Service Discovery

By

Ahmad Syazwan Shaharum

Dissertation in partial fulfillment of the requirement for the Bachelor of Technology (Hons) Information Technology

JULY 2005

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Service Discovery

by

Ahmad Syazwan Shaharum

A project dissertation submitted to the Information Technology Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF TECHNOLOGY (Hons) (INFORMATION TECHNOLOGY)

Approved by,

(Mr.Anang Hudaya A.Amin)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July 2005

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

AHMAD SYAZWAN SHAHARUM

Abstract

Service discovery is necessary to enable computers to interact with each other through heterogeneous wired and wireless networks in a seamless way. To discover a service, a client uses one of these protocols to issue a query to a central server or an individual service provider. The service description in the query may contain a specific name and set of one or more attributes. The server or provider attempts to match the query's pattern with the pattern of a service its database contains, then it returns the appropriate response to the client. For this project the methodology use will be the Rapid Development Application methodology that is found most suitable assist in this project. Requirement analysis has been done in order to seek for the characteristics and areas that need to be put in action in getting the result. Next will be the design phase where the process to design the service-oriented and Jini architectures within the client/server architecture. For the implementation phase, both the architectures are going to be set up simultaneously using Jini Network Technology. Therefore with developing service discovery with Jini technology, the minimum of manual intervention which it is include in the Jini vision.

ACKNOWLEDGEMENT

Throughout this project entitled Service Discovery is done with the help of many people. I would like to express my gratitude to Allah, The Al-Mighty, for giving me the strength, ability and feasibility in carrying out all the research and tasks required.

I would also like to express my highest appreciation to my project supervisor, Mr. Anang Hudaya Muhd. Amin for the time he spent in providing me guidance and good advices throughout my final year project. Thanks to University Technology of Petronas in general and the Information Resource Center management staffs specifically for their helping hands in assisting me in conducting and finding the good research materials.

Not to forget, I would like to thank my colleagues, Suhana Suarni, Mohd Faitz Adam, Mohd Azizi Ahmad, Mohamed Ferdaus Abdul Wahab, and Khairil Anuar Othman for give me the energy and ideas to me in developing this project as the first in University Technology of Petronas.

Lastly, I would never forget and thanks too, to my family, all the lecturers involved, and all my friends who have been giving me continuously supports from the very beginning of this project kick-off upon the completion.

Thank you.

TABLE OF CONTENTS

CERTICIFATIO	N OF APPROVAL	• •		•	•	•	i
CERTIFICATION	N OF ORIGINALITY			•	•	•	ii
ABSTRACT .	• • •			•	•	•	iii
CHAPTER 1:	INTRODUCTION						
	1.1 Background of Stu	dy .		•	•		1
	1.2 Problem Statement	•		•	•	•	2
	1.3 Objectives and Sco	pe of St	udy	•	•	•	3
CHAPTER 2:	LITERATURE REV	IEW AN	ND TH	IEORY	ł.	•	5
CHAPTER 3:	METHODOLOGY						
	3.2 Rapid Application	develop	ment.	•	•	•	7
	3.1 Requirement Analy	ysis and	Planni	ng Pha	se	•	7
	3.2 Design Phase	• •		•	•	•	8
	3.3 Construction and In	mplemer	ntation	Phase	•	•	11
	3.4 Cutover .			•	•	•	13
	3.5 Tools and Equipme	ents .		•	•	•	13
	3.5.1 Software	and Haro	lware	•	•	•	14
CHAPTER 4:	RESULT AND DISC	USSIO	Ň	•	•	•	15
	4.1 Findings .	• •		•	•	•	15
	4.2 Results and Discus	sion .		•	•	•	17
CHAPTER 5:	CONCLUSION AND	RECO	MME	NDAT	ION	•	19
	5.1 Relevancy to the O	bjective	S	•	•	•	19
	5.2 Recommendation	. .		•	•	•	20
REFERENCES	• • •	• •		•	•	•	21
APPENDICES							

LIST OF FIGURES

Figure 1: Service-oriented Architecture				9
Figure 2: Jini Architecture	•		•	11

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Broadly, a service discovery is a collection of protocols for developing dynamic client/server applications. Client/server is nothing new, and in fact many of the concepts in service discovery are not ground breaking. Instead, the advantages provided by service discovery arise because a number of important features are bundled and standardized.

Highly dynamic interactions between clients and services is the norm service discovery-enabled clients seek needed services based on their type (e.g. printing, file storage) and based on descriptive attributes that identify the manufacturer, the cost of using the service, or other interesting facts. These technologies allow services introduced into a network to be discovered, configured and used with a minimum of manual intervention. Enabled services announce their presence when they enter the network and (if possible) announce their demise when they leave the network. Applications which display a client in need of an IP address, for example might seek a DHCP server, communicate with the server, and finally be granted one already exist in networked environments.

