
SOLID-STATE MP3 PLAYER

By

MOHD FAIZUL FATAN ABDUL RAHMAN

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

{Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2005

by

Mohd Faizul Fatan Abdul Rahman, 2005

Approved:

CERTIFICATION OF APPROVAL

SOLID-STATE MP3 PLAYER

by

Mohd Faizul Fatan Abdul Rahman

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Mr. Patrick Sebastian

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2005

in

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Faizul Fatan Abdul Rahman

IV

ABSTRACT

The topic for the Final Year Research Project (FYP) is "Solid-State MP3 Player". A

solid-state memory is introduced here to replace the existing compact disc that is used

to store data. The project requires a microcontroller-based interface circuit to control

the player.

A simple block diagram of a complete player basically consists of

• A solid-state memory to store data.

• Initialize the storage into the mode of transferring the files.

• The microcontroller that control the data transfer between storage and

microcontroller.

i. Data transfer to storage,

ii. Data transfer from storage.

• A decoder to run a decompression algorithm that undoes the compression of

the MP3 file and then a digital-to-analog converter turns the bytes back into

waves.

• An amplifier to boost the strength of the signal and sends it to the audio port,

where a pair of speakers is connected.

The project mainly covers the manipulation of programming language to implement

the routines in the microcontroller.

ACKNOWLEDGEMENTS

First and foremost, all praise to Allah s.w.t for granting me the opportunity to

complete this final year project, which has proven to be a very enriching experience.

It is with pleasure that I express my heartfelt thanks to all who have assisted me either

directly or indirectly during the course of this project. My gratitude goes to my

supervisor, Mr. Patrick Sebastian, who helped me achieve my project objectives. I

would like to acknowledge that without his guidance, all my efforts would not have

been fruitful.

I would also like to thank my partner, Ms. Harni Farihah Mohd Safari Lai, who has

been working with me through thick and thin in making this project a success. To

Miss Nasreen, the FYP coordinator, thank you for your help in explaining all the

proper procedures for this project.

Finally, I forward my special thanks to Mr. Zuki, the lecturer of Microcontroller, my

friends and family for their unwavering support during this project Not to forget

anyone whose name I did not mention here. Your contribution is greatly valued.

VI

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 1

1.2 Objectives and Scope of Study 1

CHAPTER 2 LITERATURE REVIEW AND THEORY 3

2.1 MP3overCD 3

2.2 MP3 Player 4

2.2.1 Microcontroller 5

2.2.2 STA013 MPEG Decoder 6

2.2.3 CS4334 DAC 6

2.2.4 MultiMedia Card 7

CHAPTER 3 METHODOLGY 8

3.1 Project Methodology 8

3.2 Hardware Design 9

3.2.1 System Communication 9

3.2.2 Printed Circuit Board Design 10

3.3 PICC Software Design 10

3.3.1 Subsystem Libraries 11

3.3.2 Main PIC Code 11

3.3.3 STA013 Library 12

3.3.4 MMC Library 12

3.4 WARP 13 Board 12

CHAPTER 4 RESULTS & DISCUSSION 14

4.1 Setup PIC 16F877 15

4.2LEDs 15

4.3 SPI Interface Overview 15

4.4 SPI Interface Test Module 16

4.4.1 Basic test without MMC card 16

4.4.2 Initialize the MMC 17

vn

4.4.3 Connecting the MMC to the SPI 17

4.4.4 File transfer test with the present of MMC card 19

4.4.5 Intel-Hex File 19

4.5 Send data 20

4.5.1 PIC to MMC 20

4.6 Output 22

4.7 Current circuit connection 22

CHAPTER 5 CONCLUSION 23

CHAPTER 6 RECOMMENDATION 24

REFERENCES 25

APPENDICES 26

Appendix A Codes for spi harware test 27

Appendix BGLOBAL.H 28

Appendix C MMC2.H 29

Appendix DMMC.C 31

Appendix ESTA013.H 33

Appendix F STA013.C 35

Appendix G PIC.H 39

Appendix H PIC.C 40

V11I

LIST OF TABLES

Table 1 System Components 4

Table 2 Subsystem Communication 10

Table 3 Subsystem and Associated Software Libraries 11

Table 4 Pin function between PIC and MMC 18

IX

LIST OF FIGURES

Figure 1 How the MP3 Cycle Works 3

Figure 2 System Block Diagram 4

Figure 3 PIC16F877 Pin Assignment 5

Figure 4 STA013 MPEG Decoder Chip 6

Figure 5 Project Activities Flowchart 8

Figure 6 STA013 Chip and Aries Adaptor Board 10

Figure 7 WARP 13 Board 13

Figure 8 Program Flowchart 14

Figure 9 SPI Communication Scheme 16

Figure 10 SPI Hardware Test 17

Figure 11 Interfacing 5 volt output to 3volt tolerance input 18

Figure 12 SPI Master (PIC) and Slave (MMC) communication 19

Figure 13 Single line of Intel-Hex file 20

Figure 14 Tell MMC to go to SPI modes 21

Figure 15 Output to Port D 21

Figure 16 Current Circuit Connection 22

LIST OF ABBREVIATIONS

MP3-MPEG Layer III

MMC - MultiMedia Card: Solid-state removable memory used for storage of audio
tracks

LCD - Liquid Crystal Display

CD - Compact Disc

CDRW - Compact Disc Rewritable

PC - Inter Integrated Circuit

SPI - Synchronous Peripheral Interface

PIC - Microchip PIC Microcontroller (PIC16F877)

XI

CHAPTER 1

INTRODUCTION

The idea of utilizing MP3 files away from the computer is one that has existed in the

minds of many from the beginning of the introduction of MP3's. With the current

technology available in the market, MP3 files can now be played with the aid of

portable MP3 players. Many people have switched to MP3 players due to its mobility

and new available technologies. In general, the project will deal with the design and

development of an MP3 player. Enhancements are made to the existing MP3 player to

allow it to read data from other sources, instead of compact-disc (CD). This project

will go through a complete procedure that involves programming and hardware

implementation.

