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ABSTRACT

Traveling Salesman Problem (TSP) is a classical problem in Artificial Intelligence (AI)

field. Since 1800s when first mathematical problems related to TSP was treated, it

became an interesting topic of optimization problem to be studied. In this project, TSP

will be used to model and easy visualize the path optimization problem and Genetic

Algorithm (GA) was chosen to be implemented in resolving the problem. This project

will focus on the static variable referring to the length of distance as the fitness function

of optimization. The idea of resolving TSP study is to come out with the shortest path

among all possible solutions of tour to be taken. However, the major concern here is

how to ensure that the optimum result is obtained. Therefore, the operators and

parameters of GA itself were studied in depth particularly the mutation operator.

Experiments were conducted to measure the effectiveness of two different types of

mutation method namely swapping method and inversion method. The comparison of

bothperformances in achieving optimum result had been analyzed in detail. Therefore,

the implementation of GA in path optimization can be ascertained offering a compelling

result.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Even though the origin of Traveling Salesperson Problem (TSP) is obscure, TSP is

classic to Artificial Intelligence (AI) and computer science. Mathematical problems

related to the TSP were treated in the 1800s by the Irish mathematician Sir William

Rowan Hamilton and by the British mathematician Thomas Penyngton Kirkman [2].

Their early work named Hamilton's Icosian Game (HIG) requires players to complete

tours through the 20 points using only the specified connections. A nice discussion of

HIG can be found in book "Graph Theory 1736-1936" [3]. Since then, TSP became an

interesting topic of AI study and a Nondeterministic Polynomial (NP) Complete

Problem with many ramifications of search strategies.

Figure 1.0: The Hamilton's Icosian Game [2]



Subsequently, the general form of TSP appears to be first studied by mathematician and

economist Karl Menger starting in the 1920's who publicized it among his colleagues in

Vienna. In the 1930's, the problem reappeared in the mathematical circles of Princeton.

In the 1940's, it was studiedby statisticians Mahalanobis , Jessen in 1942,Gosh in 1948,

Marks in 1948 in connection with an agricultural application and the mathematician

Merill Flood popularized it among his colleagues at the RAND Corporation. The growth

of the TSP as a topic of study can be found in Alexander Schrijver's paper "On the

history of combinatorial optimization (till I960)" [3]. The pictorial history of TSP can

be depicted as follow:

Table 1.0: The PictorialHistoryof Traveling Salesperson Problem (TSP) Study [3]

^ i-nr Ul-KCUI'dl '1 Willi •-**•--...!,;.<••.' " S>-.-.

1954 G. Dantzig, R. Fulkerson, and S. Johnson

1971 M. Held and R.M. Karp

1975 P.M. Camerini, L. Fratta, and F. Maffioli

1977 M. Grotschel

1980 H. Crowder and M.W. Padberg

1987 M. Padberg and G. Rinaldi

1987 M. Grotschel and O. Holland

1994 D. Applegate, R. Bixby, V. Chvatal, and W. Cook

1998 D. Applegate, R. Bixby, V. Chvatal, and W. Cook

2001 D. Applegate, R. Bixby,V. Chvatal, and W. Cook

2004 D. Applegate, R. Bixby, V. Chvatal, W. CookandK. Helsgaun

Along the period of time, researchers have tried various algorithms to solve TSP

problem. To name a few, the algorithms include simulated annealing [5, 6], discrete

linear programming [7], neural networks [8], branch and bound [9], 2-opt [10], Markov

chain [11] as well as Genetic Algorithm (GA).



1.2 Problem Statement

1.2.1 Problem Identification

In solving path optimization problem, TSP is used to easy visualize and modeled the

case. The statement of TSP is simple and easy to state as the following:

Given a finite number of destinations, the salesperson is required to visit each

destination. There could be many possible routes and the challenge is to find the most

effective route between the destinations. To do so, the order of destination visited is

crucial. The salesperson will pass through all the destinations and coming back to the

starting point in the most effective way. The effectiveness will be gauged by the

distance taken which lead to find the shortest path among all possible routes.

Segregated below are the main problems associated withpath optimization. However, it

is without taking into consideration otherdynamic factor namely traffic congestion, type

of transportation used as well as cost incurred. Assuming all the factors are constant, the

shortest path among all is the biggest concern here.

Scenario 1

An individual who needs to travel from one place to another in carryingout theirjobs.

Scenario 2

Atransportation company who hasa traveling tourto be completed in a routine basis.

Scenario 3

A logistic or courier company who needs to deliver goods to their customers from one

place to another daily.



1.2.2 Significant of the Project

Nowadays, people become very sensitive about their time constraint and need to be

more efficient. Everything needs to be fast even when it comes to travel from one place

to another. Path optimization is the answer to overcome the issue and TSP is used to

model the problem. There are numerous type of algorithm can be used in solving TSP

problem. Each has its own advantages as well as disadvantages.