Basically, these clients and services are typically developed from scratch, with little support for the developer other than "here's a C compiler. Get to work." Service discovery technologies generalize and standardize the environments in which client/server applications are developed and used, and implementations of the various service discovery protocols provide software tools that make the development effort much easier and interactions between clients and services more dynamic than usually seen in today's systems. There is a lot of common group among the various choices in service discovery frameworks. All support the concept of client and service which are simply entities that need and offer some functionality (e.g. printing), respectively. Clients perform discovery in order to find needed services. A discovery attempt generally classifies the services by type, and may optionally include requirements such as a manufacturer, serial number or other services attributes. Whether services are sought directly or a catalog is consulted, a client needs a very little information about its environment which it can locate services dynamically, with little or no static configuration. When a service enters the network, it will perform service advertisement, either directly to clients or to one or more service catalogs. The advertisement includes necessary contact information, and will also include either descriptive attributes or information that will allow these attributes to be discovered.

1.2 Problem Statement

Connecting the needy clients and the providers' available services is the point of service discovery. Service discovery technologies directly attack the "I don't know where you are" and "I don't know how to talk to you" issues.

One problem user's encounter with increasing frequency and severity is the installation, configuration, and management of peripherals. This is a client/server problem in disguise. The complexity of this problem is becoming more serious as laptops, handheld computers, printers, scanners, wireless devices, external storage devices, digital cameras and other peripherals are integrated into networked environments in the home and office. Inexperienced computer users may become quite frustrated in dealing with the configuration and interaction of such a multitude of devices.

Introducing a new device can include physical installation, removing device drivers for a device being replaced, installation of devices drivers included with the new device, determining that the included device drivers are outdated or designed for a different operating system, necessitating downloading and installing new device drivers, and unexpected interactions with existing devices. Concrete evidence of user's frustration with these situations can be seen in the red faces and angry tones of users. Configuration headaches can be compounded many times over in environments with numerous computers. Service technologies take an important step towards eliminating manually installed device drivers, relying instead on standard interfaces to put devices in touch.

1.3 Objective and Scope of Study

Following are the objectives of service discovery protocols:

- Discovery. The ability to find a service provider if there is a service in the network with the properties described in the request. In order to achieve this goal, protocols implement the following functions:
 - Use a description language. To facilitate the discovery process, services are semantically described following a certain description language.
 Service requests are also expressed using this description language.
 - Search for services. Service requests are expressed using the description language and are addressed to the directory nodes or disseminated in the network.

Service discovery can make things more convenient by allowing the types of available services to be discovered easily. It is the needed services may be discovered on demand, with minimal prior knowledge of the network.

Typically, to discover a service, a client uses one of the protocols to issue a query to a central server or an individual service provider. The service description in the query may contain a specific name and set of one or more attributes. The server or provider attempts to match the query's pattern with the pattern of a service its database contains, then it returns the appropriate response to the client.

CHAPTER 2

LITERATURE REVIEW AND/OR THEORY

Service discovery is a field which that need an exploration with the purpose to view the ability of its function in the network world. There are many researches which applied the concept of service discovery in their project such as in ubiquitous computing.

This sounds very visionary and will probably remain a dream for a long time to come. On a more modest scale, [8] says that:

"One of the visions of ubiquitous computing is the ability to use arbitrary devices such as cell phones and hand held computers to interact with arbitrary remote networked appliances such as TVs, printers, and EKG machines."

This is more close to the project; this is where service discovery comes in. An article with good coverage of this subject, [9], says:

"Future computing environments will consist of a wide range of network based appliances, applications and services interconnected using both wired and wireless networks. In order to encourage the development of applications in such environments and remove the need for complex administration and configuration tasks, researchers have recently developed a range of service discovery and interaction platforms. The key function of such service location and device interaction technologies is to allow users and applications to deploy, discover and interact with the services provided by devices and software components on the network. This interaction is required to occur without the users, the applications, or the service providers needing detailed knowledge of the local network configuration." Due to this, it gives all the rationale needed to motivate investigations into service discovery where it shows that the author current understanding about the topic is in the right path. This is actually motivates to continue the research and explore this topic further.

The tools that available for service discovery are many and one of them is Jini Network Technology. Each of the tools available has their own specialty and vision.

From the official Jini architecture specification, Jini is defined as:

"A Jini system is a distributed system based on the idea federating groups of users and the resources required by those users. The focus of the system is to make the network a more dynamic entity that better reflects the dynamic nature of the workgroup by enabling the ability to add and delete services flexibly."

Jini is a service discovery technology based on Java, developed by Sun Microsystems. It has platform-independent which it can rely on mobile code as well. Jini Network Technology can be phrased as a powerful tool for this topic and the usage of this tool might help to the successful product in the end of the day.

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.0 Rapid Application Development

Rapid Application Development is the methodology chosen for this project due to the time constraints and level of difficulties which might happen in the middle of accomplishing it. Extreme programming will be applied simultaneously. Each phase in this methodology will be explained in detail below:

3.1 Requirement Analysis and Planning Phase

This phase is where research about this topic takes place. The idea is to get the knowledge and improve the understanding about service discovery in order to continue to develop this project. The task while doing the research starts with identifying and listing down all the possible entities, applications or technologies such as Corba, Soap, Jini and others in order to select the most suitable entities that are going to be used to develop this project. Besides, the most important thing is to study and understand well about service discovery architectures.

