
Handwriting Recognition Using Artificial Neural Network

by

Goh Siew Yin

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

DECEMBER 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

\

Gift

CERTIFICATION OF APPROVAL

Handwriting Recognition Using Artificial Neural Network

by

Goh Siew Yin

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

(Fawriizu Aimadi Hussin)

Fawntau Azmadi Hussin
Lecturer

Electrical &Electronics Engineering
New Academic Block NO 22
Universiti Teknologi PETRONAS
31750 Tronoh

Perak Darul Rfdzuan, MALAY^IVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken ordone by unspecified sources or persons.

GOH SIEW YIN

ABSTRACT

Character recognition is one ofthe areas where neural network technology is

being widely used. However, a successful neural network application requires

efficient implementation of image processing and feature extraction mechanism.

This project will demonstrate neural network application in recognition of

constrained isolated English uppercase alphabets, from A to Z. The neural network

scheme employs the Multi Layer Feed Forward Network as the alphabet classifier.

This network is trained using the Back-Propagation algorithm to identify similarities

and patterns among different handwriting samples. Meanwhile, the feature extraction

scheme applies the combination of five distinct methods. They are Edge Detection,

Kirsch Edge Detection, Line Intersection Detection, Alphabet Profile Feature and

Modified Alphabet Encoder, while Image Processing involves the process of noise

removal from the scanned grayscale image alphabets. Image Proce^.ng makes cue

handwriting easier for extraction.

In the handwritingrecognition system, the neural network will use 30 sets of

handwriting samples, each consisting of26 English uppercase as training inputs and

to create an automated system to recognize the handwriting alphabets in different

sizes and styles. The statistical studies were done on the network to check the ability

and performance of the network. This is to improve and modifying the network in

order to increase its accuracy and reliability. It was found that feature extraction

plays an important role in making the neural recognition system better for a more

accurate detection. The handwriting recognition system is then integrated into

MATLAB Graphical User Interface (GUI) that users can use very easily while

hiding the complexity of the whole mechanism.

ACKNOWLEDGEMENT

Final report for Final Year Project was produced in conjunction with two

academic semesters that has been undergone for one year. Throughout the long
period, numbers ofpeople have contributed in achieving the project objectives.

Firstly, the author's heartfelt gratitude is forwarded to her supervisor, Mr.

Fawnizu Azmadi Hussin, for his selfless imparting of knowledge and advice, which

guided the author throughout her project.

Secondly, the author would like to thank Mr. Lim Khai Loke for contributing

ideas, providing useful information and guidance for betterment of the project
especially in feature extraction field.

Author also wish to thank all the colleagues who taught, guided, advised,

shared-knowledge, comments and helps throughout the project especially in
MATLAB programming.

Finally, thank you to all the others whose names has failed to mention on this

page, but has in one way or another contributed to the accomplishment of this
project.

TABLE OF CONTENS

ABSTRACT i

ACKNOWLEDGEMENT H

TABLE OF CONTENS jjj

LIST OF FIGURES v

LIST OF TABLES vi

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statement 2
1.3 Objectives 3
1.4 Scope 3

CHAPTER 2: LITERATURE REVIEW 4

2.1 Basic Concepts in Neural Network 4
2.2 Neural Network 5
2.3 The Multi Layer Feed-forward Network 6
2.4 Multi Layer Feed-forward Network Training 6
2.5 Backpropagation Algorithm 7
2.6 Image Processing 10
2.7 Feature Extraction \\

2.7.1 Modified AlphabetsEncoder 11
2.7.2 Edge Detection Method 13
2.7.3 Kirsch Edge Detection 13
2.7.4 Image Compression 16
2.7.5 Line Intersection Detection 16
2.7.6 Alphabet Profile Feature 17

2.8 MATLAB GUI 18
2.8.1 GUI Layout][\g
2.8.2 User Online Testing Capability 20

CHAPTER 3: METHODOLOGY 21

3.1 Procedure Identification iit ?\
3.2 Handwriting Samples 22
3.3 Multi Layer Feed-Forward Network (Modified) 22

3.3.1 Computation of Level of Confidenceand Level of Substitution... 23
3.4 Image Processing Module 24
3.5 Feature Extraction Module 24

iii

3.5.1 Modified Alphabet Encoder Module 25
3.5.2 Kirsch Edge Detection Module 26
3.5.3 Image Compression Module 26
3.5.4 Alphabet Profile Feature Module 27

3.6 Neural Network Architecture 28
3.7 MATLAB GUI Module 29

3.7.1 Creating GUI with Guide 29
3.7.2 The Layout Editor 30

3.8 Development of the Handwriting Recognition System 32

CHAPTER 4: RESULT AND DISCUSSION , 33

4.1 Identify the Best Value for LOC and LOS 33
4.2 Modified Alphabet Encoder and EdgeDetection Method with MLFF. 34
Network 34
4.3 Adding another HiddenLayer 35
4.4 Modified MLFF Network 36
4.5 Statistical Study on the Feature Extraction Matrix 37

4.5.1 Standard Deviation Test on the Same Classes 37
4.5.2 Standard Deviation Test on the Different Classes 38

4.6 Final Handwriting Recognition System 38
4.7 Recognition Error Analysis 39
4.8 Testing and Simulation Network Modules 40
4.9 Identified Neural Network Modules 40

CHAPTER 5: CONCLUSION AND RECOMMENDATION 42

5.1 Conclusion 42
5.2 Recommendations 43

REFFERENCES 44

APPENDIXES 46

Appendix A Image Processing Module 46
Appendix B Feature Extraction Module 47
Appendix C Neural Network Module 54
Appendix D Other Script Files 64
Appendix E Samples Collection Form 66
Appendix F Training Samples 67
Appendix G Project Gantt Chart 68

IV

LIST OF FIGURES

Figure 2.1: General Neural Network Model 5
Figure 2.2: Multi layer feed-forward network 6
Figure 2.3: MLFF Network Backpropagation 7
Figure 2.4: MLFF Forward Propagation Phase 8
Figure 2.5: Image ProcessingProcess Flow 10
Figure 2.6: Modified Alphabet Encoder 15 Regions 12
Figure 2.7: Edge Detection Method 13
Figure2.8: Kirsch Edge DetectorMasks 14
Figure 2.9: Output of Kirsch Edge Detector 14
Figure 2.10: Image Convolution Process 15
Figure 2.11: Line Intersection Detection 16
Figure 2.12: Alphabet Profile Feature 17
Figure 2.13: GUI Design Principles 18
Figure 2.14: Introduction ToHandwriting Recognition System Layout 19
Figure 2.15: Handwriting Recognition System Layout 19
Figure 2.16: User Online Testing 20
Figure 3.1: Procedure Identification 21
Figure 3.2: Image Processing Module Algorithms 24
Figure 3.3: Modified Alphabet Module Algorithm 25
Figure 3.4: Kirsch Edge Detection Module Algorithm 26
Figure 3.5: Image Compression ModuleAlgorithm 26
Figure 3.6: Alphabet Feature Module Algorithm 27
Figure 3.7: GUI Layout Editor 30
Figure 3.8: Property Inspector 31
Figure 3.9: Handwriting Recognition System Development 32
Figure 4.1: Determination of LOC and LOS 34
Figure 4.2: Neural Network Module 40
Figure 4.3: Final Handwriting Recognition Module 41

LIST OF TABLES

Table 3.1: Summary Feature Extraction Modules 24
Table 3.2: Training Parameters 28
Table 4.1: Results for Recognition Accuracy 33
Table 4.2: SystemAccuracyResult 35
Table 4.3: SystemAccuracy Results 35
Table 4.4: SystemAccuracy Results 36
Table 4.5: Standard Deviation Test Results 37
Table 4.6 Standard Deviation Test Results 38
Table 4.7 Final Proposed Handwriting System Accuracy 39
Table 4.8: Summary of Neural Network Module 40

vi

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Handwriting recognition of general handwritten character presents a

number of challenges. Over the past year, handwriting recognition has been

receiving a great deal of interest by researchers all around the world.

Nowadays, handwriting recognition system has been implemented in

numerous applications such as address and zip code recognition, signature

identification, and forms processingto name a few.

Using artificial neural network for handwriting recognition is a field

that is attracting a lot of attention. The use of neural network to model the

handwriting recognition has been gaining a lot of success in term of accuracy

and reliability. However, there is no easy scheme to achieve high accuracy

recognition rates. Thus, there is a need to develop more sophisticated systems,

which include areas of image processing, feature extraction as well as neural

network itself.

Different types of neural networks have proposed to be implemented in

the handwriting recognition system. Among them are Multi-layer Feed

forward with Backpropagation Network (MLFF with BP), Self-Organizing

Mapping, (SOM), Fuzzy Adaptive Resonant Theory (Fuzzy ARTMAP), and

Learning Vector Quantization (LVQ). The selection of the types of neural

network is vital to the accuracy and reliability of the system.

The area of research has been motivated by two approaches. The first

is to find the best feature extraction method. By doing the statists ". study on

the feature extractions' performance in recognition, the best feature extractor

was obtained so that it can highlight the important features while minimizing

the meaningless features. The second is to find the best neural network, which

has good generalization power and minimum substitution error.

1.2 Problem Statement

Automatic recognition of handwritten characters is a problem that is

currently garnering a lot of attention especially in mail delivery field. Address

on envelops can be scanned by machine easily if it has barcode. But a lot of

letters sent are handwritten; therefore post office requires a person to sort the

mails. Due to this problem, we are trying to minimize labor requirement by

having an automated system that can sort mails according to the '' .ndwrten

address.

Another problem that we are trying to address is when gathering

information from a handwritten form. A complex process is needed to

efficiently process small handwritten characters in small boxes. Hampered by

large amount of variation between handwritten characters, it needs research to

find techniques that will improve the ability of computers to represent and

recognize handwritten characters. One approach is by using artificial neural

network. In this approach, an artificial neural network is trained to identify

similarities and patterns among different handwriting samples.

However, the scopeof the handwriting recognition system built is only

on recognizing the isolated character. Otheradvanced processing requirements

to work on the letters and forms are not covered.

1.3 Objectives

The main objective of this project is to build a handwriting recognition

system by implementing it in MATLAB. This handwriting system is designed

to recognize 26 isolated constrained handwritten English uppercase alphabets,

from A to Z. The system must also be reliable even with noisy characters or

shifted characters.

1.4 Scope

The project of handwriting recognition using artificial neural network

involves four areas of research. They are Image Processing, Feature

Extraction, Neural Network and MATLAB GUI.

Image processing is a process of converting any scanned grayscale

alphabets to binary image so that the image can be manipulated easily. Besides

that, it also involves resizing and region-of-interest (ROI) analysis the image

to obtain the correct size. Feature extraction isone of the vital parts of system.

It creates the linkage between the scanned binary alphabet image and the

neural network. The target of feature extraction is to distinguish the

uniqueness of 26 classes of alphabet so that classification task by the neural

network is much easier to perform.

Another integral part of the system is the neural network itself. The

neural network classification efficiency will determine the performance of the

overall system in term of accuracy and reliability. Therefore, the choice of

neural network is important is the key factor here.

Lastly, results will be displayed using MATLAB GUI. The MATLAB

GUI is very user friendly and it is easy to create as MATLAB comes with the

GUI building tool.

CHAPTER 2

LITERATURE REVIEW

2.1 Basic Concepts in Neural Network

Neural networks are composed of simple elements operating in

parallel. These elements are inspired by biological nervous systems. As in

nature, the network function is determined largely by the connections between

elements. We can train a neural network to perform a particular function by

adjusting the values of the connections between elements.

There are three types of trained neural networks; supervised training

neural networks, unsupervised training neural networks and reinforcement

learning neural networks. We are more interested in the supervised training

neural networks compared to unsupervised learning and reinforcement

learning. This is because in unsupervised learning, the hidden neuron must

find a way to organize themselves without help from the outside. No samples

output provided to the network against which it can measure its predictive

performance for a given input. While for reinforcement learning, it is work on

reinforcement from outside. The connections among the neuron layer are

randomly arranged, then reshuffled as the network is told how close it is to

solving the problem. Both unsupervised and reinforcement sutfers from

relative slowness and inefficiency relying on a random shuffling to find the

proper connection weights. As for supervised learning, the method is shown in

Figure 2.1. There, the network weights are adjusted based on a comparison of

the output and the target, until the network output matches the target. Thus, it

improves the training performance [lj.

In summary, there are a variety of kinds of design and learning

techniques that enrich the choices that a user can make depending on the

application.

Input

Neural Network with

i|> connections (called weights)
between neurons

Adjust
Weights

Output

Figure 2.1: General Neural Network Model

Target

Error

2.2 Neural Network

A supervised neural network known as Modified Multi Layer Feed

forward Network is used for the classification and recognition of the isolated

alphabets. It is chosen based on several reasons and its advantages.

