Contactless Measurement of Angular - Speed

By

DOVLET BAZAROV
1624

Dissertation submitted in partial fulfillment of
the requirement for the
Bachelor of Engineering (Hons)
(Blectrical & Electronics Engineering)

April 2004

L
17
29°Z
. . e,
Universiti Teknologi Petronas Biin
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan (ool IS

b waﬁ*‘mumab\t -
30ty \(\3{,@359\'3 - ?WCJKW‘Y""‘”‘\JI

3 ELT -- Nk

CERTIFICATION OF APPROVAL

Contactless Measurement of Angular-Speed
By

Dovlet Bazarov

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi Petronas
In partial fulfillment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

N
(w2,

PrBf. Dr. Pramod Chandra Sharma

D . S,
Dr. L0 Sharma

Profesaor

Elactrical . Eng
Unlvarsiti Teknuiog
J1750 Tronch
Perat Desal Bidzvan, MALAYSIA

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
April 2004

i

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except s specified in the references and acknowledgements, and

that the original work contained herein have not been undertaken or done by unspecified

SQOUICES Or PErsons.

i

l
Dovlet]gazarov

il

ACKNOWLEDGEMENTS

1 would sincerely like to thank my FYP Supervisor Prof. Dr. Pramod Chandra Sharma
very much. I owe the success of my project to him. He has been completely supportive
throughout my project. I wish for him the lifetime of happiness.

1 thank our FYP Coordinator Mr. Zuki for his generous assistance. I also feel grateful to

my senior Arslan Rozyyev for his valuable advices.

v

ABSTRACT

The contro! technology has been improved to enormous scales so far. People are trying to
apply control over everything they do, so that the level of accuracy and efficiency
increase. The simplest form of control could be a control of a rotating shaft. We might
want to keep its speed stable at some rps (rounds per second). This can be achieved in
numerous methods. Regardless of any method chosen, the first step to achieve this goal
would always be being able to measure the speed and then to apply control measures to

it.

In this project, I am investigating contactless measurement of angular speed of a rotating
shaft. My main objective is to demonstrate how to measure the angular speed of a
rotating shaft contactlessly. Contactless measurement of angular speed is particularly

critical when dealing with load-sensitive devices such as mobile antennas.

I am achieving the contactless measurement through using IR (infrared) emitter-detector
circuitry. The IR pair generates puises, which are galvanized by the rotation of the shaft.
Slots on a disk mounted to the shaft permits light transmission between IR emitter and
detector, which are placed on both sides of the disk. Hence, when the disk rotates it 1s

possible to get stream of pulses from the circuitry.

I used a PIC microcontroller to accept the pulses and obtain the angular speed in terms of

rps. This value is then displayed on 7-segment LEDs.

Lastly, this project involved a lot of microprocessor concepts. I tried my best to present
concepts involved as comprehensible as possible. I expect the reader to have no difficulty

while reading it.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL.
CERTIFICATION OF ORIGINALITY
ACKNOWLEDGEMENTS .
ABSTRACT .

CHAPTER L:INTRODUCTION

1.1 Problem Statement

1.2 Objectives and Scope of Study

1.3 Literature Review
1.3.1 The Design Overview
1.3.2 PIC16F84 and its Architecture .
1.3.3 PIC16¥F84 Interfacing
1.3.4 Alternative Methods

CHAPTER 2: METHODOLOGY AND SYSTEM DESCRIPTION
2.1 Methodology
2.2 The System Diagram and Process Flow Deseription

CHAPTER 3: DISCUSSION AND RESULTS .
CHAPTER 4: CONCLUSION AND RECOMMENDATIONS .

REFERENCES

APPENDIX A: ASSEMBLY SOURCE CODES .
APPENDIX B: GANNT CHART FOR FYP, SEMESTER 2

i
1

iv

o Q0 Luh W W L D e

11
12

16
20

21

22
28

vl

LIST OF FIGURES

Figure 1 The system components

Figure 2 IR emitter-detector circuitry .

Figure 3 Simplified internal layout of PIC16F84
Figure 4 The PIC16F84 pins

Figure 5 The PIC16F84 interfacing

Figure 6 Block diagram of the system .

