
i

ROBOT IN A RECONFIGURABLE MAZE

By

Issa Abdramane

FINAL PROJECT REPORT

Submitted to the Department of Electrical & Electronic Engineering

in Partial Fulfillment of the Requirements

 for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2013

by

Issa Abdramane, 2013

ii

CERTIFICATION OF APPROVAL

ROBOT IN A RECONFIGURABLE MAZE

by

Issa Abdramane

A project dissertation submitted to the

Department of Electrical & Electronic Engineering

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Approved:

Mr. Abu Bakar Sayuti

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2013

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Issa Abdramane

iv

ABSTRACT

Autonomous vehicles have existed since several decades and they continue to evolve

promptly. Their usage in different domains made them an interesting area for

academic researchers as well as governments’ projects. Issues that are still holding

back the development of autonomous vehicles are the accurate mapping and

localization of the surrounding that enable these vehicles to perform independently

in a precise manner.

Using either the left-wall following or right-wall following algorithm alone will

sometimes result in the robot being stuck in a loop and failed to solve the maze. This

report describes a hybrid method where one of the two algorithms is selected based

on the first opening of a reconfigurable maze. It has been demonstrated that by

combining the two algorithms, unless the maze was purposely configured

containing a loop, the rate of success is more than 90 percent.

v

ACKNOWLEDGEMENTS

First of all, I direct all my gratitude to God the Almighty for guiding me through all my

steps in everything I am involved in.

I would like to express my gratitude to Mr. Abu Bakar Sayuti for all his patients and

passion while supervising me throughout the final year project timeline. All the guidance

and corrections provided were invaluable. All the discussion we had, were very

motivating and fruitful. You have made the learning very easy and enjoyable.

I would like to extend my greatest gratitude and appreciation to my family for the

constant motivation and support whenever life has given me hard time.

Last but least, I would like to thank everybody who helped me directly or indirectly in

completing my project. I am grateful to have all your supports.

vi

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 1

1. 1. Background studies 1

1. 2. Problem statement 2

1. 3. Scope of study and objectives 2

CHAPTER 2: LITERATURE REVIEW 3

2. 1. The Micromouse competition 3

2. 2. The left-walled or right-walled algorithm 3

2. 3. The depth-first search 4

2. 4. The flood-fill algorithm 5

CHAPTER 3: METHODOLOGY 7

3. 1. Research methodology 7

3. 2. Project activities 7

3. 3. Project Gantt chart 8

CHAPTER 4: PROJECT COMPONENTS 9

4. 1. Description of the robot 9

 4. 2. Arduino UNO 10

 4. 3. Ping – Ultrasonic Distance Sensor 11

 4. 4. IR Line Tracking Sensor (Single Bit) 12

 4. 5. Reconfigurable maze for testing 13

CHAPTER 5: ISSUES AND CORRECTION 14

 5. 1. HC-SR04 Ping Sensors issues 14

 5. 2. Solution provided for the Ping sensors issues 15

vii

CHAPTER 6: IMPLEMENTATION AND DISCUSSION 16

 6. 1. Wall-Following Hybrid Algorithm 16

 6. 2. Techniques adopted for the algorithm to work 18

 6. 3. Mazes navigation 20

 6. 4. Infinite loop cases 23

CHAPTER 7: IMPLEMENTATION OF HYBRID ALGORITHM 23

 7. 1. Left-hand and right-hand rule 23

 7. 2. Use of hybrid wall-follower algorithm 24

 7. 3. Infinite loop cases 25

CONCLUSION 26

REFERENCES 27

APPENDIX 28

viii

LIST OF FIGURES

Figure 01: Failure of wall-follower algorithm 4

Figure 02: Flow chart of a typical flood-fill algorithm 5

Figure 03: Example of a robot caught in an infinite cycle 6

Figure 04: a) Project Gantt chart – first semester 8

Figure 04: b) Project Gantt chart – second semester 8

Figure 05: Robot circuit diagram 9

Figure 06: Arduino UNO R3 10

Figure 07: Ping - Ultrasonic Distance Sensor 11

Figure 08: IR Line Tracking Sensor (Single Bit) 12

Figure 09: Example of types of mazes to used 13

Figure 10: Reading from sensors 14

Figure 11: Readings with different delays as a measure of correction 15

Figure 12: Hybrid Wall-Follower algorithm 16

Figure 13: The Left Hand Rule flowchart 17

Figure 14: Navigation process in a simple maze 21

Figure 15: Navigation in a more complex maze 22

Figure 16: Right-Hand rule navigation 23

Figure 17: Left-Hand rule navigation 23

Figure 18: Hybrid wall-following algorithm 24

1

CHAPTER 1 INTRODUCTION

1. 1. Background Studies

Autonomous vehicles are basically vehicles that don't need external assistance in order to

drive themselves from one location to another. These autonomous vehicles have gone

through lots of stages of improvement and usage in different areas. Nowadays we count

complete autonomous aerial vehicles used in the military domain as well as the complete

driverless Google car that is about to be released for public.

Focusing on the terrestrial autonomous vehicles, they use the mapping and localization

system to know their actual position. The surrounding is read by advance technology

such as accurate ping sensors, line detectors, moving object detectors just to name few.

Coming to the academic world, small robots are being developed to study the nature of

mapping and localization for research purpose.

To make the research more fun and enjoyable, the micromouse event is invented to grasp

more participation from educational institutions all the over the world. Initiated during

the 1970s, the micromouse quickly got a reputation among higher learning institutions all

over the world. It involves a completely autonomous robot to solve 16x16 mazes or

32x32 mazes depending on the rules and level of the competition.

The challenges in making these autonomous vehicles reside on the physical stability of

the robots and the technique or algorithm that is required for the vehicles to be able to

map its surroundings and move autonomously and accurately.

Taking the example of maze solving robots, there are numerous algorithms developed to

solve different type of mazes. Most famous ones are the flood-fill algorithm and wall-

follower algorithm. These approaches have their own strengths and weaknesses

depending on the environment they are used in.

This project will be based on designing a small two-wheeled robot and development of

an algorithm that is best suited for total reconfigurable maze navigation.

2

1. 2. Problem statement

Nowadays, there are lots of different types of robots that navigate different type of

mazes. The approach to navigate mazes is different from one type to another, therefore

knowing the rules in advance is more important before deciding which algorithm to use.