• Easy training - all goal of training can be reached for all the training sets

easily. Thus, the number of epochs needed is minimal.

• Stability - it can retain the previously trained alphabet pattern. Thus the

neural network can accept wide range of alphabet patterns

without forgetting the past information.

• Accuracy - it can generalize information for each class and reduce the

substitution error rate, thus, increasing accuracy.

2.3 The Multi Layer Feed-forward Network

The Multi Layer Feed-forward Network with backpropagation is a

supervised neural network. It can have multiple of inputs, outputs and layers

of nodes or neurons. Figure 2.2 shows architecture of a three-layered feed

forward network. The leftmost is the layer which the input data is supplied; the

rightmost layer is the output layer and the middle layer is the layer to

interconnect input and the output layer. Each layer of the network is fully

interconnected to its subsequent higher layer. The links between each neuron

are called weights, where the knowledge is beingstored [2].

Ov

Input ^Q*^ Output

Hidden Layer

Figure 2.2: Multi layer feed-forward network

2.4 Multi Layer Feed-forward Network Training

The Multi Layer Feed-forward Network training utilizes the

backpropagation algorithm. It is an optimization procedure based on gradient

descent that adjusts weights to reduce the system error or cost function. The

name backpropagation arises from the method in which corrections are made

to the weights. During the learning phase, input patterns are presented to the

network in some sequence. Each training pattern is propagated forward layer

by layer until an output pattern is computed. The computed output is then

compared to desired target output and error values are determined. The errors

are used to feedback connections from which adjustments are made to the

synaptic weights layerby layer in backward direction. Figure 2.3 illustrates an

6

MLFF network modified for the backpropagation training. The backward

linkages are used only for the learning phase, whereas the forward connections

are used for both learning and the operational phases.

Input
Patterns

Weights are
adapted

Error

Target

Error is back propagated
through the layers of the
NN

Figure 2.3: MLFF Network Backpropagation

Using BP, the hidden layer weights are adjusted using the errors from

the subsequent layer. Thus the errors computed at the output layer re use^ to

adjust the weights between the last hidden layer outputs is used to adjust the

weights in the next to the last hidden layer and so on until the weights

connections to the first hidden layer are adjusted. In this way, errors are

propagated backward layer by layer with corrections being made to the

corresponding weights in an iterative manner. The process is repeated a

number of times for each pattern in the training set until the total output error

converges to the minimum or until some limit is reached in the number of

training iterations completed [2].

2.5 Backpropagation Algorithm

The backpropagation algorithm is a generalization of the Widrow-Hoff

learning rule to multiple-layer network and nonlinear differenti?' "e tran:fer

functions. Input vectors and the corresponding output vectors are used to train

a network until it can approximate a function; associate input vectors with

specific output vectors or classify input vectors is defined in an appropriate

way [2].

7

The algorithm consists of 2 phases; a feed-forward process and a

backpropagation process. For the initial stage, the weights of the network are

randomly selected. The learning rate, n and momentum, p is pre-set before the

learning phase. Normally, the momentum rate is setat 0.95 and learning rate at

0.01. During the learning phase, an input vector is presented to the network

and the vector propagates from the input layer to the output layer. Thus, the

output of the hidden layer has the following notation

l + e"

where

',=2X°-+/

Similarly, the output layer becomes

1Ok=f{netk) =
X+ e""'

where

nett=^WtJ0J+et

Figure 2.4: MLFF Forward Propagation Phase

The output vector generated from feed-forward process is then

compared with the desired output vector. The cost function used is a sum

squarederror function, £, which is given by

p

z k

where tpk is the desired output for the Ath component of output pattern for the

pattern p and Opk is the corresponding actual output.

Backpropagation process is then using the error to adj' .[weights

accordingly, based on the steepest descent method, as follows:

AW^t +X^^dft^ccAW^)

8k=Ok{\-Ok){tk-Ok)

Wkj{t +\) =Wkj(t)+AWkj{t +\)

and

AW/: (r +1) =T]SJOi +aAWj, (/)

k

M'+0=M')+^,('+i)

2.6 Image Processing

Image processing involves the process of noise removal from the

scanned grayscale image alphabets. The end product of this process is a

noiseless grayscale image.

The noise removal process applies a Wiener filter (a type of linear

filter) to an image adaptively, tailoring itself to the local image variance.

Where the variance is large, Wiener filter performs little smoothing. Where

the variance is small, Wiener filter performs more smoothing. This approach

often produces better results than linear filtering. The adaptive filter is more

selective than a comparable linear filter, preserving edges and other high

frequency parts of an image.

Then, the image threshold is set to 50% to obtain the binary image.

This process involves in converting the input image to grayscale format and

then uses threshold value to convert this grayscale image to binary. The output

binary image has values of 0 (black) for all pixels in the input image with

luminance less than level and 1 (white) for all other pixels. From the binary

image, the region of interest (ROI) of the letter is identified [3]. The letter then

is resized to 32x32 pixels. Figure 2.5 illustrates the flow of image processing

technique applied to the samples.

Imaee Input Noise Reduction Threshold ROI and Resizins

Figure 2.5: Image Processing Process Flow

10

2.7 Feature Extraction

Feature extraction is important in defining the characteristic of each

alphabet. If each alphabet well defined, it will increase the recognition rate

because the neural network able to distinguish the all classes easily. Among

the technique I have come across are Modified Alphabets Encoder, Edge

Detection Method, Kirsch Edge Detection, Lines Intersection Detection, and

Alphabet Profile Feature.

With wide choices of feature extractor, there is a need to determine

their performance. There are some general conditions for a good feature

extractor.

• Discrimination - features extracted should be significantly different for

characters belong to different classes

• Reliability - features for the characters from the same class should be

similar to each other.

• Feature space is small - the amount of the features should be smaller than

the original image to ensure the recognition speed is fast enough.

• Independence - features should nothave any correlation with each other.

• Fast processing speed -the feature extractor should have low complexity

and low computation inorder to speed the feature extraction process.

2.7.1 Modified Alphabets Encoder

The modified alphabet encoder is very suitable to extract 26

English upper case alphabets using its 15 regions. With the size of

32x32 bitmap, the bitmap is divided into 15 regions, which consist of 3

horizontal regions (HI, H2, and H3), 8 vertical regions (VI, V2, V3,

V4, V5, V6, V7, and V8), and 4 diagonal regions (Dl, D2, D3, and

D4). This is shown on the Figure 2.6.

11

Computationally, one feature region is defined as the number or

marked bits divided with the size bit of the region. The computed

number will be sent to the neural network for recognition.

V7-

VI -V2 -^ V3

31

K

m
£

*
-e

v

A

A

7

\
x

V

n

A

\

¥2
i

r.

X

7-

ft*
/

?-
z

-A

a

;t

\

-V3

:i

Hi

V7

1
H2

VB

^

I
2T

33 7-

A

Jrt

s

^

X

*;
v\

©* s:

H3

Z^
v

IS

K • - - ve 1
j jt_

Figure 2.6: Modified Alphabet Encoder 15 Regions

For example,

32
r ^

•^

£88 bits
The

marked bitsSize of Region HI = 9 x 32 = 288 bits

The marked bits = 50 bits

HI feature = 50/288

= 0.1736

12

2.7.2 Edge Detection Method

The idea of this method to detect the outer edge of a character

from four corners view, which is left, top, right, and bottom direction.

The algorithm of this method is very straightforward. It just needs to

scan through line by line vertically and horizontally until there is a

change of the pixel value. This process is illustrated in the diagram

below.
Top

/ /'

Left

V,
Right

Bottom

Figure 2.7: Edge Detection Method

2.7.3 Kirsch Edge Detection

This method is quite useful in extracting local feature of

alphabets. It is a good discriminator for all the 26 classes of alphabets

because it is able to detect unique features of each alphabet. This

method involves detection of horizontal, vertical, right diagonal and

left diagonal edge by using 8 masks or filters. These 8 masks will be

convoluted with the binary alphabet image to produce 8 images (2

horizontal, 2 vertical, 2 right diagonal, and 2 left diagonal).

The pair of each direction images will undergo the maximum

operation. The maximum operation is a process of selecting the

maximum pixel value from the pair image. Thus, there will be one

image for each direction. Then, the four images will undergo image

compression to reduce their size.

13

.i 5 5

-3 0

-3 -3

-3 -3 -3

-3 0 -3

5 5 5

(a)

-3 -3 5

0 5

-.i -3 .5

5
-i

-3

5 0 -3

5 -3 -3

(b)

-3 5 5 -3 -3 -3 -3 -3 -3 5 5 -3

-3 0 5 5 0 -3 -J 0 5 5 0

-3 -3 -3 5 5 -3 "J 5 5 -3 -3 -3

«l)

a) Horizontal Mask
b) Vertical Mask
c) Right Diagonal Mask
d) Left Diagonal Mask

Figure 2.8: Kirsch Edge Detector Masks

For the handwriting recognition system, the size of input image is

32x32 pixels. Therefore, the output will be 4x32x32 pixels. After image

compression, the output will be reduced to 4x8x8 pixels.

in
Horizon fill

Vertical

Kiiihf-
Di agonal

Lcft-
Diiigaiml

Original binamed image

max

mm
In *HI
HI •»« 19

• Output of convolution
process wit'- Jhe 8 r^sks.

• Combining the pair of
each direction into 1 image

Figure 2.9: Output of Kirsch Edge Detector

14

2.7.3.1 Image Convolution

The convolution process involves a very omiple two-

dimensional convolution. The value of each pixel is computed

through multiplication of two matrices and summing the

results. One of these matrices is the image itself, and the other

is the filter matrix. Usually the image size is bigger than the

filter matrix.

There are several stages to implement the image

convolution. The Figure 2.10 below is an example illustrating

the image convolution with 1 horizontal filter. The first stage is

zero padding. In this stage, the border of the image will be

padded with zero because we need to obtain border pixels

value. If the size of the input image is 32x32 pixels, then the

image will become 34x34 pixels. After the zero padding

process, we will compute for the value of eacn pixel by

multiplying and shifting the filter matrix.

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Pixel #1 Pixel #2 Pixel #3 PixelU

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 1 1 1 1 1
Conv

Input Image

Zero Padding around
Image Boundary

5 5 5

-3 0 -3

-3 -3 -3

For pixel #1,
f(0,0) = 0(5) + 0(5) + 0(5) + 0(-3) + 0(0) + 0(-3) + 0(-3) + 0(-3) + l(-3) = -3

-3 -6 -9 -9 -9 -9 -6 -3

-6 -9 -15 -15 -15 -15 -9 -6

2 7 9 9 9 9 7 2

5 10 15 15 15 15 10 5

Lower Horizontal E^-;

Figure 2.10: Image Convolution Process

15

2.7.4 Image Compression

After obtaining the image with size of 32x32, we want reduce

the size of the input to the neural network by 16 times so that less

processing is needed in the neural network. This image compression is

performed using this formula below.

T(i,j)

•>i

Z L S(x.vj
x=2M y=2j-l

S (x,y) - Image 32x32 pixels
T (ij) - Image 8x8 pixels

2.7.5 Line Intersection Detection

This method is extracting the local feature of an alphabet. It

checks for the number of intersection between alphabet and 2

horizontal lines at 1/3 and 2/3 of the image height and also 1 vertical

line at the center point of the alphabet.

a) Intersection ^vith 1/1 lirf

b) Intersection with 2/3 line

c) Intersection with center

gravity line

Figure 2.11: Line Intersection Detection

16

2.7.6 Alphabet Profile Feature

This method is highlighting the global feature of an alphabet. It

detects the smoothness of the alphabets and also the width and height

at different location. It involves obtaining the raw profiles of an

alphabet by detecting the edge. The raw profile is differentiated to

obtain the smoothness of the alphabet. The highest value of the

differentiated raw profile is obtain and normalized for all four of the

directions. To describe the size of the alphabet, the width and height at

1/5, Vi and 4/5 of the bounding boxes are obtained.

/

/
Left

Top

S

V
Bottom

Right

a) Raw Profile - the edge of
the alphabet from four
directions

b) Differentiated Raw Profile
- the smoothness of the

alphabet

Figure 2.12: Alphabet Profile Feature

17

2.8 MATLAB GUI

A graphical user interface (GUI) is a user interface built with graphical

objects. If the GUI is designed well-designed, it should be intuitively obvious

to the user how its components function. By providing an Interfax between

the user and the application's underlying code, GUIs enable the user to operate

the application without knowing the commands would be required by a

command line interface. GUI is created with GUIDE. This includes laying out

the components, programming them to do specific things in response to user

actions and saving and opening the GUI [4].