In this project, GA is chosen as a tool to find the optimize path. Before it is chosen, a

thorough research was done comparing each possible algorithms can be applied.

However, once the type of algorithm to be used is chosen, it is always become a concern

on how optimize the optimum result can be? In this case, how optimize the optimum

result GA can offer in order to solve the problem? Therefore, each element of GA will

be studied in depth comprisesof its operators and parameters. So, the implementation of

GA in achieving path optimization can be ensured offering a compelling result.

1.3 Objective and Scope of Study

1.3.1 Objective of Study

The objectives of this project can be summarized as follows:

• To understand on TSP study together with the underlying concept of GA as an

optimization tool applied to it.

• To aid decision making in path optimization problem by providing the shortest

distance tour among all possible solutions.

• To compare different types of mutation methods used as an important operators in

GA to achieve optimum result.

• To observe on various important parameters used in GA that encroach on GA

functions to achieve optimum result.



1.3.2 Scope of Study

The simulated system will be developed using JAVA language since JAVA programs

are executable on many platforms. The scope of study for the system will be focusing on

the mutation operators and parameters used in GA in order to achieve optimize result.

All the components will be the determine factors of the optimization result. The

components are as the following:

Mutation Operators

The mutation operators used in this system will be subdivided into two different

methods as follows:

• Swapping Method

• Inversion Method

Parameters

There are six parameters of GA used in this system as follows:

• Maximum number of iterations

• Mutation rate

• Display every Xth iteration

• Population size

• Convergence percentage

• Number of cities

The features of the system prototype will be as follows:

• Give the user flexibility to determine the type of mutation operator and the value of

parameters to be used.

• Calculate the fitness of each possible solution in order to come out with the shortest

path to be taken among all.

• Display the result that comprises of the final tour (the shortest path) together with

the city locations, the length of distance as well as simulation of the route to be taken

graphically.



1.3.3 Feasibility of the Project within the Time and Scope

Schedule Feasibility

The system will be completed according to the budgeted time frame depicted by the

Gantt Chart. There are altogether 14 weeks allocated to produce both the dissertation as

well as complete system. The research will be carried out prior to the development

process. However, the project report will be written in parallel with both research as

well as development process to ensurethat it is inline with the to-be system.

Scope Feasibility

The project system focuses on the implementation of GA that will be used to solve the

path optimization problem. The scope is to focus on the static variable without taking

into consideration the other dynamic variables. Therefore, the optimization will be

gauged by the length of distance solely. The system prototype will be built then to

simulate the result. Experiments will be conducted in order to ensure the effectiveness

of the algorithm in achieving optimize result.

Technical Feasibility

Due to the point that the system developer is well verse with Java programming

language, the technical feasibility canbe assured. There is no cost related to the project

as the system will be developed using available software namely JAVA 2 Standard

Development Kit 1.4.2_08 and Forte for Java. There are also adequate resources

available to support the project gained. The source of information can be gained via

books, journals, papers or even online resources on Internet.



CHAPTER 2

LITERATURE REVIEW AND THEORY

From the research conducted, TSP is one of the most intensely studied problems in

computational mathematics and yet no effective solution method is known for the

general case [3]. Although the complexity of the TSP is stillunknown, for over 50 years

its study has led the way to improved solution methods in many areas of mathematical

optimization. Among all techniques, GA is chosen as TSP solver because GA based

solutions are currently available for simultaneous search of multiple routes while the

other algorithms only produce the best one at a time. The subsequent sections will be

discussing in detail on how GA is applied to TSP as well as the comparison of GAwith

other type of algorithms.

2.1 The Brief History of GA

GA first developed by JohnHolland in the 1970s [12] is search algorithm based on the

mechanics of natural selection and natural genetics. The algorithm works based on

biological background nature. The process by which successive generations of animals

and plants are modified so as to approach an optimum form. It is used to search large,

non-linear search spaces where expert knowledge is lacking or difficult to encode and

where traditional optimization techniques fall short [13, 14, 15]. Since the 80's, much

work has beendone in applying GA to the TSP [13,16,17,18,19]. Until nowGA is still

the most widely used algorithm to cater optimization problem and TSP is an easily

visualize problemsolvedby exploring the interactionin genetic search.



2.2 The Theory of GA

Marek Obitko's Site stated that GAs are a part of evolutionary computing, which is a

rapidly growing area of AI. GAs are inspired by Darwin's theory about evolution and

solution to a problem solved by GA is evolved [25]. From Generation5.org [26], the

general algorithm of GAcanbe summarized as follows:

Create a Random Initial State

An initial population is created from a random selection of solutions which are

analogous to chromosomes. This is unlike the situation for Symbolic AI systems, where

the initial state in a problemis alreadygiven instead.

