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ABSTRACT

The nearly omnipresence ofthe Internet and the steady increase ofwireless computing

and mobile devices require highly dynamic adaptable distributed system architectures.

Building such architectures needs a combination ofkey concepts from component

technology and distributed systems. Mobile agents provide this combination. We use

mobile agents as the building blocks ofacomponent-based system for remote supervision

and control of both hard- and software in a distributed environment. In this paper we

concentrate on the configuration ofindividual components and component relationships

in our system. We identify requirements for remote configuration ofagent-based

component systems and discuss architectural and user interface related issues ofour

approaches. We use acode-on-demand approach for supporting elaborate user interfaces.
We use a generative approach based on enhanced meta-information for reducing

development effort. The presented approaches are applicable for remote configuration of

component-based systems in general and consider additional requirements imposed

through the use of mobile agenttechnology.
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1. INTRODUCTION

1.1 BACKGROUND OF STUDIES

Distributed software architectures are currently increasingly influenced by two major

technological movements—the Internet and pervasive computing (including wireless and

mobile systems). In the last years, the Internet has mainly been used as the technological
basis for creating the Web, a global hypertext and hypermedia network, enriched with

simple interactive (HTML-based) services, like search engines, electronic shops, and
electronic auctions. Currently, the Internet and its protocols are more and more becoming

the infrastructural backbone for arbitrary services and systems. Nearly every distributed

application is required to work in an Internet context or is based on standardized Internet

protocols.

The Internet is also changing application deployment and maintenance. Internet-based

deployment comprises not only the transfer and installation ofsoftware, but all activities
from installation until deinstallation and removal of a software system at a consumer's

site [1]. This includes tasks like remote activation, deactivation, configuration,
reconfiguration, addition, removal, and update of software. All these activities are not
only performed for whole applications but also for individual components, and
sometimes even at run-time. The result is the need for highly flexible and adaptable

software architectures as well as the need for remote configuration and management

tools.

The second major technological movement is wireless and mobile computing, which
makes further demands on distributed software architectures. Examples are adaptation to

different environmental conditions, dynamic service discovery, scalability, robustness

and security [2]. Remote configuration tasks may be performed using a whole range of
potentially different end-user devices with dedicated user interfaces.

Many of the challenges stated above are addressed by component technology [3][4].
Component models [5] provide standards for component customization, communication,
evolution and composition. Components are the basis for adaptable software



architectures. Mobile agent technology has similar characteristics as component

technology [6]. Nearly all distinguishing features of component systems that are
standardized in general component models are equally important in mobile agent

systems. However, mobile agent technology additionally emphasizes support for
distribution, heterogeneity, adaptation to different environments, code mobility, and

spontaneous computing. These features are especially important for the application
domains outlined above. In fact, mobile agent platforms may be viewed as powerful and

flexible component environments.

We use mobile agent technology as the basis for a flexible component system for remote

diagnosis and monitoring ofhard- and software resources in heterogeneous distributed
environments. Currently the main usage areas are process automation systems though the

system is not limited to this domain. Amain characteristic of our system is its highly
dynamic structure. Diagnosis and monitoring components may move within the network
to their intended place ofaction, which is the hard- or software resource to be monitored
or analyzed. This requires support for code mobility. Other features that are needed and
supported by our system are dynamic service discovery, dynamic services, native-code
management, multi-protocol remote access ofvarious types ofcomponents, robustness,

and security.

A main feature of our system, which is also the topic of this paper, is remote

configuration and management of monitoring and diagnosis components over Internet
connections. Since the components of our system are mobile agents, we will use the

terms component and agent interchangeably in the remainder of this paper. We have
experimented with a number ofapproaches for remote configuration ofindividual agents
and ofsystem properties like agent relationships. While most ofthe explored techniques
apply to remote configuration of components in general, some are specific to the
characteristics of mobile agent systems.



1.2 PROBLEM STATEMENT

1.2.1 PROBLEM IDENTIFICATION

I. Difficulties to change or setup firewall when user does not around (in front of
computer). Usually, if users want setup a firewall they need to be in front oftheir

computer. This can bring difficulties for users who travel a lot and do not around

(in front oftheir computer) to change their firewall configuration.