Usually when robots are put in a situation where the maze configuration differs from

what is predicted; these robots will lose their way out. Robot in a reconfigurable maze is

aiming to provide a robot that navigate any kind of maze without prior knowing its type

and still can find its destination point.

1. 3. Objectives and scope of study

The scope of this project will involve the design and fabrication of a small two-wheeled

robot and development of an algorithm that will guide the robot to navigate

autonomously. The fabrication part will involve a qualitative study of electronics

components such as resistors, capacitors and alike to ensure that the robot life-span is

prolonged with high performance.

The project will also require a good knowledge of programming skills to modify the

existing algorithm or develop a new algorithm to better suit our need to achieve a robot

that can navigate a reconfigurable maze.

The aim of this project is to design and build a robot that will be able to navigate a total

reconfigurable maze. Therefore the objectives are:

- To reconstruct or design the robot to be more stable to suit the project needs;

- Produce a robot that is fast and accurate while navigating a maze

- Produce a robot that can navigate in a straight line between the walls of a maze

- Modify existing or develop a maze-solving algorithm to make the robot more

intelligent in finding the goal point in any reconfigurable maze.

3

CHAPTER 2 LITERATURE REVIEW

Maze-solving robots are subjected very much to which algorithm being used for maze

navigation. There are quite a number of different algorithms being developed and refined

to solve mazes. Through this literature review we will do a comparative study of

different algorithms and highlight their pros and cons [1].

2. 1. The Micromouse competition

Micromouse event has debuted since the early 1970s. It is an international event which is

very popular in the United Kingdom, Japan, India and South Korea. The main idea of the

event is to provide autonomous robots that are able to navigate mazes by themselves and

find the goal through the shortest path possible and also with the least amount of time

possible. At first, the robots will navigate the maze to find the goal point. Once the goal

is located, the robot will identify the shortest path and at the second round, the robots

should be able to navigate the maze through the shortest path and shortest time.

There are some rules for the mazes. At first, the mazes were 16x16. And depending on

the rules of the competition, the mazes might have loop-hole, left-walled or right-walled

structure and the list goes on. The same goes to the size of the robots and their weights.

Recently in Japan, they initiated a new challenging micromouse event whereby the sizes

of robots are halved and the maze is upgraded to 32x32 while conserving the same size

as 16x16 mazes. This has brought sets of new challenges for the competitors for

designing the robot and the algorithms that they will use to solve such a complex and big

mazes.

2. 2. The left-walled or right-walled algorithm

With this algorithm, the robot will keep an eye at the right or left wall and navigate

throughout the maze till it finds the goal [1]. This algorithm is proven to be very efficient

for mazes that are wall-linked to the goal point. The approach is very simple, after

eventually finding the end point; the robot will compute the shortest distance for the

second round.

The major drawbacks for this algorithm are that it can be used only on small and simple

4

mazes. Furthermore the goal has to be wall-linked and the prior knowledge whether the

maze is left-walled or right-walled is indispensable or otherwise the robot will keep

looping through the maze forever. All these factors made the wall follower algorithm not

really suitable for maze-solving competitions because of its lack of intelligence for the

robot. Figure 01 [2] below shows an example of a failure of wall follower algorithm in a

practical way.

Figure 1: failure of wall-follower algorithm

2. 4. The flood-fill algorithm

The flood-fill algorithm is by far the most famous and efficient algorithm to solve all

type of mazes. This algorithm assign values to each cell in the maze and these values

assigned to the cells represent the actual distance between the cell and the goal point.

These cells are represented by two dimensional arrays whereby the destination cell is

represented by the array (0, 0). Any immediate neighboring cell will have the values of 1

in their arrays and so on. [3]

The flood-fill algorithm gets the current information of the cell that the robot resides in

and predicts how far the goal point is. Going towards to the goal, it updates all walls

encountered and makes the correct turn if it has to. Based on the assumption of the goal

point, the robot should be able to make the correct turn an

routes like the wall-follower algorithm.

flood-fill algorithm.

Figure 2

2. 3. The depth-first search

Invented by a French Mathema

search is intended to solve mazes back in the 19

of going from the initial point considered as root and going deeper into each branch until

no node-child is found

is found. Else the robot will go back and push to the stack the path navigated and look

for another branch [1][3].

5

encountered and makes the correct turn if it has to. Based on the assumption of the goal

point, the robot should be able to make the correct turn and avoid taking unnecessary

follower algorithm. Figure 3 [4] shows a flow chart used in a typical

Figure 2: Flow chart of a typical flood-fill algorithm

first search

Invented by a French Mathematician named Charles Pierre Tremaux, the depth

search is intended to solve mazes back in the 19th century. This algorithm uses the logic

of going from the initial point considered as root and going deeper into each branch until

child is found [1]. If the goal is along the way, the search will stop once the goal

is found. Else the robot will go back and push to the stack the path navigated and look

h [1][3].

encountered and makes the correct turn if it has to. Based on the assumption of the goal

d avoid taking unnecessary

Figure 3 [4] shows a flow chart used in a typical

fill algorithm

tician named Charles Pierre Tremaux, the depth-first

century. This algorithm uses the logic

of going from the initial point considered as root and going deeper into each branch until

. If the goal is along the way, the search will stop once the goal

is found. Else the robot will go back and push to the stack the path navigated and look

Figure 3

This algorithm shown above

there is a possibility that the robot will navigate the entire maze before finding its goal.

And this is not encouraged especially when time and distance are key factors. Anothe

inconvenient of this algorithm is that it cannot find its way out in case it bumped into a

loop-hole.

We could have noticed that all the mentioned above algorithms are very efficient in their

own ways. For instance, the most famous algorithm used in mic

the flood-fill algorithm due to the nature of the maze used in the competition. In our

case, the aim is to navigate fully reconfigurable mazes; therefore one of the best

approaches would be the use of hybrid algorithm whereby we can

algorithms.

6

.

Figure 3: Example of a robot caught in an infinite cycle

shown above is efficient for maze solving but the major drawback is that

there is a possibility that the robot will navigate the entire maze before finding its goal.

