
DISSERTATION

'Bit-level non-destructive arbitration of CAN controllers'

By:

Kwong Lai Yeen (1473)

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

JUNE 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

>

100

^W
a?Ok

\. (2AVJ WnWW

a
(VWW Art«V
Hxiuio/k

1 . ete. - - vw^

Approve

CERTIFICATION OF APPROVAL

Bit-level non-destructive arbitration of CAN controllers

by

Kwong Lai Yeen

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

(Mr. Abu Bakar Sayuti)
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

KWOME LAI YEEN

n

ABSTRACT

This report is written as part of the requirement of Final Year Project in progress. The

title; "Bit-level non-destructive arbitration of CAN controllers" was selected by the

author from a selection of titles provided by lecturers and approved by the Final Year

Project (FYP) committee.

Chapter 1 of the report presented a brief overview on the project scope and concepts

applied. 11 gave some i ntroduction and a b rief history on C ontroller Area N etwork

(CAN). The problem statement which leads to the implementation of the project has

also been highlighted. The objective of the project has also been defined in this

section in which the main aim of this project is have an FPGA implementation of a

CAN controller which will be able to demonstrate the non-destructive arbitration

operation when sending messages across the bus. Chapter 2 of the report discussed

more on CAN in general. It explained on the CAN protocol and the principle used in

the network. CAN in general is divided into three layers which is the Object Layer,

Physical Layer and Transfer Layer. Each layer has its corresponding tasks or

functionality in data/message handling within the network. In network data

transmission, CAN uses a method known as Carrier Sense, Multiple Access with

Collision Detect (CSMA/CD) but with the enhanced capability of non-destructive

bitwise arbitration to handle message collision to deliver maximum use of the

available capacity of the bus.

In Chapter 3, the methodology used in implementing the project has been identified.

The methodology schedule is based on the Gantt chart (Appendix A), The FPGA

design flow used to program into the design into the FPGA chip has also been

presented. In Chapter 4, some discussions and findings of CAN especially in the bit-

level arbitration process of CAN has been discussed. The Register Transfer Level

(RTL) simulation results and the Logic Analyzer captured output waveform has been

analyzed and verified. The last section consists of the conclusion and some

recommendations to improve on the design.

in

ACKNOWLEDGEMENT

This project would not have been possible without the help of a number of people,

and the author would like to express her utmost gratitude to all of them.

The author would like to express her foremost gratitude to her supervisor, Mr. Abu

Bakar Sayuti for his guidance and endless supports in the course of this project. Being

under his supervision has been an irreplaceable experience; Mr. Abu Bakar has

continuously monitored her progress and guided her throughout the duration of the

project. His comments, critiques and suggestions were given serious consideration

and were invaluable in determining the final outcome of the project.

Heartfelt gratitude also goes to Mr. David Kong, Mr. Ho Tatt Wei and Mr. Ng Kiat

Hong, the author's fellow coursemateswho havebeen very helpful in providing basic

tutelage in high-level programming to the author. Thank you very much for their

support.

The author would also like to extend her sincerest thanks to Mr. Goh Teik Ming, the

authors' good friend for providing valuable insights, ideas and assistance in one way

or another throughout the duration of the project. His many useful comments and

support has indeed helped the author in completing her project successfully. Also, the

author would like to express her gratitude to the UTP Electrical and Electronics Lab

technician especiallyEncik Musa bin MohdYusof for his valuable tips and assistance

from time to time.

Last but not least, the author would also like to thanks her family for their continuous

love and support, for which is a source of strength and motivation to the author.

Finally, a very big thank you to everyone who has directly or indirectly assisted the

author in different aspects throughout the development of her project. Without their

constant guidance, supervision and encouragement, this project would not have been

successfully completed. Thank you again for making this project a thorough learning

experience for the author. Your kindness willbe deeply appreciated.

IV

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL i

CERTIFICATION OF ORIGINALITY ii

ABSTRACT Hi

ACKNOWLEDGEMENT iv

TABLE OF CONTENTS v

LIST OF ILLUSTRATIONS vi

LIST OF APPENDICES vii

1.0 INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statement 3

1.3 Objectives and Scope of Study 4

2.0 LITERATURE REVIEW AND THEORY 5

2.1 Basic CAN Principle 5
2.2 CAN Layers 6
2.3 CAN Message Frame 7
2.4 CAN Protocol Version 10

2.5 Data Transmission in CAN 10

2.6 VHSIC Hardware Description Language (VHDL) 13

3.0 METHODOLOGY/PROJECT WORK 14

3.1 Procedure Identification 14

3.2 Research and Development 16
3.3 FPGA Design Flow 21
3.4 Tools Used 25

4.0 RESULTS AND DISCUSSION 26

4.1 Design Simulation Results 26
4.2 Design Synthesis and Implementation Results 34
4.3 Device Programming Results 38

5.0 CONCLUSION 27

5.1 Conclusion 41

5.2 Recommendations 42

REFERENCES 44

APPENDICES 45

LIST OF ILLUSTRATIONS

Figure 1.1 : ISO/OSI Reference Model 2

Figure 2.1 : CAN Data Frame 9

Figure 2.2 : CAN Remote Frame 9

Figure 2.3 : An example of CAN arbitration process 12

Figure 3.1 : Project Flow Chart 15

Figure 32 * Functional Block Diagram for CAN controller \-j

Figure 3.3 : ACAN message handling system \g

Figure 3.4 : Finite State Machine Chart for Shift Register Controller j9

Finite State Machine Chart for 8-bit Serial-in, Serial-out Shift
Figure 3.5 • . 20

Register

Figure 3.6 : FPGA Design Flow 21

Figure4.1 : RTL simulation using stimulus for XNOR gate 27

Figure4.2 : RTL simulation using stimulus for 8-bit shift register 28

Figure4.3 : RTL simulation using stimulus for shift register controller 29

Figure 4.4 : RTL simulation using stimulus for Top-level CAN controller 39

Figure 4.5 : Test bench simulated output for XNOR gate 32

Figure 4.6 : Test bench simulated output for 8-bit shift register 32

Figure 4.7 : Test bench simulated output for shift register controller 32

Figure 4.8 : Test bench simulated output for Top-level CAN controller 33

Figure 4.9 : Report ofTop-level CAN controller simulation on window console. 33

Figure 4.10 : CAN top-level Logic Analyzer output waveform 39

VI

APPENDIX 1

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

APPENDIX 6

APPENDIX 7

APPENDIX 8

APPENDIX 9

APPENDIX 10

APPENDIX 11

APPENDIX 12

APPENDIX 13

APPENDIX 14

LIST OF APPENDICES

Project Gantt Chart

VHDL Source Codes

Block Diagram of Top-level CAN controller

Test benches Source Codes

Translation Report

Map Report

Place & Route Report

FPGA Floorplan

Pad Report

Asynchronous Delay Report

Post-Place & Route Static Timing Report

BitGen Report

User Constraint File

Layout and caption of Virtex II Xilinx XC2V100 Demo Board

vn

CHAPTER 1

INTRODUCTION

This section provides some insights on the topic of interest, Controller Area Network

(CAN). In addition, the problem statement of the project has also being defined.

Besides, the objectives of the project and the scope of study have also being

providedin this section.

1.1 BACKGROUND OF STUDY

1.1.1 Brief History of CAN

Controller Area Network (CAN) which was developed in the year 1986 was the

brainchild of Robert Bosch, a German automotive system supplier. It was initially

developed for automotive industry applications to ensure a more robust serial

communications for networking in vehicles. CAN is a technology designed for

automobiles to be more reliable, safe and efficient while decreasing wiring harness

weight and complexity within the interior of vehicle electronics. With the use of

CAN, point-to-point wiring in vehicle wiring systems is gradually being replaced by

one serial bus connecting all control systems. Besides in-vehicle applications, CAN

is also being employed in the industry. It is usually used as a communication bus for

message transaction in small-scaled distributed environment.

1.1.2 Introduction

Layered approach is commonly used for network applications in system

implementation. This systematic approach provides standards which enables

interoperability between products from different manufacturers. Similarly for CAN,

a layered approached has been applied in its protocol. CAN is internationally

standardized by the International Standardization Organization (ISO) and the Society

of Automotive Engineers (SAE) which provide a template for this layered approach.

It is called the Open Systems Interconnection (OSI) Network Layering Reference

Model (As illustrated in Figure 1.1). The CAN protocol itself implements most of

the lower two layers of this reference model, the Data Link Layer and the Physical

Layer [4].

ISO/OSi Reference Data Link Layer

Logical Link Layer (LLC)

Acceptance Filtering
Overload Notification

Recovery Management

Medium Access Control (MAC)
Data Encapsulation/Decapsulation
Frame Coding
Medium Access Management
Error Detection

Error Signaling
Acknowledgement
Serialisation/Deserialisation

Physical Layer

Bit Encoding/Decoding
Bit Timing

Driver/Receiver Characteristics

Figure 1.1: ISO/OSI Reference Model [4]

As shown in Figure 1.1, the Data Link layer of CAN is further subdivided into two

sub layers, which is the Logical Link Control (LLC) and Medium Access Control

(MAC) sub layers. The Data Link layer is the only layer that recognizes and

understands the format of messages. This layer constructs the messages to be sent to

the Physical Layer, and decodes messages received from the Physical Layer [2].

The Physical layer on the other hand, specifies the physical and electrical

characteristics of the bus. It is responsible for the transfer of bits between the

different nodes in a given network. It defines how signals are transmitted and

therefore deals with issues like timing, encoding and synchronization of the bit

stream to be transferred. This layer is usually the hardware that converts the

characters of a message into electrical signals for transmitted messages. It also

converts messages from electrical signals into characters for received messages.

Although the other layers may be implemented in either hardware (as chip level

functions) or software, the Physical layer is always "real" hardware (usually a

twisted pair ofwire/cable or any other medium of transmission).

1.2 PROBLEM STATEMENT

Currently, low-cost CAN controllers and interface devices are available as off-the-

shelf parts manufactured by several of the leading semiconductor manufacturers

such as Fujitsu, Hitachi, Intel, Texas Instruments and Phillips Semiconductors.

Custom built devices and popular microcontrollers with embedded CAN controllers

are also available. However, most of these CAN controllers are proprietary, and as

such customization and further design evolution of the chips will require permission

and consultation from respective manufacturers which in turn will incur more cost

towards system development.

Besides, CAN technology is relatively new in Malaysia unlike in the United

Kingdom where CAN has already received widespread used in different areas of

expertise especially in automotive and industrial applications. It is hope that this

project will serve as an introduction and familiarization with CAN technology in

Malaysia. Theresults and research work of this project will serve as a foundation for

future development ofCAN in the country.

1.3 OBJECTIVE AND SCOPE OF STUDY

The main objective of this project is to be able to implement a section of CAN

network bus with a reasonable degree of performance. The implementation will

focus on the Transfer layer of CAN (explained further in Section 2.2.) which is

responsible for the bit-level non-destructive arbitration of CANcontroller.

The design is an FPGA-based implementation which includes the programming of a

CAN controller system onto the FPGA demo board with hardware description

language like VHDL (VHSIC Hardware Description Language) as the core

programming language. One of the main CAN controllers must be able to handle

collisions of signals by bit-level non-destructive arbitration process which is

important in eliminating message re-transmission and unnecessary network

overloading. Another CAN controller in the design will compete in the usage of the

network bus with the main CAN controller. This is done to ensure that the arbitration

process of the CAN system can be observed and analyzed whenever one or more

nodes (represented by the CAN controllers) are sending message to the bus. The

output signals of the CAN controller will then: beanalyzed and captured with a Logic

Analyzer to investigate the arbitration;of signals behavior in thecontroller.

In order to ensure that this project will be feasible within the scope and time frame,

the concentration of this project will be largely based on the implementation of the

message handling and collision section of CAN. The other principal functionality of

CAN like error handling and remote data transfer will not be included. This project

will be implemented within two semesters where the first semester covers onthe

understanding of the CAN concept and VHDL modules programming. For the

second semester, design flow in accordance to the Xilinx FPGA implementation has

been adopted.

CHAPTER 2

LITERATURE REVIEW

This section provide more information on the CAN protocol which includes the

basic principle of CAN, the three layers significant in CAN, its message format and

more on the non-destructive bit-level arbitration process. The information presented

is mostly obtained from relevant books and online resources. More information on

each section can be obtained from the direct source in which it has been referenced

to (The number enclosed within the square brackets corresponds to the referenced

item in the References Section). Besides, some information on the hardware

description language used for this project, VHDL is included in this section as well.

2.1 BASIC CAN PRINCIPLE

With reference to [3] and [4], CAN principle has been described in this section.

CAN is an advanced serial bus system that efficiently supports distributed control

systems. It is a broadcast bus that has an open, linear structure with one logic bus

line and equal nodes. CAN is also a message-based protocol, not an address based

protocol. As such, the messages are not transmitted from one node to another node

based on addresses but the message is broadcasted to all nodes and each message is

referred to by an identifier within the message itself which indicates the message

content and the priority of the message. This identifier is unique throughout the

network. All other nodes on the network receive the message and each performs an

acceptance test on the identifier to determine if the message, and thus its content, is

relevant to that particular node. If the message is relevant, it will be processed,

otherwise it is ignored. Since the nodes do not have addresses, the number of nodes

may be changed dynamically without disturbing the communication of the other

nodes.

2.2 CAN LAYERS

In order to achieve design transparency and implementation flexibility, CAN has

been subdivided into different layers. They are:-

• The Object layer

• The Transfer layer

• The Physical layer

The object layer and the transfer layer comprise all servicesand functions of the data

link layer definedby the ISO/OSI model (Asbeing mentionedin Section 1.1) [11].

2.2.1 Object Layer

The scope of the object layer includes:

• Finding which messages are to be transmitted.

• Deciding which messages received by the transfer layer is actually to be

used.

• Providing an interface to the application layer related hardware.

2.2.2 Transfer Layer

The scopeof the transferlayer mainlyis the transferprotocolwhich includes:-

• Controlling the framing

• Performing arbitration

• Error checking and error signaling

• Fault confinement.

2.2.3 Physical Layer

The scope of the physical layer is the actual transferof the bits betweenthe different

nodes with respect to all electrical properties. Within one network the physical layer,

of course, has to be the same for all nodes. There may be, however, much freedom in

selecting a physical layer.

2.3 CAN MESSAGE FRAME

With reference to [11], it is found that CAN protocol define four different types of

messages (or Frames). They include:-

• Data Frame

• Remote Frame

• Error Frame

• Overload frame

The most common type of frame is a Data Frame. This is used when a node

transmits information to any or all other nodes in the system. The second frame is

called a Remote Frame, which is basically a Data Frame with the Remote Transmit

Request (RTR)bit set. The other two frame types are for handling errors. One is

called an Error Frame and the other one is called an Overload Frame. Error Frames

are generated by nodes that detect any one of the many protocol errors defined by

CAN. Overload errors are generated by nodes that require more time to process

messages already received.

Data Frames and Remote Frames will be further explained. Data Frames consist of

fields that provide additional information about the message as defined by the CAN

specification. Embedded in the Data Frames are Arbitration Fields, Control Fields,

Data Fields, CRC Fields, a 2-bit Acknowledge Field and an End of Frame.

The Arbitration Field is used to prioritize messages on the bus. Since the CAN

protocol defines a logical 0 as the dominant state, the lower the number in the

arbitration field, the higher priority the message has on the bus. The arbitration field

consists of 12-bits (11 identifier bits and one RTR bit) or 32-bits (29 identifier bits,

1-bit to define the message as an extended data frame, an SRR bit which is unused,

and an RTR bit), depending on whether Standard Frames or Extended Frames are

being utilized. The current version of the CAN specification is Version 2.0B, which

defines 29-bit identifiers. They are known as the Extended Frames. Previous

versions of the CAN specification defined 11-bit identifiers which are called

Standard Frames. The CAN protocol version will be explained further in Section 2.4.

The Remote TransmitRequest (RTR) is used by a node when it requires information

to be sent to it from another node. To accomplish an RTR, a Remote Frame is sent

with the identifier of the required Data Frame. The RTR bit in the Arbitration Field

is utilized to differentiate between a Remote Frame and a Data Frame. If the RTR bit

is recessive, then the message is a Remote Frame. If the RTR bit is dominant, the

message is a Data Frame.

The Control Field consists of six bits. The most significant bit (MSB) is the IDE bit

(signifies Extended Frame) which should be dominant for Standard Data Frames.

This bit determines if the message is a Standard or Extended Frame. In Extended

Frames, this bit is RBI and it is reserved. The next bit is RBO and it is also reserved.

The fourleast significant bits (LSB) are the DataLength Code (DLC) bits. TheData

Length Code bits determine how many data bytes are included in the message. It

should be noted that a Remote Frame has no data field, regardless of the value of the

DLC bits.

The Data Field consists of the number of data bytes described in the Data Length

Code of the Control Field. The CRC Field consists of a 15-bit CRC field and a CRC

delimiter, and is used by receiving nodes to determine if transmission errors have

occurred. The Acknowledge Field is utilized to indicate if the message was received

correctly. Any node that has correctly received the message, regardless of whether

the node processes or discards the data, puts a dominant bit on the bus in the ACK

Slot bit

The last two message types are Error Frames and Overload Frames. When a node

detects one of the manytypesof errors defined by the CANprotocol, an ErrorFrame

occurs. Overload Frames tell the network that the node sending the Overload Frame

is not ready to receive additional messages at this time, or that intermission hasbeen

violated. Figure 2.1 and Figure 2.2 shows the DataFrame and Remote Frame for a

Standard CAN (Version 2.0A).

Data Frame of CAN 2.0A (Standard)

START

1 bit

Arbitration K
field

IDE RO DLC ' DATA

1 bit 1 bit 4 bits ! 0 to 8 bytes

Control ^ Data Field—•!
Field

Figure 2.1: CAN Data Frame [13]

^^^^

CRC

16 bits

CRC
Field

ACK EOF +IFS

2 taitfe 10 bits

Acknowledge
Field

Remote Frame of CAN 2.0A (Standard)

1 bit

RTR ! IDE RO DLC

11 bits 1 bit! 1 bit 1 bit 4 bits

Arbitration ^ ControL
field ! field

CRC ACK J EOF+IFS

16 bits 2 bits 10 bits

4— CRC field—^f^ *

Acknowledge field

Figure 2.2: CAN Remote Frame [13]

2.4 CAN PROTOCOL VERSION

The CAN protocol supports two message frame formats, the only essential

difference being in the length of the identifier. The CAN standard frame supports a

length of 11 bits for the identifier, and the CAN extendedframe, supports a length of

29 bits for the identifier.