Evaluate Fitness

A value for fitness is assigned to each solution referring to chromosome depending on

how close it actually is to solving the problem. Thus, the solutions are evaluated

whether they arrive to the answer of the desired problem. These solutions are the

possible characteristics that thesystem would employ inorder to reach theanswer.

Reproduce and Children Mutate

Those chromosomes with a higher fitness value are more likely to reproduce offspring

which can mutate after reproduction. The offspring is a product of the father and

mother, whose composition consists of a combination of genes from them. This process

is known as "crossing over".

Next Generation

If the new generation contains a solution that produces an output that is close enough or

equal to the desired answer then the problem has been solved. If this isnot the case, then

the new generation will go through the same process as their parents did. This will

continue until a solution is reached.



Start

1 r

Randomly generate initial
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Generate offspring by mutation
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no ^^^^

i

yes
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Figure 2.0: The Basic GeneticAlgorithm(GA) [25]

In general, howGAworks canbe depicted from Figure 2.0. However, GA is still canbe

used together with other type of algorithms in order to enhance the effectiveness of

optimization result offered. Even more, GA itself can be customized accordingly for

optimization purpose. The subsequent section will be discussing on possible related

techniques which can be used along with GAin solving TSPproblem.



2.3 Related Techniques with GA in Solving TSP

2.3.1 Simulated Annealing (SA)

In the 1985, Kirkpatrick and Toulouse used simulated annealing to solve TSP followed

by Learhoven and Aarts in the 1987[3]. SA is a related global optimization technique

which traverses the search space by testing random mutations on an individual solution.

A mutation that increases fitness is always accepted. A mutation which lowers fitness is

accepted probabilistically based on the difference in fitness and a decreasing

temperature parameter. In SA parlance, one speaks of seeking the lowest energy instead

of the maximum fitness. SA can also be used within a standard GA algorithm, simplyby

starting with a relatively high rate of mutation, which decreases over time along a given

schedule.

2.3.2 Genetic Programming (GP)

GP is a related technique popularized by John Koza, in which computer programs,

rather than function parameters, are optimized [3]. GP often uses tree-based internal

data structures to represent the computer programs for adaptation instead of the list, or

array, structures typical of GA. GP algorithms typically require running time that is

orders of magnitude greater than that for GA, but it may be suitable for problems that

are intractable with GA. Thus, it is possible to be used as an extension of GA.

2.3.3 Interactive Genetic Algorithm (IGA)

IGA is part of GA that also based use human evaluation. It is usually applied to domains

where it is hard to design a computational fitness function, for example, evolving

images, music, artistic designs and forms to fit users' aesthetic preference [3]. Therefore,

with the interactive factors involved, a more interesting problem can be solved which

able to cater more than just a simple plain data.

10



2.4 Comparison of GA with Other Algorithms

As stated before, there are various possible algorithms can be used to solve TSP

problem. Each has its own advantages as well as disadvantages. The chosen of GA is

based on research conducted comparing all possible techniques can be used. Therefore,

the subsequent section will be discussing on the comparison of GA to other algorithms

followed by a conclusion of the advantages as well as the drawbacks of GA itself.

2.4.1 GA-Based Multiple Route Selection for Car Navigation [27]

Basabi Chakraborty used GA to find multiple route selection for car navigation. There

are a lot of good solutions like Dijkstra Algorithm (DA), breadth-first search, Bellman-

Ford algorithm and others available for optimization problem. But simultaneous search

for multiple semi-optimal routes are difficult with the above mentioned algorithms as

they produce thebest one at a time. Therefore, GA is the answer for simultaneous search

of multiple routes. However, the problem in finding multiple routes is that selected

routes resemble each other, partly overlap. To overcome this problem, a GA based

algorithm with a novel fitness function is used for simultaneous search of multiple

routes for car navigation system avoiding overlapping. Three different algorithms were

compared namely Inagaki algorithm, Inogue algorithm also known asDA as well asGA

itself.

Inagaki [36] proposed an algorithm in which chromosomes are sequences of integers

and each gene represents a node ID selected randomly from the set of nodes connected

with the node corresponding to its locus number. The idea is to minimize the effect of

overlapping solutions. But the proposed algorithm requires a large solution space to

attain high quality solution due to its inconsistent crossover mechanism. On the other

hand, Inogue [37] proposed a method for finding out multiple different (non

overlapping) short routes by dividing the road map in multiple areas and putting

different weights in each of them so that the selected routes are through different areas

of the map. But as there is no direct method for comparing the overlapping of the

11



selected paths this method is not guaranteed to select minimally overlapped multiple

shorter paths.