Service discovery architecture is actually a little bit different with other network architecture. Inside the architecture, consist of a unique entity which varies with other network architecture. The reason to study and grasp the idea of the architecture will lead to the development of service discovery. After all the architectures from all the application such as Corba, Jini and others have been identified and analysed, only the most suitable architecture will be selected for this project. The next task that needs to be done is to identify and list down all the possible and available tools that can be used in service discovery. The most preferable will be tools which are free and easy to download from specific websites. The final task is to select the most suitable tools that is going to be used in next phase.

3.2 Design Phase

Design phase will focus on the service discovery architecture. The concept of network that will be applied in this project will be the client/server architecture. This concept will also be applied simultaneously with the architecture mention before. The tools chosen for this project is a tool from Sun Microsystems, Jini. The decision to use Jini as the application for this project is based on the comparison that has been done on several other protocols and application available. The comparison can be viewed in the Appendix A.

The reason to select Jini as the application or middleware for this project is because the central vision of Jini is the realization of a distributed computing environment that can support rapid configuration that will allow the configuration of devices and software being amended using a simple "plug and play" model. Essentially, the goal is to allow any device or a software component to be connected to a network and announce its presence. Other components that wish to make use of it can then locate it and call it to perform tasks. The reconfiguration takes place invisibly, reducing the administration load of the programmer developing the system.

Three main concepts are brought together in the formation of a running jinni system. Each of these different classes of component is important to the realization of the Jini model of distribution.

- A Service is a piece of independent functionality that is made available to the others users and can be accessed remotely across the network. Services include devices (e.g. printers and cameras) and software components (e.g. file systems). Jini services are routinely managed as a co-operating set known as a Jini community.
- A **Client** is a device or software component that would like to make use of a service. Jini seeks to support a very heterogeneous selection of clients embracing a wide variety of hardware devices and software platforms.

• A Lookup service helps clients find and connect to services. The lookup service acts as a broker between the needs of the client and the services it knows about across thee network.

These central components combine with simple principles to form the foundation of Jini. These three principles ensure that Jini services can spontaneously interconnect with each other without cumbersome administration. These principles are embodied within Jini in term of how Jini makes use of the concept of client, service and lookup service.

The first architecture that needs to understand is the service-oriented architecture. This architecture takes the existing software components residing on the network and allows them to be published, invoked and discovered by each other. SOA allows a software programmer to model programming problems in terms of services offered by components to anyone, anywhere over the network.

Figure 1: Service-oriented Architecture

Below are the functions of each entity:

Service Provider

The service provider is responsible for publishing a description of the service to the service registry. Normally, the service provider hosts the web service.

Service Registry

The service registry is a repository that provides the capability of discovering services by the service requestors.

Service Requestor

A software application that is responsible for discovering and invoking the service. The service requestor binds to the service obtained from the service registry.

Next architecture is the most important architecture to apply in developing the project as it been called as Jini architecture. As Jini sytem is been implemented in this project, it needs to use its own architecture which comprised of Lookup service, Jini service and Client service. It may notice the diagram of the Jini architecture closely resembles the architecture of Web services. This is another reason why the Jini architecture has a foundation that is rooted in the dynamic principles of a SOA. Below are the functions of each entity together with the architecture.

Lookup Service

The lookup service keeps track of the Jini services and provides the proxies to communicate with the service. In addition, the lookup service is a Jini Service as well. The Sun reference implementation of the Lookup Service is reggie.

Jini Service

Jini Service are registered with the lookup service and are capable of being invoked through their public interface which is defined via a Java remote interface. The underlying system that allows Jini services to communicate is RMI.

Jini Client

The Jini client is software that requests the proxy from the lookup service in order to invoke the Jini service.

Figure 2: Jini Architecture

3.3 Implementation Phase

This is the phase where both the architectures are going to be set up simultaneously using Jini as the tool selected in the earlier phase. Programming part will also take place. It involve in programming a program which will act as a service in this project. The programming language used is Java so that the program is compatible with Jini which also a product of Java Microsystems.

The development starts with required Jini services are up and running. It has its own setup and configuration to run Jini. In order to make sure that the environment has been setup accordingly, here is a checklist for getting setup generally.

- **Run** the **RMI** activation daemon. It should run this on the same machine that will be running the lookup service on, and the activation daemon should be started before the lookup service.
- Run a Jini HTTP server which will supply downloadable code for the JIni lookup service; this server can be run on the same machine as the lookup service. This ensures that the code is able to download the classes in the reggie-dl.jar file, which contains the code needed to use the lookup

service. In addition, all the programs wrote before need to be able to supply code to Jini services and to each other.

