ROBOT IN A RECONFIGURABLE MAZE

By

Issa Abdramane

FINAL PROJECT REPORT

Submitted to the Department of Electrical & EleaimEngineering
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical & Electronic Engineering)

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

[0 Copyright 2013

by
Issa Abdramane, 2013

CERTIFICATION OF APPROVAL

ROBOT IN A RECONFIGURABLE MAZE

by

Issa Abdramane

A project dissertation submitted to the
Department of Electrical & Electronic Engineering
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronic Engineering)

Approved:

Mr. Abu Bakar Sayuti
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2013

CERTIFICATION OF ORIGINALITY

This is to certify that | am responsible for therlwgubmitted in this project, that the
original work is my own except as specified in tleéerences and acknowledgements,
and that the original work contained herein havé Ibeen undertaken or done by

unspecified sources or persons.

Issa Abdramane

ABSTRACT

Autonomous vehicles have existed since several déea and they continue to evolve
promptly. Their usage in different domains made then an interesting area for
academic researchers as well as governments’ projsclssues that are still holding
back the development of autonomous vehicles are thaccurate mapping and
localization of the surrounding that enable these ehicles to perform independently

in a precise manner.

Using either the left-wall following or right-wall following algorithm alone will
sometimes result in the robot being stuck in a loopnd failed to solve the maze. This
report describes a hybrid method where one of theato algorithms is selected based
on the first opening of a reconfigurable maze. It s been demonstrated that by
combining the two algorithms, unless the maze was uposely configured

containing a loop, the rate of success is more th&® percent.

ACKNOWLEDGEMENTS

First of all, | direct all my gratitude to God tiAémighty for guiding me through all my

steps in everything | am involved in.

| would like to express my gratitude to Mr. Abu BakSayuti for all his patients and
passion while supervising me throughout the fireryproject timeline. All the guidance
and corrections provided were invaluable. All thescdssion we had, were very

motivating and fruitful. You have made the learnuggy easy and enjoyable.

I would like to extend my greatest gratitude angbrapiation to my family for the

constant motivation and support whenever life hasrgme hard time.

Last but least, | would like to thank everybody whieped me directly or indirectly in
completing my project. | am grateful to have aluysupports.

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1: INTRODUCTION
1. 1. Background studies
1. 2. Problem statement

1. 3. Scope of study and objectives

CHAPTER 2: LITERATURE REVIEW
2. 1. The Micromouse competition
2. 2. The left-walled or right-walled algorithm
2. 3. The depth-first search
2. 4. The flood-fill algorithm

CHAPTER 3: METHODOLOGY
3. 1. Research methodology
3. 2. Project activities
3. 3. Project Gantt chart

CHAPTER 4: PROJECT COMPONENTS
4. 1. Description of the robot
4. 2. Arduino UNO
4. 3. Ping — Ultrasonic Distance Sensor
4. 4. IR Line Tracking Sensor (Single Bit)
4. 5. Reconfigurable maze for testing

CHAPTER 5: ISSUES AND CORRECTION
5. 1. HC-SR04 Ping Sensors issues

5. 2. Solution provided for the Ping sesgssues

Vi

vii

viii

10
11
12
13

14
14
15

CHAPTER 6: IMPLEMENTATION AND DISCUSSION
6. 1. Wall-Following Hybrid Algorithm
6. 2. Techniques adopted for the algoritbrwork
6. 3. Mazes navigation

6. 4. Infinite loop cases

CHAPTER 7: IMPLEMENTATION OF HYBRID ALGORITHM
7. 1. Left-hand and right-hand rule
7. 2. Use of hybrid wall-follower algorithm

7. 3. Infinite loop cases
CONCLUSION
REFERENCES

APPENDIX

vii

16

18
20
23

23
23
24
25

26

27

28

Figure 01:
Figure 02:
Figure 03:
Figure 04:
Figure 04:
Figure 05:
Figure 06:
Figure 07:
Figure 08:
Figure 09:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Figure 16:
Figure 17:

Figure 18:

LIST OF FIGURES

Failure of wall-follower algorithm

Flow chart of a typical flood-fill algthm
Example of a robot caught in an infircyele
a) Project Gantt chart — first semester

b) Project Gantt chart — second semester
Robot circuit diagram

Arduino UNO R3

Ping - Ultrasonic Distance Sensor

IR Line Tracking Sensor (Single Bit)
Example of types of mazes to used
Reading from sensors

Readings with different delays as a measf correction
Hybrid Wall-Follower algorithm

The Left Hand Rule flowchart

Navigation process in a simple maze
Navigation in a more complex maze

Right-Hand rule navigation
Left-Hand rule navigation

Hybrid wall-following algorithm

viii

10

11

12

14

15

16

17

21

23

23

24

CHAPTER 1 INTRODUCTION

1.1. Background Studies

Autonomous vehicles are basically vehicles thattdwed external assistance in order to
drive themselves from one location to another. €hastonomous vehicles have gone
through lots of stages of improvement and usag#fiarent areas. Nowadays we count
complete autonomous aerial vehicles used in thigamyildomain as well as the complete

driverless Google car that is about to be rele&segublic.

Focusing on the terrestrial autonomous vehiclesy tise the mapping and localization
system to know their actual position. The surrongds read by advance technology
such as accurate ping sensors, line detectors,ngmbject detectors just to name few.
Coming to the academic world, small robots are dpeiaeveloped to study the nature of

mapping and localization for research purpose.

To make the research more fun and enjoyable, tbeombuse event is invented to grasp
more participation from educational institution$ tale over the world. Initiated during
the 1970s, the micromouse quickly got a reputatimong higher learning institutions all
over the world. It involves a completely autonomaabot to solve 16x16 mazes or

32x32 mazes depending on the rules and level afdh®petition.

The challenges in making these autonomous vehiede on the physical stability of
the robots and the technique or algorithm thatguired for the vehicles to be able to

map its surroundings and move autonomously and aisiy.

Taking the example of maze solving robots, theeenaimerous algorithms developed to
solve different type of mazes. Most famous onestlaeeflood-fill algorithm and wall-
follower algorithm. These approaches have their ostrengths and weaknesses

depending on the environment they are used in.

This project will be based on designing a small-mteeled robot and development of

an algorithm that is best suited for total recomfable maze navigation.

1.2. Problem statement

Nowadays, there are lots of different types of tebihat navigate different type of

mazes. The approach to navigate mazes is différemt one type to another, therefore
knowing the rules in advance is more important kefteciding which algorithm to use.

Usually when robots are put in a situation wher ithaze configuration differs from

what is predicted; these robots will lose their veay. Robot in a reconfigurable maze is
aiming to provide a robot that navigate any kindraze without prior knowing its type

and still can find its destination point.
1.3. Objectives and scope of study

The scope of this project will involve the desigrddabrication of a small two-wheeled
robot and development of an algorithm that will dgiithe robot to navigate
autonomously. The fabrication part will involve aladjtative study of electronics
components such as resistors, capacitors and @ikasure that the robot life-span is

prolonged with high performance.

