Handwriting Recognition Using Artificial Neural Network

by

Goh Siew Yin

Dissertation submitted in partial fulfilment of
the requirements for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

DECEMBER 2004

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

*
(]
Yog T
AN AR
Pa At
SRR N EVIPAN nwems U Conmmpeer LA)

- N - Th_ v o > W

CERTIFICATION OF APPROVAL

Handwriting Recognition Using Artificial Neural Network

by

Goh Siew Yin

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

©

(Faf(yizu Azmadi Hussin)

Fawnizu Azmadi Hussin

Lecturer

Electrical & Electronics Engineering

New Academic Block NO 22

Universiti Teknologi PETRONAS

31750 Tronoh

Perak Darul Ridzuan, MALAYSINTVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

il

GOH SIEW YIN

ABSTRACT

Character recognition is one of the areas where neural network technology is
being widely used. However, a successful neural network application requires

efficient implementation of image processing and feature extraction mechanism.

This project will demonstrate neural network application in recognition of
constrained isolated English uppercase alphabets, from A to Z. The neural network
scheme employs the Multi Layer Feed Forward Network as the alphabet classifier.
This network is trained using the Back-Propagation algorithm to identify similarities
and patterns among different handwriting samples. Meanwhile, the feature extraction
scheme applies the combination of five distinct methods. They are Edge Detection,
Kirsch Edge Detection, Line Intersection Detection, Alphabet Profile Feature and
Modified Alphabet Encoder, while Image Processing involves the process of noise
removal from the scanned grayscale image alphabets. Image Proces..ng manes e

handwriting easier for extraction.

In the handwriting recognition system, the neural network will use 30 sets of
handwriting samples, each consisting of 26 English uppercase as training inputs and
to create an automated system to recognize the handwriting alphabets in different
sizes and styles. The statistical studies were done on the network to check the ability
and performance of the network. This is to improve and modifying the network in
order to increase its accuracy and reliability. It was found that feature extraction
plays an important role in making the neural recognition system better for a more
accurate detection. The handwriting recognition system is then integrated into
MATLAB Graphical User Interface (GUI) that users can use very easily while

hiding the complexity of the whole mechanism.

ACKNOWLEDGEMENT

Final report for Final Year Project was produced in conjunction with two
academic semesters that has been undergone for one year. Throughout the long

period, numbers of people have contributed in achieving the project objectives.

Firstly, the author’s heartfelt gratitude is forwarded to her supervisor, Mr.
Fawnizu Azmadi Hussin, for his selfless imparting of knowledge and advice, which

guided the author throughout her project.

Secondly, the author would like to thank Mr. Lim Khai Loke for contributing
ideas, providing useful information and guidance for betterment of the project

especially in feature extraction field.

Author also wish to thank all the colleagues who taught, guided, advised,
shared-knowledge, comments and helps throughout the project especially in

MATLAB programming.

Finally, thank you to all the others whose names has failed to mention on this
page, but has in one way or another contributed to the accomplishment of this

project.

TABLE OF CONTENS

ABSTRAC T .. viiivesnissnsinenssisssimmesssssmssesssesmsssssssssensssssssssseesseesmsnsssesssssesssssssassees i
ACKNOWLEDGEMENT ...ouiveunnassiinimnisrsssisssmesssssssmssessassssessassssesssssssssessensaseens ii
TABLE OF CONTENS......cvinsiicsemersnsssnssssssssssssissn ssssessosssssssssssssssssmssnsessssssssses jii
LIST OF FIGUREScvvneersnissnenmmssissssmssssissssasessssssssssenssssersnssssssssessssssssessessessens v
LIST OF TABLES.......cooiiinetniissiincsensssssssmmmnmrsssaserssstssssisssseesssesssessessasssssosessesses vi
CHAPTER 1: INTRODUCTION ...uccovureennrrnserarerensmsssssesssssssssssenssensesssssssersessssssssses 1

1.1 Background of Sty ... e 1

1.2 Problem Statement.........ocouiiuerecmuiierrereeoree e e e, 2

L3 OBJEOHVES ..voeriecicctniece sttt et e e s ss et 3

LA S00PC ettt et e ettt 3
CHAPTER 2: LITERATURE REVIEWcovveerierressssesnsemssasssesssssosssssessosssssssssses 4

2.1 Basic Concepts in Neural Network..........oovcovovoosoeeeooereese oo 4

22 Neural NEtWOTK oot 5

2.3 The Multi Layer Feed-forward Networkococoee oo 6

2.4 Multi Layer Feed-forward Network Training.........ooveveveveereeoooeoon. 6

2.5 Backpropagation ALZOTItRINoveveeeieeeer oo eeeeeeeeeee oo 7

2.6 Image Processing ..o ieeoeeeeeeeeeeeee oot 10

2.7 Feature EXITACHON.cooiriuireeecvnsestnsieeneeseceseeesesssestoseesses s oo 11

2.7.1 Modified Alphabets ENcoder.......c..c..o.vvrviceceiiieceeseesss e 11

272 Edge Detection Methodco.ovveeeeveeeneeteceeeeeeeeeeeeeee e 13

2.7.3 Kirsch Edge Detection.......ccooueeicriiiecec oo 13

2.74 Image COmMPIESSIONccv.eevvriieniriieeet e 16

275 Line Intersection Detection.......uuieiiriiirs e esereeeeerser e 16

2.7.6 Alphabet Profile Feature.........coccoeveiivoeecsseeeseeeeeees s 17

28 MATLAB GUI oottt ee e ev e 18

2.8.1 QUILEYOUL ...ttt et 19

2.8.2 User Online Testing Capabilityo.ocovovvureveveeeereeeee e, 20
CHAPTER 3: METHODOLOGY .ovrvnrrirenecnrrremmsssssssssiensssssssssesssensesenseasesensessenss 21

3.1 Procedure [dentification............cooveeeiveeeeeereerone oo oo, |

32 Handwriting SamMples.....c..cccomriviieoeecis oo 22

3.3 Multi Layer Feed-Forward Network (Modified).........coooooveereovo 22

3.3.1 Computation of Level of Confidence and Level of Substitution... 23

34 Image Processing Module.........coooovuriuiieieneisieeinceeees oo 24

3.5 Feature Bxtraction Moduleco.ooveevvesisieeee oo 24

3.5.1 Modified Alphabet Encoder Module...........ccovveeeririicvrnciinen, 25

3.5.2 Kirsch Edge Detection Modulec.coooovreieeesriseie s senessenns 26

3.53 Image Compression Module...........ccooooveniienciiicecccec e, 26

3.5.4 Alphabet Profile Feature Moduleco.oo.veverreeersereeesesrsannns, 27

3.6 Neural Network Architecturecococooovevviiiiiresices e, 28

37 MATLAB GUIMOUUIEoooiiirieeeecere e eeeenn o 29

3.7.1 Creating GUI with GUIde.....cccocveiriiisci e 29

3.7.2 The Layout EQItOr........ccouvireiieeiiieercrcee e ees e 30

3.8 Development of the Handwriting Recognition System..........c....oco....... 32
CHAPTER 4: RESULT AND DISCUSSION ..ocvevoreeerrorvsmrrensssess sevvseener vasens 33

4.1 Identify the Best Value for LOC and LOSccooieeeieveeeee s cer e, 33

4.2 Modified Alphabet Encoder and Edge Detection Method with MLFF . 34

NEIWOTK 1ottt et sttt et e e eeees s et ese e eres e 34

43 Adding another Hidden Layerccoocoov oo 35

4.4 Modified MLEEF NetWOrkc.cooevcvmioveiiiieeoeeeeeeeee s 36

4.5 Statistical Study on the Feature Extraction MatrixX..........covevvvereonnoin, 37

4.5.1 Standard Deviation Test on the Same Classes............ocovceevennnnn, 37

452 Standard Deviation Test on the Different Classes...........ococoevonnn, 38

4.6 Final Handwriting Recognition SyStem............cc.cocomeoeeorvveeees e, 38

4.7 Recognition Error ANalYSisccceriiieieecoveeeseeeseeceeesees e ssenas 39

48 Testing and Simulation Network Modules.........ccoocecorvimevireeseerereenn. 40

49 Identified Neural Network Modules..........c..covoveeerieeeecsece v, 40
CHAPTER 5: CONCLUSION AND RECOMMENDATIONcocoevervieemreerens 42

5.1 CONCIUSION ...t esenas 42

52 RecomMmendations.......ccoiierieeeiveiinie oo eee e ee e 43
REFFERENCESoivviiiiiissismensemrsssssrsniniiosessssissessessmssrssnsronsssnsssssssstonsssens 44
APPENDIXES....cooiiiiiinnsiseiniintsisssisnmsenmsnsssersosssenssesmmeseassssssesssssosssssssnsesnsres 46

Appendix A Image Processing Module............oooeeeeeeiovcnneenseeeeesseeees e, 46

Appendix B Feature Extraction Modulecccovieviiicoceei e, 47

Appendix C Neural Network Module.......co.o.oeecvocrniiiiriee e 54

Appendix D Other Script Files ..ot eenes s 64

Appendix E Samples Collection FOrmcoocoeveriooeeeoeeoeooeeeee 66

Appendix F - Training Samples ..o eeeees e 67

Appendix G Project Gantt Chart ..o 68

iv

LIST OF FIGURES

Figure 2.1: General Neural Network Model...........oooveiiiiveeeeeeeeee e sva e 5
Figure 2.2: Multi layer feed-forward network..........oovvveeeecceiereie oo, 6
Figure 2.3: MLFF Network Backpropagationuiveiueeeineeecesiieesies oo rseesneons 7
Figure 2.4: MLFF Forward Propagation Phase ..o veeeeeeeeer e, 8
Figure 2.5: Image Processing Process FIOWc.occooiiieonirecnnerserosisievesseseressnns 10
Figure 2.6: Modified Alphabet Encoder 15 Regions............cocoevvevnsreecesevenreenn, 12
Figure 2.7: Edge Detection Method.............ooivivcoreeoeresseeeee oo esvee e 13
Figure 2.8: Kirsch Edge Detector Masks.........cccoeovriieorrs i esscsneeeeeesroans 14
Figure 2.9: Output of Kirsch Edge Detector..........ovovvvveeoeoreeeere e oo, 14
Figure 2.10: Image Convolution ProCess.ouoeveeirireciiceceeeeeee e eeseeeses e, 15
Figure 2.11: Line Intersection Detectionccevvveveeeieciovriesiieeseee oo, 16
Figure 2.12: Alphabet Profile Featurec..oocvrvvriisieeecceesees s eess e 17
Figure 2.13: GUI Design Principlescooovvveueiiieeesieeceiieceee e seense s 18
Figure 2.14: Introduction To Handwriting Recognition System Layout................... 19
Figure 2,15: Handwriting Recognition System Layout.........c..o..cccecveeneeeeennrnnnn, 19
Figure 2.16: User Online TESHAEcooviivvurivireemeeeeens st oeeeeee s eeesseseeeeresnsanan. 20
Figure 3.1: Procedure Identificationcceur oo ses s ennns 21
Figure 3.2: Image Processing Module AIgorithms...............o.ovooveiveeosoeeeeeesns 24
Figure 3.3: Modified Alphabet Module Algorithmccoveeemeiieeeoseeeeeesr s 25
Figure 3.4: Kirsch Edge Detection Module Algorithmoo.oovoevveeoieere 26
Figure 3.5: Image Compression Module AIZotithim........ocoveeeeiiveverenee e, 26
Figure 3.6: Alphabet Feature Module Algorithmcc.ooooonrovveeeeeceeieseaen o, 27
Figure 3.7: GUI Layout BAITOr ...vcooiicres et csceteeeeeees s e es e s eese s v 30
Figure 3.8: Property INSPECLOrccocovcrirenmreeiee et 31
Figure 3.9: Handwriting Recognition System Development.............ocoovvveeueereennn., 32
Figure 4.1: Determination of LOC and LOScooevevomereeeeeeeeeese e eeee s, 34
Figure 4.2: Neural Network Module ...t 40
Figure 4.3: Final Handwriting Recognition Modulecocovveveeeesoser e 41

LIST OF TABLES

Table 3.1: Summary Feature Extraction Modules............cccoovveereerrecnsereereseesnn, 24
Table 3.2 Training Parameters.......oocovevivriiisees e st sees e ser e eeee s 28
Table 4.1: Results for Recognition ACCUIACYveeeevieieneieceee s eese s s eseenea oo 33
Table 4.2: System Accuracy ReSUl........coviivcmririierriiieees et cess et enesnees s 35
Table 4.3: System Accuracy Resultsoo.oovevieereinecieee e 35
Table 4.4: System Accuracy ReSUILScoovvcviiveiieeee e, 36
Table 4.5: Standard Deviation Test RESUSovcceivivieeriiecei s 37
Table 4.6 Standard Deviation Test RESUILS............coouieiveeeecrireereee s ierereeeren, 38
Table 4.7 Final Proposed Handwriting System ACCUracy........ocoooveonvoresersronnnn, 39
Table 4.8: Summary of Neural Network Module.....c....oooooieoironse oo, 40

vi

1.1

CHAPTER 1
INTRODUCTION

Background of Study

Handwriting recognition of general handwritten character presents a
number of challenges. Over the past year, handwriting recognition has been
receiving a great deal of interest by researchers all around the world.
Nowadays, handwriting recognition system has been implemented in
numerous applications such as address and zip code recognition, signature

identification, and forms processing to name a few.