2. Traditional way does not offerflexibility. Nowadays, users setup their firewall by

using the traditional ways. This technique do not offer a flexibility for users who

travels and does not around (in front of their computer) to setup their firewall

because they need to be in front of their computer. This also caused the user to

lost their times.

1.2.2 SIGNIFICANT OF THE PROJECT

Based on the problems statements, it isvery effective to change the way ofdoing the

firewall configurations by replacing the currently used chores with more advance

approach. Mobile agent technology is considered as new to Malaysia even most ofthe

developing countries are making use of it and gain advantages upon this.

As mentioned above, the limitation of old technique is mostly focus on range.

Therefore by using mobile agents it can offer an efficient way simultaneously can

eliminate the problems.



1.3 OBJECTIVE AND SCOPE OF STUDIES

1.3.1 OBJECTIVE

1. To use mobile agents as the basisfor aflexible component system. The main

objective ofthe project is to make mobile agents as the basis for a flexible

component system. With this system, itcan help user to setup their firewall

anywhere simultaneously eliminate the difficulties they face before.

2. Replace manual system with the new technologyfor more effectiveness. Second
objective ofthe project is to replace manual system with the new technology for

more effectiveness. With thisnewtechnology, it canhelp users who travels a lot

to do theirtaskwith more efficient and help them to save theirtimebecause they

do not have to be in front of theircomputer to setup their firewall.

1.3.2 SCOPE OF STUDIES

1. Develop a mobile agentsfor configure afirewall. Inthis project, mobile agents

will be createdas a new solutionfor user who travels a lot to configure their

firewall ina wide range (using mobile). The project will be creating by using

JAVA MOBILE AGENTS WITH AGLET for the mobile agents and LINUX for

the database (host). With this system, it can help to simplicity user and implement

new technology in a day life.

2. Tofacilitate user that travels to manyplaces. With this new system, itcan help
to facilitate travelers/users in current life. Travelers willnot find any difficulties

to setup their firewall iftheir using this system because the configuration will be
done by mobile agents and it is very easy to carry out with them while they are

working.

3. To replace old system with anew technologyfor more effectiveness. This

project will replace the old system because itis more effective and efficient to be
used. It also can save users/travelers time when theyareworking outstation and

need to setup/configure their firewall.



1.3.3 FEASIBILITY OF THE PROJECT

The product ofthis project is aDynamic Firewall Configuration Using Mobile
Agents prototype. The prototype applies technical requirement that is obtain from
the research. Feasibility ofthe project isdepending on time and tools available.

The scope ofproject seems to be feasible for author to complete on time.
However, there are some mobile agents' features needs tobe implemented.



2. LITERATURE REVIEW AND THEORY

2.1 INTRODUCTION

2.1.1 Entry into the Mobile Agents world

To view the internet as one single computer and make use ofits immense potential has

been a dream for many. Sharing the computing power and, most important, distributing

services is one of theprime goals in network computing.

Whenever someone wants a service that goes beyond the bounds ofone single computer

(e.g. agame), there is one client, which requests aservice, and one server, which fulfills
the service (client-server paradigm). In traditional network computing, both server and

client are static, i.e. bothapplicants remain ontheirrespective computer.

In the world ofmobile agents, there isno need for that. The client would become an

agent who can execute wherever she needs to, performing tasks on behalfofthe user; the
server may remain static (this is certainly required ifthe servers task require special
hardware or the servers' carrier is not willing to give his code away) or also become a

mobile agent, akind oftraveling salesman selling his services at the door ofher

customers. More than that, in that paradigm static services could become redundant and

fault-tolerant inaneasier manner, when agents justmove ontonext host providing the

same service if one fails to work.

20% Load

Mobile Agent Programs roaming the Net

40% Load



So what are Mobile Agents? Mobile agents are objects (data and code) that can move

over anetwork without prior need to install its code - only a generic Host is needed to

execute the agents. This Host usually provides aunified interface to the services

available on the computer it isrunning on, as well as an interface tothe other agents

currently residing.

This service interface becomes more interesting when looked at in not-commonly-used

terms. The internet as-is is aplace where only commonly used services like web, mail,

ssh, and the like are widely understood - and used. Not only is integrating anew service
on server side quite an act - introducing the user to yet another kind ofprotocol is the
main difficulty. With the service interface ofaHost, services provided are accessed in a

unifiedmanner, thus easingthe act of introducing new ones.