The project will also require a good knowledge obgramming skills to modify the
existing algorithm or develop a new algorithm tdtéesuit our need to achieve a robot

that can navigate a reconfigurable maze.

The aim of this project is to design and build batothat will be able to navigate a total

reconfigurable maze. Therefore the objectives are:

- To reconstruct or design the robot to be more stabtuit the project needs;

- Produce a robot that is fast and accurate whilégatimg a maze

- Produce a robot that can navigate in a straigbtbetween the walls of a maze

- Modify existing or develop a maze-solving algorition make the robot more

intelligent in finding the goal point in any recamirable maze.

CHAPTER 2 LITERATURE REVIEW

Maze-solving robots are subjected very much to Wwihilgorithm being used for maze
navigation. There are quite a number of differégb@thms being developed and refined
to solve mazes. Through this literature review wd do a comparative study of

different algorithms and highlight their pros arahs [1].

2.1. The Micromouse competition

Micromouse event has debuted since the early 1%78san international event which is
very popular in the United Kingdom, Japan, Indid &outh Korea. The main idea of the
event is to provide autonomous robots that are tabtavigate mazes by themselves and
find the goal through the shortest path possibk® @eso with the least amount of time
possible. At first, the robots will navigate the zedo find the goal point. Once the goal
is located, the robot will identify the shortestilpand at the second round, the robots
should be able to navigate the maze through theedtigath and shortest time.

There are some rules for the mazes. At first, thees were 16x16. And depending on
the rules of the competition, the mazes might Hagp-hole, left-walled or right-walled

structure and the list goes on. The same goe®tsitle of the robots and their weights.

Recently in Japan, they initiated a new challengmgomouse event whereby the sizes
of robots are halved and the maze is upgradedx823®hile conserving the same size
as 16x16 mazes. This has brought sets of new dgake for the competitors for

designing the robot and the algorithms that thdlwsgie to solve such a complex and big

mazes.

2.2. The left-walled or right-walled algorithm

With this algorithm, the robot will keep an eyethé right or left wall and navigate
throughout the maze till it finds the goal [1]. $lalgorithm is proven to be very efficient
for mazes that are wall-linked to the goal poinheTapproach is very simple, after
eventually finding the end point; the robot willmpute the shortest distance for the
second round.

The major drawbacks for this algorithm are thataih be used only on small and simple

3

mazes. Furthermore the goal has to be wall-linkettithe prior knowledge whether the
maze is left-walled or right-walled is indispensaldr otherwise the robot will keep
looping through the maze forever. All these factoele the wall follower algorithm not
really suitable for maze-solving competitions besgaof its lack of intelligence for the
robot. Figure 01 [2] below shows an example ofilufa of wall follower algorithm in a
practical way.

| |
| — |

— | |
L 1

[I—— Il— ——————

i:__iffl_] —/
1N | |
| L |
| | r———-
L g =
Tj |_| | |_|_II—[|_|J_ |
|

| |
L | |
_|__|

|

|

|

|

|

Figure 1: failure of wall-follower algorithm

2. 4. The flood-fill algorithm

The flood-fill algorithm is by far the most famoasd efficient algorithm to solve all
type of mazes. This algorithm assign values to eathin the maze and these values
assigned to the cells represent the actual distbatteeen the cell and the goal point.
These cells are represented by two dimensionaysamdnereby the destination cell is
represented by the array (0, 0). Any immediate hiwaging cell will have the values of 1
in their arrays and so on. [3]

The flood-fill algorithm gets the current informai of the cell that the robot resides in

and predicts how far the goal point is. Going taigato the goal, it updates all walls
4

encountered and makes the correct turn if it haBased on the assumption of the ¢
point, the robot should be able to make the coreet ard avoid taking unnecesse

routes like the walfellower algorithm Figure 3 [4] shows a flow chart used in a typi

Initialize C value of calls
(the whole maze S unknown
to Micromouss)

g

flood-fill algorithm.

N
Record newly updated
Infarmation of walls
f————— | eopp—p—— -,
| Update C valua of current call
with Formula (1)&(2) I

Update the C
value of its
adjacent cells

¥

Dateiming
direction and
laka aona slap

—]I End I

Figure Z Flow chart of a typical flood#l algorithm

2.3. The depthfirst search

Invented by a French Mathetician named Charles Pierre Tremaux, the c-first
search is intended to solve mazes back in ti" century. This algorithm uses the lo
of going from the initial point considered as raod going deeper into each branch .
no nodeehild is founc [1]. If the goal is along the way, the search willpstmce the goe
is found. Else the robot will go back and pushhe s$tack the path navigated and I
for another brartc[1][3].

Figure Z Example of a robot caught in an infinite cy

This algorithmshown abovds efficient for maze solving but the major drawba that
there is a possibility that the robot will navigadle entire maze before finding its gc
And this is not encouraged especially when time @isthnce are key factors. Anor
inconvenient of this algorithm is that it cannatdiits way out in case it bumped int

loop-hole.

We could have noticed that all the mentioned aladgerithms are very efficient in the
own ways. For instance, the most famous algoritlsedun miromouse competition
the floodf{ill algorithm due to the nature of the maze usedhe competition. In ot
case, the aim is to navigate fully reconfigurablazes; therefore one of the b
approaches would be the use of hybrid algorithm relhye we cancombine two

algorithms.

CHAPTER 3 METHODOLOGY

3.1. Research methodology

Before diving into the project, a deep researchuabmapping and localization for small
robot will be carried out. A research on what tyanicrocontroller board to be used
and what kind of external input sensors to be wg#ldoe carried out as well. A wise
choice of electronic components will be made basestudies and information gathered.
This information will be found from related bookslevant published papers and trusted

sources from the internet as well.

3. 2. Project activities

i. Gather information about small two-wheeled robbis.research and explore

the making of robots.

ii. Identify the best parts/components that can maked#sired robot for the
project. Do qualitative research about sensors,oraptchassis, etc... that

would be used.

iii. Purchase all the necessary equipments/componeats whre identified

previously.

iv. Assemble the robot accordingly and test its peréoroe. Tweak if necessary

to get the desired performance.

v. Make a research and gather information about teedlgorithm that is suited

for this kind of project.
vi. Modify the algorithm selected to meet the requiretrcé the project.

vii. Test the algorithm on the robot and make necesdagges until the robot

perform as it is intended to do so.