Using artificial neural network for handwriting recognition is a field
that is attracting a lot of attention. The use of neural network to model the
handwriting recognition has been gaining a lot of success in term of accuracy
and rehability. However, there is no easy scheme to achieve high accuracy
recognition rates. Thus, there is a need to develop more sophisticated systems,
which include areas of image processing, feature extraction as well as neural

network itself.

Different types of neural networks have proposed to be implemented in
the handwriting recognition system. Among them are Multi-layer Feed-
forward with Backpropagation Network (MLFF with BP), Self-Organizing
Mapping, (SOM), Fuzzy Adaptive Resonant Theory (Fuzzy ARTMAP), and
Learning Vector Quantization (LVQ). The selection of the types of neural

network is vital to the accuracy and reliability of the system.

1.2

The area of research has been motivated by two approaches. The first
i3 to find the best feature extraction method. By doing the statisti- -~ study on
the feature extractions’ performance in recognition, the best feature extractor
was obtained so that it can highlight the important features while minimizing
the meaningless features. The second is to find the best neural network, which

has good generalization power and minimum substitution error.

Problem Statement

Automatic recognition of handwritten characters is a problem that is
currently garmering a lot of attention especially in mail delivery field. Address
on envelops can be scanned by machine easily if it has barcode. But a lot of
letters sent are handwritten; therefore post office requires a person to sort the
mails. Due to this problem, we are trying to minimize labor requirement by
having an automated system that can sort mails according to the ™ .ndwri“zn

address,

Another problem that we are trying to address is when gathering
information from a handwritten form. A complex process is needed to
etficiently process small handwritten characters in small boxes. Hampered by
large amount of variation between handwritten characters, it needs research to
find techniques that will improve the ability of computers to represent and
recognize handwritten characters. One approach is by using artificial neural
network. In this approach, an artificial neural network is trained to identify

similarities and patterns among different handwriting samples.

However, the scope of the handwriting recognition system built is only
on recognizing the isolated character. Other advanced processing requirements

to work on the letters and forms are not covered.

1.3

14

Objectives

The main objective of this project is to build a handwriting recognition
system by implementing it in MATLAB. This handwriting system is designed
to recognize 26 isolated constrained handwritten English uppercase alphabets,
from A to Z. The system must also be reliable even with noisy characters or

shifted characters.

Scope

The project of handwriting recognition using artificial neural network
involves four areas of research. They are Image Processing, Feature
Extraction, Neural Network and MATLAB GUI.

Image processing is a process of converting any scanned grayscale
alphabets to binary image so that the image can be manipulated easily. Besides
that, it also involves resizing and region-of-interest (ROI) analysis the image
to obtain the correct size. Feature extraction is one of the vital parts of system.
It creates the linkage between the scanned binary alphabet image and the
neural network, The target of feature extraction is to distinguish the
uniqueness of 26 classes of alphabet so that classification task by the neural

network is much easier to perform.

Another integral part of the system is the neural network itself. The
neural network classification efficiency will determine the performance of the
overall system in term of accuracy and reliability. Therefore, the choice of

neural network is important is the key factor here.

Lastly, results will be displayed using MATLAB GUI. The MATLAB
GUI is very user friendly and it is easy to create as MATLAB comes with the
GUI building tool.

2.1

CHAPTER 2
LITERATURE REVIEW

Basic Concepts in Neural Network

Neural networks are composed of simple elements operating in
parallel. These elements are inspired by biological nervous systems. As in
nature, the network function is determined largely by the connections between
elements. We can train a neural network to perform a particular function by

adjusting the values of the connections between elements.

There are three types of trained neural networks; supervised training
neural networks, unsupervised training neural networks and reinforcement
learning neural networks. We are more interested in the supervised training
neural networks compared to unsupervised learning and reinforcement
learning. This is because in unsupervised learning, the hidden neuron must
find a way to organize themselves without help from the outside. No samples
output provided to the network against which it can measure its predictive
performance for a given input, While for reinforcement learning, it is work on
reinforcement from outside. The connections among the neuron layer are
randomly arranged, then reshuffled as the network is told how close it is to
solving the problem. Both unsupervised and reinforcement sutfers from
relative slowness and inefficiency relying on a random shuffling to find the
proper connection weights. As for supervised learning, the method is shown in
Figure 2.1. There, the network weights are adjusted based on a comparison of
the output and the target, until the network output matches the target. Thus, it

improves the training performance [1].

In summary, there are a variety of kinds of design and learning
techniques that enrich the choices that a user can make depending on the

application.

Neural Network with
——————» connections (called weights)
[nput between neurons

Output

[Y

Adjust
Weights

Figure 2.1: General Neural Network Model

2.2 Neural Network

A supervised neural network known as Modified Multi Layer Feed-
forward Network is used for the classification and recognition of the isolated

alphabets. It is chosen based on several reasons and its advantages.

o Easy training — all goal of training can be reached for all the training sets

easily. Thus, the number of epochs needed is minimal.

» Stability — it can retain the previously trained alphabet pattern. Thus the
neural network can accept wide range of alphabet patterns
without forgetting the past information.

e Accuracy — it can generalize information for each class and reduce the

substitution error rate, thus, increasing accuracy.

2.3

24

The Multi Layer Feed-forward Network

The Multi Layer Feed-forward Network with backpropagation is a
supervised neural network. It can have multiple of inputs, outputs and layers
of nodes or neurons. Figure 2.2 shows architecture of a three-layered feed-
forward network. The leftmost is the layer which the input data is supplied; the
rightmost layer is the output layer and the middle layer is the layer to
interconnect input and the output layer. Each layer of the network is fully
interconnected to its subsequent higher layer, The links between each neuron

are called weights, where the knowledge is being stored [2].

Hidden Layer

Figure 2.2: Multi layer feed-forward network

Multi Layer Feed-forward Network Training

The Multi Layer Feed-forward Network training utilizes the
backpropagation algorithm. It is an optimization procedure based on gradient
descent that adjusts weights to reduce the system error or cost function. The
name backpropagation arises from the method in which corrections are made
to the weights. During the learning phase, input patterns are presented to the
network in some sequence. Each training pattern is propagated forward layer
by layer until an output pattern is computed. The computed output is then
compared to desired target output and error values are determined. The errors
are used to feedback connections from which adjustments are made to the

synaptic weights layer by layer in backward direction. Figure 2.3 illustrates an
6

MLFF network modified for the backpropagation training. The backward
linkages are used only for the learning phase, whereas the forward connections

are used for both learning and the operational phases.

AN

—:) L
Input : T Output - " Target
Patterns| 1
—_——— > i
Error is back propagated
Weights are Error through the layers of the
adapted NN

Figure 2.3: MLFF Network Backpropagation

Using BP, the hidden layer weights are adjusted using the errors from
the subsequent layer. Thus the errors computed at the output layer " ze use” to
adjust the weights between the last hidden layer outputs is used to adjust the
weights in the next to the last hidden layer and so on until the weights
connections to the first hidden layer are adjusted. In this way, errors are
propagated backward layer by layer with corrections being made to the
corresponding weights in an iterative manner. The process is repeated a
number of times for each pattern in the training set until the total output error
converges to the minimum or until some limit is reached in the number of

training iterations completed [2].

Backpropagation Algorithm

The backpropagation algorithm is a generalization of the Widrow-Hoff
learning rule to multiple-layer network and nonlinear differenti»* Je tran-%r
functions. Input vectors and the correspohding output vectors are used to train
a network until it can approximate a function; associate input vectors with
specific output vectors or classify input vectors is defined in an appropriate

way [2].

The algorithm consists of 2 phases; a feed-forward process and a
backpropagation process. For the initial stage, the weights of the network are
randomly selected. The learning rate,) and momentum, [3 is pre-set before the
learning phase. Normally, the momentum rate is set at 0.95 and learning rate at
0.01. During the learning phase, an input vector is presented to the network
and the vector propagates from the input layer to the output layer. Thus, the

output of the hidden layer has the following notation

1

O, :f(netj)= -y

i —tiet;

where

i

net, => W,0, +0,
7

Similarly, the output layer becomes

1

O, = flnet,)= oy

where

—neiy

net, = ZW@O. +0,
k

i

Figure 2.4: MLFF Forward Propagation Phase

The output vector generated from feed-forward process is then
compared with the desired output vector. The cost function used is a sum

squared error function, & which is given by
§=2.5,

P

1
£, = 5;0” -0,)’

where 1, is the desired output for the kth component of output pattern for the

pattern p and Oy is the corresponding actual output.

Backpropagation process is then using the error to adi' .i weights

accordingly, based on the steepest descent method, as follows:

AW, (e +1)=75,0, + aAW,(t)
8, = O;((I _Ok)(rk _Ok)

7,

i

((+)=w,()+ AW, (r+1)
and

AW, (t+ 1): n6,0, +aAW, (t)
Jd, =0, (] -0,)(fj -0,)Z Sy
k

Wile+1)=w, ()= AW, (r+1)

2.6

Image Processing

Image processing involves the process of noise removal from the
scanned grayscale image alphabets. The end product of this process is a

noiseless grayscale image.

The noise removal process applies a Wiener filter (a type of linear
filter) to an image adaptively, tailoring itself to the local image variance.
Where the variance is large, Wiener filter performs little smoothing. Where
the variance is small, Wiener filter performs more smoothing. This approach
often produces better results than linear filtering. The adaptive filter is more
selective than a comparable linear filter, preserving edges and other high

frequency parts of an image.

Then, the image threshold is set to 50% to obtain the binary image.
This process involves in converting the input image to grayscale format and
then uses threshold value to convert this grayscale image to binary. The output
binary image has values of 0 (black) for all pixels in the input image with
luminance less than level and 1 (white) for all other pixels. From the binary
image, the region of interest (ROI) of the letter is identified [3]. The letter then
is resized to 32x32 pixels. Figure 2.5 illustrates the flow of image processing

technique applied to the samples.

v
‘w »

{ ¥ L

Image Inout Noise Reduction Threshold RQI and Resizing

Figure 2.5: Image Processing Process Flow

10

2.7

Feature Extraction

Feature extraction is important in defining the characteristic of each
alphabet. [f cach alphabet well defined, it will increase the recognition rate
because the neural network able to distinguish the all classes easily. Among
the technique I have come across are Modified Alphabets Encoder, Edge
Detection Method, Kirsch Edge Detection, Lines Intersection Detection, and

Alphabet Profile Feature.

With wide choices of feature extractor, there is a need to determine
their performance. There are some general conditions for a good feature
extractor.

* Discrimination — features extracted should be significantly different for
characters belong to different classes

» Reliability — features for the characters from the same class should be
simiiar to each other.

¢ Feature space is small — the amount of the features should be smaller than
the original image to ensure the recognition speed is fast enough.

* Independence — features should not have any correlation with each other.

» Fast processing speed — the feature extractor should have low complexity

and low computation in order to speed the feature extraction process.

2,71 Modified Alphabets Encoder

The modified alphabet encoder is very suitable to extract 26
English upper case alphabets using its 15 regions. With the size of
32x32 bitmap, the bitmap is divided into 15 regions, which consist of 3
horizontal regions (H1, H2, and H3), 8 vertical regions (V1, V2, V3,
V4, V5, V6, V7, and V8), and 4 diagonal regions (D1, D2, D3, and
D4). This is shown on the Figure 2.6.