1.1 Problem Statement

The purpose of having this project is due to current situation where MP3 files are

stored on compact discs (CD) or rewriteable CD (CDRW). The CD media is sensitive

to excessive heat and physical scratches that affect data integrity. The application of

CDs also give rise to moving parts such as reading heads that would probably skip

tracks when jostled.

1.2 Objectives and Scope of Study

The objectives of this project are:

i) To study the basic principles underlying the operation of MP3 player

components such as storage element, microcontroller, decoder and output,

ii) To design and implement a portable solid-state MP3 player. The product

utilizes removable storage in the form of a MultiMedia Card for storing

MP3 files.

iii) To develop codes for initialization of decoder, MMC, and to allow

communication between MMC and decoder through the microcontroller.

The scope of studies has been restricted to the technology of a normal MP3 player

that uses MMC as its data storage.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 MP3 over CD

MP3 comes from MPEG Audio Layer-3, an MPEG compression system that includes

a subsystem to compress sound. MP3 can compress a song by a factor of 10 or 12 and

still retain something close to CD quality. In normal CD, music is stored using 44,100

samples per second, 16 bits per sample and two channels (for stereo sound). This

means that a CD stores about 10 megabytes of data per minute of music on the CD. A

three-minute song therefore requires 30 megabytes of data. MP3 can compress a song

by a factor of 10 or 12 and still retain something close to CD quality. So a 30-

megabyte sound file from a CD reduces to 3 megabytes or so in MP3.

Files can be
transferred vis
trie Internet to
another user.

Audio is digitally
compressed and

encoded to create
MPS audio Tiles.

•i I,*

LI~l '-]

S»/'iSKtSSjiiF

MP3 files can tie
collected or

downloaded from
the Internet to
your computer.

How the
MP3 Cycle

Works
©SQOi HDwSlurWOfKs

MP3 files can be
transferred to a

portable MP3
pieyer or made

into an audio CD.

You? computer
can rip MP3 files
from an audio CD

or coHect them
rom MP3
players.

Figure 1 How the MP3 Cycle Works

3

2.2 MP3 Player

In this project, there are four main parts that have been identified to play major roles

in ensuring a stand alone car MP3 player works. Table 1 shows the actual

components used for the major systems.

System

Microcontroller

MPEG Decoder

DAC

MMC

Part

PICI6F877

STA013

CS4334

MultiMedia card

Purpose

Controls entire system

Decodes MP3 bit stream

Renders audio into analog format

Stores MP3 bit streams

Table 1 System Components

SeriaL

MMC

STA013

Decoder

SPI

16F877

PIC

PC

CS4334

DAC

Analog

Analog

OiJtpUt

Figure 2 System Block Diagram

2.2.1 Microcontroller

There are a few numbers of microcontrollers that can be used in this project

i.e. ATMEL 8051, ATMEL AVR, PIC 18 and PIC16. However, due to the

availability of the chips and burner, PIC16F877 has been chosen as it is

available in the lab. The PIC will interface directly to all other subsystems and

manage the data flow for the system as a whole. Communication with the

decoder is done via the FC interface. PIC will also interface to the MMC to

stream data to the decoder using the SPI protocol. Normal operation will be

for the PIC to stream data from the MMC to the MPEG decoder.

The PIC16F877 has 5 digital I/O ports (A - E) each between 3 and 8 bits

wide. Each port is mapped into the register file space, and may be read/

written to like any other register. The circuitry is such that it is not possible to

physically input to and output from a particular pin simultaneously. For most

ports, the I/O pins direction (input or output) is controlled by the data

direction register, called the TRIS register. TRIS <x> controls the direction of

PORT <x>. A T in the TRIS bit corresponds to pin acting as input, while a

'0' corresponds to pin being an output.

MCLRAW

RAO.'ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3/VREF+

RA4/T0CK

RA5/AN4/SS

RE0/RD/AN5

RE1WR/AN6

RE2,'CS.'AN7

VDD

Vss

OSC1CLKIN

OSC2/CLKOUT

RC0mOSO/T1CKI

R(.;i.T10SI/CCP2

RC2CCP1

RCiVSCK.'SCL

RD0;PSPO

RD1/PSP1

RB7/PGD

RBeiPGC

Figure 3 PIC16F877 Pin Assignment

The PORT register is the latch for the data to be output. When the PORT is

read, the device reads the levels present on the I/O pins.

2.2.2 STA013 MPEG Decoder

The STMicroelectronics STA013 MPEG decoder is used to decode the MPEG

bit stream into a format that can be rendered by a DAC. MPEG data is

received via the SPI interface and the device is controlled via the PC

interface. Both of these two interfaces are relatively simple and fully

supported by the PIC microcontroller. The decoded bit stream is output in

serial format compatible with most commercial DACs. In total, there are only

28 pins on the device, making it small enough for use on a printed circuit

board. The STA013 supports all MP3 sampling frequencies and bit rates

making it ideal for this project.

The major drawback for this component is that it requires a specific

configuration file to initialize it. With the limited space in the microcontroller,

this configuration file has to be stored inside the MMC and later is called by

the microcontroller to complete the initialization process.

Figure 4 STA013 MPEG Decoder Chip

2.2.3 CS4334DAC

The Crystal CS4334 stereo DAC is used to render the decoded bit stream into

an analog audio signal. Data, supplied by the STA013, is received in serial

6

format and the analog representation is output. The DAC supports data

precision up to 24-bits allowing it to work with the decoder, which can be

configured for 16-bit, 18-bit or 24-bit. As with the decoder, the chip is

available in single quantities making it an attractive choice over many other

DACs.

This device is that it requires a 5.0 V supply voltage to run. This differs as the

majority of the system is 3.3 V so this required the support of both voltages.

Logic levels however, can be transferred between 3.3 V and 5.0 V devices

with no level shifting required.