3. 3. Project Gantt chart

To do [/ weeks

01 | 02| 03 05 (06 |07 |08 |09 | 10 | 11 | 12 | 13 | 14

Title selection and FYP

. X X X
Supervisor
Extended proposal X X X X
Viva: proposal defence and

X X
progress evaluation
Project progress X X X X X X X
Draft report x
Final report X
Figure 04: a) Project Gantt chart first semeste
To Do [/ Weeks 01 02 03 05 | 06 | 07 | 08 | 09 | 10 [11 [12 | 13 | 14

Review of project objective

Progress - Algorithm development

Testing and debugging

Progress Report

Sedex presentation

Report draft and technical paper

Final presentation

Figure 04: b) Project Gantt cha— second semes

CHAPTER 4 PROJECT COMPONENTS

4.1. Description of the robot
The first phase of this project is to have a working anmg robot. The mail
components used to build the robot

- Chassis

- Two (2) Cytron C36R motors with whex

- One (1)mini breadboar

- One (1L)Arduino UNO microcontroller boa
- LD293 motor driver chig

- Three (3)Ping— Distance finder — sensors
- Wires, nuts and stan

- Batteries and battery hold

Figure below shows the connections between all @boentioned elements to achiev
working robot.

MOTOR LEFT MOTOR RIGHT
»

s i

PING FRONT

X H Gafiiiese reananan
N T TR |

- s PING RIGHT

Figure 05: Circuit diagram

9

4.2. Arduino UNO

Arduino is among the first open-source electrobigard available. It is relatively easy to
use and very flexible in its hardware design arftivswe usage. There are more than 10
Arduino boards available and all are open-sourcduio UNO is one of them.

Figure 06: a) Arduino UNO R3 front b) ArdoitUNO R3 back

Arduino UNO has the following components and rugréonditions:

e Microcontroller ATmega328

» Operating Voltage 5V

e Input Voltage (recommended) 7-12V

* Input Voltage (limits) 6-20V

» Digital I/O Pins 14 (of which 6 provide PWM outpu
* Analog Input Pins 6

e DC Current per I/O Pin 40 mA

e DC Current for 3.3V Pin 50 mA

e Flash Memory 32 KB (ATmega328) - 0.5 KB used bytioader
« SRAM 2 KB (ATmega328)

« EEPROM 1 KB (ATmega328)

e Clock Speed 16 MHz

Arduino syntaxes is based on C/C++ programmingdagg, however the programming
structure is much different. Basically, all Arduipoograms should have two parts: the
void setup() and thevoid loop().

voi d setup() — all input pins and output pins are defined iis fanction using the
Built-In-Functions

void | oop() - all instructions are written in this functionhi¥ block will loop
continuously until the board is turned off.

10

4. 3. Ping - Ultrasonic Distance Sensor

Ping - Ultrasonic Distance Sensor measures th@amdis using Sonar. An ultrasonic

(unaudible) sound pulse is transmitted from theadeto the object target. Based on the
time taken by the emitted sound between emissianraception, the diatance between
the sensor and the object is calculated. Knowirag the sound travels at the speed of
light and the time taken for the sound to reachothject and bounce back, the distance is

calculated using the simple relati@h= v * t

The Ping sensor is a low cost device which is musdd in applications where accuracy

is not the main concern.

www.parallax.com

o

Figure 07: Ping - Ultrasonic Distance Sensor

Key Specifications:

Power requirements: +5 VDC

Communication: Positive TTL pulse

Dimensions: 0.81x1.8x0.6in(22x46 x 16)nm
Operating temp range: +32 to +158 °F (0 to +70 °C)
Features:

Distance measurements: within a 2 cm to 3 m range
Communication: Simple pulse in/pulse out
Indication: Burst indicator LED shows measuremaergrogress
Power consumption: 20 mA

Narrow acceptance angle: abouf 15

Connection: 3-pin header

11

4. 4. IR Line Tracking Sensor (Single Bit)

The IR Line tracking sensor is a sensor that céffierdntiate between white and black
color. It outputs via TTL signal. It is a very sitapto use and very efficient.
Furthermore, it comes with a variable resistor adbles the tuning of the threshold
voltage of white and black color. Combining thrdettos sensor will help us ensuring
that the robot will be moving in a straight linehéBe can also used to avoid collision
because since they can operate within a rangebofml.they perform very nicely when

used in no-contact switch scenario if coupled watlays.

Figure 08: IR Line Tracking Sensor (Single Bit)

Features:

Detection distance: 1.5cm (tested with white pape

Power supply: 3.3to 5VDC

Operating current: 18 to 20mA at 5V

Operating temperature range: 0°C ~ + 50°C

Output interface: 3 wires

Output: TTL (Black = Logic HIGH, White = LogicQW)

The surrounding information are read by the senaodsfed to the microcontroller. This
information is treated and actions are taken basethe readings. For instance, if the
front Ping sensor read a distance of less of 10tkkenrobot will stop to avoid colliding

with the wall. Then other readings from the adjac@msors will determine whether the

robot will take a left turn, right turn or movingtkwards.

12

4.5. Reconfigurable Maze for testing

To complete the project, the robot should be tegsted reconfigurable maze. A big
reconfigurable maze is built for this purpose. Thaze is made based on wood with

closed edges. It hosts a 16x16 grid which can raakery complex maze if needed.

The structure if the maze is in such a way thét totally reconfigurable. One can alter
the interior easily to achieve any type of mazespids for 16x16 grids. The platform is
equipped with grid lines that help for straight rament and perfect turning without the

use of any encoder.

To conduct the experiments, a set of different rea#e needed. The first maze should
be a simple maze with fewer obstacles and a goat.pidhe second maze should be a bit
complex compared to the first maze and the thiraershould have high complexity

such as infinite loop and more complex structure.

Figures below show some example of mazes thatearséd to conduct the experiment.

=L

|

i

01 02

_
-]

03

Figure 09: Example of types of mazes to used

13

CHAPTER 5 ISSUES AND CORRECTION

5.1. HC-SRO04 Ping Sensors issues

The HC-SRO04 Ping sensor is a low cost ping sems&tritas about the same performance
as the Ping Ultrasonic from Parallax which is a éipensive. The cheapness of this

sensor comes along with performance price to pay.

The issue encountered with these sensors is guitgiel in its genre. For instance, the
accuracy of one sensor is perfect from 2cm up @c20with a very small range of error.
However, when reading simultaneously from 2 sensiwes second reading from the

second sensor is not as accurate as it's expddete.

Doing this with all three (3) sensors, the thirddimg actually fluctuates. This behavior
is a bit strange since each sensor is connectet$ twwn ping with its own reading

mechanism.

The figure below shows an example of reading obtaiinom front ping alone followed
by reading from front ping and left ping simultansty, and then all three pings are read

together simultaneously.