Then, GA has been evaluated against mentioned algorithm using a real road map. GA

can be used effectively for searching multiple routes from a real road map with a rank

order i.e., shortest, second shortest, 3rd shortest and so on (k shortest path problem). The

road map is first converted into a connected graph, considering each road crossing as a

node in the graph and all such nodes are numbered. The roads in map are represented by

links in the graph. The distance between any two crossings is considered as the weight

of the link between the corresponding nodes. The starting point and the destination on

the map are defined as the starting node and goal node on the graph. Any possible path

from start node to goal node or destination node via other nodes is a possible solution

and coded as a chromosome by using node numbers. However, looping in the path is

generally avoided. Figure 2.1 represents a simple graphical representation of a road map

and the possible routes from source node 0 to destination node 9.

Possible Paths:

014789

02689

03589

014589

0354789

Figure 2.1: Graphical Representation of Road Map and Routes [27]

12



The comparative results of the three different algorithms showed that DA takes much

shorter time compared to others for finding out the shortest route and also is ableto find

out betterpaths in terms of distance. But successive short routes are highly overlapped.

Both Inagaki's method and GA take longer time than DA but alternate routes can be

found out simultaneously. The GA is found to be better to avoid route overlapping

compared to Inagaki's method. The average run time and the weight of the path in both

methods are nearly equal with GA being slightly better. The average weight of the

selected path is also close to the average weight of the paths found out by DA. For a

better view, the result is summarized in Table 2.0 as the following:

Table 2.0: Comparative Performance of DifferentAlgorithms [27]

Algorithm Time taken Number of overlapping Average weight of the path

Inogue/DA 0.014 sec 15 243

Inagaki 0.182 sec 5 275

GA 0.177 sec 2 257

Above all, from the experiments conducted it is proventhat simultaneous multiple route

selection is difficult by popular optimization technique like DA. On the other hand, GA

can be efficiently used for finding out multiple routes simultaneously with minimal

overlapping by grouping m routes as one set of solution and designing fitness functions

in such a way that it penalizes the function of overlapping.

13



2.4.2 Evaluation of Route Finding Methods in GIS Application [29]

Roozbeh Shad, Hamid Ebadi and Mohsen Ghods performed an evaluation of route

finding methods in GIS applications. The processing time of DA, Heuristic Algorithm

(HA) which is divided into graph growth algorithm implemented with two queues and

DA implemented with double buckets as well as GA using Visual Basic, MapObject and

Visual C++ programing languages was done.

Basically, DA [30] for computing the shortest path is based upon the calculation of

values in three one dimensional arrays, each of size equal to the number of nodes in the

network. Each row of each array corresponds to one of the nodes of the network. As the

algorithm proceeds, paths are calculated from the start node to other nodes in the

network, paths are compared and the best paths are chosen, given the state of knowledge

of the network at that stage in the progress of the algorithm.

On the other hand, there are different heuristic and probabilistic methods that no always

guarantee the optimal solution but are able to find a possible solution space, taking

advantage of the particular attributes of the target problem. In a recent study, a set of

two shortest path algorithms that run fastest on real road networks has been identified.

These two algorithms are the graph growth algorithm implementedwith two queues and

DA implemented with double buckets [31].

In this context, GA is a metaheuristic technique [32] that could provides robust tools

with optimal or quasi-optimal designing and programming of transportation networks

and node locating. Because its excellent flexibility, robustness and adaptability

characteristics, GA has been successfully applied in the non-linear and complex

optimization problem solutions, and also it is much appropriated to face the noisy

combinatorial problems associated to the real systems optimization and transportation

networks.

14



The four algorithms were implemented using data sets with different number of nodes

and links under three different condition namely one-to-one, one-to-all and all-to-all.

The result of timing for each algorithm is shown as the following:

Table 2.1: Execution Times of Algorithms with One to One Condition [29]

Number of nodes DA
HA

GA
Graph Growth DA with double buckets

500 0.38 (sec) 0.42 0.41 0.92

1000 3.48 3.78 3.21 4.78

2000 12.23 11.22 10.56 14.6

3000 38.74 29.89 27.43 35.43

4000 50.23 44.65 41.23 53.34

5000 102.38 89.34 85.65 104.04

Table 2.2: Execution Times of Algorithms with One to All Condition [29]

Number of nodes DA
HA

GA
Graph Growth DA with double buckets

500 0.53 (sec) 0.59 0.61 0.58

1000 5.42 5.49 5.54 5.67

2000 17.45 15.23 15.58 18.23

3000 42.24 36.56 38.68 44.32

4000 50.23 44.65 47.23 48.34

5000 112.42 101.37 105.45 110.56
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Table 2.3: Execution Times of Algorithms with All to All Condition [29]

Number of nodes DA
HA

GA
Graph Growth DA with double buckets

500 1.43 (sec) 0.63 0.67 0.59

1000 8.45 6.80 6.95 6.23

2000 32.96 18.23 19.05 18.83

3000 64.78 40.24 43.50 50.61

4000 104.89 52.76 57.87 73.04

5000 210.78 110.78 118.65 137.76

Based on the result shown, the evaluation of 4 shortest path algorithms using real road

networks has identified that:

• Execution time of mentioned algorithms depends on the problem conditions and the

number of nodes in the real road networks.

