GDC-UTP SYSTEM STUDIES

By

MUHAMAD HAFIZ BIN YAZIZ

FINAL YEAR PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme In Partial Fulfillment of the Requirements For the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

> Universiti Teknologi Petronas Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

© Copyright 2011 by Muhamad Hafiz Bin Yaziz, 2011

CERTIFICATION OF APPROVAL

GDC-UTP SYSTEM STUDIES

by

Muhamad Hafiz Bin Yaziz

A project dissertation submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

Approved:

Ir. Mohd Faris Abdullah Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

May 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Muhamad Hafiz Bin Yaziz

ABSTRACT

The power system analysis studies serve as the basis for ensuring reliability, improving system performance and power quality, reducing operating costs, and providing a reliable supply power during system operation. Thus, this paper presents a case study for designing power supply system for a plant which will include load flow study, short circuit study and protection relay study. The studies mentioned will be conducted through simulation by using DIG SILENT Power Factory Software. This study will focus in island system which is Gas District Cooling (GDC) in Universiti Teknologi PETRONAS (UTP). The load flow study will be emphasized on loading and voltage. The short circuit study will be emphasized on fault current for three phase, line to line, line to ground and line to line to ground. Finally, the protections relay study is to know the correct Time Multiplier Setting (TMS) to make the relay operate coordinately. The purpose of this study to understand the importance of system study analysis in plant, study and performed the analysis simulation for designing a power system and finally to familiarize with software which is DIGSilent Power Factory. The system study should be done in Universiti Teknologi PETRONAS because of total blackout and increasing in load every year. The method that used to do this study such as gathering data, model the system in software and analysis the data. The simulation base on four scenarios for load flow study and short circuit study and one scenario for protection relay study. The result that obtained from this study is for load flow study, the voltage deviation with the limit base on PETRONAS Technical Standard (PTS). For short circuit study, the current faults that obtained from the study will not damage the buses. For protection relay study, some breaker has been suggested to have new Time Multiplier Setting (TMS) during overcurrent and cannot manage to do the earthfault due to limitation on software.

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this project. My utmost gratitude goes to my project supervisor, Ir. Mohd Faris Abdullah for his supervision, commitment, professionalism, suggestion and encouragement helped me in all the time of study and writing of this thesis. I am indebted to maintenance engineer, Ir . M Fatimie Irzaq B Khamis I would not be performing this work without his continual guidance. Finally special thanks to my family, my colleague and to those who helped me to complete this studies. Thank you.

TABLE OF CONTENTS

ABSTRACT		iv
ACKNOWLEDO	GEMENT	V
LIST OF TABLE	ES	viii
LIST OF FIGUR	ES	ix
LIST OF ABBRI	EVIATIONS	X
CHAPTER 1:	INTRODUCTION	1
1.1 Background of	of Study	1
1.2 Problem State	ement	2
1.2.1 Problem I	dentification	2
1.2.2 Significan	nt of Project	2
1.2.3 Objective	and Scope of Study	
CHAPTER 2:	LITERATURE REVIEW	5
2.1 Power System	n Design Requirements	5
2.2 System Studie	es	5
2.2.1 Load Flow	v Study	5
2.2.2 Short Cire	cuit Study	5
2.2.3 Protection	Relaying Studies	6
CHAPTER 3:	METHODOLOGY	10
3.1 Procedure Ide	entification	10

4.1 Load Flow. 16 4.1.1 Voltage Drop. 16 4.1.2 Losses. 18 4.2 Short Circuit. 18 4.2 Short Circuit. 18 4.2 Short Circuit. 19 4.2.2 Discussion. 23 4.3 Protection Relay Study. 23 4.3.1 Result. 23 4.3.2 Discussion. 24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS. 25 5.1 Conclusion. 25 5.2 Recommendation. 25 REFERENCES. 26 APPENDICES. 27 APPENDIX A 28 APPENDIX B 30 APPENDIX C 35 APPENDIX C 35 APPENDIX E 37 APPENDIX F 38 APPENDIX G 39 APPENDIX H 40	CHAPTER 4:	RESULT AND DISCUSSION	16
4.1.2 Losses 18 4.2 Short Circuit 18 4.2.1 Result 19 4.2.2 Discussion 23 4.3 Protection Relay Study 23 4.3.1 Result 23 4.3.2 Discussion 24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 25 5.1 Conclusion 25 5.2 Recommendation 25 REFERENCES 26 APPENDICES 27 APPENDIX B 30 APPENDIX C 35 APPENDIX B 30 APPENDIX E 37 APPENDIX F 38 APPENDIX G 39	4.1 Load Flow		16
4.2 Short Circuit 18 4.2.1 Result 19 4.2.2 Discussion 23 4.3 Protection Relay Study 23 4.3.1 Result 23 4.3.2 Discussion 24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 25 5.1 Conclusion 25 5.2 Recommendation 25 REFERENCES 26 APPENDICES APPENDIX A 28 APPENDIX B 30 APPENDIX D 36 APPENDIX F 37 APPENDIX F 38 APPENDIX G 39	4.1.1 Voltage D	rop	16
4.2.1 Result 19 4.2.2 Discussion 23 4.3 Protection Relay Study 23 4.3.1 Result 23 4.3.2 Discussion 24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 25 5.1 Conclusion 5.1 Conclusion 25 5.2 Recommendation 25 REFERENCES 26 APPENDICES 27 APPENDIX A 28 APPENDIX B 30 APPENDIX C 35 APPENDIX C 35 APPENDIX B 36 APPENDIX F 38 APPENDIX G 39	4.1.2 Losses		
4.2.2 Discussion 23 4.3 Protection Relay Study 23 4.3.1 Result 23 4.3.2 Discussion 24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 25 5.1 Conclusion 5.2 Recommendation 25 5.2 Recommendation 25 REFERENCES 26 26 APPENDICES 27 APPENDIX A 28 APPENDIX B 30 APPENDIX C 35 APPENDIX D 36 APPENDIX F 38 APPENDIX G 39	4.2 Short Circuit.		18
4.3 Protection Relay Study. .23 4.3.1 Result. .23 4.3.2 Discussion. .24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS. 25 5.1 Conclusion. .25 5.2 Recommendation. .25 REFERENCES. 26 APPENDICES. .27 APPENDIX A. .28 APPENDIX B. .30 APPENDIX D. .35 APPENDIX D. .36 APPENDIX F. .38 APPENDIX G. .39	4.2.1 Result		19
4.3.1 Result. 23 4.3.2 Discussion 24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS. 25 5.1 Conclusion 25 5.2 Recommendation 25 REFERENCES 26 APPENDICES 27 APPENDIX A 28 APPENDIX B 30 APPENDIX C 35 APPENDIX D 36 APPENDIX F 38 APPENDIX G 39	4.2.2 Discussion	1	23
4.3.2 Discussion .24 CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS .25 5.1 Conclusion .25 5.2 Recommendation .25 REFERENCES .26 APPENDICES .27 APPENDIX A .28 APPENDIX B .30 APPENDIX C .35 APPENDIX D .36 APPENDIX E .37 APPENDIX F .38 APPENDIX G .39	4.3 Protection Re	lay Study	23
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	4.3.1 Result		23
5.1 Conclusion. .25 5.2 Recommendation. .25 REFERENCES. .26 APPENDICES. .27 APPENDIX A. .28 APPENDIX B. .30 APPENDIX C. .35 APPENDIX D. .36 APPENDIX F. .38 APPENDIX G. .39	4.3.2 Discussion	ı	24
5.1 Conclusion. .25 5.2 Recommendation. .25 REFERENCES. .26 APPENDICES. .27 APPENDIX A. .28 APPENDIX B. .30 APPENDIX C. .35 APPENDIX D. .36 APPENDIX F. .38 APPENDIX G. .39			
5.2 Recommendation 25 REFERENCES 26 APPENDICES 27 APPENDIX A 28 APPENDIX B 30 APPENDIX C 35 APPENDIX D 36 APPENDIX F 38 APPENDIX G 39	CHAPTER 5:	CONCLUSIONS AND RECOMMENDATIONS	25
REFERENCES. 26 APPENDICES. 27 APPENDIX A. 28 APPENDIX B. 30 APPENDIX C. 35 APPENDIX D. 36 APPENDIX E. 37 APPENDIX F. 38 APPENDIX G. 39	5.1 Conclusion		25
APPENDICES. 27 APPENDIX A. 28 APPENDIX B. 30 APPENDIX C. 35 APPENDIX D. 36 APPENDIX E. 37 APPENDIX F. 38 APPENDIX G. 39	5.2 Recommenda	tion	25
APPENDICES. 27 APPENDIX A. 28 APPENDIX B. 30 APPENDIX C. 35 APPENDIX D. 36 APPENDIX E. 37 APPENDIX F. 38 APPENDIX G. 39			
APPENDIX A	REFERENCES.		26
APPENDIX A			
APPENDIX B	APPENDICES		27
APPENDIX C	APPENDIX A		28
APPENDIX D	APPENDIX B		30
APPENDIX E	APPENDIX C		35
APPENDIX F	APPENDIX D		
APPENDIX G	APPENDIX E		37
	APPENDIX F		38
APPENDIX H40	APPENDIX G		
	APPENDIX H		40

LIST OF TABLES

Table 1: Scenario options for load flow study	11
Table 2: Scenario option for short circuit study	12
Table 3: Scenario options for protection relay study	13
Table 4: Summary of HV (11kV) buses voltage drop (kV)	16
Table 5: Analysis of each scenario	17
Table 6: Total losses of the system	18
Table 7: Result of short circuit analysis (Three phase)	19
Table 8: Result of short circuit analysis (Phase to Phase)	20
Table 9: Result of short circuit analysis (Phase to Ground)	21
Table 10: Result of short circuit analysis (Phase to Phase to Ground)	22
Table 11: Overcurrent	23

LIST OF FIGURES

Figure 1: Overcurrent fault (R-B Fault)	7
Figure 2: Overcurrent fault (R-Y Fault)	7
Figure 3: Earthfault	8
Figure 4: Combined overcurrent and earthfault protection	9
Figure 5: Flow chart of the project	14

LIST OF ABBREVIATIONS

TNB	Tenaga Nasional Berhad
GDC	Gas District Cooling
UTP	Universiti Teknologi PETRONAS
AC	Alternating Current
PTS	PETRONAS Technical Standard
HV	High Voltage
LV	Low Voltage

CHAPTER 1 INTRODUCTION

1.1 Background of Study

The power system shall be designed to meet the objective, primarily safety to personnel operation and maintenance of plant and also reliability and continuity of power supply for maximum production and energy-efficient operation.

A load flow analysis shall be carried out for both normal and emergency operation modes to determine the steady-state operating characteristics of the electrical system and to check that the steady-state voltage drops and voltage deviations in the power system are within operating limits of the equipment. The load flow study highlights the system power flows, percentage voltage drop, power factors and transformer loading in the system during steady state operations under normal and peak load conditions.

A short circuit analysis which is the calculation of fault-current levels at all buses in the system is studied to minimize the consequences of a potential short circuit in the system [1]. The short circuit study is conducted to ensure the adequacy of the existing switchgear fault level capacity by taking into account the fault contribution by generator and equipment in the system.

A protection relaying study should be performed in order to prevent protection maloperation total blackout during operation. The basic components in protection system are sensing device (current transformer, voltage transformer, and transducer), relay (decision maker to trip), and circuit breaker (fault isolation)

1.2 Problem Statement

1.2.1 Problem Identification

Power system analysis is an important consideration that must be dealt with during the design of power supply system. The design of power supply system must meet requirement for maximum production and energy efficient operation. In the design process, it is not practical to design a system to be stable under all possible circumstances. Thus the design criteria specify the disturbances for which the system must be designed to be stable. In system design, therefore, a wide number of scenario or disturbances are assessed and if the system is found to be unstable, a variety of action can be taken to improve the situation.

In order to do that, the need of powerful software that performs various calculation and studies is a necessity. Therefore DIG SILENT Power Factory Software has been chosen to do modeling and simulation for load flow, short circuit and relay protection coordination study in this project.

1.2.2 Significant of Project

The power system analysis is like main element in designing a plant. Since all the equipment in the plant using electricity as their source of power, the modeling and simulation is required to determine the performance of the power system in the plant [3].

As for the load flow study, the need to calculate the total load demands in UTP. This is important as to ensure the generators available can cater all the loads or find other alternatives.

Short circuit study is conducted to verify and establish the maximum three phase symmetrical short circuit current at all busses. The result obtained from study is used to verify whether the existing short circuit ratings are sufficient to withstand the fault current. A protection relaying study is very important in order to solve problems that occurred in UTP which is total blackout even though fault happened at the low voltage. The objectives of this study are:

- a. Reliability Correct operation in clearing a fault
- Security avoidance of incorrect operation or mal-operation in clearing fault
- c. Speed minimum operation time to clear a fault so as to minimize equipment damage.
- d. Selectivity disconnection of minimum section of the network to isolate the fault and maintain continuity of supply

1.2.3 Objective and Scope of Study

The objectives of the project are outlined as below:

- To understand the importance of system study analysis in plant.
- To study and perform the analysis and simulations for designing a power system.
- To familiarization the selected computer aided tool which is DIG SILIENT Software.