- (o) x| oe) [de X
@@ 1+ o al X .' 41 _TE X 'll de + - Ex
i | Send Send
Send
Front & Left Ping : 14 11 Front & Left & Right Ping : 17 11 10

T TEnE L sy e Front & Left Ping : 14 3 Front & Left & Right Ping : 17 13 10
The front Ping alone: 8 Front & Left Ping : 14 3 Front & Left & Right Ping : 17 9 9
The front Ping alone: 8 Front & Left Ping : 14 12 Front & Left & Right Ping : 17 B8 10
The front Ping alone: 8 Front & Left Ping : 14 4 Front & Left & Right Ping : 17 2 4
The front Ping alone: 8 Front & Left Ping : 14 12 Front & Left & Right Ping : 17 2 9
The front Ping alone: 8 Front & Left Ping : 14 3 Front & Left & Right Ping : 17 13 10
The front Ping alone: B Front & Left Ping @ 14 4 Front & Left & Right Ping : 17 8 8
The front Ping alone: 8 Front & Left Ping : 14 11 Front & Left & Right Ping E 17 13 10

R X Front & Left Ping : 14 13 Front & Left & Right Ping : 17 9 10
The front Ping alone: 8 o g Left & Right P 117 8 10
g e lone: 8 Front & Left Ping : 14 4 ront eft 1ght Ping :

B e [T ERIEE Front & Left Ping : 14 13 Front & Left & Right Ping : 17 2 10
The front Ping alone: 8 Front & Left Ping : 14 4 Front & Left & Right Ping : 17 2 10
The front Ping alone: 8 Front & Left Ping : 14 14 Front & Left & Right Ping : 17 9 9
The front Ping alone: 8 Front & Left Ping : 14 11 Front & Left & Right Ping : 17 8 5
The front Ping alone: 8 Front & Left Ping : 14 3 Front & Left & Right Ping : 17 10 10
The front Ping alone: 8 Front & Left Ping : 14 12 ;rnn; : tEE ; Elg;:[c Emg E ;3 1:][]
The front Ping alone: 8 Front & Left Ping @ 14 4 an a LEf A ngh ng 197 99 93
The front Ping alone: 8 Front & Left Ping : 14 11 It L3 LEAAS LS SRS [Felils) B

: s Front & Left & Right Ping : 17 2 3
The front Ping alone: 8 Front & Left Ping : 14 4
1ng B Front & Left Ping : 14 4 Front & Left & Right Ping : 17 8 9
The front Ping alone: 8 Front & Left Ping : 14 11 Front & Left & Right Ping : 17 12 10
The front Ping alone: 8 Front & Left Ping 14 14 Front & Left & Right Ping : 17 13 10
The front Ping alone: 8 Front & Left Ping : 14 4 Front & Left & Right Ping : 17 9 10
The front Ping alone: B Front & Left & Right Ping : 17 8 10

Front & Left Ping : 14 13
Front & Left Ping : 14 4

Autoscrel| No line ending | + | |9600 baud

Autoseroll No line ending = |9500 baud Autescrall| Mo line ending | = | |9600 baud

Figure 10: a) Reading of one sensor alone b) Regglof two sensors simultaneously

¢) Reading of three sensors simultaneously

14

5. 2. Solution provided for the Ping sensors issues

To cater the above mentioned issues encounter#telping sensors, a series of trial and
errors method were conducted. It is found that iptaywith the delays between the
reading has an impact on the reading itself. There delay property is mentioned in

the datasheet of the sensor though.

Readings were taken for 1ms delay, 3ms delay and &ay between the sensors
reading. It is noticed that a delay of 1ms doesha®p much and reading are inaccurate.
And improvement is shown with a 2ms delay betwédwmnreading but with 5ms delay,
the reading were quite consistent and satisfactBejow are the figures showing all

three reading with three different delays.

[devittyACMOD SNNERX [devittyACMO SoEg B

[||send ||send Sand
Front & Left & Right: 5 1 1 Front & Left & Right: 5 10 8 1
Front & Left & Right: 5 1 1 JFront & Left & Right: 5 10 8 1
Front & Left & Right: 5 2 5 Front & Left & Right: 5 9 & |
Front & Left & Right: 5 1 5 Front & Left & Right: 5 10 8 |
Front & Left & Right: 5 11 1 Front & Left & Right: 5 10 8 1
Front & Left & Right: 5 2 5 Front & Left & Right: 5 10 8 1
Front & Left & Right: 5 1 5 Front & Left & Right: 5 9 & 1
Front & Left & Right: 5 1 5 Front & Left & Right: 5 10 8 1
Front & Left & Right: 5 12 1 Front & Left & Right: 5 10 8 |
Front & Left & Right: 5 2 5 Front & Left & Right: 5 10 8 E
Front & Left & Right: 5 1 4 Front & Left & Right: 5 11 8 1
Front & Left & Right: 5 2 4 Front & Left & Right: 5 11 8 1
Front & Left & Right: 5 12 1 Front & Left & Right: 5 3 & 1
Front & Left & Right: 5 11 1 Front & Left & Right: 5 10 8 !
Front & Left & Right: 5 & 1 Front & Left & Right: 5 10 8 !
Front & Left & Right: 5 12 1 Front & Left & Right: 5 & 8 11
Front & Left & Right: 5 12 0 Front & Left & Right: 5 11 8 1
Front & Left & Right: 5 6 1 Front & Left & Right: 5 10 8 !
Front & Left & Right: 5 1 4 Front & Left & Right: 5 11 8 !
Front & Left & Right: 5 12 0 Front & Left & Right: 5 9 8 0
Front & Left & Right: 5 2 4 Front & Left & Right: 5 11 8 i
Front & Left & Right: 5 1 & Front & Left & Right: 5 10 8 !
Front & Left & Right: 5 1 4 Front & Left & Right: 5 11 8 |
Front & Left & Right: 5 1 5 ‘Front & Left & Right: 5 11 &8 !
Front & Left & Right: 5 1 & Front & Left & Right: 5 10 8 !

| N | I [h
Autoscroll No line ending | | |9600 baud Autoscroll| Ne line ending | v | |9600 baud Hitustral Ho In= erding

Figure 11: a) Readings with 1ms delay b) Readinigis 2ms delay c) Readings with 5ms delay

15

CHAPTER 6

6. 1. Wall-following Hybrid Algorithm

IMPLEMENTATION AND DISCUSSION

r

YES

¥

CHECKIF IT
IS THE END

LEFT
SIDE
OPEN
LEFT RIGHT
HAND HAND
RULE RULE
Y
PATH |
SHORTENING
REPLAY
END

Figure 12

$ NO»

: Hybrid Wall-Follower algorithm

TURN
ARCUND

To navigate different type of mazes, the wall-faley algorithm is adopted. In this case,
the left-hand rule and the right-hand rule are i@ppbased on the first side opening
encountered. This combination of left-hand rule agbt-hand rule is used to maximize
the capability of the robot to be able to use namgnuch complex type of mazes and

also in some cases, it will help to avoid unneagsieag navigations.

START FROM
SIDE
QOPEMING

GO FROMT
o AND CHECK [¢—
SEMSORS

—YES

*

! TURN LEFT

—o TURN RMaHT

CHECK IF
GOAL 15
REACHEDT

S5IT GOAL TLURM
POINTY AROUND

YES
+
DOME. PASE
ITTOFATH
SHORTEMING

PATH
SHORTEMIMG

Figure 13: The Left Hand Rule flowchart
17

The left-hand rule works in such a way that theotdlbcuses more on its left-side and
front-side while it has options for turns. The rolall turn right only if there are no
other possibilities while it always turns to thé iéthere is an option. Here is a pseudo-
code on how the left-hand rule works:

If front obstacle > 10cm
If left obstacle > 10cm
Turn left
If left obstacle < 10cm
Go straight
If front obstacle < 10cm
If left obstacle > 10cm and right obstacle > 10cm
Turn left
If left obstacle > 10cm and Right obstacle < 10cm
Turn left
If Left Obstacle < 10cm and Right Obstacle > 10cm
Turn right
If Left Obstacle < 10cm and Right Obstacle < 10cm
If this is End Point
Done
If this is NOT End Point
Turn Around

With this algorithm, the robot will find the endipbof any wall follower maze provided
that the maze does not have an infinite loop. @lgsrithm is very efficient for simpler
maze with no fix target unlike the flood-fill algthrm where the target is predetermined
fix point.