• When the number of nodes and the problem conditions increase, HA method

performs better than others.

• For the small number of nodes and the complex problem conditions, GA performs

better than others.

• For the small number of nodes and the easy problem conditions DA performs better

than others.
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2.5 Conclusions

2.5.1 Advantages of GA

As a high efficient search strategy for global optimization, GA demonstrates favorable

performance on solving the combinatorial optimization problems. With comparing to

traditional search algorithms, GA is able to automatically acquire and accumulate the

necessary knowledge about the search space during its search process, and self-

adaptively control the entire search process through random optimization technique.

Therefore, it is more likely to obtain the global optimal solution without encountering

the trouble of combinatorial explosion caused by disregarding the inherent knowledge

within the search space. It has been used to solve combinatorial optimization problems

and non-linear problems with complicated constraints or non-differentiable objective

functions. Besides that, it also has the capability to provide multiple route selection

simultaneously avoiding overlapping. It necessitates the application of GA into route

finding algorithms.

2.5.2 Drawbacks of GA

Search in usual GA, based on neo-Darwinian evolutionary theory is conducted by

crossover and mutation. Crossover is generally considered a robust search means.

Offspring may inherit partial solutions without conflict from their parents, but no

information to decide which genes are partial solutions is available. From a search

strategic point of view this means that variables are randomly selected and then values

which will be assigned to them are also randomly selected from genes contained within

a population. Therefore search by crossover in GA can not be considered efficient.

Furthermore, mutation is a random search method itself. When thinking aboutefficiency

of global search that is the most important characteristic of GA; it is admitted that the

rate of search is low, because GA stresses random search rather than directional search.

However, the above problem can be considered as directly inherited from problems of

the neo-Darwinian evolutionary theory.
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3.1 Biological Background

3.1.1 Chromosomes

CHAPTER 3

METHODOLOGY

The underlying GA concept in used to solve the TSP problem involved biological

background. There are a few terms need to be understood particularly chromosome

which will represent the solutions of the TSP problem. All living organisms consist of

cells. In each cell there is the same set of chromosomes. Chromosomes are strings of

Deoxyribonucleic Acid (DNA) and serve as a model for the whole organism. A

chromosome consists of genes, blocks of DNA. Each gene encodes a particular protein.

Basically, it can be said that each gene encodes a trait, for example color of eyes.

Possible settings for a trait (e.g. blue, brown) are called alleles. Each gene has its own

position in the chromosome. This position is called locus [17].

Complete set of genetic material or all chromosomes is called genome. Particular set of

genes in genome is called genotype. The genotype is with later development after birth

base for the organism's phenotype, its physical and mental characteristics, such as eye

color, intelligence and others [17].

3.1.2 Reproduction

During reproduction, recombination/crossover first occurs. Genes from parents combine

to form a whole new chromosome. The newly created offspring can then be mutated.

Mutation means that the elements of DNA are a bit changed. The changes are mainly

caused by errors incopying genes from parents. The fitness of anorganism is measured

by success of the organism in its lifeor survival [17].
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Figure 3.0: Deoxyribonucleic Acid (DNA) Structures [17]

3.2 Problem Area

Search Space

In solving the problem, some solutions which will be the best among others are looked

for. The space of all feasible solutions or the set of solutions among which the desired

solution resides is called search space or also state space. Each point in the search space

represents one possible solution. Each possible solution can be "marked" by itsvalue or

fitness for the problem. With the implementation of GA, the best solution among a

number of possible solutions is looked for by which represented by one point in the

search space.

Looking for a solution is then equal to looking for some extreme value either minimum

or maximum in the search space. At times the search space may be well defined, but

usually only a few points in the search space are known. Inthe process ofusing GA, the

process of finding solutions generates other points referring to the possible solutions as

evolution proceeds.
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3.3 System Concept

3.3.1 Basic Outline of GA

The implementation of the algorithm begins with a set of solutions represented by

chromosomes called population. Solutions from one population are taken and used to

form a new population. This is motivated by a hope, that the new population will be

better than the old one. Solutions which are then selected to form new solutions; the

offspring are selected according to their fitness. The more suitable they are the more

chances they have to reproduce. This is repeated until some condition, for example

number of populations or improvement of the best solution is satisfied. The basic outline

of GA used can be depicted in Figure 3.1.

1. [Start] Generate random population of n chromosomes (suitable solutions for

the problem)

2. [Fitness] Evaluate the fitness/ft) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps until

the new population is complete

1. [Selection] Select two parent chromosomes from a population according

to their fitness (the better fitness, the bigger chance to be selected)

2. [Crossover] With a crossover probability cross over the parents to form

new offspring (children). If no crossover was performed, offspring is the

exact copy of parents.