2.5 DATA TRANSMISSION IN CAN

In any systems, some parameters will change more rapidly than others. It is likely

that the more rapidly changing parameters need to be transmitted more frequently

and, therefore, must be given a higher priority. To determine the priority of

messages, CAN uses an established method known as CSMA/CD that is similar to

that used in ETHERNET. However, besides the CSMA/CD technology, CAN have

an enhanced capability of non-destructive bitwise arbitration to provide collision

resolution, and to deliver maximum use of the available capacity of the bus.

The 'CSMA' stands for Carrier Sense Multiple Access. What this means is that

every node on the network must monitor the bus for a period of no activity before

trying to send a message on the bus (Carrier Sense). Also, once this period of no

activity occurs, everynode on the bus has an equal opportunity to transmita message

(Multiple Access). The abbreviation, 'CD' stands for Collision Detection. If two

nodes on the network start transmitting at the same time, the nodes will detect the

collision and take the appropriate action [2].

2.5.1 Non-Destructive Bitwise Arbitration

From [5], the following information has been further obtained. Bus access conflicts

are resolved by non-destructive bit-wise arbitration in CAN in the transfer layer of

the layered structure of CAN which is explained in Section 2.2. The protocol

happens in accordance with the "wired-and" mechanism, by which the dominant

state overwrites the recessive state. The priority of a CAN message is determined by

the numerical value of its identifier. The numerical value of each message identifier

10

(and thus the priority of the message) is assigned during the initial phase of system

design. A fundamental CAN characteristic in this sense is that the lower the message

number, the higher its priority. Therefore, an identifier consisting entirely of zeros is

deemed to be the highest priority message.

CAN utilize binary signaling with a high and low signal state and an idle signal state

that is defined as high. To transmit a logical '0' bit, a node sinks the bus state to low

for one bit time. This is called a dominant bit. To transmit a logical' 1' bit, the state

of the line is left high for one bit time. This is called a recessive bit. Collision-

avoidance begins when two or more nodes simultaneously begin to transmit the first

bit of their frame-identifier.

At any time during priority arbitration, a node transmitting a dominant bit (logical 0)

has a higher priority than any node transmitting a recessive bit (logical 1). A node

transmitting a recessive bit effectively monitors the bus state for one bit time. Upon

detection of a dominant bit transmission, this node recognizes a higher priority frame

and drops out of contention. This process is repeated over the length of the identifier.

Given that the frame identifiers are unique, only one node can be left in contention at

the end of the bit-wise arbitration. This effectively realizes a priority arbitration

mechanism wherein the identifier with the lowest numeric value has the highest

priority. Figure 2.3 shows an example of arbitration process in CAN.

11

10 98 7654 321 0

Station 1

Station 2

t "t^1 •
Station 3

Bus level

listening only

listening only

recessive

dominan
_ I

Figure 2.3: An example of CAN arbitration process [5]

From Figure 2.3, station one and station two has lost in the arbitration of signals.

Station 3 which have the highest priority (lowest identifier value) is thus in the

transmitter mode and is successful in transmitting the complete data frame. Station 1

and Station 2 on the other hand, has switched to receiver mode upon detection of its

arbitration state. In the receiver mode, the station only "listens" to the messages and

will decide whether to accept or reject the messages. Station 1 and Station 2 and will

resend the message (data frame) once the bus is free again (in recessive mode).

2.5.2 The Benefits ofNon-Destructive Bitwise Arbitration

Non-destructive bitwise arbitration provides bus allocation on the basis of need, and

delivers efficiency benefits that cannot be gained from either fixed time schedule

allocation (e.g. Token ring) or destructive bus allocation (e.g. Ethernet.). With only

the maximum capacity of the bus as a speed limiting factor, CAN is indeed more

superior in term of message handling across transmission medium. Outstanding

transmission requests are dealt with in their order of priority, with minimum delay,

and with maximum possible utilization of the available capacity of the bus [2],

12

2.6 VHSIC HARDWARE DESCRIPTION LANGUAGE (VHDL)

From [6], [7] and [9], the following information has been obtained. VHDL is a

hardware description language that can be used to describe and simulate the

operation of a wide variety of digital systems, ranging i n c omplexity from a few

gates to an interconnection of many complex integrated circuits. It can describe a

digital system at several different levels, which is behavioral, dataflow and

structural. VHDL leads naturally to a top-down design methodology in which system

is first specified at a high level and tested using a simulator. The simulator is used to

verify the behavior of the digital circuit prior to expensive fabrication After the

system is debugged at this level, the design can be refined, eventually leading to a

structural description closely related to the actual hardware description.

VHDL program is unlike any conventional program written in either Pascal or

FORTRAN. In VHDL, the focus is in describing the behavior of some physical

system rather than how a function is computed. The VHDL description can be used

to support two complimentary processes found in the design of digital system which

is simulation and synthesis. Simulation and synthesis are complementary design

processes. In both cases, the specification of the behaviorof the digital system is the

first step to construct a VHDLmodel for the desired system. A VHDL simulator

executes this model to mimic the behavior of the physical circuit where the behavior

is described in terms of the occurrence of events and waveforms of signals. In

contrast, digital circuit synthesis is the reverse process. A VHDL program is the

input to a synthesis compiler that can process this description to generate the

physical design of a circuit.Essentially, the synthesis compilermimics the activities

of what used to be a human chip designer job to generate a hardware design from an

initial specification.

13

CHAPTER 3

METHODOLOGY / PROJECT WORK

This section describes the procedures and project flow used in implementing this

project. Besides, the design stages from the project flow chart will be explained

further in this section. The tools used in assisting this project have also been defined.

3.1 PROCEDURE IDENTIFICATION

Described in this section is the methodologies applied in order to achieve the final

objective set. The methodology used has been illustrated with a project flowchart as

shown in Section 3.1.1.

It is important to note that the tasks and workflow for this project is largely based on

the Project Gantt Chart. Milestones have been set accordingly and the Gantt chart

will be used as a guide along the duration of the project. It is important to note that

the Gantt chart will be revised along the course of the project to suit the personal

needs of the author as well as to cater for some unforeseen circumstances. Please

refer to Appendix 1 for the Project Gantt Chart.

3.1.1 Project Flow Chart

Figure 3.1 is a flow chart that illustrates the design process used in the

implementation of this project.

14

Draw fuctional block diagram

Sketch Finite State Machine

(FSM) flowchart

.FPGA-DESIGN FLOW

Design Specification Stage

VHDL Programming of each
design entity

Design Synthesis Stage

Perform RTL Simulation

(Stimulus & Testbench)

Design Implementation

Create user constraint file

Bitstream File

Post, Place & Route
VHDLNetlist&SDF

Device Programming

Optimized Netlist

Output waveform on Logic
Analyzer

Test, analyze and verify design
output signals

Finalize Results

Figure 3.1: Project Flow Chart

15

From Figure 3.1, it is observed that the methodology has been divided into two

major phases which is Research and Development and FPGA Design Flow. The first

phase consists of only one sub-stage which is the Design stage. The Design stage

will be explained in Section 3.2.1. The FPGA Design Flow phase is a step-by-step

method employed to implement the CAN design in FPGA chip. This phase consists

of four sub-stages namely the Design Specification stage, Design Synthesis stage,

Design Implementation stage and Device Programming stage which will be

elaborated in Section 3.3.1, 3.3.2, 3.3.3 and 3.3.4 respectively.

The Research and Development phase includes preliminary research work on CAN

from resources like books and internet as well as mastering the VHDL programming

language. In semester one, the author completed the first phase and a section of the

second phase which is until the Design Synthesis stage. The second semester is a

continuation of work from the first semester until completion. In order to achieve the

device programming stage, a systematic approach has been employed in order to

achieve the final objective. The FPGA design flow has been adopted in order to be

able to successfully program the CAN design into the FPGA chip.

3.2 RESEARCH AND DEVELOPMENT

3.2.1 Design Stage

3.2.1.1 Functional Block Diagram

The specification stage involves producing a Functional Block Diagram of a CAN

controller with message arbitration capabilities. Figure 3.2 illustrates the block

diagram for a CAN controller. From Figure 3.2, it is shown that four main modules

are needed to design a CAN system. Enclosed within the double line box are three

different modules or entities used to design a single CAN controller, say CAN

controller A. The modules are a shift register controller, a shift register and a

comparator whichis basically an XNOR gate. Outside the double line box is another

shift register, a dummy shift registerwhich functions as another CAN controller, say

CAN controller B which will only shift out a sequence of bits every clock cycle but

16

will not posses the arbitration properties of a real CAN controller. CAN controller B

will compete in the use of the bus with CAN controller A. An AND gate which acts

as the design physical bus is part of the FPGA design implementation to demonstrate

the message handling capability of the controller across the bus which behave

according to the "wired-AND" mechanism as discussed in section 2.5.1.

FFO\

Shift Register
Controller

t—n

Bus status

tuuut

enable shifter
Shift Register

TT

Comparator
(XJHORgate)

Bus busy?

AND gate
(Physical Bus

Behavior)

CAN Controller A

3.2.1.2

EOF h
l_Reset |

l__Start []

| °in I

I Clock I

Shift Register
(Dummy)

CAN Controller BJ,

Note:

I . The inputs enclosed with dotted
I line box wili beprovided from a

'-•—-' test bench

Figure 3.2: Functional Block Diagram for CAN controller

CAN Message Handling Design System

-> Enable shifter

-> Dout

Bus

Output

-> Bus_busy_out

-> Clockoutput

In the CAN system, CAN controller A and CAN controller B must send out its

identifier value to the bus first to determine its priority. As being mentioned in

Section 2.5, CAN adopts a message-based protocol and priority of message is

determined by its identifier. The lower the identifiervalue, the higher the priority. As

such, any CAN controller with the lower identifier value will win the arbitration

process (message handling process) and thus be able to proceed in sending out its

message (the whole data frame) to the receiver across the bus. In this design, CAN

17

controller A will be set to have a higher identifier value than CAN controller B. As

such, for this system, CAN controller B will win in the arbitration process as it has

been given higher priority due to its lower identifier value as detected by the network

system bus. This arbitration process protocol must be achieved to verify the

functionality of the CAN message handling system. A diagram which illustrates the

CAN message handling system has been shown Figure 3.3.

CAN CONTROLLER A

Other

system
connected

To CAN

network

Network Bus

Lower priority

•j.
Higher priority

(busqutputTN
10000000 J

Other

system
connected

To CAN

network

CAN CONTROLLER B

Figure 3.3: A CAN message handling system

3.2.1.3 Finite State Machine (FSM) Chart

Finite State Machine (FSM) chart that describes the shift register controller and shift

register in accordance to the functional block diagram are then drawn to assist in the

HDL programming stage. A Finite State Machine flowchart leads directly to a

hardware realization using VHDL. Basically, the VHDL description of these systems

is constructed from the FSM Chart and the VHDL codes are then simulated (RTL

behavioral simulation described in C hapter 4) to verify its correct operation. The

FSM charts of both the shift register controller and shift register are shown in Figure

3.4 and Figure 3.5 respectively.

Finite State Machine Chart For Shift Register Controller

State 0

Figure 3.4: Finite State Machine Chart for Shift Register Controller

19

Finite State Machine Chart for Shift Register

t ir

Yes

Idle

i

No

(Initialize shifter ="10001110"

<cT^^ c;iock high? ^"~>
No

No

DO ='1'

Figure 3.5: Finite State Machine Chart for 8-bit Serial-in, Serial-out Shift Register

From Figure 3.4, it can be observed that the shift register controller has only two

states. The minimal number of stages used ensures a more efficient approach to

handle the controller. This is because the state of the design is synchronous and

relies on the system clock. With less state changes when the design is triggered, the

results can be observed immediately. This is an important criterion as the design is a

time-critical design according to Mealy state machine. As such, the outputs are a

function of the inputs and the cunent state. Hence, with fewer states, state transition

20

can be designed to happen immediately in the cunent clock cycle instead of

changing only during the next clock cycle. This is an important protocol as the

message handling process of each controller must be quick in response. Any failure

to do that will disrupt the message sending process.

From Figure 3.5, the shift register module is initially idle. At this idle state, its output

(DO) is set to be logic T to signify that it is idle. It is designed to send out a

sequence of bits after reset is initiated and its start input is activated. The bits will be

shifted out serially according to its initialization bits. From the figure, the

initialization bits are set as "10001110". After the first eight bits being shifted out,

the follow-up bit will be in accordance to the state of the shifter input, DI. The

similar process repeats after a reset.

3.3 FPGA DESIGN FLOW

The generalFPGA designflow diagram employed is shownin Figure 3.6. This is the

overall development methodology used in implementing the CAN design in FPGA.

Design
Implementation

Download to a

Xilinx Device

Figure 3.6: FPGA Design Flow [14]

21

3.3.1 Design Specification Stage

After the first phase, intensive coding with VHDL language is done in accordance to

the FSM chart produced earlier in Section 3.2.1. Active-HDL 5.1 program is used as

the authoring platform. Simpler module like the XNOR gate code is obtained from

web resources and being modified accordingly to suit the needs and specification of

the design. Block diagram is used to interconnect the smaller module of the design to

produce the top-level module which can be automatically generated by the Active-

HDL program. The top-level module is used to tie all other modules to form a

complete design of the CAN controller. Please refer to Appendix 2 for the VHDL

source codes for each entity/module and Appendix 3 for the Top-level module block

diagram.

3.3.2 Design Synthesis Stage

Synthesis is the transformation of an idea into a manufacturability device to carry out

an intended function. It other words, it can also be described as the transformation of

a design from abstract to concrete design [14]. Synthesis will be done using Active-

HDL 5.1 and Xilinx Synthesis Technology (XST) program packaged within the ISE

Design Environment 4.2i.

The source code for the Comparator, Shift registers, Shift register controller and top-

level CAN controller entities will be compiled and synthesized using the Active-

HDL program and later migrated to the Xilinx ISE Design Environment 4.2i tool to

be synthesized again. Simulation is performed on each entity to ensure that the

design works according to specification. As such, Register Transfer Level (RTL)

simulation is done to determine and analyze the functionality of the design and to

verify the correctness of the RTL VHDL description. The simulated output can also

be used to measure the performance of the design and further improvement on the

design can be done to improve its performance. The results and the conesponding

discussion on the RTL simulation carried out in this project will be presented in

Chapter 4.

22

3.3.3 Design Implementation Stage

Design implementation stage begins with the mapping of a logical design file to a

specified device and is complete when the physical design has been successfully

routed and a bitstream is generated [14]. Design implementation is also done using

the ISE Design Environment 4.2i. The software uses the following design flow

engine to carry out the implementation stage.

i. Translate - Merge all input netlist to form a complete full chip

netlist. This is done by running the NGDbuildprogram.

ii. Map - Optimizes the merged netlist by NGDbuild. This can be

accomplished by running the program, MAP.

iii. Place & Route - All logic blocks are assigned specified location

within the die. Routing (connection) of logical blocks are done by

the program, PAR.

iv. Configure - Configures the physical implementation into binary

stream. This is accomplished by the program BitGen. PromGen

program will then converts BitGen into PROM file format.

v. Timing - Performs timing analysis by TRACE program.

Before an implementation, constraints must first be set. Constraints are instructions

placed on symbols or nets in an FPGA schematic or textual entry file such as VHDL

or Verilog. They can indicate a number of things such as placement, implementation,

naming, signal direction, and timing considerations.

In the Xilinx development system, logical constraints are placed in a file called the

User Constraints File. The Xilinx Constraints Editor which is integrated within the

ISE Design Environment software is used to create and modify timing and physical

constraints of the design. Input files to the Constraints Editor are the UCF file.

Constraints created by the user are written to this file and NGD (Native Generic

Database) file. This file serves as input to the mapper, which generates the physical

design database (NCD file). NGDBuild uses the UCF file and design source netlists

to produce an NGD file. The NGD is read by the MAP program, whichgenerates an

23

NCD file (a physical design database) and a PCF (Physical Constraints File). The

implementation tools use the NCD and PCF files to produce a bitstream. The UCF

file can be viewed from Appendix 13.

3.3.4 Device Programming Stage

Device programming is the process of loading a design-specific programming into

one or more FPGAs in order to define the functional operation of the internal blocks

as well as their interconnections. The Xilinx device which will be used for this

project is re-programmable and it also supports in-system programming. Device

programming is done using the iMPACT program within the ISE Design

Environment.

The iMPACT configuration tool is a command line and GUI based tool, which

allows user to configure FPGA designs using Boundary-Scan, Slave Serial, and

Select Map configuration modes. Boundary-Scan mode is an industry standardserial

programming mode and will be the selected mode to perform the design. External

logic from a cable, microprocessor, or other device is used to drive the JTAG

specific pins, Test Data In (TDI), Test Mode Select (TMS), and Test Clock (TCK)

and sense device response on Test Data Out (TDO). This mode is the most popular

mode of configuration due to its standardization and ability to program FPGAs,

PLDs, and PROMsthroughthe same four JTAGpins. [14]

There is a specific order in which commands must be executed using the iMPACT

tool. The following steps are performedto initiate the deviceprogramming process:

i. Set the configuration mode

ii. Set up the cable port

iii. Define the JTAG chain and assign files

iv. Program the device

v. Verify the device

vi. Exit from the programming software

24

The programmed device will be verified by checking the output signals of the board

using a Logic Analyzer. The results will be analyzed and discussed in Chapter 4.

3.4 TOOLS USED

The software required to assist in the implementation of this project are the Active-

HDL 5.1 and Xilinx ISE 4.2i Design Environment software which is used to perform

the steps in Section 3.2 and Section 3.3.

The FPGA board that used in the project is the Virtex II XC2V1000-FG256 demo

board by Insights Electronics Inc, distributed by Memec Design. The Xilinx

XC2V1000 FPGA chip used in the project is mounted on the Xilinx FPGA demo

board. The FPGA chip on the board contains as much as one million logic gates. The

board utilizes the Xilinx XC18V04 ISP PROM, which allows user to download

revisions of a design and verify the design changes in order to meet the final system-

level design requirements. In addition to ISP PROM, the board also provides a JTAG

connector for direct configuration of the Virtex II FPGA. The graphical picture as

well as the reference board block diagram of the Xilinx Virtex II demo board is

shown in Appendix 14.

The output signals from the FPGA chip will be analyzed using a Hewlett Packard

(HP) 1673G Series Logic Analyzer.

25

CHAPTER 4

RESULTS AND DISCUSSION

In this section, the RTL simulation results for all the design modules are shown. The

waveforms obtained are then analyzed to check if the results are as desired and

whether it conformed to the design specifications and requirements. Besides, the

results of design implementation and device programming have also been presented

in this section. The final design output from the FPGA captured with the Logic

Analyzer is being compared with the RTL simulation and discussed further.