6. 2. Techniques used to achieve navigation.

The robot has three Ping Distance finder sensorggalvith three IR Single bit sensors.
The three Ping sensors are used to detect wallshentR sensors are used for straight
movement, the turns and the ending point. Belowttegedetails about how these sensors

are used to achieve accurate wall detection arfdgienovements.

a- Straight movement
Controlling two motors without encoder is very mudifficult especially if the aim is

18

to keep the robot moving in a straight line. Irsthase, three IR sensors are used to
help the robot achieve a perfect straight movemBatow is a pseudo-code that

explains how the three sensors are used to keeplibemoving straight.

While moving straight:
Move forward for a short period of time
Check the IR sensors
If middle IR sensor alone sensing black line
Go forward
If left IR sensor sensing black line
Decrease the speed of left motor
If right IR sensor sensing black line
Decrease the speed of right motor
If all IR sensing black line

Ignore this - it is an intersection

b- Turning left or turning right
Turning right or left is also a bit of challengen@® no encoder is used for this
purpose. The same three IR are again used forelitf@urpose here.
For right turning, when the robot detects thatehame obstacle in front and left side
but the right side is free, the robot will takeight turn. The robot will pass the

intersection before it stops. So to turn right, tehnique below is applied:

If front and left have walls and right side is empt y:
While left & right IR are not sensing black line
Go back // go back till the intersection line
While left IR is sensing black line
Stop right motor and run left motor
While left IR is NOT sensing black line
Stop right motor and run left motor

For left turning, two ways are applied. One wayfas absolute left turning and
another way is for optional left turning. For ahgelleft turning, it is similar to right
turning except that we use right IR sensor.

For optional left turning, the procedure is a hifedent. This case happens when
there is no front obstacle but there is an optiotutn left. Below is how it is done:

19

If NO front Obstacle and Left side is free
While left & right IR are NOT on black line
/I left ping detects opening before the intersect ion
Go forward
While left IR is sensing black line
Stop right motor and run left motor
While left IR is NOT sensing black line
Stop right motor and run left motor

c- End point and turning around
The three IR sensors are again used together hatlping sensors to detect if the
robot has reached the end point or not. The pseade-below determines whether

the robot has reached the end point or it haskedaurn around.

If all Pings detect wall
Stop the robot for a short while - Go a bit to the front
If all IR detect black line -> DONE
Else - TURN AROUND
While left & right IR not sensing black line
Go back // till the robot be on the intersectio n

While left IR is sensing black line

Run backward right motor and run forward left m otor
While left IR is NOT sensing black line
Run backward right motor and run forward left m otor

While left IR is sensing black line

Run backward right motor and run forward left m otor
While left IR is NOT sensing black line
Run backward right motor and run forward left m otor

6. 3. Maze navigation

Figures below show how the robot navigates the mBze starting point is marked with
the green color and the end point is marked bybthek color. In this maze, the robot is
guided by obstacles. There are no extra choiceptdor the robot. The robot navigates
in a very easy way and there is only one path ptes$iom the starting point to the

ending point.

20

01 02 03

04 05 06

07 08

Figure 14: Navigation process in a simple maze

Herethe robot will navigate a bit complex maze. Asande noticed from the below
pictures, the robot can find the end point butghth taken is not really optimized. The
robot will navigate almost the entire maze befarvening to the ending point. Once the
end point is reached, the robot will optimize tlaghpfor next round by going through the

shortest path possible.

21

» -
il

S ——
1 e

——
/1

I —
_ g

Figure 15: Navigation in a more complex maze

22

CHAPTER 7 IMPLEMENTATION OF HYBRID ALGORITHM

For the same type of maze, the performance of usitiipand and right-hand rule will

differ in the performance of the navigation.
7.1. Left-hand and right-hand rule

The figure 16 below shows a maze navigated usiagitiht-hand rule algorithm. The
navigation is very straightforward and the goahchieved through the shortest path at

the first time.

i)

Figure 16: Right-Hand rule navigation

The figure 17 below shows the same type of mazenauated by the use of left-hand
rule algorithm. We can clearly notice that the gation takes longer compared to the
same navigation when used the right-hand rule @a#ioig. However the shortest path

computed will lead to the same shortest path.

Ny
m

Figure 17: Left-Hand rule navigation

23

7. 2. Use of hybrid wall-follower algorithm

The use of hybrid wall-follower algorithm can impeogreatly the navigation time of the

vehicle. An example is shown below in the figure TBe use of the hybrid is based on
which side turn is encountered first. If the lefirt is encountered first, the left-hand rule
Is selected. Whereas if the right turn is encowutefirst, then the right-hand rule

algorithm is selected. From the picture, we canceathat the choice of the right hand
rule algorithm is optimal.

Figure 18: Hybrid wall-following algorithm

The red line indicates the choice taken by thealetbhased on the hybrid system. The
blue line-path shown above is the path indicatesuse of a single left-hand rule.

It is clearly shown that the use of the hybrid sgsthas brought more intelligence to the
vehicle in navigating the maze. Further implemeotawill the use of the same system

in the scenario where the vehicle fall in an inBribop while navigating a maze.

24

7. 3. Infinite loop case

In the scenario where the robot falls under amitdiloop while navigating the maze,
one algorithm will not be enough for it to find itgay out. The robot will keep on
looping infinitely. Thus infinite loop is among theawanted situations that need to be
taken care of. In this project, an attempt to coralivo different algorithms all working

together will be carried out.

The challenge resides in the detection of the itefiloop. Since the size of the maze and
its structure are not known by the vehicle, sensimgnfinite loop will not be easy. One
of the approaches might be the detection of theespattern for a certain number of

times while navigating the maze to conclude thatrtbot is in an infinite loop.

However, if the maze is structured in such a wat the navigation patterns are the

same, the vehicle will not be able to make thetrjgtigment call.

25

CONCLUSION

Throughout the project, an autonomous vehicle ik.bthe hardware limitations of the
vehicle such as the use of low quality sensors ntlaeléearning curve very interesting.
The vehicle uses IR Single bit sensors for perédé@ight and turning and it also uses

ultra-sonic range finder sensors for obstacle dietec

A reconfigurable maze for testing purpose has loeathe for the vehicle to navigate. The
maze is fully reconfigurable, and helps to progtam robot dynamically to suit all type
of configuration possible.