The scope of study can be summarized as preview on the basic of electrical system installation for a plant including the power system simulation based on the demand load. The system study analysis will cover load flow study, short circuit study, and relay protection coordination.

CHAPTER 2 LITERATURE REVIEW

2.1 Power System Design Requirements

The design of the electrical power generation and distribution systems shall be based on good engineering practice and internationally accepted standards and shall provide [5]:

- ✤ Safety to personnel during operation and maintenance of the plant
- Reliability and continuity of services of electrical systems to ensure the plant produce optimum power.
- Energy efficient power distribution and utilization.
- ✤ Ease of operation and minimum maintenance of equipment
- ✤ Remote control facility.
- ✤ Fail-safe feature for safety-related controls.
- Standardization of components for maximum interchange ability and minimal spare stockholding.
- ✤ Ease of future extension to the existing facilities.

2.2 System Studies

2.2.1 Load Flow Study

The load flow study also known as power flow study is one of the most common used tools in power system engineering which is widely applied to analyze a variety of the system planning and off-line and on-line operation [6]. The load flow serves a purpose which to calculate the steady state conditions and focuses on various forms of AC power rather than voltage and current [7].

A load flow study is basically performed to verify:

- The total power generation against the power demand of the plant.
- Load flow characteristic in the whole electrical system.
- Any current loading violations at any point in the system
- Any voltage violation at any bus in the system.

2.2.2 Short Circuit Study

Short circuit study is an important part in power system analysis. It consists of determining fault-current levels at all buses in the system in order to minimize the consequences of potential short circuit in the system. Whenever a fault occurs in electrical power system, relatively high current flow, it will produce large amounts of destructive energy in the forms of heat and magnetic forces. A short circuit study ensures that protective device rating within a power system is adequate [8].

Type of Faults

Faults on power systems are divided into three phase balanced faults and unbalances faults. Different types of faults are:

- Three-Phase Fault (3P)
- Single Line to Ground Fault (L-G)
- ✤ Line to Line Fault (L-L)
- ✤ Line to Line Ground Fault (L-L-G)

The three phase balances fault (3P) is defined as the simultaneous short circuit across all three phases. It occurs independently, but it is the most severe type of fault encountered. The information obtain from three phase balanced fault is used to select and set phase relays, while the line-to-ground fault (L-G) is used for ground relays [2].

2.2.3 Protection Relaying Studies

Overcurrent

An overcurrent relay operates when the magnitude of the current exceeds the pickup or operating level for a time greater than a pre-set delay (definite time) or a time delay determined by the operating characteristic (inverse) [11]. An overcurrent relay can also be set instantaneous, i.e. it operates with no intentional time delay.

A requirement of an overcurrent relay is that it should remain stable, i.e. not operate, on a starting current, a permissible overcurrent or a current surge. This requires the inclusion of a time delay that inhibits operation for a period that in an inverse relay depends upon the magnitude of the current. In a definite time relay the overcurrent must be greater than the current operating setting for a preset period.

If a delay is unacceptable, an instantaneous overcurrent relay can be used but its operating setting must be set sufficiently high to prevent maloperation on non-fault current surges or remote faults which should be cleared by other protection devices. Grading or relay coordination must consider the operating behavior of neighboring overcurrent relays, i.e. on a radial system a downstream fault must be cleared by a downstream relay. [8]

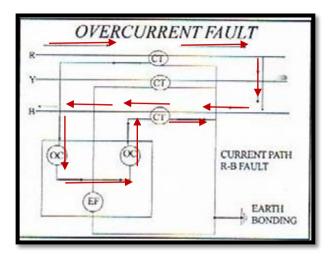


Figure 1: Overcurrent Fault (R-B Fault)

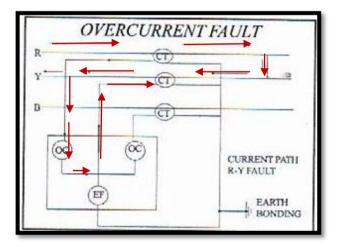


Figure 2: Overcurrent Fault (R-Y Fault)

During overcurrent fault (Figure 1 and Figure 2), if line to line fault happen which is R-B fault or R-Y fault, the overcurrent (OC) relay will see the fault and the relay will operate base on the current flow in the figure.

<u>Earthfault</u>

An earth fault relay (Figure 3) is activated by the fault current flowing from line to earth, while an overcurrent relay is activated if the line current exceeds a certain value. Normally these are combined to form what is known as a combined overcurrent and earth fault relay, which is widely used as back up protection if the main protection fails. An earthfault will cause the unbalanced current in the CTs and would cause residual current to flow through the earthfault relay element.

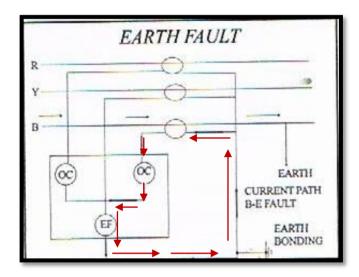


Figure 3: Earth Fault

Operation for overcurrent and earthfault relay

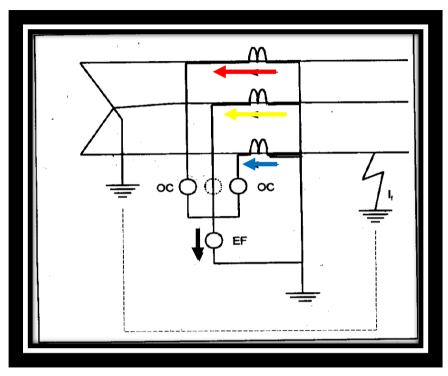


Figure 4: Combined overcurrent and earth fault protection

Relays are normally combined for overcurrent and earth fault protection (Refer Figure 4). It is no necessary to provide overcurrent relay at the yellow phase because line to line fault will be covered by red and blue phase. An earthfault will cause the unbalanced current in the CTs and would cause residual current to flow through the earthfault relay element. [10]

CHAPTER 3 METHODOLOGY

3.1 Procedure Identification

3.1.1 Load Flow

- i. Collect all the data regarding load flow such as load data, generator data, cable size, and single line diagram.
- Model the single line diagram or the system in the DIGSilent Power Factory.
- The modeling and simulations have been performed with DigSILENT
 Power Factory. The parameters for the generator and transformer used in the calculation are as follows:

(i) Gas Turbine Generator

Site Rating	: 4.2MW (5.3MVA at 0.85 p.f.)
System Voltage	: 11.17kV, 50Hz

(ii) Transformer

Rating	: 1250 / 1750 kVA
Voltage	: 11kV / 433V
Rating	: 1000kVA
Voltage	: 11kV / 433V
Rating	: 1600kVA
Voltage	: 11kV / 433V
Rating	: 1500kVA
Voltage	: 11kV / 433V

Load flow analysis is performed to determine the steady-state operating characteristics of electrical system and to check that the steadystate voltage drops and voltage deviation in the power system are within acceptable operating limits of the equipment.

iv. Scenario Option

The scenarios considered for this load flow analysis are briefly described as follows:

Scenario	Characteristic of Scenario		Description
1	• 1 Turbine generator is running.	i.	Normal operation
	• 1 Turbine generator is standby.		from Monday
	• All transformers are in operation.		until Friday
	• TNB-A and TNB-B are standby	ii.	Morning and
	• 3 backup generators are standby		evening
2	• 2 Turbine generators are running.	i.	Normal operation
	• All transformers are in operation.		from Monday
	• TNB-A and TNB-B are standby.		until Friday.
	• 3 backup generators are standby.	ii.	Afternoon
3	• 2 Turbine generators are down.	i.	Happen especially
	• TNB-A and TNB-B is connected to		during blackout.
	the system.		
	• All transformers in operation.		
	• 3 backup generators are standby		
4	• 1 Turbine Generator is running.		
	• TNB-A is connected to the system.		
	• 1 Turbine generator and TNB-B are		
	• 3 backup generators are standby.		
	• All transformers in operation.		

Table 1: Scenario options for load flow study

3.1.2 Short Circuit

- i. Collect all the data regarding load flow such as load data, generator data, cable size, and single line diagram.
- Model the single line diagram or the system in the DIGSilent Power Factory.
- iii. Scenario Option

The scenarios considered for this load flow analysis are briefly described as follows:

Scenario	Characteristic of Scenario		Description
1	• 1 Turbine generator is running.	iii.	Normal operation
	• 1 Turbine generator is standby.		from Monday
	• All transformers are in operation.		until Friday
	• TNB-A and TNB-B are standby	iv.	Morning and
	• 3 backup generators are standby		evening
2	• 2 Turbine generators are running.	iii.	Normal operation
	• All transformers are in operation.		from Monday
	• TNB-A and TNB-B are standby.		until Friday.
	• 3 backup generators are standby.	iv.	Afternoon
3	• 2 Turbine generators are down.	ii.	Happen especially
	• TNB-A and TNB-B is connected to		during blackout.
	the system.		
	• All transformers in operation.		
	• 3 backup generators are standby		
4	• 1 Turbine Generator is running.		
	• TNB-A is connected to the system.		
	• 1 Turbine generator and TNB-B are		
	• 3 backup generators are standby.		
	• All transformers in operation.		

Table 2: Scenario options for short circuit study

3.1.3 Protection Relay Study

- i. Collect all the data regarding load flow such as load data, generator data, cable size, and single line diagram.
- Model the single line diagram or the system in the DIGSilent Power Factory.
- iii. Scenario has been created in order to have a study case.

Scenario	Characteristic of Scenario
1	• 1 Turbine generator is running.

Table 3: Scenario for protection relay study

3.2 Flow Chart

The project activities flow chart is shown in Figure 5. The studies start with literature review. After that learning Dig Silent software which is the structure of the software. Then do some analysis on the electrical load. After that, modeling the system and verify it. Then the studies begin with load flow study, short circuit study and finally protection relaying study. Finally, the result from the studies was analyzed and interpreted. Then the project complete with conclusion and recommendation.

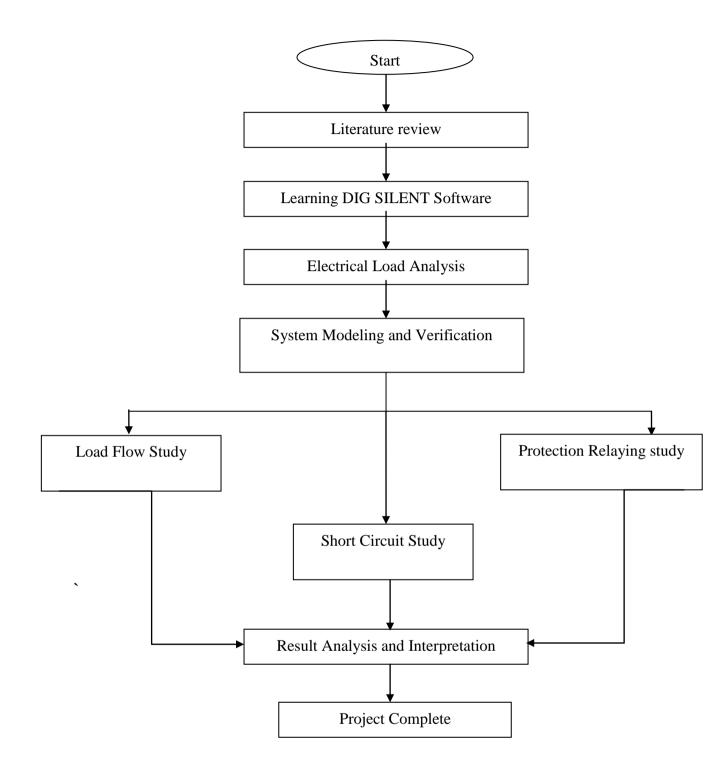


Figure 5: Flow Chart of the Project

3.2 Tools / Software / Equipment Required

- 1. DIG SILENT Power Factory Software
- 2. Laptop

Chapter 4 RESULT AND DISCUSSION

4.1 Load Flow Study

4.1.1 Voltage Drop

Table 4: Summary of HV (11kV) buses voltage drop (kV)

LOCATION	VOLTAGE DROP (kV)			
-	SCENARIO			
	1	2	3	4
CBTG1	0.00	0.00	0.00	0.00
CBTG2	0.01	0.00	0.00	0.00
GDC	0.01	0.00	0.00	0.00
GDC(2)	0.01	0.00	0.00	0.00
Substation 4	0.13	0.12	0.11	0.11
(TX)				
MIS	0.01	0.01	0.00	0.00
Block 05 (2)	0.02	0.02	0.01	0.01
Undercroft	0.02	0.02	0.01	0.01
Substation 1	0.01	0.01	0.00	0.00
MPH	0.01	0.01	0.00	0.00
Substation				
Substation 5	0.11	0.11	0.1	0.1
Substation 5B	0.02	0.1	0.09	0.09
Block 05	0.02	0.01	0.00	0.00
Substation 5A	0.09	0.09	0.07	0.07
Substation	0.04	0.04	0.02	0.02
ETS				
Block 3A	0.02	0.02	0.01	0.01
DS1A	0.1	0.1	0.09	0.09

DS1B	0.12	0.12	0.11	0.11
DS2	0.13	0.13	0.12	0.12
Substation 3	0.14	0.14	0.12	0.12
Substation 4	0.13	0.12	0.11	0.11
Substation 2	0.09	0.09	0.08	0.08

From the result in Table 4, voltage deviations at all HV buses are in +- 5% base on PETRONAS Technical Standard (PTS). These voltage deviations are within the limit of the standard.