And this is not encouraged especially when time and distance are key factors. Anothe

inconvenient of this algorithm is that it cannot find its way out in case it bumped into a

We could have noticed that all the mentioned above algorithms are very efficient in their

own ways. For instance, the most famous algorithm used in micromouse competition is

fill algorithm due to the nature of the maze used in the competition. In our

case, the aim is to navigate fully reconfigurable mazes; therefore one of the best

approaches would be the use of hybrid algorithm whereby we can

: Example of a robot caught in an infinite cycle

is efficient for maze solving but the major drawback is that

there is a possibility that the robot will navigate the entire maze before finding its goal.

And this is not encouraged especially when time and distance are key factors. Another

inconvenient of this algorithm is that it cannot find its way out in case it bumped into a

We could have noticed that all the mentioned above algorithms are very efficient in their

romouse competition is

fill algorithm due to the nature of the maze used in the competition. In our

case, the aim is to navigate fully reconfigurable mazes; therefore one of the best

approaches would be the use of hybrid algorithm whereby we can combine two

7

CHAPTER 3 METHODOLOGY

3. 1. Research methodology

Before diving into the project, a deep research about mapping and localization for small

robot will be carried out. A research on what type of microcontroller board to be used

and what kind of external input sensors to be used will be carried out as well. A wise

choice of electronic components will be made based on studies and information gathered.

This information will be found from related books, relevant published papers and trusted

sources from the internet as well.

3. 2. Project activities

i. Gather information about small two-wheeled robots. Do research and explore

the making of robots.

ii. Identify the best parts/components that can make the desired robot for the

project. Do qualitative research about sensors, motors, chassis, etc... that

would be used.

iii. Purchase all the necessary equipments/components that were identified

previously.

iv. Assemble the robot accordingly and test its performance. Tweak if necessary

to get the desired performance.

v. Make a research and gather information about the best algorithm that is suited

for this kind of project.

vi. Modify the algorithm selected to meet the requirement of the project.

vii. Test the algorithm on the robot and make necessary changes until the robot

perform as it is intended to do so.

3. 3. Project Gantt chart

Figure 04: b) Project Gantt chart

8

Project Gantt chart

Figure 04: a) Project Gantt chart – first semester

Figure 04: b) Project Gantt chart – second semester

first semester

second semester

CHAPTER 4

4. 1. Description of the robot

The first phase of this project is to have a working a running robot. The main

components used to build the robot are:

- Chassis

- Two (2) Cytron C36R motors with wheels

- One (1) mini breadboard

- One (1) Arduino UNO microcontroller board

- LD293 motor driver chips

- Three (3) Ping

- Wires, nuts and stands

- Batteries and battery holders

Figure below shows the connections between all above mentioned elements to achieve a

working robot.

9

PROJECT COMPONENTS

Description of the robot

st phase of this project is to have a working a running robot. The main

components used to build the robot are:

Cytron C36R motors with wheels

mini breadboard

Arduino UNO microcontroller board

LD293 motor driver chips

Ping – Distance finder – sensors

Wires, nuts and stands

Batteries and battery holders

Figure below shows the connections between all above mentioned elements to achieve a

Figure 05: Circuit diagram

st phase of this project is to have a working a running robot. The main

Figure below shows the connections between all above mentioned elements to achieve a

10

4. 2. Arduino UNO

Arduino is among the first open-source electronics board available. It is relatively easy to

use and very flexible in its hardware design and software usage. There are more than 10

Arduino boards available and all are open-source. Arduino UNO is one of them.

Figure 06: a) Arduino UNO R3 front b) Arduino UNO R3 back

Arduino UNO has the following components and running conditions:

• Microcontroller ATmega328
• Operating Voltage 5V

• Input Voltage (recommended) 7-12V

• Input Voltage (limits) 6-20V
• Digital I/O Pins 14 (of which 6 provide PWM output)

• Analog Input Pins 6

• DC Current per I/O Pin 40 mA

• DC Current for 3.3V Pin 50 mA
• Flash Memory 32 KB (ATmega328) - 0.5 KB used by bootloader

• SRAM 2 KB (ATmega328)

• EEPROM 1 KB (ATmega328)
• Clock Speed 16 MHz

Arduino syntaxes is based on C/C++ programming language, however the programming

structure is much different. Basically, all Arduino programs should have two parts: the

void setup() and the void loop().

void setup() – all input pins and output pins are defined in this function using the
Built-In-Functions
void loop() – all instructions are written in this function. This block will loop
continuously until the board is turned off.

11

4. 3. Ping - Ultrasonic Distance Sensor

 Ping - Ultrasonic Distance Sensor measures the distance using Sonar. An ultrasonic

(unaudible) sound pulse is transmitted from the device to the object target. Based on the

time taken by the emitted sound between emission and reception, the diatance between

the sensor and the object is calculated. Knowing that the sound travels at the speed of

light and the time taken for the sound to reach the object and bounce back, the distance is

calculated using the simple relation: d = v * t

The Ping sensor is a low cost device which is much used in applications where accuracy

is not the main concern.

Figure 07: Ping - Ultrasonic Distance Sensor

Key Specifications:

Power requirements: +5 VDC
Communication: Positive TTL pulse
Dimensions: 0.81 x 1.8 x 0.6 in (22 x 46 x 16 mm)
Operating temp range: +32 to +158 °F (0 to +70 °C)

Features:
Distance measurements: within a 2 cm to 3 m range
Communication: Simple pulse in/pulse out
Indication: Burst indicator LED shows measurement in progress
Power consumption: 20 mA
Narrow acceptance angle: about 150
Connection: 3-pin header

12

4. 4. IR Line Tracking Sensor (Single Bit)

The IR Line tracking sensor is a sensor that can differentiate between white and black

color. It outputs via TTL signal. It is a very simple to use and very efficient.

Furthermore, it comes with a variable resistor that enables the tuning of the threshold

voltage of white and black color. Combining three of this sensor will help us ensuring

that the robot will be moving in a straight line. These can also used to avoid collision

because since they can operate within a range of 1.5cm. they perform very nicely when

used in no-contact switch scenario if coupled with relays.

Figure 08: IR Line Tracking Sensor (Single Bit)

Features:
Detection distance: 1.5cm (tested with white paper)
Power supply: 3.3 to 5VDC
Operating current: 18 to 20mA at 5V
Operating temperature range: 0°C ~ + 50°C
Output interface: 3 wires
Output: TTL (Black = Logic HIGH, White = Logic LOW)

The surrounding information are read by the sensors and fed to the microcontroller. This

information is treated and actions are taken based on the readings. For instance, if the

front Ping sensor read a distance of less of 10 cm, the robot will stop to avoid colliding

with the wall. Then other readings from the adjacent sensors will determine whether the

robot will take a left turn, right turn or moving backwards.