The autonomous vehicle is equipped with a hybrgb@ihm — left-hand wall and right
hand wall — for perfect maze navigation. The radwitch from one algorithm to another
depending on the situation encountered. For nogvd#tision is made based on the first
turn encountered meaning that if first turn frorarstf on the left, then the left-hand
algorithm will be used.

Future implementation will be on the detection ofinite loop while the vehicle is
navigating the maze and the ability to switch frone algorithm to another upon sensing
the infinite loop.

26

REFERENCES

[1] Adil M. J. Sadik, Maruf A. Dhali, Hasib M. A. B. Fd, Tafhim U Rashid, A. Syeed
A “Comprehensive and Comparative Study of Maze-Solviaghniques by
Implementing Graph Theaty 2010 International Conference on Atrtificial
Intelligence and Computational Intelligence. PpS&2-

[2] Swati M., Pankaj B., Maze Solving Algorithms for Micro Mouse2008 IEEE
International Conference on Signal Image Technolagg Internet Based Systems,
pp 86-93.

[3] Kaizen R., ‘Algorithms for Micro-mouse Manoj Sharina2009 International
Conference on Future Computer and Communicatio®3ip585.

[4] Zhuang Cai, Lu Ye, Ang Yang,FloodFill Maze Solving with Expected Toll of
Penetrating Unknown Walls2012 IEEE 14th International Conference on High
Performance Computing and Communications, pp 14P433

[5] Patrickmccb. (2011, July 03). Maze solving robot.etrieved from

http://www.instructables.com/id/Maze-Solving-Robot/

[6] http://www.societyofrobots.com/member_tutorials/ki@xport/html|/94

[7] Archive for the ‘maze solving robot using arduirgategory. (2010, October 10).

Retrieved from http://satkum.wordpress.com/category/maze-solvoimpt-using-

arduino/
[8] Ibrahim M. E. Elshamarka, “Maze Robot: Design amglementation of autonomous
vehicle navigation” May 2012, Final Year Projechitkrsiti Teknologi PETRONAS

27

APPENDIX

Code Sources for the Hybrid Wall-Follower Algorithm

#include <NewPing.h>

const int centerSensor = A3; // center

const int rightSensor = A4; // right

const int leftSensor = A5; // left 46 for white
black

const int leftMotorl =9; // THE MOTORS
const int leftMotor2 = 13;

const int rightMotorl= 11,

const int rightMotor2 = 10;

const int frontPingTrig = 5; // front sensor trigg

const int frontPingEcho = 2; // front sensor echo

const int leftPingTrig = 7; /I left sensor trigg

const int leftPingEcho = 4; // left sensor echo

const int rightPingTrig = 12; // right ping trigger
const int rightPingEcho = 8; // right ping echo

#define MAX_DISTANCE 200

#define num 3

long ping_cm[numj;
int cm[num];

int cmO; // front ping
int cm1; // right ping
int cm2; // left ping

NewPing sonar[num] = {
NewPing(frontPingTrig, frontPingEcho, MAX_DISTANC
NewPing(rightPingTrig, rightPingEcho, MAX_DISTANC
NewPing(leftPingTrig, leftPingEcho, MAX_DISTANCE)
28

er

er

E),
E),

space and 1016 for

//IDECLARATION OF VARIABLES
int centerReading;

int leftReading;

int rightReading;

int leapTime = 100;

int stop_time = 0;

int frontPing;
int leftPing;
int rightPing;

int replaystage = 0;

#define led AO

char path[30] = {};
char route[30] = {};
int pathLength;
int routeLength;

int readLength;

int check = 0;
inti, c;
intii=5;

int choice = 0;

int frontObstacle = 8;
int sideObstacle = 10;

//************** the Set up Ioop **************//

void setup ()

{
Serial.begin(9600) ;

pinMode(centerSensor, INPUT);
pinMode(leftSensor, INPUT);

29

pinMode(rightSensor, INPUT);

pinMode(leftMotorl, OUTPUT);
pinMode(leftMotor2, OUTPUT);
pinMode(rightMotorl, OUTPUT);
pinMode(rightMotor2, OUTPUT);

digitalwrite(led, LOW);
delay(1000);
}

//***************** the maln VOId |00p kkkkkkkhkkkkhk **//

void loop()
{

frontPing = sonar[0].ping_cm(); delay(ii):
leftPing = sonar[2].ping_cm(); delay(ii);
rightPing = sonar[1].ping_cm(); delay(ii);

if(choice == 0)
{
straight();

frontPing = sonar[0].ping_cm(); delay(ii);
leftPing = sonar[2].ping_cm(); delay(ii);
rightPing = sonar[1].ping_cm(); delay(ii);

/I no side openings so we check if we are at the goal or a turn
around
if(frontPing < frontObstacle && leftPing < si deObstacle &&
rightPing < sideObstacle)
{
Il check for done
front(200);
stopall(50);
if(analogRead(leftSensor) > 200 &&

30

analogRead(centerSensor) > 200 &&
analogRead(rightSensor) > 200)

{
done();
}
else
{
stopall(50);
turnAround();
}
}
/ there is a right side opening so we choose the right hand wall
else if(leftPing < sideObstacle && rightPing > sideObstacle)
{
/I choose the right hand wall algorithm
choice = 1;
}
Il there is a left side opening so we choose the left hand wall
else if(leftPing > sideObstacle && (rightPing < sideObstacle ||

rightPing > sideObstacle))
{

/I choose the left hand wall algorithm

choice = 2;

/I Execution of the choice

if(choice == 1)
{
rightHandWall();
}
if(choice == 2)
{
leftHandWall();
}

} 1/ end of the void loop()
31

//*********** al | th e fu nCtIO ns *kkkkkkkkkkhkkkhhkkk

void leftHandWall() {

// done or turn around
if(frontPing < frontObstacle && leftPing < sideObs
sideObstacle){

front(200);

stopall(50);

iflanalogRead(leftSensor) > 200 &&
analogRead(centerSensor) > 200 &&
analogRead(rightSensor) > 200){

done();

}else{
stopall(50);
turnAround();

}

}

Il turning right
else if(frontPing < frontObstacle && leftPing < si
rightPing > sideObstacle){

stopall(50);

turnRight();

stopall(100);
}

/l turn left --> 1
else if(frontPing < frontObstacle && leftPing > si
rightPing < sideObstacle){ // #1

/ISerial.printin("Stop #1");
stopall(100);

32

****//

tacle && rightPing <

deObstacle

deObstacle

&&

&&

turnLeft();
stopall(100);
}

I turn left --> 2
else if(frontPing < frontObstacle && leftPing > si
rightPing > sideObstacle){ // #2

/[Serial.printin("Stop #2");
stopall(100);

turnLeft();

stopall(100);

/I go front --> 1
else if(frontPing > frontObstacle && leftPing < si
rightPing < sideObstacle)
{
//stopall(50);
straight();