11

Computationally, one feature region is defined as the number or
marked bits divided with the size bit of the region. The computed

number will be sent to the neural network for recognition.

Number Marked bits
Region Feature =

Region Bits Size

e oy e ¥3 —ef

I | T [A T
i ST ! L]
: i v ;
b i A b H1
M I Al £ !
N K f
T X .‘)‘ rd V7
j i) ’
\‘e\] A _1l....
A A
; i v .
\\ ay ‘ﬁ (/. T i
T : : Y .
T T Ll v s N
- WA o ; M2
1P s Wi
_"“ T N T 1S KTV
1 [N o B
/ { e i
IRV IPCIN §E gy) g ™ e D N
!/ ¥ . ;"1 Y
A \\ F i N -
A 4 N RS
vel] ¢ M, i ig L
A =4 T 3 Gt
v Bl .bw RN H3
- | 5 i v . |
5 /: E : T T I
1 ¥ I TN M
- — ve— o

Figure 2.6: Modified Alphabet Encoder 15 Regions

For example,

. 32
r N\
H1 Region] ?
. The
Size of Region H1 =9 x 32 =288 bits marked bits

The marked bits = 50 bits
H1 feature = 50/288
=0.1736

12

2,72

2.7.3

Edge Detection Method

The idea of this method to detect the outer edge of a character
from four corners view, which is left, top, right, and bottom direction.
The algorithm of this method is very straightforward. It just needs to
scan through line by line vertically and horizontally unti! *here i< a

change of the pixel value. This process is illustrated in the diagram

low.
below Top
Bottom
Figure 2,7: Edge Detection Method
Kirsch Edge Detection

This method is quite useful in extracting local feature of
alphabets. It is a good discriminator for all the 26 classes of alphabets
because it is able to detect unique features of each alphabet. This
method involves detection of horizontal, vertical, right diagonal and
left diagonal edge by using 8 masks or filters. These § masks will be
convoluted with the binary alphabet image to produce 8 images (2

horizontal, 2 vertical, 2 right diagonal, and 2 left diagonal).

The pair of each direction images will undergo the maximum
operation. The maximum operation is a process of selecting the
maximum pixel value from the pair image. Thus, there will be one
image for each direction. Then, the four images will undergo image

compression to reduce their size.

13

Sl S p3 33 =313 5115 313
303 -3 0 [-3 =310 31151013
N EBRIEHE 31-3) 5f]5 133
(a) (b)
; It S 21! j 38 1S f a) Horizontal Mask
aenincsiE o A3 b) Vertical Mask
=3 |-af - - -3 Rl B B . .
¢) Right Diagonal Mask
{c)) d) Left Diagonal Mask

Figure 2.8: Kirsch Edge Detector Masks

For the handwriting recognition system, the size of input image is

32x32 pixels. Therefore, the output will be 4x32x32 pixels. After image

compression, the output will be reduced to 4x8x8 pixels.

m Original binarized image

Horizontal H max
Vertieal
Right- J’J’

Diagonal | I max
Left- .
Diagonal max

-IEE

It

* Qutput of convolution
process wit™ ‘he 8 mask.s.
%I * Combining the pair of

each direction into | image
ILI]

Figure 2.9: Output of Kirsch Edge Detector

14

2.7.3.1 Image Convolution

The convolution process involves a very ounple two-
dimensional convelution. The value of each pixel is computed
through multiplication of two matrices and summing the
results. One of these matrices is the image itself, and the other
is the filter matrix. Usually the image size is bigger than the

filter matrix.

There are several stages to implement the image
convolution. The Figure 2.10 below is an example illustrating
the image convolution with 1 horizontal filter. The first stage is
zero padding. In this stage, the border of the image will be
padded with zero because we need to obtain border pixels
value. If the size of the input image is 32x32 pixels, then the
image will become 34x34 pixels. After the zero padding
process, we will compute for the value of ez, pixel by

multiplying and shifting the filter matrix.

00|00 {0O][0]|O|DO
O |1 {11 |1 |1 |1]|Q
0{1 (1111 |t]o
0loJ0j0]|0j0i0]|0 Input Image
olojo!lofojo|0jO(|0]0O
010{0 |0 [0]0O]OjJO]O|O
OO0 (141 T (1|1 ([1¢i0O}0Q
Qlo (1l (L1111t]0]0
olololo olololo ol Zero Padding around
oclololololoTolololo Image Boundary
Pixel #1 Pixel #2 Pixel #3 Pixel #4
0101|0 01010 01010 0]0]|0 5 5 5
0j0|0 0100 000 000Conv 310 | -3
0101 011 111 11111 -3 /-3 -3
For pixel #1,
£(0,0) = 0(5) + 0(5) + B(5) + 0(-3) + 0(0) + 0{-3) + 0(-3) + 0(-3) + 1(-3) = -3
3|16 -9 9 |19 |9 |6 |-3
6 (-9 {-15 [-15 |-15 [-15 |9 |-6 Lower Horizontal E'~ ;
2 |7 |9 9 9 9 7 12
3 10 | 15 15 15 15 10 | 5

Figure 2.10: Image Convolution Process

15

2.7.4 TImage Compression

2.7.5

After obtaining the image with size of 32x32, we want reduce
the size of the input to the neural network by 16 times so that less
processing is needed in the neural network. This image compression is

performed using this formula below.

2i 2
Z Z S(x.v)
T(i) = i S (x,y) — Image 32x32 pixels
) A T (1,j) — Image 8x8 pixels

Line Intersection Detection

This method is extracting the local feature of an alphabet. It
checks for the number of intersection between alphabet and 2
horizontal lines at 1/3 and 2/3 of the image height and also 1 vertical

line at the center point of the alphabet.

a) Intersectior with 1/3 lire

b) Intersection with 2/3 line

() (b) () ¢) Intersection with center

gravity line

Figure 2.11: Line Intersection Detection

16

2.7.6 Alphabet Profile Feature

This method is highlighting the global feature of an alphabet. It
detects the smoothness of the alphabets and also the width and height
at different location. It involves obtaining the raw profiles of an
alphabet by detecting the edge. The raw profile is differentiated to
obtain the smoothness of the alphabet. The highest value of the
differentiated raw profile is obtain and normalized for all four of the
directions. To describe the size of the alphabet, the width and height at
1/5, 2 and 4/5 of the bounding boxes are obtained.

a) Raw Profile — the edge of
the alphabet from four
directions

b) Differentiated Raw Profile
— the smoothness of the
alphabet

Figure 2,12: Alphabet Profile Feature

17

2.8

MATLAB GUI

A graphical user interface (GUI) is a user interface built with graphical
objects. If the GUI is designed well-designed, it should be intuitively obvious
to the user how its components function. By providing an interface between
the user and the application’s underlying code, GUIs enable the user to operate
the application without knowing the commands would be required by a
command line interface. GUI is created with GUIDE. This includes laying out
the components, programming them to do specific things in response to user

actions and saving and opening the GUJ [4].

Hence, it is very suitable to display the input image and output

recognition resuits on screen. Figure 2.13 shows the GUI design principles.

Simplicity]D:> Unity, Clarity, Elegance, and
Consistency > > Alignment, Integrity, and
Familiarity]Dl:> Friendliness, Comfort, and Charm

Figure 2,13: GUI Design Principles

The GUI layout created was divided into two parts. First part is the
layout to show the introduction about handwriting recognition system as
shown in Figure 2.14. While the second part is the layout to display all
relevant data such as the alphabet image, the output image, the alphabet
selection, neural network training, online testing, output results and so on.

This can be seen from Figure 2.15.

18

2.8.1

GUI Layout

Figure 2.14: Introduction To Handwriting Recognition System Layout

) Neural Network Handwriting Recognition
| Flle Edt view Insert Tools Window Hal

Recognised Alphabet:
Confidence level: E :
197541 e]
Substitution Level: ‘

oeieere Ly
AR S

Figure 2.15: Handwriting Recognition System Layout

19

The designed MATLAB GUI layout has the following

attributes and its functions:

: 30 sets of upper case handwriting alphabet from A to Z
. Select an alphabet to be recognized

. Show the input image of the selected alphabet

: Show the detected output image

. Show the recognition result

. Brief introduction about handwriting recognition

: Show the neural network training

: Run the input alphabet from users

LI el

2.82 User Online Testing Capability

The GUI provides the capability for user to input the
handwritten character to test the system. User needs to draw an
alphabet using WINDOWS MSPAINT and save the file as ‘test.bmp’
in folder c:\nnhrimatlab. Then, click button Open & Run File to view

the result. This is iflustrated in Figure 2.16.

Recognised Alphalket
G

Confidence lsvel:
0.97541
Substitution Level:

N

STTERCECRE TS

=nr Heln, rlick Heln Tanirs an thr Heln Mq2

Figure 2.16: User Online Testing

20

31

CHAPTER 3
METHODOLOGY

Procedure Identification

The execution of project is divided into several stages and is illustrated

in the flow chart below.

Preliminary Research

¥

Neural Network Toolbox Learning

v

Research on Image Processing and Feature
Extraction Mechanism

v

Handwriting Samples Collection

v

Build a Recognition System

L]

Check the Recognition System’s Performance

Yes

Recognition > No >
\ok?/

h 4

Improvement and
Modification

MATLAB GUI Toolbox Learning

v

Create the Handwriting Recognition System
Using MATLAB GUI

v

Improvement and Recommendation

Figure 3.1: Procedure Identification

21

3.2

3.3

Handwriting Samples

The handwriting samples for the training set are very important
because it can affect the accuracy of the system. Alphabets that are too skewed
or distorted need to be discarded as training sets. As for the untrained sets of
handwriting, they are randomly picked from the handwriting samples form.
The untrained sets are 15 different individual names. The samples collected
were then cut out separately, alphabet by alphabet, without specifying sizes.

Please refer to Appendix F for training samples.

Multi Layer Feed-Forward Network (Modified)

The MLFF network has been modified to have the ability to load a
different set of weights and biases if low confidence level of recognition is
detected from the network output. Low level of confidence normally indicates
a wrong alphabet recognition. Another parameter to consider from the output
of the network is the level of substitution of other letters. Wrong recognition
has high level of substitution of other letters as well. Combining these two

parameters, a statement is formed as shown below.

If (confidence> threshold value) or (substitution<threshold value)
then
Accept the network output
FElse

Load a new weights and biases (new network)

22

3.3.1 Computation of Level of Confidence and Level of Substitution

The confidence and substitution level of each letter is
calculated through the output of the neural network. The 26 values in
the output matrix represent the 26 alphabets. The neural network is
trained to give the highest value (near to one) for the recognized letter
and for the rest will be near to zero. Having this characteristic, we can
evaluate level of confidence and substitution of the recognized letter.
Computationally, the confidence level is the highest value in the output
matrix and the substitution level is the sum of the rest of the matrix.
Through trial and error as to refer to Section 4.1, it is the best the
confidence threshold value is set at 0.9 and the substitution threshold

value is set at 0.2.

For example,
Output matrix, 0=[0.950.10.10.10000.10.01000000000
0010010100000
Level of confidence = max (O)

= (.95 (first element)
Level of substitution =0.02+ 0.1 +0.001 + 0+ 0+ 0+ 0.01 + 0.01 + 0
+0+0+0+0+0+0+0+0+001+0.+0+0+0+0+0+0

= 0.151

23

3.4

3.5

Image Processing Module

This medule implements four processes. The four are noise reduction,

threshold, region of interest (ROI) and resizing, It takes in isolated alphabet

images of any sizes and returns a binary image with the size of 32x32 pixels.

This module uses the MATLAB Image Processing Toolbox extensively.

Grayscale

Image

Noiseless

Noise ROI &
) >
Reduction Threshold Resizing Binary Image

Figure 3.2: Image Processing Module Algorithms

Feature Extraction Module

These modules consist of one main module and six sub modules. The

main module combines feature extraction matrix from the four feature

extraction methods used; Modified Alphabet Encoder, Kirsch Edge Detection,

Image Compression, and Alphabet Profile Feature. While, the four sub

modules will implement feature extraction process. Refer to Appendix B.