For the client, accessing those services becomes easier: Once the user has got used to

employing agents, new tasks are explored by the use ofnew agents, or better sometimes,
thru the use ofdifferent options with an already well-known agent. Mobile agents can act

in a semi-intelligent manner, thus relieving the user from monitoring and operating the

tasks.

2.1.2 Understanding Firewalls

These days, firewalls are on the rise as everyone tries to protect their networks to the
utmost, blocking and masquerading to the extreme, impeding everything but what is

explicitly allowed for the people behind the firewall. The internet is no longer the free,
everyone-connects-everyone place that it used to be.

Firewalls accomplish three tasks: Port blocking, masquerading and analyzing.

The first one, port blocking, isnot entirely correct to be named as such. Actually, it is the

network components ofthe underlying operating system which open or close network

ports.



To understand this issue, suppose someone wants to offer a service ona computer. This

computer has one address, e.g. "computer.com", butmany services onit,which must

somehow be identified. To solve this problem, every service has a permanent port

number between 0 and 65535 on this computer. Thisportnumber is usually well known

(e.g. 80 for http, 25 for telnet, and so on) and must at least beknown to the client that

whishes to use this service (who would then e.g. use telnet by addressing

"computer.com:25").

Blocking firewall computers usually block allports for incoming traffic and most ports

for outgoing traffic (in extreme cases everything but 80 so that the people can access the

web, but nothing more). Most configurations block all incoming ports but leta wide

range ofoutgoing ports open - this way, no one can attack the services behind the

firewall, at the same time giving thepeople behind the firewall full access to the internet.

The problem arises when two people that are both fire walled byport blocking tryto

communicate: Neither of them can connectto the other; the only possibilityto establish

contactis to use a commonserverthat acts as a "relay" or "meetingpoint" for the

participants. Which, if the server ceases to work orbegins spying on its users, isavery

unconvenient approach?

Meeting at an intermediate Relay Server

The second issue ismasquerading. Suppose one company computers are allconnected to

the internet by wayof onefirewall computer. When one of these computers opens a

connection to the internet, this firewall computer replaces theoriginators address with its

own. This way, all connections seem to come from the firewall computer. This is called

masquerading. It is quite obvious that nobody can connect to a computer behind the

firewall as even outgoing connections do net reveal the address of the sender.
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All Computerswear the Mask of the Firewall in the Internet

Third, analyzing is a process onthe firewall computer in which allTCP/IP streams are

analyzed for possible attack patterns. While this is avery interesting field ofresearch, it

has no effect on this thesis whatsoever.

The major problem that average users face isthe inability tobe contacted from the

outside because they are port blocked ormasqueraded. For a mobile agent environment,

where agents should be able to transfer freely between any hosts, this situation is fatal.

Throughout this thesis, it will be assumed that hosts are troubled by this obstacle.

AUTHOR="Xiaotao Wu and Henning Schulzrinne",

777X£-'Location-based Services in {Internet} Telephony Systems",

BOOKTITLE="mEE Consumer Communications and Networking Conference",

MONTH=]m,

YEAR-=2005,

LANGUAGE="Eng\ish",

ABSTRACT="Mmy applications used in the Internet today benefit from using location

information. To better handle location information in Internet telephony applications, we

did a comprehensive application-layer analysis of location information and location-

based communication services. We first summarize and categorize end-user-oriented

location description and location detection approaches. We then summarize and

categorize how to use location information to provide communication services and
introduce several interesting location based communication services. Based on the
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analysis, we have incorporated location-based service handling in our Session Initiation

Protocol (SIP) based Internet telephony infrastructure and our Language for End System

Services (LESS).",

URL="http://www.cs.columbia.edll/~xiaotaow/rer/Research/Paper/ccnc2004.pdf,,

AUTHOR="Ron Shacham and Henning Schulzrinne andSrisakul Thakolsri and

Wolfgang Kellerer",

TITLE-'Tbs Virtual Device: Expanding Wireless Communication Services through

Service Discovery and Session Mobility",
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ADDRESS="New York, NY",

NUMBER="CXJCS-001-05",
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YEAR=2005,
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KEYWORDS="lntemet multimedia; mobile communications; ubiquitous computing,

location-based services",

ABSTRACT="We present a location-based, ubiquitous service architecture, based on the