 Run the Jini lookup service. The service should run on a machine on the same network subnet on which it intend to run the programs. This is because Jini's multicast discovery protocols are by default, only configured to find lookup services running 'nearby' the object doing discovery.

This configuration of services is sufficient to run most Jini services. While all these programs, lookup services, HTTP servers, activation daemon, and the clients and servers can be run and need to develop on the same machine, and Jini applications are intended to be distributed and run across a number of machines.

Next step is Jini deployment where it has three Jini-aware applications running:

- A Jini lookup service that helps clients locate service
- The Jini service under development that have been tested
- A Jini client program that uses the service under development

There are few steps to follow in order to run the project and the aim is to illustrate the principles involved in developing a Jini service. Firstly is to define a service interface where it defines what the service will do. It is essentially the way in which services are described to Jini and made available to potential users. The service proxy object implements this interface and the client uses it whenever it searches the lookup services.

Secondly, publishing the service interface with a lookup service and to make it available to the Jini framework in order to allow potential clients to find and use the service. A program is needed which it handles finding a lookup service and publishing the proxy. This is normally called the 'wrapper' process and takes care of the interactions with Jini needed to publish the proxy. Next is discovering a service via a lookup service where a thing needs to be done is to find a jinni lookup service. It means to make a request to the Jini framework for lookup service. The principle way of doing is to use the LookupDiscoveryManager class. This class will aalow to find instances of the lookup service that are nearby the network. Run the lookup service that is configured to support that group name somewhere in the network is a must.

Continue with the next step which registering with a lookup service. The process of registration with a lookup service which will call two arguments which are the service items and second is the requested duration of the ease. After registering the service proxy, the wrapper checks to see if this is the first time has been registered. If it is the first time, it writes the service ID that has been returned into the service item so that future registrations use the same ID. It also stashes the registration result into a hastable so that it can retrieve it in the future. Final part is to compile and run the programs and see whether it show success or its failure.

At the same time, error checking will also takes place in order to check the functionality according to the requirements. After examined the prototypes, final product will be released.

3.4 Cutover

The final phase in this methodology consists of the product is ready to be launched. Then it ready for handover the project to the university, besides report preparation and presentation.

3.5 Tools /Equipment Required

In this project, the main tool that going to be used for the coding is using the application that are available on the internet and it is free to download. Below are the list tools and equipments that have been used for this project development process.

3.5.1 Software Requirements

• Jini Network Technology by Sun Microsystems

0	Jini	1	.1	
~	Timi	1	1	\mathbf{r}

- Jini 1.1.2
- o Jini 2.1 Beta 2
- Java Development Kit version 5 (JDK-5)
- Java2 Enterprise Edition Software Development Kit version 4 (J2EESDK-4)

3.5.2 Hardware Requirements

- Personal Computer / Desktop
 - o Window XP
 - Pentium 4 processor with 2.4 GHz
 - 256 MD RAM memory
 - 1 GB Hard Disk space
- Network Interface Card (NIC)
- Network Cable

CHAPTER 4

RESULT AND DISCUSSION

4.1 Findings

This is the critical and the most important part of this project. All research and product are presented here, in this section. Both research and product must achieve its objectives as to announce as a successful project.

There were several problems faced during the development of this project. The problems might be trouble to deploy programs on multiple machines. This is because the distributed nature of their deployment means that Jini applications cannot rely on many of the assumptions which could take for granted when developing Java programs within a single machine environment. In fact, developing Java applications in the same way probably develop "standalone" Java applications by doing everything on one machine with the same CLASSPATH.

During the deployment stage, because of convenience or necessity which it may develop and test the code on only one machine. In such cases, it is easy to run into problems because by running everything on one machine. It is not exercising parts of the code that may cause things to break when the components of distributed system run on different hosts.

It is the great danger when testing only 'locally". The apparent early convenience of taking the easy way out can result in greater headaches down the road. It is a good idea to get in the habit of thinking about multi machine environments from outset. The best way to avoid future deployment problems is to mimic the multi machine setting which will eventually be expected to run. Many of the problems encounter in developing Jini programs arise from the integration of code and the need to download software across the network. Often errors occur because the code that has been anticipated is not being downloaded correctly. If fortunate, then no code is downloaded and the error will immediately visible. However, it is more than possible that it still can be downloaded from the wrong location and the errors will not be as immediately visible. These situations made the development process delayed and to avoid introducing subtle and problematic errors, attention to configuring the services that support the downloading code is demanded. The setup and configuration was not as easy as it see when there were many things to consider and understand so that all parts are working especially those servers. It is impossible to configure without any reference because if Jini was configured wrongly, no services available in the end of the day.

In addition, during the configuration and setup the Jini 1.1 environment, the main problem occurred which was the reggie, the Jini build in function to lookup for services was not functioning although those three servers which were RMI activation daemon, Jini HTTP server and Jini lookup service. These three servers were interrelated so that the function of lookup for service can be applied accordingly. In this case, the Jini HTTP server was not functioning accordingly as it could not supply the downloadable code for Jini lookup service. So the result was no service available although the end result supposed to be the other way round.