Table 3.1: Summary Feature Extraction Modules

M File Function

Featext.m Combines all the feature matrix from all the extrac..on metuods
Horin.m Horizontal Alphabet Regions Encoder

Verti.m Vertical Alphabet Regions Encoder

Diagonal.m | Diagonal Alphabet Regions Encoder

Kirsch.m Kirsch Edge Detector

Imgcomp.m | Image Compression

Profiles.m | Profiling Alphabet Smoothness, Width, and Height

24

3.5.1

Modified Alphabet Encoder Module

This module is written by treating input binary image as a
32x32 matrix. With MATLAB capabilities in manipulating matrix, the
horizontal, vertical and diagonal regions can be extracted and

computed easily.

Binary Image 32x32

Extract the required region by
define the number of marked bits
(vertical, horizontal and diagonai)

l

Calculate the Region
Feature Value
(Sum the 1’s, divide with
size of the region)

15 Floating Point Matrix

Figure 3.3: Modified Alphabet Module Algorithm

25

3.5.2 Kirsch Edge Detection Module

To implement this module, we need to use the MATLAB

Image Processing Toolbox because it involves image convolution.

Binary Ir @
h 4

MAX C eratio:. (o
combine pair images

Defined 8 Kirsch Edge
Detector Masks

h 4

A 4

Image Compression to reduce image
by 16 times using Image
Compression Module

Image Convolution Process using
Cony function

4x8x§ Floating
Point Matrix

Figure 3.4: Kirsch Edge Detection Module Algorithm

3.5.3 Image Compression Module

The algorithm of this module is implemented based on

the image compression formula.

Binaty or non-Binary Image

32%32 pixels
» Select a region 4%4
Repeat for 4
64 times Sum the region 1’s
and divide by 16

§x8 Floating Point Matrix

Figure 3.5: Image Compression Module Algorithm
26

3.5.4 Alphabet Profile Feature Module

The module will obtain the edge profile of the alphabet
by scanning line by line. Edge profile data will be differentiated

to obtain the smoothness alphabet profile.

Binary
Image

Detect the left, top, right and
bottom view edge by
scanning line by line

vertically and horizontally

h 4

Differentiate the edge raw
profile

Y

Obtain the maximum
differentiated edge raw
profile for each view

r

Right Edge — Left Edge =
Width

10 Floating
Point Matrix

Figure 3.6: Alphabet Feature Module Algorithm

27

3.6

Neural Network Architecture

To create the MLFF network, the network architecture must be well
defined. The number of neurons in the input layer is decided by th: aumbe: of
ptxel in the bitmap. The bitmap in handwriting recognition system consists of
345 pixels. Thus, we need 345 input neurons. The output layer has 26 neurons,
one neuron for each handwritten character to be recognized. As for the hidden
layer, the neurons in this layer cannot be observed through the input or output
behavior of the network. Complex patterns cannot be detected by a small
number of hidden neurons; however too many of them can dramatically
increase the computational burden. Furthermore, the greater the number of
hidden neurons, the greater the ability of the network to recognize existing
patterns. However, if the number of hidden neurons is too big, the network
might simply memories all training examples. Hence, we decide to fit 20
neurons in the hidden layer and it bring to 20x26 size of MLFF network was
created [2].

For the network training part, the MLFF network is trair 4 witk 30
sets of alphabets. For each training set, the training parameters are set as listed
in Table 3.2. The training parameter is set prior to the training phase. The

network is trained using backpropagation algorithm.

Table 3.2: Training Parameters

Training Parameters Command Line

Performance Function = Sum-Squared Error | net.performFcn = 'sse'

Goal: 0.01 net.trainParam.goal = 0.01
Epochs: 5000 net.trainParam.epochs = 5000
Momentum: (.95 net.trainParam.mc = 0.95

28

3.7

MATLAB GUI Module

This module is built using the MATLAB GUIDE (GUI Development
Environment). By providing an interface between the user and the
application's underlying code, GUIs enable the user to operate the application
without knowing the commands that would be required by a command line
interface. For this reason, applications that provide GUlIs are easier to learn
and use than those that are run from the command line. The sections that
follow describe how to create GUIs with GUIDE. This includes laying out the
components, programming them to do specific things in response to user

actions, and saving and opening the GUL

3.7.1 Creating GUI with Guide

MATLAB implements GUIs as figure windows containing
various uicontrol objects. Each object must be programmed to perform
the action we intend it to do when a user activates the component. In
addition, GUI must be able to save and run. All of these tasks are
simplified by GUIDE, the MATLAB graphical user interface

development environment.

GUIDE primarily is a set of layout tools. However, GUIDE
also generates an M-file that contains code to handle the initialization
and launching of the GUI. This M-file provides a framework for the
implementation of the callbacks where the functions that execute when

users activate components in the GUI [4].

29

3.7.2 The Layout Editor

The Layout Editor enables creator to select GUI components
(uicontrol objects) from the component palette, at the left side of
Layout Editor, and arrange them in the layout area, to the right. When
the Run button is pressed, the functioning GUI appears outside the
Layout Editor. Figure 3.7 shows the Layout Editor for handwriting

recognition system window.

#L ChnahrAmatlab\nnhrgul fig. .

o] Push Bufton

§ [Topgte Bution i
@® Radio Button
B4 Checkhox

WF Edit Taxt

411 Static Text

wi Slider

I Frame
= Listhox
=3 Papup btanu

ir] Aves - oo . -
Lk Recugmsag Alphabet: .

Conlidence level:

Substitution Level: R

Figure 3.7: GUI Layout Editor

The Property Inspector shown in Figure 3.8 enables creator to
set the properties of the components in your layout. It provides a list of
all settable properties and displays the current value. Each property in
the list is associated with an editing device that is appropriate for the
values accepted by the particular property. For example, a color picker
to change the BackgroundColor, a pop-up menu to set FontAngle, and

a text field to specify the Callback string.

30

iE[| uicontrol (Listbox1 “etter!™
(&~ BackgroundColor E 2
-~ BelngDeleted off i
; - Busydiction [Bqueue
- ButtonDownFen
- CData et @ i
T Calback N nnhrpath;sthox = fing
— Clipping o ~ ¥ on .
- CreateFen
~ DeleteFcn
Enable ; E] an
&) Extent IR et
- FontAngle [Enormal
- FontMame MS Sans Serif
-- FoniSize 8.0
- FontUnits E] points
-~ Fantweight E] normal
- ForegroundCalor ()
-~ Handlevisibility (vjon
e e .
R

Figure 3.8: Property Inspector

When a user activates a component of the GUI, the GUI
executes the corresponding callback. The name of the callback is
determined by the component's Tag property. For example, a push
button with the Tag print_button executes the callback. Refer to Figure
3.8. Once the push button is activated or whenever the button is
pushed, MATLAB will run the callback code [4].

31

3.8

Development of the Handwriting Recognition System

In the process of handwriting recognition development, some statistical
studies have to be done to test the network ability in recognition. The
handwriting recognition system was developed through several improvements
and modifications in order to increase its accuracy and reliability. Figure 3.9
shows the actual development of the system. The result can be referred to

Chapter 4.

Modified Alphabet

Encoder and Edge

Detection Method
+

MLFF Network

v

Changes to the
MLFF Network
Hidden Layer

Y

Modified
MLFF
Network

y

Statistical study on the
Feature Extraction
Matrix

!

Modified Alphabet Encoder, Kirsch
Edge Detection Method, Image
Compression and Alphabet Profile
Feature
+

Modified MLFF Network

Figure 3.9: Handwriting Recognition System Development

32

4.1

CHAPTER 4
RESULT AND DISCUSSION

Identify the Best Value for LOC and LOS

Statistical study was done to identify and choose the best value for
level of confidence (LOC) and level of substitution (LOS). These values are
important because it will affect the recognition performance of the system.
The experiment was done by performing the network simulation using
different value of LOC and LOS. The simulation was done on a program
which is written to recognize 26 upper case alphabets. (Refer to Ar- endix 7.4
for the program). The values chosen were depending on the recognition

accuracy. Values of LOC and LOS which give the highest recognition

accuracy will be identified. Please refer to Table 4.1 for the results.

Table 4.1: Results for Recognition Accuracy

% Recognition Level of Confidence
Accuracy 0.80 (.85 0.90 0.95 1.00

0.10 88.4615 | 92.3077 1 92.3077 | 88.4615 | 84.6154

g 0.15 73.0769 | 80.7692 88.4615 | 84.6154 | 84.6154

g 0.20 76,9231 1923077 1 96.1538 | 88.4615 | 84.6154

<

é 0.25 84.6154 | 76.9231 | 88.4615 | 84.6154 | 84.6154

E 0.30 84.6154 | 80.7692 | 92.3077 | 84.6154 | 84.6154

33

4.2

Determination of Threshold Value

% Recognition Accuracy

o Level of
Substitution

Level of Confidence

Figure 4.1: Determination of LOC and LOS

From Table 4.1 and Figure 4.1, we can say that the best value for level of
confidence is 0.9 and value for level of substitution is 0.2. Both of these values
give the highest percentage of recognition accuracy. Hence these values will
be used as a threshold value to compare with the simulation result for this

project.

Modified Alphabet Encoder and Edge Detection Method with MLFF
Network

The first step of handwriting recognition system development is to
create an initial handwriting recognition system by combining two feature
extraction methods. The two feature extractors are modified alphabet encoder
and edge detection. Modified alphabet encoder forms a 15x1 feature matrix,
while edge detection method supplies another 36x1 matrix, which gives to the

neural network a 51x1 input matrix.

34

As for the neural network, the MLFF network with size of 20x26 neurons is
used. The network is trained using BP algorithm. The total samples trained are

780 alphabets (30 sets of A to Z).

Then, the accuracy of the neural network is tested to recognize 780

trained alphabet and 175 untrained alphabets.

Table 4.2; System Accuracy Result

Input Neural Network | Output Accuracy
Modified 15x1 MLFF network: | Untrained Samples:
alphabet encoder 20%26 29.6970 %

Edge Detection | 36x1 Training: Trained Samples:
Total 531x1 BP algorithm 57.6923 %

In the fraining process, the network can not be trained to reach the
desired goal except for the first sample presented. As a result, the network
provide high error rate. Hence, the next step is to add more neurons or hidden

layer to the network,

Adding another Hidden Layer

A hidden layer had added to the network. The numbers of neurons

added are¢ 15. Thus, the size of the neural network now becomes 20x15%26

neurons. As for the input and feature extraction methods, they remain the

same. The network is then tested again using same inputs.

Table 4.3: System Accuracy Results

Input Neural Network | Output Accuracy
Modified 15x1 { MLFF network: | Untrained Samples:
alphabet encoder 20x15%26 21.2121 %

Edge Detection 36x1 | Training: Trained Samples:
Total 51x1 | BP algorithm 43.0769 %

35

4.4

Table 4.3 shows that by adding a hidden layer could not help in
increasing the recognition accuracy. As for the training process, the network

can not be trained to reach the desired goal.

Modified MI.FF Network

Based on the two systems in Section 4.1 and 4.2, the overall system
accuracy is very low. These maybe cause by feature extraction methods and
the neural network itself. Thus, the neural network is tested again by replaced
the neural network with Modified MLFF network. In Modified MLFF

network, each of the networks was trained with each pattern,

Table 4.4: System Accuracy Results

Input Neural Network Output Accuracy
Modified 15x1 | Modified MLFF network: | Untrained Samples:
alphabet encoder Sets of 20%26 networks 32,1212 %

Edge Detection 36x1 | Training: Trained Samples:
Total 51x1 | BP algorithm 69.7436 %

From Table 4.4, shows that the change of the neural network has
improved the accuracy rate on the untrained samples as well as trained
samples. Furthermore, the network training goal is met easily. However, the
accuracy of the system can be further improved by using good feature
extractors. Hence, the next step in the handwriting recognition system is to

select good feature extractors.

36

4.5

Statistical Study on the Feature Extraction Matrix

Six types of feature extraction methods are used. They are Modified

Alphabet Encoder, Edge Detection Method, Kirsch Edge Detection, Image

Compression, Line Intersection Feature, and Alphabet Profile Feature.

The purpose of this statistical study is to analyze the feature matrix for

each of the 26 classes of alphabet. There are two statistical tests implemented.

The first is standard deviation test on the same classes. The second is standard

deviation test on the different classes.

4.5.1 Standard Deviation Test on the Same Classes

This is to test the reliability of the feature extraction method.