Session Initiation Protocol (SIP) and a service discovery protocol that enables users to

enhance the multimedia communications services available on their mobile devices by

discovering other local devices, and including them in their active sessions, creating a

virtual device. We have implemented our concept based on Columbia University

multimedia environment andwe showits feasibility by a performance analysis.",

URL-"http://wwwl.cs.columbia.edu/~library/TR-repository/reports/reports-2005/cucs-

001-05.pdf",
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3. METHODOLOGY/PROJECT WORK

3.1 PROCEDURE IDENTIFICATION

1. Requirement analysis and definition

The system's services, constraints and goals are established by consultation with

system users. They are then defined in detail and serve as a system specification.

2. System and software design

The systems design process partitions the requirement to either hardware or

software systems. It establishes overall system architecture. Software design

involves identifying and describing the fundamental software system abstractions

and their relationships.

3. Implementation and unit testing

During this stage, the software design is realized asa setofprograms or program

units. Unit testing involves verifying that each unit meets its specification.

4. Integration and system testing

The individual program units or programs are integrated and tested as a

complete system to ensure that the software requirements have been met. After

testing, the software system is delivered to the customer.

5. Operation and maintenance

Normally this is the longest life-cycle phase. The system is installed andput into

practical use. Maintenance involves correcting errors which were not discovered
in earlier stages ofthe life cycle, improving the implementation ofthe system units

and enhancing the system's services asnew requirements are discovered.

13
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Figure 3.1: The Waterfall Model
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3.2 TOOL REQUIRED

3.2.1 SOFTWARE

3.2.1.1 PROGRAMMING AND CODING

• JAVA MOBILE AGENTS WITH AGLET

3.2.1.2 WEB SERVER

• Linux

3.2.1.3 BROWSER

• Mozilla

• Internet Explorer

3.2.1.4 DOCUMENTATION AND PRESENTATION

• Microsoft Word

• Power Point

• Microsoft Project

3.2.2 HARDWARE

• Operating System : Linux

• Processor : Intel Pentium 4,2.27 GHz

• Memory : 512 MB of RAM

• Display : G Force MX 400

• DisplayMode : 1024x 768 (16 bit) (60 Hz)

• Network : Internet TCP/IP Connection

• Input: Mouse and Keyboard

• Hard Disk requirement :50 MB

15



4. RESULT AND DISCUSSION

4.1 CONFIGURATION REQUIREMENT

Inorder to discuss typical requirements and approaches for configuring components and

mobile agents, first need to bepresent different variants ofsystem structures for remote

configuration over the Internet. Initssimplest form—depicted in Figure 1—the host for

remote configuration is directly connected to a host where thecomponents to be

configured are installed andpossibly activated.

Internet

Administration Site Target Site

Fig 1:A simple system structure for remote configuration

We call the locationwhere remote configuration tasks are performedby human operators

the administration site. The administration site may be only one host or a networkof

hosts, which may allbeused for configuration purposes. The location where thesoftware

is installed and running is called the target site. If thecomponents to be configured are

implementing the middle-tier ofa three-tier application model, the target site might be a

single computer with the application server hosting these components as shown inFigure

1.

Atypical agent-based system, however, is a distributed system where thecomponents to

beconfigured are distributed to a number of hosts at the target site (Tl, T2,...) as

depicted inFigure 2. Configuration may be performed from different hosts atthe

administration site (Al, A2,...), also shown in Figure 2.

16



Internet

Administration Site Target Site

Fig 2: Configuring a distributed system from multiple hosts

Usually company networks are guarded by firewalls and not every host at the

administration site may directly access the Internet. Likewise only selected hosts atthe

target site are visible to the Internet. Communication has to be routed through proxies (P)
at the administration site and through dedicated entry points atthe target site as depicted

inFigure 3. In addition, the host acting as proxy inFigure 3may also serve as

administration server (AS) for centralized management ofconfiguration tools and

component repositories.

Internet

Administration Site Target Site

A1
Tl

/
P.
AS

12 \ 1

K2
T3

Fig 3: System structure with firewalls in mind

The presented system structures for remote configuration serve as the basis for the

description ofrequirements on remote configuration systems in general and on our

system in particular. Important requirements are:

a. Dynamic configuration ofindividual mobile agents and ofthe system structure.