After few testing and investigation, the problem mentioned above was because of the version of Java Development Kit (JDK) used. Jini 1.1 was only compatible with JDK 1.3 which could not be downloaded in Java websites as this JDK already in the stage of end of life (EOL). The only JDK available to download was the latest version JDK 5.1. This new JDK which been installed was not compatible with Jini1.1 and as the result, problem mentioned before produced. The reason why Jini 1.1 selected for the development tools was because the tutorials that managed to get and available were focusing on using this version only and no other versions tutorial available.

Therefore the next step was to change Jini version as to find the one which support or compatible with JDK 1.5. Jini 2.1 Beta 2 was the version selected and this new version has additional functions as it was the enhancement product from Jini 1.1. The new environment needed to be setup and configured and the author managed to encounter the problem mentioned above which the server functioning accordingly. Next problem occurred was to locate the reference or the address of services in order for user to communicate directly with services. Service registry do not able to provide the proxy to user so as a result, user could not able to execute or use the service. This was the problem which the developer unable to settle by schedule. The services can be view by service browser but the proxy not provided as it suppose to.

4.2 Result and Discussion

The final product for this project will be a product that enables to show the functionality of how service discovery is actually works by using the Jini Network Technology by Sun Microsystems. The ability to search for services can be proved when user able to contact the Jini community which implements a particular Java interfaces and download code which implements that interfaces. The key factor for the product was by implementing two architectures which were service-oriented architecture and Jini architecture.

Based on the final product developed, some of the objectives were achieved and this was due to the problems occurred and the developer level of expertise. The product able to show the ability to search for a service by using the service-oriented architecture is to show that it is already achieve the project objectives and already prove it. Therefore the product do achieved its objectives which mainly focus on the ability to search for a service in a different way from usual. The services introduced in the network are actually to be discovered, configured, and used with a minimum manual intervention. The end result for this product was the product was able to show those services available to user but the user does not have the ability to execute the service they desired. In other words, the user able to search and discover the available services but they could not use the service. Here are the steps in searching for service which firstly, user will search a specific service from the lookup service. Then, the lookup service will do an 'advertisement' and announce about the service that users looking for and the lookup service itself will tells the users the specific proxy to download the service. Previously, the service itself must register with the lookup service so that the service will visible in the lookup service perspectives. Next step was users will use the proxy given by lookup service to download the service which in other words, users can communicate with the particular service after the users have been given the proxy for particular service by lookup service.

Based on the steps stated before, the part which not functioning was the one user will use the proxy given by lookup service to download the service which in other words, users can communicate with the particular service after the users have been given the proxy for particular service by lookup service. The problem faced here was about the user could only view the services available by viewing them at service browser but do not able to communicate and execute the services user desired. User could not get the proxy to communicate with the services. The user only could search and view the services listed by service registry but could not execute the services desired.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Relevancy to the Objectives

As stated in chapter 1, the main objectives which is the ability to find a service provider if there is a service in the network with the properties described in the request is achieve and can be run by the product to prove that the objectives are implemented. The idea of service discovery is actually different with the usual type of network which available outside. Achieving the objectives acts as prove that service discovery is actually can be implemented in network and it brings together with its advantages which to show that service discovery itself is special type of networking concept.

Service discovery which implemented in this project leads to the minimum of manual intervention in network. The significance of lookup service is where its role is to identify the services which are available in the network and provides the proxies to user in order the user to communicate with the services that they would like to discover and use. This is actually minimizing the manual intervention compare to the usual concept of network. This is suitable for low level of user where the complexity of installation, configuration and management of peripherals. With service discovery technologies, clients and services are designed to support dynamic integration, of which the peripherals installation problem mention above is a specific case.

5.2 Recommendation

Currently in this project, service discovery is implemented within the concept of client /server architecture. In other words, the service-oriented and Jini architectures are subset of client/server architecture. As a recommendation, service discovery can be implemented in mobile or wireless concept. This is actually level up the implementation of service discovery in the network world.

Diversify the usage of service discovery into mobile concept will made service discovery more usable in the real world where user can search for services at anywhere they go. This specifically can be used by the auditors and other travelers which might needed the services during their travel. This will help the user to discover any services available which they can use specifically in their work.

In addition, when service discovery is implemented in mobile, Jini should make the tool in object-oriented so that the software or tools being used is attractive, interactive and effective. This is the ideal for mobile user in the future.

