33.2 11.50 2020 108.00

29.3 11.50 1600 60.90

29.3 11.50 1600 60.10

17.7 11.50 2050 33.75

20.4 11.50 1100 12.70

22.8 11.50 1050 7.50

22.7 11.50 1860 23.90

22.7 11.50 1550 17.30

8.4 11.50 2500 40.60

25.8 11.50 2050 104.60

23.2 11.50 1950 108.20

38.8 11.50 1250 96.40

26.9 11.50 1900 80.20

26.9 11.50 1950 74.80

26.9 11.50 1760 49.88

23.4 11.50 2250 107.10

23.4 11.50 2300 99.80

23.4 11.50 1500 44.90

23.4 11.50 1550 49.50

19.5 11.50 2008 112.10
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19.5 11.50 2847 103.50

20.3 11.50 1954 40.80

20.3 11.50 1989 48.20

20.3 11.50 1774 35.40

20.3 11.50 1813 46.60

Validation Data

UlTStTwUuiLUll

' 49.522.5 11.40

25.8 11.23 2400 110.8

25.9 10.96 2240 94.7

27.9 11.15 2130 101.2

29.3 11.95 2080 51.8

23.3 12.70 1950 106.9

22.4 11.93 1890 30.2

29.6 11.50 1800 100.5

32.8 11.69 1701 99.4

29.4 11.69 1630 102.1

Testing Data

19.0 11.08 3200 115.7

21.2 11.77 2590 108.7

19.0 11.10 2440 48.9

20.0 11.30 2400 109.5

23.3 11.00 2310 105.3

26.5 11.44 2213 109.9

27.8 11.28 2150 108.0

22.6 11.85 2120 112.3

27.1 11.25 2100 113.0

27.6 11.85 2070 113.3

22.3 11.75 2000 110.60

22.3 11.85 1930 37.20

26.4 11.59 1900 43.80

17.0 11.50 1876 36.40

32.4 11.65 1800 102.00

20.0 11.30 1800 20.30

32.2 11.80 1750 31.60

24.3 11.83 1700 50.30

21.1 11.80 1640 48.60
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29.2 11.25 1620 87.00

29.2 11.25 1570 86.50

29.7 11.28 1510 88.80

22.3 11.74 1450 23.00

22.3 11.75 1400 27.30

29.8 11.35 1300 68.00
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APPENDIX IV: MULTIVARIATE ANALYSIS RESULTS

Input Element Correlated With r2 value

Pour point 0.0049

Sulfur Content 0.2089

BS&W 0.0492

Salt content 0.0104

API gravity RVP 0.0578

TAN 0.1056

Viscosity at 100°F 0.4273

Viscosity at 122°F 0.4500

Sulfur Content 0.1330

BS&W 0.0355

Salt content 0.0001

Pour point
RVP

TAN

0.0827

0.0136

Viscosityat 100°F 0.0272

Viscosityat 122°F 0.0467

BS&W 0.0002

Salt content 0.0074

RVP 0.2117

Sulfur Content TAN 0.0010

Viscosity at 100°F 0.2792

Viscosityat 122°F 0.3921

Salt content 0.3881

RVP 0.0210

BS&W
TAN

Viscosity at 100°F
0.0325

0.0015

Viscosity at 122°F 0.0018

RVP 0.0841

TAN 0.3404

Salt Content Viscosityat 100°F 0.2181

Viscosityat 122°F 0.2457

TAN 0.0124

RVP
Viscosity at 100°F
Viscosity at 122°F

0.0484

0.1489

Viscosity at 100°F 0.0509

TAN Viscosity at 122°F 0.1144

Viscosity at 100°F
Viscosity at 122°F 0.8617
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APPENDIX V: SAMPLE MATLAB CODING

Coding for no early stopping

% Preprocess dam so thai ai! values falls between -1 to J
[pn, minp, maxp, tn, mint, maxt] = premnmx (p,t);

% Create network

net=newff(minmax(pn), [5 5 7],{'tansig','tansig','purelin'},'trainlm');

% Initialise weights and biases to zero
net=init(net);

% Set maximum number of epochs and error goal
net.trainParam.show=100;
net.trainParam.epochs=1000;
net.trainParam.goal=le-5;
net.trainParam.mu=l;

% Train the network

[net,tr]=train(net,pn, tn);

% Plot error as a function of epoch
plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)
legend('Training', 'Validation','Test',-1);
ylabeI('SquaredError');xlabel('Epoch')

%Simulate the trained network using training data set
an = sim(net,pn);
a = postmnmx (an, mint, maxt);
MSE(tn-an)
MSE(t-a)

% Simulate network using testing data set
testPn = tramnmx(testP, minp, maxp);
testTn = tramnmx(testT,mint, maxt);
a_testn = sim(net, testPn);
a_test = postmnmx(a_testn, mint, maxt);
MSE(testTn-a_tesui)
MSE(testT-aJest)

Coding for early stopping
% Preprocess data so that ail values falls between -1 to 1
[pn, minp, maxp, tn, mint, maxt] = premnmx(p,t);
valPn = tramnmx(valP, minp, maxp);
valTn = tramnmx(vaIT,mint, maxt);
val.P = valPn;
val.T = valTn;
testPn = tramnmx(testP, minp, maxp);
testTn = tramnmx(testT,mint, maxt);
test.P = testPn;
testT = testTn;

% Create network

net=newff([minmax(pn)],[5 5 7],{'tansig', 'tansig', 'purelin'},'trainlm');

% Initialise weights and biases to zero
net=init(net);