4.1 DESIGN SIMULATION RESULTS

Two methods of RTL simulation has been employed in verifying the modules of the

design. One is simulation using stimulus and the other is simulation with test

benches. Someexplanation on both methods is provided in Section4.1.1 and Section

4.1.2. The conesponding simulation results and discussions for both methods are

also provided.

4.1.1 RTL simulation using stimulus

This method of simulation is considered manual simulation as the stimulus is set by

the designer itself. In the Active-HDL program, the stimulus is set using

"HOTKEY" which is any of the keys from the keyboard to represent a signal state.

A stimulus or stimulator that represents the designenvironment is then used to drive

thedesign and check to make sure that the results producedby the designare as

expected. A standard VHDL simulator can be used to read the RTL VHDL

description and to verify the conectness of the design. The VHDL simulator reads

26

the VHDL description and then compiles it into an internal format which then

executes the compiled format using test vectors [12].

By observing the output waveforms from the simulation, the functionality of the

design can be verified. The waveform display shows the values of the signals of the

design over time. The results of the simulation using stimulus for XNOR gate, shift

register and shift register controller and top-level CAN controller are shown in

Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4 respectively.

Niarriej '• Value 5timuia?,.| i • so . i . no . • . in . • . 200. 1 . 250. 1 . 300.

••a H
; Input 1

n •4 :

!

•••b h
; Input 2

•0 fi 1

j Output

Figure 4.1: RTL simulation using stimulus for XNOR gate

From Figure 4.1, the results obtained is as desired. The output (G) of the XNOR gate

is a logic high (logic '1') if both inputs (a and b) is similar (either a - b - '0' or a =

b = tV) while the output is logic low (logic '0') ifboth inputs are not similar. This is

the behavior expected from that of an XNOR gate. The XNOR gate is used as a

comparator in this CAN design to compare the signals transmitted and received

again from controller A to check if it has been arbitrated or not. The comparator will

compare the output signals obtained from the CAN controller before and after its
i

output passed through the AND gate. The AND gate is used to emulate a real

physicalbus whichhave the characteristic of an AND gate when it carriesmessages.

27

Value Stimulate.[Name
500 ns-

;

Clock

o-C |1 IDock

•"DI |l |<=1
Shilttijnpul

• CLR H jfi
Rise:

U LI
Start_shifter

I
Internal storage

*JU *8E ft) fcB *77 *EF *OF ^ feE »0 X» (77

-°DQ o i
Shitter output

—J I 1 1

Figure 4.2: RTL simulation using stimulus for 8-bit shift register

The shift register is an 8-bit serial-in, serial-out shift register and it is set to have

input initialization bits of "10001110". The shift register will shift the bits at each

clock event (clock high). From Figure 4.2, the clock frequency is set at 25 MHz to

emulate the clock frequency of the FPGA on-board oscillator. CLR represents a reset

and the design must be reset before it is activated. As soon as the shifter is initiated

by starting up the shifter (SR =' 1'), it is observed that the first eight bits of the shifter

output (DO) is "10001110", which is the initialization bits of the shift register. The

ninth, tenth eleventh and so forth bits will be similar to that of the shifter input value

(DI) which is "1" until the shifter is reset again. The shifter input (DI) allows real

time input into the shifter. From the simulation, it is shown that during the second

reset, the output will again be similar to the input initialization bits as the shifter is

being reset after the eleventh bit. This is the case as after reset, the shifter will be

restored with the eight initialization bits again.

The RTL simulation for the dummy shift register module will not be shown as it has

similar characteristic to that of this shift register. The only slight difference is in its

initialization bits output. The dummy shift register is set to have an initialization bit

of "100000000". And as such, it will shift out the initialization bits every clock

cycle. Similarly the shifter input (DI) has been set at' 1'.

28

Name

»• stan

• reset

•cik

<• bus status

o- eo(

•«> enable shifter

«" Tstate

«" Tnext

Value Stimulator^

Cbck

. 50 . i - 100 . i . 150 . i • 200 • i . 250 . i . 500 . . • 350 , i . 400 . i > 450

"LJ

Bus Statu;

End of Frame

Enable Shifter

1

Curreritstale

I

Nest Sute

Figure 4.3: RTL simulation using stimulus for shift register controller

The clock frequency is set at 25 MHz. The value 25 MHz is chosen as the on-board

oscillator of the FPGA demoboard is approximately this frequency range. The input

signals are start, reset, elk, eof and bus status while the output signals are

enable_shifter. The Tstate and Tnext are the internal signals which represent the

states of the design.

From Figure 4.3, it is observed that the shift register controller is activated when the

signal is fed into its 'start' input. The bus_status signal as itnames implies indicates

whether the bus is free or busy. A logic ' 1' represents the bus is free while logic '0'

represents the bus is busy. The shift register controller will output a logic T signal

(enable_shifter = T) whenever the bus status is not busy and vice versa. This is the

signal that will be used to enable or disable the shift register.

29

SOOns

Name Value iStimu.
Ops

50 400

C clock iClock

•* C.Cikuitput |0 ^Ln_ru^i_R_ruuTn_
Master reset C reset 10 !R

Bus status

Controller A * C.Dout

CANJ_out

C Bus

Lost in arbitration

Controller B Won in arbitration

tUS OUTPUT !U

X

Figure 4.4: RTL simulation using stimulus for top-level CAN controller

Referring to Figure 4.4, C_bus is the output from the AND gate, which in this case,

acts as a physical bus which carries the messages transmitted by the transmitter

(Controller A and Controller B) to the receiver. CJDout is the output from CAN

controllerA, the main CAN controllerwhich exhibits the arbitration characteristics.

Cjclock is the clock input which has been set at 25 MHz. C_Clk_output is the clock

output. The reason the clock output is checked is to ensure that the clock goes into

the design during the design implementation stage. C reset is the master reset of the

system. Before the start of the message sending process, the C_reset input must be

set to low (Logic '0') to reset the whole system. Busjstatus is an output which

represents the status of the bus whether the bus is free or busy. Comparing the

waveform of C_bus, CDout and CjCAN_B_out, it was found that the waveform for

CJ>us and C_CAN_B_out is similar. Hence, the bus is actually carrying the

sequence of bits sent by CAN Controller B. This shows that CAN controller B has

actually won in the arbitration process. CAN controller A has lost in the arbitration

process at X (please refer to Figure 4.4) because it has a higher identifier value as

compared to CAN controller B. This means that controller B actually has a higher

priority thancontroller A and is given the bus allocation.

30

The results obtained indicate that the design has met with the specification of a CAN

system duringmessage handling. The arbitration of signalshas been exhibitedby the

controller when it lost in the bus allocation due to its lower priority identifier.

4.1.2 RTL simulation using Test Bench

A test bench is a design entity which serves as a host environment for another design

being tested. Test bench is not real device or a system that must communicate with

its environment and as such it does not need any inputs or outputs. The tested entity

is called Unit Under Test (UUT) and it is instantiated in the test bench architecture.

The ports of the UUT instantiation will be assigned stimuli signals by the test bench

architecture. The heart of each test bench is a set of stimuli which is a sequence of

values for each UUT input signal applied over time. Since test bench does not

communicate with its environment through signals, all stimuli must be declared

internally in the test bench architecture like any other signals inside the VHDL

architecture declarative part. Test vectors used to simulate the UUT entity can be

furnished in an external file or encoded immediately in the test bench architecture

[10].

The advantage of using test bench is the fact that once test bench is generated as well

as its test vectors are specified, it can be reused many times to perform simulation

and automatic verification of our design regardless of any successive revisions of the

VHDL designs. Thepredicted outputs canalsobe codedinto the testbench. As such,

the test bench not only prepares the test vectors but can verify the expected output

from the design. As such, the outputs can be check once the test bench is run and the

outcome or results for the simulation can be reported. Report clause is used in the

test bench to display messages when something goes wrong or if the simulation is

not successful. The report of simulation can be viewed from the console window of

the VHDL program.

Due to constant revisions being done on the design entities, test benches are written

for the shift register module, shift register controller module as well as the top-level

CANcontroller module to verify their functionality. The results of the test bench

31

simulations are shown in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8. The

results of the test bench can be viewed from the ERR_STATUS (error status) output.

Besides, a report will be generated on the console window by the Active-HDL

program to indicate the successfiil simulation status. An example of the generated

report for the top-level CAN controller module is shown in Figure 4.9.The test

benches source codes can be viewed at Appendix 4.

•Naijie Value ' .Stimulator' I . . 50 i • \W • i • m . i . 200 • i • 250 . i .' 300 •

* STIM a 1 l i 1 1 1

«• STIM.b 1 i I ~i r 1 1 1 J
* ACTUALG 1 i I r 1 J
*• EXPECT G !- 1 1 1 I 1 1 1 i

a«-WPL (?,(stimulu...! i X t t X X X X(7.(StHTHllU

» ERR STATUS L

Figure 4.5: Test bench simulated output for XNOR gate.

Name Value Sb'm... , , 6.0 • i . 100 . i . TOO • t • 200- . i . 250 . i . 300 . i . 350 . i . 4Q0 • i • 450

* STIM.C 0

"• STIM.DI 1

» STIM.CLR 1 u u
" STIM.SR 1 1
«-ACTUAL_D0 0 --' 1 1 1
«r EXPECT DD \\N i I I 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1

ffl^WPL (Q?,[stim... cccxioqcxxxxx!!^^
«r ERR_STATUS L

Figure 4.6: Testbenchsimulated outputfor 8-bit shiftregister.

Name Vafcie Slim.:. . . so . i - ioo . i • 150 . , .200. . . 250 . . . 300 • i • 350 . i . 4p0 . ' •4!0' «
"" STIM_start 1 1

* STIM_reset 0 l_l l_

» STiM.ck 0

" STIM bus status 0 i i
"• STIM_eof

«-ACTUAL.enoblo_*Hflei

0

0 y-~~~* I 1 _
» EXPECT_onabe_shifter v\\\\N II 1 1 1

B»WPL [1?^ti... i XXX X x mm

Hio-WPLSIBNALS 1? W X<« jioa x« x» *• t«

a^WPLDIBECTIDN (stimul... [«imdui^HrmJuijtr™(ui.itim"*iij*f(»ostt

«f ERR_STATUS L

Figure 4.7: Test bench simulated output shift register controller.

32

Name

w STIM C_Dti

W • i . 150 . i . 150 .250, i . 3Wl . i .350. i , 4l1U , . .450. . 4EO| 1

" STIMCeteck

• STIM Ceof

' STIM C real

' STIMCstart

-ACTUALCJus

" EXPECTCBus

B"-WPL [5?Jsim(Ju3,stm.- coirxxxxxxxxxxxxxxxxxx^oiM
"• ERR.STATUS

Figure 4.8: Testbenchsimulated output for top-level CANcontroller

mi a # Simulation has been initialized

M ° U Selected Top-Level: testbeneh for can tod

B: a # #asim TIMING FOR can bd

1
a wave

" wave -noreg STIM C Din

I
a wave -noreg STIM C clock

o:wave -noreg STIM C eof

a. wave -noreg STIM C reset

o; wave -noreg STIM_C_start
a! wave -noreg ACTUAL_C_Bus
°! wave -noreg EXPECT C Bus

"wave -noreg ACTUAL C Clk output

a wave -noreg EXPECT C Clk output

a. wave -noreg ACTUAL_C_Dout
a wave -noreg EXPECT_C_Dout
« wave UPL

": wave ERR STATUS

1
a run 500.00 ns

instance.

fa # : MOTE : All vectors passed.)
off : Time: 5UU ns. Iteration: 1, 1UP

Ml oi # KERNEL: stopped at time: 500 ns

•
°: # #End simulation macro

•j§/ Console •';•/';;•'

Figure4.9: Report of Top-level CAN controller simulation on window console

The observations from the output waveforms verified that the design in Figure 4.5,

Figure 4.6, Figure 4.7 and Figure 4.8 is functioning as desired as the ERR_STATUS

which denotes the enor status of the simulated module shows logic '0'. Logic '0'

proves that the simulated module is conect and has no errors in syntax and its

hierarchy. Figure 4.9 shows a console generated report that verifies that the top-level

module has been successfully simulated. It is important to note that the successfiil

results obtained is not as spontaneous and simple as it may seem. The modules has

33

been revised, debugged and re-tested many times before the desired results can be

achieved.

Basically, the outputs expected from the test benches is in essence similar to that

obtainedthrough RTL stimulus simulation. Test bench has the benefitsofreusability

whereby userwill not needto supply the stimulus each time simulation is performed

as the test vectors has been written beforehand.

4.2 DESIGN SYNTHESIS AND IMPLEMENTATION RESULTS

As being mentioned earlier in Chapter 3, the design synthesis and implementation

stage has been done using the ISE Design Environment 4.2i software. Synthesis is

performed using the XST (Xilinx Synthesis Technology) software while

implementation has been done with the help of multiple software tools like Xilinx

FloorPlanner and FPGA Editor which comes packaged within the ISE Design

Environment.

During implementation, the design is converted from the logical design file format

created in the design entry stage into a physical file format contained in an NCD

(Native Circuit Description) file. Implementation processing for FPGAs involves

three basic phases: Translate, Map, and Place and Route as described in Section

3.3.3. Processes to check and verify timing requirements are also included. At the

end of these phases, a programming file can be created. With the programming file,

user can directly download the programming file into the Xilinx device.

The completed implementation of the design will generate the following reports

which provide a complete description of the FPGAbaseddesign.

4.2.1 Translation Report

During the first step ofdesign implementation, the translate process merges allofthe

input netlists and design constraint information and outputs a Xilinx NGD (Native

34
PUSAT SUMBHR MAKLUMAT

UNIVERSITI TEKNOLOGI PETRONAS

Generic Database) file. The output NGD file c an then be mapped to the targeted

device family. The Translation Reportcontainswarning and enor messages from the

three translation processes which are conversion of the EDIF or XNF style netlist to

the Xilinx NGD netlist format, timing specification checks, and logical design rule

checks. All enors must be rectified before the implementation can be preceded.

Please refer to Appendix 5 for the Translation Report.

4.2.2 Map report

The MAP process first performs a logical DRC (Design Rule Check) on the design

in the NGD file producedby the Translate process. MAP then maps the logic to the

components (logic cells,I/O cells, and othercomponents) in the targetXilinx FPGA.

The output design is an NCD (Native Circuit Description) file physically

representing the design mapped to the components in the Xilinx FPGA. The NCD

file can then be placed and routed.

The MAP report contains warning and enor messages detailing logic optimization

andproblems in mapping logic to physical resources. Basically, the report provides a

detailed description of thedesign information anddesign summary after thedesign is

mapped onto the FPGA.

Some important information gathered from this report is the number of gate count

required for the design. The number of gate count for this design is only 171 gates.

The target architecture used for this project, the Xilinx XC2V100 chip can support

up to one million gates and as such is more than enough to support the CAN

controller design needs.

The Map report also includes the following information; Removed logic summary,

IOB properties and Area Group Summary and Modular Design summary. The Map

report can be viewed from Appendix 6.

35

4.2.3 Place & Route Report

After an FPGA design has undergone the necessary processing to bring it into the

mappedNCD format, it is ready to be placed and routed. This phase is done by PAR

(Xilinx's Place and Route program). PAR takes a mapped NCD file, places and

routes the design, andproducesan NCD file to be used by the programming file

generator (BitGen). TheoutputNCD file can also act as a guide file if the place and

route the design is repeatedagain due to some minor changesdone on the design.

The Place & Route report contains routing information or connection of logical

blocks within the FPGA hardware. The report also contains the device utilization

summary, the delay summary and the average connection delay summary. The

average connection delay summary highlights the maximum pin delay of the design

and the listing of eachpin delays in nanoseconds. Pleaserefer to Appendix 7 for the

Place & Route Report.

It is important to notethat the FPGA device is actually a gate-array-like architecture,

with a matrix of logic cells surrounded by periphery of Input/Output (I/O) cells.

Segments of metal interconnect are linked iri an arbitrary fashion by programmable

switches in order to form the desired signal nets between the cells. The CAN design

which have been mapped and downloaded into the FPGA device will combine an

abundance or combination of logic gates Registers and I/Os to form the design

interconnection.

The logic signals generated in the blockof FPGA arecalled theControl Logic Block

(CLB). In addition to CLBs, the FPGA has programmable input/output blocks (I/O

blocks) locatedwithin the chip. Flip-flops and buffers are also locatedwithin the

FPGA. The placement of the gates, flip fl^ps and buffers in the FPGA cab be

reviewed and edited after the Pace & Route step using the FPGA Floor Planner tool

from the ISE Design Environment like Floorplanner and FPGA Editor. The

Floorplanner displays a hierarchical representation of the design using hierarchy

structure lines and colors to distinguish the different hierarchical levels. The

36

complete connection of the design in the Xilinx XC2V1000 FPGA chip can be

viewed from Appendix 8.

4.2.4 Pad Report

The Pad report contains I/O pin information that is a list of the pin-out by pin name

and list of pin-out by pin number. The Pad report is important for future

maintenance, expansion and troubleshooting of the design as it contains the critical

pin information of the design. Pleaserefer to Appendix 9 for the Pad Report.

4.2.5 Asynchronous Delay Report

This report highlights the delayanalysis of all the netsand connections of the design.

Each signal nets is analyzed and then tabulated. The twenty worst net delays has

been tabulated in the report and this information is important and must not be taken

lightly as time delays will affect the performance of time-critical design. The

propagation delay in the design can be improved by focusing on the nets with the

worstdelay. Please refer to Appendix 10 for the Asynchronous DelayReport.

4.2.6 Post-Place & Route Static Timing Report

The Post-Place & Route Static Timing Report process contains a calculated worst-

case timing for all signal paths of a design. It optionally includes a complete listing

of all delays on each individual path in the design. This report also tabulated a

checklist of all timing constraints in the design. It is important to check and verify

that all timing constraints are met in the implementation of the design. The Post-

Place & Route Static Timing report can be viewed from Appendix 11.

4.2.7 Programming File GenerationReport

After the design has been completely routed, the device is configured so that it can

execute the desired function. Xilinx's bitstream generation program, BitGen, takes a

37

fully routed NCD (Native Circuit Description) file as its input and produces a

configuration bitstream (a binary file with a .bit extension). The BIT file contains all

of the configuration information from the NCD file defining the internal logic and

interconnections of the FPGA, plus device-specific information from other files

associated with the target device. The binary data in the BIT file can then be

downloaded into the FPGA's memory cells, or it can be used to create a PROM file.

The Programming File Generation Report or also known as the BitGen Report is the

final report generated in the implementation step. The report lists the enors and

warnings found during the bit map generation. The bit stream file generated is very

crucial as it will be downloaded into the FPGA. The BitGen report can be viewed

from Appendix 12.