RESULT ANALYSIS
1. Maximum reactive power limit exceeded , (9.54 MVAR >6.63
MVAR)
2. Maximum active power limit $(15.05 \text{MW} > 5.3 \text{MW})$
3. The generator loadings is about 268.99%
1. No problem occurred
2. The generator loadings for GTG A is 190.04%
3. The generators loading for GTG B is 79.25%
1. No problem occurred.
1. No problem occurred.
2. The generator loadings for GTG A is 79.25

Table 5: Analysis of each scenario

From the result in Table 5, the loading of the generator is high while loadings at the average around 50%.

4.1.2 Losses

SCENARIO	TOTAL LOSSES (MW)
1	0.12
2	0.12
3	0.11
4	0.11

Table 6: Total losses of the system

From the Table 6, the total loss in almost the same around 0.11 and 0.12 MW due to the incorrect load scaling.

4.2 Short Circuit Analysis

LOCATION	Fault Current (kA)							
-	SCENARIO							
-	1	2	3	4				
CBTG1	1.47	2.01	1.31	1.31				
CBTG2	1.47	2.01	1.31	1.31				
GDC	1.47	2.01	1.31	1.31				
GDC(2)	1.47	2.01	1.31	1.31				
Substation 4	1.42	1.92	1.27	1.27				
(TX)								
MIS	1.47	2.01	1.31	1.31				
Block 05 (2)	1.45	1.98	1.29	1.29				
Undercroft	1.44	1.96	1.28	1.28				
Substation 1	1.43	1.94	1.27	1.27				
MPH	1.37	1.83	1.23	1.23				
Substation								
Substation 5	1.38	1.85	1.24	1.24				
Substation 5B	1.40	1.88	1.25	1.25				
Block 05	1.45	1.97	1.29	1.29				
Substation 5A	1.42	1.92	1.27	1.27				
Substation	1.45	1.99	1.30	1.20				
ETS								
Block 3A	1.44	1.95	1.28	1.28				
DS1A	1.43	1.93	1.27	1.28				
DS1B	1.42	1.92	1.27	1.27				
DS2	1.42	1.92	1.27	1.27				
Substation 3	1.42	1.92	1.27	1.27				

Table 7: Result of Short Circuit Analysis (Three Phase Fault)

Substation 4	1.42	1.92	1.28	1.27
Substation 2	1.43	1.94	1.27	1.28

LOCATION	Fault Current (kA)								
	SCENARIO								
	1	2	3	4					
CBTG1	1.45	2.07	1.13	1.58					
CBTG2	1.45	2.07	1.13	1.58					
GDC	1.45	2.07	1.13	1.58					
GDC(2)	1.45	2.07	1.13	1.58					
Substation 4	1.39	1.95	1.10	1.51					
(TX)									
MIS	1.45	2.07	1.13	1.58					
Block 05 (2)	1.43	2.03	1.12	1.55					
Undercroft	1.41	2.00	1.11	1.54					
Substation 1	1.40	1.98	1.10	1.52					
MPH	1.34	1.86	1.07	1.45					
Substation									
Substation 5	1.35	1.87	1.07	1.46					
Substation 5B	1.37	1.91	1.08	1.48					
Block 05	1.42	2.03	1.12	1.55					
Substation 5A	1.39	1.95	1.10	1.51					
Substation	1.43	2.04	1.12	1.56					
ETS									
Block 3A	1.41	2.00	1.11	1.53					
DS1A	1.40	1.97	1.11	1.52					
DS1B	1.40	1.96	1.10	1.51					
DS2	1.39	1.96	1.10	1.51					

Table 8: Result of Short Circuit Analysis (Phase to Phase Fault)

Substation 3	1.39	1.95	1.10	1.51
Substation 4	1.39	1.96	1.10	1.51
Substation 2	1.40	1.98	1.11	1.52

Table 9: Result of Short Circuit Analysis (Phase to Ground Fault)

LOCATION	Fault Current (kA)							
	SCENARIO							
-	1	2	3	4				
CBTG1	0.18	0.19	0.96	0.76				
CBTG2	0.18	0.19	0.96	0.76				
GDC	0.18	0.19	0.96	0.76				
GDC(2)	0.18	0.19	0.96	0.76				
Substation 4	0.18	0.18	0.93	0.75				
(TX)								
MIS	0.18	0.19	0.96	0.76				
Block 05 (2)	0.18	0.19	0.95	0.76				
Undercroft	0.18	0.19	0.94	0.75				
Substation 1	0.18	0.19	0.94	0.75				
MPH	0.18	0.19	0.92	0.74				
Substation								
Substation 5	0.18	0.18	0.91	0.73				
Substation 5B	0.18	0.18	0.92	0.74				
Block 05	0.18	0.19	0.95	0.76				
Substation 5A	0.18	0.18	0.93	0.74				
Substation	0.18	0.19	0.95	0.76				
ETS								
Block 3A	0.18	0.19	0.94	0.75				
DS1A	0.18	0.18	0.94	0.75				
DS1B	0.18	0.18	0.94	0.75				
DS2	0.18	0.18	0.93	0.75				

Substation 3	0.18	0.18	0.93	0.74
Substation 4	0.18	0.18	0.93	0.75
Substation 2	0.18	0.19	0.94	0.75

Table 10: Result of Short Circuit Analysis (Phase to Phase to Ground

Fault)

LOCATION	Fault Current (kA)							
	SCENARIO							
	1			2	3	5	4	
CBTG1	1.41	1.48	2.04	2.11	1.01	1.34	1.43	1.72
CBTG2	1.41	1.48	2.04	2.11	1.01	1.34	1.43	1.72
GDC	1.41	1.48	2.04	2.11	1.01	1.34	1.43	1.72
GDC(2)	1.41	1.48	2.04	2.11	1.01	1.34	1.43	1.72
Substation 4	1.36	1.43	1.92	1.99	0.98	1.31	1.37	1.67
(TX)								
MIS	1.41	1.48	2.04	2.10	1.01	1.34	1.43	1.72
Block 05 (2)	1.39	1.46	1.99	2.06	1.00	1.33	1.41	1.69
Undercroft	1.38	1.45	1.97	2.04	0.99	1.32	1.39	1.67
Substation 1	1.37	1.44	1.94	2.01	0.98	1.31	1.38	1.66
MPH	1.30	1.37	1.82	1.89	0.95	1.28	1.31	1.59
Substation								
Substation 5	1.31	1.38	1.84	1.91	0.96	1.27	1.32	1.59
Substation 5B	1.33	1.38	1.88	1.95	0.97	1.29	1.34	1.62
Block 05	1.39	1.46	1.99	2.06	1.00	1.33	1.40	1.69
Substation 5A	1.36	1.43	1.92	1.99	0.98	1.30	1.37	1.64
Substation	1.40	1.47	2.00	2.07	1.00	1.33	1.41	1.70
ETS								
Block 3A	1.38	1.45	1.97	2.03	0.99	1.32	1.39	1.67
DS1A	1.37	1.44	1.94	2.01	0.99	1.31	1.38	1.66
DS1B	1.36	1.43	1.93	1.99	0.98	1.31	1.37	1.65

DS2	1.36	1.43	1.92	1.99	0.98	1.31	1.37	1.65
Substation 3	1.36	1.43	1.92	1.99	0.98	1.31	1.37	1.65
Substation 4	1.36	1.43	1.92	1.99	0.98	1.31	1.37	1.65
Substation 2	1.37	1.44	1.94	2.01	0.99	1.31	1.38	1.66

Base on the Table 7, 8, 9 and 10 for three phase fault, the maximum fault occurred happen during two generators are running. For phase to phase fault, the maximum current occurred during two generators are running. For phase to ground fault, the maximum fault current occurred both TNBs are connected into the system. Finally, for phase to phase to ground, the maximum current fault occurred during two generators are running. During the generator in parallel, the current will add up that caused the current high.

4.3 Protection Relay Studies

Overcurrent

LOCATION	FAULT	CT RATIO	TMS	NEW TMS
	CURRENT	(A)		
	(A)			
K03	14680	400/5	0.2	0.1
GS05	14680	400/5	0.5	0.1
K01(MIS)	14680	400/5	0.15	0.44
K02(MIS)	14680	400/5	0.15	0.325
K03 (MIS)	14680	400/5	0.15	0.300
K04 (MIS)	14680	400/5	0.175	0.225
K10(MIS)	14680	400/5	0.175	0.225

Table 11: Overcurrent

K11(MIS)	14680	400/5	0.125	0.15
K12(MIS)	14680	400/5	0.15	0.15
K14(MIS)	14680	400/5	0.1	0.1

From the Table 11, to get the margin 0.4s the new Time Multiplier Setting (TMS) should be change to new TMS. Total blackout or generator trip will occur due to the wrong setting of TMS.

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The power system analysis serve as the basis for improving system performance and power quality and providing a reliable supply power during system operation. In this project, author have conducted study on power system design requirement, power system operating philosophy and further knowledge on power system studies as well.

For load flow study can conclude that, the system in UTP still reliable due to the low voltage deviation and low power loss. For short circuit study can conclude that fault current for every buses will not damage the bus bar due to the correct breaker current which is lower than fault current. For protection relay study can conclude that some changes should be done in order to prevent UTP from total blackout.

5.2 Recommendations

For further studies, for load flow study should study the different off-point and study for load forecasting. For protection relay coordination should study the two generator are running at the same time.

REFERENCES

[1] http://www.slb.com/media/services/artificial/controller/power_sys_an.pdf

[2] Hadi Saadat. 2004, "Power System Analysis", Mc Graw-Hill

- [3] John. J. Granger & William D. Stevenson, Jr. 1994, "Power System Analysis", Mc Graw Hill International Editions, Electrical Engineering Series.
- [4] http://www.crcnetbase.com/doi/pdf/10.1201/9780203910832.ch16

[5] Azra Dahiyah Binti Alias, "Power System Analysis for an Offshore Platform",2009, Universisti Teknologi PETRONAS.

[6] http://www.cmbengineering.com/short_circuit_study.html

[7] DC Consulting Engineering. 2002, "Protection Relaying Study"

[8] C.L Hor, K.Kangvansaicho, P.A Crossley & A.Shafiu, "Relay Models for Protection Studies", Paper accepted for presentation at 2003 IEEE Bologna Power Tech Conference, June $23^{rd} - 26^{th}$, Bologna, Italy.

[9] R.Giovanini, D.V Choury, K.M Hopkinson, J.S Thorp, 2004 "Improving Local and Backup Protection Using Wide Area Agents", The Institution of Electrical Engineer.

[10] Sallehuddin Yusuf, Khalid M Nor, Abu Hanifah Azit, Baharin Din, Muahamad Sumbian Sukaimy, Ralf Humpert, 1996, Distribution Protection-Coordination of Protective Devices. Tenaga Nasional Berhad.