3. [Mutation] With a mutation probability mutate new offspring at each

locus (position in chromosome).

4. [Accepting] Place new offspring in the new population

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in

current population

6. [Loop] Go to step 2

Figure 3.1: The Basic Outline of Genetic Algorithm (GA) [22]
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3.3.2 Operators of GA

The two basic operators of GA namely crossover and mutation are the most important

parts of GA. The performance is influenced mainly by these two operators. However,

before addressing crossover and mutation, it is needed to first know how to create

chromosomes and what type of encoding to choose. The type and implementation of

these GA operators depends on the encoding and also on the problem.

Crossover

After what encoding to be used is already decided, then it can proceed to crossover

operation. Crossover operates on selected genes from parent chromosomes and creates

new offspring. The simplest way how to do that is to choose randomly some crossover

point and copy everything before this point from the first parent and then copy

everything after the crossover point from the other parent. Crossover can be illustrated

as follows whereby (| is the crossover point) [22].

Table 3.0: The Illustration of Crossover [22]

Chromosome 1 I 11011 100100110110;

i

Chromosome 2: 11011111000011110

Offspring 1 11011111000011110;

Offspring 2 11011100100110110

There are other ways how to make crossover, for example by choosing more crossover

points. Crossover can be quite complicated and depends mainly on the encoding of

chromosomes. Specific crossover made for a specific problem can improve performance

of the GA.

21



Mutation

After a crossover is performed, mutation takes place. Mutation is intended to prevent

falling of all solutions in the population into a local optimum of the solved problem.

Mutation operation randomly changes the offspring resulted from crossover. In case of

binary encoding it can switch a few randomly chosen bits from 1 to 0 or from 0 to 1

[22].

Table 3.1: The Illustration of Mutation [22]

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110,

Mutated offspring 21 1101101100110110'

The technique of mutation as well as crossover depends mainly on the encoding of

chromosomes. For example when encoding permutations is used, mutation could be

performed as an exchange of two genes.

3.3.3 Parameters of GA

The outline of the basic GA is very general. Therefore, many parameters and settings

can be implemented differently in various problems. The two basic parameters of GA

are crossover probability and mutation probability.
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Crossover Probability

Crossover probability is on how often crossover will be performed. If there is no

crossover, offspring are exact copies of parents. If there is crossover, offspring are made

from parts of both parent's chromosome. If crossover probability is 100%, then all

offspring are made by crossover. If it is 0%, whole new generation is made from exact

copies of chromosomes from old population. However, this does not mean that the new

generation is the same. Crossover is made in hope that new chromosomes will contain

good parts of old chromosomes and therefore the new chromosomes will be better.

However, it is good to leave some part of old population survives to next generation

[17].

Mutation Probability

Mutation probability is onhow often parts ofchromosome will bemutated. If there is no

mutation, offspring are generated immediately after crossover or directly copied without

any change. If mutation is performed, one or more parts of a chromosome are changed.

If mutation probability is 100%, whole chromosome is changed, if it is 0%, nothing is

changed. Mutation generally prevents the GA from falling into local extremes. Mutation

should notoccur very often, because then GA will in fact change to random search [17].

Other Parameters:

Population Size

Population size is how many chromosomes are inpopulation in one generation. If there

are too few chromosomes, GA has few possibilities to perform crossover and only a

small part of search space is explored. On the other hand, if there are too many

chromosomes, GA slows down. Research shows that after some limit which depends

mainly on encoding and the problem it is not useful to use very large populations

because it does not solve theproblem faster thanmoderate sized populations [17].
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3.4 System Implementation

3.4.1 Encoding of Chromosomes

A chromosome should in some way contain information about solution that it

represents. The most used way of encoding is a binary string. A chromosome then could

look like in Table 3.2.

Table 3.2: The Illustration of Chromosomes

Chromosome 1 j 1101100100110110

Chromosome 21 1101111000011110,

Each chromosome is represented by a binary string. Each bit in the string can represent

some characteristics of the solution. Another possibility is that the whole string can

represent a number. Of course, there are many other ways of encoding. The encoding

depends mainly on the solved problem.

Permutation Encoding

Among various encoding techniques namely Binary Encoding, Value Encoding, Tree

Encoding and Permutation Encoding (PE), PE is chosen in this project to solve the TSP

problem as it is useful for ordering problems. In PE, every chromosome is a string of

numbers that represent a position in a sequence. The chromosome describes the order of

cities, in which the salesman will visit them.

Table 3.3: The Illustration of Chromosomes with Permutation Encoding (PE)

ChromosomeA|l 5326479 8

Chromosome B; 85672314 9j
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Generate Random Initial Population of Chromosomes

With the use of GA, the system is capable of building a list of chromosomes

representing a population. After the type of encoding technique to be used is

determined, the initial population of chromosomes will be generated. Here, the

population size value is crucial and need to be specified. Due to the point, a random

initial population of tours will be generated according to the specified number of the

population size. The flow of generating random initial population of chromosomes can

be depicted from Figure 3.2.