13

4. 5. Reconfigurable Maze for testing

To complete the project, the robot should be tested in a reconfigurable maze. A big

reconfigurable maze is built for this purpose. The maze is made based on wood with

closed edges. It hosts a 16x16 grid which can make a very complex maze if needed.

The structure if the maze is in such a way that it is totally reconfigurable. One can alter

the interior easily to achieve any type of maze possible for 16x16 grids. The platform is

equipped with grid lines that help for straight movement and perfect turning without the

use of any encoder.

To conduct the experiments, a set of different mazes are needed. The first maze should

be a simple maze with fewer obstacles and a goal point. The second maze should be a bit

complex compared to the first maze and the third maze should have high complexity

such as infinite loop and more complex structure.

Figures below show some example of mazes that can be used to conduct the experiment.

 01 02

03

Figure 09: Example of types of mazes to used

14

CHAPTER 5 ISSUES AND CORRECTION

5. 1. HC-SR04 Ping Sensors issues

The HC-SR04 Ping sensor is a low cost ping sensor that has about the same performance

as the Ping Ultrasonic from Parallax which is a bit expensive. The cheapness of this

sensor comes along with performance price to pay.

The issue encountered with these sensors is quite unique in its genre. For instance, the

accuracy of one sensor is perfect from 2cm up to 200cm with a very small range of error.

However, when reading simultaneously from 2 sensors, the second reading from the

second sensor is not as accurate as it’s expected it to be.

Doing this with all three (3) sensors, the third reading actually fluctuates. This behavior

is a bit strange since each sensor is connected to its own ping with its own reading

mechanism.

The figure below shows an example of reading obtained from front ping alone followed

by reading from front ping and left ping simultaneously, and then all three pings are read

together simultaneously.

Figure 10: a) Reading of one sensor alone b) Readings of two sensors simultaneously

c) Reading of three sensors simultaneously

15

5. 2. Solution provided for the Ping sensors issues.

To cater the above mentioned issues encountered by the ping sensors, a series of trial and

errors method were conducted. It is found that playing with the delays between the

reading has an impact on the reading itself. There is no delay property is mentioned in

the datasheet of the sensor though.

Readings were taken for 1ms delay, 3ms delay and 5ms delay between the sensors

reading. It is noticed that a delay of 1ms does not help much and reading are inaccurate.

And improvement is shown with a 2ms delay between the reading but with 5ms delay,

the reading were quite consistent and satisfactory. Below are the figures showing all

three reading with three different delays.

Figure 11: a) Readings with 1ms delay b) Readings with 2ms delay c) Readings with 5ms delay

16

CHAPTER 6 IMPLEMENTATION AND DISCUSSION

6. 1. Wall-following Hybrid Algorithm

Figure 12: Hybrid Wall-Follower algorithm

17

To navigate different type of mazes, the wall-follower algorithm is adopted. In this case,

the left-hand rule and the right-hand rule are applied based on the first side opening

encountered. This combination of left-hand rule and right-hand rule is used to maximize

the capability of the robot to be able to use navigate much complex type of mazes and

also in some cases, it will help to avoid unnecessary long navigations.

Figure 13: The Left Hand Rule flowchart

18

The left-hand rule works in such a way that the robot focuses more on its left-side and

front-side while it has options for turns. The robot will turn right only if there are no

other possibilities while it always turns to the left if there is an option. Here is a pseudo-

code on how the left-hand rule works:

If front obstacle > 10cm

 If left obstacle > 10cm

 Turn left

 If left obstacle < 10cm

 Go straight

If front obstacle < 10cm

 If left obstacle > 10cm and right obstacle > 10cm

 Turn left

 If left obstacle > 10cm and Right obstacle < 10cm

 Turn left

 If Left Obstacle < 10cm and Right Obstacle > 10cm

 Turn right

 If Left Obstacle < 10cm and Right Obstacle < 10cm

 If this is End Point

 Done

 If this is NOT End Point

 Turn Around

With this algorithm, the robot will find the end point of any wall follower maze provided

that the maze does not have an infinite loop. This algorithm is very efficient for simpler

maze with no fix target unlike the flood-fill algorithm where the target is predetermined

fix point.

6. 2. Techniques used to achieve navigation.

The robot has three Ping Distance finder sensors along with three IR Single bit sensors.

The three Ping sensors are used to detect walls and the IR sensors are used for straight

movement, the turns and the ending point. Below are the details about how these sensors

are used to achieve accurate wall detection and perfect movements.

a- Straight movement

Controlling two motors without encoder is very much difficult especially if the aim is

19

to keep the robot moving in a straight line. In this case, three IR sensors are used to

help the robot achieve a perfect straight movement. Below is a pseudo-code that

explains how the three sensors are used to keep the robot moving straight.

While moving straight:

 Move forward for a short period of time

 Check the IR sensors

 If middle IR sensor alone sensing black line

Go forward

 If left IR sensor sensing black line

 Decrease the speed of left motor

 If right IR sensor sensing black line

 Decrease the speed of right motor

 If all IR sensing black line

 Ignore this � it is an intersection

b- Turning left or turning right

Turning right or left is also a bit of challenge since no encoder is used for this

purpose. The same three IR are again used for different purpose here.

For right turning, when the robot detects that there are obstacle in front and left side

but the right side is free, the robot will take a right turn. The robot will pass the

intersection before it stops. So to turn right, the technique below is applied:

If front and left have walls and right side is empt y:

 While left & right IR are not sensing black line

 Go back // go back till the intersection line

 While left IR is sensing black line

 Stop right motor and run left motor

 While left IR is NOT sensing black line

 Stop right motor and run left motor

For left turning, two ways are applied. One way is for absolute left turning and

another way is for optional left turning. For absolute left turning, it is similar to right

turning except that we use right IR sensor.