APPENDICES

APPENDIX A

GANTT CHART

Activities	WEEK													
Activities	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Literature Review on load flow, short circuit and protection relaying study														
Software Familiarization														
Site Visit to GDC														
Progress Report Submission														
Electrex (Pre-EDX)														
Engineering Design Exhibition (EDX)														
Draft Report Submission														
Technical Paper Submission														
Final Presentation														
Final Report Submission														

APPENDIX B

POWER SYSTEM DATA

Real Power (kW)	5.3 MW
Reactive Power (kVAR)	5.2 MVAR
Phase	3 phase
Voltage (kV)	11 kV
Current (A)	348 A
Frequency	50Hz
Power Factor	0.8
Rotor speed (rpm)	1500 rpm

Generator Spec

TRANSFORMER DATA

	CT AND FIGURE UT									
Bil	Substation	Rated	Transformer	Impedence	Transformer	Year	Oil	HV	LV Amp	
		(kVA)	Brand	(%)	type		liter	Amp		
1	Compact Substation	750	EWT	4.56	Hermitically seal	1996	4291	39.4	1000	
2	MPH Substation	1000	EWT	4.66	Hermitically seal	1996	4901	52.48	1333.33	
3	Substation 1	1000	EB	5.19	Conservator tank	1998	7941	52.48	1333.33	
4	Substation 5	1000	SGB	6.04	Hermitically seal	2001	6441	52.48	1333.33	
5	Substation 5A	1000	SGB	6.13	Hermitically seal	2004	6591	52.48	1333.33	
6	Substation 5B	1000	SGB	6.03	Hermitically seal	2004	6591	52.48	1333.33	
		1000	SGB	6.03	Hermitically seal	2004	6591	52.48	1333.33	
7	Substation ETS	1000	SGB		Cast resin	2005		52.48	1333.33	
8	Substation DS1A	1000	LG		Cast resin	2003		52.48	1333.33	
9	Substation DS1B	1000	LG		Cast resin	2003		52.48	1333.33	

10	Substation DS2	1600	EWT	5.11	Hermitically seal	2000	8291	84	2133
11	Substation 4	1000	MTM	4.67	Hermitically seal	1994	5281	52.48	1333.33
12	Substation 3	1500	EB	6.15	Conservator tank	1988	9531	78.7	2000
		1500	EB		Conservator tank	1988	9531	78.7	2000
13	Substation	1000	EB	5.24	Conservator tank	1998	7941	52.48	1333.33
	Desajaya								
14	3A Substation	3000/4200	LG	5.9	Cast resin	2002		157/22	4000/560
								0	0
		3000/4200	LG	5.9	Cast resin	2002		157/22	4000/560
								0	0
	Undercroft	1000/1400	LG		Cast resin	2007		52.48	1333.33
15	Building 5	2000/2800	LG	5.8	Cast resin	2001		105/14	2667/373
	Substation							4	2
		2000/2800	LG	5.8	Cast resin	2001		105/14	2667/373
								4	2
16	Pocket C	1250/1750	LG	6.2	Cast resin	2004		65.6	1677
	Substation								
		1250/1750	LG	6.2	Cast resin	2004		65.6	1677
17	Pocket D	2000/2800	LG	5.8	Cast resin	2004		105	2667

	Substation								
		2000/2800	LG	5.8	Cast resin	2004		105	2667
18	MIS 11kV	500	EWT	4.41	Hermitically seal	2000	2751	26.2	667
	Substation								

Bil	Genset	Rated (kVA)	Brand
1	Site Office	450kVA/360kW	Volvo Penta
2	Main Hall	125kVA/100kW	Cummins 6CT
3	MPH	300kVA/240kW	Scavia
		200	
4	Pocket C	kVA/140kW	Volvo Penta
5	Pocket D	200kVA/140kW	Volvo Penta

Bil	UPS	Rated (kVA)	Brand
1	Main Hall	60	Protec
2	Main Control Room	40	Chloride EDP 70
3	Data Centre	160	Chloride EDP 90
4	Chancellor Hall	160	Chloride EDP 90

APPENDIX C

LOAD FLOW RESULT

DIgSI/wrng - 1 area(s) are unsupplied. DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym': DIgSI/wrng - Maximum Reactive Power Limit Exceeded (9.54 Mvar > 6.63 Mvar) DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym': DIgSI/wrng - Maximum Active Power Limit Exceeded (15.05 MW > 5.30 MW)

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles, .	Area Interchange
Balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergency Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: Grid	rid: Grid System Stage: Grid						Study Case: Study Case				Annex: / 1			
Voltag	rated Active Reactive Voltage Bus-voltage Power Power [kV] [p.u.] [kV] [deg] [MW] [Mvar]						Current Loading Additional Data [kA] [%]							
Station1 MIS 11.00 Cub 0.0/Coup Cub 0.6/Lne Cub 0.6/Lne Cub 0.4/Lne Cub 0.3/Lne Cub 0.6/Lne	1.00 10.99 -0.02 Breaker/Switch K01 K02 K03 K04 Line(6)	2.91 0.05 3.73 0.53 0.30 -7.52	1.82 0.00 2.49 0.31 0.15 -4.76	0.85 1.00 0.83 0.86 0.90 -0.84	0.18 0.00 0.24 0.03 0.02 0.47	0.00 0.65 53.59 6.74 3.64 76.43	Pv: Pv: Pv: Pv: Pv:	0.01 kW 27.61 kW 0.22 kW 0.04 kW 4.15 kW	cLod: cLod: cLod: cLod: cLod:	0.02 Mvar 0.03 Mvar 0.02 Mvar 0.01 Mvar 0.00 Mvar	L: L: L:	1.14 k 1.68 k 0.86 k 0.55 k 0.10 k		
Station10 Block 05 (.00 Cub_0.3/Coup Cub_0.0/Lne Cub_0.3/Lne Cub_0.3/Lne	1.00 10.98 -0.04 Breaker/Switch(1) K10 TX-05/1 TX-MB/1	0.00 -1.69 0.59 1.10	0.00 -1.06 0.37 0.69	1.00 -0.85 0.85 0.85	0.00 0.10 0.04 0.07	0.00 21.58 9.42 17.72	PV: PV: PV:	1.44 kW 0.01 kW 0.59 kW	cLod: cLod: cLod:	0.01 Mvar 0.00 Mvar 0.01 Mvar	L:	0.55 k 0.01 k 0.33 k		
Station11 Undercroft.00 Cub_0.4/Coup Cub_0.0/Lne Cub_0.4/Lne Cub_0.4/Lne Cub_0.4/Lne	1.00 10.98 -0.03 Breaker/Switch(2) K11 TX-MB/3 TX-PC2 TX-PD2	0.00 -0.80 0.08 0.12 0.60	0.00 -0.49 0.05 0.06 0.37	1.00 -0.86 0.85 0.88 0.85	0.00 0.05 0.01 0.01 0.04	0.00 10.16 1.35 1.93 9.60	Pv: Pv: Pv: Pv:	0.50 kW 0.00 kW 0.02 kW 0.19 kW	cLod: cLod: cLod: cLod:	0.02 Mvar 0.00 Mvar 0.01 Mvar 0.01 Mvar	L: L:	0.86 k 0.01 k 0.66 k 0.35 k		
Station12 MSB PC 0.43 Cub_0.2/Lod Cub_0.3/Coup Cub_0.3/Tr2	1.00 0.43 -0.15 MSBPC1 Breaker/Switch(3) TX-PC2(1)	0.12 0.00 -0.12	0.07 0.00 -0.07	0.85 1.00 -0.85	0.19 0.00 0.19	0.00 8.13	P10: Tap:	0.12 MW 0.00	Ql0: Min:	0.07 Mvar 0	Max:	0		

			DIGSILENT	Project:			
			PowerFactory 13.2.333	Date: 4/27/2	2011		
Load Flow Calculation	plete System Report: Su	ubstations, Volta	ige Profiles, A	Area Interchange			
Balanced, positive sequence Automatic Tap Adjust of Transformers Consider Reactive Power Limits	No No	Automatic Model Ad Max. Acceptable Lo Nodes Model Equations	oad Flow Error fo		No 1.00 kVA 0.10 %		

Grid: Grid		System S	tag e: Gr	id	:	Study Case:	Study Ca	se		Annex:	:		/ 14
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]		-10	-5	i T	Voltage - 0	Deviation +5		+10	
Station1													
MIS	11.00	0.999	10.99	-0.02					- I				
Station10	11 00	0.998	10.98										
Block 05 (2) Station11	11.00	0.998	10.98	-0.04					•				
Undercroft	11.00	0.998	10.98	-0.03									
Station12									•				
MSB PC	0.43	0.997	0.43	-0.15									
Station13	_												
MSB PD	0.43	0.994	0.43	-0.40									
Station14 MSB-05	0.43	0.994	0 4 2	-0.40					_				
Station15	0.45	0.994	0.45	-0.40									
MSB-MB Building	0.43	0.996	0.43	-0.23					-				
Station16									_				
RMU-Substation	11.00	0.999	10.99	-0.02									
Station17													
RMU-MPH Substat	11.00	0.999	10.99	-0.02					I				
Station18 RMU-Substation	11.00	0.990	10.89	0.15					_				
Station19	11.00	0.990	10.89	-0.15									
RMU-Substation	11.00	0.990	10.89	-0.14									
Station2		0.000	20.00										
Transformer Poc	11.00	0.999	10.98	-0.02									
Station20													
RMU-Substation	11.00	0.992	10.91	-0.12									
Station21	11 00	0.997	10.00	0.05					-				
RMU-Substation Station22	11.00	0.997	10.96	-0.05					•				
Substation 1	0.43	0.998	0.43	-0.12									
Station23									•				
B1	0.43	0.999	0.43	-0.02					- I				
Station24													
Main Compact Su	0.43	0.999	0.43	-0.02					- I				
Station25 MSB-MPH	0.43	0.000	0.00	0.00			/////	(///)	N//N				

DIgSI/wrng = 1 area(s) are unsupplied. DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym': DIgSI/wrng - Maximum Active Power Limit Exceeded (10.85 MW > 5.30 MW)

	DIGSILENT	Project:		
	13.2.333	Date: 4/27/2011		

Load Flow Calculation	Complete System Report: Substations, Voltage Profiles, A	rea Interchange
Balanced, positive sequence Automatic Tap Adjust of Transformers No Consider Reactive Power Limits No		No 1.00 kVA 0.10 %

Grid: Grid	System Stage	: Grid		Stu	dy Case:	Study Ca	ase		Annex:	:		/ 1
rated Voltage [kV]	Bus-voltage [p.u.] [kV] [deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		Ac	lditiona	al Data		
Station1 MIS 11.00 Cub_0.0/Coup Cub_0.6/Lne Cub_0.6/Lne Cub_0.4/Lne Cub_0.3/Lne Cub_0.6/Lne	1.00 10.99 -0.02 Breaker/Switch K01 K02 K03 K04 Line(6)	2.91 0.05 3.73 0.53 0.30 -7.52	1.82 0.00 2.49 0.31 0.15 -4.76	0.85 1.00 0.83 0.86 0.90 -0.84	0.18 0.00 0.24 0.03 0.02 0.47	0.00 0.65 53.58 6.74 3.64 76.42	Pv: Pv: Pv: Pv: Pv:	0.01 kW 27.60 kW 0.22 kW 0.04 kW 4.15 kW	cLod: cLod: cLod: cLod: cLod:	0.02 Mvar 0.03 Mvar 0.02 Mvar 0.01 Mvar 0.00 Mvar	L: L: L:	1.14 km 1.68 km 0.86 km 0.55 km 0.10 km
Station10 Block 05 (.00 Cub_0.3/Coup Cub_0.0/Lne Cub_0.3/Lne Cub_0.3/Lne	1.00 10.98 -0.04 Breaker/Switch(1) K10 TX-05/1 TX-MB/1	0.00 -1.69 0.59 1.10	0.00 -1.06 0.37 0.69	1.00 -0.85 0.85 0.85	0.00 0.10 0.04 0.07	0.00 21.58 9.42 17.72	Pv: Pv: Pv:	1.44 kW 0.01 kW 0.59 kW	cLod: cLod: cLod:	0.01 Mvar 0.00 Mvar 0.01 Mvar	L:	0.55 km 0.01 km 0.33 km
Station11 Undercroft.00 Cub_0.4/Coup Cub_0.0/Lne Cub_0.4/Lne Cub_0.4/Lne Cub_0.4/Lne	1.00 10.98 -0.03 Breaker/Switch(2) K11 TX-MB/3 TX-PC2 TX-PD2	0.00 -0.80 0.08 0.12 0.60	0.00 -0.49 0.05 0.06 0.37	1.00 -0.86 0.85 0.88 0.85	0.00 0.05 0.01 0.01 0.04	0.00 10.16 1.35 1.93 9.60	Pv: Pv: Pv: Pv:	0.50 kW 0.00 kW 0.02 kW 0.19 kW	cLod: cLod: cLod: cLod:	0.02 Mvar 0.00 Mvar 0.01 Mvar 0.01 Mvar	L: L:	0.86 km 0.01 km 0.66 km 0.35 km
Station12 MSB PC 0.43 Cub_0.2/Lod Cub_0.3/Coup Cub_0.3/Tr2	1.00 0.43 -0.15 MSBPC1 Breaker/Switch(3) TX-PC2(1)	0.12 0.00 -0.12	0.07 0.00 -0.07	0.85 1.00 -0.85	0.19 0.00 0.19	0.00 8.13	PlO: Tap:	0.12 MW 0.00	Ql0: Min:	0.07 Mvar 0	Max:	0

	PowerFactory -	Project:		
	13.2.333	Date: 4/27/2011		

Load Flow Calculation	Com	olete System Report: Substations, Voltage Profiles, Area Interchange
Balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergency No Max. Acceptable Load Flow Error for
Consider Reactive Power Limits	No	Nodes 1.00 kVA Model Equations 0.10 %