2.2.4 MultiMedia Card

The SanDisk MultiMedia Card is used to store the songs to be played on the

MP3 player. The MultiMedia Card is access by the PIC with an SPI interface.

The MultiMedia Card is initially in Multimedia mode, but when initializing it,

it is set into SPI mode. The MultiMedia card can have data read from any

address as long as the read data address does not cross a sector boundary.

Also, when writes are made to the MultiMedia Card the write address must

start at a sector boundary.

3.1 Project Methodology

CHAPTER 3

METHODOLGY

The project involves three major objectives, namely the study of a power system

model, the code writing and the construction of hardware. The flow of activities is

illustrated in the flowchart.

Preliminary
studies

Gathering of necessary data and
components identification

Components purchasing

Circuit construction

Writing C source
code

Testing and troubleshooting the
program & circuit

Figure 5 Project Activities Flowchart

The project has gone through a few phases of procedures. The main activity

conducted during the first 8 weeks of the project was literature review concerning the

technology of MP3 player. This was to gain the necessary knowledge of the

components involved before embarking on the design and enhancement phase of the

project. The literature review was done by studying various projects and texts from

the university resource center and also from the internet.

The required components are identified and assembled in constructing the circuit.

However, the STA013 and CS4334 need to be purchased over the internet

(www.pjrc.com) as none of the chips are available in the market.

3.2 Hardware Design

The parts used in this project are:

PIC16F877 Microcontroller

ST MicroElectronics STA013 (MPEG decoder)

Crystal/Cirrus Logic CS4334 (18 bit serial DAC)

SanDisk Multimedia Card (16MB serial flash card)

14.85 MHz crystal for decoder

4 MHz oscillator for MCU

Resistors, capacitors, bipolar transistors, diodes, and connectors

3.2.1 System Communication

Each subsystem requires a specific form of communication to allow it to

communicate with other subsystem in this project. These communication protocols

are listed below, together with the respective associated subsystems.

System 1 Communication System 2

PIC Serial - SPI MMC

MMC> L - ^er^SPJ^-...;^.^^*; -j:S^(U|Decc |̂
PIC Serial-PC " STA013 Decoder

STA013-Qecoder . - -SeriaL; ^ ...'_ -./??£BU " ;4;
DAC Analog Output Speaker

Table 2 Subsystem Communication

3.2.2 Printed Circuit Board Design

The first challenge with using the STA013 for a prototype MP3 player is that it is a

surface mount part. The two basic approaches are to buy or make an adaptor board, or

to solder wires to each pin. Solder wires to each pin is not a good approach as it is not

tedious and the tendency of the legs to be broken are high due to the pin sensitivity.

To overcome this, a simple PCB has been designed for the STA013 and CS4334.

••_-_' • • / •*••••*****#.•***$&

Figure 6 .STA013 Chip and Aries Adaptor Board

3.3 PICC Software Design

For programming the microcontroller, the code is written in C language and compiled

using the CCS PICC Compiler. PICC is a Windows-based PC application that

provides a platform for developing C language code for Microchip's PICmicro

microcontroller (MCU) families. Generically, PICC will program the microcontroller

routine by using C language instead of assembly. The compiling process will convert

10

the C language into hex files that is used to download all the routines into the

microcontroller. This software requires dedicated software to download the data into

the microcontroller, which is the WARP13.

There are two ways to write the code, either in C language or assembly language.

Programming using C language is preferred. The main reason is that the initialization

of STA013 requires a big size of routines and it is very complicated and time

consuming to write in assembly language. Another reason is that the PICC compiler

offers several built-in functions that can be used directly to help speed programming.

To work with the software, it is preferable that the programmer has basic knowledge

in C or C++ language. The datasheet of the selected microcontroller series is also

needed as several important parameters can be referred to it.

3.3.1 Subsystem Libraries

Table below list the subsystem of this project and its respective library. Each library

has its own function and they are frequently interacted with each other. A complete

listing of the library interfaces can be found in the appendixes.

Subsystem Software Library Purpose

PIC PIC JVIaims#ste^^ -

MPEG Decoder STA013 Initialization and management of STA013

MPEG Decoder

MMC "~ MMC ^ -" -"-~J /^tiali^ti^^U.d^t^Q^ps^ofiiMMC

Table 3 Subsystem and Associated Software Libraries

3.3.2 Main PIC Code

The main PIC code contains all initialization of subsystems. It is responsible for

running the entire system. Since most of the operations are handled directly by the

respective libraries, this main PIC code is basically used for checking error conditions

11

and invoking the proper routines.

3.3.3 STA013 Library

This library is mainly used for the operation of the STA013 MPEG decoder. It

contains the initialization of the decoder as well as the routines to control the chip. All

communication to the decoder is performed over the PC interface. In initializing the

decoder, 2007 values are written into internal registers on the chip. Due to memory

limitations of the PIC, these values are stored on the MMC and called on demand by

the STA013 library's initialization routine. Additional function available in the

library is the ability to start and stop the decoder on user's demand.

3.3.4 MMC Library

The MMC uses an SPI interface to control the card and transfer data. It is a four-line

interface: SS, SCLK, SDI, and SDO. To send a command to the card, the user must

lower SS, put data on the SDI line, and toggle SCLK (data is sampled on the rising

edge for the MMC). After receiving a command, the MMC will respond with a

response byte, followed by any data that was requested. A specific initialization

sequence must be followed on power-up to the card in order to put the MMC in SPI

mode.

3.4 "WARP 13 Board

The WARP-13 is a device programmer designed to program the PIC

microcontrollers. The WARP-13 is a combination of very refined firmware and

software designed to provide high levels of utility function, programming speed,

reliability and ease of use. This programmer requires an external power supply of

12VAC or 16VDC. It has a diode bridge on the input, so it accepts both AC and DC.