For optional left turning, the procedure is a bit different. This case happens when

there is no front obstacle but there is an option to turn left. Below is how it is done:

20

 If NO front Obstacle and Left side is free

 While left & right IR are NOT on black line

 // left ping detects opening before the intersect ion

Go forward

 While left IR is sensing black line

 Stop right motor and run left motor

 While left IR is NOT sensing black line

 Stop right motor and run left motor

c- End point and turning around

The three IR sensors are again used together with the ping sensors to detect if the

robot has reached the end point or not. The pseudo-code below determines whether

the robot has reached the end point or it has to take a turn around.

If all Pings detect wall

 Stop the robot for a short while - Go a bit to the front

 If all IR detect black line � DONE

 Else � TURN AROUND

 While left & right IR not sensing black line

 Go back // till the robot be on the intersectio n

 While left IR is sensing black line

 Run backward right motor and run forward left m otor

 While left IR is NOT sensing black line

 Run backward right motor and run forward left m otor

While left IR is sensing black line

 Run backward right motor and run forward left m otor

 While left IR is NOT sensing black line

 Run backward right motor and run forward left m otor

6. 3. Maze navigation

Figures below show how the robot navigates the maze. The starting point is marked with

the green color and the end point is marked by the black color. In this maze, the robot is

guided by obstacles. There are no extra choices present for the robot. The robot navigates

in a very easy way and there is only one path possible from the starting point to the

ending point.

21

 01 02 03

 04 05 06

 07 08

Figure 14: Navigation process in a simple maze

Here the robot will navigate a bit complex maze. As it can be noticed from the below

pictures, the robot can find the end point but the path taken is not really optimized. The

robot will navigate almost the entire maze before coming to the ending point. Once the

end point is reached, the robot will optimize the path for next round by going through the

shortest path possible.

22

 01 02 03

 04 05 06

 07 08 09

 10 11

Figure 15: Navigation in a more complex maze

23

CHAPTER 7 IMPLEMENTATION OF HYBRID ALGORITHM

For the same type of maze, the performance of using left-hand and right-hand rule will

differ in the performance of the navigation.

7. 1. Left-hand and right-hand rule

The figure 16 below shows a maze navigated using the right-hand rule algorithm. The

navigation is very straightforward and the goal is achieved through the shortest path at

the first time.

Figure 16: Right-Hand rule navigation

The figure 17 below shows the same type of maze but navigated by the use of left-hand

rule algorithm. We can clearly notice that the navigation takes longer compared to the

same navigation when used the right-hand rule navigation. However the shortest path

computed will lead to the same shortest path.

Figure 17: Left-Hand rule navigation

24

7. 2. Use of hybrid wall-follower algorithm

The use of hybrid wall-follower algorithm can improve greatly the navigation time of the

vehicle. An example is shown below in the figure 18. The use of the hybrid is based on

which side turn is encountered first. If the left turn is encountered first, the left-hand rule

is selected. Whereas if the right turn is encountered first, then the right-hand rule

algorithm is selected. From the picture, we can notice that the choice of the right hand

rule algorithm is optimal.

Figure 18: Hybrid wall-following algorithm

The red line indicates the choice taken by the vehicle based on the hybrid system. The

blue line-path shown above is the path indicates the use of a single left-hand rule.

It is clearly shown that the use of the hybrid system has brought more intelligence to the

vehicle in navigating the maze. Further implementation will the use of the same system

in the scenario where the vehicle fall in an infinite loop while navigating a maze.

25

7. 3. Infinite loop case

In the scenario where the robot falls under an infinite loop while navigating the maze,

one algorithm will not be enough for it to find its way out. The robot will keep on

looping infinitely. Thus infinite loop is among the unwanted situations that need to be

taken care of. In this project, an attempt to combine two different algorithms all working

together will be carried out.

The challenge resides in the detection of the infinite loop. Since the size of the maze and

its structure are not known by the vehicle, sensing an infinite loop will not be easy. One

of the approaches might be the detection of the same pattern for a certain number of

times while navigating the maze to conclude that the robot is in an infinite loop.

However, if the maze is structured in such a way that the navigation patterns are the

same, the vehicle will not be able to make the right judgment call.

26

CONCLUSION

Throughout the project, an autonomous vehicle is built. The hardware limitations of the

vehicle such as the use of low quality sensors made the learning curve very interesting.

The vehicle uses IR Single bit sensors for perfect straight and turning and it also uses

ultra-sonic range finder sensors for obstacle detection.

A reconfigurable maze for testing purpose has been made for the vehicle to navigate. The

maze is fully reconfigurable, and helps to program the robot dynamically to suit all type

of configuration possible.

The autonomous vehicle is equipped with a hybrid algorithm – left-hand wall and right

hand wall – for perfect maze navigation. The robot switch from one algorithm to another

depending on the situation encountered. For now, the decision is made based on the first

turn encountered meaning that if first turn from start if on the left, then the left-hand

algorithm will be used.

Future implementation will be on the detection of infinite loop while the vehicle is

navigating the maze and the ability to switch from one algorithm to another upon sensing

the infinite loop.

27

REFERENCES

[1] Adil M. J. Sadik, Maruf A. Dhali, Hasib M. A. B. Farid, Tafhim U Rashid, A. Syeed

A “Comprehensive and Comparative Study of Maze-Solving Techniques by

Implementing Graph Theory,” 2010 International Conference on Artificial

Intelligence and Computational Intelligence. Pp 52-56.

[2] Swati M., Pankaj B., “Maze Solving Algorithms for Micro Mouse”, 2008 IEEE

International Conference on Signal Image Technology and Internet Based Systems,

pp 86-93.

[3] Kaizen R., “Algorithms for Micro-mouse Manoj Sharma”, 2009 International

Conference on Future Computer and Communication, pp 581-585.

[4] Zhuang Cai, Lu Ye, Ang Yang, ”FloodFill Maze Solving with Expected Toll of

Penetrating Unknown Walls”, 2012 IEEE 14th International Conference on High

Performance Computing and Communications, pp 1428 – 1433

[5] Patrickmccb. (2011, July 03). Maze solving robot. Retrieved from

http://www.instructables.com/id/Maze-Solving-Robot/

[6] http://www.societyofrobots.com/member_tutorials/book/export/html/94

[7] Archive for the ‘maze solving robot using arduino’ category. (2010, October 10).