4.3 DEVICE PROGRAMMING RESULTS

The device programming stage proved successful as there is no enor generated

during the FPGA chipprogramming process is initiated until it has completed. After

the FPGA chip has been programmed, the output signals are analyzed with a logic

analyzerto verify its conect operation.

38

4.3.1 Logic Analyzer Output Waveform

Figure 4.10:CANtop-level Logic Analyzer outputwaveform

From Figure 4.10, it is observed that the signals captured from the Logic Analyzer

are almost similar to the RTL simulation results in Figure 4.4. Note that the signals

OSCjOT denotes the oscillator output signals, BUS OT denotes the bus output

signals, D_OUT is the output signal of CANcontroller A, CANB denotes the output

signals from CAN controller B, RESET is the master reset signal of the design and

BUS_ST denotesthe statusof the bus.

The process starts as soon as the reset signal (RESET) is initiated. It is observed that

the CAN controller A output (DOUT) lost its arbitration starting from point A

(refening to Figure 4.10). The bus status signal (BUS ST) in turn shows a logic '0'

which indicates that the bus is busy. CAN controller B (CANB) which has lower

identifier value won in the arbitration process and thus be able to send its full data

39

frame across the bus. Hence,the bus output (B US_OT) is similartothatof CAN

controller B (C47VB).

The results obtained from the RTL simulation as well as the Logic Analyzer

captured waveforms verify that the CAN design is working fine according to the

specification set in Chapter 3 . However further i mprovements can bedone to the

design to improve on its performance and functionality. This will be discussed in

further in Chapter 5.

40

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This section reviews and concludes the project while highlighting some of the

problems faced andhowit is handled to overcome them. Some recommendations are

made to suggest for further improvement and for future progress.

5.1 CONCLUSION

The desired deliverable is a CAN controller that will exhibits bit-level non

destructive arbitration of signals during message collision. From the successful

simulation results obtained as well as the captured output waveform from the Logic

Analyzerin Chapter4, the objectives set in Section 1.3have alreadybeen achieved.

This project was carried out in two semesters. The first semester was mainly

dedicated to preliminary research work, detailed design of the CAN message

handling protocol andalso testing andperforming RTL simulation of the design. The

second semester workmainly focused on the implementation of the design in FPGA.

The mastering of a newlanguage, in this case, VHDL provedto be most challenging

part of the project in this semester. As the language is not taught in the university

and there is no expertise among the university lecturers and technicians in this field,

self-study and self-exploration have to be done to familiarize withthe language. The

language is different to other common programming languages like C++ or Visual

Basic. The knowledge of sequential programming in which the author is familiar

with is not sufficient to assist in the concunent programming environment. There

was a need to understand that the operation of a digital system is inherently

concunent and so the VHDL programming techniques must be concurrent as well.

41

Trial-and-error method is used for familiarization with the authoring tool and

language became the norm for many weeks before the author proceeds to intensive

coding. With time and effort, the author has managed to grasp the language better

and be able to code the modules and achieved the results desired for the design.

The major problem encountered during the second semester was mainly caused by

the constraint of time available for the author to familiarize with the FPGA

development system. The FPGA Design Flow includes the utilization of two

separate software tools and many sub tools embedded within the two main softwares.

The main software tools mentioned are the Aldec Active-HDL and Xilinx ISE

Design Environment. Each of these software tools has different function and needed

to be fully understood before design development could begin. There is also a lack of

user friendliness in the software tools and this has resulted in a longer familiarization

time taken as compared to development time.

However, upon completion, the project has indeed enhanced the author's

understanding in digital design using VHDL. Besides, the author has gain valuable

insights on the techniques used in FPGA implementation, particularly each step in

the design flow from design specification to device programming stage for FPGA

implementation. The author has also gain more knowledge on CAN message

handling protocol and its other functionality.

5.2 RECOMMENDATIONS

The CAN controller can be further improved by adding in more functionality like

enor handling capability in the design. As arbitration of signals signify that the

signals sent by a node/station is lost duringtransmission, an enor handlingcapability

may detect the lost transmission and will be able to recover the lost signals by

informing the node in particular to resent the message.

Besides, the design can be optimizedfurther by reducing the clock frequencies used

in the system and also by optimizing the timing constraints used in the design. The

42

cunent clock frequency used approximately 24 MHZ. In such frequency, the system

may be affected by noise interference and as such may affect the performance of the

design. Besides, delay in the design will be larger due to parasitic capacitance.

Parasitic capacitance may occur in the routing or wiring within the chip especially

for routing between IOBs which is in close proximity. As such, lower clock

frequency will be more feasible to prevent delays and interference.

In addition to that, the AND gate used in the CAN design to represent the physical

can be replaced with a real physical wire for future project enhancement. The

behavior of the CAN design system using the real physical wire can then be

compared with the one with an AND gate to verify the feasibility and functionality

of the CAN design.

In conclusion, this projecthas achieveall the objectives set in Section 1.3 which is to

be able to deliver an FPGA-based implementation of a version of CAN system with

emphasison bit-levelnon-destructive arbitration.

43

REFERENCES

1. Mike J Schofield 14th August 2003

<http://www.mjschofield.com/canworks.htm>

2. Siemens. October 1998

<http://wwwlhc.icepp.s.utokyo.ac.jp/ATLAS/tgcelex/technology/can/CA

NPRES.pdi>

3. Hitex UK Ltd. 15th August 2003

<http://www.hitex.co.uk/CAN/canarticIe.html>

4. Microchip. 16th August 2003

<http://www.microchip.com/download/appnote/analog/can/00713a.pdf>

5. Cia (CAN in Automation). 16th August 2003
<http://www.can-cia.de/can/protocol/>

6. Charles H. Roth, Jr, 1998. Digital Systems Design Using VHDL, Boston,

PWS Publishing Company

7. Kevin Skahill, 1996. VHDL for Programmable Logic, Addison-Wesley

Logman, Inc.

8. Douglas Perry, 1998. VHDL, New York, McGraw-Hill Companies Inc.

9. Sudhakar Yalamanchili, 2001. Introductory VHDL: From Simulation to

Synthesis, New Jersey, Prentice-Hall, Inc.

10. J.Mirkowski,MKapustka, Z. Skowronski, A. Biniszkiewicz, 1998. Active

VHDL Series:Book #2, ALDEC, Inc.

11. Technical reportrefers BOSCH CAN Specification 2.0. (1991)

12. Thesis refers to Cecilia Chau. (2001)

13. Thesis refers to Abu Bakar Sayuti. (2002)

14. Xilinx Software Manual (2004)

44

APPENDICES

45

APPENDIX 1

Project Gantt Chart For Final Year Design Project

Semester 1 & Semester 2

N
o

.
lM

;i
il

/\
\e

e
k

1
2

3
4

5
.

6
7

S
i)

io
i
i

i2
n

1
4

S
ik

'c
ii

n
ii

.M
id

<
n

ii
li

i
in

.i
ii

fi
ii

nl
I'

m
i|

i-
rl

1
il

k-

2
P

re
li

m
in

a
ry

R
es

ea
rc

h
W

o
rk

-R
ea

d
u

p
o

n
C

A
N

-R
ea

d
up

on
V

H
D

L
Pr

og
ra

m
m

in
g

[

3
S

u
b

m
is

si
o

n
o

fP
re

li
m

in
a

ry
R

e
p

o
rt

•

4
P

ro
je

ct
E

xp
lo

ra
ti

o
n

a
n

d
T

u
to

ri
a

l
i

-E
xp

lo
re

th
e

A
ct

iv
e-

H
D

L
P

ro
gr

am
!

-L
ea

rn
V

H
D

L
la

n
g

u
ag

e

5
S

u
b

m
is

si
o

n
o

fP
ro

g
re

ss
R

e
p

o
rt

•

6
B

a
si

c
P

ro
je

ct
Im

p
le

m
en

ta
ti

o
n

-
D

es
ig

n
fu

nc
ti

on
al

bl
oc

k
di

ag
ra

m
o

fa
C

A
N

c
o

n
tr

o
ll

e
r

-D
ra

w
th

e
F

in
it

e
S

ta
te

M
a
c
h

in
e

fo
r

e
a
c
h

m
o

d
u

le
s

u
se

d
in

th
e

b
lo

ck
d

ia
g

ra
m

-P
ro

gr
am

ea
ch

m
od

ul
e

-C
om

bi
ne

al
l

m
od

ul
es

to
pr

od
uc

e
to

p-
le

ve
l

m
o

d
u

le

7
T

es
ti

n
g

a
n

d
D

eb
u

g
g

in
g

P
ro

ce
ss

8
D

es
ig

n
si

m
u

la
ti

o
n

9
C

o
m

p
le

te
In

te
ri

m
R

e
p

o
rt

L
E

G
E

N
D

S
u

g
g

es
te

d
m

il
es

to
n

e

P
r
o

c
e
s
s

1
,

im
p

r
o

v
e
m

e
n

t
o

n
p

r
e
y
io

u
s
p

r
o

je
c
i

u
e
si

g
ii

2
.

P
ro

je
ct

S
yn

th
es

is
an

d
D

eb
ug

gi
ng

-U
si

ng
Pr

oj
ec

tN
av

ig
at

or
by

X
ili

nx

3
.

P
ro

gr
es

s
R

ep
o

rt
1

Su
bm

is
si

on
•

4
.

D
ev

ic
e

Im
p

le
m

en
ta

ti
o

n

-U
nd

er
st

an
di

ng
se

le
ct

ed
FP

G
A

B
oa

rd
ar

ch
it

ec
tu

re

5
.

D
ev

ic
e

P
ro

g
ra

m
m

in
g

6
.

P
ro

gr
es

s
R

ep
o

rt
2

Su
bm

is
si

on
•

7
.

T
ro

u
b

le
sh

o
o

ti
n

g
F

P
G

A
ch

ip

-I
de

nt
if

y
an

d
de

bu
g

th
e

er
ro

rs

8
.

In
ve

st
ig

at
io

n
o

fC
A

N
co

nt
ro

ll
er

ch
ip

p
er

fo
rm

a
n

ce

-T
es

tin
g

an
d

an
al

ys
is

of
co

nt
ro

lle
rw

ith
te

st
in

g
eq

ui
pm

en
t

9
.

S
u

b
m

is
si

o
n

o
f
D

ra
ft

R
e
p

o
rt

•

1
0

.
S

u
b

m
is

si
o

n
o

f
F

in
al

R
ep

o
rt

/D
is

se
rt

a
ti

o
n

•

1
1

.
O

ra
l

P
re

se
n

ta
ti

o
n

P
re

p
a

ra
ti

o
n

(E
xh

ib
it

io
n

)
•

1
2

.
E

x
te

n
d

e
d

A
b

s
tr

a
c
t
S

u
b

m
is

si
o

n
•

S
u

g
g

es
te

d
m

il
es

to
n

e

P
ro

c
e
s
s

L
E

G
E

N
D

APPENDIX 2

VHDL Source Codes

• XNOR Gate

• Shift Registers

• Shift Register Controller

• Top-level CAN Controller

VHDL source code for XNOR entity

--Design name: canl9
-XNOR gate
-Revision 2.0

-Last updated: 23/10/03

library ieee;
use ieee.std_logic_1164.all;

entity XNOR_ent is
port(a: in std_logic;

b; in std_logic;
G: out std_logic

);
end XNOR_ent;

architecture behv of XNOR_ent is
begin

G <= a xnor b;

end behv;

VHDL source code for shifter entity

-Design name: can40
-8-bit Shift-Left Register
-Revision 2.2

-Last updated: 10/2/04

-Details:

-Shifter with Positive-Edge Clock, Asynchronous Clear, Serial In, and Serial Out

-Input Description:

-C = Positive-Edge Clock
-DI - Serial In

-CLR = Asynchronous Clear (active High)
-DO = Serial Output
-SR^Start Register

library ieee;
use ieee.std_logic_l 164.all;

entity shifter is
port(C,DI, CLR,SR : in stdjogic;

DO : out std_logic);
end shifter;

architecture archi of shifter is

signal tmp: std_logic_vector(7 downto 0);

begin
process (C, CLR)
begin

if (CLR-'0') then
- reset shift

tmp <= "10001110";
elsif (C'event and C= T) then

-- +ve edge trigger flop
if(SR=T)then

tmp <= tmp(6 downto 0) & DI;
DO <=tmp(7);

else

DO<=T;
end if;

end if;

end process;
snd archi;
--description:
•-when it is +ve edge of clock and SR is low,
-DO is high.
-When it is +ve edge of clock and SR is high,
•-send the predefined value and then tmp[0] is replaced by DI.
•-This is asynchronous shift register,
-when CLR is low at any time,
-the shift register will be reset and tmp is '1001110'

VHDL source code for dummy shifter entity

—Design name: can27
-8-bit Shift-Left Register (Dummy)
—Revision 1.0

-Last updated: 3/3/04

-Details:

-Shifter with Positive-Edge Clock, Asynchronous Clear, Serial In, and Serial Out

-Input Description:

~C - Positive-Edge Clock
--DI = Serial In

-CLR = Asynchronous Clear (active High)
-DO - Serial Output
~SR=Start Register

library ieee;
use ieee.std_logic_l 164.all;

entity dummyshifter is
port(C,DI, CLR,SR : in stdjogic;

DO : out std_logic);
end dummy_shifter;

architecture arch_shifter of dummy_shifteris
signal tmp: std_logicjvector(7 downto 0);

begin
process (C, CLR)
begin

if (CLR = '0') then
- reset shift

tmp <= "10000000";
elsif (C'event and C= T) then

- +ve edge trigger flop
if(SR=T)then

tmp <= tmp(6 downto 0) & DI;
DO <-tmp(7);

else

DO<=T;
end if;

end if:

end process;
2ndarch_shifter;
-description:
-when it is +ve edge of clock and SR is low,
-DO is high.
-When it is +ve edge of clock and SR is high,
-send the predefined value and then tmp[0] is replaced by DI.
-This is asynchronous shift register,
-when CLR is low at any time,
-the shift register will be reset and tmp is '1001110'

VHDL source codes for shift register controller entity

-Design name: can40
-Shift register controller
-Revision 2.2

-Last updated: 10/2/04

library ieee;
xse ieee.std_logic_l 164.all;

entity SR_controller is
port (reset,start,clk,eof,bus_status:in STD_LOGIC;

enablejshiftenout STD_LOGIC);
snd SR_controller;

architecture arbitration of SR_controller is
signal Tstate,Tnext: STD_LOGIC;

segin
process(clk, reset)
begin

if (reset = '0') then
Tstate <^ '0'; - make reset as asynchronous so whenever reset is

high, the controller will be set to 00 state
else

if (clk'event and clk -'1') then
Tstate <= Tnext;

else

Tstate <= Tstate;

end if;
end if;

end process;

process(start,bus_status,eof,Tstate,reset)

begin
case Tstate is

when '0' =>

if(reset='0')then
enable_shifter <= '0';
Tnext <= '0';

elsif (start-1' and bus_status = T) then - ifbus is free
enable_shifter <=T;
TnexK-T;

busy so wait here.

end process;
end arbitration:

else

enable_shifter <— '0';
Tnext <= '0';

end if;

whenT=> —

if (start = T) then
if (bus_status ~V) then - ifbus is free

if (eof = '0') then —if end of frame is not reached
enable_shifter <=T;
Tnext<=T;

else

enable_shifter <= '0'; -ifbus is not free
Tnext <- '0';

end if;
else

enable_shifter <= '0'; —it is started but the bus is

Tnext<=T;
end if;

else

enable shifter <= '0';
Tnext <= '0'; - the start is low

end if;

when others=>null;
end case;

~ Description
~ one is reset state one is transmission state

VHDL source codes for can top-level entity

Title : can_bd
Design : can54
Author : Lai Yeen

Company : UTP

File : C:\My_Designs\can54\compile\can_bd.vhd
Generated : Tue Apr 6 14:50:06 2004
From : C;/My_Designs/can54/src/can_bd.bde
By :Bde2Vhdlver.2.01

—Description :

- Design unit header -
library IEEE;
use IEEE.std_logic_1164.all;

entity can_bd is
port(

C_clock: in STD_LOGIC;
C_reset: in STDJX)GIC;
C_Bus : out STD_LOGIC;
C_Clk_output: out STD_LOGIC;
CJ3out: out STD_LOGIC;
Reset: out STD_LOGIC

);
end can_bd;

architecture can_bd ofcan_bd is

— Component declarations

component dummy_shifter
port(

C : in STDJLOGIC;
CLR : in STD LOGIC;

DI: in STD_LOGIC;
SR: in STD_LOGIC;
DO : out STD_LOGIC

);
end component;
component shifter
port (

C : in STD_LOGIC;
CLR: in STD_LOGIC;
DI: in STD_LOGIC;
SR: in STD_LOGIC;
DO : out STD_LOGIC

);
end component;
component sr_controller
port(

bus_status : in STD_LOGIC;
clk:inSTD_LOGIC;
eof:inSTD_LOGIC;
reset: in STD_LOGIC;
start: in STDJLOGIC;
enable_shifter: out STD_LOGIC

);
end component;
component stimulus
port (

master: in STDJLOGIC;
m_din: out STD_LOGIC;
m_eof: out STD_LOGIC;
m_start: out STD_LOGIC

);
end component;
component xnor_ent
port(

a: in STD_LOGIC;
b : in STDJLOGIC;
G: out STD_LOGIC

);
end component;

-— Signal declarations used on the diagram -—

signal NET 10903 : STDJLOGIC;
signal NET1151 : STD_LOGIC
signal NET4277 : STDJLOGIC
signal NET4389 : STD_LOGIC

signal NET5095 : STDJLOGIC
signal NET5127 : STD_LOGIC
signal NET5136 : STDJLOGIC
signal NET98 : STD_LOGIC;

begin

— Component instantiations —

Ul : sr_controller
port map(

bus_status=>NET1151,
clk => C_clock,
enable_shifter => NET4277,
eof=>NET98,
reset => C_reset,
start->NET5136

);

Reset <= C_reset;

U2 : shifter

port map(
C => C_clock,
CLR => C_reset,
DI=>NET5127,
DO=>NET4389,
SR=>NET4277

);

U3 : xnor_ent
port map(

G=>NET1151,
a=>NET4389,
b=>NET10903

);

C_Dout<=NET4389;

NET10903 <=NET5095 andNET4389;

C_Bus<= NET10903;

U7 : dummy_shifter
port map(

C=>C clock,

CLR=>C_reset,
DI->NET5127,
DO=>NET5095,
SR=>NET5136

);

C_Clk_output <- C_clock;

U9 : stimulus

port map(
m_din->NET5127,
m_eof=>NET98,
m_start=>NET5136,
master => C_reset

);

end can bd;