12

Figure 7 WARP 13 Board

13

CHAPTER 4

RESULTS & DISCUSSION

In accomplishing this project, the tasks are separated into two:

• interface the MMC and PIC using SPI

• interface the STA013 and PIC using PC

This section will focus on the process of interfacing the PIC and MMC using SPI.

Setup the MCU

SPI interface port & Initialize all
variables

1 r

Initialize the MMC

^ r

SPI - SDO Pins Send out

for block Address
<«-|

i r

SPI - SDI Receives Data

1 '

Output 8 bits of data to LED

in sequence

Figure 8 Program Flowchart

14

4.1 Setup PIC16F877

A complete coding for PIC can be found in the Appendix section. The codes are

written to initialize all the variables, define ports, tris and clock. A simple program is

created to control flow of data, initialize the MMC and stream the data out to the

LED.

4.2 LEDs

A simple LEDs code has been added to the main PIC code and a LED is connected to

Port D of PIC. These LEDs will blink continuously to indicate that the data transfer is

working. The purpose of introducing this LEDs function is to help in troubleshooting

the circuit. Troubleshooting the circuit takes a lot of time as there are a lot of things to

be considered when the expected output cannot be seen.

4.3 SPI Interface Overview

Synchronous Peripheral Interface (SPI) is a serial communication bus, meaning that

the transmitter and receiver involved in this protocol must use the same clock to

synchronize the detection of the bits at the receiver.

SPI communication involves a master and a slave. Both the master and a slave send

and receive data simultaneously, but the master is responsible to provide the clock

signal for the data transfer. In this way, the master has control of the speed of data

transfer.

Figure 9 shows the connections between the master and the slave units for SPI

communication. The master supplies the cock on the SCLK pin and 8 bits of data,

which are shifted out of the serial data out (SDO) pin. The same 8 bits are shifted

into the slave (1 bit per clock pulse) on its serial data in (SDI) line. As the 8 bits are

shifted out to the master and into the slave, 8 bits also are shifted out of the slave on

its SDO line and into the master on its SDI pin. SPI communication, then, is

essentially a circle in which 8 bits flow from the master to the slave and a different 8

bits flow from the slave to the master. In this way, the master and a slave can

exchange data in a single communication.

15

Master Shift Register Slave Shift Register

Figure 9 SPI Communication Scheme

4.4 SPI Interface Test Module

This section is important to make sure fully understanding on how SPI interfaced the

MMC card to send data to the decoder. Serial data transfer is important characteristic

of SPI which requires only two pins, Port C3 and C4 (Pin 23 and 24) to be connected

to its slave (in this case MMC card).

4.4.1 Basic test without MMC card

This is an example of oversimplified system. SDO pin is connected directly to SDI

pin. Consequently, anything transmitted on the SPI bus will also be received y the SPI

receiver. This test shows the appropriate method to set up and use the SPI port.

C Codes available in Appendix A.

16

PB[0]

PB[1]
PB[2]

pb[3] 16F877
PB[4]
PB[5]
PB[6]
PB[7]

SDO PC[5]
SD! PC[4]

PD[0] —

PD[1] \—
PD[2]

PD[3]
PD[4]

PD[5]
PD[6] I—
PD[71 -

m
D

Figure 10 SPI Hardware Test

As a result from this test, what have been written in SDI through pull-ups switch is

output to the LEDs through SDO. The built in functions are used to read and write

data to the SPI port.

4.4.2 Initialize the MMC

The MMC requires initialization by SPI communication. This step is compulsory as

part of the required initialization is to setup the address block to be transferred from

MMC to the PIC. In the final stage, when the decoder chip (STA013 is connected),

the respective data is then been transferred to the STA013 instead of PTC.

4.4.3 Connecting the MMC to the SPI

Basically, the connection between the Multimedia Card and SPI port consist of

4(four) physical pins as shown in Table 4. As been discussed earlier, SPI has a

master-slave configuration; in this case, MMC will be the slave drive.

The output of PIC is a 5-volt tolerance and it's not match with the MMC, which is

3.3-volt tolerance. The simple way to interface a 5-volt output to the MMC input pins

is with a series resistor that will limit the current when the 5-volt output is high. There

is some input capacitance (3.5 pF) on the input pins, so adding a small capacitor in

parallel with the resistor will allow the rapid edge to properly drive the input pin. The

value of the resistor and capacitor are not critical, Figure 11 shows 4.7K and 47pF,

which limits the steady-state current to less than 1/2 mA.

17

PIC Pins

(Master)

MMC Pins

(Slave)

Function

SDO PC[5] Data In Pin 2 Data Out from PIC receive by MMC

SDI PC[4] Data Out Pin 7 Data In to PIC sends by MMC

SCK PC[3] Clk Pin 5 To synchronize clock signal for MMC to be

the same as the PIC clock frequency

SS PC[1] cs Pin 2 Slave Selection by PIC, to enable and

disable the MMC for the SPI modes.

Table 4 Pin function between PIC and MMC

This circuit is applied on each output of the PIC (mainly SDO PC [5]) to the Data In

(Pin 2) of MMC card. For the Data Out (Pin 7) of the MMC to the SDI PC [4] of the

PIC, the pins do not require this step down circuit.

5V

X

T

4.7k

3V

JL

T

Figure 11 Interfacing 5-volt output to 3-volt tolerance input.

4.4.4 File transfer test with thepresent ofMMC card

MMC

[^ <o ^ ^r fi c-i

O -0 fcd -T3 *3 _

mOo>owO

SPI

n
4.7k

47pF

i

4.7k

47pF

+3.3V

SS PC[1]

SDC PC[5]
SDI PC[4]
SCK PC[3]

16F877

PD[0]
PD[1]
PD[2]
PD[3]
PD[4]

PD[5]
PD[6]
PD[7]

m
o

Figure 12 SPI Master (PIC) and Slave(MMC) communication.

As been discussed in early part of this chapter, SDO pin of MCU sent the address of

data required, the Data Out pin of MMC (which is also SDO) sent the data to the SDI

of the MCU.