Retrieved from http://satkum.wordpress.com/category/maze-solving-robot-using-

arduino/

[8] Ibrahim M. E. Elshamarka, “Maze Robot: Design and implementation of autonomous

vehicle navigation” May 2012, Final Year Project, Universiti Teknologi PETRONAS

28

APPENDIX

Code Sources for the Hybrid Wall-Follower Algorithm

#include <NewPing.h>

const int centerSensor = A3; // center

const int rightSensor = A4; // right

const int leftSensor = A5; // left 46 for white space and 1016 for

black

const int leftMotor1 = 9; // THE MOTORS

const int leftMotor2 = 13;

const int rightMotor1= 11;

const int rightMotor2 = 10;

const int frontPingTrig = 5; // front sensor trigg er

const int frontPingEcho = 2; // front sensor echo

const int leftPingTrig = 7; // left sensor trigg er

const int leftPingEcho = 4; // left sensor echo

const int rightPingTrig = 12; // right ping trigger

const int rightPingEcho = 8; // right ping echo

#define MAX_DISTANCE 200

#define num 3

long ping_cm[num];

int cm[num];

int cm0; // front ping

int cm1; // right ping

int cm2; // left ping

NewPing sonar[num] = {

 NewPing(frontPingTrig, frontPingEcho, MAX_DISTANC E),

 NewPing(rightPingTrig, rightPingEcho, MAX_DISTANC E),

 NewPing(leftPingTrig, leftPingEcho, MAX_DISTANCE) ,

29

};

//DECLARATION OF VARIABLES

int centerReading;

int leftReading;

int rightReading;

int leapTime = 100;

int stop_time = 0;

int frontPing;

int leftPing;

int rightPing;

int replaystage = 0;

#define led A0

char path[30] = {};

char route[30] = {};

int pathLength;

int routeLength;

int readLength;

int check = 0;

int i, c;

int ii = 5;

int choice = 0;

int frontObstacle = 8;

int sideObstacle = 10;

//************** the set up loop **************//

void setup ()

{

 Serial.begin(9600) ;

 pinMode(centerSensor, INPUT);

 pinMode(leftSensor, INPUT);

30

 pinMode(rightSensor, INPUT);

 pinMode(leftMotor1, OUTPUT);

 pinMode(leftMotor2, OUTPUT);

 pinMode(rightMotor1, OUTPUT);

 pinMode(rightMotor2, OUTPUT);

 digitalWrite(led, LOW);

 delay(1000);

}

//***************** the main void loop ************ **//

void loop()

{

 frontPing = sonar[0].ping_cm(); delay(ii);

 leftPing = sonar[2].ping_cm(); delay(ii);

 rightPing = sonar[1].ping_cm(); delay(ii);

 if(choice == 0)

 {

 straight();

 frontPing = sonar[0].ping_cm(); delay(ii);

 leftPing = sonar[2].ping_cm(); delay(ii);

 rightPing = sonar[1].ping_cm(); delay(ii);

 // no side openings so we check if we are at the goal or a turn

around

 if(frontPing < frontObstacle && leftPing < si deObstacle &&

rightPing < sideObstacle)

 {

 // check for done

 front(200);

 stopall(50);

 if(analogRead(leftSensor) > 200 &&

31

 analogRead(centerSensor) > 200 &&

 analogRead(rightSensor) > 200)

 {

 done();

 }

 else

 {

 stopall(50);

 turnAround();

 }

 }

 // there is a right side opening so we choose the right hand wall

 else if(leftPing < sideObstacle && rightPing > sideObstacle)

 {

 // choose the right hand wall algorithm

 choice = 1;

 }

 // there is a left side opening so we choose the left hand wall

 else if(leftPing > sideObstacle && (rightPing < sideObstacle ||

rightPing > sideObstacle))

 {

 // choose the left hand wall algorithm

 choice = 2;

 }

 }

 // Execution of the choice

 if(choice == 1)

 {

 rightHandWall();

 }

 if(choice == 2)

 {

 leftHandWall();

 }

} // end of the void loop()

32

//*********** all the functions ******************* ****//

void leftHandWall() {

 // done or turn around

 if(frontPing < frontObstacle && leftPing < sideObs tacle && rightPing <

sideObstacle){

 front(200);

 stopall(50);

 if(analogRead(leftSensor) > 200 &&

 analogRead(centerSensor) > 200 &&

 analogRead(rightSensor) > 200){

 done();

 }else{

 stopall(50);

 turnAround();

 }

 }

 // turning right

 else if(frontPing < frontObstacle && leftPing < si deObstacle &&

rightPing > sideObstacle){

 stopall(50);

 turnRight();

 stopall(100);

 }

 // turn left --> 1

 else if(frontPing < frontObstacle && leftPing > si deObstacle &&

rightPing < sideObstacle){ // #1

 //Serial.println("Stop #1");

 stopall(100);

33

 turnLeft();

 stopall(100);

 }

 // turn left --> 2

 else if(frontPing < frontObstacle && leftPing > si deObstacle &&

rightPing > sideObstacle){ // #2

 //Serial.println("Stop #2");

 stopall(100);

 turnLeft();

 stopall(100);

 }

 // go front --> 1

 else if(frontPing > frontObstacle && leftPing < si deObstacle &&

rightPing < sideObstacle)

 {

 //stopall(50);

 straight();

 }

 // do front --> 2

 else if(frontPing > frontObstacle && leftPing < si deObstacle &&

rightPing > sideObstacle)

 {

 //stopall(50);

 straight();

 if(analogRead(leftSensor) > 200 && analogRead(ri ghtSensor) > 200)

 {

 //path[pathLength]='S';

 //Serial.println("s");

 //pathLength++;

 delay(100);

 }

 }

34

 // turn left critical --> 1

 else if(frontPing > frontObstacle && leftPing > si deObstacle &&

rightPing < sideObstacle) // #3

 {

 //Serial.println("Stop #3");

 straight();

 if(analogRead(leftSensor) > 200 && analogRead(rig htSensor) > 200)

 {

 //Serial.println("crossed the critical #3");

 delay(150);

 stopall(200);

 turnLeft();

 }

 }

 // turn left critical --> 2

 else if(frontPing > frontObstacle && leftPing > fr ontObstacle &&

rightPing > sideObstacle) // #4

 {

 //Serial.println("Stop #4");

 straight();

 if(analogRead(leftSensor) > 200 && analogRead(ri ghtSensor) > 200)

 {

 //Serial.println("crossed the critical #4");

 delay(150);

 stopall(200);

 turnLeft();