Figure 7 The system flow diagram

Figure 8 Interrupt Service Routine Flow Diagram
Figure 9 IR emitter-detector circuitry .

Figare 10 PIC16F84 inputs and outputs .

LIST OF TABLES

Table 1 Pin description for PIC16F84

Table 2 The comparison of possible methods
Table 3 Design components and specifications

Page

W N b s

12
13
15
i7
18

16

TERMINOLOGY

There are number of technical acronyms that are used quite frequently throughout this
report. Therefore I provided those words below with their explanations so as to use them

m the rest of the report without explanations.

FYP : Final Year Project

PIC : Programmable microcontroller from Microchip®
PIC 16F84 : PIC model used in this project

CPU : Central Processing Unit

RAM : Read-Only Memory

ISR - Interrupt Service Routine

1/0 : Input/Output

LED - Light Emitting Diode

IR : Infrared

ps : Rounds per second (shaft speed)

CHAPTER 1

INTRODUCTION

In this project, I study and implement the contactless measurement of angular
speed of a rotating shaft. There are plenty of methods available to measure a shaft speed.

I achieve this by implementing IR emitter - detector circuitry.

It is the known fact that anything attached, other than the original load to a
machine shaft introduces extra load. This leads to certain degree of complexities when
trying to control the speed, which in case resulis in unpredictable level of stability in the
machines’ operation that we obviously do not want. The importance of accuracy even
unveils if the design is of rather scientific nature such as mobile dish antennas, microchip
robotics and the like. These fields require extensive precision in the contactless speed

measurement.

In this project, I am designing a digital system, whose input is train of pulses and
output ig the speed of the shaft displayed on LED devices. In order to achieve the project
objective the system is required to be able to perform the following functions:

o Count received pulses.
e Extract speed (in rps).

¢ Send the result to output devices.

The system should perform the following functions sequentially and continuously
until the power supply is cut. Now, extracting speed from received pulses requires a
mathematical calculation to be performed, which depends on the number of pulses and
number of slots present on the disk. Therefore, the system is expected to be able to

perform this calculation to obtain the speed.

Calculating for the speed:

p : number of pulses received.
t ' time elapsed (in seconds).
n - number of slots on the disk.

Rps :speedinrps
Rps=p/(tn)

Although, it is rather a simple calculation, it needs a dedicated environment to
correctly process it. This leads to the selection of correct device, which can carry out this
operation and the rest of the tasks as well. With no doubt, only a processor can perform
the above mentioned tasks. Since it is a simple calculation, a simpler processor would be
the best device chosen for this project. I chose PIC 16F84 device to be my processor for
the design. It is an 18-pin Enhanced Flash/EEPROM 8-bit microcontrolier.

The project now has a microcontroller that needs to be programmed in order to
execute tasks in the certain order. Therefore, the design needs both hardware and

software to be developed.

1.1 PROBLEM STATEMENT

We can measure the speed of a revolving shaft of a machine using tachometer.
However, the machine gets loaded due to the pressure applied. This may change the
speed of the machine. An alternative method to this is to mount a lightweight slotted disk
on the shaft. A light source may be placed on one side of the slotted disk. The revolving
slotted disk will interrupt the light. Thus, a train of light pulses are produced on the other
side of the slotted disk. The number of pulses recetved per minute is therefore function of
the speed of the revolving disk and the number of slots on the disk. We can develop a
system, where the pulses of light drive a light dependent transducer on the other side of
the slotted disk to activate a counting circuitry. The counter counts the number of pulses

per minute, determines the speed (rps) and displays it on a display device.

1.2 OBJECTIVES AND SCOPE OF STUDY

The objectives of this project are as stated below:

To investigate the contactless measurement of a machine speed.
To keep the project cost at minimum.
To complete all project work within two semesters.

To achieve the objectives of this course.

The scope of the project:

To identify and locate all project hardware.
To develop both hardware design and software program.
To construct a design, that demonstrates the theory of the project.

L3 LITERATURE REVIEW
1.3.1 The Design Overview

The system’s input is train of pulses and output is digital signals to output

devices. Therefore, the design is made up of three main components; input generator,

input receiver and manipulator, and an output device (Figure 1).