As of above figure, if an array of 8 bits data has been stored in MMC been recalled,

the received data will light up the LEDs according to what has been stored inside the

MMC. For the ease of the troubleshooting, Intel-Hex file is being stored inside the

MMC. This is to monitor the LED is light up corresponding what has been written in

the HEX file.

4.4.5 Intel-Hex File

The Intel-hex format requires each line to begin with a ":" to denote it as a start of a

line of a hex code. The first two digits indicate how many data bytes are on the line.

In this file, the "20" in hexadecimal means there are actually 32 (in decimal) data

19

bytes on the line. The next two bytes ("8000") denote the address of the first data byte

in the line. The "00" indicates the nature of the data. Type 00 is simply regular data to

be loaded, while type 01 is used to denote the last line in a hex file. The

"FFFB30C0000004E4BD6618728001218BEE6B9E3001F00F1478904FCF3FDBFC

0E" are the actual data and the last byte is the checksum, used for error checking.

:20800000FFFB30C0000004E4BD6618728001218BEE6B9E3001FOOF1478904F

CF3FDBFC0E2F

Figure 13 Single line of Intel-Hex file

4.5 Send data

For the final stage of the design, the concept is to give the STA013 data when it

requests more. The STA013 chip will determine the MP3 bit rate, consume the data at

the correct speed, and give the request signal when it needs more. It also

automatically detects the required sample rate (44.1 kHz, 48 kHz, etc) from the MP3

data and automatically adjusts the DAC clock. The speed to input the bits does not

matter, as long as it's less than 20 Mbit/sec.

There are three signal lines used for sending the MP3 data to the STA013 decoder:

SDI (DATA), SCKR (CLOCK), and DATA_REQ. The STA013 asserts the

DATA_REQ line when more MP3 data is needed from the host controller. The host

controller then feeds MP3 data, most significant bit first, on the SDI line. Each bit

placed on SDI is clocked, by the controller, into the STA013 with the SCKR signal

line.

4.5.1 PIC to MMC

Before the final output is investigated, it is important to make sure that the data is

flowing from the MMC to the PIC; else the full connection to the STA 013 can not be

troubleshot at ease. The software to tell microcontroller to send data to the MMC is

written in C. Initially, the MMC is told to be ready in the SPI mode by the following

lines (Figure 14).

20

int mmc_init()

i

int i;

SETUP_SPI(SPI_MASTER SPI_H_T0_L | SPI_CLK_DIV_4 j SPI_SS_DISABLED);

0*0x94 |= 0x40; //setCKE=l -clock idle low

*0xl4&=0xEF; // set CKP = 0 - data valid on rising edge

0UTPUT_H1GH(PSN_C2); // set SS =] (off)

for{i=0;i<10;i++) // initialise the MMCcard intoSPI mode by sending elks on

I

SPLWRITE(OxFF);

I

OUTPUT_LOW(PIN_C2); // set SS = 0 (on) tells card to go to spi mode when it receives reset

SPI_WRITE(0x40); // send reset command

SPi_WRITE(0x00); // ail the arguments are 0x00 for the reset command

SPI_WRITE(OxOO);

SPI_WRITE(0xO0);

SPI_WRITE(OxOO);

SPi_WRITE(0x95); // precalculated checksum as we are still in MMC mode

ifTmmc resr)onse(OxOl)=l) return I: // if = 1 then there was a timeout waiting for 0x01 from the mmc

Figure 14 Tell MMC to go to SPI modes

Then to output the content inside the MMCto Port D then light up the LEDs,

OUTPUT_LOW(PrN_C2); // set SS = 0 (on)

SPI_WRITE(0x51); // send mmc read single block command

SPI_WRITE(0x02*<varh)); //arguments are address

SPI_WRITE(Ox00*(varh));

SPl_WRITE(0x02*(varl));

SPI_WRITE(0x00);

SPI_WRlTE(0xFF); // checksum is no longer required but we always send OxFF

if((mmc_response(0x00))=l) return 1; // if mmcresponse returns 1then wefailed to geta 0x00 response (affirmative)

ifT,(mmc_response(0xFE))=l) return I; // wail for data token

for(i=0;i<512;i++)

{

output_D(-(spi_read()));

}

//we should now receive 512 bytes

Figure 15 Output to Port D

21

4.6 Output

The output is connected to a speaker where a song is expected to be heard. However,

since the input is less than 1 second, it is difficult to hear a song. Instead, only "bip"

is heard. To overcome this, the output of CS4334 DAC is connected to an

oscilloscope. The signal from the oscilloscope is compared with the signal produced

before the program is run. If the decoder works, there should be difference in the

output waveform.

4.7 Current circuit connection

STA013 28-DATAREQ
26 - RESET

,-SDO -9

SCKT -10

LRCKT -U

QCLK -12

3-

4-

5-

SDA

SCL

SDI

6- SCKR

7- BIT EN

MMC

[^ ^o 'A ^ m rs

O *C tsij TJ TS i-H
Q g 3 -O 2Q«

SPI
SPI

100k

•— CR

+3.3V

PB[3]
PC[1]

CS 4334

SDATA -1

SCLK -2

LRCLK -3

MLCK -4

U^

DR PB[2]
RESET PCp]
SDA PC[7]
SCL PC[6]
SDO PC[5]
SDI PC[4]
SCK PC[3]
DE PC[2]

16F377

AOUTR-5

AOUTL-S

Audio Jack

Figure 16 Current Circuit Connection

22

CHAPTER 5

CONCLUSION

The first requirement of this project is to build a basic knowledge on the

microcontroller architecture and how to use it in many applications. The knowledge

of programming in both C and assembly language is also required as to program the

microcontroller. Enhancement in the programming can be done by reading materials

and tutorials available on the microcontroller manufacturer websites.

Another requirement in this project is to know how to configure the MMC. This

phase is the main concern in completing this project. If the decoder is not properly

initialized, the whole decoding system will not function.