 }

 }

}

// RIGHT HAND RULE

void rightHandWall() {

35

 // done or turn around

 if(frontPing < frontObstacle &&

 leftPing < sideObstacle &&

 rightPing < sideObstacle){

 front(200);

 stopall(50);

 if(analogRead(leftSensor) > 200 &&

 analogRead(centerSensor) > 200 &&

 analogRead(rightSensor) > 200){

 done();

 }else{

 stopall(50);

 turnAround();

 }

 }

 // turning left

 else if(frontPing < frontObstacle && rightPing < s ideObstacle &&

leftPing > sideObstacle){

 stopall(50);

 turnRight();

 stopall(100);

 }

 // turn right --> 1

 else if(frontPing < frontObstacle && rightPing > s ideObstacle &&

leftPing < sideObstacle){ // #1

 //Serial.println("Stop #1");

 stopall(100);

 turnLeft();

 stopall(100);

 }

 // turn right --> 2

36

 else if(frontPing < frontObstacle && rightPing > s ideObstacle &&

leftPing > sideObstacle){ // #2

 //Serial.println("Stop #2");

 stopall(100);

 turnLeft();

 stopall(100);

 }

 // go front --> 1

 else if(frontPing > frontObstacle && rightPing < s ideObstacle &&

leftPing < sideObstacle)

 {

 //stopall(50);

 straight();

 }

 // do front --> 2

 else if(frontPing > frontObstacle && rightPing < s ideObstacle &&

leftPing > sideObstacle)

 {

 //stopall(50);

 straight();

 if(analogRead(leftSensor) > 200 && analogRead(rig htSensor)

> 200)

 {

 //path[pathLength]='S';

 //Serial.println("s");

 //pathLength++;

 delay(100);

 }

 }

 // turn right critical --> 1

 else if(frontPing > frontObstacle && rightPing > s ideObstacle &&

leftPing < sideObstacle) // #3

 {

37

 //Serial.println("Stop #3");

 straight();

 if(analogRead(leftSensor) > 200 && analogRead(rig htSensor)

> 200)

 {

 //Serial.println("crossed the critical #3");

 delay(150);

 stopall(200);

 turnLeft();

 }

 }

 // turn right critical --> 2

 else if(frontPing > frontObstacle && rightPing > f rontObstacle &&

leftPing > sideObstacle) // #4

 {

 //Serial.println("Stop #4");

 straight();

 if(analogRead(leftSensor) > 200 && analogRead(rig htSensor)

> 200)

 {

 //Serial.println("crossed the critical #4");

 delay(150);

 stopall(200);

 turnLeft();

 }

 }

}

//------------- DONE -- END-MOTION -- PATH-SHORTENI NG -- REPLAY ------

--------//

// DONE FUNCTION

void done(){

 digitalWrite(leftMotor1, LOW);

38

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 replaystage=1;

 path[pathLength]='D';

 //Serial.println("d");

 pathLength++;

 //printPath();

 // --> shortening stuffs

 c = pathLength;

 while(check == 0){

 Serial.println("trapped");

 shortening(); //delay(300);

 }

 while(analogRead(leftSensor) > 200 &&

 analogRead(centerSensor) > 200 &&

 analogRead(rightSensor) > 200){

 digitalWrite(led, HIGH);

 delay(500);

 digitalWrite(led, LOW);

 delay(500);

 }

 delay(500);

 replay();

}

// END OF MOTION

void endMotion(){

 digitalWrite(led, LOW);

 delay(500);

 digitalWrite(led, HIGH);

 delay(200);

 digitalWrite(led, LOW);

39

 delay(200);

 digitalWrite(led, HIGH);

 delay(500);

 endMotion();

}

// PATH SHORTENING

void shortening(){

 check = 1;

 Serial.print("Before shortening c = ");

 Serial.println(c);

 Serial.print("Incoming array = ");

 for(i=0; i<c; i++){Serial.print(path[i]);}

 Serial.println(" ");Serial.println(" ");

 for(i=0; i < c; i++){

 if(path[i] == 'B'){ // check for B

 if(path[i-1] == 'L' && path[i+1] == 'G'){ // R condition

 route[routeLength] = 'R';

 routeLength++;

 }else if(path[i-1] == 'L' && path[i+1] == ' R'){

 route[routeLength] = 'B';

 routeLength++;

 }else if(path[i-1] == 'L' && path[i+1] == ' S'){

 route[routeLength] = 'R';

 routeLength++;

 }else if(path[i-1] == 'R' && path[i+1] == ' L'){

 route[routeLength] = 'B';

 routeLength++;

 }else if(path[i-1] == 'S' && path[i+1] == 'L'){

40

 route[routeLength] = 'R';

 routeLength++;

 }else if(path[i-1] == 'S' && path[i+1] == ' S'){

 route[routeLength] = 'B';

 routeLength++;

 }else if(path[i-1] == 'L' && path[i+1] == ' L'){

 route[routeLength] = 'S';

 routeLength++;

 }

 }else { // if the current is not a B, check if previous or

after is B

 if(path[i-1] == 'B' || path[i+1] == 'B'){

 // do nothing

 }else{

 // record it

 route[routeLength] = path[i];

 routeLength++;

 }

 }

 }// end of for loop

 Serial.println("After shortening");

 c = routeLength;

 Serial.print("Length of route array is ");

 Serial.println(c);

 Serial.print("The route path = ");

 for(i=0; i<c; i++){Serial.print(route[i]);}

 Serial.println(" ");

 for(i=0; i<c; i++){

 if(route[i] == 'B'){

 check = 0;

41

 Serial.println("There is a B");

 }

 }

 Serial.println(" ");

 if(check == 0){

 //path[c] = {};

 for(i=0; i<c; i++){

 path[i] = route[i];

 // Serial.println(path[i]);

 }

 // clear route

 //route[c] = {};

 routeLength = 0;

 }

 Serial.println(" ");

}

// REPLAY FUNCTION

void replay(){

// Serial.print("Index is "); Serial.print(readLen gth);

// Serial.print(" the letter is: ");

// Serial.println(route[readLength]);

 delay(10);

 frontPing = sonar[0].ping_cm(); delay(10);

 rightPing = sonar[1].ping_cm(); delay(10);

 leftPing = sonar[2].ping_cm(); delay(10);