We know that features for the same class should be similar to each

other. Therefore, we want to look for a low standard deviation.

Table 4.5; Standard Deviation Test Results

Input Test Output Comment
Standard deviation on same | Average
classes Standard
Deviation
Modified Alphabet Encoder 0.1260 Good
Training Sets: [Fdee Detection Method 0.1371 Ok
754 alphabets | Kirsch Edge Detection 0.1060 Good
Line Intersection 0.1516 Ok
Image Compression 0.2515 Ok
Alphabet Profile Feature 0.1570 Ok

37

4.6

4.5.2 Standard Deviation Test on the Different Classes

The purpose of this test is to determine the degree of

discrimination among the different classes. Therefore, we want to look

for high standard deviation because features from different classes are

significantly different.

Table 4.6 Standard Deviation Test Results

Input Test QOutput Comment
Standard deviation on Average
different classes Standard
Deviation
Modified Alphabet Encoder 0.1941 Ok
Training Sets: | Edge Detection Method 0.2177 Ok
754 alphabets | Kjrsch Edge Detection 0.1291 Ok
Line Intersection 0.1925 Ok
Image Compression 0.3751 Geod
Alphabet Profile Feature 0.2782 Good

Based on the results above, feature extraction method that gave

the good performance in standard deviation test on the same classes

and different classes will be identified. Hence, Kirsch Edge Detection,

Image Compression, Modified Alphabet Encoder, and Alphabet Profile

Feature methods are chosen,

Final Handwriting Recognition System

The final proposed handwriting recognition system incorporates
Medified Alphabet Encoder, Kirsch Edge Detection Method, Image
Compression, and Alphabet Profile Feature with Modified MLFF as the

network. The system is tested with the trained and untrained samples yet

again. Table 4.7 shows the results of the simulation.

38

4.7

Table 4.7 Final Proposed Handwriting System Accuracy

Input Neural Network Output Accuracy
Modified 15%]
alphabet encoder Untrained
Klrsch.Edge 256x1 Modified MLFF network: Samples:o
Detection 76.6127 %

Sets of 20x26 networks
Image 64x1 Trainine:
Compression Blf al ogr.i thm Trained Samples:
Alphabet Profile | 10x1 g 91.6127 %
Feature
Total 345x1

The system has an acceptable accuracy rate for the untrained and
trained samples. However, misclassification can be looked into to increase
accuracy. A further improvement has to be implemented to improve the

recognition performance of the system.,

Recognition Error Analysis

Most of the recognition error comes from failure to recognize a few

specific letters such as F, D, G, and N.

The system has the highest failure rate when it is presented with letter
F. The main reason of the failure is the system basically fails to differentiate
letter F from P. The same situation occurs when recognizing letter D. This is
again it fails to differentiate letter D from O. The system also fails to
recognize letter N from H. The suspected main reason of recognition error is
because the system fails to detect curves lines in letters such as D, G, P, and O.
One of the unique features which have not been analyzed is recommended to
solve this problem. The method mentioned is Euler method. It involves in
extracting the image by considering the number of island of each unique
character. Notice that most of the characters failed to recognize have same
characteristic, where all of them have one island. Thus, by adding Euler
method in the feature extraction will help in increasing the recognition

accuracy.

39

4.8

4.9

Testing and Simulation Network Modules

The testing and simulation module combines the image processing,
feature exfraction, and neural network module together as a handwriting
recognition system. It also supplies inpuf from any grayscale alphabet bitmap
file to the system. To test network accuracy, the trained and untrained sets of

alphabets were used as the input to the neural network. Refer Appendix C4,

C5 and C6 for further details on the modules and the results.

Identified Neural Network Modules

The Neural Network modules have two main modules. The first

module is to define and train the neural network. The second is for test and

simulation purposes. Table 4.8 shows the modules involved.

Table 4.8: Summary of Neural Network Module

M File Function

Nnhrl.m Defining the training feature matrix and target
Nnhr2.m Training the network

Nnhr3.m Defining the network architecture

Simhri.m | Simulate one set of alphabet A~Z

Simhr2.m Simulate one alphabet

Simhr3.m | Simulate the training set (30 sets of alphabet A~Z)
Simhrd.m | Simulate the untrained sets (195 letters).

Neural Network
Module
v v
Defining and Training Testing and Simulation
Network Module Network Module
mnhrl.m simhrl.m
nnhr2.m simhr2.m
nnhr3.m simhr3.m

Figure 4.2: Neural Network Module

40

The final handwriting recognition system consists of four main

modules. They are Image Processing Module, Feature Extraction Module,
Neural Network Module and MATLAB GUI Module as shown i rigure 4.3.

Each module has its own functionality in the handwriting recognition system.

MATLAB Handwriting
Recognition System

v

v

Image
Processing
Module

Feature
Extraction
Module

Imgpro.m

Figure 4.3: Final Handwriting Recogaition Module

Featext.m
Horin.m
Verti.m

Diagonal.m
Kirsch.m
Imgcomp.m
Profiles.m

41

y

v

Neuwural
Network
Module

nnhrl.m
nnhr2.m
nnhr3.m
simhrl.m
simhr2.m
simhr3.m
simhr4.m

MATLAB
GUI
Module

nnhrgui.m

31

CHAPTER 5
CONCLUSION AND RECOMMENDATION

Conclusion

Handwriting recognition has become an important field of research,
because of its potential to overcome the obstacles placed by current interface
methods and it power to further integrate computers into everyday life. The
benefits of using artificial neural network for the purpose of handwriting
recognition become clearer as technical advances are made. Neural network
based character recognition is a viable procedure for large scale document
processing applications. However, to be successful, it has to be tightly coupled
with image processing and feature extraction components. Faulty bitmap

extraction can render a highly efficient network recognizer useless.

This project is completed with the help of MATLAB. It has shown that
MATLAB is a very powertul software tool to develop a complex - ystem vet
easy to program. With a short and simple coding, a constrained and isolated
handwriting recognition system for English uppercase alphabets has been
implemented. Based on the research and statistical study, it shows that with
good feature extraction and neural network scheme will bring to high
recognition accuracy. It has also been shown that there is a need to select good
feature extractor so that unique features of an alphabet can be highlighted.
Furthermore, the MATLAB GUI is a very useful tool to display the

handwriting recognition output or resuits.

42

5.2

With the combination of image processing, feature extraction and
artificial neural network, this project able to achieve the recognition accuracy
at 70%. Hence, some improvement and modification has to be made to

increase the system ability and performance.

Recommendations

The system accuracy can be increased through coliection of a large
number of handwriting samples. This is vital to the system because it needs to
be trained with a variety of handwriting so that it is able to recognize different
types of handwriting. As for now, the system is only able to recognize
constrained type of handwriting because the training set used is from the
constrained type of handwriting. Thus, the system will perform poorly when it
is presented with the unconstrained handwriting. The recommended size for

the handwriting database is around 1000 sets.

Another factor to consider is the type of neural network because it can
affect accuracy greatly. The neural networks that had been explored are Multi
Layer Feed forward Network (MLFF) and Modified MLFF network. Even
though the Modified MLFF network has its own advantage, further analysis of
different neural network architecture can improve the system ability.
Unsupervised and combination of supervised and unsupervised neural network
such as Self-Modified Mapping (SOM), Fuzzy Adaptive Resonant Theory
(Fuzzy ARTMAP), and Learning Vector Quantization (I.VQ) can be studied.

Since this project is only designed to recognize 26 isolated English
upper case A to Z, it is recommended that modifications and improvements be
made to this project to recognize a word instead of a character. This
modification can be complemented with efficient techniques of feature
extraction and character segmentation. The word is separated automatically
into isolated character before it is used for recognition. This will be an

interesting handwriting recognition project.

43

[2]

[4]

[6]

[7]

REFFERENCES

Demuth and Beale. 1998, Neural Network Toolbox User’s Guide, MA, The
Math Works Inc, pp 1-3.

Negnevitsky. 2002, Arrificial Intelligence: A Guide to Intelligence Systems,
England, Pearson Education. Pp 163-214,

2002, MATLAB Image Processing Toolbox User Guide. Version 3. The Math
Works Inc,

2002, MATLAB Creating Graphical User Interfaces. Version 6. The Math
Works Inc.

Andrew T. Wilson. ‘Off-line Handwriting Recognition Using Artificial Neural
Networks’. University of Minnesota, Morris.

I1-Seok Oh and Ching Y. Suen, 2000, ‘A class-modular feedforward neural
network for handwriting recognition’. Department of Computer Science,
Chonbuk National University, Chonju, Chonbuk 561-156, South Korea and
Centre of Pattern Recognition and Machine Intelligence, Concordia

University, Montreal, Quebec, Canada.
Jung-Hsien Chiang, 1997, ‘A hybrid neural network model in handwritten

word recognition’. Department of Information Management, Chaoyang of

Technology, Taichung, Taiwan.

44

[8]

(9]

[12]

Spitz. and Dengel. 1995, Document Analysis Systems, Singapore, World

Scientific.

Y. Mizukami. 1998, “A Handwritten Chinese Character Recognition System

Using Hierarchical Displacement Extraction Based on Directional Features.”

Pattern Recognition Letters. Vol.19. Elsevier Science Ltd.

J. Dorronsoro G. Fractman, ‘Large Scale Neural Form Recognition’. Spain,

Toshihiro Suzuki. ‘A Handwritten Character Recognition System bv Efficient

Combination Of Multiple Classifiers’.

Internet Sources:

1.

2
3
4,
5

http://www.ph.intudelft.nl/pr-intro.htm|

. http://'www.elsevier.com

. http://www.cairo.utm.my

http://www.mathworks.com

. http:/iwww.idiap.ch

45

APPENDIXES

Appendix A Image Processing Module

A.1 Imgpro.m Function Script

%Input : Grayscale kitmap image

$Output : Noiseless binary image

$Process : Image Processing using noise reduction, ROI,
resizing and thresholding

function imgalpha = imgpro(gryimg)

thresb = [];

rec = [};
imgalpha = imread(gryimg) ; $read image file
imgalpha = wiener?2 (imgalpha, [5 5]); treduce noise
imgalipha = not{imZ2bw{imgalipha,0.5)); %threshold image
at 0.5
[v,x] = find({imgalpha):
rec = [min{x) min{y} max({x)-min(x) max(y)-min(y)];
1f rec(3) < 12;
rec(3) = 12;
[cgx,cgy] = center{imgalpha):;
rec(l) = cgy - 6;
end
imgalpha = imcrop{(imgalpha,rec); %ROI znalysis
imgalpha = imresize {imgalpha, [32 321, 'nearest’');

fresizing image to 32X32
imshow {imgalpha) ;

46

Appendix B Feature Extraction Module

B.1 Featext.m Function Script

%Input : Image filename
FOutput : Feature matrix

%Process : Feature extraction - modified alphabet
$encoder, modified alphabet encoder, image compression
%and kirsch edge detection

function p = featext (pixalpha)

alpha = imgpro(pixalpha); $read image alphabet
h = horin(alpha);
v = verti(alpha);

d = diagonal (alpha); smodified alphabet encoder
pro = prefiles (alpha); smodified alphabet encoder
img = imgcomp (alpha); $image ccmpression

img = imZcol (img, [8 8], 'distinct');
[hd, vd, rdd,1dd] = kirsch(alpha); $kirsch edge detection
p = [h,v,d, hd,vd, rdd, 1dd, img"',pro] '; $neural network input