Physically, the basic portion of circuit in sending data from MMC to PIC has been

setup for future enhancement. Communication between PIC and MMC is initialized

for data transfer in both ways.

23

CHAPTER 6

RECOMMENDATION

The current project implements the basic applications for an MP3 player. In the

future, to make sure the project progress is done systematically; the smallest possible

module for each part can be developed. This is for the ease of troubleshooting.

MMC as the storage of MP3 files is quite troublesome for the end user. USB flash

drive can be use later in project development.

Changes can be made to control volume, bass and treble via the PC interface. A real

MP3 data can also be used to replace the Intel-hex file. The output of the DAC can be

connected to a headphone amplifier to provide proper output levels for headphones.

For future enhancement, more application can be designed and added to the player.

An LCD can be introduced to display information to the user. It is also more

convenient if there is wireless FM transmitter or more advance wireless

communication protocol, Bluetooth, attached to the system.

24

REFERENCES

1. Microcontroller PICF877 Datasheet

2. Embedded C Programming for Microchip PIC, BarnettCox & O'Cull, 2004

3. I2C Bus Technical Datasheet

4. http://www.pjrc.com

5. http://www.microchip.com

6. http://ccsinfo.com

7. http://www.st.com

8. http://instructl.cit.cornell.edu

9. http://www.leotronic.com

10. http://www.howstuffworks.com

11. http://www.terra.es

12. http://www.mcc-us.com

25

APPENDICES

26

APPENDIX A CODES FOR SPI HARWARE TEST

include <J6F877.h>

#fuses HS,NOWDT

#use delay(clock=4000000)

void mainQ

setup_spi(SPI_MASTERjSPI_L^TO_H|SPI_CLK_DIV_16);

port_b_pul!ups(TRUE);

spi_write(0x00);

while (1)

{

if (spi_data_is_in())

{

output_D(~(sp i_read()));

spi_write(inpuM}());

}

output_low(PIN_C2);

delay_ms(50);

output_high(PIN_C2);

delay_ms(50);

}

27

// Global, h

//

// defines port, tris & clock

//

#ifhdef_GLOBAL_H

#defme J3LOBALH

// globally define the delay

#defme CLOCK_SPEED 14745600

#use delay(clock=CLOCK_SPEED)

// create desired types

#define bool short

// port defines

#byte PORTA - 0x05

//byte PORTB = 0x06

#byte PORTD = 0x08

#byte PORTE = 0x09

#endif

APPENDIX B

GLOBAL.H

28

APPENDIX C

MMC2.H

//MMC2.h

// Library for initializing and reading from the MMC
//

// Pin configuration:
//

// PIC MMC MMC Pin//

// rA5 CS 1

// rC5 Dataln 2

// GND 3

// VDD 4 (3.3V)
// rC3 Clk 5

// GND 6

//rC4 DataOut 7

// - -

#iftdef_MMC2_H
//define _MMC2_H
// - —

//include <global.h>
//include <address.h>

include <STA013. h>

// -

// slave select pin
//define MMCSSPIN_C1

// MMC Commands

// Set block length for next read/write
//define MMC_CMD_SETLENGTH 0x50

// Write block to memory
//define MMC_CMD_WRITEBLOCK 0x54

// Read block from memory
//define MMC_CMDJREADBLOCK 0x51

// Data token start byte
//define MMC_DATA_TOKEN OxFE

// an affirmative Rl response (no errors)
//define MMC_Rl_R£SPONSE 0x00

// this variable will be used to track the current block length
// this allows the block length to be set only when needed
unsigned long _BlockLength = 0;

// error/success codes

#defme MMC_SUCCESS 0x00
//define MMC_BLOCK_SET_ERROR 0x01
#define MMC_RESPONSE_ERROR 0x02
//define MMC_DATA_TOKEN_ERROR 0x03
#defme MMC_INIT_ERROR 0x04
//define MMCJTMEOUT_ERROR OxFF

// -

//MMC2Read

// -

// Read data from the MMC to the MP3 decoder

//

// Arguments:

29

// Size = byte : max size of data to read
// address = Address32 : address to start reading from
// - - —

// Returns: error or success code

// - —

//SEPARATE

unsigned int MMC2Read(unsigned long size, struct Address32 *address);

// - - —

//JvIMCSefBlockLength
//-— - -

// Sets the block length of the MMC (if needed)
// - -

// Arguments:
// length = unsigned long : new block length
// -

// Returns: true if the block size was set successfully
// always true if no change made
// -

// Notes:

// This is an internal routine and should not be calied externally
// - -

//SEPARATE

bool _MMCSetBlockLength(unsigned long length);

// internal routine

// sends a command to the MMC

//SEPARATE

void _MMCSendCommand(unsigned int cmd, unsigned int argl, unsigned int arg2, unsigned int arg3, unsigned
int arg4, unsigned int crc);

// internal routine

// waits for a valid response from the MMC and returns the response received

//SEPARATE

unsigned int _MMCWaitForResponse(unsigned int expected);

#endif

//endif

30

APPENDIX D

MMC.C

// MMC2.C

//

// Declares the constants and prototypes to interface to MMC
//

#ifhdef_MMC2_C
//define _MMC2_C

// - -

//include <global.h>
//include <MMC2.h>

//— -

//INLINE

unsigned int MMC2Read(unsigned long size, struct Address32 *address)

unsigned long i = 0;
unsigned intrValue = MMC_SUCCESS;
bool done = false;

// Set the block length to read
ifC_MMCSetBlockLength(size))
{

// SS = LOW (on)
OUTPUT_LOW(MMCSS);

// send read command

_MMCSendCommand(MMC_CMD_READBLOCK,HIGH(address->upper),
LOW(address->upper), HIGH(address->lower), LOW(address->iower), OxFF);

// check if the MMC acknowledged the read block command
// it will do this by sending an affirmative response
// in the Rl format (0x00 is no errors)

if(_MMCWaitForResponse(MMC_Rl_RESPONSE)==MMC_SUCCESS)