// Serial.println(leftPing);

// Serial.println(rightPing);

 if(frontPing > frontObstacle && leftPing < sideOb stacle)

 {

 straight();

 }

42

 else

 {

 // stop for a moment to check for next move

 stopall(10);

 if(route[readLength]=='D')

 {

 straight();

 if(analogRead(leftSensor) > 200 && analogRe ad(rightSensor) >

200)

 {

 //Serial.println("crossed the critical #3 ");

 delay(150);

 stopall(100);

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

 digitalWrite(rightMotor2, LOW);

 delay(100);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 if(analogRead(leftSensor) > 200 && analog Read(rightSensor) >

200){

 done(); //endMotion();

 }

 }

 }

 // left turning

 else if(route[readLength] == 'L' &&

 leftPing > sideObstacle &&

 (rightPing > sideObstacle ||

43

 rightPing < sideObstacle))

 {

 straight();

 if(analogRead(leftSensor) > 200 && analogRead (rightSensor) > 200)

 {

 //Serial.println("crossed the critical #3") ;

 delay(150);

 stopall(100);

 turnLeft();

 readLength++;

 }

 }

 // Right turning

 else if(route[readLength]=='R')

 {

 straight();

 if(analogRead(leftSensor) > 200 && analogRead (rightSensor) > 200)

 {

 //Serial.println("crossed the critical #3") ;

 delay(150);

 stopall(100);

 turnRight();

 readLength++;

 }

 }

 // go straight

 else if(route[readLength]=='S')

 {

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

 digitalWrite(rightMotor2, LOW);

 delay(leapTime);

 straight();

 readLength++;

 }

44

 // nothing, keep moving

 else{

 stopall(100);

 straight();

 delay(100);

 stopall(200);

 }

 }

 replay();

}

//---------------- MOVEMENT AND TURNING FUNCTIONS - -------------//

// GOING STRAIGHT

void straight() {

 // go straight

 digitalWrite(leftMotor1, HIGH); //the right wheel

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

 digitalWrite(rightMotor2, LOW);

 delay(2);

 // turn a bit to the left

 if(analogRead(leftSensor) > 200 && analogRead(rig htSensor) < 200){

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(2);

 }

 // or turn s bit to the right

 else if(analogRead(rightSensor) > 200 && analogRe ad(leftSensor) <

200) {

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

45

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

 // or keep going straight

 else {

 digitalWrite(leftMotor1, HIGH); //the right whe el

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

}

// TURNING TO THE LEFT FUNCTION

void turnLeft() {

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(100);

 // go back till all sensors are on the black line

 while(analogRead(rightSensor) < 200 || analogRead (leftSensor) < 200){

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, HIGH);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, HIGH);

 delay(3);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

46

 // stop for a delay

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(100);

 // turn till right IR sensor is out of the black line

 while(analogRead(rightSensor) > 200){

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(200);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

 // turn till right IR sensor comes to the black l ine

 while(analogRead(rightSensor) < 200) {

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(2);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

 if(replaystage==0){

 path[pathLength]='L';

 //Serial.println("l");

47

 pathLength++;

 }

}

// TURNING TO THE RIGHT FUNCTION

void turnRight() {

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(100);

 // go back till all sensors are on the black line

 while(analogRead(rightSensor) < 200 || analogRead (leftSensor) < 200){

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, HIGH);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, HIGH);

 delay(3);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

 // stop for a delay

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(100);

 // turn till the left sensor is out of the black line

 while(analogRead(leftSensor) > 200){

 digitalWrite(leftMotor1, LOW);

48

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

 digitalWrite(rightMotor2, LOW);

 delay(2);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

 // turn till the sensor comes back to the black l ine

 while(analogRead(leftSensor) < 200) {

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

 digitalWrite(rightMotor2, LOW);

 delay(2);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

 if(replaystage==0){

 path[pathLength]='R';

 //Serial.println("r");

 pathLength++;

 }

}

// TURNING AROUND FUNCTION

void turnAround() {

 // go back till all sensors are on the black line

 while(analogRead(rightSensor) < 200 || analogRead (leftSensor) < 200){

49

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, HIGH);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, HIGH);

 delay(3);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(1);

 }

 // take a pause of 100 ms

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(100);

 // do the turning of 180 degrees

 while(analogRead(leftSensor) > 200) {

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, HIGH);

 delay(500);

 while(analogRead(centerSensor) < 200) {

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, HIGH);

 delay(1);

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(2);

50

 }

 break;

 }

 if(replaystage==0){

 path[pathLength]='B';

 //Serial.println("b");

 pathLength++;

 }

}

// STOP ALL THE MOVEMENT

int stopall(int stop_time) {

 digitalWrite(leftMotor1, LOW);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, LOW);

 digitalWrite(rightMotor2, LOW);

 delay(stop_time);

}

// FRONT GOING FUNCTION

int front(int time){

 digitalWrite(leftMotor1, HIGH);

 digitalWrite(leftMotor2, LOW);

 digitalWrite(rightMotor1, HIGH);

 digitalWrite(rightMotor2, LOW);

 delay(time);

}

//---------------- SERIAL DISPLAY FUNCTIONS ------- -------//

// IR SENSORS DISPLAY

void irInfos(){

51

 Serial.print("L C R = ");

 Serial.print(analogRead(leftSensor));

 Serial.print(" ");

 Serial.print(analogRead(centerSensor));

 Serial.print(" ");

 Serial.println(analogRead(rightSensor));

}

// PING SENSORS DISPLAY

void infos(){

 frontPing = sonar[0].ping_cm(); delay(ii);

 leftPing = sonar[2].ping_cm(); delay(ii);

 rightPing = sonar[1].ping_cm(); delay(ii);

 Serial.print("F L R = ");

 Serial.print(frontPing);

 Serial.print(" ");

 Serial.print(leftPing);

 Serial.print(" ");

 Serial.println(rightPing);

}

// PATH DISPLAY

void printPath(){

 Serial.println("+++++++++++++++++");

 int x=0;

 while(x<=pathLength){

 Serial.println(path[x]);

 x++;

 }

 Serial.println("+++++++++++++++++");

}

// PATH DISPLAY NEW

void printNew(){

52

 for(i=0; i<routeLength; i++){

 Serial.print(" ");

 Serial.println(route[i]);

 }

}