% Set maximum epoch and error goal
net.trainParam.show=100;
net.trainParam.epochs= 1000;
net.trainParam.goal=le-5;
net.trainParam.mu = 1;
net.trainParam.mudec = 0.8;
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net.trainParam.mu_inc= 1.5;
net.trainParam.max_fail = 100;
net.trainParam.min_grad = 0;

% Train the network

[net,tr]=train(net,pn,tn,[ ],[ ],val, test);

%Plotgraph of training,validation and testing mean squarederror
plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)
legend('Training', 'Validation',Test',-1);
ylabel('SquaredError');xlabel('Epoch')

% Simulate trained network using training data
an=sim(net,pn);
a = postmnmx (an, mint, maxt);
MSE(tn-an)
MSE(t-a)

%Simulate network using validation data
a_valn = sim(net, valPn);
a_val = postmnmx (a_valn, mint, maxt);
MSE(valTn-a_valn)
MSE(valT-a_val)

%Simulate network using testing data
a_testn = sim(net, testPn);
a_test = postmnmx(a_testn, mint, maxt);
MSE(testTn-aJestn)
MSE(testT-aJest)

%£ave network output in Excel format
A=[a_test', testT'];
save results.dat A -ascii
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APPENDIX VI: DETAIL RESULTS

Case Study 1: Actual versus Predicted Yield

•- ".•.:, . .- ''lV<i..L).iuil -:••&> ..•}*.•* ..*«!.
-•-••=•-•

£ : i*W
••"* ;•- •••'.<*

Actual.tf:

'•^S'iiiulJiflifc*
r*i>Ni.,"iifriJrK>*,:i

'-*':if*i"JE.TV- -, «4£ •*"•"• *-" ' *•'• *•" H*"
.•t-Hivdit'iiun-. JJliidnidaiiw^I-'rediciion-

FG 0.00 0.08 0.08 0.79 0.79

LPG 0.00 0.95 0.95 -0.11 -0.11

LN 1.00 3.54 2.54 4.31 3.31

HN 6.30 8.99 2.69 11.67 5.37

Kerosene 22.70 13.72 -8.98 12.00 -10.70

Diesel 31.00 21.75 -9.25 21.78 -9.22

Reduced Crude 39.00 53.00 14.00 45.35 6.35

I'rftiuct 'V:'-: "•':"~^J-'

* "-:i' -A\Mu:il '••'

' Tl.si Diiu2--,:.-../-, X.

^'•Sciwork.

r.ri'u; • i-^-'.^fif*:--. =;*£::.Krrnr ..
.{Prytiicjiiui- '̂ 'Individual;*.- (Pivdicuun-;
*"V:'riil): • :- Nuiiuirk-'1- • Actual

FG 0.02 0.06 0.04 0.59 0.57

LPG 0.55 1.49 0.94 1.64 1.09

LN 4.32 5.87 1.55 13.16 8.84

HN 18.61 14.98 -3.63 14.62 -3.99

Kerosene 13.40 16.41 3.01 14.87 1.47

Diesel 37.9 24.53 -13.37 27.65 -10.25

Reduced Crude 25.2 37.72 12.52 35.53 10.33

: .!• • Iom Diiia'. .•*•••— ?.. • :£sj .:..., .... .

' PruJiK-i; = r-••/:••• »••»•-•

'•'i7Ac:;iiir
Single

••'•\L''ivCoVk'-'

•1 ITlir-O: a.

(PrcuicLioiiT.

Acu-ulT..

^^l'ndi\iiJu:il.^.JiPivdic.iion-
.Network :• Acliiiill -

FG 0.04 0.13 0.09 0.08 0.04

LPG 2.75 1.84 -0.91 2.37 -0.38

LN 5.00 5.59 0.59 6.18 1.18

HN 10.68 10.25 -0.43 10.74 0.06

Kerosene 12.43 10.05 -2.38 9.62 -2.81

Diesel 19.95 21.19 1.24 22.65 2.70

Reduced Crude 49.15 51.61 2.46 54.03 4.88

Case Study 2: Actual versus Predicted Pour Point

\cliul l'redicu'd Dcviminn

25 20.1 -4.9

35 29.3 -5.7

20 13.0 -7.0
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Case Study 3: Actual versus Predicted Total Gasoline Yield

• i-"

'•"-.Qriuit aJiJatii^itjv i*J •Added-- IXiui'vlHlL'Mihsiim-.VuluJs

^PrcdiciodiS^DcviSiiti??-'£:• Predicted-** ./I.Deviation -.;

Pin S i

108.7 144.9 36.2 81.4 -27.30

48.9 109.1 60.2 95.6 46.70

109.5 114.6 5.1 99.5 -10.00

105.3 87.7 -17.6 95.7 -9.60

109.9 100.2 -9.7 98.5 -11.40

108.0 97.2 -10.8 96.5 -11.50

112.3 111.4 -0.9 104.0 -8.30

113.0 96.9 -16.1 96.5 -16.50

113.3 121.3 8.0 105.0 -8.30

110.6 62.7 -47.9 48.5 -62.10

37.2 39.9 2.7 26.5 -10.70

43.8 95.6 51.8 95.5 51.70

36.4 28.6 -7.8 30.7 -5.70

102.0 99.7 -2.3 100.0 -2.00

20.3 37.7 17.4 42.2 21.90

31.6 102.6 71.0 107.0 75.40

50.3 32.1 -18.2 29.2 -21.10

48.6 30.3 -18.3 25.8 -22.80

87.0 97.3 10.3 79.4 -7.60

86.5 96.6 10.1 82.5 -4.00

88.8 95.5 6.7 88.0 -0.80

23.0 30.2 7.2 28.0 5.00

27.3 30.2 2.9 27.8 0.50

68.0 67.8 -0.2 65.0 -3.00
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