Hence, it is very suitable to display the input image and output

recognition results on screen. Figure 2.13 shows the GUI design principles.

Simplicity 1D[

Consistency >

J^> Unity, Clarity, Elegance, and

/^> Alignment, Integrity, and

Familiarity p|~tl ^> Friendliness, Comfort, and Charm

Figure 2.13: GUI Design Principles

The GUI layout created was divided into two parts. First part is the

layout to show the introduction about handwriting recognition system as

shown in Figure 2.14. While the second part is the layout to display all

relevant data such as the alphabet image, the output image, the alphabet

selection, neural network training, online testing, output results and so on.

This can be seen from Figure 2.15.

2.8.1 GUI Layout

*) AboutNeural Network Handwriting Recognition Window

File Edit View Insert Tools Window Help

This isa handwriting system designed torecognize'upper case
tetter Ato Z. This system employs techniques, in image processing,
feature extraction, and neural network. Theneural network is based on*
a Multi Layerfeed Forward Network.1 This network istrained using- -
backpropagation algorithm • •

Usercan try ,thetonltne arid offline simulation. To run* the offline
simulation, selecta setsofletter and'analphabet from:the listboK." To -
-run online simulation;^draw, an alphabet .usingWINDOWS lylSPAINT
and save the file astest.bmp'in folder cAnnhrCrnatlab.! Clickon button*
Dpen&RunFile, ' -

Figure 2.14: Introduction To Handwriting Recognition System Layout

*) Neural Network Handwriting Recognition
File Edit View Insert Tools Window Help

Figure 2.15: Handwriting Recognition System Layout

19

The designed MATLAB GUI layout has the following

attributes and its functions:

: 30 sets of upper case handwriting alphabet from A to Z

: Select an alphabet to be recognized

: Show the input image of the selected alphabet

: Show the detected output image

: Show the recognition result

: Brief introduction about handwriting recognition

: Show the neural network training

: Run the input alphabet from users

2.8.2 User Online Testing Capability

The GUI provides the capability for user to input the

handwritten character to test the system. User needs to draw an

alphabet using WINDOWS MSPAINT and save the file as 'test.bmp'

in folder c:\nnhr\matlab. Then, click button Open & Run File to view

the result. This is illustrated in Figure 2.16.

untitled - Paint y NeuralNetworkHandwritingRecognition
File Edit View Image Colors HelR|9 EdB: vieH Insert Tools Window Help

f* A

rrmrmr.mmrm

r Hplr llrk Heh Tfinirs nn Mir Hpln Mf

Figure 2.16: User Online Testing

20

CHAPTER 3

METHODOLOGY

3.1 Procedure Identification

The executionof project is divided into several stages and is illustrated

in the flow chart below.

Start

Preliminary Research

Neural Network Toolbox Learning

Research on Image Processing and Feature
Extraction Mechanism

Handwriting Samples Collection

Build a Recognition System
i

Check the Recognition System's Performance

,A^^
' '

^^ Recognition ^\ No Improvement and

\ ok? ^ Modifi nation

Yes

MATLAB GUI Toolbox Learning

Create the Handwriting Recognition System
Using MATLAB GUI

Improvement and Recommendation

End

Figure 3.1: Procedure Identification

21

3.2 Handwriting Samples

The handwriting samples for the training set are very important

because it can affect the accuracy of the system. Alphabets that are too skewed

or distorted need to be discarded as training sets. As for the untrained sets of

handwriting, they are randomly picked from the handwriting samples form.

The untrained sets are 15 different individual names. The samples collected

were then cut out separately, alphabet by alphabet, without specifying sizes.

Please refer to Appendix F for training samples.

3.3 Multi Layer Feed-Forward Network (Modified)

The MLFF network has been modified to have the ability to load a

different set of weights and biases if low confidence level of recognition is

detected from the network output. Low level of confidence normally indicates

a wrong alphabet recognition. Another parameter to consider from the output

of the network is the level of substitution of other letters. Wrong recognition

has high level of substitution of other letters as well. Combining these two

parameters, a statement is formed as shown below.

If (confidence> threshold value) or (substitution<threshold value)

then

Accept the network output

Else

Loada new weights and biases (new network)

22

3.3.1 Computation of Level of Confidence and Level of Substitution

The confidence and substitution level of each letter is

calculated through the output of the neural network. The 26 values in

the output matrix represent the 26 alphabets. The neural network is

trained to give the highest value (near to one) for the recognized letter

and for the rest will be near to zero. Having this characteristic, we can

evaluate level of confidence and substitution of the recognized letter.

Computationally, the confidence level is the highest value in the output

matrix and the substitution level is the sum of the rest of the matrix.

Through trial and error as to refer to Section 4.1, it is the best the

confidence threshold value is set at 0.9 and the substitution threshold

value is set at 0.2.

For example,

Output matrix, 0 = [0.95 0.1 0.1 0.1 0000.1 0.01 000000000

0.010.010.10 0000]

Level of confidence ~ max (O)

= 0.95 (first element)

Level of substitution = 0.02 + 0.1 +0.001 +0 + 0 + 0 + 0.01 +0.01 +0

+ 0 + 0 + 0 + 0+0 + 0 + 0 + 0 + 0.01 +0. + 0 + 0 + 0 + 0 + 0 + 0

- 0.151

23

3.4 Image Processing Module

This module implements four processes. The four are noise reduction,

threshold, region of interest (ROI) and resizing. It takes in isolated alphabet

images of any sizes and returns a binary image with the size of 32x32 pixels.

This module uses the MATLAB Image Processing Toolbox extensively.

Grayscale

Image

Noiseless

Binary Image
->

Noise

Reduction

ROI&

Resizing
-•-> Threshold -•

Figure 3.2: Image Processing Module Algorithms

3.5 Feature Extraction Module

These modules consist of one main module and six sub modules. The

main module combines feature extraction matrix from the four feature

extraction methods used; Modified Alphabet Encoder, Kirsch Edge Detection,

Image Compression, and Alphabet Profile Feature. While, the four sub

modules will implement feature extraction process. Referto Appendix B.

Table 3.1: Summary Feature Extraction Modules

MFile Function

Featext.m Combines all the feature matrix from all the extraction methods

Horin.m Horizontal Alphabet Regions Encoder

Verti.m Vertical Alphabet Regions Encoder

Diagonal.m Diagonal Alphabet Regions Encoder

Kirsch.m Kirsch Edge Detector

Imgcomp.m Image Compression

Profiles.m Profiling Alphabet Smoothness, Width, and Height

24

3.5.1 Modified Alphabet Encoder Module

This module is written by treating input binary image as a

32x32 matrix. With MATLAB capabilities in manipulating matrix, the

horizontal, vertical and diagonal regions can be extracted and

computed easily.

Binary Image 32x32

Extract the required region by
define the number of marked bits

(vertical, horizontal and diagonal)

Calculate the Region
Feature Value

(Sum the 1's, divide with
size of the region)

15 Floating Point Matrix

Figure 3.3: Modified Alphabet Module Algorithm

25

3.5.2 Kirsch Edge Detection Module

To implement this module, we need to use the MATLAB

Image Processing Toolbox because it involves image convolution.

Binary Image j

Defined 8 Kirsch Edge
Detector Masks

Image Convolution Process using
Conv function

MAX C^eratio:. to
combine pair images

Image Compressionto reduce image
by 16 times using Image

Compression Module

4x8x8 Floating
Point Matrix

Figure 3.4: Kirsch Edge Detection Module Algorithm

3.5.3 Image Compression Module

The algorithm of this module is implemented based on

the image compression formula.

Binary or non-Binary Image
32x32 pixels

Repeat for
64 times

Select a region 4x4

Sum the region l's
and divide by 16

8x8 Floating Point Matrix

Figure 3.5: Image Compression Module Algorithm

26

3.5.4 Alphabet Profile Feature Module

The module will obtain the edge profile of the alphabet

by scanning line by line. Edge profile data will be differentiated

to obtain the smoothness alphabet profile.

Binary
Image

Detect the left, top, right and
bottom view edge by
scanning line by line

vertically and horizontally

Differentiate the edge raw
profile

Obtain the maximum

differentiated edge raw
profile for each view

Right Edge-Left Edge-
Width

10 Floating
Point Matrix

Figure 3.6: Alphabet Feature Module Algorithm

27

3.6 Neural Network Architecture

To create the MLFF network, the network architecture must be well

defined. The number of neurons in the input layer is decided by th-. .lumbe: of

pixel in the bitmap. The bitmap in handwriting recognition system consists of

345 pixels. Thus, we need 345 input neurons. The output layer has 26 neurons,

one neuron for each handwritten character to be recognized. As for the hidden

layer, the neurons in this layer cannot be observed through the input or output

behavior of the network. Complex patterns cannot be detected by a small

number of hidden neurons; however too many of them can dramatically

increase the computational burden. Furthermore, the greater the number of

hidden neurons, the greater the ability of the network to recognize existing

patterns. However, if the number of hidden neurons is too big, the network

might simply memories all training examples. Hence, we decide to fit 20

neurons in the hidden layer and it bring to 20x26 size of MLFF network was

created [2],

For the network training part, the MLFF network is trair J with 30

sets of alphabets. For eachtraining set, the training parameters are set as listed

in Table 3.2. The training parameter is set prior to the training phase. The

network is trained using backpropagation algorithm.

Table 3.2: Training Parameters

Training Parameters Command Line

Performance Function = Sum-Squared Error net.performFcn = 'sse'

Goal: 0.01 net.trainParam.goal = 0.01

Epochs: 5000 net.trainParam.epochs = 5000

Momentum: 0.95 net.trainParam.mc = 0.95

28

3.7 MATLAB GUI Module

This module is built using the MATLAB GUIDE (GUI Development

Environment). By providing an interface between the user and the

application's underlying code, GUIs enable the user to operate the application

without knowing the commands that would be required by a command line

interface. For this reason, applications that provide GUIs are easier to learn

and use than those that are run from the command line. The sections that

follow describe howto create GUIs with GUIDE. This includes laying out the

components, programming them to do specific things in response to user

actions, and saving and opening the GUI.

3.7.1 Creating GUI with Guide

MATLAB implements GUIs as figure windows containing

various uicontrol objects. Each object must be programmed to perform

the action we intend it to do when a user activates the component. In

addition, GUI must be able to save and run. All of these tasks are

simplified by GUIDE, the MATLAB graphical user interface

development environment.

GUIDE primarily is a set of layout tools. However, GUIDE

also generates an M-file that contains code to handle the initialization

and launching of the GUI. This M-file provides a framework for the

implementation of the callbacks where the functions that execute when

users activate components in the GUI [4].

29

3.7.2 The Layout Editor

The Layout Editor enables creator to select GUI components

(uicontrol objects) from the component palette, at the left side of

Layout Editor, and arrange them in the layout area, to the right. When

the Run button is pressed, the functioning GUI appears outside the

Layout Editor. Figure 3.7 shows the Layout Editor for handwriting

recognition system window.

V'. C;>nf)lirUnallal>Vnnhrguf, fig
File Edit View Layout Tools Help

iStf •

^ Select 50 100 W) 200 ISO 300 350 *00 4JO SOO S50

[y[] Push Sutton

M Toggle Button

® Radio Button

0 Checkbox

W EditText

"'i Static Text

• Slider

Li Frame

•JFfl Listsox

G3 Popup Menu

jf^/mes

Figure 3.7: GUI Layout Editor

The Property Inspector shown in Figure 3.8 enables creator to

set the properties of the components in your layout. It provides a list of

all settable properties and displays the current value. Each property in

the list is associated with an editing device that is appropriate for the

values accepted by the particular property. For example, a color picker

to change the BackgroundColor, a pop-up menu to set FontAngle, and

a text field to specify the Callback string.

30

m Property Inspector

wW uicontrol (Listboxl "letter!")

(^-BackgroundColor
1— BsingDeleted
[BusyAction
| ButtonDownFcn
— CDaia

Clipping

CreateFcn

DeleteFcn

Enable

$••• Extent
|- FontAngle
j~- FontName
j-Fontsize
h- FontUnits

[-FontWeight
© ForegroundColor

HandleVisibility

HitTest

Qqueue

w
_ nnrirpath;lstbox =
LZJon

0 normal
MS Sans Serif

8.0

Q points
Q normal
@

0on

Figure 3.8: Property Inspector

When a user activates a component of the GUI, the GUI

executes the corresponding callback. The name of the callback is

determined by the component's Tag property. For example, a push

button with the Tag print_button executes the callback. Refer to Figure

3.8. Once the push button is activated or whenever the button is

pushed, MATLAB will run the callback code [4].