LED devices

Fulse Generatar] FIC 16Fa4

Figure 1: The system components.

The input to the system is train of pulses generated from an IR emutter-detector

circuitry. The simplest form of the circuitry could be built as shown in Figure 2.

Power supply

Light source A -
USROS AN NP *Inght dependent
comenrne fideen conductor

slot

Figure 2: IR emitter-detector circuitry.

The IR light is emitted from the light source and detected by the light-dependent
conductor. The transmission of the IR light is interrupted by the revolving motion of the
light disk (or fan blades) for the light can reach the detector when the slots are positioned

in between the IR emitter and detector.

The input receiver and manipulator is a device, which can accept pulses and
perform calculations. The PIC microcontroller device is used as the input receiver and

manipulator. It provides all necessary elements required by the design.

The output from the PIC is digital signals to be sent to an output device. Since the
output is n terms of digits, the output device can be 7-segment LEDs (each representing

one digit).

1.3.2 PIC16F84 and its Architecture

The PIC16F84 belongs to the mid-range family of the MICROCHIP®’s
microcontroller family. A simplified PIC16F84 internal layout is shown in Figure 3. It is
equipped with all features that my design needs. They are as listed below:

- High performance CPU and its working environment (registers and memory)

- External Interrupt handler

- Timer/Counter module

- IO terminals

- Programmable in assembly language

PROCESSOR

Timer Cownter

Extarnal
Interrupt

Figure 3: Simplified internal layout of PIC16F84.

The PIC16F84 microcontroller has a processor to manipulate data, an external
interrupt handler to receive pulses, a TimerQ (timer/counter) module to either count
pulses generated internally or externally. It is interfaced to other devices through its I/0O
terminals. The Timer0 (timer/counter) module requires to be correctly set through
programming to have it work according to the desired specifications. It can be used to
provide a time delay. The /O terminals are entirely programmable and the direction of
data is configured through programming. The programming language used 1s Assembly

language (C can be used as well).

~{RA2 pa1l-10
- RAJ RA |-
- RA4/TOCK] oscil-
o g5,
— G5 Vdd}-—-
~{ RBOAINT RB7 |-
—{pB1 RES [
~{Ra2 RB5 |
~{RB3 rBa|-'8

Figure 4: The PIC16F84 pins.

Table 1: Pin description for PIC16F84.

1 PORTA pin 2 PORTA is a bi-directional I/O port

2 | PORTA pin 3

3 PORTA pin 4

4 MCLR’ Master Clear (Reset) input/programming voltage input.
5 Ground Ground reference

6 PORTB pin 0 PORTB is a bi-directional /O port

7 | PORTB pin 1 |

8 PORTB pin 2

9 PORTB pin 3

10 [PORTA pinl PORTA is a bi-directional 1/O port

11 | PORTApin0

12 OSCI1/CLKIN Oscillator crystal input/external clock source input

13 OSC2/CLKOUT | Oscillator crystal output. Connects to crystal or resonator.
14 Positive supply Positive supply

15 PORTB pin 7 PORTR is a bi-directional I/O port

16 PORTB pin 6 |

19 PORTB pin 5

18 PORTB pin 4

There are lots of features that PIC16F84 possesses. These features make it so

flexible that not only they are used in small scale designs but also in many branches of

the industry today. Some of important PIC16F84 features are listed below:

High performance RISC (Reduced Instruction Set Computer) CPU.
Only 35 single word instruction set.
All instructions take single-cycle (except for program branches).
Operating speed: DC — 20MHz clock mput, DC — 200 ns instruction cycle.
1024 words of program memory.
68 bytes of Data RAM.,
64 bytes of Data EEPROM.
14-bit wide instruction words, 8-bit wide data bytes.
15 Special Function Hardware registers.
8-level deep hardware stack.
Direct, indirect and relative addressing modes.
4 interrupt sources (External RBO/INT pin, TMRO timer overflow,
PORTB<4:7> interrupt-on-change, Data EEPROM write complete).
13 I/O pins with individual direction control.
High current sink/source:
- 25 mA sink maximum per pin.
- 25 mA source maximum per pin.