}

// do front --> 2
else if(frontPing > frontObstacle && leftPing < si
rightPing > sideObstacle)
{
/Istopall(50);
straight();

if(analogRead(leftSensor) > 200 && analogRead(ri
{
/Ipath[pathLength]='S’";
/[Serial.printin("s");
/lpathLength++;
delay(100);
}
}

33

deObstacle

deObstacle

deObstacle

ghtSensor) > 200)

&&

&&

&&

/I turn left critical --> 1
else if(frontPing > frontObstacle && leftPing > si
rightPing < sideObstacle) // #3
{
/[Serial.printin("Stop #3");
straight();

if(analogRead(leftSensor) > 200 && analogRead(rig
{
/[Serial.printin("crossed the critical #3");
delay(150);
stopall(200);
turnLeft();

/I turn left critical --> 2
else if(frontPing > frontObstacle && leftPing > fr
rightPing > sideObstacle) // #4
{
/ISerial.printin("Stop #4");
straight();

if(@analogRead(leftSensor) > 200 && analogRead(ri
{

/[Serial.printin("crossed the critical #4");
delay(150);

stopall(200);

turnLeft();

}

/I RIGHT HAND RULE

void rightHandWall() {

34

deObstacle &&

htSensor) > 200)

ontObstacle &&

ghtSensor) > 200)

// done or turn around

if(frontPing < frontObstacle &&
leftPing < sideObstacle &&
rightPing < sideObstacle){

front(200);
stopall(50);
if(analogRead(leftSensor) > 200 &&

analogRead(centerSensor) > 200 &&

analogRead(rightSensor) > 200){

done();
Jelse{
stopall(50);
turnAround();
}

I turning left
else if(frontPing < frontObstacle && rightPing < s
leftPing > sideObstacle){

stopall(50);
turnRight();
stopall(100);

I/l turn right --> 1
else if(frontPing < frontObstacle && rightPing > s
leftPing < sideObstacle){ // #1

/[Serial.printin("Stop #1");
stopall(100);

turnLeft();
stopall(100);

I turn right --> 2

35

ideObstacle &&

ideObstacle &&

else if(frontPing < frontObstacle && rightPing > s
leftPing > sideObstacle){ // #2

/ISerial.printin("Stop #2");
stopall(100);

turnLeft();

stopall(100);

/l go front --> 1
else if(frontPing > frontObstacle && rightPing < s
leftPing < sideObstacle)
{
/Istopall(50);
straight();

// do front --> 2
else if(frontPing > frontObstacle && rightPing < s
leftPing > sideObstacle)

{
//stopall(50);
straight();
if(analogRead(leftSensor) > 200 && analogRead(rig
> 200)
{
/lpath[pathLength]='S";
/[Serial.printin("s");
llpathLength++;
delay(100);
}
}

/I turn right critical --> 1
else if(frontPing > frontObstacle && rightPing > s
leftPing < sideObstacle) // #3

{
36

ideObstacle &&

ideObstacle &&

ideObstacle &&

htSensor)

ideObstacle &&

/ISerial.printin("Stop #3");

straight();
if(analogRead(leftSensor) > 200 && analogRead(rig htSensor)
> 200)
{
/[Serial.printin("crossed the critical #3");
delay(150);
stopall(200);
turnLeft();
}
}

Il turn right critical --> 2

else if(frontPing > frontObstacle && rightPing > f rontObstacle &&
leftPing > sideObstacle) // #4
{
/[Serial.printin("Stop #4");
straight();
if(analogRead(leftSensor) > 200 && analogRead(rig htSensor)
> 200)
{
/ISerial.printin("crossed the critical #4");
delay(150);
stopall(200);
turnLeft();
}
}
}
Jf-mmmmmmmmaee DONE -- END-MOTION -- PATH-SHORTENI NG -- REPLAY ------
-------- 1/

// DONE FUNCTION
void done(){

digitalWrite(leftMotorl, LOW);
37

digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);

replaystage=1;
path[pathLength]='D’;
/ISerial.printin("d");
pathLength++;
/lprintPath();

/I --> shortening stuffs

¢ = pathLength;

while(check == 0){
Serial.printin("trapped");
shortening(); //delay(300);

}

while(analogRead(leftSensor) > 200 &&
analogRead(centerSensor) > 200 &&
analogRead(rightSensor) > 200){

digitalWrite(led, HIGH);
delay(500);
digitalWrite(led, LOW);
delay(500);

}

delay(500);

replay();

}

// END OF MOTION
void endMotion(){
digitalWrite(led, LOW);
delay(500);
digitalWrite(led, HIGH);
delay(200);
digitalWrite(led, LOW);

38

delay(200);

digitalWrite(led, HIGH);

delay(500);
endMotion();

}

/I PATH SHORTENING
void shortening(){

check = 1;
Serial.print("Before shortening ¢ =");

Serial.printin(c);
Serial.print("Incoming array = ");
for(i=0; i<c; i++){Serial.print(path[i]);}
Serial.printin(" ");Serial.printin(" ");
for(i=0; i < c; i++){
if(path[i] == 'B"){ // check for B
if(path[i-1] == 'L' && path[i+1] == "'G"){

route[routeLength] = 'R’;

routeLength++;

lelse if(path[i-1] == 'L' && path[i+1] =="'

route[routeLength] = 'B';
routeLength++;

lelse if(path[i-1] == 'L' && path[i+1] =="'

route[routeLength] = 'R’;

routeLength++;

else if(path[i-1] == 'R' && path[i+1] =="

route[routeLength] = 'B';

routeLength++;

lelse if(path[i-1] == 'S' && path[i+1] ==

39

/I R condition

R){

SN

L)

LK

route[routeLength] = 'R’

routeLength++;

else if(path[i-1] == 'S’ && path[i+1] =="
route[routeLength] = 'B';

routeLength++;

}lelse if(path[i-1] == 'L' && path[i+1] =="'
route[routeLength] ='S";

routeLength++;

}

lelse { /I if the current is not a B, check
after is B
if(path[i-1] == 'B' || path[i+1] == 'B"){
// do nothing

}else{
/l record it
route[routeLength] = pathli];
routeLength++;

}

}
}I end of for loop

Serial.printin("After shortening");

C = routeLength;
Serial.print("Length of route array is ");

Serial.printin(c);

Serial.print("The route path = ");
for(i=0; i<c; i++){Serial.print(route[i]);}

Serial.printin(" ");

for(i=0; i<c; i++){
if(route[i] == 'B"){
check = 0;

40

SN

L)

if previous or

Serial.printin("There is a B");

}

}
Serial.printin(" ");

if(check == 0){
llpath[c] = {};
for(i=0; i<c; i++){
path[i] = route[i];
/I Serial.printin(pathl[i]);
}
/I clear route
/lroute[c] = {};
routeLength = 0;

}
Serial.printin(" ");

/l REPLAY FUNCTION
void replay(){

/I Serial.print("Index is "); Serial.print(readLen
/I Serial.print(" the letter is: ");
/I Serial.printin(route[readLength]);

delay(10);

frontPing = sonar[0].ping_cm(); delay(10);
rightPing = sonar[1].ping_cm(); delay(10);
leftPing = sonar[2].ping_cm(); delay(10);