31

3.8 Development of the Handwriting Recognition System

In the process of handwriting recognition development, some statistical

studies have to be done to test the network ability in recognition. The

handwriting recognition system was developed through several improvements

and modifications in order to increase its accuracy and reliability. Figure 3.9

shows the actual development of the system. The result can be referred to

Chapter 4.

Modified Alphabet
Encoder and Edge
Detection Method

+

MLFF Network

V

Changes to the
MLFF Network

Hidden Layer

T

Modified

MLFF

Network

''

Statistical study on the
Feature Extraction

Matrix

''

Modified Alphabet Encoder, Kirsch
Edge Detection Method, Image

Compression and Alphabet Profile
Feature

+

Modified MLFF Network

Figure 3.9: Handwriting Recognition System Development

32

CHAPTER 4

RESULT AND DISCUSSION

4.1 Identity the Best Value for LOC and LOS

Statistical study was done to identify and choose the best value for

level of confidence (LOC) and level of substitution (LOS). These values are

important because it will affect the recognition performance of the system.

The experiment was done by performing the network simulation using

different value of LOC and LOS. The simulation was done on a program

which is written to recognize 26 upper case alphabets. (Refer to Af~ endix C.4

for the program). The values chosen were depending on the recognition

accuracy. Values of LOC and LOS which give the highest recognition

accuracy will be identified. Please refer to Table 4.1 for the results.

Table 4.1: Results for Recognition Accuracy

% Recognition

Accuracy

Level of Confidence

0.80 0.85 0.90 0.95 1.00

o

'•§
4-i

v»

X)
3

on

o

>

•J

0.10 88.4615 92.3077 92.3077 88.4615 84.6154

0.15 73.0769 80.7692 88.4615 84.6154 84.6154

0.20 76.9231 92.3077 96.1538 88.4615 84.6154

0.25 84.6154 76.9231 88.4615 84.6154 84.6154

0.30 84.6154 80.7692 92.3077 84.6154 84.6154

33

TO

o
o

<

CI
o
o

Determination of Threshold Value

Level of Confidence

0.3

25

02

015 Level of

Substitution

Figure 4.1: Determination of LOC and LOS

From Table 4.1 and Figure 4.1, we can say that the best value for level of

confidence is 0.9 and value for level of substitution is 0.2. Both of these values

give the highest percentage of recognition accuracy. Hence these values will

be used as a threshold value to compare with the simulation result for this

project.

4.2 Modified Alphabet Encoder and Edge Detection Method with MLFF

Network

The first step of handwriting recognition system development is to

create an initial handwriting recognition system by combining two feature

extraction methods. The two feature extractors are modified alphabet encoder

and edge detection. Modified alphabet encoder forms a 15x1 feature matrix,

while edge detection method supplies another 36x1 matrix, which gives to the

neural network a 51 x1 input matrix.

34

As for the neural network, the MLFF network with size of 20x26 neurons is

used. The network is trained using BP algorithm. The total samples trained are

780 alphabets (30 sets of A to Z).

Then, the accuracy of the neural network is tested to recognize 780

trained alphabet and 175 untrained alphabets.

Table 4.2: System Accuracy Result

Input Neural Network Output Accuracy
Modified

alphabet encoder
15x1 MLFF network:

20x26

Training:
BP algorithm

Untrained Samples:
29.6970 %

Trained Samples:
57.6923 %

Edge Detection 36x1

Total 51x1

In the training process, the network can not be trained to reach the

desired goal except for the first sample presented. As a result, the network

provide high error rate. Hence, the next step is to add more neurons or hidden

layer to the network.

4.3 Adding another Hidden Layer

A hidden layer had added to the network. The numbers of neurons

added are 15. Thus, the size of the neural network now becomes 20x15x26

neurons. As for the input and feature extraction methods, they remain the

same. The network is then tested again using same inputs.

Table 4.3: System Accuracy Results

Input
Modified

alphabet encoder
Edge Detection
Total

15x1

36x1

51x1

Neural Network

MLFF network:

20x15x26

Training:
BP algorithm

35

Output Accuracy
Untrained Samples:
21.2121 %

Trained Samples:
43.0769 %

Table 4.3 shows that by adding a hidden layer could not help in

increasing the recognition accuracy. As for the training process, the network

can not be trained to reach the desired goal.

4.4 Modified MLFF Network

Based on the two systems in Section 4.1 and 4.2, the overall system

accuracy is very low. These maybe cause by feature extraction methods and

the neural network itself. Thus, the neural network is tested again by replaced

the neural network with Modified MLFF network. In Modified MLFF

network, each of the networks was trained with eachpattern.

Table 4.4: System Accuracy Results

Input
Modified

alphabet encoder
Edge Detection
Total

15x1

36x1

51x1

Neural Network

Modified MLFF network:

Sets of 20x26 networks

Training:
BP algorithm

Output Accuracy
Untrained Samples:
32.1212 %

Trained Samples:
69.7436 %

From Table 4.4, shows that the change of the neural network has

improved the accuracy rate on the untrained samples as well as trained

samples. Furthermore, the network training goal is met easily. However, the

accuracy of the system can be further improved by using good feature

extractors. Hence, the next step in the handwriting recognition system is to

select good feature extractors.

36

4.5 Statistical Study on the Feature Extraction Matrix

Six types of feature extraction methods are used. They are Modified

Alphabet Encoder, Edge Detection Method, Kirsch Edge Detection, Image

Compression, Line Intersection Feature, and Alphabet Profile Feature.

The purpose of this statistical study is to analyze the feature matrix for

each of the 26 classes of alphabet. There are two statistical tests implemented.

The first is standard deviation test on the same classes. The second is standard

deviation test on the different classes.

4.5.1 Standard Deviation Test on the Same Classes

This is to test the reliability of the feature extraction method.

We know that features for the same class should be similar to each

other. Therefore, we want to look for a low standard deviation.

Table 4.5: Standard Deviation Test Results

Input Test Output Comment

Training Sets:

754 alphabets

Standard deviation on same

classes

Average
Standard

Deviation

Modified Alphabet Encoder 0.1260 Good

Edge Detection Method 0.1371 Ok

Kirsch Edge Detection 0.1060 Good

Line Intersection 0.1516 Ok

Image Compression 0.2515 Ok

Alphabet Profile Feature 0.1570 Ok

37

4.5.2 Standard Deviation Test on the Different Classes

The purpose of this test is to determine the degree of

discrimination among the different classes. Therefore, we want to look

for high standard deviation because features from different classes are

significantly different.

Table 4.6 Standard Deviation Test Results

Input Test Output Comment

Training Sets:
754 alphabets

Standard deviation on

different classes

Average
Standard

Deviation

Modified Alphabet Encoder 0.1941 Ok

Edge Detection Method 0.2177 Ok

Kirsch Edge Detection 0.1291 Ok

Line Intersection 0.1925 Ok

Image Compression 0.3751 G-od

Alphabet Profile Feature 0.2782 Good

Based on the results above, feature extraction method thatgave

the good performance in standard deviation test on the same classes

and different classes will be identified. Hence, Kirsch Edge Detection,

Image Compression, Modified Alphabet Encoder, and Alphabet Profile

Feature methods are chosen.

4.6 Final Handwriting Recognition System

The final proposed handwriting recognition system incorporates

Modified Alphabet Encoder, Kirsch Edge Detection Method, Image

Compression, and Alphabet Profile Feature with Modified MLFF as the

network. The system is tested with the trained and untrained samples yet

again. Table 4.7 shows the results of the simulation.

38

Table 4.7 Final Proposed Handwriting System Accuracy

Input Neural Network Output Accuracy
Modified

alphabet encoder
15x1

Modified MLFF network:

Sets of 20x26 networks

Training:
BP algorithm

Untrained

Samples:
76.6127 %

Trained Samples:
91.6127 %

Kirsch Edge
Detection

256x1

Image
Compression

64x1

Alphabet Profile
Feature

10x1

Total 345x1

The system has an acceptable accuracy rate for the untrained and

trained samples. However, misclassification can be looked into to increase

accuracy. A further improvement has to be implemented to improve the

recognition performance of the system.

4.7 Recognition Error Analysis

Most of the recognition error comes from failure to recognize a few

specific letters such as F, D, G, and N.

The system has the highest failure rate when it is presented with letter

F. The main reason of the failure is the system basically fails to differentiate

letter F from P. The same situation occurs when recognizing letter D. This is

again it fails to differentiate letter D from O. The system also fails to

recognize letter N from H. The suspected main reason of recognition error is

because the system fails to detect curves lines in letters such as D, G, P, and O.

One of the unique features which have not been analyzed is recommended to

solve this problem. The method mentioned is Euler method. It involves in

extracting the image by considering the number of island of each unique

character. Notice that most of the characters failed to recognize have same

characteristic, where all of them have one island. Thus, by adding Euler

method in the feature extraction will help in increasing the recognition

accuracy.

39

4.8 Testing and Simulation Network Modules

The testing and simulation module combines the image processing,

feature extraction, and neural network module together as a handwriting

recognition system. It also supplies input from any grayscale alphabet bitmap

file to the system. To test network accuracy, the trained and untrained sets of

alphabets were used as the input to the neural network. Refer Appendix C4,

C5 and C6 for further details on the modules and the results.

4.9 Identified Neural Network Modules

The Neural Network modules have two main modules. The first

module is to define and train the neural network. The second is for test and

simulation purposes. Table 4.8 shows the modules involved.

Table 4.8: Summary of Neural Network Module

MFile Function

Nnhrl.m Defining the training feature matrix and target
Nnhr2.m Training the network
Nnhr3.m Defining the network architecture
Simhrl.m Simulate one set of alphabet A~Z
Simhr2.m Simulate one alphabet
Simhr3.m Simulate the training set (30 sets of alphabet A~Z)
Simhr4.m Simulate the untrained sets (195 letters).

I

Neural Network

Module

Defining and Training
Network Module

nnhrl.m

nnhr2.m

nnhr3.m

Testing and Simulation
Network Module

simhrl.m

simhr2.m

simhr3.m

Figure 4.2: Neural Network Module

40

The final handwriting recognition system consists of four main

modules. They are Image Processing Module, Feature Extraction Module,

Neural Network Module and MATLAB GUI Module as shown in rigure 4.3.

Each module has itsown functionality in the handwriting recognition system.

MATLAB Handwriting
Recognition System

'' v -' •'

Image
Processing

Module

Feature

Extraction

Module

Neural

Network

Module

MATLAB

GUI

Module

Imgpro.m Featext.m

Horin.m

Verti.m

Diagonal, m
Kirsch.m

Imgcomp.m
Profiles.m

nnhrl.m

nnhr2.m

nnhr3.m

simhrl.m

simhr2.m

simhr3.m

simhr4.m

nnhrgui.m

Figure 4.3: Final Handwriting Recognition Module

41

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Handwriting recognition has become an important field of research,

because of its potential to overcome the obstacles placed by current interface

methods and it power to further integrate computers into everyday life. The

benefits of using artificial neural network for the purpose of handwriting

recognition become clearer as technical advances are made. Neural network

based character recognition is a viable procedure for large scale document

processing applications. However, to be successful, it has to be tightly coupled

with image processing and feature extraction components. Faulty bitmap

extraction can render a highly efficient network recognizer useless.

This project is completedwith the help of MATLAB. It has shown that

MATLAB is a very powerful software tool to develop a complex system yet

easy to program. With a short and simple coding, a constrained and isolated

handwriting recognition system for English uppercase alphabets has been

implemented. Based on the research and statistical study, it shows that with

good feature extraction and neural network scheme will bring to high

recognition accuracy. It has also been shown thatthere is a need to select good

feature extractor so that unique features of an alphabet can be highlighted.

Furthermore, the MATLAB GUI is a very useful tool to display the

handwriting recognition output or results.

42

With the combination of image processing, feature extraction and

artificial neural network, this project able to achieve the recognition accuracy

at 70%. Hence, some improvement and modification has to be made to

increase the system ability and performance.

5.2 Recommendations

The system accuracy can be increased through collection of a large

number of handwriting samples. This is vital to the system because it needs to

be trained with a variety of handwriting so that it is able to recognize different

types of handwriting. As for now, the system is only able to recognize

constrained type of handwriting because the training set used is from the

constrained type of handwriting. Thus, the system will perform poorly when it

is presented with the unconstrained handwriting. The recommended size for

the handwriting database is around 1000 sets.

Another factor to consider is the type of neural network because it can

affect accuracy greatly. The neural networks that had been explored are Multi

Layer Feed forward Network (MLFF) and Modified MLFF network. Even

though the Modified MLFF network has its ownadvantage, further analysis of

different neural network architecture can improve the system ability.

Unsupervised and combination of supervised and unsupervised neural network

such as Self-Modified Mapping (SOM), Fuzzy Adaptive Resonant Theory

(Fuzzy ARTMAP), and Learning Vector Quantization (LVQ) can be studied.