TMRO module: 8-bit timer/counter with 8-bit programmable prescaler.

1.3.3 PIC16F84 Interfacing

The PIC16F84 is interfaced to other devices through its I/O terminals. It requires
appropriate power supply, grounding and an external clock signal to function properly.
For the clarity reason | omitted those inputs to the microcontroller (See Figure 5). The
LED and the pulse generator also require proper power supply and grounding based on

their specifications.

PIC t6F84

Pulse Generator

Figure 5: The PIC16F84 interfacing.

When other devices are interfaced to the PIC16F84 through its I/O terminals, they
must maintain appropriate voltage and current levels that the PIC16F84 can handle (Refer
to the features).

1.3.4 Alternative Methods

There are several methods to obtain the speed from received pulses. Although the
methods vary only in how the PIC receives signals and determines the speed, the design
itself remains essentially the same for all methods. Next are the possible methods and

advantages/disadvantages over one another.

Table 2: The comparison of possible methods.

Method Description

Advantages

Disadvantages

Using TMRO module: We
can use the TMRO module
to accept external pulses. It
generates overflow interrupt

when reaches overflow.

It can be programmed to
be as an external counter,
which generates overflow

interrupt.

[t has a fixed prescaier
(operates like a sampler) that
increase in two’s powers such
as 1:2, 1:4, 1:8. For odd slot
numbered disks, this feature is
useless.

Since this method used TMRO
module itself, we have to
write extra code to provide

time delay.

Using polling method: In

this method we can accept |

pulses in any pin and try to
detect changes by writing an

appropriate code for it.

We can use the nearest

pin.

This method requires extra
complex coding to detect the

pin-state change.

Using PORTB pin-state
change interrupt: PORTB
most significant pins raise
an interrupt when their
state-change from high to
low or vice versa. We can
use this feature to recognize

pin-state changes.

PIC can easily detect

state changes.

PIC requires checking
whether a high state or low

state is the current state.

Using RBWINT Interrupt:
The RBO/INT pin generates
an interrupt when it receives
signal in

an external

appropriate level.

In this method, the PIC

processes ecach signal
individually, Thus, there
is no need for performing
calculations. In this
mode, the PIC is totally
flexible to be modified to
cater amy disk type.
TMRO can provide time

delays.

This method introduces more
interrupts thus slowing down
the overall performance of the
PIC. |

Among the alternative methods, the best method would be implementing

RBO/INT method since it provides more flexibility than others and has no difficulty with

performing calculations. This method treats each signal individually. Actually, this

method eliminates most calculations by only checking boundaries of variables every time

an interrupt is raised. Here, TMRO module can be programmed to provide required time

delays through TMRO overflow interrupt.

Other methods all require calculations. The PIC16F84 microcontrollers are not

good at performing calculations due to their limited instruction set. They can only add

and subtract to provide the very basic needs.

10

CHAPTER 2

METHODOLOGY AND SYSTEM DESCRIPTION

This section discusses about the entire system design. It discusses about the
design components and process flow. Through the system block diagram it explains how

the system components interact with each other to achieve the common goal set.

2.1 METHODOLOGY

The overall system design is built and components are identified. The function of
each component is well defined. Their interaction with each other is explained in the next

section.

The system is ready to accept inputs, which are external pulses, after a successful
initialization. It performs calculations and boundary checking, based on the functions it
was programmed, on the received input and sends the result to the output devices, which
in this case are 7-segment LEDs. The system is required to repeat the same flow

continuonsly until it is interrupted.

11

2.2 THE SYSTEM DIAGRAM AND PROCESS FLOW DESCRIPTION

This section discusses the entire design at and explains how the system works.

P_n_r_e_r 5.

T-segmant LED

.

| Pulse

Gen.

v

L d

Clock |

¥

FIC

Figure 6: Block diagram of the system

In Figure 6, the PIC, the LED and the clock (crystal oscillator) are powered by a
proper power supply. Since all the three components require around +5 Vdc, we can

supply power to them through same source. The clock component generates fine

frequency required for the PIC16F84 to work. Its frequency is 4MHz.