Grid: Grid		System St	tage: Gr	id	Study Case: S	Study Case		Annex:		/ 14
	rtd.V [kV]	Bus · [p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - 0	- Deviation [%] +5	+10	
Station1										
MIS	11.00	0.999	10.99	-0.02			1			
Station10										
Block 05 (2)	11.00	0.998	10.98	-0.04			I			
Station11										
Undercroft	11.00	0.998	10.98	-0.03			I			
Station12							_			
MSB PC	0.43	0.997	0.43	-0.15			•			
Station13										
MSB PD	0.43	0.994	0.43	-0.40						
Station14							_			
MSB-05	0.43	0.994	0.43	-0.40						
Station15							_			
MSB-MB Building	0.43	0.996	0.43	-0.23			•			
Station16										
RMU-Substation	11.00	0.999	10.99	-0.02			I			
Station17	11 00	0.000	10.00	0.00						
RMU-MPH Substat	11.00	0.999	10.99	-0.02			· · · · ·			
Station18	11 00	0.000	10.00	0.15			_			
RMU-Substation Station19	11.00	0.990	10.89	-0.15						
RMU-Substation	11.00	0.990	10.90	0.14			_			
Station2	11.00	0.990	10.90	-0.14						
Transformer Poc	11.00	0.999	10.99	-0.02						
Station20	11.00	0.999	10.99	-0.02			· · · ·			
RMU-Substation	11.00	0.992	10.91	-0.12			-			
Station21	11.00	0.552	10.91	-0.12			_			
RMU-Substation	11.00	0.997	10.96	-0.05						
Station22	11.00	0.357	10.50	0.00			•			
Substation 1	0.43	0.998	0.43	-0.12						
Station23	00	0.000	00				•			
B1	0.43	0.999	0.43	-0.02			- I			
Station24							•			
Main Compact Su	0.43	0.999	0.43	-0.02			- I			
Station25							· · · ·			
MSB-MPH	0.43	0.000	0.00	0.00	///.	.//////	//////			

DIgSI/wrng -	1 area(s)	are unsupplied.	
--------------	-----------	-----------------	--

	DIGSILENT	Project:		
	13.2.333	Date: 4/27/2011		

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles,	Area Interchange
	io io	Automatic Model Adaptation for Convergency Max. Acceptable Load Flow Error for Nodes Model Equations	No 1.00 kVA 0.10 %

Grid: Grid	System Stage	: Grid		Stu	dy Case:	Study Ca	ase		Annex	:		/ 1
rated Voltag [kV]		Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		Ad	dition	al Data		
Station1 MIS 11.00 Cub_0.2/Xnet Cub_0.0/Coup Cub_0.6/Lne Cub_0.6/Lne Cub_0.4/Lne Cub_0.3/Lne Cub_0.6/Lne	1.00 11.00 0.00 TNB A 11kV Breaker/Switch K01 K02 K03 K04 Line(6)	4.61 0.00 0.05 3.73 0.53 0.30 0.00	2.94 0.00 2.48 0.31 0.15 -0.00	0.84 1.00 1.00 0.83 0.86 0.90 0.00	0.29 0.00 0.24 0.03 0.02 0.00	0.00 0.65 53.52 6.73 3.63 0.02	Sk": Pv: Pv: Pv: Pv: Pv: Pv:	5.30 MVA 0.01 kW 27.54 kW 0.22 kW 0.04 kW 0.00 kW	cLod: cLod: cLod: cLod: cLod:	0.02 Mvar 0.03 Mvar 0.02 Mvar 0.01 Mvar 0.00 Mvar	L: L: L:	1.14 km 1.68 km 0.86 km 0.55 km 0.10 km
Station10 Block 05 (.00 Cub_0.3/Coup Cub_0.0/Lne Cub_0.3/Lne Cub_0.3/Lne	1.00 10.99 -0.02 Breaker/Switch(1) K10 TX-05/1 TX-MB/1	0.00 -1.69 0.59 1.10	0.00 -1.06 0.37 0.69	1.00 -0.85 0.85 0.85	0.00 0.10 0.04 0.07	0.00 21.56 9.41 17.70	Pv: Pv: Pv:	1.43 kW 0.01 kW 0.59 kW	cLod: cLod: cLod:	0.01 Mvar 0.00 Mvar 0.01 Mvar	L:	0.55 km 0.01 km 0.33 km
Station11 Undercroft.00 Cub_0.4/Coup Cub_0.0/Lne Cub_0.4/Lne Cub_0.4/Lne Cub_0.4/Lne	1.00 10.99 -0.01 Breaker/Switch(2) K11 TX-MB/3 TX-PC2 TX-PD2	0.00 -0.80 0.08 0.12 0.60	0.00 -0.49 0.05 0.06 0.37	1.00 -0.86 0.85 0.88 0.88	0.00 0.05 0.01 0.01 0.04	0.00 10.15 1.35 1.93 9.59	Pv: Pv: Pv: Pv:	0.50 kW 0.00 kW 0.02 kW 0.19 kW	cLod: cLod: cLod: cLod:	0.02 Mvar 0.00 Mvar 0.01 Mvar 0.01 Mvar	L: L:	0.86 km 0.01 km 0.66 km 0.35 km
Station12 MSB PC 0.43 Cub_0.2/Lod Cub_0.3/Coup Cub_0.3/Tr2	1.00 0.43 -0.13 MSBPC1 Breaker/Switch(3) TX-PC2(1)	0.12 0.00 -0.12	0.07 0.00 -0.07	0.85 1.00 -0.85	0.19 0.00 0.19	0.00 8.12	PlO: Tap:	0.12 MW 0.00	Ql0: Min:	0.07 Mvar 0	Max:	0

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles,	Area Interchange
Balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergency Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: Grid		System S	tage: Gr	id	Study Case: S	tudy Case		Annex:		/ 14
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - I 0	eviation [%] +5	+10	
Station1										
MIS	11.00	1.000	11.00	0.00			1			
Station10 Block 05 (2)	11.00	0.999	10.99	-0.02			1			
Station11										
Undercroft	11.00	0.999	10.99	-0.01			1			
Station12							_			
MSB PC	0.43	0.998	0.43	-0.13						
Station13							_			
MSB PD	0.43	0.995	0.43	-0.38						
Station14	0 40	0.005	0.40	0.00			_			
MSB-05 Station15	0.43	0.995	0.43	-0.38						
MSB-MB Building	0.43	0.997	0 4 2	-0.21						
Station16	0.43	0.997	0.43	-0.21			•			
RMU-Substation	11.00	1.000	11.00	-0.00			1			
Station17	11.00	1.000	11.00	-0.00			1			
RMU-MPH Substat	11.00	1.000	11.00	-0 00			1			
Station18	11.00	1.000	11.00	0.00			1			
RMU-Substation	11.00	0.991	10.90	-0.13						
Station19										
RMU-Substation	11.00	0.992	10.91	-0.12						
Station2										
Transformer Poc	11.00	1.000	11.00	-0.00						
Station20										
RMU-Substation	11.00	0.993	10.93	-0.10						
Station21							_			
RMU-Substation	11.00	0.998	10.98	-0.03			•			
Station22	0 40	0.000	0.40							
Substation 1	0.43	0.999	0.43	-0.09			- I			
Station23 B1	0.43	1.000	0 4 3	-0.00			1			
Station24	0.43	1.000	0.43	-0.00			1			
Main Compact Su	0.43	1.000	0 43	-0.00			1			
Station25	0.45	1.000	0.45	-0.00			1			
MSB-MPH	0.43	0.000	0.00	0.00		.///////	V/////			

DIGSILENT	Project:
13.2.333	Date: 4/27/2011

DIgSI/wrng - 1 area(s) are unsupplied.

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles, A	Area Interchange
Balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergency Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: Grid	System Stage	: Grid		Stu	dy Case:	Study Ca	ase		Annex	:		/ 1	1
rated Voltage [kV]	Bus-voltage [p.u.] [kV] [deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		Ac	ldition	al Data			
Station1 MIS 11.00 Cub_0.2/Xnet Cub_0.0/Coup Cub_0.6/Lne Cub_0.6/Lne Cub_0.4/Lne Cub_0.3/Lne Cub_0.6/Lne	1.00 11.00 0.00 TNB A 11kV Breaker/Switch K01 K02 K03 K04 Line(6)	10.84 8.33 0.05 3.73 0.53 0.30 -2.10	6.37 5.00 0.00 2.48 0.31 0.15 -1.58	0.86 0.86 1.00 0.83 0.86 0.90 -0.80	0.66 0.51 0.00 0.24 0.03 0.02 0.14	0.00 0.65 53.52 6.73 3.63 22.52	Sk": Pv: Pv: Pv: Pv: Pv: Pv:	5.30 MVA 0.01 kW 27.54 kW 0.22 kW 0.04 kW 0.36 kW	cLod: cLod: cLod: cLod: cLod:	0.02 Mva 0.03 Mva 0.02 Mva 0.01 Mva 0.00 Mva	r L: r L: r L:	1.14 1.68 0.86 0.55 0.10	km km km
Station10 Block 05 (.00 Cub_0.3/Coup Cub_0.0/Lne Cub_0.3/Lne Cub_0.3/Lne	1.00 10.99 -0.02 Breaker/Switch(1) K10 TX-05/1 TX-MB/1	0.00 -1.69 0.59 1.10	0.00 -1.06 0.37 0.69	1.00 -0.85 0.85 0.85	0.00 0.10 0.04 0.07	0.00 21.56 9.41 17.70	Pv: Pv: Pv:	1.43 kW 0.01 kW 0.59 kW	cLod: cLod: cLod:	0.01 Mva 0.00 Mva 0.01 Mva	r L:	0.55 0.01 0.33	km
Station11 Undercroft.00 Cub_0.4/Coup Cub_0.0/Lne Cub_0.4/Lne Cub_0.4/Lne Cub_0.4/Lne	1.00 10.99 -0.01 Breaker/Switch(2) K11 TX-MB/3 TX-PC2 TX-PD2	0.00 -0.80 0.08 0.12 0.60	0.00 -0.49 0.05 0.06 0.37	1.00 -0.86 0.85 0.88 0.85	0.00 0.05 0.01 0.01 0.04	0.00 10.15 1.35 1.93 9.59	Pv: Pv: Pv: Pv:	0.50 kW 0.00 kW 0.02 kW 0.19 kW	cLod: cLod: cLod: cLod:	0.02 Mva 0.00 Mva 0.01 Mva 0.01 Mva	r L: r L:	0.86 0.01 0.66 0.35	km km
Station12 MSB PC 0.43 Cub_0.2/Lod Cub_0.3/Coup Cub_0.3/Tr2	1.00 0.43 -0.13 MSBPC1 Breaker/Switch(3) TX-PC2(1)	0.12 0.00 -0.12	0.07 0.00 -0.07	0.85 1.00 -0.85	0.19 0.00 0.19	0.00 8.12	PlO: Tap:	0.12 MW 0.00	Ql0: Min:	0.07 Mva 0	nr Max:	0	

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles, Area Interchange
Balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergency No Max. Acceptable Load Flow Error for
Consider Reactive Power Limits	No	Nodes 1.00 kVA Model Equations 0.10 %

Grid: Grid		System S	tag e: Gr	id	Study Case: S	Study Case		Annex:		/ 14
	rtd.V [kV]	Bus ([p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - 0	Deviation [%] +5	+10	
Station1										
MIS	11.00	1.000	11.00	0.00			1			
Station10										
Block 05 (2)	11.00	0.999	10.99	-0.02						
Station11										
Undercroft	11.00	0.999	10.99	-0.01						
Station12	0.40			0.10						
MSB PC	0.43	0.998	0.43	-0.13			•			
Station13	0.43	0.995	0.40	-0.38			_			
MSB PD Station14	0.43	0.995	0.43	-0.38			-			
MSB-05	0.43	0.995	0 4 2	-0.38			-			
Station15	0.45	0.995	0.45	-0.30			-			
MSB-MB Building	0.43	0.997	0 / 3	-0.21						
Station16	0.45	0.557	0.45	-0.21			•			
RMU-Substation	11.00	1.000	11.00	-0.00			1			
Station17		2.000		0.00						
RMU-MPH Substat	11.00	1.000	11.00	-0.00			I			
Station18										
RMU-Substation	11.00	0.991	10.90	-0.13						
Station19										
RMU-Substation	11.00	0.992	10.91	-0.12						
Station2										
Transformer Poc	11.00	1.000	11.00	-0.00						
Station20							_			
RMU-Substation	11.00	0.993	10.93	-0.10						
Station21										
RMU-Substation	11.00	0.998	10.98	-0.03			•			
Station22 Substation 1	0.43	0.999	0 4 2	-0.09						
Substation 1 Station23	0.43	0.999	0.43	-0.09						
B1	0.43	1.000	0 43	-0.00			1			
Station24	0.45	1.000	0.45	-0.00			1			
Main Compact Su	0.43	1.000	0.43	-0.00			1			
Station25	0.40	2.000	0.40	0.00			1			
MSB-MPH	0.43	0.000	0.00	0.00			<u> </u>			

APPENDIX D

SHORT CIRCUIT STUDY RESULT

(Three Phase)