APPENDIX 3

Block Diagram of Top-level CAN Controller

C
_

re
se

t[

C
c
lo

c
k

I

u
a

m
a
st

e
r

m
_

d
in

m
_

eo
f

m
_

sl
ar

t

m
r
e
s
e
t

s
ti

m
u

lu
s

*
-
-

U
1

b
u

s_
st

at
u

s
en

ab
le

_
sh

if
te

r

c
lk

e
o

f

r
e
s
e
t

s
ta

rt

s
r

c
o

n
tr

o
ll

e
r

U
3

x
n

o
r

e
n

t

±
H

-

O
D

O

C
L

R

D
i

S
R

d
u

rn
m

y
_

sh
if

te
r

U
5

a
n

d
2

(C
)A

L
D

E
C

.
In

c
2

2
3

0
C

o
rp

o
ra

te
C

ir
cl

e

U
4

{
>

b
u

f

-
m

C
D

o
u

t

—
•

£>
-•

fi>
En

ab
le_

sh
ift

er
b

u
f

-£
>-

•-
!#

C
_B

us
b

u
f

+-"
•£>

*-•"
WB>

Bu
s_

sta
tu

s
b

u
t b

u
f

o b
u

f

>
C

_C
lk

_o
ut

pu
t

>
C

A
N

B
o

u
t

•R
e
s
e
t

L
D

E
C

H
en

de
rs

on
,

NV
89

07
4

:
Th

e
D

es
ig

n
V

er
ifi

ca
tio

n
C

om
pa

ny

C
re

a
te

d
:

!4
/8

/0
4

T
it

le
:

c
a

n
b

d

APPENDIX 4

Test Benches for RTL Simulation

• XNOR Gate

• Shift Register

• Shift: Register Controller

• Top-level CAN Controller

Test Bench for XNOR entity

- Title : CAN

- Design : can54
~ Author : Lai Yeen

- Company : UTP

-- File : xnor_entwb_TB.vhd
- Generated : Sun Apr 4 16:55:11 2004
- From : xnor_entwb_TB_settings.txt
- By : tb_generator.pl ver. ver 1.2s

- Description : main Test Bench entity

library ieee;
use ieee.std_logic_1164.all;

use EEEE.waves_interface.all;
use WORK.UUT_test_pins.all;
use WORK.waves_objects.all;
use WORK.DESIGN_DECLARATIONS.all;
use WORK.MONITOR_UTILITIES.all;
use WORK.WAVES_GENERATOR.all;

~ User can put library and packages declaration here

entity xnor_ent_wb is
end xnor_ent_wb;

architecture xnor_entwb_archi of xnor_ent_wb is

~ Component declaration of the tested unit
component xnor_ent

port(
a: in stdjogic;
b : in stdjogic;
G: out stdjogic);

end component;

- Internal signals declarations:
~ stimulus signals (STIMJfor the waveforms mapped into UUT inputs,
~ observed signals (ACTUALJ used in monitoring ACTUAL Values of UUT

Outputs,
~ bi-directional signals (BI_DIRECTJ mapped into UUT Inout ports,
~ the BI_DIRECT_ signals are used as stimulus and also used for monitoring

the UUT Inout ports
signal STM_a: stdjogic;
signal STIM_b : stdjogic;
signal ACTUAL_G: stdjogic;

~ Expected signals used in monitoring the UUT OUTPUTS
signal EXPECTJ3 : STDJULOGIC;
~ WAVES signals OUTPUTing each slice of the waves port list
signal WPL : WAVES_PORT_LIST;
signal TAG : WAVESJTAG;
signal ERR_STATUS: STD_LOGIC:='L;
-- Signal END^SIM denotes end of test vectors file
signal END_SIM : BOOLEAN-FALSE;

begin

~ Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

~ Processes that convert the WPL values to 1164 Logic Values
ASSIGN_STIM_a: STEVI_a <= WPL.SIGNALS(TEST_PINS,pos(a)+l);
ASSIGN_STIM_b: STIM_b <= WPL.SIGNALS(TESTJ>INS'pos(b)+l);
ASSIGN_EXPECT_G: EXPECT_G <= WPL.SIGNALS(TEST_PINS'pos(G)+l);

~ Unit Under Test port map
UUT: xnor_ent
port map(

a=>STIM_a,
b => STIM_b,
G => ACTUAL_G);

- Monitor processes to verify the UUT operational response
MONITOR„G:

MONITOR_RESULTS(REP_FILE,ACTUAL_G,EXPECT_G,NOW,G_NAME,E
RRJSTATUS);

~ Process denoting end of test vectors file
NOTIFY_END_VECTORS: process (TAG)
begin

ifTAG.len/=Othen

if ERR_STATUS-'L' then
report "All vectors passed.";

elsif ERR_STATUS=T then
report "Errorswere encountered on the output ports,

differences are listed in xnor_ent_report.log";
end if;
END_SLM <- TRUE;
CLOSEJVECTOR;
CLOSE_REPORT;

end if;
end process;

end xnor entwb archi;

configurationTESTBENCH_FOR_xnor_ent of xnor_ent_wb is
for xnor_entwb_archi

for UUT : xnor_ent
use entity work.xnor_ent (behv);

end for;
end for;

end TESTBENCH FOR xnor ent;

Test Bench for shifter entity

Title : CAN

Design : can54
Author : Lai Yeen

Company :UTP

File : shifterwbJTB.vhd
Generated : Sun Apr 4 16:44:33 2004
From : shifterwb_TB_settings.txt
By : tb_generator.pl ver. ver 1.2s

—Description : main Test Bench entity

library ieee;
use ieee.std_logic_l 164.all;

use IEEE.wavesJnterface.all;
use WORK.UUTjest_pins.all;
use WORK.waves_objects.all;
use WORK.DESIGN_DECLARATIONS.all;
use WORK.MONITOR_UTILITIES.all;
use WORK.WAVES_GENERATOR.all;

- User can put library and packages declarationhere

entity shifter_wb is
end shifter_wb;

architecture shifterwb_archi of shifter_wb is

~ Component declaration of the tested unit
component shifter

port (
C : in stdjogic;
DI: in stdjogic;
CLR: in stdjogic;

SR: in stdjogic;
DO : out stdjogic);

end component;

- Internal signals declarations:
- stimulus signals (STIMJfor the waveforms mapped into UUT inputs,
» observed signals (ACTUALJ used in monitoring ACTUAL Values of UUT

Outputs,
~ bi-directional signals (BI_DIRECTJ mapped into UUT Inout ports,
- the BI_DIRECT_ signals areused as stimulus and alsoused formonitoring

the UUT Inout ports
signal STIM_C : stdjogic;
signal STIM_DI: stdjogic;
signal STIM_CLR: stdjogic;
signal STIM^SR: stdjogic;
signal ACTUAL_DO : stdjogic;

- Expected signalsused in monitoring the UUT OUTPUTS
signal EXPECT_DO : STDJJLOGIC;
- WAVES signals OUTPUTing each sliceof the waves port list
signal WPL : WAVESJPORTJLIST;
signal TAG : WAVES_TAG;
signal ERR_STATUS: STD_LOGIC:='L';
- SignalEND_SIM denotesend of test vectors file
signal END_SIM : BOOLEAN-FALSE;

begin

~ Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

- Processes that convert the WPL values to 1164 Logic Values
ASSIGN_STIM_C: STIM_C <= WPL.SIGNALS(TEST_PINS,pos(C)+l);
ASSIGNJSTEVLDI: STIM_DI <- WPL.SIGNALS(TEST_PrNS'pos(DI)+l);
ASSIGN_STEVLCLR: STIM_CLR<=

WPL.SIGNALS(TEST_PINS,pos(CLR)+l);
ASSIGN_STIM_SR: STM_SR <- WPL.SIGNALS(TEST_PINS'pos(SR)+l);
ASSIGN_EXPECT_DO: EXPECT_DO <=

WPL.SIGNALS(TEST_PINS'pos(DO)+l);

- Unit Under Test port map
UUT: shifter

port map(
C=>STIM C,

DI => STftM_DI,
CLR=>STIM_CLR,
SR => STMJ3R,
DO -> ACTUAL_DO);

- Monitor processes to verify the UUT operational response
MONITOR_DO:

MONITOR_RESULTS(REP_FILE,ACTUAL_DO,EXPECT_DO,NOW,DO_NA
ME,ERR_STATUS);

~ Process denoting end oftest vectors file
NOTIFY_ENDJVrECTORS: process (TAG)
begin

ifTAG.len/-0then

ifERR_STATUS='L'then
report "All vectors passed.";

elsif ERR_STATUS=T then
report "Errors were encountered on the output ports,

differences are listed in shifter_report.log";
end if;
ENDSEvl <= TRUE;
CLOSEVECTOR;
CLOSE_REPORT;

end if;
end process;

end shifterwb archi;

configuration TESTBENCH_FOR_shifter of shifter_wb is
for shifterwb_archi

for UUT: shifter

use entity work.shifter (archi);
end for;

end for;
end TESTBENCH_FOR_shifter;

Test Bench for shift register entity

- Title : CAN

~ Design : can54
- Author : Lai Yeen

- Company : UTP

- File : sr_controllerwb_TB.vhd
--Generated : Sun Apr 4 16:57:29 2004
—From : sr_controllerwbJTB_settings.txt
-- By : tb_generator.pl ver. ver 1.2s

~ Description ; main Test Bench entity

library ieee;
use ieee.stdjogicj 164.all;

use IEEE.waves_interface.all;
use WORK.UUT_test_pins.all;
use WORK.waves_objects.all;
use WORK.DESIGN_DECLARATIONS.all;
use WORK.MONITOR_UTILITIES.all;
use WORK.WAVES„GENERATOR.all;

- User can put library and packages declaration here

entity sr_controller_wb is
end sr_controller_wb;

architecture sr_controllerwb_archi of sr_controller_wb is

- Component declaration of the tested unit
component sr_controller

port(
start: in stdjogic;
reset: in stdjogic;
clk: in stdjogic;

bus_status : in stdjogic;
eof: in stdjogic;
enable_shifter: out stdjogic);

end component;

~ Internal signals declarations:
- stimulus signals (STIMJfor the waveforms mapped into UUT inputs,
~ observed signals (ACTUALJ used in monitoring ACTUAL Values of UUT

Outputs,
- bi-directional signals (BIJDIRECTJ mapped into UUT Inout ports,
- the BI_DIRECT_ signals are used as stimulus and also used for monitoring

the UUT Inout ports
signal STIM_start: stdjogic;
signal STIM_reset: stdjogic;
signal STIM_clk: stdjogic;
signal TMP_clk: stdjogic;
signal STIM_bus_status: stdjogic;
signal STIM_eof: stdjogic;
signal ACTUAL_enable_shifter: stdjogic;

- Expected signals used in monitoring the UUT OUTPUTS
signal EXPECT_enable_shifter: STDJJLOGIC;
-- WAVES signals OUTPUTing each slice of the waves port list
signal WPL : WAVES_PORT_LIST;
signal TAG : WAVESJTAG;
signal ERR^STATUS: STD_LOGIC-'L';
- Signal END_SIM denotes end of test vectors file
signal ENDJ3IM : BOOLEAN-FALSE;

begin

~ Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

CLOCK_GEN_FOR_clk: process
begin

if END_SLM = FALSE then
TMP_clk <- '0';
wait for 20 ns;

else

wait;
end if;
if END_SIM - FALSE then

TMP_clk<=T;
wait for 20 ns;

else

wait;
end if;

end process;
~ Processes that convert the WPL values to 1164 Logic Values
ASSIGNJSTM_start: STIMjrtart <-

WPL.SIGNALS(TEST_PINS,pos(start)+l);
ASSIGN_STIM_reset: STIM_reset<-

WPL.SIGNALS(TEST_PINS,pos(reset)+l);
ASSIGN_STIM_clk: STIM_clk <- TMP_clk;
ASSIGN_STEVI_bus_status: STIM_bus_status <=

WPL.SIGNALS(TESTJ>INS,pos(bus_status)+l);
ASSIGN_STIM_eof: STIM_eof <= WPL.SIGNALS(TEST_PINS'pos(eof)+l);
ASSIGN_EXPECT_enable_shifter: EXPECT_enable_shifter <=

WPL.SIGNALS(TEST_PINS,pos(enable_shifter)+l)-

~ Unit Under Test port map
UUT: sr_controller
port map(

start => STIM_start,
reset => STEVI_reset,
clk=>STIM_clk,
bus_status -> STIM_bus_status,
eof->STEVE_eof,
enable_shifter => ACTUAL_enable_shifter);

- Monitor processes to verify the UUT operational response
MONITOR_enable_shifter:

MONITOR_RESULTS(REP_FILE,ACTUAL_enable_shifter,EXPECT_enable_s
hifter,NOW,enable_shifter_NAME,ERR_STATUS);

- Process denoting end of test vectors file
NOTIFY_END_VECTORS: process (TAG)
begin

ifTAG.len/=Othen

if ERR_STATUS='L' then
report "All vectors passed.";

elsif ERR_STATUS=T then
report "Errors were encountered on the output ports,

differences are listed in sr_controller_report.log";
end if;
END_SIM <= TRUE;
CLOSE_VECTOR;
CLOSE_REPORT;

end if;
end process;

end sr_controllerwb_archi;

configuration TESTBENCH_FOR_sr_controller of sr_controller_wb is
for sr_controllerwb_archi

for UUT : sr_controller
use entity work.sr_controller (arbitration);

end for;
end for;

end TESTBENCH_FOR_sr_controller;

Test Bench for can top-level entity

-- Title : CAN

- Design : can54
~ Author : Lai Yeen

-- Company : UTP

-- File : can_bdwb_TB.vhd
- Generated : Sun Apr 4 17:03:08 2004
- From : can_bdwb_TB_settings.txt
- By : tb_generator.pl ver. ver 1.2s

~ Description : main Test Bench entity

library ieee;
use ieee.std_logic_1164.all;

use IEEE.wavesJnterface.all;
use WORK.UUT_test_pins.all;
use WORK.waves_objects.all;
use WORK.DESIGN_DECLARATIONS.all;
use WORK.MONITOR_UTILITIES.all;
use WORK.WAVES_GENERATOR.all;

~ User can put library and packages declaration here

entity can_bd_wb is
end canj)d_wb;

architecture can_bdwb_archi of can_bd_wb is

-- Component declaration of the tested unit
component can_bd

port(
CJDin : in stdjogic;
C_clock: in stdjogic;
C_eof; in stdjogic;

C_reset: in stdjogic;
C_start: in stdjogic;
C_Bus: out stdjogic;
C_Clk_output; out stdjogic;
CJDout: out stdjogic);

end component;

- Internal signals declarations:
- stimulus signals (STIMJfor the waveforms mappedinto UUT inputs,
- observed signals (ACTUALJ used in monitoring ACTUAL Values of UUT

Outputs,
~ bi-directional signals (BIJ3IRECTJ mapped into UUT Inout ports,
-- the BI_DIRECT_ signalsare used as stimulus and also used for monitoring

the UUT Inout ports
signal STIM_C_Din: stdjogic;
signal STIM_C_clock: stdjogic;
signal TMP_C_clock: stdjogic;
signal STIM_C_eof: stdjogic;
signal STIM_C_reset: stdjogic;
signal STIM_C_start: stdjogic;
signal ACTUAL_C_Bus : stdjogic;
signal ACTUAL_C_Clk_output: stdjogic;
signal ACTUAL_C_Dout: stdjogic;

-- Expected signalsused in monitoring the UUT OUTPUTS
signal EXPECT_C_Bus : STDJJLOGIC;
signal EXPECT_C_Clk_output: STDJJLOGIC;
signal EXPECT_C_Dout: STDJJLOGIC;
- WAVES signalsOUTPUTing each slice of the waves port list
signal WPL : WAVES_PORTLIST;
signal TAG : WAVES_TAG;
signal ERR_STATUS: STD_LOGIC-'L;
~ SignalEND_SIM denotesend of test vectors file
signal ENDJSIM : BOOLEAN-FALSE;

begin

- Process that generates the WAVES waveform
WAVES: WAVEFORM (WPL, TAG);

CLOCK_GEN_FOR_C_clock: process
begin

if END_SIM - FALSE then
TMP_C_clock <- '0';
wait for 20 ns;

else

wait;
end if;
if END_SIM = FALSE then

TMP_C_clock <= T;
wait for 20 ns;

else

wait;
end if;

end process;
-- Processes that convert the WPL values to 1164 Logic Values
ASSIGN_STIM_C_Din: STLM_C_Din<-

WPL.SIGNALS(TEST_PINS,pos(C_Din>fl);
ASSIGN_STIM_C_clock: STLM_C_clock <= TMP_C_clock;
ASSIGN_STIM_C_eof: STM_C_eof <=

WPL.SIGNALS(TEST_PINS'pos(C_eof)+l);
ASSIGN_STLM_C_reset: STIM_C_reset <=

WPL.SIGNALS(TEST_PINS'pos(C_reset)+l);
ASSIGN_STIM_C_start: STM_C_start <=

WPL.SIGNALS(TEST_PINS'pos(C_start)+l);
ASSIGN_EXPECT_C_Bus: EXPECT_C_Bus <=

WPL.SIGNALS(TEST_PINS'pos(C_Bus)+l);
ASSIGN_EXPECT_C_Clk_output: EXPECT_C_Cik_output <=

WPL.SIGNALS(TEST_PINS'pos(C_Clk_output)+l);
ASSIGN_EXPECT_C_Dout: EXPECT_C_Dout <=

WPL.SIGNALS(TEST_PINS,pos(C_Dout)+l);

-- Unit Under Test port map
UUT: can_bd
port map(

C_Din => STM_C_Din,
C_clock => STDVI_C_clock,
C_eof=>STftM_C_eof,
C_reset => STIM_C_reset,
C_start => STIM_C_start,
C_Bus => ACTUAL_C_Bus,
C_Clk_output => ACTUAL_C_Clk_output,
C_Dout => ACTUALj:_Dout);

- Monitor processes to verify the UUT operational response
MONITOR_C_Bus:

MONITOR_RESULTS(REP_FILE,ACTUAL_C_Bus,EXPECT_C_Bus,NOW,C
Bus_NAME,ERR_STATUS);

MONITOR_C_Clk_output:

MONITOR_RESULTS(REP_FILE,ACTUAL_C_Clk_output,EXPECT_C_Clk_o
utput,NOW,C_Clk„output_NAME,ERR_STATUS);

MONITORj:jDout:

MONITOR_RESULTS(REP_FILE,ACTUAL_C_Dout,EXPECT_C_Dout,NOW,
C_Dout_NAME,ERR_STATUS);

-- Process denoting end of test vectors file
NOTIFY_END_VECTORS: process (TAG)
begin

ifTAG.len/-Othen

if ERR_STATUS='L then
report "All vectors passed.";

elsif ERR_STATUS=T then
report "Errors were encountered on the output ports,

differences are listed in can_bd_report.log";
end if;
END__SIM <= TRUE;
CLOSE_VECTOR;
CLOSE_REPORT;

end if;
end process;

end can bdwb archi;

configuration TESTBENCH_FOR_can_bd of can_bd_wb is
for can_bdwb_archi

forUUT:can_bd
use entity work.can_bd (canj)d);

end for;
end for;

end TESTBENCH FOR can bd;

APPENDIX 5

Translation Report

Translation report

Release 4.2i - ngdbuild E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Command Line: ngdbuild -dd c:/kly/can54/_ngo -nt timestamp -p xc2vl000-fg256-4

can_bd.ngc can_bd.ngd

Reading NGO file "C:/kly/can54/can_bd.ngc"...
Reading component libraries for design expansion...