We need to support the configuration ofboth individual mobile agents and

general system properties and structure. System structure is defined through agent
communication relationships. Parts ofthe structure may bedefined through rather

17



fixed relationships that can be changed manually. For example, our system allows

the configuration ofpublish/subscriber relationships between agents. General

system properties may be changed by configuring special agents that are

responsible for distributing the information within the target site (see Section 4).

Dynamic configuration refers to the ability toconfigure the system while it is up

and running. This requires a highly dynamic system architecture which allows

adding and removing components atrun-time - a natural feature ofany agent-

based system. However, it also requires special protocols to change the properties

ofindividual agents. Mobile agents are active objects encapsulating their own

thread ofcontrol. It is not possible tochange a certain property at any time and

sometimes it isnot possible tochange anagent's properties at all. This has to be

taken into account when designing protocols for updating agent state at run-time.

b. Minimal administration ofconfiguration tools atadministration site: This

requirement refers to the administrative effort that is involved inmanaging the

configuration tools and repositories atthe administration site. Changes orupdates

ofthe tools itself should require no oronly minimal activities at the configuration

hosts (see Al, A2,... inFigure 3). Pre-installing the configuration tools ateach

configuration host is not desirable. Centralized configuration can be achieved by

loading the tools on demand from a central administration server (see AS in

Figure 3). This requires adedicated run-time environment at each host. In the

ideal case suchan environment is a standard equipment of the clienthost, like

web browsers, which are able to host HTML-based userinterfaces. If HTML-

based user interfaces are notpowerful enough, additional environments for

hosting user interfaces based on other technologies have to preinstalled ateach

configuration host. Examples are the Java Plug-In [8] and Java Web Start [9]

technologies for Java-based user interfaces. This is still preferable to installing the

application at each host, since update and other changes ofthe configuration tools

require no management activity at the client hosts.

c. Supportfor different types ofconfiguration clients; The rise ofmobile and
wireless computing is leading to alarge number ofdifferent end-user devices with
different display sizes and capabilities. The system structure at the administration

18



site—as depicted inFigure 3—is also appropriate for supporting different kinds of

configuration clients (Al,A2,... in the figure). An administration server (AS)

could provide different user interfaces depending on the end-user device used for
configuration. For example, itmight provide WML-pages for a WAP-enabled

device [10].

d. Loose coupling oftools at administration site and ofcomponents attarget site:

Certain implementation decisions might lead to atight coupling ofthe tools at the

administration site and ofthe agents atthe target site. Tight coupling may bethe

result ofusing aplatform specific type system for configuration data, since this

presumes that agents and tools are based on the same platform. For example, if
configuration data is represented as Java objects both tools and agents need to be
Java-based. Platform independent data formats and type systems (e.g., based on

XML) are more flexible, since tools and target components may be implemented

in any language. However, such type systems may not be as expressive as

platform-specific ones, confining agent properties to simpler data types with no
associated behavior. Inthecase of agent-based systems one might betempted to

install an agent platform not only at the hosts ofthe target site but also at the hosts

of the administration site. However, this also leads to tight couplingof

administration site and target site since it assumes that the configuration tools are

only used for configuring agents ofaparticular agent platform. This rules out

systems like ours, where one administration site is used for configuring multiple
target sites with possibly different agent systems installed. We will present our

solution to this problem in Section 3.1. In addition, the notion ofmigrating an

agent to an administration host, changing its configuration and sending itback to
the target site is often not feasible. Two problems that come immediately into
mindare security and agentactivity. A firewall aware system structure as

depicted in Figure 3would need flexible agent platforms that allow control of
message routing. However, agent platforms usually support peer-to-peer

communication as depicted in Figure 2. Also, firewall settings at the configuration

site might not allow an agent entering the site at his will; most ofthe time even
callbacks are denied. Afurther problem is that anagent is anactive entity. It is

19



often not possible to stop an agent's activity just for changing some configuration

settings,

e. Evolution support: In dynamically adaptable systems components (mobile agents

inour case) are added, removed and replaced by newer versions over time.

Multiple versions ofthe same component may exist simultaneously in the system.