B.2 Horin.m Function Script

FInput : Image matrix 32X32

$0utput : Horizontal feature matrix 1X3

%Process : Extract horizeontal feature for Modified
Alphabets Encoder

function h = herin(alpha)

hl = [];

h2 = [];

h3 = []; $initialized horizontal matrix
hl = alpha(l:9,:); ¢find the hl region
hl = sum(hl);

hl = hl';

hl = sum{hl)/288; gsum all 1

hz = alpha(10:23,:); $find the h2 region
h2 = sum{h2);

h2 = h2';

hZ = sum(h2)/448; %sum all 1

h3 = alpha(24:32,:}); $find the h3 region
h3 = sum(h3);

h3 = h3';

h3 = sum(h3)/288; Fsum all 1

h = [hl h2 h3]; $horizontal matrix

47

B.3 Verti.m Function Script

$Input Image matrix 32X32

FCutput Vertical feature matrix 1X8

$Process Extract vertical feature for Modified Alphabet
Encoder

function v = wverti(alpha)

vl = []:

v2 = [];

v3 = [];

vd = [];

v5 = [1;

ve = [];

vl = [1:

v8 = []; $initialized vertical matrix
vl = alpha(l:13,1:10); $find the vl region

vl = sum({vl);

vl = vl';

vl = sum{vl)/130; $sum all 1 divide region _ize
vZ2 = alpha(1:19,11:22); %$find the v2 region

v2 = sum(v2);

ve = v2';

v2 = sum(v2)/228; $sum all 1 divide region size
v3 = alpha(1:13,23:32}; %find the v3 region

v3 = sum(v3);

v3 = v3';

v3 = sum(v3)/130; $sum all 1 divide region size
vd = alpha(14:32,1:10); %find the v4 region

vd = sum(vd);

vd = v47';

vd = sum{vd)/190; gsum all 1 divide region size
v5 = alpha(20:32,11:22); %find the v5 region

vh = sum{vbh);

v = vh';

v5 = sum(vh)/156; $sum all 1 divide region size
ve = alpha(14:32,23:32); %find the vé region

v6 = sum(vd};

ve = ve';

ve = sum(vé)/190; Fsum all 1 divide region size
v7 = alpha(1:15,20:32}); %find the v7 region

v7 = sum(v7);

vi = vil';

v7 = sum{v7)/195; Ssum alli 1 divide region =size
v8 = alpha{20:32,1:15); %find the v8 region

v = sum(v8):;

v8 = v8';

v8 = sum{v8)/195; gsum all 1 divide region size
v = [vl,v2,v3,v4,v5,v6,v7,vE8]; fvertical matrix

48

B.4 Diagonal.m Function Seript

Extract diagonal feature for Modified Alphabet

FInput Image matrix 32X32

%0utput Diagonal feature matrix 1X4
$Process

Encoder

function d = diagonal (alpha)

dl = [1;
dz = [1;
d3 = []:
dd = []; $initialized diagonal matrix
temp = [];
for n = 1:4
temp = alpgha(n,l:n+4);
dl = [dl temp]l:; %find the dl region from row 1 to 8§
temp = alpha{n,29-n:32);
d2 = [d2 temp]; %find the d2 region from row 1 to 8
end
for n = 5:12
temp = alpha(n,n-4:n+4);
dl = [dl temp]:; %find the 41 region from row 9 to 24
temp = alpha({n,2%-n:37-n);
dZ2 = [dZ temp]; %find the d2 region from row 9 to 24
end
for n = 13:16
temp = alpha{n,n-4:16);
dl = [d]l templ; %find the dl region from row 25 to 32
temp = alpha(n,17:37-nj;
d2 = [d2 templ; %find the d2 region from row 25 teo 32
end
dl = dl';
dl = sum(dl)/size(dl,1); Fsum all 1 divide dl size
dz = dz2';
d2 = sum(d2)/size(d2,1); $sum all 1 divide d2 size
for n = 17:20
temp = alpha(n,28-n:16);
d3 = [{d3 temp]; %find the d3 region from row 33 to 40
temp = alpha(n,l7:n+4);
dé4 = [d4 temp]; %find the d4 region from row 33 to 40
end
for n = 21:28
temp alphai{n,29-n:37-nj;

d3 = [d3 temp]; %find the

d3 region from row 41 to 56

49

temp = alpha(n,n-4:n+é);
dd = [d4 temp]; %$find the d4 region from row 41 to 56
end

temp = [];
for n = 29:32
temp = alpha(n,1l:37-n);
d3 = [d3 temp]; %find the d3 region from row 57 to 64
temp = alpha{n,n-4:32);
d4 = [d4 temp]; %find the d4 region from row 57 tc 64
end
d3 = d3';
d3 = sum{d3)/size(d3,1); %sum all 1 divide d3 size
dd = d4';
d4 = sumi{d4)/size(d4,1l); %sum all 1 divide d4 size
d = [dl d2 d3 d4]; ¢diagonal matrix

B.5 Kirsch.m Function Script

$Input : Image matrix 32X32
$Output : Kirsch Edge feature matrix 1X320

$Process : Extract edge feature for Kirsch Edge Detector

function [hd,vd, rdd, ldd] = kirsch(alpha)

mhl = 1/15 * [5 5 5
-3 0 -3
-3 -3 -3);
mh2 = 1/15 * [-3 -3 -3
-3 0 -3
5 &5 53; thorizontal mask matrix
mvl = 1/15 * [-3 -3 5
-3 0 5
-3 =-3. 5];
mvz = 1/15 * [5 -3 -3
5 0 -3
5 -3 -31; $vertical mask matrix
mrdl =1/15 * [-3 5 b5
-3 0 5
-3 -3 -31;
mrd2 =1/15 * [-3 -3 -3
5 0 -3
5 5 -=-31; %right diagonal mask matrix
midl =1/15 * [-3 -3 -3
-3 0 5
-3 5 51;

50

mld2? =1/15 * [5 5 -3
5 0 -3

-3 -3 -31; 3left diagonal mask watrix

hdl = conv2(alpha,mhl, 'same"')

hd2 = conv2{alpha,mh2, 'same');

vdl = conv2{alpha,mvl, 'same"')
)

il

vd2

hd = max(hdl,hd2);
vd = max(vdl,vd2);
rdd = max (rddl, rdd2) ;

ldd = max(1ddl, 1ddz;};
figure(2);

imshow (hd) ;

figure (3);

imshow (vd) ;

figure (4):

imshow (rdd} ;

figure (5);

imshow (1dd) ;

hd = imgcomp (hd) ;

vd = imgcomp (vd} ;
rdd = imgcomp{rdd);
1ldd imgcomp (1dd) ;

conv2{alpha,mvZ, 'same’

rddl = conv2{alpha,mrdl, 'same
rdd?2 = conv2{alpha,mrdZ, 'same'
1lddl = convZ{alpha,mldl, "same'
1ddZ = convZ{zalpha,mldZ, 'same'

r

I

-~

r

r

r

; %image convolution

—— et et e

$max operation

$show image convolution results

%image compression

hd = im2col (hd, [8 8], 'distinct'};

imZ2col (vd, [8 8], 'distinct'});

rdd = im2col (rdd, [§ 8], 'distinct');

vd =

ldd =

hd = hd';
vd = vd';
rdd = rdd';
1dd = 1ldd’';

im2col (1dd, [8 8], 'distinct'); %change image

matrix 8X8 to 64X1

$kirsch feature matrix

51

B.6 Impcomp.m Function Script
$Input Image matrix 32X32
$0utput Compressed Image B8X8
3Process Compress Image 32X32

compression fcrmula
function out

to 8X8 using the

imgcomp (in)

$implementing the
compression formula

Alphabet profile feature matrix 1X10
Extract smoothness, width, and height alphabet

out = [];
for 1 = 1:8
for 3 = 1:8
temp = in(4*1-3:4*%i,4%3-3:4%7);
temp = sum{temp);
out(i,j) = sum(temp')/16;
end
end
B.7 Profiles.m Function Script
FInput Image matrix 32X32
FOutput
$Process
profile

function pro

r = ¢nes(1,32)*32;
t = cnes(1,32)*32;
1 = cones(1,32)*32;
b = ones(1,32)*%32;
for nl = 1:32
for n2 = 1:32
if alpha(nl,n2)
ri{ni)
break;
end
end
end
for nl = 1:32

profiles (alpha)

ginitialize right, top, left,

and bettom raw profile

scheck to find the edge from
right boundary

== 1
nz2-1;

$keep the length from
right beoundary to edge

for all rows

52

for n2 = 1:32 %check to find the edge from top
' boundary
if alpha(n2,nl) == 1
t{nl) = n2-1; %keep the length from
teop boundary to edge
fcr all columns
break;
end
end
end

for nl = 1:32
for n2 = 1:32 %check to find the edge from
left boundary
if alpha(nl,33-n2) ==
1{nl) = n2-1; %keep the length from
left boundary to edge
for all rows
break;
end
end
end

for nl = 1:32
for n2 = 1:32 $check to find the edge from
becttom boundary
if alpha(33-nZ,nl) ==
b(nl) = n2~1; %keep the length from
bottom boundary to
edge for alil columns
break;
end
end

wid =32-[le)+r(6)l{le)+r(le)l(26)+r(26)];%width profile
hei =3Z2-[t (6)+b(6)L(16)+b(16)L(26)+b(26)] ;%height profile

r = diff({r);

t = diff(t);

1 = diff(l);

b = diff(b); %alphaket smoothness prcfile

pro = [max(r) max(t) max{l) max(b) wid hei};

pro = pro/32; %alphabet profile feature matrix

53

Appendix C Neural Network Module

C.1 nphrl.m Function Script

FInput : A-7 bitmap picture file
FOutput : Each alphabet feature matrix and their target
%Process : Feature Extraction

o\®

- Modified Alphabets Encoder
- Edge Detection Method
Target Matrix - a identity matrix 26X26

o@

o\@

function [alphabets,target] = nnhrl¢)

temp = [1;

alpha = []; ginitialize

pixalpha = { 'a.bmp' 'b.bmp' 'c.bmp' 'd.bmp' 'e.bmp'

"T.bmp' 'g.bmp' 'h.bmp' 'i.bmp' 'j.bmp' 'k.bmp' 'l.bmp’
'm.bmp' 'n.bmp' 'o.bmp' 'p.bmp' 'g.bmp' 'r.bmp' 's.bmp'
't.bmp' 'u.bmp' 'v.bmp' 'w.bmp' 'x.bmp' "y.bmp' 'z.bmp'
P
for n = 1:26

temp{n} = featext{pixalpha{n});
end
alphabets =
[temp{l}, temp{2},temp{3},temp{4},temp({5},temp{6}, temp{7},
temp{8},temp{9}, temp{10}, temp {11}, temp{12)},temp{12’,tem |
14}, temp {15}, temp{1l6},temp{17},temp{18},temp{i9}, temp{20}
rtemp {21}, temp {22}, temp{23},temp {24}, temp{25},temp{26}]
target = eye{26); %talphabelts target

C.2 nnhr2.m Function Script

(Create 29 MLFF 20XZ€¢ neurons
$Train each of the network with each pattern
nnhrpath;
fcrn = 1:30
dos (letpat{n});
[alphabets, targets]=nnhrl; %call alphabet and target
net=newff (minmax {alphabets), [20
261,{'legsig', 'logsiqg'}, '"traingdx'); $create MLFF
net.LW{2,1} = net . LW{2,1}*0.001;
net.b{2} = net.b{2}*0.001;
net.performFcn = 'sse';
net.trainParam.goal = C.001;
net.trainParam.show = 20;
net.trainParam.epochs = 5000;
net.trainParam.mc = 0.95;
[net, tr] = train(net,slphabets,targets)
save (nn{n}, 'nat'};
End

54

C.3 nnhr3.m Function Script

$Input : Feature matrix

$0utput : Recognized letter

$Process : Mcdified MLFF will simulate with a new
% neural network if the confidence and
substitution level is not met.

function [alphanum,confi,unconfi,num,n] = nnhr3(p)
alphaconfi;

alphaunconfi;

nnhrpath;

alphanum = 27;

confil = alphacenfi(27);

unconfi = alphaunconfi(27);
con = [];

uncon = {];

alphanumber = [];

n=1; Finitialize

num = randperm (nnum);

while ((n <= nnum) & ((confi <= alphaconfi{alphanum)) |
(uncenfi >= alphsunconfi (alphanum))))
load (nn{num(n)}):; %load neural netwcrk randomly
a = sim{net,p); %simulate one letter
[confi,alphanum] = max(a):; 3y max a - level of
confidence
unconfi = sum(a(l:alphanum-1)) +
sum{a {alphanum+1:26)); %$level of substitution
con({n) = confi; %save confidence, substitution,
recognized letter
unconi{n; = unconfi;
alphanumber{n) = alghanum;
n=n+1; $8ystem will simulate with a new
neural network
end %1f the confidence and
substituticon level is not met,
if {n == (nnum+l)) 2if confidence and substitution
level below threshold value
[confi,n] = max(con./uncon); %find the pair of highest
confidence and the
confi = con{n); %lowest substitution for all the
neural network
unceonfi = uncon{n}; %assign confidence,

substitution, recognized letter
alphanum = alphanumber (n);
end

55

C4 simhrlm Scfipt

%Input : One set of A-7Z image bitmap
gCutput : Detected letters, level of confidence, level
of substitution, accuracy
%Process : Simulation of MMLFF netwerks for cne set of
alphabets (A~7)
pass = 0;
output = [];
letter = [];
confi = []:
unconfi = []; %initialize
pixalpha = { 'A.bmp' 'B.bmp' 'C.bmp' 'D.bmp' 'E.bup’
"F.bmp' 'G.bmp' 'H.bmp' 'I.bmp' 'J.bmp' 'K.bmp' 'L.bmp'
'M.bmp' "N.bmp' 'O.bmp' 'P.bmp' 'Q.bmp' 'R.pbmp' 'S.bmp!
"T.bmp' "U.bmp' 'V.bmp' 'W.bmp' 'X.bmp' 'Y.bmp' 'Z.bmp'
L