Annotating constraints to design from file "can_bd.ucf'...

Checking timing specifications...
Checking expanded design...

NGDBUILD Design Results Summary:
Number of errors: 0

Number ofwarnings: 0

Writing NGD file Hcan_bd.ngd"...

Writing NGDBUILD log file "canbd.bld"...

APPENDIX 6

Map Report

Map report

Release 4.2i-Map E.35
Xilinx Mapping Report File for Design 'can_bd'

Design Information

Command Line : map -p xc2vl000-fg256-4 -cm area -k 4 -c 100 -tx off can_bd.ngd
Target Device : x2vl000
Target Package : fg256
Target Speed : -4
Mapper Version : virtex2 ~ SRevision: 1.58 $
Mapped Date : Wed Apr 28 21:36:19 2004

Design Summary

Number of errors: 0

Number of warnings: 0
Number of Slices: 12 out of 5,120 1%
Number of Slices containing

unrelated logic: 0 out of 12 0%
Number of Slice Flip Flops: 19 out of 10,240 1%
Number of 4 input LUTs: 4 out of 10,240 1%
Number ofbonded IOBs: 7 out of 172 4%

Number of GCLKs: 1 out of 16 6%

Number of DCMs: lout of 8 12%

Total equivalent gate count for design: 7,179
Additional JTAG gate count for IOBs: 336

Table of Contents

Section 1 - Errors

Section 2 - Warnings
Section 3 - Informational

Section 4 - Removed Logic Summary
Section 5 - Removed Logic
Section 6 - IOB Properties
Section 7 - RPMs

Section 8 - Guide Report
Section 9 - Area Group Summary
Section 10 - Modular Design Summary

Section 1 - Errors

Section 2 - Warnings

Section 3 - Informational

INFO:MapLib:354- Virtex BUFG symbol "ul l_u_bufg" (output signal"net5381) is

being retargetted to Virtex2 BUFGMUXwith input tied to 10 and Select pin

tied to constant 0.

INFO:MapLib:62 - All of the externaloutputs in this design are using slew rate

limited output drivers. The delay on speed critical outputs can be

dramatically reducedby designating them as fast outputs in the schematic.

Section 4 - Removed Logic Summary

2 block(s) optimized away

Section 5 - Removed Logic

Optimized Block(s):
TYPE BLOCK

GND GND_I
VCC VCCJ

To enable printing ofredundant blocks removed and signals merged, set the

detailed map report option and rerun map.

Section 6 - IOB Properties

+ +

jIOBName | Type | Direction 110Standard | Drive | Slew]Reg (s) | Resistor | IOB
| I I I 1Strength | Rate | | | Delay |
+ +

|c_bus | IOB | OUTPUT | LVTTL | 12 | SLOW | | | |
| c_clk_output | IOB | OUTPUT | LVTTL [12 | SLOWJill
|c_clock | IOB (INPUT | LVTTL | | j | [j
c_dout	IOB	OUTPUT	LVTTL j12	SLOW				
c_reset	IOB	INPUT	LVTTL					
lock	IOB	OUTPUT	LVTTL	12	SLOW j			
jreset |IOB (OUTPUT (LVTTL | 12 (SLOW | | (|
+ +

Section 7 - RPMs

Section 8 - Guide Report

Guide not run on this design.

Section 9 - Area Group Summary

No area groups were found in this design.

Section 10 - Modular Design Summary

Modular Design not used for this design.

APPENDIX 7

Place & Route Report

Place & Route report

Release 4.2i-Par E.35

Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Wed Apr 28 21:36:26 2004

par-f_par.rsp

Constraints file: car_bd.pcf

Loading design for application par from file parjemp.ncd.
"can_bd" is an NCD, version 2.37, device xc2vl000, package fg256, speed -4

Loading device for application par from file '2vl000.nph' in environment

C:/Xilinx.

Device speed data version: PRODUCTION 1.96 2002-01-02.

Resolved that IOB <c_dout> must be placed at site A8.
Resolved that IOB <c_clock> must be placed at site P9.
Resolved that IOB <c_bus> must be placed at site A7.
Resolved that IOB <c_reset> must be placed at site M4.
Resolved that IOB <reset> must be placed at site C5.
Resolved that IOB <c_clk_output> must be placed at site B8.
Resolved that IOB <lock> must be placed at site D5.

Device utilization summary:

Number of External IOBs 7 out of 172 4%

Number of LOCed External IOBs 7 out of 7 100%

Number of SLICEs 12 out of 5120 1%

Number of BUFGMUXs 1 out of 16 6%

Number ofDCMs 1 out of 8 12%

Overall effort level (-ol): 2 (set by user)
Placer effort level (-pi): 2 (set by user)
Placer cost table entry (-t): 1
Router effort level (-rl): 2 (set by user)

Extra effort level (-xe): 0 (set by user)

Starting Clock Logic Placement. REAL time: 7 sees

Placer score = 21

Finished Clock Logic Placement. REAL time: 7 sees

Automatic resolution of clock placement was successful.
It was not necessary to constrain the placement of any of the logic driven by the global
clocks with the current clock placement.

Automatic clock placement completed.

Starting clustering phase. REAL time: 7 sees
Finished clustering phase. REAL time: 7 sees

Starting Directed Placer. REAL time: 8 sees
Placement pass 1 .

Placer score = 5610

Placer score = 5610

Finished Directed Placer. REAL time: 8 sees

Starting Optimizing Placer. REAL time: 8 sees
Optimizing
Swapped 9 comps.
Xilinx Placer [1] 5310 REAL time: 8 sees
Finished Optimizing Placer. REAL time: 8 sees

Dumping design to file can_bd.ncd.

Total REAL time to Placer completion: 8 sees
Total CPU time to Placer completion: 5 sees

0 connection(s) routed; 70 unrouted active, 7 unrouted PWR/GND.
Starting router resource preassignment
Completed router resource preassignment. REAL time: 10sees
Starting iterative routing.
Routing active signals.

End of iteration 1

77 successful; 0 unrouted; (0) REAL time: 12 sees
Constraints are met.

Total REAL time: 12 sees

Total CPU time: 8 sees

End of route. 77 routed (100.00%); 0 unrouted.
No errors found.

WARNING:Route:49 - The signal "GLOBAL_LOGIC0" has no loads so was not routed.

This design was run without timing constraints. It is likely that much better circuit
performance can be obtained by trying either or both of the following:

- Enabling the Delay Based Cleanup router pass, if not already enabled
- Supplying timing constraints in the input design

Total REAL time to Router completion: 12 sees
Total CPU time to Router completion: 8 sees

Generating PAR statistics.

The Delay Summary Report

The Score for this design is: 5222

The Number of signals not completely routed for this design is: 0

The Average Connection Delay for this design is: 1.765 ns
The Maximum Pin Delay is: 4.448 ns
The Average Connection Delay on the 10 Worst Nets is: 2.291 ns

Listing Pin Delays by value: (ns)

d<1.00 <d<2.00 <d<3.00 <d<4.00 <d<5.00 d>=5.00

34 18 10 9 6 0

Dumping design to file can_bd.ncd.

All signals are completely routed.

Total REAL time to PAR completion: 13 sees
Total CPU time to PAR completion: 9 sees

Placement: Completed - No errors found.
Routing: Completed - No errors found.

PAR done.

APPENDIX 8

FPGA Floorplan

FPGA Floorplan

1 Tl

y -^

S

'\\

APPENDIX 9

Pad Report

Pad report

Release 4.2i - Par E.35

Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Wed Apr 28 21:36:39 2004

Xilinx PAD Specification File

Input file: parjemp.ncd
Output file: can_bd.ncd
Part type: xc2vl000
Speed grade: -4
Package: fg256

Pinout by Signal Name:

Signal Name
|Constraint |

Pin Name | Pin | Direction110 Standard |IO Bank # jDrive (mA)| Slew | Pullup | IOB Delay | Voltage

| Number | | IIIRate IPulldown j j | |

|LOCATED |c_bus
c_clk_output
LOCATED |
c_clock

LOCATED |
cjlout

LOCATED |
c_reset
lock

reset

|A7
| GCLK5P

| GCLK2P

IGCLK4S

OUTPUT |LVTTL | 0
| B8 | OUTPUT ILVTTL

12

10

jP9 | INPUT | LVTTL 14

IAS I OUTPUT I LVTTL 10

|M4 | INPUT (LVTTL \6 112*
| D5 | OUTPUT [LVTTL | 0 | 12
IC5 | OUTPUT ILVTTL I0 I 12

Pinout by Pin Number:

| SLOW | NONE** |*** |
112 | SLOW] NONE** | ***

12* |SLOW*|NONE** |NONE

| 12 | SLOW | NONE** | ***

| SLOW*| NONE** | NONE |
| SLOW | NONE** |*** |
ISLOW INONE** I *** |

|LOCATED
|LOCATED |
LOCATED |

Pin | Signal Name
(Constraint |
Number I

Pin Name | Direction j IOStandard (10 Bank# (Drive (mA)|Slew | Pullup | IOB Delay | Voltage

| | 111Rate | Pulldown I I I I

Al

A2

A3

A4

A5

A6

A7

A8

c_bus
c dout

LOCATED

A9 |
A10 |
All |
A12 j
A13 |
A14 j
A15 |
A16 j
Bl |
B2 |
B3 |
B4 |
B5 |
B6 I

|GND | | LVTTL* |
!PROG_B | |LVTTL*
RSVD | [LVTTL* |
RSVD | |LVTTL* |

; | UNUSED | LVTTL*
(UNUSED jLVTTL*

I IOUTPUT ILVTTL
IGCLK4S

GCLK3P | |LVTTL*
UNUSED | LVTTL*
UNUSED jLVTTL*
UNUSED jLVTTL*

| |LVTTL* |
| |LVTTL*

| |LVTTL* |
j |LVTTL* |

| | LVTTL*
| |LVTTL* |

|LVTTL*
LVTTL*

| RSVD |
IVBATT |
|TCK |
|GND |
VCCAUX |
GND | |
HSWAP_EN |

I UNUSED

(UNUSED
I UNUSED

LVTTL*

LVTTL*

12* |SLOW*|NONE** | ***
| 12* | SLOW*| NONE** | ***

112* | SLOW*|NONE** | ***
| 12* | SLOW*| NONE** | ***

112* |SLOW*|NONE** | ***
I 12* |SLOW*|NONE** ***

|0
| OUTPUT | LVTTL

12 SLOW INONE** I***
0

]12*
| 12*
j12*
| 12*

| 12*
| 12*

112* |
| 12*

| 12*
12* |

[12*
| 12*
112*

12 SLOW | NONE** I***

| SLOW*| NONE** | ***
|SLOW*|NONE** [***
|SLOW*|NONE** [***
| SLOW*|NONE** I***

[SLOW*|NONE** [***
| SLOW*| NONE** | ***

SLOW*|NONE** [*** |
| SLOW*| NONE** | *** |

|SLOW*[NONE** (***
SLOW*|NONE** [*** |

| SLOW*) NONE** |***
SLOW*|NONE** [***
SLOW*[NONE** I***

12* | SLOW*| NONE** I***

LOCATED

B7 [VREF 1 1LVTTL*
B8 c_c!k_output | GCLK5P [OUTPUT

LOCATED |
B9 |GCLK2S | |LVTTL*
BIO |VREF | | LVTTL*
Bll [| UNUSED | LVTTL*
B12 | jUNUSED [LVTTL*
B13 | | UNUSED [LVTTL*
B14 [TMS j | LVTTL*
B15 [GND | |LVTTL*
B16 | VCCAUX | | LVTTL*
CI | UNUSED |LVTTL*
C2 |TDI | |LVTTL* |
C3 |GND | |LVTTL*
C4 j UNUSED [LVTTL*
C5 reset | | OUTPUT | LVTTL
C6 | UNUSED | LVTTL*
C7 j UNUSED | LVTTL*
C8 | GCLK6S | j LVTTL*
C9 jGCLK1P | jLVTTL*