Start

"

Determine the encoding technique
(Permutation Encoding)

•"

Determine the number of cities, Cn
and population size, Ps

1'

Swap the values
—•

Generate a random initial population, P

i k

Randomly scrable the values

i '

, k

Start with an initial tour based

on Cn

^^^ Terminate yet? ^"*\^
no ^^\

r>=ijs ^^

i

yes

Stop

Figure 3.2: The Flow of Generating RandomInitial Population
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3.4.2 Evaluate the Fitness

After the population is already generated, the fitness of each chromosome in the

population is evaluated. In this project, the fitness is determined by the length of

distance. To do that, the value of each tour length distance is first calculated and added

up. The values obtained are then used to compare how well one chromosome/member

of the population stands against other chromosomes/members of the population. The

process involved can be depicted in Figure 3.3.

Start

i'

Sum up the values
—>

Get the tour length of distance

t i

ji

Calculate the length of distance ^>*^ Terminate yet? ^^\^

no ^^\_
ui>= un ^^

yes

Compare fitness of each tour in
the population

—>
Determine the fitness

i i

i '

Use length of distance as fitness
value

^^*^ Terminate yet? ^~"~-\^

no ^^-\
n>= rn ^^

i

yes

Stop

Figure 3.3: The Flow of Evaluating the Fitness
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3.4.3 Generate New Population

Create the Child

Next, for the optimization purpose the new population will be generated. The process is

done by creating the child referring to new chromosomes/members of the population. In

order to create the child, selection and recombination/ crossover will be performed as

the following:

• Selection ofParents

First is selecting parents for crossover. The main idea is to select the better

parents (best survivors) in the hope that the better parents will produce better

offspring. In this project, the parents are randomly chosen.

• Crossover

Next, the crossover points are randomly generated. In this case, the child carries

with the traits exploited from the parents chosen from with the population. In

this project, the crossover probability is set to null.

Sort the Population

Once the child has been created and inserted into the bottom of the population, a sorting

of the population occurs. The sorting uses the fitness to determine where

chromosomes/members of population are placed. The chromosomes/members will be

ranked where the best fitness chromosomes/members will be at the top followed by the

least fitness chromosomes/members.

Throw the Most Unfit Chromosome

Lastly, based on the fitness evaluated, the least fit chromosome/member will be thrown

out from the population list. The idea is definitely to have a better list of population by

inserting the new child replacing the unfit chromosome/member in the population.
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Mutation

Mutation is introduced within the loop in order to bring new and random

chromosomes/members to the population. Mutation is the process of randomly

selecting chromosomes/members of the population can change their traits randomly in

order to produce tour that has some traits new to the population. This keeps the

population from converging too quickly upon a solution when there are much better

solutions to be found. In essence, mutation keeps the search within the search space

broad enough to encounter a feasible solution. In this project, two types of mutation

method are available to be chosen. The idea is to compare the effectiveness of both

methods in reaching the optimum result. The mutation methods provided are as follows:

• Swapping Method

In swapping method, order changing is used whereby two numbers are selected

and exchanged as depicted in Figure 3.4.

(1 2345689 7) => (18345629 7)

Figure 3.4: The Illustration of Swapping Method

• Inversion Method

Where else in inversion method, the order of numbers will be inverted. This can

be depicted in Figure 3.5.

(12345689 7) => (7 9865432 1)

Figure 3.5: The Illustration of Inversion Method

Evaluate the Fitness of New Tour

After the population is mutated according to the mutation rate defined by the user, the

fitness of the new tour generated is evaluated. Lastly, once again the population will be

sorted accordingly. The full process involved in generating new population can be

depicted in Figure 3.6. The process loops until the maximum number of iterations is

reached or the convergence occurred.
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no

Start

Create the child

Sort the population

Throw the most unfit

chromosomes/members

Mutation

(Swapping or inversion)

Evaluate the fitness of new tour,

sort and throw

yes

Stop

Figure 3.6: The Flow of Generating NewPopulation
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3.4.4 Save the Best Population

The best of population will be saved and then used to represent the best tour found by

the GA. The algorithm loops through this process of spawning a child, replaces the

weakness chromosome/member and then sorted. The detail process involved in

achieving the optimize tour among all used in this project can be summarized as in

Figure 3.7.

Start

1 '

Generate random initial

population

i '

Evaluate the fitness

1 '

Generate new population

i '

Save the best population

i •

Stop

Figure 3.7: The Flow of Achieving Optimum Tour
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3.4.5 Parameters

There are six user-defined parameters provided by the system as below:

• Maximum number ofiterations

This will give the program a cut off point of when to quit by limiting the number

iterations it is to loop for.

• Mutation rate

This is the percentage at which the every member of the population has a chance of

being mutated.