;liletter =]: IA! I'B'I lC'I 'ID! lE'I IFl’ lG! 'IHI II'I lJ’l’ 'l'k‘l
lLl IMI I'NI IOI‘ !PI‘ 'IQI 'IR'I !Sl 'ITI l'U! !V'l IW! 'IXI I'Y'l
lZI }I".
for n = 1:26 $loop 26 time for each
letter

correct = 1;

p = featext(pixalphain}):;

[alphanum, con,uncon} = nnhr3(p);

letter = allletter{alphanum); $selecting the letter

according alphanum

confi{n} = con;
unconfi{n} = uncon;
output{n} = [pixalpha{n} ' ~> ' letter];
if n == alphanum
pass = pass + 1; Fsum of letter correct
correct = 0;
end
end
cutput = [output' confi' unconfi']
accuracy = pass / 26 * 100 tcalculate accuracy

56

C.4.1 simhrl.m Recognition Output

output=

'A
'B
C
'D,
'E
'F.
'G
'H
'T
'J.
"K.
'L.
™M
'N.
0.
P
0.
'R.
'S
'T.
‘U,
V.
"W.
"X
'Yy,
'Z

accuracy =

86

,bmp ~>
.bomp ~>
g ~>

bmp ->

Jomp ~>

bmp ->

.bmp >
.bmp ->
Jomp ->

bmp ->
bmnp ->
bmp ->

Jomp ->

bmp ->
bmp ->

bmp ->

bmp ->
bp ->

Lomp ~>

bmp ->
bmp ->
bmp ->
bmp ->

.bmp ->

bmp ->

ome ->

.1538

Al
Bl
C'l
D'l
EI
Fl
GI
Hl
Il
Jl
Kl
Ll’
Ml
N'l
O'I
P'l
QI
Rl
Bl
Tl
U!
V!
Wl
Xl’
YI
Zl

57

.9364]
.9829]
.8775]
.9828]
.B755]
L9214]
.8958]
.9811]
.9706]
.9886]
.9916]
.9776]
.9908]
.9276]
.9965]
.9870]
.9331]
. 98327
.8910]
L9577]
.9405]
.9734]
.992¢0]
.9784]
.9901]
.9797]

OO o OO oo

e I I R e e el e e e N e p—
OO CCoC oo oo

L0422]
.0242]
.1250]
.0303]
.0107]
.0052]
.0159]
.0787]
.0231]
.06920]
.0350]
.0187]
.G456]
.1603]
.0477
.0225
L1718
.0343
.0102
.0410
L0131
.1081
.0332
.0509
.0449
.0188]

[T Y I B P S R S G S

C.5 simhr3.m Script

$Input : 30 set of A-7 image hitmap

$Cutput : Detected letters, level of confidence, level
of substitution, accuracy

$Process : Simulate the training set (30 s=ts of alphabet
A~7}

nnhrpath;

pass = 0y

pixalgha = { 'A.bmp' 'B.bmp' 'C.bmp' 'D.bmp' 'E.bmp'
'"F.bmp' 'G.bmp' 'H.bmp' 'I.bmp' 'J.bmp' 'K.bmp' 'L.bmp'’
'M.bmo' 'N.bmp' 'C.bmp' 'P.bmp' 'Q.bmp' 'R.bmp’ 'S.bmp'
'T.brmp' 'U.bmp' 'V.bmp' 'W.bmp' 'X.bmp' 'Y.bmp' 'Z.bmp’
b

allletter e [!A'l lBI ICI I‘DI lEl’ !Fl IGI IH'I III 'IJI lKl
IL! !M'I lNl’ !O! IPI lQl I'Rl lSl 'Tl IUI' IV! 'IWI !X'l lYl’
IZI]l;

for numpat = l:nnum
dos (letpat {numpat});
for n = 1:26 $loop 26 time for =ach letter

correct = 1;
p = featext(pixalpha{n}):
[alphanum, confi,uncenfi] = nnhr3(p);
letter = allletter{alphanum}; %selecting the
letter according

alphanum
if n == alphanum
pass = pass + 1; $sum of letter correct
correct = 0;
end
end
passes{numpat} = pass - 26* (numpat-1);

end
aveaccuracy = pass/(26*nnum)*100C

C.5.1 simhr3.m Recognition Qutput

Output=

91.6127

58

C.6 simhr4 Script

$Input : 30 set of A-Z image bitmap

FOutput : Detected letters, level of confidence, level

of substitution, accuracy

%Process : Simulate the training set {30 sets of alphabet

A~7)

answer = { "GOHSIEWYIN'...
'"BEHTEOWKIAZK'., ..
"THANKHCONGHON', ..
"RILLYYEQOHMENGHUI'. ..
TONGKARSENG'. ..
'LIMYANHUANG'. ..
'LEETSEWENG'. ..
'LIMKHATHONG'., ..
'"LIMCHEEWEE'. ..
"NGKOKTHONG' . ..
'CHANNEENEE ' . ..
"HEECHEELEONG!' . ..
'"CHONGTINGWEN'. ..
'PANGPINSENG'. ..
'TEHKEEPIN' }i

total = 0;

pass = 0;

ntest = size(answer);

output = [];

letter = [1;
confi = [];
unconfi = []; $initialize
allletter = | 'ABCDEFGHIJKLMNOPQRSTUVWXYZ']
for numtest = l:ntest(2)
path = ['c:\nnhr\alphabets\'answer{numtest}'*.bmp'];

nunchar = size{dir(path));
dos{{'copy ' path ' c:\nnhr\alphabets']);
for n = l:numchar{l}
pixalpha = [num2stri{n) '.bmp']:
p = featext{pixalpha):
[alphanum, con,uncon] = nnhr3(p);
letter = allletter{alphanum); %selecting the letter
according alphanum
confi{total+l} = con;
unconfi{total+l} Uncon;

Il

output{total+l} = [pixalpha ' -> ' letter];
total = total + 1; ‘
if answer{numtest} (n) == letter
pass = pass + 1; $sum of letter cgorrsct

correct = 0;
end end end
output = [output' confi' unconfi']
accuracy = pass/total*1l00

59

C.6.1 simhrd4.m Recognition Output

output

'1
'2
'3
T4
'5
'6
17
'8
'9

"1
"2
'3
"4
'S5

17
'8
'9

1
12
'3
4
15
'6
7
'8
‘9

'l
'2
'3
4
'5
'6
"7
'8
"9

.bmp
. omp
L bmp
. bmp
.bmp
Lbmp
.bp
. bmp
.bmp
"i0.bmp -> N!
.bmp
. bmp
.bmp
.bmp
.bmp
'5.

bmp

elie]
.bmp
.bmp
'10.bmg ~-> A'
'11.bmp -> K!
. bmp
.bmp
. bmp
Lomp
Lbmp
Lbmp
.bmp
.bmp
. bmp
"I0.bmp -> H'
"11.omp ~-> C!
'12.bmp -> HY
.bmp
.bmp
.bmp
.bmp
. bmp
.bmp
.bmp
. omp
.bnp
'10.bmp -> M'
'"11.bmp -> E'
'12.bmp -> N'

—->

—->

Gl
Ol
Hl
Sl
B'l
E'I
D1
Y'
II

Bl’
El
R\‘
TI
El
O'
Wl
Kl
Il

T!
H!
A!
H'l
K'l
HI
OI
QI
Ul

Br
Il‘
L!
L!
Y!
Yl
El
Ol
Hl

.8899
.9308
L8783
.8170]
.8642]
.9050]
.15G4]
.9489]
.948¢]
.969¢]
.8814]
. 9513]
.8657]
L9715
L9513
. 9880
L0081
.8851]
.9053]
.993%]
L9177]
.9938]
. 94211
. 88851
.9274]
.9861]
.9535]
L9731]
.4275]
.7581]
.8098]
.9143]
.52631]
. 98531
.9730]
.9913]
.8343]
.9818]
.8710]
.9826]
.9149]
.9936]
.87841
L9826]
.9884]

— e s

T e T e e M e I e S e I e B e T e I e B e B e e T e T e B T e T s T e T e, T B s T e T i B e T e B s T s B s S s, T s B s T e T s B e S e e

DO OO0 000 C OO OO 000D C OO0 00O OO OO0 0CO0O00 OO0 0O00O0COCCOoO0O0OoOOC O

"13.bmp -> O
'14.bmp -> H'
"15.bmp -> U7
'le.bmp -> I!
'I.bmp ~-> O
'Z.bmp -> O
'3.bmp -> F!
"4 . bmp -> A
'S.bmop -> A
'6.bmp -> F'
"7.op -> I
'8.bmp -> B!
'S.bmp -> O
'10.bmp -> F!
'l.bmp -> L'
'2.bmp -> 1!
'3.bmp -> M!'
"4,bmp -> Y!
'S.bmp -> Q'
'6.brp -> N
'"7.bmp -> V!
'8.bmp -> K!
'O.bmp -> Q!
'10.bmp -> N!
'"11.bmp -> Q!
'l.pmp -> L!
'2.bmp -> E'
'Z.bmp -> E!
"4 . bmp -> T!
"S5.bmp -> I
"6.bmp -> B
"7T.bmp -> U
'8.bmp -> V'
'S.bmp -> U'
'10.bmp -> G'
'1.bmp ~> L'
"2.bmp -> I
'3.bmp -> M
4 . bmp -> K!
'S.bmp -> H'
'C.bmp -> A
'7.bmp -> I
'8.bmp -> H'
'.bmp ~-> C!
"1C.bmp -> N'
"11.bmp -> G'

"l.bmp -> L'

'2.bmp -> I
"'3.bmp -> M'
"4 . bnp -> C

O DO OO0 OO0 C OO0 OO 0o0O
o
[N
W
[ty
—

0.2164]
8.0795e~004]
0.1715]
0.0327]
0.0313]
8.0795e-004]
.1715]
.0023]
.2053]

.0844]

.0934]

.0842]
.0445]
.0214]

L 0 e B e e S e B e e B s B s B e T T et B s B s T s T e B s T e B e B e I e T e T e B I e B i T e T e TR T T T e T s TN e T SO UU N U,

SO0 0000000000 OOO0O0COOO0O000O00
(]
w
(0]
o

'5.bmp n’
"6, bmp E'
V7. bmp ET
'8.bmp W'
"9.bmp E'
"10.bmp -> ET
'1l.bmp !
'2.bmp c'
'3.bmp K’
"4 . bmp o'
'S bmp K!'
'6.bmp T
"7, bmp B!
'8 . bnp D!
"9 . bmp N
'10.bmp -> C!
'1l.bmp c!
V2. bmp H'
'3.bmp al
"4 bmp N'
'5.bmp N
'€.bmp E'
'7.bmp E'
'8 .bmp N'
"9 . bmp B!
'1C0.bmp -> E'
'1.bmp H!
'2 . bmp B!
'3 . bmp B!
'4 . bmp c!
'S5, bmp H'
'6.bmp E!
'7.bmp E!
'8.bmp L'
'S.bmp -> E!
"10.bnp -> O
'11.bmp -> N'
'12.bmp -> G
"1.bmp -> ¢!
2. bmp H!
'3.bmp 0!
"4 . bmp N'
'5.bmp o'
'6.bmp T'
"7 .bmp I
'8.bmp N'
"9, bmp o
"10.bnmp -> Q'
'11.bmp -> E'

'12 . omp -> N

R P I ST I I e e e e e e e e e E e T T e T e B e R e B B R I R T T T e T e B B B B T e e B B e B e B B B
OO0 00O OO OO0 O0COOOOOOOCO0O0O OO0 0O00O0O00O0O00DO0OCO0O00O0tooo0o

.1283]
.0470]
.0368]
. 0040,
.0470]
.0470]
.0258]
.0439]
.1139]
.0619]
.0234]
.0363]
.0685]
.09429]
.0258]
.1740]
.0417]
.0209]
.0146]
.1083]
.0958]
.0180]
.0278]
.0958]

Jige!