Since this project is only designed to recognize 26 isolated English

upper case A to Z, it is recommended that modifications and improvements be

made to this project to recognize a word instead of a character. This

modification can be complemented with efficient techniques of feature

extraction and character segmentation. The word is separated automatically

into isolated character before it is used for recognition. This will be an

interesting handwriting recognition project.

43

REFFERENCES

[1] Demuth and Beale. 1998, Neural Network Toolbox User's Guide, MA, The

Math Works Inc. pp 1-3.

[2] Negnevitsky. 2002, Artificial Intelligence: A Guide to Intelligence Systems,

England, Pearson Education. Pp 163-214.

[3] 2002, MATLAB Image Processing Toolbox User Guide. Version 3. The Math

Works Inc.

[4] 2002, MATLAB Creating Graphical User Interfaces. Version 6. The Math

Works Inc.

[5] Andrew T. Wilson. 'Off-line Handwriting Recognition Using Artificial Neural

Networks'. University of Minnesota, Morris.

[6] Il-Seok Oh and Ching Y. Suen, 2000, 'A class-modular feedforward neural

network for handwriting recognition'. Department of Computer Science,

Chonbuk National University, Chonju, Chonbuk 561-156, South Korea and

Centre of Pattern Recognition and Machine Intelligence, Concordia

University, Montreal, Quebec, Canada.

[7] Jung-Hsien Chiang, 1997, 'A hybrid neural network model in handwritten

word recognition'. Department of Information Management, Chaoyang of

Technology, Taichung, Taiwan.

44

[8] Spitz and Dengel. 1995, Document Analysis Systems, Singapore, World

Scientific.

[9] Y. Mizukami. 1998, "A Handwritten Chinese Character Recognition System

Using Hierarchical Displacement Extraction Based on Directional Features."

Pattern Recognition Letters. Vol.19. Elsevier Science Ltd.

[10] J. Dorronsoro G. Fractman. 'Large Scale Neural Form Recognition'. Spain.

[11] Toshihiro Suzuki. 'A Handwritten Character Recognition System bv Efficient

Combination Of Multiple Classifiers'.

[12] Internet Sources:

1. http://www.ph.tn.tudelft.nl/pr-intro.htmi

2. http://www.elsevier.com

3- http://www.cairo.utm.my

4. http://www.mathworks.com

5- http://www.idiap.cn

45

APPENDIXES

Appendix A Image Processing Module

A.l Imgpro.m Function Script

%Input : Grayscale bitmap image
%Output : Noiseless binary image
%Process : Image Processing using noise reduction, ROI,
resizing and thresholding
function imgalpha = imgpro(gryimg)

thresb = [];

rec = [] ;

imgalpha = imread(gryimg);
imgalpha = wiener2(imgalpha,[5 5]
imgalpha = not(im2bw(imgalpha,0.5

%read image file
%reduce noise

%threshold image
at 0.5

[y,x] = find(imgalpha);

rec = [min(x) min(y) max(x)-min(x) max(y)-min(y
if rec(3) < 12;

rec (3) - 12;

[cgx,cgy] = center(imgalpha);
rec(l) = cgy - 6;

end

imgalpha = imcrop(imgalpha,rec);
imgalpha = imresize(imgalpha,[32 32

imshow(imgalpha

IROI analysis
,'nearest');

%resizing image to 32X32

46

Appendix B Feature Extraction Module

B.l Featext.m Function Script

%Input : Image filename
%Output : Feature matrix

%Process : Feature extraction - modified alphabet

%encoder, modified alphabet encoder, image compression
%and kirsch edge detection
function p = featext(pixalpha)

alpha = imgpro(pixalpha); %read image alphabet
h = horin(alpha);
v = verti(alpha);

d = diagonal(alpha); %modified alphabet encoder
pro = profiles(alpha); %modified alphabet encoder
img = imgcomp(alpha); %image compression
img = im2col(img,[8 8],'distinct');

[hd,vd,rdd,Idd] = kirsch(alpha); %kirsch edge detection

p = [h,v,d,hd,vd,rdd,Idd,img',pro]';%neural network input

B.2 Horin.m Function Script

%Input : Image matrix 32X32

%Output : Horizontal feature matrix 1X3

%Process : Extract horizontal feature for Modified

Alphabets Encoder

function h = horin(alpha)
hi = []

h2 = []

h3 = []

hi - alpha(1:9,:

hi = sum(hi);

hi = hi';

hi - sum(hl)/288;

h2 = alpha(10:23,
h2 = sum(h2);

h2 - h2r;

h2 = sum(h2)/4 48 ;

h3 = alpha(24:32,
h3 = sum(h3);

h3 = h3';

h3 = sum(h3)/288;

h = [hi h2 h3];

%initialized horizontal matrix

%find the hi region

% s urn all 1

%find the h2 region

%sum all 1

%find the h3 region

isum all 1

(horizontal matrix

47

B.3 Verti.m Function Script

%Input

%Output

%Process

Encoder

function v = verti(alpha
vl -

v2 =

v3 =

v4 =

v5 =

v6 =

v7 =

v8 =

vl = alpha(l:13,l:10)
vl = sum(vl);

vl = vl';

vl = sum(vl)/130;

v2 = alpha(l:19,11:22

v2 = sum(v2);

v2 - v2';

v2 = sum(v2)/228;

v3 = alpha(l:13,23:32
v3 = sum(v3);

v3 = v3';

v3 = sum(v3)/130;

v4 = alpha(14:32,l:10
v4 = sum(v4);

v4 = v4';

v4 = sum(v4)/190;

Image matrix 32X32

Vertical feature matrix 1X8

Extract vertical feature for Modified Alphabet

%initialized vertical matrix

%find the vl region

%sum all 1 divide region _ize

%find the v2 region

%sum all 1 divide region size

%find the v3 region

%sum all 1 divide region size

%find the v4 region

%sum all 1 divide region size

v5 = alpha(20:32,11:22); %find the v5 region
v5 = sum(v5);

v5 = v5';

v5 = sum(v5)/156; %sum all 1 divide region size

v6 = alpha(14:32,23:32); %find the v6 region
v6 = sum(v6);

v6 = v6';

v6 - sum(v6)/190;

v7 - alpha(l:15,20:32)
v7 - sum(v7);

v7 = v7';

v7 = sum(v7)/195;

v8 = alpha(20:32,l:15)

v8 = sum(v8);

v8 = v8';

v8 - sum(v8)/195;

%sum all 1 divide region oize

%find the v7 region

%sum all 1 divide region size

%find the v8 region

%sum all 1 divide region size

v = [vl,v2,v3,v4,v5,v6,v7,v8]; ;vertical matrix

48

B.4 Diagonal.m Function Script

%Input

%Output

%Process

Encoder

function d = diagonal(alpha

Image matrix 32X32

Diagonal feature matrix 1X4

Extract diagonal feature for Modified Alphabet

dl = []

d2 = []

d3 - []

d4 = [] %initialized diagonal matrix

temp = [];

for n = 1:4

temp = alpha(n,1:n+4);

dl = [dl temp]; %find the dl region from row 1 to 8
temp = alpha(n,29-n:32);

d2 = [d2 temp]; %find the d2 region from row 1 to 8
end

for n = 5:12

temp = alpha(n,n-4:n+4);

dl = [dl temp]; %find the dl region from row 9 to 24
temp = alpha(n,29-n:37-n);

d2 = [d2 temp]; %find the d2 region from row 9 to 24
end

for n = 13:16

temp = alpha(n,n-4:16);

dl = [dl temp]; %find the dl region from row 25 to 32
temp = alpha(n,17:37-n);

d2 = [d2 temp]; %find the d2 region from row 25 to 32
end

dl = dl';

dl = sum(dl)/size(dl,l);
d2 - d2';

d2 = sum(d2)/size(d2, 1) ;

%sum all 1 divide dl size

%sum all 1 divide d2 size

for n = 17:20

temp = alpha(n,29-n:16);

d3 = [d3 temp]; %find the d3 region from row 33 to 40
temp = alpha(n,17:n+4);

d4 = [d4 temp]; %find the d4 region from row 33 to 40
end

for n = 21:28

temp = alpha(n,29-n:37-n) ;

d3 = [d3 temp]; %find the d3 region from row 41 to 56

49

temp = alpha(n,n-4:n+4);

d4 = [d4 temp]; %find the d4 region from row 41 to 56
end

temp = [];

for n = 29:32

temp = alpha(n,1:37-n);
d3 = [d3 temp]; %find the d3 region from row 57 to 64
temp = alpha(n,n-4:32);

d4 = [d4 temp]; %find the d4 region from row 57 to 64

end

d3 = d3';

d3 = sum(d3)/size(d3,1); %sum all 1 divide d3 size

d4 = d4';

d4 = sum(d4)/size(d4,1); %sum all 1 divide d4 size

d = [dl d2 d3 d4]; %diagonal matrix

B.5 Kirsch.m Function Script

%Input

%Output
%Process

Image matrix 32X32
Kirsch Edge feature matrix 1X320
Extract edge feature for Kirsch Edge Detector

function [hd,vd,rdd,Idd] = kirsch(alpha)

mhl - 1/15 * [5 5 5

-3 0 -3

-3 -3 -3];

mh2 = 1/15 * [-3 -3 -3

-3 0 -3

5 5 5]; %horizontal mask matrix

mvl = 1/15 * [-3 -3 5

-3 0 5

-3 -3 5];

mv2 = 1/15 * [5-3-3

5 0-3

5 -3 -3]; %vertical mask matrix

mrdl -1/15 * [-3 5 5

-3 0 5

-3 -3 -3];

mrd2 =1/15 * [-3 -3 -3

5 0-3

5 5 -3]; %right diagonal mask matrix

mldl =1/15 * [-3 -3 -3

-3 0 5

-3 5 5];

50

mld2 =1/15 * [5 5-3

5 0-3

-3 -3 -3];

hdl = conv2(alpha,mhl,'same')

hd2 = conv2(alpha,mh2,'same')

vdl = conv2(alpha,mvl,'same')

vd2 = conv2(alpha,mv2,'same')

rddl = conv2(alpha,mrdl,'same

rdd2 = conv2(alpha,mrd2,'same
lddl = conv2(alpha,mldl,'same
ldd2 = conv2(alpha,mld2,'same

%left diagonal mask matrix

%image convolution

%max operation

hd = max(hdl,hd2);

vd = max(vdl,vd2);

rdd = max(rddl,rdd2

Idd = max(lddl,ldd2

figure(2);

imshow(hd);

figure(3);
imshow(vd);

figure(4);

imshow(rdd);

figure(5);

imshow(Idd);

hd = imgcomp(hd);
vd = imgcomp(vd);

rdd = imgcomp(rdd);

Idd = imgcomp(Idd);

%show image convolution results

%image compression

hd = im2col(hd,[8 8],'distinct');

vd = im2col(vd,[8 8],'distinct');

rdd = im2col(rdd, [8 8],'distinct *

Idd - im2col(Idd, [8 8],'distinct *

hd = hd';

vd = vd' ;

rdd = rdd';

Idd = Idd';

51

• %change image
matrix 8X8 to 64X1

kirsch feature matrix

B.6 Impcomp.m Function Script

%Input : Image matrix 32X32

%Output : Compressed Image 8X8

%Process : Compress Image 32X32 to 8X8 using the
compression formula

function out = imgcomp(in)

out = [];

for i = 1:8

for j = 1:8

temp = in (4*i-3:4*i,4*j-3:4*j);
temp = sum(temp);

out(i,j) = sum(temp')/16; %implementing the
compression formula

end

end

B.7 Profiles.m Function Script

%Input

%Output

%Process

profile

Image matrix 32X32

Alphabet profile feature matrix 1X10

Extract smoothness, width, and height alphabet

function pro = profiles(alpha)

r = ones(1,32)*32;

t = ones(l,32)*32;

1 = ones(l,32)*32;

b = ones (1,32)*32; %initialize right, top, left,

and bottom raw profile

for nl = 1:32

for n2 = 1:32 %check to find the edge from

right boundary
if alpha(nl,n2) == 1

r(nl) = n2-l; %keep the length from

right boundary to edge
for all rows

break;

end

end

end

for nl - 1:32

52

for n2 = 1:32 %check to find the edge from top
boundary

if alpha(n2,nl) == 1

t(nl) = n2-l; %keep the length from

top boundary to edge

for all columns

break;

end

end

end

for nl = 1:32

for n2 = 1:32 %check to find the edge from
left boundary

if alpha(nl,33-n2) == 1

l(nl) = n2-l; %keep the length from

left boundary to edge

for all rows

break;

end

end

end

for nl = 1:32

for n2 = 1:32 %check to find the edge from
bottom boundary

if alpha(33-n2,nl) == 1

b(nl) = n2-l; %keep the length from

bottom boundary to

edge for all columns

break;

end

end

end

wid =32-[16)+r(6)l(16)+r(16)1(26)+r(26)];%width profile

hei =32-[t (6)+b(6)t(16)+b(16)t(26)+b(26)];%height profile

r = diff(r;

t = diff(t.