This is supported by mobile-agent systems, since features like code mobility

require flexible mechanisms for code management. Typically the agent system

provides separate name spaces for different agents and a code loader which makes
surethat the codeof different versions of the same agenttype can be loaded at the

same time [11]. From the configuration viewpoint we have to make sure that we

are able toconfigure anagent atany time during its life time. Even if some agent

code has been removed from the repository at theadministration site or if it has

long been replaced by newer versions there may still exist some instances ofolder
versions atthe target system, which need tobeconfigured. The most obvious

solution to this problem is to store the user interface code for configuring the

properties ofaparticular agent with the agent itselfat the target site. Ifthe agent

is to be configured, the user interface code is requested from the agent and sent to

thetools of theadministration site (code on demand [12]). Otherwise the user

interface code is integral part ofthe agent and is transferred along with agent state

and code when the agent isroaming the network atthe target site. However, the

solution ofstoring user interface code with the agent itself also has drawbacks. It

is a form oftight coupling ofthe target site with the tools atthe administration

site, since the user interface code needs a special execution environment at the

administration site. In addition, multiple different enduser devices for

configuration are not supported. Still itmay be useful for some kind ofremote
configuration systems and we will present a similar approach inSection 3.1. A

better solution isto store aplatform independent user interface description with

the agent. This allows device independent user interface generation atthe

administration site while maintaining the ability of configuring each agent inthe

system. Afurther enhancement is generating the user interface by analyzing the
agent itself. We present such an approach inSection 3.2.

20



f. Minimization ofuser interface development: Development ofuser interfaces for

remote configuration isa tedious task and component (agent) developers should

focus on developing theapplication logic instead of providing remote

configuration support. Inthe ideal case, no user interface needs to be developed at

all. One approach for supporting user interface development tasks is user interface

frameworks. Component developers just need to adapt general framework classes

providing generic functionality for setting new values, for reverting to old values

and for performing consistency checks. As stated above this approach not only

involves coding effort but also tightly couples configuration tools to the platform

of the user interface framework. Forexample, a Swing-based user interface

requires a Java runtime environment at the administration site. Abetter approach

is to generate the user interface from some kind ofUser Interface Specification

Language (UISL). This is platform independent but still the user interface has to

be specified. The most preferable approach is generating the user interface by

analyzing the agent itself. This approach is based on the availability ofmeta-data

about components, a distinct feature ofeach component-based system (see [5] for

the importance ofmeta-data). By using meta-data the user interface can be

generated automatically and involves no development effort at all. Meta-data is

usually extracted from component implementation and interfaces and is stored as

part ofthe component. However, meta-data provided by component platforms like

Java and .NET often lacks important information that isnecessary for generating

"well-formed" userinterfaces and forproviding sufficient validation of

component property values. In Section 3.2 we present an approach for

automatically generating user interfaces from enhanced agent meta-data.
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We have outlinedand discussed basic requirements and solutionsfor remote

configuration ofdynamic and adaptable component-based systems. Most ofthe presented

requirements are typical for remote configuration ofcomponent-based systems in

general. Some are imposed through the use ofmobile agent technology.

4.2 CONFIGURATION OF INDIVIDUAL AGENTS

Administration Site Internet Target Site

j^entand UI Code
Repositories

Agents are installed and configured from configuration clients at the administration site.
Upon installing an agent, its code, an initial configuration and its user interface code are
transferred to the target site. The user interface code is not directly stored as part ofthe

agent code. Instead, it is stored in a code repository at the target site. In principle, this
would allow to implement the user interface for configuration based on other technology

than the agent itself. In our system, however, both user interface and agent are

implemented in Java (AGLETS) and LINUX. An agent does not store its user interface
code directly but holds a unique ID that identifies the user interface code in the
repository. If a configuration request is issued from one of the clients at the
administration site, this ID is requested from the agent and used for identifying and

transferring the user interface code tothe configuration client.

Storing the user interface for configuring an agent in arepository at the target site ensures
that for each agent that has been installed at the target site a configuration user interface
can be found, no matter which administration site is used. Administration clients may
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even be placed within the target site since, from a logical perspective, the user interface

that is needed for configuring an agent is always with the agent. From a technical

perspective this solution enables code sharing. An installation tool might check whether
an appropriate user interface for anewly installed agent is already available at the target

site and assignits unique ID to the agent.