.0278]
.0085]
L1719
.0148
.2336
.0085
L1719
L0148
.0072]
.1719]
.0071]
.0022]
.0961]
.045071
.03805]
.0090]
.2304]
.019¢@]
.0281]
.0262]
.23041
.0196]
.0646]
.0540]
.2304]

"l.bmp -> F! [0.9206

]
'2.bmp -> A' [0.5%98]
"3.bmp -> N' [0.9622]
'4.,bmp -> A' [0.8363]
"5.bmp -> P! [0.8615]
"6.bmp -> I' [0.9727]
"T.bmp -> N!' [0.9144]
'8§.bmp ~> 8§ [0.97562]
'9.bmp ~> 7! [0.8683]
'10.bmp -> N' {0.9144]
'11.bmp -> A' [0.8363]
'1.bmp -> T! [0.9682]
'2Z.bmp -> E! [0.9740]
'I.bmp -> H! [0.9870C]
'4.bmp -> K' [0.9415)]
'S.bmp -> B! [0.9252]
'o.bmp -> B! [0.8740]
Yi.bmp ~-> B! [0.8912]
'8.bmp -> I [0.9143]
'9.bmp -> N’ [0.8841]

accuracy =
76.9697

63

PR T e e P e e e P e e e
OO OO O OO OO0 QCOODOCOCOoOC

Appendix D Other Script Files

D.1 Alphaconfi.m Function Script
3Define the thresheld value for
alphaconfi =
0.9 0.9 0.9 0.9 0.2 0.9 0.90.2 0.9 0.9 0.
0.% 0.91"; '

D.2 Alphaunconfi.m Function Script
$Define the threshold value for o}
alphauncenfi = [0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.21"';

D.3 nnhrpath.m Script
letterl = 'copy c:\nnhr\alphabets\letterl*
c:\nnhr\alphabets';
letter? = 'copy c¢:\nnhrialphabetsi\letter2*
c:\nnhr\alphabets';

letter3 = 'copy c:\nnhr\alphabets\letter3*.

c:\nnhrialphabets’';
letter4 = 'copy c¢:\nnhr\alphabets\letterd*
c:\nnhri\alphabets';
letter5 = 'copy c:\nnhr\alphabets\letter5*
c:\nnhrialphabets"';
letter6 = 'copy c:\nnhr\alphabets\letteré*
c:\nnhrialphakets';
letter7 = 'copy ¢:\nnhri\alphabets\letter7*
c:\nnhr\alphabets’;
letter8 = 'copy c:\nnhrialphabets\letter8*
c:\nnhr\alphabets’';

letter9 = 'copy c:\nnhr\alphabets\letter9*.

c:\nnhrialphabets’;
letterl0 =
c:\nnhr\alphabets':

letterll= 'copy c¢:\nnhr\alphabets\letteril*,.bmp

¢:\nnhr\alphabets"';

o]
[0.9 0.9 0.9 0.9 C.5 0.9 2.9 0.
9

. brp

. bmp

bmp

Lbmp
. bmp
. bmp
Lbmp

.mp

bmp

o oo
O

"copy c:\nnhr\alphabets\letterlC*.bmp

letterl? = 'copy c:\nnhr\alphabets\letterl2*.bmp
c:\nnhr\alphabets’;
letterl3 = 'copy c:\nnhrialphabets\letterl3*.bmp

c:\nnhr\alphabets’;

64

letterild = 'copy c:\nnhr\alphabets\letterld*.bmp
c:\nnhri\alphabets';
letterld = 'ceopy c:\nnhr\alphabets\letterl5*.bmp
c:\nnhr\alphabets';
letterlé = 'copy c:\nnhrialphabets\letterlo*.bmp
c:\nnhrialphabets’';

letterl7? = 'copy c¢:\nnhrialphabets\letterl7*.bmp
c:\nnhr\alphabets';
letterl8 = 'copy c:\nnhrlalphabets\letterl8\~.bmp

¢:\nnhr\alphabets"';
letterl9 = 'copy c:\nnhr\alphabets\letterl*.omp
c:\nnhrialphabets';
letter20 = 'copy c:\nnhr\alphabets\letter20*.bmp
c:\nnhr\alphabets’;
letter2l = 'copy c:\nnhrialphabets\letter2i*.bmp
c:\nnhr\alphabets';
letter22 = 'copy c¢:\nnhr\alphabets\letter22*.bmp
¢:\nnhrialphabets';
letter23 = 'copy c:\nnhrialphabetsi\letter23*.bmp
c:\nnhr\alphabets';
letter24 = 'copy c:\nnhrialphabets\letter24*.bmp
c:\nnhrialphabets';
letter25 = 'copy c:\nnhrialphabets\letter25*.bmp
c:\nnhr\alphabets"';
letter26 = 'copy c¢:\nnhr\alphabets\letter26*.bmp
c:\nnhr\alphabets’';

letter27 = 'copy c:\nnhrialphabets\letter27*.bmp
c:\nnhr\alphabets';
letter28 = 'copy c:\nnhr\alphabets\letterZ8*.bmp

c:i\nnhrialphsbets’';

letter29 = 'copy c:\nnhr\alphabets\letter28*.bmp
c:\nnhr\alphabets’;

letter30 = 'copy c:\nnhrialphabets\letter30*.bmp
c:\nnhr\alphabets';

letpat = {letterl; letter2; letter3; letterd; letterb;
letteré; letter7; letterf; letter9; letterlQ; letterll;
letterl?; letterl3; letterld; letterlb; letterl6;
letterl7; letterl8; letterl?; letterZ0; letterZ2l;
letter2?2; letter23; letter24; letter25; letter2t;
letter27; letter28; letter2?; letter30};

nn = {'nnhrl" '"nnhr2' "nnhr3' 'nnhr4' 'nnhr5" 'nnhré'
‘nnhr7' 'nnhr8' 'nnhr?' ‘nnhrl0" 'nnhrll' 'nnhrl2’
'‘nnhrl3' 'nnhrl4' 'nnhri5' 'nnhrlé' 'nnhrl7' 'nnhrl§
'nnhr19' 'nnhr20' 'nnhrzl' 'nnhr22' 'nnhr23' 'nnhr24’
"nnhr2%' 'nnhr2é' 'nnhr27' '‘nnhr28' "'nnhr2%' 'nnhr30'};
nnum = 30;

65

Appendix E Samples Collection Form

This sample handwriting is collected for me in tesling computer recognition of handwritten
English uppercase letter. Please write down the following characters in the boxes that
appear below. Thank you for your help.

NAME
{uppercase)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
(uppercase)

HEEEEENEEEEEEEEEEEEEEEE e

This sample handwriting is collected for me in testing computer recognition of handwritten
English uppercase letter. Please write down the following characters in the baxes that
appear below. Thank you for your help.

NAME
{uppercase)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
{uppercase}

EEEEEEEEEEEEEEEEEENEEEE

This sample handwriting is colfected for me in testing computer recognition of * andwri*an
English uppercase letter. Please write down the folfowing characters in the boxes that
appear below. Thank you for your help.

NAME
(uppercase)

ABCDEFGHIJKLMNOPQRSTUVWXYZ
{uppercase)

HEENEEEENEEEEEEEEEEEEEEEE.

66

Appendix F Training Samples

alelclplelrlg[ni[a]xv Mol e]s|Tujviv|x]Y[Z]
Alslc o[EFfla/nlr olwll maloplelrls(tluiviwixiy!Z]
AlelelplEPlal# LT LM N o] PlalR]s[T u][VIiw]x][Y[2]
NAIBICKMEIFIG\HIHJI KILIMINIO P QRIS TIV VW XY Z
(A RICID EFIGIH | \JIKI'L!MMOI,PI&IQSIT!UIVIWIXEY\ZI
[A[B < lblEIF)élHi LIKILMINIO[PTQIRISITM [V IWXIY [Z]
[Aglc[p]eEle/R ! [T kILMNolp alrISTIVO[VIWXIY 2]
[AlelcIp E[F[&G[A[([T k[c][mN]o]P[a[r]s[T[u]V]w]A[V]Z]
AlBlcID[EiF[4 H[ITKILIMINIOP[RR[S[TK VWX YZ]
ABlcIDIEIFIGIHITITIKILMINolP QRIS TIUlv WXIY]Z
Alelc[vlg[Flainit Ikt imNn[of [&R] S TIUN WX YZ]
AIBICIDIEIFIGIH[L |JIK[LMINIOIPIQIRIS|TIVIVIWIXIYI2Z]
AJB[CIPTETF @ H 1HIK[LIMN [0 PT&RISTT U VIWIX Y [Z]
Alelc/dlelplau]1TikLimnNolPIR[RIS[TIUlY Wlx]y [2]
(A|BleBIE|F|& M t{J]kiriMINO[PIO[R[SIT|u[vIWX] Z]
Al CIDIE[F[G[HT1]T] KILIMMOIPIQ&ISETIUI\/WIXMﬂ
A8 |¢[DEIF |gl8 Uaiv[Lim|v ol Plalr s [T [ulviw x[YIZ]
alelelvolelelenl1[a wltimnlolr[alefsivulvIwlx ¥ z]
(afefe [o[e[rlam T3 ¥[/m no[Plo[RIS[T U]VwIx[X[Z]
Alele[ole[Flgial t[ITR[LIM N O ARTS[T U[VIW X]Y z]
(aleleip]£lFle[H]I [T v|rMIn]olPlalr]siT]v|viw[x]y]Z]
|Alele[p|E|F|6[H |T|T kL MINo|Pa|RTSITIU]VIWX[Y]Z]
AelcJoelela BRI AIIKLMAN O PLA RIS TV VIW[XIY[Z
[(a[8lc[PIEFlald I IK[LMNOPI&RS|TIUN[WRY 2]
Aleciole|[Flaule]3[k/EMNTo[P ale s [T/u[vW[x[YZ]
A/ 8le|o|eElgH 1 [TLMN o/ &Rs[TulvwX]Y|Z
(A[®]c[D]E[F|G]h] 'MKIUMIME olP @IR[SIT]u VIW[X]Y]Z]
[4lalels e FI&LI UJ'" v oolPlalelslrldlyw]xiv]z]
AB RST Z

67

89

uoliejussald [e1d | 0l

H poday Widu| Jo uoissiugns [6

YEid [Elid Jo uoissuugns | 8

LWiB18AS |y buse] pue buluel] | 2

yoday ssa1boid JO uoissiugng | 9

buiuies
weiboig pue ainessy ‘uoleasay | §

Buluueld pue Buiiosuierg |

Jodey AlBunlljald jO Uoissiuang | ¢

SOAA Yoiasay Aeulnpid | ¢

soido] 1o

1 dAJ J0f 1rey) pues 13forg 1o xipuaddy

jaey) pues afoag o xipuaddy

69

vooziZLive - (4ono0 piey) poday jeurd Jo UoISSIUGNS
¥002/21/2 8 #O0Z/EL/O WO - uopejussald 210
vO0C/LE6L - UG, 8 [EDIUYDD | JO UOISSIUQNS
(G YOOAA JoYR) MO0} SE lB S2U0ISa|IUL BUIMO||0) SY3 JO SSjEp oNnp 8y
S31I0N
I {(1on00 yos) Hodeay |BuUid Jo uoissiugng | §

yoday Jelq jo uoissiugns | ¢

Z Lodoy ssaiboig O uoiIssiugnsg | ¢

[Hoday ssaiboid jo uoissiugng | 2

washs

uoubooey BuumpueH v ping -

Ww9)sAS 1 bujse) pue builiei] -
BuimosyjoD eleq -
Buiuiea

lelbold pue ainjeleyn 'Yoiessay -

uoniubooay] Bufiimpue L
413 14" el cl Ll 4] 6 g L 9 ") ¥ g 4 I STivLl3da ‘ON

H dAd 10§ 3eq) nues) 1efoagz o xipuoddy