The output of the pulse generator is the input to the PIC, which is train of pulses

generated from IR emitter-detector circuitry {depicted as Pulse Gen block in Figure 6).

The External Interrupt handler receives the pulses and counts them. This value is then
passed to the PIC processor to perform further calculations. The Counter/Timer module
in the PIC16F84 is programmed to count the internal clock cycles and provide timely

delays. The processor uses this time delays as a measure of time period intervals to

determine the rps value. Finally, the output as a speed in rps is displayed on the display

component. The output is sent in terms of digital signals through I/O terminals to LEDs.

12

START

Initialize 10
INITIAL STATE
Pulse TMR{
Interrupt Interrupt
Determine T
Interrupt T
¥ b,
Serve RBO/NT Serve THMED
Interrupt Interrupt

Mo

Display results

>

Figure 7: The system flow diagram.

Power OFF

We can see the whole system flow in Figure 7. When it is imtialized it firstly sets
its configurations to the Initial State. It configures its both PORTA and PORTB data
directions, arranges interrupt handlings and sets TMRO module to the proper
configuration. Once the initial settings are successfully reached, it is ready to accept

mputs and serve for interrupts.

13

When any interrupt is raised it first attempts to recognize the interrupt originator
by checking its status register. Then it serves the correct ISR (Interrupt Service Routine)
as shown in Figure 8. Next, it checks if it is about time to display results. If the time has
elapsed, it displays the results on the LEDs. As we can observe in the system flow
diagram (Figure 7), the system is not required to halt on itself. It continuously listens for
the interrupts and serves them. It only stops when the power supply is cut off. We can
imagine this as if the power supply is connected to the system through a push button.

When pushed on it activates and when off it halts.

The system enters to an ISR whenever an interrupt is raised. It first determines the
source of the interrupt as was mentioned above. We can see the entire ISR subroutine m
Figure 8. It shows exactly what path in the ISR the system follows and what procedures
it performs. If the interrupt is INT interrupt, it means it just received an external pulse.
The INT ISR is executed, which is the left path in ISR. If TMRO interrupt raises, it
follows the right path in ISR. The details of each route are depicted in Figure 8. Once an

interrupt is served, it returns to the main program where it listens for the next interrupt.

14

INTERRUPT

No. Serve INT Interrupt Is Interrupt Yes. Serve TMRO Interrupt
TMRO Interrupt? “
Clear INT Clear TMRO
Interrupt Flag Int. Flag
h ¥
Decrement Decrement
pulse variable tim0 variable

1 disk round
passed? 15 rounds elapsed?
Yes
Reload pulse Reload tim0
variable
y
Perform
nerement D1 calculations
A
@ ke Display the
result
Yes
Clear D1. 3 —
Increment D2 Clear digit
variables
3 r é h 4 v
RETURN FROM ISR TO
MAIN PROGRAM

Figure 8: Interrupt Service Routine Flow Diagram.

The design scope is to demonstrate contactless measurement of angular speed.

This design is developed to display two-digit speed values, which 1s up to 99 1ps.

15

CHAPTER 3

DISCUSSION AND RESULTS

The system was designed to achieve the objective of the project. The components
have been identified and design has been completed. Please refer to Table 3 for design

components and specifications.

Table 3: Design components and specifications

PIC PIC16F84 Microchip® 1
LED 7-segment LED 5
LED decoder Model 741.54x 2
A motor with slotted disk 7 slots 1
Clock pulse generator 4 MHz Crystal Oscillator 1
Battery 5VDC and 12VDC 2
Circuit board - 1
IR emitter Vr(max)=1.7VDC, 1

Vr(max)=5VDC,
Ir{max)=100mA,
Ppiss=100mW
IR detector Vr(max)=60VDC, 1
Ppigs=100mW,

Light current min = 6.5 pA,

Light current max = 15 pA

Other auxiliary components | - -

Last item in Table 3, which are auxiliary components, is actually the sum of all

secondary components such as resistors and wires used.