// now look for the data token to signify the start of
// the data

if(_MMCWaitForResponse(MMC_DATA^TOKEN)==MMC_SUCCESS)
{
// set the decoder to start reading data (pull high)

OUTPUT_HIGH(STA013_BIT_ENABLE);
// clock the actual data transfer, it will be read by the
// decoder automatically since the decoder has been enabled
// make sure that for each byte the decoder stilt wants data

for (i=0; i < size; ++i)

// wait until the decoder wants more data

while(!INPUT(STA0I3_DATA_REQUEST));

// read out the data

SPI_READ(0xFF);

}

31

}

//- •

#endif

// data done being streamed to decoder
OUTPUT_LOW(STA013_BIT_ENABLE);

// adjust the address based on the size of the transfer
AddressAdd(address, size);

// get CRC bytes (not really needed by us, but required by MMC)
SPI_READ(OxFF);
SPIJREAD(OxFF);
}

else

{
// the data token was never received

rValue = MMC_DATA_TOKENERROR;

else

{
// the MMC never acknowledge the read command
rValue = MMC_RESPONSE_ERROR;

// SS = HIGH (off)
OUTPUTJflGH(MMCSS);

// give the MMC the required clocks to
// finish up what ever it needs to do
SPI_WRITE(OxFF);

else

{
rValue = MMC_BLOCK_SET_ERROR;
}

return rValue;

32

APPENDIX E

STA013.H

//STAO 13.h

//

// Declares the constants and prototypes to interface to the
//STA013 MPEG decoder

//

//ifndef_STA0I3_LIB_H
//define _STA013_LIB_H

//include <global.h>

// config file constants
//define STA0I3__CONFIG_START 0x0000
//define STA013_CONFIG_LENGTH OxOFAE

//pin defines
//define STA013_BIT_ENABLE PIN_C2
#define STA013_DATA_REQUEST PIN_E2
//define STA013_RESET_PINPIN_C0

// the address values required to be sent via IIC
// to the STA013 for register read and writes
//define STA013„ADDRESS_READ.0x87
//define STA013_ADDRESS_WRITE 0x86

// register addresses
//taken from STA013 documentation - pg 13-28
//define STA013_REGISTER_PLAY 0x13
//define STAO13_REGISTER_RUN 0x72

// error/success codes

//define STA013_SUCCESS 0x00
//define STA013_CONFIG_ERROR 0x01
//define STA013_IN1T_ERROR 0x02
//define STA013_R£GISTER_WRITE_ERROR 0x04
//define STAO13_NOT_PRESENT_ERROR 0x08

// - - -—

//_STA013RegisterWrite
//

// Writes a value to a register on the STAO13
//-— -

//SEPARATE

unsigned int_STA0I3RegisterWrite(unsigned int address, unsigned int value);

// - -

//_STA013RegisterRead
//

// Read a value from a register on the STAO13
//

//SEPARATE

unsigned int _STA013RegisterRead(unsigned int address);

//

//STAOBInit

//-— - -

33

// Initializes the STA013 MPEG decoder for use

//

//SEPARATE

unsigned int STA0I3Init();

// - - - - - --

//STAOBPlay
// - - - - --

// Starts the decoder decoding
//

//SEPARATE

unsigned int STA013Play();

//

//STAOBStop
// -

// Stops the decoder from decoding
//--- - - -

//SEPARATE

unsigned int STA013Stop();

//endif

34

APPENDIX F

STA013.C

//STA013.C

//

//

// STAO13 MPEG decoder library definition
//

// note: the "//use i2c..." statement must appear before this library is included
//

//if not define, then define
//ifhdef_STA013_C
//define _STA013_C

//— - - - - —

//include <globaI.h>
//include <STAOI3.h>

// - - - - -

//include <MMC2.c>

//

//SEPARATE

unsigned int_STA013RegisterWrite(unsigned int address, unsigned int value)

{

// an ACK value is actually logical 0

unsigned int rValue = STA013_SUCCESS;
bool ok; // ok should return value 0

// start the I2C communication

I2C_START();

//choose the STAO13 device for writing
// write, return 0

ok= !I2C_WRITE(STA0I3_ADDRESS_WRITE); //value is 0x86(134)

ok = !I2C_WRITE(address); //address is within the STA013 where we write the data

ok = !I2C_WRITE(value); //value is the data passed from prog to sta013

I2C_STOP();

//check ACK bit returned by each byte transmit
//return an error to main prog if no ACK bit received

rValue = ok?STA013_SUCCESS:STA0I3_REGISTER_WRITE_ERROR;
return rValue;

i

// - --

#SEPARATE

unsigned int _STA013RegisterRead(unsigned int address)

{

unsigned int rValue = 0x0,

35

I2C_START();

I2C_WRITE(STA0i3_ADDRESS_WRITE); //read from 0x86(134)
I2C_WRITE(address); //this will pass the adddress to read function

I2C_START(); // start the read sequence
I2C_WRITE(STA013_ADDRESS_READ); //value is 0x87(135)

// get the register value - read byte from STA013
// will be returned to the main program

rValue = I2C_READ(0); //reads are not ack (0)

// stop the transmission
I2C_STOP();

// return our read value

return rValue;

//SEPARATE

unsigned int STA013Init()

{

unsigned int rValue = STA013_SUCCESS;
unsigned long i;
unsigned int address;
unsigned int value;
bool ok;

// reset the hardware

OUTPUT_LOW(STAO13_RESET_PIN),
delay_ms(100);
OUTPUT_H1GH(STAO13_RESET_PIN),

// give chip a software reset
_STA013RegisterWrite(16; 1);

// check the sta013, read from add 0x01
//return ACK of OxAC to 0x01, if no ACK - no STA013 present

if(_STA013RegisterRead(OxO1)!=0xAC)
{

rValue == STA013_NOT_PRESENT_ERROR;