/I Serial.printin(leftPing);
/I Serial.printin(rightPing);

if(frontPing > frontObstacle && leftPing < sideOb

{
straight();

}

41

gth);

stacle)

else

{

/I stop for a moment to check for next move
stopall(10);

if(route[readLength]=="D")

{

200)

straight();

iflanalogRead(leftSensor) > 200 && analogRe

{

/[Serial.printin("crossed the critical #3
delay(150);

stopall(100);

digitalWrite(leftMotorl, HIGH);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, HIGH);
digitalWrite(rightMotor2, LOW);
delay(100);

digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);

if(analogRead(leftSensor) > 200 && analog

200){

done(); //lendMotion();

}
}

Il left turning
else if(route[readLength] =='L' &&

leftPing > sideObstacle &&
(rightPing > sideObstacle ||

42

ad(rightSensor) >

Read(rightSensor) >

rightPing < sideObstacle))

{
straight();

if(analogRead(leftSensor) > 200 && analogRead
{
/ISerial.printin("crossed the critical #3")
delay(150);
stopall(100);
turnLeft();
readLength++;
}

}
/l Right turning

else if(route[readLength]=='R")

{
straight();

if(analogRead(leftSensor) > 200 && analogRead
{
/ISerial.printin("crossed the critical #3")
delay(150);
stopall(100);
turnRight();
readLength++;
}

}
/I go straight

else if(route[readLength]=='S")

{
digitalWrite(leftMotorl, HIGH);
digitalwrite(leftMotor2, LOW);
digitalWrite(rightMotorl, HIGH);
digitalWrite(rightMotor2, LOW);
delay(leapTime);
straight();
readLength++;

}
43

(rightSensor) > 200)

(rightSensor) > 200)

/l nothing, keep moving
elsef
stopall(100);
straight();
delay(100);
stopall(200);
}
}
replay();
}

ff-mmmmme - MOVEMENT AND TURNING FUNCTIONS -

I GOING STRAIGHT
void straight() {

/I go straight

digitalWrite(leftMotorl, HIGH); //the right wheel
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, HIGH);
digitalWrite(rightMotor2, LOW);

delay(2);

[/l turn a bit to the left

if(lanalogRead(leftSensor) > 200 && analogRead(rig
digitalWrite(leftMotorl, HIGH);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);
delay(2);

/I or turn s bit to the right

else if(analogRead(rightSensor) > 200 && analogRe

200) {
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, HIGH);

44

htSensor) < 200){

ad(leftSensor) <

digitalWrite(rightMotor2, LOW);
delay(1);
}

/I or keep going straight
else {
digitalWrite(leftMotorl, HIGH); //the right whe el
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, HIGH);
digitalWrite(rightMotor2, LOW);
delay(1);

/ TURNING TO THE LEFT FUNCTION
void turnLeft() {

digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(100);

/I go back till all sensors are on the black line
while(analogRead(rightSensor) < 200 || analogRead (leftSensor) < 200){
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, HIGH);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, HIGH);
delay(3);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(1);

45

/I stop for a delay
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(100);

[/ turn till right IR sensor is out of the black

while(analogRead(rightSensor) > 200){
digitalWrite(leftMotorl, HIGH);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(200);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);
delay(1);

I/l turn till right IR sensor comes to the black |

while(analogRead(rightSensor) < 200) {

digitalWrite(leftMotorl, HIGH);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(2);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);
delay(1);

if(replaystage==0){
path[pathLength]="L";
/[Serial.printin("l");

46

line

ine

pathLength++;

}
}

/ TURNING TO THE RIGHT FUNCTION
void turnRight() {

digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(100);

/I go back till all sensors are on the black line
while(analogRead(rightSensor) < 200 || analogRead (leftSensor) < 200){
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, HIGH);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, HIGH);
delay(3);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(1);

/Il stop for a delay
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW));
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);
delay(100);

[turn till the left sensor is out of the black line
while(analogRead(leftSensor) > 200 ¥{
digitalWrite(leftMotorl, LOW);

47

digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, HIGH);
digitalWrite(rightMotor2, LOW);
delay(2);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);
delay(1);

/I turn till the sensor comes back to the black | ine

while(analogRead(leftSensor) < 200) {
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, HIGH);
digitalWrite(rightMotor2, LOW);
delay(2);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(1);

if(replaystage==0){
path[pathLength]='R’;
/[Serial.printin("r");
pathLength++;

I TURNING AROUND FUNCTION

void turnAround() {

/I go back till all sensors are on the black line
while(analogRead(rightSensor) < 200 || analogRead (leftSensor) < 200){

48

digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, HIGH);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, HIGH);
delay(3);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(1);

/l take a pause of 100 ms
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);
delay(100);

/I do the turning of 180 degrees

while(analogRead(leftSensor) > 200) {
digitalWrite(leftMotorl, HIGH);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, HIGH);
delay(500);

while(analogRead(centerSensor) < 200) {

digitalWrite(leftMotorl, HIGH);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, HIGH);
delay(1);
digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotorl, LOW);
digitalWrite(rightMotor2, LOW);
delay(2);

49

break;

if(replaystage==0){
path[pathLength]='B";
/[Serial.printin("b");
pathLength++;

/I STOP ALL THE MOVEMENT

int stopall(int stop_time) {

digitalWrite(leftMotorl, LOW);
digitalWrite(leftMotor2, LOW);
digitalWrite(rightMotor1, LOW);
digitalWrite(rightMotor2, LOW);
delay(stop_time);

/I FRONT GOING FUNCTION

int front(int time){

digitalWrite(leftMotorl, HIGH);
digitalwrite(leftMotor2, LOW);
digitalWrite(rightMotor1, HIGH);
digitalWrite(rightMotor2, LOW);
delay(time);

/I IR SENSORS DISPLAY

void irlnfos(){

50

Serial.print("lLCR =");
Serial.print(analogRead(leftSensor));
Serial.print(" ");
Serial.print(analogRead(centerSensor));
Serial.print(" ");

Serial.printin(analogRead(rightSensor));

/I PING SENSORS DISPLAY

void infos(){

frontPing = sonar[0].ping_cm(); delay(ii);
leftPing = sonar[2].ping_cm(); delay(ii);
rightPing = sonar[1].ping_cm(); delay(ii):

Serial.print"FLR =");
Serial.print(frontPing);
Serial.print(" ");
Serial.print(leftPing);
Serial.print(" ");
Serial.printin(rightPing);

// PATH DISPLAY
void printPath(){

Serial.printin("+++++++++++++++++");
int x=0;

while(x<=pathLength){
Serial.printin(path[x]);

X++;
}

Serial.printin("++++++++++++++++4");

/ PATH DISPLAY NEW
void printNew(){

51

for(i=0; i<routeLength; i++){
Serial.print(" ");
Serial.printin(routeli]);

}

52