16

th:éﬁ vDC

Ri Var.R.

x‘%vf‘\/._

slot

~,

IR Emitter ! \\\ '\:“ ! IR Detector

+— Ouiput

§R2
il

Figure 9: IR emitter-detector circuitry

Calculating for R} and R2:
Rl1= (VCG - Vr) /g

Please refer to Table 3 for IR emitter specifications.
RI=(5-1.7)/100m =33 O

Using the same formula:
R2max=(5-1.7)/6.50=508 Q
R2min=(5-17)/15p=2200Q

The Variable Resistor in Figure 9 is to tune the output voltage level.

When the slotted disk rotates, it is possible to get pulse train form the output m
the IR emitter-detector circuitry (as shown in Figure 9), which is then fed to the
PIC16F84 through RBO/INT pin (pin 6).

17

Y

> .
Output Digit 1

—‘ RAZ rAll- ———
w BA3 RADI- ———
Initialized QK -t BAYTOCKI O8C |-
f— PIC
= MCLR OSC21- «ab— 4MHz clock
16F84
Ground—me —{Vss vddl- -— +EVDC
Input —pm — RBOANT RE7 |- ——
— REE- .
] Aol ® Output Digit 2
— B2 ABS |- ————
~{RA3 RB4|- g

Figure 10: PIC16F84 inputs and outputs

Figure 10 shows all connections of the PIC16F84 and I/O directions. The output
pulse from the IR circuitry is the input to the PIC16F84 through pin 6. The output is sent
to two 7-segment LEDs (through LED decoders) through the PIC 1/O ports. The first
digit of the result is sent through the lower bits of PORTA and the second digit is sent
through the upper bits of PORTB.

The output is refreshed twice in a second. This is the closest possible precision
that the TMRO module can provide. 1 got this by assigning 1:128 value to TMRO
prescaler. With this setting TMRO provides 0.49152 second (about 0.5 second) time delay
in fifteen (15) rou;lds. So every time a TMRO overflow interrupt occurs, the PIC

increments an internal variable to detect whether fifteen (15) rounds have elapsed.

The external clock for PIC16F84 is 4 MHz. The PIC16F84 divides this into four
(4) parts that yields 1 MHz execution speed. Thus, each instruction execution cycle takes
exactly 1 microsecond. I set the TMRO to increment in every 128 instruction cycles.
Since the TMRO is an 8-bit register it can take values from 0 to 255 (255 = 2% -1). This
gives 128 x 256 = 32768 micro second time delay in one (1) round and 15 rounds will
give 15 x 32768 = 491520 micro seconds {or 0.49152 second). The theoretical error is

18

1.696 %, which can be considered very acceptable for PIC devices. Actually, the
practical errof is rather smaller than this value. Because some branch executions during

the program execution, which are not expressible, take time to further reduce the error.

This design is developed to display two-digit speed values. It can display up to 99
ps. We follow the same procedures to display more than two-digit values. Only, there
will be simple modifications in the program. All it requires is adding more boundary-
checking routines to INT ISR and allocating extra I/O pins for output. The PIC16F84 has
thirteen (13) 1/0 pins. This should be kept in mind during design process. If more 1O
pins are required different PIC should be used such as PIC16F62 or PIC16C74.

Initially the system used an LCD display as its output device. The source code
was to support the LCD, since it needed proper programming to function. I could not
locate in second semester so T used 7-segment LEDs to replace it. This required some
alterations in the code and needed some extra components (LED decoders). The complete
source code for the project is completed and is attached to appendices. The code is fully

commented to explain what the lines perform.

19

CHAPTER 4

CONCLUSION AND RECOMMENDATIONS

The project period is two semesters. In the first semester, the design part was
completed and all components were identified. The PIC block diagrams and program
source code for the project are as well completed and simulated. The design was

modified to cater the output device change in the second semester.

The objectives of the project are achieved. Both the hardware and software parts
for the project are developed and tested with a sample code. There were some challenges
faced during the project period. The code development, PIC troubleshooting, components

integration and tuning could be considered as some of them.

The project objectives and scope were relatively clear. The design was not so
complicated once the components were allocated. That is the reason I chose PIC16F84,
which is one of the simplest PIC family to use. If a more complex design is to be
developed, I would recommend Motorola® 68000 processor. It has more complex

instruction set and powerful addressing modes.