Storing the user interface code at the gateway server does not raise security problems, as
only properly authenticated users are allowed to install or change mobile agents at a
target system. Therefore the issue of malicious target sites tampering with the stored user

interface code can be omitted.

We should note that we have also experimented with implementing the user interfaces

themselves as agents and thus using agent mobility for transferring the user interface to
the configuration clients at the administration site. This proved not feasible for mainly
two reasons: (1) Configuring multiple target sites with different agent platforms is not
possible and (2) agent platforms are not adaptable to the underlying network

infrastructure.

First, we need to administrate multiple target sites based on different agent platforms

from one administration site. The user interface asagent would require an agent platform

at the configuration client. Since target sites can use different agent platforms, a client
would need multiple agent platforms for configuring agents from different target sites.
However, standardization would need to include the underlying execution platform (e.g.,

the Java platform). We have defined an Agent Platform Abstraction Layer (APAL)
specifying platform-independent abstractions for agent creation, disposal, communication
and migration. This allows at least platform independent implementation and
configuration of agents at the administration site and thus supports different agent
platforms at different target sites (We should note that the implementation is still
confined to Java-based agent platforms).

The second problem is concerns about network security based in firewalls. Corporate
networks are usually secured by (multiple layers of) firewalls. Agent platforms need to be
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adaptable in terms of message routing and protocols to operate in such environments.

However, typical agent systems are designed for operating in open environments based
on peer-to-peer connections between agent servers. An additional problem for agent

mobility is that accessing the administration site from the target site is prohibited by

firewall settings.

We have implemented an adaptable communication infrastructure, which is used for
sending agent properties from the configuration clients in Figure 4 to an agent at one of
the agent servers at the target site. Communication is routed through a proxy at the
administration server and through the host acting as entry point (gateway) at the target

site. Agent properties are not directly updated. Instead, the target agent first caches the
configuration data and updates its properties only if it reaches a consistent state.

Configuration data is encoded as Java objects. This might tightly couple user interface
and agent code and imply that configuration user interfaces need to be Java based.
However, this is not the case inour system. The target site can only be accessed through

the gateway host. Messages from external sources like configuration clients are routed
through an application server at the gateway host which converts the protocol to the

native protocol ofthe agent platform atthe target site.
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4.3 A GENERATIVE APPROACH FOR CONFIGURATION Uis
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Fig 5: Generic User Interfaces

The basic system structure is similar to the one presented in the previous section and is
shown in Figure 5. The figure also shows the main system components and the data

needed for user interface generation.

In our system, agents are implemented in Java. Therefore meta-data about agents, like
configurable properties, can be retrieved using introspection and reflection [16]. Meta
data and property values are transferred from an agent (A) to the UI-Model Generator as

shown in Figure 5. The UI-Model Generator automatically generates an XML-based User
Interface Specification (UIS) and transfers ittogether with the meta-data and property
values to a User Interface Generator that is located atthe administration server atthe

administration site. We call the package consisting ofUIS, meta-data about properties,

and property values Configuration Descriptor (see Figure 5). Property meta-data and
values are not represented as Java objects in the configuration descriptor, since this would
lead to atight coupling between the tools at the administration site and the components at
the target site (see requirement 2d). Instead, we convert the retrieved meta-data (property
names and types) as well as property values to aplatform independent representation

based on XML.

In principle, meta-data about property names and types is sufficient for automatically
generating the user interface. However, the meta-data extracted from agents lacks
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important information like units ofmeasurement and allowed ranges for property values.
This information isneeded for presenting and validating property values atthe user

interface. We enable an agent developer to provide such information either using an

extended meta-data API or by providing XML-based constraint specifications for

individual properties, which have to be deployed with the agent code. These constraints
are sent to the user interface generator atthe administration site as part ofthe

configurationdescriptor.