DIGSI/wrng - No short-circuit computed on busbars DIGSI/wrng - in isolated areas without syn. machine or external net ! DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar': DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar': DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

Γ		DIGSILENT	Project:	
		PowerFactory 13.2.333	Date: 4/27/2011	1

Fault Locations with Feeder Short-Circuit Calculation c			3-Phase S	Short-Circuit /	
Short-Circuit Duration Breaker Time	0.10 s	Fault Impedance Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm	Decaying Aperiodic Component Using Method	в

Grid: Grid	sy	stem St	age: (Grid					Annex:			
	rtd.V. [kV]	Volt [kV]		c- Factor	Sk" [MVA/MVA]	[kA/kA]	k" [deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	Ik [kA]	Ith [kA]
Station1 MIS Breaker/Switch K01 K02 K03 K04 Line(6) Station10	11.00 Station9 Station16 Station34 Station3 Station2 Station53	0.00	0.00	1.00	27.96 MVA 13.98 MVA 0.00 MVA 0.00 MVA 0.00 MVA 0.00 MVA 13.98 MVA	1.47 kA 0.73 kA 0.00 kA 0.00 kA 0.00 kA 0.00 kA 0.73 kA	-25.13 154.87 0.00 0.00 0.00 0.00 154.87	4.15 kA 2.08 kA 0.00 kA 0.00 kA 0.00 kA 0.00 kA 2.08 kA	1.40	26.77	1.47	1.47
Block 05 (2) Breaker/Switch(K10 TX-05/1 TX-MB/1 Station11	11.00 Station2 Station9 Station61 Station63	0.00	0.00	1.00	27.61 MVA 0.00 MVA 27.61 MVA 0.00 MVA 0.00 MVA	1.45 kA 0.00 kA 1.45 kA 0.00 kA 0.00 kA	-25.43 0.00 154.57 0.00 0.00	4.10 kA 0.00 kA 4.10 kA 0.00 kA 0.00 kA	1.39	26.43	1.45	1.45
Undercroft Breaker/Switch(K11 TX-MB/3 TX-PC2 TX-PC2 Station12	11.00 Station3 Station9 Station71 Station60 Station70	0.00	0.00	1.00	27.39 MVA 0.00 MVA 27.39 MVA 0.00 MVA 0.00 MVA 0.00 MVA	1.44 kA 0.00 kA 1.44 kA 0.00 kA 0.00 kA 0.00 kA	-25.61 0.00 154.39 0.00 0.00 0.00	4.07 kA 0.00 kA 4.07 kA 0.00 kA 0.00 kA 0.00 kA	1.38	26.22	1.44	1.44
MSB PC Breaker/Switch(TX-PC2(1) MSBPC1 Station13	0.43 Station4 Station60	0.00	0.00	1.00	21.12 MVA 0.00 MVA 21.12 MVA 0.00 MVA	28.16 kA 0.00 kA 28.16 kA 0.00 kA	-44.80 0.00 135.20 0.00	79.64 kA 0.00 kA 79.64 kA 0.00 kA	27.22	20.42	24.38	28.16
MSB PD	0.43	0.00	0.00	1.00	23.52 MVA	31.36 kA	-38.56	88.71 kA	30.18	22.64	27.16	31.36

DIgSI/wrng - 1 area(s) are unsupplied. DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym': DIgSI/wrng - Maximum Active Power Limit Exceeded (10.85 MW > 5.30 MW) DIgSI/wrng - No short-circuit computed on busbars DIgSI/wrng - in isolated areas without syn. machine or external net ! DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar': DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar': DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar': DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Feeders Short-Circuit Calculation co			3-Phase S	Short-Circuit /	
Short-Circuit Duration Breaker Time	0.10 s	Fault Impedance Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm	Decaying Aperiodic Component Using Method	в

Grid: Grid	System	Stage: Grid				Annes	x :	/ 1	
	rtd.V. Vo [kV] [kV]	ltage c- [deg] Factor	Sk" [MVA/MVA]	Ik" [kA/kA] [deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	Ik [kA]	Ith [kA]
Station1 MIS Breaker/Switch K01 K02 K03 K04 Line(6) Station10	11.00 0.00 Station9 Station16 Station34 Station3 Station2 Station53	0.00 1.00	38.30 MVA 19.15 MVA 0.00 MVA 0.00 MVA 0.00 MVA 0.00 MVA 19.15 MVA	2.01 kA -21.78 1.01 kA 158.22 0.00 kA 0.00 0.00 kA 0.00 0.00 kA 0.00 0.00 kA 0.00 0.00 kA 0.00 1.01 kA 158.22	5.69 kA 2.84 kA 0.00 kA 0.00 kA 0.00 kA 0.00 kA 2.84 kA	1.98	37.66	2.01	2.01
Block 05 (2) Breaker/Switch(K10 TX-05/1 TX-MB/1 Station11	11.00 0.00 Station2 Station9 Station61 Station63	0.00 1.00	37.65 MVA 0.00 MVA 37.65 MVA 0.00 MVA 0.00 MVA	1.98 kA -22.26 0.00 kA 0.00 1.98 kA 157.74 0.00 kA 0.00 0.00 kA 0.00	5.59 kA 0.00 kA 5.59 kA 0.00 kA 0.00 kA	1.94	37.03	1.98	1.98
Undercroft Breaker/Switch(K11 TX-MB/3 TX-PC2 TX-PD2 Station12	11.00 0.00 Station3 Station9 Station71 Station60 Station70	0.00 1.00	37.25 MVA 0.00 MVA 37.25 MVA 0.00 MVA 0.00 MVA 0.00 MVA	1.96 kA -22.53 0.00 kA 0.00 1.96 kA 157.47 0.00 kA 0.00 0.00 kA 0.00 0.00 kA 0.00	5.53 kA 0.00 kA 5.53 kA 0.00 kA 0.00 kA 0.00 kA	1.92	36.64	1.96	1.96
MSB PC Breaker/Switch(TX-PC2(1) MSBPC1	0.43 0.00 Station4 Station60	0.00 1.00	26.47 MVA 0.00 MVA 26.47 MVA 0.00 MVA	35.29 kA -47.61 0.00 kA 0.00 35.29 kA 132.39 0.00 kA 0.00	99.83 kA 0.00 kA 99.83 kA 0.00 kA	34.93	26.20	30.57	35.29

1	SI/wrng - 1 area(s) are unsupplied.
1	SI/wrng - No short-circuit computed on busbars
	SI/wrng - in isolated areas without syn. machine or external net !
	31/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
1	SI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
1	31/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT PowerFactory	Project:
	13.2.333	Date: 4/27/2011

Fault	Locatio	ns wit	h Feede	rs
Short-	Circuit	Calcu	lation	complete

Short-Circuit	t Duration
Breaker T	ime

Fault Impedance Resistance, Rf Reactance, Xf
--

0.10 s

0.00 Ohm 0.00 Ohm 0.00 Ohm

3-Phase Short-Circuit /

Component B

Grid: Grid	Sj	ystem S	tage: (Grid		Annex:			/ 1			
	rtd.V. [kV]	Vol [kV]	tage [deg]	c- Factor	Sk" [MVA/MVA]	[kA/kA]	Ik" [deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	Ik [kA]	Ith [kA]
Station1 MIS Breaker/Switch K01 K02 K03 K04 Line(6) TNB A 11kV Station10	11.00 Station9 Station16 Station3 Station3 Station5 Station53	1	0.00	1.00	24.92 MV 15.76 MV 0.00 MV 0.00 MV 0.00 MV 0.00 MV 0.00 MV 9.26 MV	A 0.83 kA A 0.00 kA A 0.00 kA A 0.00 kA A 0.00 kA A 0.00 kA A 0.00 kA	133.81 0.00 0.00 0.00 0.00 0.00	3.70 kA 2.34 kA 0.00 kA 0.00 kA 0.00 kA 0.00 kA 0.00 kA 1.37 kA	1.31	24.92	1.31	1.31
Block 05 (2) Breaker/Switch(K10 TX-05/1 TX-MB/1 Station11	11.00 Station2 Station9 Station61 Station63		0.00	1.00	24.62 MV 0.00 MV 24.62 MV 0.00 MV 0.00 MV	A 0.00 kA A 1.29 kA A 0.00 kA	0.00 129.99 0.00	3.65 kA 0.00 kA 3.65 kA 0.00 kA 0.00 kA	1.29	24.62	1.29	1.29
Undercroft Breaker/Switch(K11 TX-MB/3 TX-PC2 TX-PD2 Station12	11.00 Station3 Station9 Station71 Station60 Station70)	0.00	1.00	24.43 MV. 0.00 MV. 24.43 MV. 0.00 MV. 0.00 MV. 0.00 MV.	A 0.00 kA A 1.28 kA A 0.00 kA A 0.00 kA	0.00 130.01 0.00 0.00	3.63 kA 0.00 kA 3.63 kA 0.00 kA 0.00 kA 0.00 kA	1.28	24.43	1.28	1.28
MSB PC Breaker/Switch(TX-PC2(1) MSBPC1 Station13	0.43 Station4 Station60	0.00	0.00	1.00	17.89 MV 0.00 MV 17.89 MV 0.00 MV	A 0.00 kA A 23.86 kA	0.00	67.48 kA 0.00 kA 67.48 kA 0.00 kA	23.86	17.89	20.66	23.86

DIgSI/wrng - 1 area(s) are unsupplied.
DIgSI/wrng - No short-circuit computed on busbars
DIGSI/wrng - in isolated areas without syn. machine or external net !
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIĞSI/wrnğ - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Feede Short-Circuit Calculation		3-Phase Short-Circuit /				
Short-Circuit Duration Breaker Time	0.10 s	Fault Impedance Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm		в	

Grid: Grid	System S	tage: Grid			Annex:		ex:	/ 1	
	rtd.V. Vol [kV] [kV]	tage c- [deg] Factor	Sk" [MVA/MVA]	[kA/kA] [d	ip [kA/kA]	Ib [kA]	Sb [MVA]	Ik [kA]	Ith [kA]
Station1 MIS Breaker/Switch K01 K02 K03 K04 Line(6) TNB A 11kV Station10	11.00 0.00 Station9 Station16 Station34 Station3 Station2 Station53	0.00 1.00	24.92 MVA 15.76 MVA 0.00 MVA 0.00 MVA 0.00 MVA 0.00 MVA 0.00 MVA 9.26 MVA	0.83 kA 133 0.00 kA 0 0.00 kA 0 0.00 kA 0 0.00 kA 0 0.00 kA 0	.06 3.70 kA .81 2.34 kA .00 0.00 kA	1.31	24.92	1.31	1.31
Block 05 (2) Breaker/Switch(K10 TX-05/1 TX-MB/1 Station11	11.00 0.00 Station2 Station9 Station61 Station63	0.00 1.00	24.62 MVA 0.00 MVA 24.62 MVA 0.00 MVA 0.00 MVA	0.00 kA 0 1.29 kA 129 0.00 kA 0	.01 3.65 kA .00 0.00 kA .99 3.65 kA .00 0.00 kA .00 0.00 kA	1.29	24.62	1.29	1.29
Undercroft Breaker/Switch(K11 TX-MB/3 TX-PC2 TX-PD2 Station12	11.00 0.00 Station3 Station9 Station71 Station60 Station70	0.00 1.00	24.43 MVA 0.00 MVA 24.43 MVA 0.00 MVA 0.00 MVA 0.00 MVA	0.00 kA 0 1.28 kA 130 0.00 kA 0 0.00 kA 0	.99 3.63 kA .00 0.00 kA .01 3.63 kA .00 0.00 kA	1.28	24.43	1.28	1.28
MSB PC Breaker/Switch(TX-PC2(1) MSBPC1 Station13	0.43 0.00 Station4 Station60	0.00 1.00	17.89 MVA 0.00 MVA 17.89 MVA 0.00 MVA	0.00 kA 0 23.86 kA 118	.06 67.48 kA .00 0.00 kA .94 67.48 kA .00 0.00 kA	23.86	17.89	20.66	23.86

APPENDIX E

SHORT CIRCUIT STUDY RESULT

(Phase to Phase)

DIgSI/wrng - 1 area(s) are unsupplied.
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIGSI/wrng - Maximum Reactive Power Limit Exceeded (9.54 Mvar) 6.63 Mvar)
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIGSI/wrng - Maximum Active Power Limit Exceeded (15.05 MW > 5.30 MW)
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DigSI/wrng - Line 'UTM.IntUser/GDC-UTP System Studies Latest.IntPrj/Grid.ElmNet/KO1 (4).ElmLne': R0 and X0 too low! Assumed: R0-R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=R
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - No short-circuit computed on busbars
DIGSI/wrng - in isolated areas without syn. machine or external net !
DIGSI/wrng - '\UIM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIġSI/wrnġ - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT	Project:		
	13.2.333	Date: 4/27/2011		