1 = diff(l;

b = diff(b); %alphabet smoothness profile

pro = [max(r) max(t) max(l) max(b) wid hei];

pro = pro/32; %alphabet profile feature matrix

53

Appendix C Neural Network Module

C.l nnhrl.m Function Script

%Input : A-Z bitmap picture file

%Output : Each alphabet feature matrix and their target
%Process : Feature Extraction

% - Modified Alphabets Encoder
% - Edge Detection Method

% Target Matrix - a identity matrix 26X26
function [alphabets,target] = nnhrl()
temp - [];

alpha = []; %initialize

pixalpha = { 'a.bmp' 'b.bmp' 'c.bmp' 'd.bmp' 'e.bmp'
'f.bmp' 'g.bmp' 'h.bmp' 'i.bmp' 'j.bmp' 'k.bmp' '1.bmp'
'm.bmp' 'n.bmp' 'o.bmp' 'p.bmp' 'q.bmp' 'r.bmp' 's.bmp'
't.bmp' 'u.bmp' 'v.bmp' 'w.bmp' 'x.bmp* 'y.bmp' 'z.bmp'
}';

for n = 1:26

temp{n} = featext(pixalpha{n}) ;
end

alphabets =

[temp{1},temp{2},temp{3},temp{4},temp{5},temp{6},temp{7},
temp{8},temp{9},temp{10},temp{11},temp{12},temp{1?;,tern-{
14},temp{15},temp{16},temp{17},temp{18},temp{19},temp{20}
,temp{21},temp{22},temp{23},temp{24},temp{25},temp{26}]
target = eye(26); %alphabets target

C.2 nnhr2.m Function Script

%Create 29 MLFF 20X26 neurons

%Train each of the network with each pattern
nnhrpath;

for n = 1:30

dos (letpat{n});

[alphabets,targets]=nnhrl; %call alphabet and target
net=newff(minmax(alphabets) ,[20
26],{'logsig','logsig'},'traingdx'); %create MLFF
net.LW{2,l} = net.LW{2,1}*0.001;

net.b{2} = net.b{2}*0.001;

net.performFcn = 'sse';

net.trainParam.goal = 0.001;

net.trainParam.show = 20;

net.trainParam.epochs = 5000;

net.trainParam.mc = 0.95;

[net,tr] = train(net,alphabets,targets)
save(nn{n},'net');

End

54

C.3 nnhr3.m Function Script

%Input : Feature matrix

%Output : Recognized letter

%Process : Modified MLFF will simulate with a new

% neural network if the confidence and

substitution level is not met.

function [alphanum,confi,unconfi,num,n] = nnhr3(p)

alphaconfi;

alphaunconfi;

nnhrpath;

alphanum = 27;

confi = alphaconfi(27);

unconfi = alphaunconfi(27);
con = [];

uncon = [];

alphanumber = [];

n = 1; %initialize

num = randperm(nnum);

while ((n <= nnum) & ((confi <= alphaconfi(alphanum)) |
(unconfi >= alphaunconfi(alphanum))))

load (nn{num(n)}); %load neural network randomly
a = sim(net,p); %simulate one letter

[confi,alphanum] = max(a); %y max a - level of
confidence

unconfi = sum(a(1:alphanum-1)) +
sum(a(alphanum+l:26)); %level of substitution

con(n) = confi; %save confidence, substitution,
recognized letter

uncon(n) = unconfi;

alphanumber(n) = alphanum;

n = n + 1; %System will simulate with a new

neural network

end %if the confidence and

substitution level is not met.

if (n == (nnum+1)) %if confidence and substitution

level below threshold value

[confi,n] = max(con./uncon); %find the pair of highest
confidence and the

confi = con(n); %lowest substitution for all the

neural network

unconfi = uncon(n); %assign confidence,
substitution, recognized letter

alphanum = alphanumber(n);
end

55

C.4 simhrl.m Script

%Input : One set of A-Z image bitmap

%Output : Detected letters, level of confidence, level

of substitution, accuracy
%Process : Simulation of MMLFF networks for one set of

alphabets (A-Z)

pass = 0;

output = [];

letter = [] ;

confi = [];

unconfi = []; %initialize

pixalpha = { 'A.bmp' 'B.bmp' 'C.bmp' 'D.bmp' 'E.bmp'
'F.bmp' 'G.bmp' 'H.bmp' 'I.bmp' 'J.bmp' 'K.bmp* 'L.bmp'

'M.bmp' 'N.bmp' '0.bmp' 'P.bmp' 'Q.bmp' 'R.bmp' 'S.bmp'

'T.bmp' 'U.bmp' 'V.bmp' 'W.bmp' 'X.bmp' 'Y.bmp' 'Z.bmp'

}';
allletter = ['A' 'B' 'C 'D' 'E' 'F* 'G' 'H' 'I' 'J' 'K»

'L' 'M' 'N' '0' 'P' 'Q' 'R' 'S' "!' *U' 'V 'W 'X' 'Y'

'z'] ';

for n = 1:26 %loop 26 time for each

letter

correct = 1;

p = featext(pixalpha{n});

[alphanum,con,uncon] = nnhr3(p);
letter = allletter (alphanum); %selecting the letter

according alphanum

confi{n} = con;

unconfi{n} = uncon;

output{n} = [pixalpha{n} ' -> ' letter];
if n == alphanum

pass = pass + 1; %sum of letter correct

correct = 0;

end

end

output = [output' confi' unconfi1]
accuracy = pass / 26 * 100 %calculate accuracy

56

C.4.1 simhrl.m Recognition Output

output=

'A.bmp -> A' [0.9364] [0.0422]

1B.bmp -> B1 [0.9829] [0.0242]

'C.bmp -> C [0.8775] [0.1250]
'D.bmp -> D' [0.9828] [0.0303]

'E.bmp -> E' [0.8755] [0.0107]
'F.bmp -> F' [0.9214] [0.0052]

1G.bmp -> G1 [0.9958] [0.0199]
1H.bmp -> H' [0.9811] [0.0767]
'I.bmp -> I' [0.9706] [0.0231]

'J.bmp ~> J' [0.9886] [0.0690]
'K.bmp -> K' [0.9916] [0.0350]

1L.bmp -> L' [0.9776] [0.0187]
1M.bmp -> M' [0.9908] [0.0456]

1N.bmp -> N' [0.9276] [0.1603]

'0.bmp -> 0' [0.9965] [0.0477]

'P.bmp -> P' [0.9870] [0.0225]

'Q.bmp -> Q' [0.9331] [0.1718]
'R.bmp ~> R' [0.9832] [0.0343]

1S.bmp -> B' [0.8910] [0.0102]
'T.bmp ->

Ti [0.9577] [0.0410]
'U.bmp -> U' [0.9405] [0.0131]
'V.bmp -> V [0.9734] [0.1081]

'W.bmp -> W [0.9926] [0.0332]

'X.bmp -> X* [0.9784] [0.0509]
'Y.bmp -> Y1 [0.9901] [0.0449]

'Z.bmp -> Z' [0.9797] [0.0198]

accuracy =

96.1538

57

C.5 simhr3.m Script

%Input : 30 set of A-Z image bitmap
%Output : Detected letters, level of confidence, level
of substitution, accuracy

%Process : Simulate the training set (30 sets of alphabet

A-Z)

nnhrpath;

pass = 0;
pixalpha = { 'A.bmp1 'B.bmp' 'C.bmp' 'D.bmp' 'E.bmp'
'F.bmp' 'G.bmp' 'H.bmp' 'I.bmp' 'J.bmp' 'K.bmp' 'L.bmp'
'M.bmp' 'N.bmp' '0.bmp' 'P.bmp' *Q.bmp' 'R.bmp' 'S.bmp'
1T.bmp' 'U.bmp' 'V.bmp' 'W.bmp' 'X.bmp' 'Y.bmp' 'Z.bmp'

}';
allletter = ['A' 'B' 'C 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K'
iLt iMi iN- i0» ipi iqi iR, iS, iti .yr iyi iwi tx. iy

'z'] ';

for numpat = 1:nnum

dos(letpat{numpat});

for n = 1:26 %loop 26 time for each letter

correct = 1;

p = featext(pixalpha{n});

[alphanum,confi,unconfi] = nnhr3(p);
letter = allletter(alphanum); %selecting the

letter according

alphanum

if n -= alphanum

pass = pass + 1; %sum of letter correct

correct = 0;

end

end

passes{numpat} = pass - 26*(numpat-1);
end

aveaccuracy = pass/(26*nnum)*100

C.5.1 simhr3.m Recognition Output

Output=

91.6127

58

C.6 simhr4 Script

%Input : 30 set of A-Z image bitmap

%Output : Detected letters, level of confidence, level

of substitution, accuracy
^Process : Simulate the training set (30 sets of alphabet
A-Z)

answer = { 'GOHSIEWYIN'...

'BEHTEOWKIAK'...

'THANKHONGHON'...

'BILLYYEOHMENGHUI'...

'ONGKARSENG1

'LIMYANHUANG

'LEETSEWENG'

'LIMKHAIHONG

'LIMCHEEWEE'

'NGKOKTHONG'

'CHANNEENEE'

'HEECHEELEONG'...

'CHONGTINGWEN'...

'PANGPINSENG'...

'TEHKEEPIN' };

total = 0;

pass = 0;

ntest = size(answer);

output = [];

letter = [];

confi = [];

unconfi = []; %initialize

allletter = ['ABCDEFGHIJKLMNOPQRSTUVWXYZ'];

for numtest = l:ntest(2)

path = ['c:\nnhr\alphabets\'answer{numtest}'*.bmp'];
numchar = size(dir(path));

dos(['copy ' path ' c:\nnhr\alphabets']);
for n = 1:numchar(1)

pixalpha = [num2str(n) '.bmp'];

p = featext(pixalpha);
[alphanum,con,uncon] = nnhr3(p);

letter = allletter(alphanum); %selecting the letter

confi{total+1} = con;

unconfi{total+l} = uncon;

output{total+1} = [pixalpha
total = total + 1;

if answer{numtest}(n)

pass = pass + 1;

correct = 0;

end end end

output = [output1 confi' unconfi']

accuracy = pass/total*100

according alphanum

-> ' letter

== letter

%sum of letter correct

59

O

I
^

I
^

I
^

^
C

O
^

c
n

C
n

^
C

O
N

J
M

M
M

M
'X

)
C

O
^

c
n

C
n

a
^

C
O

[
M

M
H

J
M

'X
3

C
O

^
c
n

C
^

N
J

h-
>

O
N

J
h-

1
O

H
1

O
O

*
•

•
•

t
r
t
r
o

^
o

-
t
r
t
r
o

-
t
r
t
r
-

•
•

o
'c

r
t
r
c
r
c
r
t
r
c
r
o

'c
r
-

•
t
r
t
r
t
r
c
r
t
r
t
r
t
r
D

't
r
-

c
r
t
r
c
r
c
T

c
T

c
r
c
r
c
T

t
T

3
3

g
fi

j,
^

fO
,0

,0
'r

i'
r5

'r
5

f^
B

B
B

T
j,

,c
5

,P
,^

,c
5

,-
o

,f
c3

h
cj

,h
O

B
3

^
fO

h
O

,r
j,

ri
,C

h
^

fO
h

O
£

K
d

fo
h

d
,3

lc
5

h
r5

fc
ih

rj
fO

^
^

•
O

>
0

-c
S

^S
'O

^
*0

I
I

I
I

I
I

I
I

I
I

1
I

I
I

I
I

I
I

I
I

I
I

I
I

1
I

I
I

I
I

I
I

I
I

I
I

I
I
I
V
V
V
V
V
V
V
V
V
!

1
1
V
V
V
V
V
V
V
V
V
I
i
V
V
V
V
V
V
V
V
V
I
V
V
V
V
V
V
V
V
V

v
v
v

V
V
V

V
V

V
K

O
H

h
<

K
t
H

t
-
,
H

t
O

G
O

O
I
^

K
>

f
f
i
^

H
^

S
O

H
^

^
M

t
D

H
K

l
O

t
d

t
d

C
O

l
x

J
O

Q
a
H

g
s
o

r
e

w
>

-
-
-

ss
-

o
o

O
O

o
o

o
o

o
o

O
o

O
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

O
o

o
O

O
O

o
O

o
o

o
o

o
o

o
o

o

i
n

(
n

m
m

i
n

^
n

m
m

i
p

I
P

I
P

t
o

(
n

<
-P

C
O

-
j

^
I.