<di^ogfor=,,ir^ghtagenllogfilelogfileAgerTt" label="Logfite Agent Properties'̂
<category labels t3enera!>

</categorv>
<category labeN 'Task Scheduled

</category>
<category label- "Protocol HtesB>

<inpui name= ^ooffllrecJorv" labels "Root Directory:"* </inpiit>
<llst name*-files?' iabel= "riles: "> <rtst> _ _

</category>
</dialog>

Fig6: Presentation Hint Example

User interfaces based on constraint-enhanced meta-information are still rather crude in

appearance. For example, field names that are derived from component properties are not
verbose enough and all fields are just presented as one long list and lack semantic
grouping (see left part of Figure 7). We allow agent developers to enhance the user
interface layout and appearance by providing presentation hints as shown in Figure 6.
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Fig 7: Use Interface without/with presentation hints

Using this information we are able to improve the appearance ofthe user interface as

shown inFigure 7. The user interface shown in the right part ofFigure 7has been

generated using the presentation hints presented in Figure 6. The main differences are

verbose field labels andmore clearly arranged user interface elements.

Summarizing, meta-data about properties, constraint specifications and presentation hints
are extracted from an agent and sent to the user interface model generator atthe target

site. The model generator creates an XML-based user interface specification (UIS) which

is transferred to the administration site along with property meta-data and property values

in XML-format. The generated UIS is ahard- and software independent description of

the layout ofthe agent properties and thus independent ofany specific configuration

client (see requirement 2c).

Instead ofproviding presentation hints, the complete UIS may be created manually and
stored in aUI repository at the gateway host (see Figure 5). The main advantages ofthis
approach are even more elaborate user interfaces, albeit the effort for user interface

specification is increased, also.

The configuration descriptor (including the UIS) is transferred to the user interface
generator at the administration site, which finally generates aclient specific user
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interface. The UI generator uses pluggable renderers for generating different kinds of

user interfaces. The user interfaces depicted inFigure 7 have been generated using a

JFC/Swing renderer. Renderers for HTML, WML and other kinds ofuser interfaces may

be provided as well.

4.4 LIMITATION OF THE PROJECT

In this project, itcannot be completely done because ofindividual limitation. The part

thatcannot be done is where the connection between mobile agentGUI and Linux

firewall configuration. Supposedly after mobile agents have sent their message such as

firewall setup, Linux will receive the message and automatically setup the firewall and

saved it. This part are not completed because ofthe complexity ofthe mobile agents

which use the java-based language and high skills and expertise also needed to complete

this project due this is the first mobile agent project in Universiti Technologi Petronas.
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5. CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

We have presented requirements and approaches for configuring remote and mobile
components in a typical real world setting. Currently we use the system for configuring
mobile agents performing monitoring and supervision tasks in process automation
systems. Many of the presented requirements and solutions are important and useful for
remote configuration ofdistributed components ingeneral.

The use ofmobile agent technology as the basis for the components at the target system

imposes specific requirements on the configuration system like support for dynamically
adaptable system structure and agent mobility. In terms of implementing the
configuration system itself, we had to sacrifice seemingly obvious solutions for
configuring remote agents (like migrating the agent and performing the configuration
locally) in favor of other techniques like code on demand and automatic user interface

generation.

5.2 RECOMMENDATION

There are recommendation and suggestions that can be done in the future for the system

enhancement:

• Enhance the usability ofthe mobile agent with the prediction features
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APPENDICES

4K C:\WWDOWS\system32kmd.exe
rionpous". louse the keystore, copy it to C:\Dociinents and Settings1-

ifilTMNG: Tlds keystone is not neant to be secure! It is
intended to yet neu users ritnniny easily..

M,|To install both of these files into your hone directory
"|riui tiie connand: "ant install-home" Gm Quotes)

*** BEAD HE *** REfiD HE w READ HE *** SCAB tlE ***

{install:
[copy! Copying 4 files to C:\aglets\aglets-2.0.2\bin

keystore:
[delete] Deleting: C:\agIets\aylets-2 J.2\bin\.keystore
tgenkey] Generating fey for agletjiey
'[exec] Ihe commi attribute is deprecated. Please use the executable attri

kite and nested arg elements.
Egenlu;y] Generating 3!ey for anonymous ,

[exec] The connand attribute is deprecated. Please use the executable attn
kite and nested arg elements.

MJ1LB SUCCESSFUL

Total time: 2 seconds
C:\aglet:;\aglets-2.@.2\fein>aglet;;d -f . AcnfSaglets. props

• Aglets installation - done in MSDOS

• Software needed - ASDK and JDK
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3 Linux Firewall -Microsoft lnlarnci Fxplorer
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Linux Firewall Settings ~ receive message from mobile agent then respond either

to turn on/off
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Figure 3.1: The Waterfall Model
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