[0 [12* |SLOW*|NONE** j*** | |
LVTTL |0 |12 | SLOW | NONE** I ***

lock

GND

TDO

I VCCINT

[VREF

I VREF

I VCCINT

IVCCO_0
IVCCO 1

VCCINT

VREF

[UNUSED | LVTTL*
1UNUSED jLVTTL*
1UNUSED jLVTTL*
, UNUSED |LVTTL*

| |LVTTL*
) |LVTTL*

UNUSED | LVTTL*
UNUSED | LVTTL*
UNUSED jLVTTL*
UNUSED jLVTTL*

| |LVTTL*
| OUTPUT | LVTTL

| |LVTTL*
| UNUSED | LVTTL*

GCLK7P | |LVTTL*
GCLKOS | |LVTTL*

| UNUSED | LVTTL*
VREF [| LVTTL*

| UNUSED | LVTTL*
VCCINT |

| UNUSED
| UNUSED
| UNUSED

| UNUSED
I UNUSED

|LVTTL*
j LVTTL*
|LVTTL*
|LVTTL*
LVTTL*

.LVTTL*
| | LVTTL* |

!UNUSED | LVTTL*
| |LVTTL*

UNUSED | LVTTL*
UNUSED jLVTTL*

| |LVTTL*
| |LVTTL*

| UNUSED | LVTTL*
| UNUSED | LVTTL*

| |LVTTL*
| UNUSED | LVTTL*

| | LVTTL*
!UNUSED | LVTTL*
|UNUSED

!UNUSED
UNUSED

UNUSED

UNUSED

UNUSED

LVTTL*

| LVTTL*
| LVTTL*
jLVTTL*
| LVTTL*
jLVTTL*

LVTTL* |
|LVTTL*
[LVTTL*
|LVTTL*
|LVTTL*

LVTTL*

| GND
jVCCO_0
| VCCO_0
| VCCO_l
| VCCO_l
I GND

| 12* |SLOW*|NONE** | ***
| 12* | SLOW*| NONE** | ***

[12* [SLOW*|NONE** | ***
I12* [SLOW*| NONE** j***
J12* | SLOW*|NONE** j***

| 12* |SLOW*|NONE** | ***
112* | SLOW*|NONE** | ***

| 12* | SLOW*|NONE** | ***
| 12* |SLOW*|NONE** j ***

12* | SLOW*) NONE** | *** |
112* |SLOW*|NONE** I*** I

jSLOW*|NONE** I***
| SLOW | NONE** I***
| SLOW*|NONE** | ***
| SLOW*| NONE** | ***

| SLOW*|NONE** I***
jSLOW*| NONE** j***
| SLOW*| NONE** |***
ISLOW*| NONE** j***
jSLOW*jNONE** j***
|SLOW*|NONE** j***

SLOW*|NONE** I***
SLOW*] NONE** I***

|SLOW*|NONE** |***
| SLOW*|NONE** '***
1SLOW*] NONE**
| SLOW*| NONE**

|SLOW*|NONE**
| SLOW | NONE** |***

1SLOW*|NONE** |***
|SLOW*|NONE** I***

| SLOW*) NONE** I***
| SLOW*] NONE** j***

| SLOW*|NONE** j***
[SLOW*|NONE** I***

| SLOW*| NONE** |***
| SLOW*| NONE** |***

|SLOW*|NONE** |***
|SLOW*|NONE** |***
|SLOW*|NONE** |***

|SLOW*|NONE** I***
jSLOW*| NONE** I***

SLOW*|NONE** |***
| SLOW*|NONE** | ***

| SLOW*] NONE** i
1SLOW*] NONE**
| SLOW*j NONE**

|SLOW*|NONE**
| SLOW*| NONE**

| SLOW*|NONE**
|SLOW*j NONE**

| SLOW*(NONE**
| SLOW*] NONE**

I SLOW*] NONE** I

j ***

I ***

**$

I ***

I ***

I ***

| 12*
112

112*
J12*
j 12*
| 12*

| 12*
| 12*
j12*
112*

| 12*
| 12*

| 12*
| 12*
| 12*
112*

| 12*
| 12

| 12*
| 12*

•| 12*
112*

112*
112*

112*
112*

| 12*
| 12*
| 12*

| 12*
| 12*

| 12*
| 12*

| 12*
| 12*
I 12*

| 12*
j12*

| 12*
j12*

112*
| 12*

| 12*
112*
| 12*

| 12*
I 12*
I 12*
I 12*
I 12*

12*

| 12*
| 12*
| 12*
| 12*

112*

|SLOW*|NONE**
jSLOW*| NONE**

| SLOW*| NONE**
jSLOW*| NONE**
| SLOW*] NONE**
| SLOW*| NONE**
jSLOW*| NONE**

SLOW*] NONE** I***
| SLOW*] NONE** |***
jSLOW*| NONE** j***
jSLOW*| NONE** |***
|SLOW*|NONE** I***

SLOW*| NONE** I***

I ***

I ***

|3.30
Ina

|3.30
| 3.30
na

|na

LOCATED

LOCATED

F12 | | UNUSED |LVTTL* |2 | 12* | SLOW*] NONE** |*** | | |
F13 j jUNUSED |LVTTL* |2 j12* |SLOW*|NONE** |***| j |
F14 | jUNUSED |LVTTL* |2 |12* |SLOW*|NONE** |***| | |
F15 | UNUSED |LVTTL* [2 |12* | SLOW*| NONE** |***| | j
F16 | | UNUSED | LVTTL* |2 j12* | SLOW*| NONE** |***| j j
Gl JVREF [LVTTL* 7 [12* !SLOW*) NONE** [*** | ! |
G2 j | UNUSED | LVTTL* |7 | 12* | SLOW*] NONE** |*** | ! |
G3 j | UNUSED | LVTTL* I? |12* jSLOW*) NONE** |***| | |
G4 | | UNUSED |LVTTL* |7 j12* | SLOW*) NONE** 1***1 1 1
G5 |VREF | LVTTL* 7 [12* |SLOW*|NONE** |*** J | |
G6 |VCCO 7 | | LVTTL* | | 12* |SLOW*|NONE** |*** |na | |
G7 |GND) [LVTTL* [12* SLOW*|NONE** |*** [[|
G8 |GND j |LVTTL* [12* SLOW*|NONE** |*** | ! |
G9 |GND | | LVTTL* [12* SLOW*|NONE** 1*** I 1 1
G10 | |GND | LVTTL* [12* |SLOW*|NONE** |***| | |
Gil | jVCCO 2 |LVTTL* |]12* |SLOW*|NONE** |*** [na | |
G12 | |VREF | LVTTL* |2 | 12* [SLOW*|NONE** |*** | | |
G13 j j | UNUSED |LVTTL* |2 | 12*]SLOW*|NONE** |*** | |
G14 | | | UNUSED |LVTTL* |2 |12* | SLOW*| NONE** |***| j
G15 | | | UNUSED |LVTTL* |2 112*]SLOW*| NONE** |***| j
G16 | |VREF | LVTTL* [2 112* [SLOW*|NONE** j*** | | |
HI] jUNUSED |LVTTL* |7 [12* [SLOW*|NONE** |*** | [|
H2 | !UNUSED |LVTTL* 17 [12* | SLOW*) NONE** |***1 j |
H3 j UNUSED |LVTTL* |7 |12* | SLOW*) NONE** |***1 j |
H4 | UNUSED |LVTTL* |7 j 12* |SLOW*] NONE** |*** j | |
H5 |VCCO 7 | |LVTTL* | 112* | SLOW*[NONE** |*** |na | |
H6 jVCCO 7 | |LVTTL* | j12* |SLOW*| NONE** j*** |na | |
H7 |GND j | LVTTL* 12* SLOW*|NONE** |*** J | |
H8 jGND j jLVTTL* 12* SLOW*|NONE** |***j j j
H9 |GND I 1LVTTL* 12* SLOW*|NONE** |*** | | |
H10 | |GND | LVTTL* | 12* |SLOW*lNONE** !***[[|
Hll | |VCCO 2 [LVTTL* | | 12* | SLOW*| NONE** 1*** |na | |
H12 | JVCCO 2 [LVTTL* j | 12* |SLOW*|NONE** |*** |na | |
H13 j] | UNUSED | LVTTL* |2 [12* |SLOW*|NONE** |*** | j
H14] | | UNUSED | LVTTL* |2 [12* |SLOW*|NONE** [***| [
H15 j j |UNUSED | LVTTL* |2 [12* jSLOW*j NONE** |***| [
H16 | j | UNUSED | LVTTL* |2 | 12* | SLOW*] NONE** |***| |
Jl] | | UNUSED | LVTTL* |6 [12* | SLOW*|NONE** |***| | |
J2 | | | UNUSED | LVTTL* |6 [12* jSLOW*| NONE** |***| | j
J3 | j |UNUSED | LVTTL* |6 [12* 1SLOW*|NONE** |***j 1 |
J4] j |UNUSED | LVTTL* |6 [12* |SLOW*J NONE** j*** j j |
J5 | |VCCO 6 |LVTTL* | | 12*]SLOW*] NONE** |*** |na | |
J6 | |VCCO 6 j LVTTL* | |:12*. jSLOW*| NONE** |*** |na | j
J7 | |GND | |LVTTL* | | 12* | SLOW*|NONE** |***| | |
J8 | |GND | |LVTTL* | 12* | SLOW*|NONE** |***| | |
J9 | |GND | |LVTTL* | | 12* | SLOW*|NONE** |***| | |
JIO |GND | | LVTTL* | 12* | SLOW*|NONE** |*** | [|
Jl 1 |VCCO 3 | |LVTTL* | [12* | SLOW*| NONE** !*** |na 1 |
J12 |VCCOJ | jLyTTL* j j12* [SLOW*]NONE** [*** [na | |
J13 | UNUSED | LVTTL* |3 [12* | SLOW*] NONE** 1***1 1 !
J14 J UNUSED | LVTTL* |3 ,1 12* jSLOW*) NONE** |***1 | |
J15 ! UNUSED | LVTTL* |3 [12* | SLOW*| NONE** |*** j | j
J16 | UNUSED | LVTTL* |3 | 12* jSLOW*[NONE** |***[I 1
Kl |VREF | | LVTTL* 6 | 12* | SLOW*| NONE** |*** | | |
K2 j UNUSED |LVTTL* |6 | 12* | SLOW*] NONE** | *** 1] |
K3 | UNUSED |LVTTL* 16 j12* | SLOW*) NONE** |***1 | |
K4 j UNUSED |LVTTL* |6 j12* | SLOW*|NONE** |***| | |
K5 |VREF | | LVTTL* 6 | 12* |SLOW*|NONE** |*** | | |
K6 |VCCO 6 | |LVTTL* | [12* | SLOW*[NONE** !*** | na j |
K.7 |GND [| LVTTL* | 12* SLOW*]NONE** 1***1 | |
K8 |GND | jLVTTL* | 12* SLOW*|NONE** [*** | | |
K9 |GND | jLVTTL* | 12* SLOW*|NONE** |***| | |
KIO | GND j LVTTL* | 12* SLOW*|NONE** |*** [| j
Kll | VCCO 3] | LVTTL* | [12* |SLOW*|NONE** |*** |na | 1
K12 | VREF | LVTTL* 13 [12* | SLOW*| NONE** |*** | | |
K13 | UNUSED | LVTTL* |3 | 12* | SLOW*|NONE** |*** | |
K14 | UNUSED | LVTTL* |3 [12* |SLOW*|NONE** |***| j
K15 |UNUSED | LVTTL* |3 | 12* |SLOW*|NONE** |***| |
K16 | VREF [LVTTL* |3 [12* | SLOW*|NONE** |*** 1 | |
LI | UNUSED | LVTTL* |6 [12* |SLOW*|NONE**]*** [| |

L2

L3

L4

L5

L6

L7

L8

L9

L10

Lll

L12

LI 3

L14

LI 5

LI 6

Ml

M2

M3

M4

M5

M6

M7

M8

M9

MIO

Mil

M12

M13

M14

M15

M16

Nl

N2

N3

N4

N5

N6

N7

N8

N9

NIO

Nil

N12

N13

N14

N15

N16

PI

P2

P3

P4

P5

P6

P7

c reset

P9 | c_clock
LOCATED |
PIO

Pll

P12

P13

P14

P15

P16

Rl

R2

R3

R4

R5

R6

| | UNUSED | LVTTL*
| |UNUSED jLVTTL*
I jUNUSED]LVTTL*
| jUNUSED jLVTTL*
| GND] | LVTTL*
|VCCO_5 [[LVTTL*
| VCCO_5 [| LVTTL*
| VCCO_4 | | LVTTL*
| VCCO__4 | [LVTTL*
| GND | | LVTTL*
[| UNUSED | LVTTL*
| jUNUSED
| [UNUSED
| |UNUSED
j |UNUSED
| |UNUSED
I | UNUSED
IVREF

IVCCINT

| VCCO_5
IVCCO 4

LVTTL*

LVTTL*

LVTTL*

LVTTL*

LVTTL*

LVTTL*

| |LVTTL*
| INPUT | LVTTL

| 1LVTTL*
UNUSED |LVTTL*
UNUSED | LVTTL*

| | LVTTL*
I | LVTTL*

|LVTTL*
|LVTTL*
LVTTL*

|LVTTL*
| | LVTTL*

(UNUSED JLVTTL*
jUNUSED | LVTTL*

IUNUSED ILVTTL*

VCCINT

|UNUSED
|UNUSED

IUNUSED
VREF

| |UNUSED
I [UNUSED
jVCCINT |
| D5/ALT VRN 5 I

|LVTTL*
|LVTTL*

| LVTTL* |
ILVTTL*

1UNUSED | LVTTL*
1UNUSED | LVTTL*

16 | 12* |SLOW*|NONE** | *** |
16 112* |SLOW*|NONE** | *** |
16 | 12* |SLOW*|NONE** j*** [
|6 j12* |SLOW*| NONE** j*** [

112* ISLOW*|NONE** | *** | |
|SLOW*|NONE** j*** |na
jSLOW*| NONE**]*** |na
jSLOW*) NONE**]*** |na
| SLOW*! NONE** I*** |na

| SLOW*| NONE** |*** | |
)SLOW*|NONE** f*** |
|SLOW*|NONE** I*** [
|SLOW*|NONE** I*** |
jSLOW*j NONE** I*** |
| SLOW*|NONE** I*** I
| SLOW*! NONE** |*** |
|SLOW*| NONE** j*** j

| SLOW*! NONE** I*** I
!SLOW*| NONE** |NONE \

| SLOW*) NONE** |*** |
| SLOW*|NONE** I*** 1
jSLOW*| NONE** I*** |

| SLOW*|NONE** [*** |na
| SLOW*|NONE** I*** |na

jSLOW*|NONE** | ***
ISLOW*|NONE** I***

| SLOW*|NONE** | ***
| SLOW*|NONE** |***

| SLOW*) NONE** |*** |
| SLOW*|NONE** I***
jSLOW*| NONE** j***

| SLOW*|NONE** I***
jSLOW*| NONE** j***
|SLOW*|NONE** [***

|SLOW*|NONE** |*** |
SLOW*! NONE** I***

| 12*
j12*
| 12*
| 12*

| 12*
| 12
| 12*
j12*
j12*
| 12*
| 12*
J12*

| 12* |
| 12*

| 12*
| 12*
| 12*

I 12*
I 12*

| 12*
I12*

| 12*
| 12*

| 12*
| 12*
| 12*

112*
| 12*
| 12*

| 12* |
5 112

GCLK4P |
GCLK3S j

| UNUSED
| UNUSED

D2/ALT_VRP_4 |
VCCINT |

| UNUSED
| UNUSED
IUNUSED

IUNUSED

LVTTL* J5
LVTTL* 14
|LVTTL*
jLVTTL*

|LVTTL*'
LVTTL* |
| LVTTL* |
jLVTTL* j
|LVTTL* j
LVTTL* |6

JM1 | | LVTTL* |
| GND | [LVTTL* [
|D7 | | LVTTL* 15
| D4/ALT_VRP_5 | | LVTTL*
| | UNUSED | LVTTL* |5
| [UNUSED [LVTTL* |5
jGCLK5S | | LVTTL* 15

IGCLK2P | INPUT I LVTTL

(12* | SLOW*| NONE** I*** I
| 12* jSLOW*| NONE** I*** I
12* |SLOW*|NONE** [*** |

.12* |SLOW*|NONE** | *** j
4 | 12* |SLOW*|NONE** | *** |
4 [12* |SLOW*[NONE** | *** |

| 4 | 12* | SLOW*| NONE** j*** j
| 12* | SLOW*| NONE** | *** |

3 112* | SLOW*) NONE** | *** |
3 j 12* | SLOW*|NONE** | *** |
3 j12* |SLOW*| NONE** | *** |
i | 12* | SLOW*| NONE** J*** |
| 12* | SLOW*|NONE** | *** | |
| 12* | SLOW*| NONE** | *** |)

| 12* | SLOW*| NONE** | *** | |
[5 [12* | SLOW*| NONE** I*** I

| 12* | SLOW*| NONE** I*** I
| 12* | SLOW*|NONE** !*** I

| 12* |SLOW*|NONE** | *** | J
| 4 | 12* | SLOW*|NONE** | NONE

112* | SLOW*| NONE** | *** |
| 12* | SLOW*] NONE** I*** I

| 4 | 12* | SLOW*|NONE** | *** |
12* | SLOW*) NONE** | *** | |
| 12* jSLOW*| NONE** j*** | |
| 12* | SLOW*] NONE** I*** I I

| 12* |SLOW*|NONE** | *** |
|12* [SLOW*| NONE** | *** |

| | UNUSED | LVTTL* 14
I | UNUSED jLVTTL* |4
jD3/ALT_VRN_4 | | LVTTL*
IDO | |LVTTL* 14
IGND | | LVTTL* |
ICCLK | JLVTTL* |
I (UNUSED | LVTTL* |3
|VCCAUX | | LVTTL* |
IGND | | LVTTL*] | 12*
[M2 | | LVTTL* | ! 12*
|D6 | | LVTTL* 15 | 12*
| VREF |)LVTTL* |5 | 12*
| VREF I j LVTTL* |5 I 12*

|SLOW*|NONE** |***
|SLOW*|NONE** |***
| SLOW*|NONE** [***

|SLOW*|NONE** |***
[SLOW*!NONE** I***

LOCATED

R7

R8

R9

RIO

Rll

R12

R13

R14

R15

R16

Tl

T2

T3

T4

T5

T6

T7

T8

T9

T10

Til

T12

T13

T14

T15

T16

| VREF
| GCLK6P
|GCLKIS
| VREF
| VREF
| VREF
|D1
| DONE
(GND
|VCCAUX
GND

MO

CSJ3
RDWR B

|LVTTL* |
j LVTTL*
ILVTTL*

|LVTTL*
|LVTTL*
|LVTTL*

LVTTL* | A
|LVTTL*

|LVTTL*
| LVTTL*

|LVTTL* |
LVTTL* |
|LVTTL* j

| LVTTL*
[LVTTL*
[LVTTL*
|LVTTL*

| LVTTL*
jLVTTL*
| LVTTL*
jLVTTL*
jLVTTL*

LVTTL*

LVTTL*

UNUSED

UNUSED

UNUSED

| GCLK7S
I GCLKOP
! | UNUSED

| UNUSED
| UNUSED

: INIT_B |
DOUT |
PWRDWN_B |)LVTTL*
GND I I LVTTL* I

|5
|5
|5
|5

15
|4
|4
|4
|4

4

4

| 12* | SLOW*|NONE**
| 12* |SLOW*|NONE**
I12* |SLOW*JNONE**

112* |SLOW*|NONE**
j12* |SLOW*|NONE**
j12* |SLOW*| NONE**

| 12* | SLOW*| NONE** | *** |
112* |SLOW*|NONE** | ***

| 12* | SLOW*) NONE** | ***
| 12* |SLOW*|NONE** | ***

| 12* [SLOW*] NONE** | *** |
12* | SLOW*) NONE** | *** |
| 12*" | SLOW*| NONE** | ***

| 12* jSLOW*) NONE** | ***
112* |SLOW*|NONE**
112* | SLOW*|NONE**
j12* | SLOW*| NONE**

| 12* | SLOW*) NONE**
j12* [SLOW*[NONE**
[12* [SLOW*|NONE**
[12* |SLOW*|NONE**
| 12* | SLOW*| NONE**

| 12* | SLOW*| NONE** |
112

j ***

I ***

#**

I ***

i ***

I ***

j ***

j ***

12*

|SLOW*|NONE** [*** [
12*]SLOW*|NONE** | ***

| SLOW*! NONE** I***]

* Default value.

** This default Pullup/Pulldown value can be overridden in Bitgen.
*** The default IOB Delay is determined by how the IOB is used.

#

To preserve the pinout above for future design iterations,
simplyinvoke PLN2UCF from the command line or issue this commandin the GUI.
For Foundation ISE/Project Navigator - Run the process "Implement Design" ->
"Place-and-Route" -> "Back-annotate Pin Locations"

For Design Manager - In the Design menu select "Lock Pins...
The location constraints above will be written into your specified UCF file. (The
constraints

listed below are in PCF format and cannot be directly used in the UCF file).
#

COMP "c_bus" LOCATE = SITE "A7";
COMP Hc_clk_output" LOCATE = SITE "B8" ;
COMP "c_clock" LOCATE = SITE "P9";
COMP "c_dout" LOCATE - SITE "A8";
COMP "cjeset" LOCATE = SITE "M4";
COMP "lock" LOCATE - SITE "D5" ;
COMP "reset" LOCATE = SITE "C5" ;

#

APPENDIX 10

Asynchronous Delay Report

Asynchronous Delay report

Release 4.2i - Par E.35

Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Wed Apr 28 21:36:38 2004

File: can_bd.dly

The 20 Worst Net Delays are:

| Max Delay (ns) | Netname j

4.448 lock OBUF

4.329 reset OBUF

2.589 net5381

2.464 u2 do

2.171 c bus OBUF

1.598 u7 tmp<l>
1.586 u2 tmp<l>
1.582 u2_tmp<3>
1.291 u2 tmp<5>
1.257 u2 tmp<7>
1.194 N58

0.990 u7_tmp<7>
0.950 u2_tmp<0>
0.949 u2_tmp<4>
0.938 u7 tmp<0>
0.935 u7_tmp<4>
0.934 u7_tmp<2>
0.934 u2_tmp<6>
0.934 u7_tmp<6>
0.933 u2_tmp<2>

Net Delays

GLOBAL_LOGICl
PWR_VCC_0.VCCOUT

0.172 ull_u_bufg.S

GLOBAL_LOGIC1_0
PWR_VCC_1.VCCOUT

0.070 u7_tmp<l>.BY

GLOBAL_LOGICl_l
PWR_VCC_2.VCCOUT

0.070 u2_tmp<l>.BY

GLOBAL LOGIC 1 2

PWR_VCC_3.VCCOUT
0.115 ull_u_dcm.DSSEN
0.151 ul l_udcm.PSCLK
0.115 ull_u_dcm.PSEN
0.115 ull_u_dcm.PSINCDEC

N56

N56.X

0.408 u2_tmp<l>.CE
0.408 u2_tmp<3>.CE
0408 u2_trap<5>.CE
0.389 u2_rmp<7>.CE

N58

ulJstate.Y
1.194 u2_do.SR

c_bus„OBUF
N56.Y

2.171 c_bus.01

c_clockJBUFG
cclock.I

0.798 ull_u_dcm.CLKIN

lock_OBUF
ull_u_dcm.LOCKED

4.448 lock.Ol

net5381

ul l_u_bufg.O
2.589 c_clk_output.01
1.366 ull_u_dcm.CLKFB
1.097 u7_tmp<l>.CLK
1.097 u7_tmp<3>.CLK
1.096 u7_tmp<5>.CLK
1.094 u7_tmp<7>.CLK
1.093 u2_do.CLK
1.093 ulJstate.CLK
1.098 u7_do.CLK
1.101 u2_tmp<l>.CLK
1.101 u2_tmp<3>.CLK
1.101 u2_tmp<5>.CLK
1.098 u2jmp<7>.CLK

resetOBUF

creset.I

3.675 reset.Ol

2.307 ull_u_dcm.RST
3.432 u7_tmp<l>.CE
3.723 u7jmp<l>.SR
3432 u7_tmp<3>.CE
3.723 u7_tmp<3>.SR
2.991 u7_tmp<5>.CE
3.065 u7_tmp<5>.SR
4.034 u7_tmp<7>.CE