My experience from previous subjects and my supervisor’s advices were very
useful in completing this project. I hope I accomplished the objectives of this subject.
Lastly, this particular project involved many microcontroller concepts. I did my best to
present them as clearly as possible so that the reader should have no difficulty while

examining it.

20

P -

REFERENCES

[MCHP99] MICROCHIP®, 1999, “Datasheet for PIC16F84”

Design with PIC Microcontrollers, 1999, John B. Peatman, Prentice Hall
PIC microcontrollers for beginners, MICROCHIP®

Microprocessor I EEB5303 Lecture Notes, Semester July-2003

From the Web:

e http://www.microchip.com
¢ http://www.boondog.com
e hitp://www.maxmon.com

o Other personal sites.

21

APPENDICES

A. SOURCE CODE
LIST P=PIC16F84 ;UsePIC 16584

; radix hex : Gives warning: Radix superceded by command line.

: #include "P16F84.inc" : Include this file
; CONFIG CP OFF& WDT _OFF& PWRTE ON& XT OSC
; Code-protect off, no watchdog, uses XT oscillator

w equ HO00Y
f equ H0001'

;-—-- Register Files
porta equ 0x05
portb equ O0x06
trisa equ 0x85
trish equ 0x86

timer0 equ 0x01
regSTAT equ 0x03
mtcon equ 0x0B
regOPT equ 0x81

e STATUS Bits

RPO equ H'0005 ;regSTAT REG bits

Z equ H'0002' ; Zero bit

C equ H'0000' : Carry/Borrow bit

;=—-- INTCON Bits -
GIE equ H'O007 ; Global Interrupt Enable bit

TOIE equ H'0005 . TimerQ Overflow Interrupt Enable bit
INTE equ H0004' ; RBO/INT External Interrupt Enable bit
TOIF equ H'0002' ; Timer0 Overflow Interrupt Flag bit
INTF equ H'0001' ; RBO/INT External Interrupt Flag bit
;=== My Variables

W _temp equ 0x20 ;Holds temporary W content

S_temp equ 0x21 ; Holds temporary regSTAT register's content

di equ 0x22 ; Holds 1st digit to be displayed

d2 equ 0x23 ; Holds 2nd digit to be displayed

d3 equ 0x24 ; Holds 3rd digit to be displayed

tim0 equ 0x25 ; Timer0 cycle counter

pulse equ 0x26 ;Holds pulse number which represents I round

22

(e Define Macros -

Bank0

Bankl1

Push

Pop

macro

bef 0x03, RPO

endm

macro

bsf 0x03, RPO

endm

macro

movwf W _temp
swapf 0x03, w
movwf S temp
endm

macro
swapf S temp,
movwf 0x03
swapf W _temp,
swapf W temp,
endm

; Important: All macro operations happend in Bank0

INTen macro
movlw B'10110000" ; Set Intcon with binary value 10110000
movwf intcon ; GIE enabled, TOIE enabled, INTE enabled
endm ; All flags cleared
org 0x00
goto MAIN
org 0x04
goto ISR
MAIN Bank0 ; Start at Bank 0
moviw 0x00 ; Clear W
bef intcon, GIE ; Disable interrupts until everything is set. Wait until it
displays 000
cief porta ; Clear buffers
clef portb
cief dl ; Initially d1, d2 and d3 are 0 (zero)
cief d2
ciet d3
moviw 0x0F ; Load tim0 with decimal 15
movwi{ tim0
moviw 0x07 ; Load pulse with decimal 7
movwi pulse

23

Bankl : Switch to 1st bank

cirf trisa ; Set PortA bits all output
movlw 0x01 : Set PortB bits all output except RBO/INT pin
movwitrish

moviw B'11000110" ; Set Timer0 (Prescaler 1:128. Gives 0.49152s when 15
times occurs)

movwiregOPT

Bank0

INTen ; Set and enable Interrupts

bsf porta, 4 ; Initialization successful
_wait goto _wait ; Hang program for interrupts
;--—umnnan [nterrupt Service Routme (ISR)
ISR bef intcon, GIE ; Macro to disable interrupts