Fault Locations with Feeders Short-Circuit Calculation complete 2-Phase Short-Circuit /										
Short-Circuit Duration Breaker Time				0.00 Ohm 0.00 Ohm						
Grid: Grid	System Stage	: Grid				Ann	ex:	/ 1		
rtd. [kV		a c- deg] Factor	Sk" [MVA/MVA]	I k" [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]	
Station1										

DIgSI/wrng - No short-circuit computed on busbars DIgSI/wrng - in isolated areas without syn. machine or external net ! DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar': DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar': DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT PowerFactory	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Feeders Short-Circuit Calculation complete		2-Phase S	hort-Circuit /
Short-Circuit Duration Breaker Time 0.10 s	Fault Impedance Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm	

Grid: Grid		S	ystem S	tage: Gr:	id						Anne	x :	/ 1	
		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor		Sk" [MVA/MVA]	I k' [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B C	11.00	5.16 2.58 2.58	3.91 -176.09 -176.09	1.00		0.00 MVA 13.15 MVA 13.15 MVA	0.00 kA 2.07 kA 2.07 kA	-114.47	0.00 5.86 5.86	kA	0.00 2.07 2.07	0.00 13.15 13.15	1.00 0.00 0.00
Breaker/Switc	h	Station9				A B C	0.93 MVA 6.62 MVA 6.56 MVA	0.15 kA 1.04 kA 1.03 kA	69.55	0.41 2.95 2.92	kA			
K01		Station1	6			A B C	0.01 MVA 0.01 MVA 0.01 MVA	0.00 kA 0.00 kA 0.00 kA	-179.03	0.01 0.00 0.00	kA			
K02		Station34	4			A B C	1.22 MVA 0.61 MVA 0.61 MVA	0.19 kA 0.10 kA 0.10 kA	150.22	0.54 0.27 0.27	kA			
к03		Station3				A B C	0.17 MVA 0.08 MVA 0.08 MVA	0.03 kA 0.01 kA 0.01 kA	153.75	0.07 0.04 0.04	kA			
K04		Station2				A B C	0.09 MVA 0.04 MVA 0.04 MVA	0.01 kA 0.01 kA 0.01 kA	157.58	0.04 0.02 0.02	kA			
Line(6)		Station5	3			A B C	2.42 MVA 6.60 MVA 6.77 MVA	0.38 kA 1.04 kA 1.07 kA	55.01	1.08 2.94 3.01	kA			
Station10 Block 05 (2)	A B	11.00		3.91 -176.09	1.00		0.00 MVA 12.88 MVA	0.00 kA 2.03 kA		0.00 5.74		0.00	0.00	1.00

DIGSI/wrng - No short-circuit computed on busbars DIGSI/wrng - in isolated areas without syn. machine or external net ! DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar': DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar': DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT	Project:
	PowerFactory 13.2.333	Date: 4/27/2011

Fault Locations with Feeders Short-Circuit Calculation complete

Short-Circuit Duration Breaker Time

0.10 s Fault Impedance Resistance, Reactance, X

Rf 0.00 Ohm

2-Phase Short-Circuit

0.00 Ohm

1

Resistance, Rf Reactance, Xf

Grid: Grid		sy	stem S	tage: Gr	id					A	Annex:	/ 1	
		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor		Sk" [MVA/MVA]	I k" [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B C	11.00		0.00 -180.00 -180.00	1.00		0.00 MVA 7.19 MVA 7.19 MVA	0.00 kA 1.13 kA 1.13 kA	-140.06	0.00 k 3.20 k 3.20 k	A 1.13	0.00 7.19 7.19	1.00 0.00 0.00
Breaker/Swit	tch	Station9				A B C	0.00 MVA 4.55 MVA 4.55 MVA	0.00 kA 0.72 kA 0.72 kA	43.81	0.00 k 2.03 k 2.03 k	cΑ		
K01		Station16	;			A B C	0.02 MVA 0.01 MVA 0.01 MVA	0.00 kA 0.00 kA 0.00 kA	177.13	0.01 k 0.00 k 0.00 k	cΑ		
K02		Station34				A B C	1.49 MVA 0.75 MVA 0.75 MVA	0.24 kA 0.12 kA 0.12 kA	146.31	0.67 k 0.33 k 0.33 k	cΑ		
K03		Station3				A B C	0.20 MVA 0.10 MVA 0.10 MVA	0.03 kA 0.02 kA 0.02 kA	149.84	0.09 k 0.05 k 0.05 k	cΑ		
K04		Station2				A B C	0.11 MVA 0.06 MVA 0.06 MVA	0.02 kA 0.01 kA 0.01 kA	153.68	0.05 k 0.02 k 0.02 k	cΑ		
Line(6)		Station53				A B C	0.00 MVA 0.00 MVA 0.00 MVA	0.00 kA 0.00 kA 0.00 kA	-90.01	0.00 k 0.00 k 0.00 k	cΑ		
TNB A 11kV						A B C	1.82 MVA 3.16 MVA 2.45 MVA	0.29 kA 0.50 kA 0.39 kA	-161.93	0.81 k 1.41 k 1.09 k	cΑ		

DIgSI/wrng - 1 area(s) are unsupplied.
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPri\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPri\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPri\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1.
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - No short-circuit computed on busbars
DIgSI/wrng - in isolated areas without syn. machine or external net !
DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Fee Short-Circuit Calculatio				2-Phase S	Short-Circuit	/			
Short-Circuit Duration Breaker Time	0.10 s	Fault Impedance Resistance, Reactance, X		0.00 Ohm 0.00 Ohm					
Grid: Grid	System Stage	: Grid				Annex:		/ 1	
rtd	V Voltage		S & "	T 14 11	in		Th	Sh	EFF

		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor	Sk" [MVA/MVA]	I k" [kA/kA]	[deg]	[kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B C	11.00		1.22 -178.78 -178.78		0.00 MVA 10.02 MVA 10.02 MVA	0.00 kA 1.58 kA 1.58 kA	0.00 -123.78 56.22	0.00 kA 4.46 kA 4.46 kA	0.00 1.58 1.58	0.00 10.02 10.02	1.00 0.00 0.00

APPENDIX F

SHORT CIRCUIT STUDY RESULT

(Phase to Ground)

DIgSI/wrng - 1 area(s) are unsupplied.
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIGSI/wrng - Maximum Reactive Power Limit Exceeded (9.54 Mvar > 6.63 Mvar)
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIGSI/wrng - Maximum Active Power Limit Exceeded (15.05 MW > 5.30 MW)
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIĞSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIĞSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr}\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - No short-circuit computed on busbars
DIGSI/wrng - in isolated areas without syn. machine or external net !
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIĞSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIġSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	Douto w Do otto with	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Fe Short-Circuit Calculati				Single P	hase to (Ground /			
Short-Circuit Duration Breaker Time	0.10 s	Fault Impedance Resistance Reactance	e, Rf	0.00 Ohm 0.00 Ohm					
Grid: Grid	System Stage	: Grid				A	nnex:	/ 1	
	.V. Voltage V] [kV] [d	e c- deg] Factor	Sk" [MVA/MVA]	I k" [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]

Station1

E

DIgSI/wrng - 1 area(s) are unsupplied.
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIGSI/wrng - Maximum Active Power Limit Exceeded (10.85 MW > 5.30 MW)
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line (80).ElmLne': R0 and X0 too low! Assumed: R0=R
DIgSI/wrng - No short-circuit computed on busbars
DIGSI/wrng - in isolated areas without syn. machine or external net !
DIĞSI/wrnğ - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Feede Short-Circuit Calculation			Single Phase t	to Ground /	
Short-Circuit Duration Breaker Time	0.10 s	Fault Impedance Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm		
Coulds Could		Could a		20000	

Grid: Grid		5	System St	age: Gr	id				Anne:	k:	/ 1	
		rtd.V. [kV]	Vol [kV]	ltage [deg]	c- Factor	Sk" [MVA/MVA]	I k" [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B	11.00	0.00	0.00 -147.34	1.00	1.18 MVA 0.00 MVA	0.19 kA 0.00 kA	-87.19	0.53 kA 0.00 kA	0.19	1.18	0.00

DIgSI/wrng - 1 area(s) are unsupplied.	NO to a local Decomposity DO-D1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (4).ElmLne': R0 and	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and	
Digsi/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0	too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS1B.ElmLne': R0 an	d X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and	X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K10.ElmLne': R0 and X0	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and	X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and	X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and	X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 a	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 4.ElmLne': R0 and X	0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and	
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line (55).ElmLne': R0 an	d X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0	too low! Assumed: R0=R1, X0
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 an	d X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 an	d X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrf\Grid.ElmNet\Line (80).ElmLne': R0 an	
DIGSI/wrng - No short-circuit computed on busbars	
DIGSI/wrng - in isolated areas without syn. machine or external net !	
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.St	aBar':
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar'	
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar'	

	DIGSILENT	Project:		
	13.2.333	Date: 4/27/2011		

Fault Locations with Feeders Short-Circuit Calculation complete		Single Phase to Ground /			
Short-Circuit Duration Breaker Time 0.	Fault Impedance S Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm			

Grid: Grid		S	ystem S	tage: Gri	d					Annex	::	/ 1	
		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor	Sk" [MVA/MVA]	⊥k" [kA/kA]	[deg]	ip [ka/ka]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B C	11.00	0.00 8.67 6.51	0.00 -126.26 141.94	1.00	6.08 MVA 0.00 MVA 0.00 MVA	0.96 kA 0.00 kA 0.00 kA	-68.73 0.00 0.00	2.71 0.00 0.00	kA	0.96 0.00 0.00	6.08 0.00 0.00	0.00 1.36 1.02

DIgSI/wrng - 1 area(s) are unsupplied.
DigSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIģSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=R
DIģSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIġSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntFrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIġSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne'; R0 and X0 too low! Assumed; R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr}\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr}\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr}\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr}\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0 DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R
Digs/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R Digs/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=R DIGSI/wrng - No short-circuit computed on busbars
DigSI/wrng - in isolated areas without syn. machine or external net !
Digs/wrng - in isolated areas without syn. machine or external net : Digs/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
Digs/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar': Digs/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
Digs/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar': Digs/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':
bigs/wing - (ofM.incosel(sbc-off system studies facest.intri)(sid.fimMet(stationss.fimStat(bi.stabar))

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Feeders Short-Circuit Calculation comp.	lete		Single Ph	hase to Ground /
Short-Circuit Duration Breaker Time	0.10 s	Fault Impedance Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm	

Grid: Grid		5	System S	tage: Gri	.d				Anne	ex:	/ 1	
		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor	Sk" [MVA/MVA]	I k" [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B C	11.00	0.00 10.15 8.46	0.00 -136.11 154.13	1.00	4.84 MVA 0.00 MVA 0.00 MVA	0.76 kA 0.00 kA 0.00 kA	-72.78 0.00 0.00	2.15 kA 0.00 kA 0.00 kA	0.76 0.00 0.00	0.00	0.00 1.62 1.28

APPENDIX G

SHORT CIRCUIT STUDY RESULT

(Phase to Phase to Ground)

DIgSI/wrng – 1 area(s) are unsupplied.
DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIGSI/wrng - Maximum Reactive Power Limit Exceeded (9.54 Mvar > 6.63 Mvar)
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIGSI/wrng - Maximum Active Power Limit Exceeded (15.05 MW > 5.30 MW)
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DigSI/wing - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr \Grid.ElmNet\K02 DSIB.ElmLne': R0 and X0 too low! Assumed: R0=F
DigS1/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr]\Grid.ElmNet\K02 DS15.ElmLne': R0 and X0 too low! Assumed: R0=R1 DigS1/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr]\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
Digs//wrng - Line '(UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.Eimbne'; R0 and X0 too low! Assumed; R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: F
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIĞSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIĞSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - No short-circuit computed on busbars
DIgSI/wrng - in isolated areas without syn. machine or external net !
DIgSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DigSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DigSI/wing - '\UTM.IntUser\GDC-UTP System Studies Latest.IntFi\Grid.ElmNet\Station33.ElmStat\B1.StaBar':
Sigor wing (orminicoser (soo orr system biddles havestrintii) (siid binnet (stations) binstabar (biotabar .