3.730 u7_tmp<7>.SR
3.721 u2_do.CE
4.329 ul_tstate.SR
3.721 ul_tstate.F4
4.024 ulJstate.G3
4.034 u7_do.CE
2.774 u7_do.SR
2.732 u2_tmp<l>.SR
2.732 u2_tmp<3>.SR
2.732 u2_tmp<5>.SR
4.229 N56.F2

2.774 u2_trap<7>.SR

ull_clk0_w
ul l_u_dcm.CLK0

0.852 ul l_u_bufg.I0

ul_I_tnext/0
ulJstate.X

0.001 ulJstate.DX

uInstate
ulJstate.XQ

0.532 ul_tstate.Fl
0.569 uMstate.Gl

0.285 N56.F4

u2_do
u2_do.YQ

2.464 cjout.01
0.325 ul_tstate.G4
0.533 N56.F1

0.570 N56.G1

u2_tmp<0>
u2_tmp<l>.YQ

0.950 u2_tmp<l>.BX

u2jmp<l>
u2_tmp<l>.XQ

1.586 u2_tmp<3>.BY

u2_tmp<2>
u2_tmp<3>.YQ

0.933 u2_tmp<3>.BX

u2_tmp<3>
u2_tmp<3>.XQ

1.582 u2_tmp<5>.BY

u2_tmp<4>
u2_tmp<5>.YQ

0.949 u2_tmp<5>.BX

u2jmp<5>
u2_tmp<5>.XQ

1.291 u2__tmp<7>.BY

u2_tmp<6>
u2_tmp<7>.YQ

0.934 u2_tmp<7>.BX

u2_tmp<7>
u2jmp<7>.XQ

1.257 u2_do.BY

u7_do
u7_do.YQ

0.786 ul_tstate.G2
0.641 N56.F3

0.610 N56.G3

u7_tmp<0>
u7„tmp<l>.YQ

0.938 u7jmp<l>.BX

u7_tmp<l>
u7jmp<l>.XQ

1.598 u7_tmp<3>.BY

u7_tmp<2>
u7_tmp<3>.YQ

0.934 u7jmp<3>.BX

u7_tmp<3>
u7_tmp<3>.XQ

0.693 u7_tmp<5>.BY

u7_tmp<4>
u7jmp<5>.YQ

0.935 u7_tmp<5>.BX

u7_tmp<5>
u7_tmp<5>.XQ

0.693 u7_tmp<7>.BY

u7_tmp<6>
u7jmp<7>.YQ

0.934 u7_tmp<7>.BX

u7_tmp<7>
u7_trap<7>.XQ

0.990 u7 do.BY

APPENDIX 11

Post-Place & Route Static Timing Report

Post-Place & Route Static Timing Report

Release 4.2i - Trace E.35

Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

tree -e 3 -1 3 -xml can_bd can_bd.ncd -o can_bd.twr can_bd.pcf

Design file: can_bd.ncd
Physical constraint file: can_bd.pcf
Device,speed: xc2vl000,-4 (PRODUCTION 1.96 2002-01-02)
Report level: error report

WARNING:Timing:2491 - No timing constraints found, doing default enumeration.

Timing constraint: Default period analysis

89 items analyzed, 0 timing errors detected.
Minimum period is 6.762ns.
Maximum delay is 10.042ns.

Timing constraint: Default net enumeration

32 items analyzed, 0 timing errors detected.
Maximum net delay is 4.448ns.

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock c_clock
+__ + +

| Setup to | Hold to |
Source Pad | clk (edge)| clk (edge) [

c_reset [7.267(R)| 0.000(R)|

Clock c_clock to Pad
+— +

| clk (edge) |
Destination Pad | to PAD |

+ +

c_bus | 8.830(R)|
c_clk_output | 6.533(X)|
c_dout j 8.069(R)|

+ +

Clock to Setup on destination clock c_clock

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock pest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

c_clock | 3.2721 | | |

Pad to Pad
+ + +

Source Pad pestination Pad | Delay |
+ + +

c_reset | reset | 10.042|
+ + +

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 89 paths, 32 nets, and 70 connections (100.0% coverage)

Design statistics:
Minimum period: 6.762ns (Maximum frequency: 147.885MHz)
Maximum combinational path delay: 10.042ns
Maximum net delay: 4.448ns

Analysis completed Wed Apr 28 21:54:16 2004

APPENDIX 12

BitGen Report

BitGen report

Release 4.2i - Bitgen E.35
Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

Loading design for application Bitgen from file can_bd.ncd.
"cai_bd" is an NCD, version2.37, device xc2vl000, package fg256, speed -4

Loading device for application Bitgen from file '2vl000.nph' in environment

G/Xilinx.

Opened constraints file can_bd.pcf.

Wed Apr 28 22:02:14 2004

bitgen-w -g DebugBitstream:No -g CRC:Enable -g ConfigRate:4 -g CclkPin:PullUp -g
M0Pin:PullUp -g MlPimPullUp -g M2Pin:PullUp -g ProgPimPullUp -g DonePin:PullUp
-g DriveDone:No -g PowerdownPimPullUp -g TckPin:PullUp -g TdiPimPullUp -g
TdoPin:PullNone -g TmsPin:PullUp -g UnusedPimPullUp -g UserLD:0xFFFFFFFF -g
DCMShutDowmDisable -g DisableBandgap:No -g StartUpClk:CClk -g DONE_cycle:4 -
g GTS_cycle:5 -g GWE_cycle:6 -g LCK_cycle:NoWait -g Match_cycle:NoWait -g
Security:None-g Persist:No -g DonePipe:No -g Encrypt:No can_bd.ncd

Summary of Bitgen Options:

+ + +

| Option Name | Current Setting |
+ + +

| Compress | (Not Specified)* |
+ + +

| Readback | (Not Specified)* |
+ + +

[CRC | Enable** |
+ 4- +

| DebugBitstream | No** |
+ + +

| ConfigRate 14** |
+ + +

| StartupClk | Cclk** |
+ +-- +

| DCMShutdown | Disable**
+ + +

| DisableBandgap | No** |
+ + +

|CclkPin | Pullup** |
+ + +

IDonePin | Pullup** |
+ + +

| HswapenPin | Pullup* |
+ + +

| MOPin | Pullup** |
+ + +

| MlPin | Pullup** |
+ + +

1M2Pin | Pullup** |
+ + +

| PowerdownPin | Pullup** |
+ + +

| ProgPin | Pullup** |
+ + +

| TckPin | Pullup** |
+ + +

| TdiPin | Pullup** |
+ + +

| TdoPin | Pullnone |
+ + 4

| TmsPin | Pullup** |
+ + 4

| UnusedPin | Pullup]
4 + 4-

|GWE_cycle 16** |
4 4- 4-

|GTS_cycle 15** |
4 + +

| LCK_cycle | NoWait** |
4 4- —4

| Match_cycle | NoWait |
4 + 4

| DONE_cycle 14** |
4 + 4

| Persist | No** |
+ + +

| DriveDone | No** |
+ + +

| DonePipe |No** |
+ + +

| Security |None** |
+ + +

| UserlD | OxFFFFFFFF** |
+ + +

| Encrypt | No** |
+ + +

KeyO
4-

Keyl

Key2
+-

Key3
4-

Key4
+-

Key5
4-

KeyseqO
4-

Keyseql
4--

Keyseq2
4-

Keyseq3
4-

Keyseq4
4-

Keyseq5

KeyFile
4-

StartKey
4-

StartCBC

Binary
+-

pick*

pick*
.__+—

pick*

pick*
.__+—

pick*

pick*
__+—-

M*

Ms

•+-

M*

M^

M*
_+

(Not Specified)*
_+

|0*
,„+

| pick*
—4-

No*

-+

-4-

-4-

-+

-+

-4

-4

-4

-4

-4-

-4-

-4-

.+

-+

-+

* Default setting.

** The specified setting matches the default setting.

Running DRC.
WARNLNG:DesignRules:366 - Netcheek: Sourceless and loadless. Net
GLOBAL_LOGIC0 has no pin.
DRC detected 0 errors and 1 warnings.
Creating bit map...
Saving bit stream in "can_bd.bit".
Bitstream generation is complete.

APPENDIX 13

User Constraint File (UCF)

########////ff#tf####tf#ff##///////////////////////Mff#########

BASIC UCF SYNTAX EXAMPLES V2.1.5

##

#

TIMING SPECIFICATIONS

#

Timingspecifications can be applied to the entire device(global)or to
specificgroups of login in your PLD design(called "timegroups').
The time groups are declared in two basic ways.
#

Method 1: Based on a net name, where 'my_net' is a net that touchs all the
logic to be grouped in to 'logicgrp'. Example:
#NETmy_netTNM_NET- logicjgrp ;
#

Method 2: Group uingthe key word 'TIMEGRP' anddeclare using the namesof
logic in your design. Example:
#TIMEGRP group_name = FFS ("Ul/*");
createsa group called 'group_name' for all flip-flops with in
the hierarchical block called Ul. Wildcards are valid.

#

Grouping is very important because it lets youtell the software whichparts
of a design run at whichspeeds. For the majority of the designs withonly
one clock the very simple global constraints.
#

The typeof grouping constraint you use canvarydepending on the synthesis
tools you areusing. For example, Synplicity does well with Method 1,while
FPGA Expressdoes beter with Method 2.
#

#
###//////////////////////////

Internal to the device clock speed specifications - Tsys
##############//////////////#####################i^###/^///tftftf##tf#//

#

#data /AMAA\ out
jD Qj-—{LOGIC}-—|D Q|
| | Www/ | |
—|>CLK | —|>CLK |
clock j |
#

#
#

Single Clock
#

#
#

PERIOD TIME-SPEC
#

ThePERIOD spec, covers all timing pathsthat startor endat a
register, latch, or synchronous RAM which areclocked by thereference
net (excluding pad destinations). Also coveredis the setup
requirement of the synchronous element relative to otherelements
(ex. flip flops, pads, etc.).
NOTE: The default unit for time is nanoseconds.

#

#NET clock PERIOD = 50ns ;

#

-OR-

#
#

FROM:TO TIME-SPECs
#

FROM:TO style timespecs can be used to constrain paths between time
groups. NOTE: Keywords: RAMS, FFS, PADS, and LATCHES are predefined
time groupsused to specify all elementsof each type in a design.
#TIMEGRP RFFS = RISINGFFS ("*"); // createsa rising group called RFFS
#TIMEGRP FFFS = FALLINGFFS ("*"); // createsa falling group called FFFS
#TIMESPEC TSF2F = FROM : FFS : TO : FFS : 50 ns; // Flip-flipswith the same edge
#TIMESPEC TSR2F = FROM : RFFS : TO : FFFS : 25 ns; // rising edge to falling edge
#TIMESPEC TSF2R - FROM : FFFS : TO : RFFS : 25 ns; // falling edge to rising edge
#
#

Multiple Clocks
#

Requires a combination of the 'Period' and 'FROM:TO' type time specifications
#NET clockl TNMJSTET = clkl_grp ;
#NET clock2 TNMNET = clk2_grp ;
#

#TIMESPEC TS_clkl = PERIOD : clkl_grp : 50 ;
#TIMESPEC TS_clk2 = PERIOD : clk2_grp : 30 ;
#TIMESPEC TS_ckl_2_ck2 = FROM : clkl_grp : TO : clk2_grp : 50 ;
#TIMESPEC TS_ck2_2_ckl = FROM : clk2_grp : TO : clkl_grp : 30 ;
#

#

############//////////////////#############################////////////////////

CLOCK TO OUT specifications - Tco

#

#from ______ /AAAAA\ \
1D Q I { LOGIC } 1Pad >
PLD | | Www/ /
—|>CLK j
clock |
#

#
#

OFFSET TIME-SPEC
#

To automatically include clock buffer/routing delay in your
clock-to-out timing specifications, use OFFSET constraints .
For an output where the maximum clock-to-out (Tco) is 25 ns:
#NET out_netjiame OFFSET - OUT 25 AFTER clock_net_name ;
#

-OR-

#

#

FROM:TO TIME-SPECs
#

#TIMESPEC TSF2P = FROM : FFS : TO : PADS : 25 ns;
Note that FROM: FFS : TO: PADS constraints start the delay analysis
at the flip flop itself, and not the clock input pin. The recommended
method to create a clock-to-out constraint is to use an OFFSET constraint.

#

#

##

Pad to Flip-Flop speed specifications - Tsu

#
\ /AAAAA^ intoPLD
#|pad > {LOGIC}-—|D Q|
/ Www/ | |
—j>CLK j
clock [
#

#
#

OFFSET TIME-SPEC
#

To automatically account for clock delay in your input setup timing
specifications, use OFFSET constraints.
For an input where the maximum setup time is 25 ns:
#NET in_net_name OFFSET = IN 25 BEFORE clocknet_name ;
#

-OR-

#
#

FROMrTO TIME-SPECs
#

#TIMESPEC TSP2F = FROM : PADS : TO : FFS : 25 ns;
Note that FROM: PADS : TO: FFS constraints do not take into account any
delay for the clock path. The recommended method to create an input
setup time constraint is to use an OFFSET constraint.
#

#

##
Pad to Pad speed specifications - Tpd
##

#
\ /AAAAA\ \

#|pad >- {LOGIC} 1pad >
/ Www/ /

#
#

FROM:TO TIME-SPECs
#

#TIMESPEC TSP2P = FROM : PADS : TO : PADS : 125 ns;
#

#

##
Other timing specifications
##

#
#

TIMING IGNORE
#

If youcan ignore timing of paths,use Timing Ignore (TIG). NOTE: The
"*" character is a wild-card which can be used for bus names. A "?"

character can be used to wild-card one character.

Ignore timing of net reset n:

#NET : reset_n : TIG ;
#

Ignore data_reg(7:0) net in instance mux_mem:
#NET : muxmem/data reg* : TIG ;
#

Ignore data_reg(7:0) net in instance muxmem as related to a TIMESPEC
named TS01 only:
#NET : mux_mem/dataj-eg* : TIG = TS01 ;
#

Ignore datal_sig and data2_sig nets:
#NET : data?_sig : TIG ;
#
#

PATH EXCEPTIONS
#

If your design has outputs that can be slower than others, you can
create specific timespecs similar to this example for output nets
named out_data(7:0) and irq_n:
#TIMEGRP slowouts = PADS(out_data* : irq_n);
#TIMEGRP fast_outs = PADS : EXCEPT : slow_outs ;
#TXMESPEC TS08 = FROM : FFS : TO : fast_outs : 22 ;
#TIMESPEC TS09 = FROM : FFS : TO : slow_outs : 75 ;
#

If youhave multi-cycle FF to FF paths, you can create a time group
using either the TIMEGRP or TNM statements.
#

WARNING: Many VHDL/verilog synthesizers do not predictablyname flip
flop Q output nets. Most synthesizers do assign predictable instance
names to flip flops, however.
#

TIMEGRP example:
#TIMEGRP slowffs - FFS(inst_path/ff_q_output_netl* :
#inst__path/ff_q_output_net2*);
#

TNM attached to instance example:
#INST inst_path/ff_instance_jiamel_reg* TNM = slowffs ;
#INST mst_path/ff_instance_name2j-eg* TNM = slowffs ;
#

If a FF clock-enable is used on all flip flops of a multi-cycle path,
youcanattachTNMto the clockenable net. NOTE: TNMattached to a
net "forwardtraces" to any FF, LATCH, RAM, or PAD attachedto the
#net.

#NET ff_clock_enable_net TNM = slowffs ;
#

Example of using "slowffs" timegroup, in a FROM:TOtimespec, with
either of the three timegroup methods shown above:
#TIMESPEC TS10 = FROM : slowffs: TO : FFS : 100 ;

#

Constrain the skew or delay associate with a net.
#NET any_net„name MAXSKEW - 7 ;
#NET any_net_name MAXDELAY = 20 ns;
#

#

Constraintpriority in your .ucf file is as follows:
#

highest 1. Timing Ignore (TIG)

2. FROM : THRU : TO specs
3. FROM: TO specs
lowest 4. PERIOD specs
#

See the on-line "Library Reference Guide" document for
additional timespec features and more information.
#

#

#
LOCATION and ATTRIBUTE SPECIFICATIONS

#

mfflffifflfflmmmfflMMmmMimummfflmmfflfflfflfflm
Pin and CLB location locking constraints
#######################////////////////////////#########################

#
#

Assign an 10 pin number
#

#INST io_bufJnstance_name LOC = PI 10;
#NET io_net_name LOC -Pill;
#

#

Assign a signal to a range of I/O pins
#

#NET "signal_name" LOC=P32, P33, P34;
#
#

Place a logic element(called a BEL) in a specific CLB location. BEL = FF, LUT, RAM, etc...
#

#INST instance_path/BEL inst_name LOC - CLBJU7C36 ;
#

#

Place CLB in rectangular area from CLB RlCl to CLB R5C7
#

#INST/Ul/U2/reg<0>LOC=clb_rlcl:clb_r5c7;
#
#

Place Heirarchial logic block in rectangular area from CLB RlCl to CLB R5C7
#

#LNST /Ul* LOC=clb_rlcl:clb_r5c7;
#

#

Prohibit 10 pin P26 or CLBR5C3 from being used:
#

#CONFIG PROHIBIT - P26 ;
#CONFIG PROHIBIT - CLBR5C3 ;
Config Prohibit is very important for frocing the software to not use critical
configuration pins like INIT or DOUT on the FPGA. The Mode pins and JTAG
Pins require a special pad so they will not be availabe to this constraint
#

#

Assign an OBUF to be FAST or SLOW:
#

#INST obuf_instance_name FAST;
#INST obuf instance name SLOW ;

#

#

FPGAsonly: IOB input Flip-flopdelay specifcation
#

Declare an IOB inputFF delay (default= MAXDELAY).
NOTE: MEDDELAY/NODELAY canbe attached to a CLB FFthat is pushed
into an IOB by the "map -pr i" option.
#INST mput_ff_instance_name MEDDELAY ;
#INST input_ffmstance_name NODELAY ;
#
#

Assign Global Clock Buffers Lower Left Right Side
#

INST gbufl LOC=SSW
#

##

NET "c_clock" LOC = "P9";
NET"c_reset"LOC = "M4";
NET"cJout"LOC = "C4";
NET"c_bus"LOC = "A7";
NET "c_clk_output" LOC = "D5";
NET "reset" LOC = "A8";
NET "bus_status" LOC - "D16";
NET "can_b_out" LOC - "E13";
NET "enable_shifter" LOC - "C16";

APPENDIX 14

• FPGA Board Layout

• Virtex II Xilinx XC2V100 Demo Board Caption

Layout of Xilinx XC2V100 FPGA Demo Board

Ff0urt 1 - XC2V4MeC2Vt<»0 E#&r»s& &o«rd B&*ok Dtapra

X
IL

IN
X

X
C

2
V

1
0

0
F

P
G

A
D

e
m

o
B

o
a
rd