P
I.

P
>

.o
w

C
O

k
O

i-
O

<
x>

K
D

C
O

l£
>

*X
>

<
X

>
k

D
l£

>
C

O
C

O
C

O
ix

>
IX

)
•X

)
h-

1
U

3
C

O
C

O
C

O
IX

)
C

O

m
m

--
1

i
n

M
a

n
-
.i

m
(
.
i

I
P

-.
1

o
n

*
o

h
->

n
(
n

M
-
J

C
n

C
O

N
)

C
O

a
^

.
w

I-
1

*X
>

o
C

O
C

J
C

O
C

n
-
J

o
~

i
c
n

c
u

c
n

4
^

0
^

C
n

o
0

1
l_

i
-
J

C
O

C
O

i
o

N
i

m
r
.>

j^
.

i
\
t

h
->

i_
j

tt
»

I—
1

(
.)

(
n

r
n

j^
.

i
n

C
O

-
J

(
J

(
J

m
-
J

«
3

N
J

(
jj

-
J

c
o

O
i

O
n

C
O

C
O

1—
>

1—
'

L
n

h
-1

h
-1

<
X

>
C

O
C

O
c
j

c
n

J
i.

-
J

C
O

C
J

C
O

u
^

c
n

^
e
n

iX
>

c
n

o
C

O
C

O
C

O
o

C
O

C
O

C
O

C
O

h
-1

c
n

l_
!

O
l

H
-1

d
^

<
_n

h
-
'

C
O

-
J

<
X

>
C

O
h

-1
M

o
U

)
C

n
-
J

C
O

u^
>

C
A

C
T

\
<

X
)

i
t
s

C
J

IV
)

o
C

O
o

-i
K

SJ

o
O

O
O

o
o

o
o

O
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

c
o

o

<
1

n
O

O
<

~>
c
-
i

<
->

<
->

o
o

o
o

o
N

J
o

o
o

o
o

h
-1

I-
1

o
o

o
o

o
o

o
o

o
o

o
h

-J
o

h
-1

N
O

o
o

o
^

A
I—

1
o

o
o

h
-
i

N
l

U
>

N
T

<
n

—
1

(
.)

£
±

C
O

I
P

(
n

(
a
)

(
n

<
n

C
O

IV
)

-
J

I—
1

o
IV

)
l_

J
h-

1
o

1
.0

l_
_l

-
J

h
-1

C
O

h
-1

C
O

c
n

C
J

J
^

C
O

C
J

-
J

C
O

C
J

O
l

C
J

c
n

-
J

N
J

~~
J

C
J

C
J

(
.1

>
C

i
n

(—
»

'.
O

0
^

-
J

(
n

-.
1

o
C

.)
o

m
o

<
.o

C
O

o
C

O
0

^
<^

o
o

-
J

C
O

C
O

H
1

<
x>

C
O

C
O

c
n

h
-1

C
O

J
^

C
O

C
O

-
J

C
J

c
n

C
J

C
n

r
f
i

c
n

~
~

i
IV

)
IX

)
1—

'

C
n

^
C

n
C

O
h

-1
J
S

.
~~

1
C

D
N

J
c
n

o
-
J

h-
>

o
o

N
J

C
O

C
O

N
O

C
O

c
n

C
O

1—
>

C
O

-
J

o
C

O
C

O
C

O
~~

1
c
n

X
)

tf
c
.

o
^

C
O

N
J

h
->

0
^

C
J

0
^

.
(—

'
C

n
c
n

-
J

J
^

o rl
-

3 t
t

c
> o e

ra 5
.

o* s O s S

O
s

m
o

o
t
-
^

o
o

c
n

c
n

j^
-
c
o

3
3

3
3

t
r
t
r
3

3
3

3
3

3
3

3
g

c
r
3

3
3

3
3

3
3

3
g

t
f
t
r
3

3
M

3
3

3
3

3
3

t
r
3

3
3

^
^

i
l
l
'

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

V
V
V
V
I
I
V
V
V
V
V
V
V
V
V
I
V
V
V
V
V
V
V
V
V
I
I
V
V
V
V
V
V
V
V
V
I
V
V
V
V
V
V
V
V
V
I

I
I

I
„
„
v
v

V
V
V

V
v
v
v
v

O
S
M
f

O
K
M
>
^
C
^
S
M
t
-
'

C
<
G
H
h
^
H
H
^

O
^
K
^
O
K
S
H
I
^

O
^
M
^
>
>
h
r
]
0
0

-
-
-
-
o

s
;

-
-
-
-
-
-
-
-
-
o

-
-
-
-
-
-
-

-
-
0

2
-
-
-
-
-
-
-
-
-
^

-
-
-
-
-
-
-
-
-
H

C
i
f
f
i
o

o
o

o
0

0
0

0
0

0
0

0
0

0
0

0
O

O
0

0
O

0
O

O
O

O
0

0
0

0
0

0
0

O
0

0
0

0
O

O
O

O
0

0
O

0
O

0
0

O
0

<
x>

X
)

C
O

C
O

IX
)

C
D

l£
>

<
x>

<
x>

X
)

C
O

C
O

C
O

X
)

I
D

X
)

c
n

C
O

C
O

C
O

C
O

X
J

iX
>

C
O

IX
)

C
O

X
)

0
J
^

1
.0

1
.0

0
I
O

N
5

m
i
p

0
O

I-
1

^
m

m
m

(~
>

r
~

>
n

o
i
n

i
p

i
p

i
n

C
O

C
O

x
j

c
n

-
j

C
n

IV
)

C
O

C
O

C
J

c
n

X
J

-
J

IV
)

h
-1

C
J

C
O

h
-1

C
O

h
-1

0
^

J
i.

-
J

C
O

r
n

0
c
n

(*
J

IX
)

-
J

m
(
a
)

m
M

0
i
p

n
o

M
m

-
1

M
c
.)

4
^

m
N

i
r
n

-~
l

i
n

m
o

i
-
j

X
)

ix
>

C
O

-
J

h
->

c
n

I-
1

I—
1

o
^

C
J

c
n

C
O

-
J

X
)

X
)

m
C

J
C

O
-
J

•c
=

>
C

O
N

J
(
n

0
t
o

(
n

-.
1

n
o

*
p

{
n

r
n

-
.1

m
N

l
J
^

N
")

-
1

^
0

c
~

>
(
n

.r
^

M
i~

i
f

.1
f

.1
(
.1

c
n

C
J

0
1

X
)

0
1

0
1

\
-
i

-
J

C
O

C
O

o
^

C
O

C
O

a
^

J
^

-
J

C
O

1—
>

c
n

C
O

C
n

C
O

N
J

h
-1

N
J

N
J

d
i»

N
J

<
X

)
X

)
J5

>
N

J
C

O
X

)
0

C
n

C
n

N
J

c
n

M
-
j

h
->

C
n

C
n

N
J

N
J

0
J
i

c
n

-
j

C
O

C
O

o
o

-
J

-
J

X
)

X
J

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
c
n

o
o

o
c
n

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

ro
•

•
•

(D
•

•
O

O
M

O
O

t
-
'O

O
O

O
N

J
O

O
O

O
N

J
O

O
M

O
O

O
O

O
N

J
O

l
-
1

I
O

O
h

-
1

I
N

J
0

t
_

^
)
-
!
O

0
O

O
0

0
0

0
O

O
O

O
0

0
O

h
-
1

C
n

W
C

O
C

n
^

O
N

J
M

d
^

c
n

i-
'U

J
N

J
O

^
N

J
M

N
J
1

to
C

O
iX

)
C

O
O

O
-
-
J
O

C
O

C
O

-
~

J
O

I
—

1
C

J
I
-
1

O
O

O
I
—

'C
O

y
jd

^
l—

'O
O

d
^

C
O

l—
>

C
n

O
W

h
J
W

W
W

v
l
a
i
m

M
^

W
U

)
0

1
C

O
a
)
0

1
C

D
^

W
H

^
^

W
i
f
c
(
J
l
W

H
O

H
I
M

P
O

^
W

P
W

^
H

^
i
f
c
-
J
W

P
-
J
H

f
f
\
0

)
O

H
U

I
X

)
c
n

M
C

O
O

i
V

)
O

N
J
C

n
c
o

N
j
a
>

i
^

c
o

c
o

c
n

c
n

x
)
O

T
J
^

c
n

N
J
^

^
c
o

w
c
n

^

'5.bmp -> H' [0.8923] [0.1283]

16.bmp -> E1 [0.9875] | 0.0470]

17.bmp -> E1 [0.9484] [0.0368]

'8.bmp -> W [0.9952] [G.0040j

'9.bmp -> E' [0.9875] ! 0.0470]

'10.bmp -> E1 [0.9875] 0.0470]

'1.bmp -> N' [0.7064] 0.0258]

'2.bmp -> Q' [0.9045] 0.0439]

'3.bmp -> K' [0.9462] 0.1139]

M.bmp -> 0' [0.9742] 0.0619]

'5.bmp -> K1 [0.8938] 0.0234]

'6.bmp -> T1 [0.9879] 0.0363]

'7.bmp -> B' [0.9360] 0.0685]

'8.bmp -> D' [0.8763] 0.0949]

'9.bmp -> N' [0.7064] 0.0258]

'10.bmp -> C [0.9077] 0.1740]

'l.bmp -> C' [0.9767] 0.0417]

'2.bmp ~> H' [0.7812] 0.0209]

'3.bmp -> A' [0.8875] 0.0146]

M.bmp -> N1 [0.9972] 0.1093]

'5.bmp -> N' [0.9508] 0.0958]

16.bmp -> E' [0.9861] 0.0180]

'7.bmp -> E' [0.8909] 0.0278]

'8.bmp -> N' [0.9508] 0.0958]

'9.bmp -> E' [0.9861] 0 3180]

'10.bmp -> E1 [0.8909] 0.0278]

'1.bmp -> H' [0.9893] 0.0085]

'2.bmp -> E' [0.9116] 0.1719]

'3.bmp -> E' [0.9881] 0.0148]

M.bmp -> C [0.9816] 0.2336]

'5.bmp -> H' [0.9893] 0.0085]

16.bmp -> E1 [0.9116] 0.1719]

'7.bmp -> E1 [0.9881] 0.0148]

•8.bmp -> L' [0.9146] 0.0072]

'9.bmp -> E' [0.9116] , 0.1719]

'10.bmp -> O1 [0.9954] 0.0071]

'11.bmp -> N1 [0.9928] 0.0022]

'12.bmp -> G' [0.9172] 0.0961]

'1.bmp -> C' [0.9944] 0.0450]

'2.bmp -> H' [0.9710] 0.0905]

'3.bmp -> 0' [0.8873] 0.0090]

M.bmp -> N1 [0.8662] 0.2304]

'5.bmp -> 0' [0.9788] 0.0196]

16.bmp -> T1 [0.9376] 0.0281]

'7.bmp -> I' [0.9818] 0.0262]

'8.bmp -> N' [0.8662] [0.23041

'9.bmp -> 0' [0.9788] [0.0196]

'10.bmp -> Q1 [0.8925] [0.0646]

'11.bmp -> E' [0.9831] 0.0540]

'12.bmp -> N' [0.8662] 0.2304]

62

O
n

JD o Q
-
J

c
c
n

M
•

H
J

C
D

O
c
n

^<
<

X
)

-
j

II

i
D

t
»

^
c
f
i
L

n
^

U
M

p
p

p
i
D

C
o

-
v

i
m

a
i
j
i
.
w

r
o

p

tr
tr

c
r
c
r
c
r
c
r
c
r
c
r
c
r
.