	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011

Fault Locations with Feeders Short-Circuit Calculation complete	2-Phase	to Ground /
Short-Circuit Duration Breaker Time 0.10 s	Fault Impedance Resistance, Rf 0.00 Ohm Reactance, Xf 0.00 Ohm	

Grid: Grid	s	ystem Stag	e: Grid				Anr	iex:	/ 1	
	rtd.V. [kV]	Volta [kV]	ge c- [deg] Factor	Sk" [MVA/MVA]	⊥k" [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]

Station1

г

DIgSI/wrng - 1 area(s) are unsupplied.
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\GTG A.ElmSym':
DIgSI/wrng - Maximum Active Power Limit Exceeded (10.85 MW > 5.30 MW)
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: F
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Sub 4.ElmIne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmIne': R0 and X0 too low! Assumed: R0=R1, X(
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=E
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - Line \UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=F
DIGSI/wrng - No short-circuit computed on busbars
DIGSI/wrng - in isolated areas without syn, machine or external net !
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIĞSI/wrnğ - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

	DIGSILENT	Project:
	PowerFactory 13.2.333	Date: 4/27/2011

Fault Locations with Feeders Short-Circuit Calculation complete		2-Phase	to Ground /
Short-Circuit Duration Breaker Time 0.1	Fault Impedance S Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm	

Grid: Grid		s	ystem S	tage: Gr:	id						/ 1	
		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor	Sk" [MVA/MVA]	I k' [kA/kA]	[deg]	ip [kA/kA	Ib] [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B	11.00	7.70	4.57 -120.00	1.00	0.00 MVA 12.93 MVA	0.00 kA 2.04 kA	0.00 -114.88	0.00 5.76		0.00	1.49

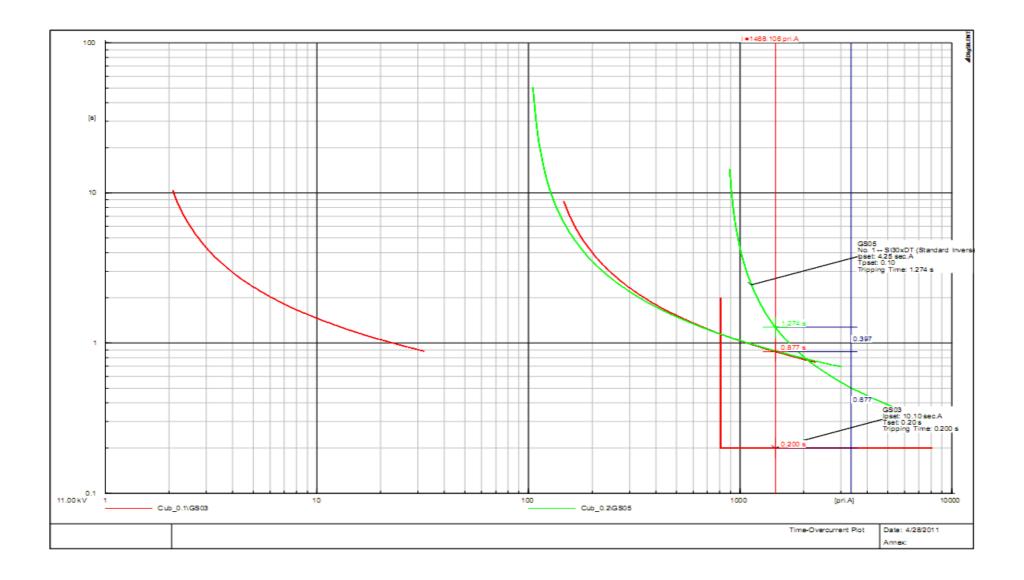
DIgSI/wrng - 1 area(s) are unsupplied.
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: R
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(55).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(79).ElmLne': R0 and X0 too low! Assumed: R0=R
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPr]\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - No short-circuit computed on busbars
DIGSI/wrng - in isolated areas without syn. machine or external net !
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIĞSI/wrnğ - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Station33.ElmStat\B1.StaBar':

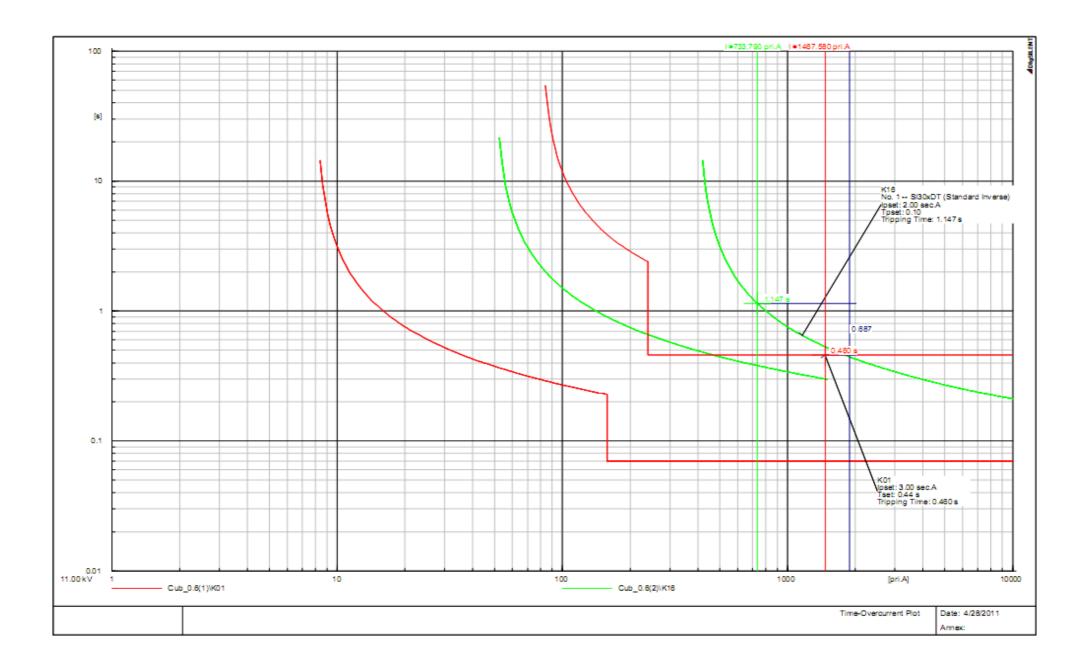
	DIGSILENT PowerFactory	Project:		
	13.2.333	Date: 4/27/2011		

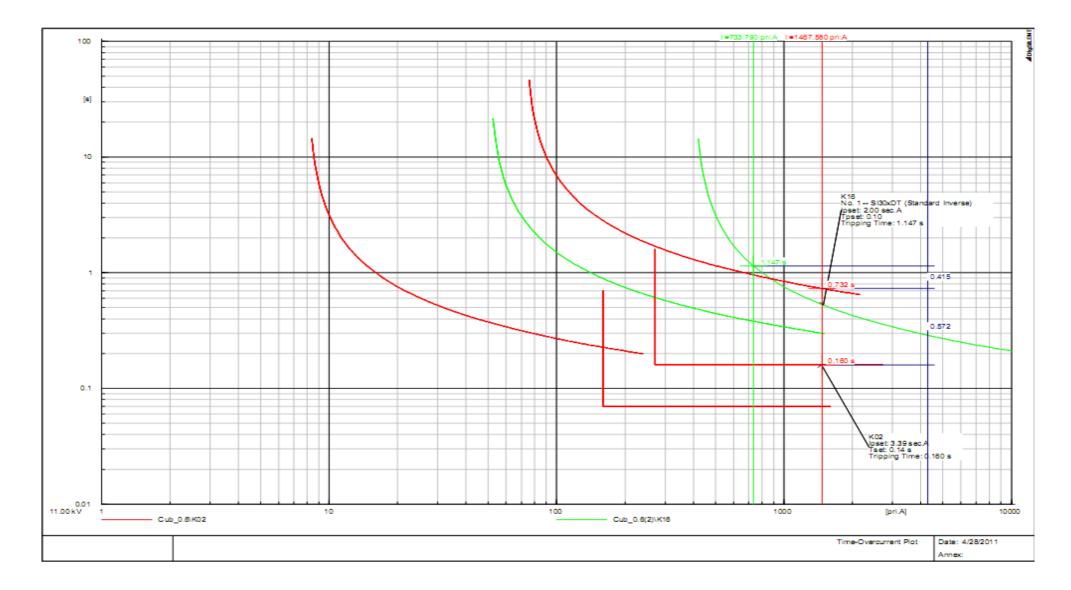
Fault Locations with Feeders Short-Circuit Calculation complete	2-Phase	to Ground /
Short-Circuit Duration Breaker Time 0.10 s	Fault Impedance Resistance, Rf 0.00 Ohm Reactance, Xf 0.00 Ohm	

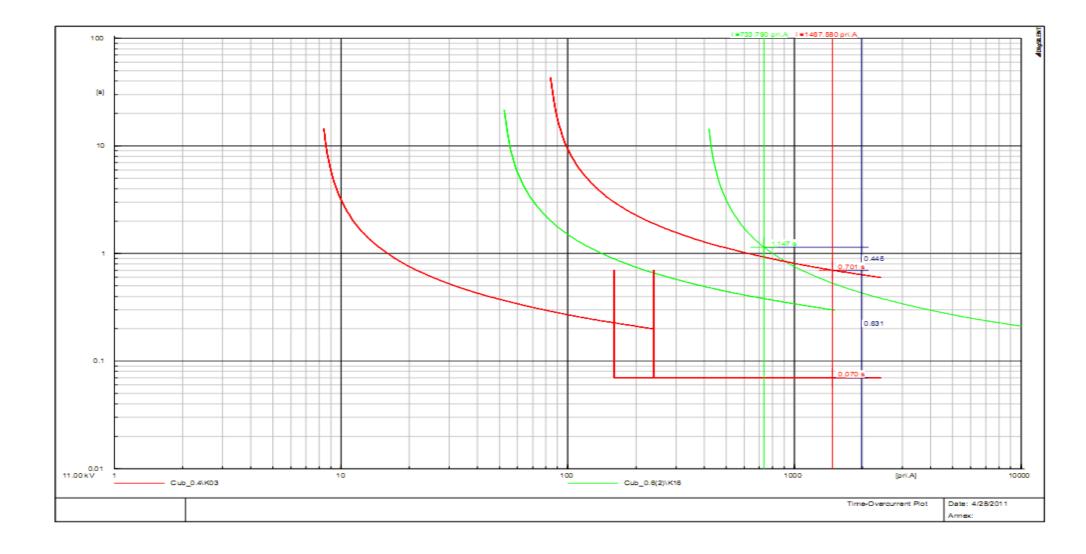
Grid: Grid	System Stage: Grid								P	Annex:	/ 1	
		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor	Sk" [MVA/MVA]	I k" [kA/kA]	[deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B C	11.00	8.04 0.00 0.00	6.02 -120.00 120.00		0.00 MVA 6.41 MVA 8.54 MVA	0.00 kA 1.01 kA 1.34 kA	0.00 -158.27 53.52	0.00 x 2.86 x 3.80 x	A 1.01	0.00 6.41 8.54	1.27 0.00 0.00

DIgSI/wrng - 1 area(s) are unsupplied.
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14(1).ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01 (5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K02 DS1B.ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K02 DS2.ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K03.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K04.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\K10.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K11.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K12 (Sub 2).ElmLne': R0 and X0 too low! Assumed: R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K14.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line.ElmLne': R0 and X0 too low! Assumed: R0=R1, X
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(3).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Line(4).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(5).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(6).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Sub 3 (2).ElmLne': R0 and X0 too low! Assumed: R0=
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Sub 4.ElmLne': R0 and X0 too low! Assumed: R0=R1,
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(7).ElmLne': R0 and X0 too low! Assumed: R0=R1
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line (55).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\K01.ElmLne': R0 and X0 too low! Assumed: R0=R1, X0
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line(78).ElmLne': R0 and X0 too low! Assumed: R0=R
DIgSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPrj\Grid.ElmNet\Line (79).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - Line '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Line(80).ElmLne': R0 and X0 too low! Assumed: R0=R
DIGSI/wrng - No short-circuit computed on busbars
DIgSI/wrng - in isolated areas without syn. machine or external net !
DIGSI/wrng - '\UTM.IntUser\GDC-UTP System Studies Latest.IntPri\Grid.ElmNet\Station25.ElmStat\MSB-MPH.StaBar':
DIGSI/wrng - '\UTM.IntUser\GDC-UTF System Studies Latest.IntPrj\Grid.ElmNet\Station32.ElmStat\B1.StaBar':
DIgSI/wrng - '\UTM.IntUser\GDC-UTF System Studies Latest.IntPri\Grid.ElmNet\Station33.ElmStat\B1.StaBar':


	DIGSILENT	Project:
	13.2.333	Date: 4/27/2011


Fault Locations with Feeders Short-Circuit Calculation of			2-Phase	to Ground /
Short-Circuit Duration Breaker Time 0.10 s		Fault Impedance Resistance, Rf Reactance, Xf	0.00 Ohm 0.00 Ohm	


Grid: Grid	System Stage: Grid								Annex:	/ 1		
		rtd.V. [kV]	Vo [kV]	ltage [deg]	c- Factor	Sk" [MVA/MVA]	⊥k" [kA/kA]	[deg]	[kA/kA]	Ib [kA]	Sb [MVA]	EFF [-]
Station1 MIS	A B C	11.00	7.85 0.00 0.00	4.84 -120.00 120.00	1.00	0.00 MVA 9.09 MVA 10.91 MVA	0.00 kA 1.43 kA 1.72 kA	0.00 -128.66 61.10	0.00 4.05 4.86	kA 1.43		1.41 0.00 0.00


APPENDIX H

Protection Relay Studies Result