REFERENCES

- 1. Adrian Friday, Nigel Davies, Elaine Catterall, Supporting Service Discovery, Query and Interaction in Ubiquitous Computing Environments, Second ACM international workshop on Data engineering for wireless and mobile access, 2001.
- 2. J. Allard, V Chinta, L. Glatt, S. Gundala, and G. G. Richard, III, "Jini Meets UPnP: An Architecture for Jini/UPnP Interoperability,"submitted for publication.
- 3. Salutation Service Discovery Architecture. www.salutation.org.
- 4. Javasoft RMI documentation, www.javasoft.com/rmi.
- 5. Robert Flenner, Jini and Javaspaces Application Development, Sams, 2002.
- 6. Golden G. Richard III, Ph.D, Service and Device Discovery: Protocols and Programming, McGraw-Hill, 2002.
- 7. Olufisayo Omojokun, Prasun Devan, *Directions in Ubiquitous Computing: A Position Statement*, The Second IEEE Workshop on Internet Applications, 2001.
- 8. Adrian Friday, Nigel Davies, Elaine Catterall, *Supporting Service Discovery*, *Query and Interaction in Ubiquitous Computing Environments*, Second ACM international workshop on Data engineering for wireless and mobile access, 2001.
- 9. W. Keith Edwards, Tom Rodden, *Jini Example by Example*, Prentice Hall PTR, 2001.
- 10. Superstring: A Scalable Service Discovery Protocol for the Wide Area Pervasive Environment, Sydney, September 2003. Proc. of the 11th IEEE International Conference on Networks.
- 11. Sun Microsystems. Jini architecture specification version 2.0, June 2003.
- 12. Sun Microsystems. Jini technology surrogate architecture specification, October 2003.

APPENDICES

			· · · · · · · · ·				
Security	Authenticatic Authorization (access con- trol lists) Confidenti alit Integrity	\$	Optional authentica- tion of DA and SA (us- ing digital signatures)	Determined in the Bluetocth connection negotiation phase	User au- thentication (username and pass- word)	÷	
Network scalability	-Service grouping -The use of federation	1	- More DA -Scope for service grouping	. ,	I	Hash-based partitioning of resource descrip- tions among resolvers	
Fault tol- erance and mobility support	Lease mech- anism for granting access to services	-Ekpiry time for advertiae- ments - "Device unavailable" notification	- Infetime for service regis- trations	Implicit (no caches are maintained)	Periodic svailability check of services	-Each strand is stored on multiple -Hybrid state man- sgement scheme	
Service se- lection and usage	Usage Java RMI via proxy objects	Usage - messages encapsulated in SOAP	1	1	Usage through RPC	•	
Service de- scription	Java proxy objects	XML de- scription, based on UPnP template language	Service templates registered with IANA	Service at- tributes (ID and value)	Servire de- scription records	Histarchies of attribut e value pairs	
Event noti- fication	Distributed events	Eventing mechanism	\$	1	Long-term requests	1	
Search methods	Both active and passive discovery for finding the Lookup Service	Both active and passive discovery for finding services	1. both active and passive discovery 2. active dis- covery of ser- vices	Request / Response messages be tween client and server	Salutation Manager Protocol between two SLMs	Service discovery are routed in O(log N) hops	
Storage of service in- formation	On Lookup Service	On aver y control point	1. On DA 2. On UA and SA *UA = User Agent SA = Sarvice Agent	On avary server	Service Registry on every Salutation Manager	Each re- solver holds a range of keye and their values	
Architecture	Centralized	d. Zd.	1. Cuntral- ized (with DA) P2P 2. P2P (without DA) *DA = *DA = Agout	Client- Server	Flexible (can be P2P or œntralized)	Overlay net- work of re- solvers which form a DHT	d on next page
Type of network	Enterpuse network	Enterprise network	Enterprise network	Small, max- imum 8 devices that can be low- cost and low-power	Any network	Large and dynamic en- vironments	Continue
	Jai [19]	[LI] 4a90	SLP [13]	Bluetooth SDP [9]	Salutation [10]	INS/1wme	