Push : Macro to save the "environment”

-]

btfss intcon, INTF ; Determine which interrupt has just occured
goto sTMRO : Timer0 Overtflow Interrupt has occured
; INT Interrupt has occured
_SINT bef intcon, INTF ; Clear INTF to get the next interrupt

decf pulse, f
btfss 0x03, Z : Test if 1 full round is passed? 7 pulses represent a round.

goto _pop ; No, the round is incomplete
; Yes, 1 round has passed
moviw 0x07 ; Reload pulse with decimal 7
movwi pulse
mef dl, f : Increment di
movf di, w
xorlw Ox0A ;Is 1t 107
btfss 0x03, Z ; Check if the result is 0
goto _pop ; No it is not 10
; Yes dl was 10
cef dl ; d1 1s cleared to zero
mcf d2 f : Increment d2

:movf d2: w ; d3 is disabled for now
xorlw 0x0A
btfss 0x03, Z

24

.goto _pop
et d2
;incf d3 ; Increment d3 _
; Until here it can display up to 999
goto _pop ;End SINT
_sTMRO bef intcon, TOIF ; Clear flag
decf tm0, f
btfss 0x03, Z ; Test if 15 cycles finished?
goto _pop ; No, 15 cyeles not reached. Do nothing.
movlw 0x0F ; 1/2 seconds passed.
movwf tim{ ; Reload tim0 with decimal 15
; Perform calculations
movf d2, w ; Multiply d2 by 2
addwf d2, f
movf dl, w ; Multiply d1 by 2
addwf di, f
moviw 0x0A ; Load W with decimal 10
subwf di, w ; subtract 10 from d1. Save result in W
btfss 0x03, C ; Check the result in C bit
goto _done ; Result < 0. Do nothing
btfsc 0x03, Z ; Result = 0 OR Result >0
goto _zero ; Result =0
movlw dl ; Result > 0
inef d2, f
goto _dome
_zero ckf dl
incf d2, f
_done ; Calculations done

25

; Display results

movlf di, w ; Display results on LED (Output refreshed at every 1/2

seconds)
movlw porta ; Output d1 on porta lower bits
swapf d2, w ; Swap upper 4 bits with lower ones and save in w (d2
remains intact)
movlw portb ; Output d2 on portb higher bits
cef dl ; Clear d1, d2
chf d2
-—- Return from ISR with original environment
_pop Pop ; Macro to regain the original "environment" (context)
INTen : Macro to enable interrupts back
retfie : Return from ISR
end
TEST CODE

LIST P=PIC16F84 :;Use PIC 16F84
;radix hex

w equ H'0000'
f equ H'0001'

porta equ Ox05

portb equ 0x06

frisa equ Ox85

trisb equ 0x86

regSTAT equ 0x03

RPO equ H'0005' ; TegSTAT REG bits

Bank() macro
bef 0x03, RPO
endm

Bankl macro
bsf 0x03, RPO

26

endm

org 0x00
goto MAIN

MAIN movlw 0x00 ; Clear W

clef porta ; Clear buffers
cltf portb

Bankl ; Switch to Ist bank
movlw OxFF

movwf trisa
cef trisb :movwf trisb

Bank
ST Start Test
here movf porta, w

movwf portb

goto here
ST TBnd Test

end

27

§82001g
auoisa[Iu pe3sefing

8¢

uoIeLIRessI(] 10afol JO rolssnuqng

UONRIUSSA [BI0)

RI(] [RUL{ UONELIASSI(] JO UOISSTHIqNS

J1op AI0IRIOQRT/[ROTIORI]-

anunuos yIom 109loig

7 uoday ssesfoig Jo uossiuqng

JIOA AIOIRIOQET/[e0HoR1g-

anunuo)) YoM 109foig

[as]

1 Hoday ssafoid JO UOISSIUIgng

FI0M, AI0JRIOQR T/[E01ORI]-

dNUNUOY) HIOM 10alorg

—

ri

€1

(4!

[}

01

HIIM, /e

“ON

LUVHD LNNV) "4