// - - -

//this section is reserved for the configuration file (if needed)
//send the config BIN file that is stored in the MMC (tentatively)
//use STAO 13 write function & should get ACK for each write

forfl = 0; rValue = STA013_SUCCESS && i < STA013_CONFIG_LENGTH;i+=2)

//read the register address

address = MMC2Read(STA013_CONFIG_START+i);

//read the value

value = MMC2Read(STA013_CONFIG_START-H+l);

//write the value to the register
if(_STA013RegisterWrite(address, vaiue)!=STA0l3_SUCCESS)

{
//there was an error streaming the config file
rValue = STAO 13 CONFIG ERROR;

36

II-

}

//insert a small delay after a write to the soft reset register

if(address==I6)

{
delay_ms(l);

)

if(rValue = STAO 13_SUCCESS)

// setup for 24-bit output to the CS4334 DAC

ok = _STA013RegisterWrite(84, 1);
ok |=_STA013RegisterWrite(85, 33);

IIPLL setup for 14.850 Mhz Clock
// and 256 Oversampling rate
// computed using ConfigPLL vl .0
//(http://us.st.com/stonline/prodpres/dedicate/mp3/sw/cpll.exe)

ok|=_STA013RegisterWrite(6, 11);
ok |= _STA013RegisterWrite(7, 0);
ok |= _STA013RegisterWrite(l 1, 3);
okj=_STA013RegisterWrite(80, 16);
okh_STA013RegisterWrite(81, 147);
okj=_STA013RegisterWrite(82, 236);
ok |=_STA013RegisterWrite(97, 14);
ok |=_STA013RegisterWrite(100, 129);
ok|=_STA013RegisterWrite(101, 105);
ok|=_STA013RegisterWrite(5, 161);

// this was NOT found in the data book specifically
// but is thought to be required to work
// this will enable the data request pin
// enable the data request pin and make sure it has
// polarity such that high indicates data request

ok |= _STA013RegisterWrite(24, 4);
ok|=_STA013RegisterWrite(12, 1);

// make sure that the decoder is not muted

ok |= _STA013RegisterWrite(0x 14, 0);

//sta013run

ok |= _STA0I3RegisterWrite(STA013_REGISTER_RUN, I);

rValue =(ok=STA013_SUCCESS)?STA013_SUCCESS:STA013_INIT_ERROR;

return rValue;

//SEPARATE

unsigned int STA013Play()

{
// start the decoding process

return _STA013RegisterWrite(STA013_REG1STER_PLAY, 1)•
}

37

//SEPARATE

unsigned int STA013Stop()

{

// stop the decoding process
return _STA013RegisterWrite(STA013_REGISTER_PLAY, 0);
}
//--

//endif

38

//PIC.h

//

// define retry counts for various actions
//define STA013_IN1T_RETRY_COUNT 5

// initializing
#define stlnitializing 0

// stopped, not playing
//define stStop I

// playing songs
//define stPlay 2

//error initializing STA013
//define stSTAOBInitError 6

// error setting value on STAO13
//define stSTA013Error 7

//

// Global Data members

//

APPENDIX G

PIC.H

unsigned int_CurrentState = stlnitializing; // defaultto initializing state

// these aremade global as they are used frequently andthis saves on RAM usage
//unsigned int retry;
//unsigned int val;

//

// Process

//—

// streams data to the decoder when the

// system is playing and handles all
// automatic track advances

//--

//INLINE

voidProcess();

//-- - -

// SetSystemState
// — -

// sets the currnet system state and
// displays a message if relavent
//— -

//SEPARATE

void SetSystemStale(unsigned int state);

39

APPENDIX H

PICC

//include <16F877.h>

//fuses HS,NOWDT,NOBROWNOUT,NOPUT,NOPROTECT
//use i2c(master,sda=PIN_C7, scl=PlN_C6)
//include <pic.h>
#include <g!oba!.h>
#include<MMC2,c>

//include <STA013.c>
// -

//include <string.h>
// - - -

void output(void);
char swap_bits(char test);

void main()

!
unsigned int retry;
unsigned int val;

//the STAO 13 MPEG decoder

retry = STAO!3_INIT_RETRY_COUNT;
do

{
val = STA0131nit();
-retry;

}
while(val !=STA013_SUCCESS && retry > 0);

if(val==STA013_SUCCESS)
i

ProcessQ;

// — •

//INLINE

void ProcessQ

unsigned int i=0;
unsigned long ptr=0;

unsigned long data;

const char hexdata[128] = {0xFF,OxFB,Ox3O,OxCO,OxOO,OxO0,0xO4,0x£4,OxBD,
0x66,0xl8,Ox72,0x8O,OxOl,Ox2LOx8B,OxEE,Ox6B,Ox9E,0x3O,OxOl,OxF0,0xOF,Oxl4,
Ox78,Ox9O,Ox4F,0xCF,Ox3F,OxDB,OxFC,OxOE,OxFF,OxEC,OxC7,OxFF,OxEO,Ox74,0x21,
OxO9,OxFF,0xE4,Ox3E,Ox7F,OxFF,OxEC,OxO7,Ox78,Ox61,0xDF,OxE9,Ox82,OxOE,Ox27};

for (i-0; i < 128; i++) // clock the actual data transfer and receive the bytes
{

data=hexdata[ptr-H-];

40

// set the decoder to start reading data (pull high)

OUTPUT_HIGH(STA013_BIT_ENABLE);

// clock theactual datatransfer, it will be read by the
// decoder automatically since the decoder has been enabled
// make sure that for each byte the decoder still wants data

for(i=0; i< 128; ++i)
{
// wait until the decoder wants more data

while(! INPUT(STAO 13_DATA_REQUEST));

// read out the data

data;

}

OUTPUT_LOW(STA013J3IT_ENABLE);

output(); //to blink led

//

void output()

//led blinking indicates pic is working

set_tris_b(0xOO); //to setall pins asoutput, 1as input

while(l)

J
PORTB=0xl8; //blink at port b4andb5

41