Appendix - Comparative table on service discovery protocols

Appendix A

	Type of	A rchitecture	Storage of	Search	Event noti-	Service de-	Service se-	Fault tol-	Network	Security
	network		service In-	met hods	fication	scription	lection and	erance and	scalability	
		-	Dormation				agesu	support		
SSDS [15]	Wide-area	Hierarchical	SDS servers	- paseive	,	XML; ag-	-	Soft state of	- Multiple	Authentication
		structure of		discovery of		gregation		service an-	shared hier-	of endpoints
		SDS servers		SDS servers		of service		nouncements	archies	via digital
				- client		descrip-			-Shedding	signatures,
				duettes					Trent 124 128	purvacy via
-				through the		filtered			cy spawning on a nearby	and access
				hierarchy		crossed			machine	rights via
				Î		terminals				capabilities
						(BCT)				
CSP [1]	Wide-area	Three-tier:	Servers	Exploring	1	Attribute-	Selection	Frequent	- Hierarchical	1
		proximity.		the hierarchy		value; ag-	- through	updates for	structure	
		domain and		of servers		gregation	context	intra-domain	-Munual	
		global; hi-				ot Bervice	attribute	movements;	overbead	
		erarcnucau				tions wind		in the whole	assuctation writh	
		structure of				Contucid		ant the groups	utut	
		SIPAIRS				method			services	
INS ISI	Dynamic	Spanning-	Overlay net-	-Domain		Name-		-Replication	Spawning	
	and mobile	tree cverlay	work formed	Space Re		specifiers,		of service	INRs to	
		network	by INRs	solver for		consisting of		informa-	candidates	
				INR discor-		attributes		tion among	resolvers	
				ery		and values		resolvers		
				-Pageive				- Soft-state		
				discovery for				- MA BUTEN		
				Services				changes and		
				-Early and late binding				up dates		
	ME James	10T	Dominition	Custom one		Higrarchical			Distribution	Sun anstring Ran.
(2)	BATE-BDI AA	network	hierarchy	resolved		description		1	of the stor-	trust prob-
<u> </u>			that matches	through		model			age and	lem ad-
			the service	the routing					queries	dressed by
			description	process					a.mong sev-	means of a
									eral nodes	reputation
										system
JXTA [28]	Wide-anea	Virtual net-	Rendezvous	-Loosely-	•	XML	,	-Index	-Scalable	-Certificate
	4 <u>7</u> 4	work everlay	peers	consistent				replica-	distrib-	authority-
				DHT com-				tion among	uted hash	based trust
				bined with				resolvers	indexing	models
				a limited-				- Periodic	- no frequent	-Credential
				range ren-				random	updates	mechanism
	_			dezvoirs				up dates	as DHT	for message
				walker (used				and heart-	is loosely	validation
			_	for out-of-				beat among	consistent	-Encryption
				sync indices)				rendezwous		-Client and
										server au-
										thentication
										VIB CIGITAL
										sometrists
	Continue	d on next page								

Security	1	A uthentication of service providers	- Authentication with digital signatures	- authentication - - - - - - - - - - - - - - - - - - -	1
Network scalability	Load Bal- ancing to Matrix to share regis- tration and query load	Hierarchical structure	-Scalable distrib- uted hash indexing -Caching used to avoid overloading nodes	Aggregation and filtering of service registrations	-Scaling through the through the structure -Algorithms for fing restructuring
Fault tol- erance and mobility support	Names are stored in a soft state fashion	Registration is peri- odically renewed	File tepli- cation over multiple nodes	-Soft state storage of estrice information -Hard-state storage of services rep- resented by promies	-FlingCheck message pretodically checking for consistency -Algorithms for broken rings and network par- tition and reintegration
Service se- lection and usage	Selection - query op- timization adgorithm: node with the smallest tresponse time or the node with atabase is database is selected	- 1	Usage - ser- vice imple- mentations stored on the overlay network	1	
Service de- scription	Attribute- value pairs	RDF schemas and descrip- tions	Textual de- scription	t.	-Languages that sup- part "dist" and "sum" functions Descriptions ars ars ars ars sum- sum- ars
Event noti- fication	ł	Event sub- acription through event agent	Parsistent queries for notifica- tion of new services		,
Search met hods	Applying the hash function to AV pairs in the query	UA gets the service hi- erarchy and queries the name server using RQL	-Discovery of contact mode at bootstrap -Distributed search em- gine for finding services	-Active and passive dia- covery of directories -Clients query di- rectories for services	Queries are routed through the ring hierarchy
Storage of service in- formation	Small set of rendezvous pointe for each content name	Name Servers maasge in- formation of services	Parsistent store through a DHT over- lay network	Directorie	Service Access Points present on every ring
Architecture	Hash-based cverlay network	Hierarchical	Universal ring	Four com- ponents: dients, services, directories and proxies	Overlay structure of hierar- chical hierar- chical rings that groups services which are which are geograph- ically and permantically conservices
Type of network	Hundreds or thousands of mobile devices	Local-area and wide- area	Larga-scale P2P	Mobile ad- hocnetworks - publicen- vironments	Mobile ad- hoc networks
	CDS [12]	GloServ [4]	One Ring to Rule Them All [6]	Splendor [34]	Sarvice Rings [17]

Security	1	t	,	e t	Policies for access rights and credential verification
Network scalability	Algorithms for optimiz- ing the lanes structure	Through the use of mul- tiple service broker nodes	•	1	
Fault tol- erance and mobility support	-Prosctive maintenance -Algorithms for node login/logoff broken con- netvicks. netvick par- netvick par-	-Periodic service regis- tration -Algorithms for backbone maintenance	-Central election and re-election from Cen- tral/Backup failure -Soft state for 300D devices, po- devices 3D devices	Nodes broadcast their entire tien - rapid convergence Sarvers peri- odically an- nounce their	services A dustment ment rates and alliance diameter based on mobility of nodes
Service se- lection and usage	1	1	Selection - Devices can request for the best matched service Usage - through XML pare- ing	- Usage SOAP	1
Service de- scription		1	1	Includes a TTL and the address XML	
Event noti- fication	,	. 1	Subscribers are notified about any that any that etate of a service	- Cliante may subscribe to svents	
Search methods	Discovery messages are transmitted from lane to lane us- ing anycast routing	Source based multicast tree algo- rithm	Clients ask the central for services	Modified passive scarch Both active and passive discovery	-Passive dis- covery dis- -Active dis- covery by multicast or broad- cast service requests
Storage of service in- formation	Nodes within a lane share the same ser- vice informa- tion	Distributed directory located on the virtual backbone	Central acts as a reposi- tory for ser- vice informa- tion	Entire world view on every device Sarvice reg- istry on evary device	Every node caches ad- vertisements from nodes in its alliance
Architecture	Lozely- œuplad lanes overlay structure	A subset of the network nodes form a dominating set (virtual backbone)	Centralized	121 P	P2P, nodes are orga- nized in alliances t on next proce
Type of network	Mcbile ad- hocnetworks	Mobile ad- hoc networks	Home a.p- pliances -BC(poor), -BC(poor), and 300 D(powerful) devices	Wirelese ad-hoc single-hop Wireless ad-hoc multi-hop	Ad-hoc Continued
	LANES [16]	Kozat and Tassiulas [18]	FRODO [27]	DEA Pepace [21] Konark [14]	Allia [23]