•
tr

a
jo

jD
'D

'o
J
o

J
i7

tr
3

3
3

3
3

3
3

3
3

t
r
t
r
3

3
3

3
3

3
3

3
3

T
^

T
J
'O

^
'O

^
^

^
'C

3
3

h
C

i,
O

tO
h

O
fO

h
r5

fc
1

h
c
5

h
C

!
Tj
"

*
a

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

V
V
V
V
V
V
V
V
V
I

I
V
V
V
V
V
V
V
V
V

V
V

-
-
-
-
>
2
-
-
-

-

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

C
0
X
J
'
X
J
l
X
)
l
X
)
i
X
)
X
)
C
D
C
O
C
O
C
O
C
O
l
X
)
l
X
)
l
X
)
C
O
C
O
i
X
)
X
)
C
D

c
o

p
i
x

)
-
J
t
v

i
^

o
}

-
j
a
i
(
j
j
p

(
n

-
J
h

'
-
J
c
n

c
o

c
n

x
J
N

J
1

b
i
C

H
1

f
c
.
(
J
i
H

-
J
1

t
i
C

O
(
7

l
^

C
O

l
D

i
t
.
W

P
C

r
i
W

^
O

p
w

i
D

O
M

m
o

o
w

w
^

a
j
M

i
t
i
v

i
a
i
w

r
o

c
o

f
f
i

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
h

-
'O

O
P

-
>

O
O

O
O

O
h-

*
I
—

'
O

M
O

O
O

N
J
O

O
p

w
^

i
p

p
i
C

p
p

^
r
o

m
m

p
m

r
o

t
M

r
o

^
u

i
i
b

u
w

u
i
-
j
o

i
D

O
-
J
i
r
a
i
a
i
i
t
-
i
b

(
j
i
(
j
i
c
o

a
i
o

p
p

J
i
.
C

n
C

n
C

o
i
X

)
J
^

c
o

c
o

c
n

N
J
C

O
J
i
.
j
^

c
o

x
j
c
n

N
J
C

n
o

c
o

Appendix D Other Script Files

D.l Alphaconfi.m Function Script

%Define the threshold value for the level of confidence

alphaconfi = [0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9]';

D.2 Alphaunconfi.m Function Script

%Define the threshold value for the level of substitution

alphaunconfi = [0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2] *;

D.3 nnhrpath.m Script

letterl = 'copy c:\nnhr\alphabets\letterl*.bmp
c:\nnhr\alphabets';
letter2 = 'copy c:\nnhr\alphabets\letter2*.bmp
c:\nnhr\alphabets';
letter3 = 'copy c:\nnhr\alphabets\letter3*.bmp
c:\nnhr\alphabets';
letter4 = 'copy c:\nnhr\alphabets\letter4*.bmp
c:\nnhr\alphabets *;
letter5 = 'copy c:\nnhr\alphabets\letter5*.bmp
c:\nnhr\alphabets';
letter6 = 'copy c:\nnhr\alphabets\letter6*.bmp
c:\nnhr\alphabets';
letter7 = 'copy c:\nnhr\alphabets\letter7*.bmp
c:\nnhr\alphabets';
letter8 = 'copy c:\nnhr\alphabets\letter8*.bmp
c:\nnhr\alphabets';
letter9 = 'copy c:\nnhr\alphabets\letter9*.bmp
c:\nnhr\alphabets';
letterlO = 'copy c:\nnhr\alphabets\letterlOV.bmp
c:\nnhr\alphabets';
letterll= 'copy c:\nnhr\alphabets\letterll*.bmp
c:\nnhr\alphabets';
letterl2 = 'copy c:\nnhr\alphabets\letterl2*.bmp
c:\nnhr\alphabets';
letterl3 = 'copy c:\nnhr\alphabets\letterl3*.bmp
c:\nnhr\alphabets';

64

letterl4 = 'copy c

c:\nnhr\alphabets'

letterl5 = 'copy c
c:\nnhr\alphabets'

letterl6 = 'copy c

c:\nnhr\alphabets'

letterl7 = 'copy c

c:\nnhr\alphabets'

letterl8 = 'copy c

c:\nnhr\alphabets'

letterl9 = 'copy c

c:\nnhr\alphabets'
letter20 = 'copy c
c:\nnhr\alphabets'

letter21 = 'copy c
c:\nnhr\alphabets'
letter22 = 'copy c

c:\nnhr\alphabets'
letter23 = 'copy c

c:\nnhr\alphabets'

letter24 = 'copy c

c:\nnhr\alphabets'
letter25 = 'copy c

c:\nnhr\alphabets'

letter26 = 'copy c
c:\nnhr\alphabets'
letter27 = 'copy c

c:\nnhr\alphabets'

letter28 = 'copy c

c:\nnhr\alphabets'

letter29 = 'copy c

c:\nnhr\alphabets'

letter30 = 'copy c

c:\nnhr\alphabets'
letpat - {letterl; letter2; letter3; letter4; letter5;
letter6; letter7; letter8; letter9; letterlO; letterll;

letterl2; letterl3; letterl4; letterl5; letterl6;

\nnhr\alphabets\letterl4*.bmp

\nnhr\alphabets\letterl5*.bmp

\nnhr\alphabets\letterl6*.bmp

\nnhr\alphabets\letterl7*.bmp

\nnhr\alphabets\letterl8*.bmp

\nnhr\alphabets\letterl9*.bmp

\nnhr\alphabets\letter20*.bmp

\nnhr\alphabets\letter21*.bmp

\nnhr\alphabets\letter22*.bmp

\nnhr\alphabets\letter23*.bmp

\nnhr\alphabets\letter24*.bmp

\nnhr\alphabets\letter25*.bmp

\nnhr\alphabets\letter26*.bmp

\nnhr\alphabets\letter27*.bmp

\nnhr\alphabets\letter28*.bmp

\nnhr\alphabets\letter29*.bmp

\nnhr\alphabets\letter30*.bmp

letterl7; letterl8; letterl9;

letter22; letter23; letter24;

letter27; letter28; letter29;

nn = {'nnhrl' 'nnhr2' 'nnhr3'

'nnhr7' 'nnhr8

'nnhrl3' 'nnhrl4'

'nnhrl9' 'nnhr20'

'nnhr25' 'nnhr26'

nnum = 30;

letter2 0; letter21;

letter25; letter26;

letter30};

'nnhr4' 'nnhr5' 'nnhr6'

nnhr9' 'nnhrlO' 'nnhrll' 'nnhrl2'

1nnhrl5' 'nnhrl6' 'nnhrl7' 'nnhrl8'

'nnhr21'

'nnhr27'

'nnhr22

'nnhr28

65

'nnhr23*

•nnhr2 9'

'nnhr24'

'nnhr30*

Appendix E Samples Collection Form

This sample handwriting is collected forme in testingcomputer recognition of handwritten
English uppercase letter. Please write down the following characters in the boxes that
appear below. Thankyou foryour help.

NAME

(uppercase)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(uppercase)

This sample handwriting is collected forme in testing computer recognition of handwritten
English uppercase letter. Please write down the following charactersin the boxes that
appear below. Thank you foryour help.

NAME

(uppercase)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(uppercase)

This sample handwriting is collected forme in testing computer recognition of *mdwri**nn
English uppercase letter. Please write down the following characters in the boxes that
appear below. Thankyou foryour help.

NAME

(uppercase)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(uppercase)

66

Appendix F Training Samples

A* C pEFGr H|' J 1«J w- | -HV H| 0 f_fi *.* Tu v(wU *
A & C DBMHia'If.L^NOP^PsSTUVWXyZ
lAl^l^pe p^tflr jjfc^M^^ f a r 5rw w * y ^
IWBlClDlflFlfrlHIIlJlKlLIM NO P Cl^ST U V^/KY Z
5T @cTLT^T^rfTJIfctM
h\b\c\}> £ FltflHIl JlKlLiMlrt.p P.QlRlSlTlUIV.WlXirlg
AlfrlclD l&lFl&lH I lTlfc|LiMlN|o,p|QlR|^|T Q|Vjfrl|X.|VlZ
A| 6 |c p £ F <r H 1|J k-urftN 0 P aP-ST H V w * Y 2
A ScTD tf IHI TlK LlSi ^o pg? e 2 f|W V[WXTY7

A ^ C Di£iF $ JL* ? KLWk o P<5RS T * V *** r*
^ b|c ts|e f|G|h| i criK u |m|n|op s? r s t|u v|uj|x y zj

|ft|6|C|D|E|F!G|H|l 0 | K|U|rA|KJ |0| P|G% * S T U V* W|Xjy 21

AI£lClPjE|F16IH| l|g|K|LIMlNlolPl&IR|S|TlUlvMXirife
M61cI&IeIfI6Ih1i lJifclUt*irt.6ip|QlftlsiTlulv Iwlxly la

|A| 8|c|&|E F 6 H 1 Jk|LJHW0p|0RSTu vwix'n
A 6 C\t>\E\T- 4 rf 1 J| fc| L|«|A/ ^ f i>?A S T* J V V X Y -r
A 8 c o|e|f <k h! i|j !k |uImInI o p aft * t u v w/ x\ \\z\
[aT* c|d1eJp &• h 1 j~[k] l[«|«]o p « *• s r u vjvxjjrfz]
| A 6 d D E f $ H |J X V-LWNOPC R|S]TU V w X V £
A 6T<s ble ?j0f ~n i jru ri 6 ff&*j«|f ti]vrw x Yzl
4 6 £.^0 £ f <r h / t|k./~ mn|<? i0 « « |s|t! u v »*/ x y !;£
a & c j> e F 6 H t j k lMn 6 pa Rsrwvwxyz

h$> C QE FG-HllSltCL-MNO paRSTt)V^XY7j
A 8 C 0 £ F- A W 1 3 K L|M N 0 P A * S T -U' V Yf % Y 2

jrYa e|o e f <* H I J3 KUMK|OS» Q *, S T tt V|w X Y J
A| &\ c\ o a F-Cr H i 3 *• t-|in N 0 P^« 1*. 5 T[w V w K_y z|

| fl[» c] D} 6 "F 6 H[l 7 K I M W ^[Pj* Ri5 T[n V W K Y Z

SSf:7]T
rKLM

hi i\-3-\(c\l\m\#^ f-\q\#\s t <* v w k\y a
KltfPQRSTUVWXYZ

67

A
p

p
en

d
ix

G
P

ro
je

ct
G

an
tt

C
h

ar
t

A
p

p
en

d
ix

G
.l

P
ro

je
c
t

G
an

tt
C

h
a
rt

fo
r

F
Y

P
I

N
o

.
D

e
ta

il
/

W
e
e
k

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
-

1
6

1
7

1
8

1
9

1
S

el
ec

ti
o

n
of

P
ro

je
ct

T
o

p
ic

s

2
P

re
li

m
in

ar
y

R
e
se

rc
h

W
o

rk
•

•

3
S

u
b

m
is

si
o

n
o

f
P

re
li

m
in

ar
y

R
ep

o
rt

•

4
B

ra
in

st
o

rm
in

g
a
n

d
P

la
n

n
in

g
•

•

5
R

e
se

a
rc

h
,

L
it

e
ra

tu
re

a
n

d
P

ro
g

ra
m

L
ea

rn
in

g

6
S

u
b

m
is

si
o

n
o

f
P

ro
g

re
ss

R
e
p

o
rt

7
T

ra
in

in
g

a
n

d
T

es
ti

n
g

A
l

S
y

st
e
m

.
8

S
u

b
m

is
s
io

n
o

f
F

in
a
l

D
ra

ft

9
S

u
b

m
is

si
o

n
o

f
In

te
ri

m
R

ep
o

rt
H

i

1
0

O
ra

l
P

re
s
e
n

ta
ti

o
n

H
i

6
8

A
p

p
en

d
ix

G
.2

P
ro

je
ct

G
a
n

tt
C

h
a
rt

fo
r

F
Y

P
II

N
O

.
D

E
T

A
IL

S
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
H

an
d

w
ri

ti
n

g
R

ec
o

g
n

it
io

n

-
R

e
se

a
rc

h
,

L
it

ar
at

u
re

a
n

d
P

ro
g

ra
m

L
ea

rn
in

q

-
D

a
ta

C
o

ll
ec

tt
in

g

-
T

ra
in

in
g

a
n

d
T

es
ti

n
g

A
l

S
y

st
e
m

-
B

ui
ld

A
H

an
d

w
ri

ti
n

g
R

ec
o

g
n

it
io

n

S
y

st
e
m

2
S

u
b

m
is

si
o

n
o

f
P

ro
g

re
ss

R
ep

o
rt

1

3
S

u
b

m
is

si
o

n
o

f
P

ro
q

re
ss

R
e
p

o
rt

2

4
S

u
b

m
is

si
o

n
o

f
D

ra
ft

R
e
p

o
rt

5
S

u
b

m
is

si
o

n
o

f
F

in
al

R
e
p

o
rt

(s
o

ft
co

v
er

)

N
O

T
E

S

T
h

e
d

u
e

d
a
te

s
of

th
e

fo
ll

ow
in

g
m

il
es

to
n

es
a
re

a
s

fo
ll

ow
(a

ft
er

W
ee

k
15

):

S
u

b
m

is
si

o
n

o
f

T
e
c
h

n
ic

a
l

R
e

o
rt

-
1

9
/1

1
/2

0
0

4

O
ra

l
P

re
s
e
n

ta
ti

o
n

-
fr

o
m

6
/1

2
/2

0
0

4
ti

ll
8

/1
2

/2
0

0
4

S
u

b
m

is
si

o
n

of
F

in
al

R
ep

o
rt

(h
ar

d
co

v
er

)
-

2
4

/1
2

/2
0

0
4

6
9