Security	1	•	1	
Network scalability		•	1	
Fault tol- erance and mobility support	Adjustment of the ad- vertisement time interval and adver- tisement dismeter based on mobility of nodes	Reactive: -implicit estrvice con- firmation of a service poll reply -reception of -reception of a service poll reply indica- tion	-Reselection: none, route breaks, any change - Rediscovery: prostive, troute breaks, no route to any server, server,	Implicit through active di s covery
Service se- lection and usage	1	1	Selection - Clients choose the service with the lowest hop count	Usage - service in- vocation through mo- bile objects
Service de- scription	DAML+OIL craditates craditates cf services based on service func- tionality	1	,	ł
Event noti- fication			1	Nodes sub- scribe for receiving service up- dates
Search methods	-Passive dis- covery -Active dia- covery by se- lectively for- warding the request to a set of nodes based on se- based on se- mation mation	Both active and passive discovery	Both active and passive discovery	-Active dis- covery -Passive dis- covery in the boctstrap
Storage of service in- formation	Every noda caches ad- vertisements to maxi- mum N hops away (ad- vertisement diameter)	Every node caches ad- vertisements	Each nodes mainteine a service table	On every node which is interested in the service
Architecture	4	P2P; based on DSR reuting protacol	P2P, based on DSR and DSDV routing protocols	P2P; based on ODMRP routing protocol
Type of network	Mobile ad-hoc	Mobile ad-hoc	Moblls ad-hoc	Mobile ad-hoc ap- pliances
	CSD [7]	Wu and Zitterbart [32]	Varshavsky et al. [29]	Cheng and Marsic [8]

`

Appendix B

Interfaces

File	Registrar	Options	Services	Attributes	с., ·	·6
rou reg	os: waninsta istrar, not se	allVerifyGro elected	Jup		 	
Mat	ching Servi	¢ē\$			n na	

Figure a: Service Browser

Figure b: Service Browser Host

Service Browser

File Registrar Options Services Attributes

otal services registered: 8

Matching Services

Matching Services

Matching Services

net.jini.core.lookup.ServiceRegistrar

net.jini.discovery.LookupDiscoveryService

net.jini.lease.LeaseRenewalService

net.jini.space.JavaSpace05

net.jini.core.transaction.server.TransactionManager

Figure c: Service Browser Main Services

Figure d: Service Browser Option

Service Browser				
File Registrar Options	Subjects Attributes			
net jini.admin.Administrable	🖻 net.jini.admin.Administrable	n., 10	768); · · · · · · · · · · · · · · · · · · ·	
BasicServiceType:	D net.jini.core.lookup.ServiceRe	gistrar		1
Matching services: 6	🗅 net.jini.ld.ReferentUuid	h b		
Matching Services	🗆 java.io.Serializable			
🗐 net.jini.core.lookup.Se	u net.jini.core.constraint.Remot	eMethod	Control	
net.jini.event.PullEvent	🗆 net ini discerent l'onkunitisci	SienSen	d r e	-
net.jini.lease.l.easeRei	net.lini.lease.LeaseRenewalS	ervice		
🛋 net.jinl.space.JavaSpa	🗆 net.jini.space.javaSpace05			2
🖾 net.jini.core.transactio	🗆 net.jini.core.transaction.serve	r.Transa	ctionManager	
			t sale	

Figure e: Service Browser Service List

Service Browser		
File Registrar Options Services		
net.jini.admin.Administrable BasicServiceType:	(1) ServiceInfo (1) (1) (1)	n () Alaman () an () and (
Malching services: 6		Event Mailbox
Matching Services	Lookup Discovery Service	
 net.jlnl.core.lookup.ServiceRegis net.jlnl.event.PullEventMailbox net.jlnl.discovery.LookupDiscove 	Lease Renewal Service JavaSpace Transaction Manager	
net.jini.lease.l.easeRenewalServ net.jini.space.JavaSpace05 net.jini.core.transaction.server.T	ice ransactionManager	

Figure f: Service Browser Attributes

Figure g: Service Browser & Service Item Editor