• Display everyXth iteration

This is a display factor. Due to the point that GA solution for the TSP problem runs

faster that screen can update, the solution will only be displayed every other

iteration.

• Population size

This is obviouslythe size of the population used within the GA. This will determine

the number of tours to be generated randomly.

• Convergence percentage

This will give the program a way to be able to determine if an algorithm has

converged upon a solution to the problem. In this case, the system will be terminated

not only when the maximum number of iterations is reached, but also when the

population shows very little change from one generation.

• Number ofcities

This will give the user flexibility to set the number of cities to be visited. Based on

the number ofcities the tour will be generated.
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3.5 System Prototype

3.5.1 Run the System

Thesystem prototype will be in a form of JavaApplet. To run the system, at leastJAVA

version 2 or later is needed. The system will start running once the start button was

pressed. The system will search for the optimum path according to the parameters that

already had been set by the user. The status will indicate whether the system is still

running or not. The system will be running as long as the currently running iteration is

not exceeding the maximum iterations or the convergence percentage; unless the stop

button was pressed to terminate the program intentionally.

3.5.2 Display the Result

After the entire process is completed, the system prototype will display the following

result:

• The Best Path

This is used to display the best length of distance which is the shortest path after

each of the iteration.

• The Worst Path

This is used to display the worst length of distance which is the longest path after

each of the iteration.

• Final Report

This is used to display the city locations as well as the final tour which is the

shortest path among all together with its length of distance after the maximum

iteration is reached.
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• Path Canvas

This is used to display the city locations as well as the simulation route to be taken

graphically. The city locations can be displayed in two different forms as follows:

1. Radial city locations

- In radial city locations, the cities will be located in circle form.

2. Random city locations

- In random city locations, the cities will be located randomly in the canvas area.

3.6 Tools Required

The tools required in completing this project are as follows:

3.6.1 Hardware

• Processor: Intel Pentium-4 1.5GHz

• Memory: 256MB RAM

• Disk Storage: 30GB

3.6.2 Software

• Window XP Platform

• JAVA 2 Standard Development Kit 1.4.2_08

-j2sdk-1.4.2_08-windows-i586-p

• Forte for JAVA

- Community Edition

33



CHAPTER 4

RESULT AND DISCUSSION

4.1 System Testing

In this project, experiments were conducted to measure the effectiveness of system

performance in achieving optimum result. The objective is to compare the two different

methods of mutation operator namely swapping method and inversion method. The

values of parameters for this experiment are set as follows:

Table 4.0: The Value of Parameters for Experiments

Parameters Value Justifications

Maximum number

of iterations

10,000 High numberof iterations is used to see the

pattern of performance. It can be up to 30,000

but it will slow down the performance. A faster

machine is needed

Display every Xth

iteration

500 This will make the output to be displayed 21

times which is still considerable for a slower

machine

Population Size 100 Moderate sized population is used because too

few chromosomes will cause few possibilities to

perform crossover and only a small part of

search space is explored. If there are too many

chromosomes, GA will slow down

Converge

Percentage

-1 The converge is "off to let the systemiterates

until the maximum number of iterations.
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Number of cities 20 Moderate number of cities is used to test the

system because if it is too small, there is no

much chromosome can be generated for the

population

Mutation rate (%) 0, 1,10 The idea ofchoosing no mutation rate (0%), low

value of mutation (1%) as well as high value of

mutation (10%) is merely to see the effect of

mutation rate on result and performance.

The experiments will be categorized according to the type ofcity locations and the

results will be analyzed.

4.1.1 Experiment 1 (Radial City Locations)

4.1.1.1 Mutation 1 (Swapping Method)

Radial, 0% Mutation Rate

t 1 1 1 1 1 1 1 1 1 1 1 r t 1 1 1 r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Iterations

Figure 4.0: The Graph of Radial, 0% Mutation Rate for Mutation 1
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Radial, 10% Mutation Rate
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Figure 4.2: The Graph of Radial, 10% Mutation Rate forMutation 1
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4.1.1.2 Mutation 2 (Inversion Method)

t 4

O)
c

-J

Radial, 0% Mutation Rate

\
>S.

—i—i 1 1—i 1 1—i—i—i—i—i—i—i—i 1 1 r—i—i—

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Iterations

Figure 4.3: The Graph of Radial, 0% Mutation Rate for Mutation 2
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Figure 4.5: The Graph of Radial, 10% Mutation Rate for Mutation 2

4.1.2 Experiment 2 (Random City Locations)
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Figure 4.6: The Graph of Random, 0%Mutation Rate for Mutation 1
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4.1.2.2 Mutation 2 (Inversion Method)
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Figure 4.9: The Graph of Random, 0%Mutation Rate for Mutation 2
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Figure 4.10: The Graph ofRandom, 1% Mutation Rate for Mutation 2
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In the subsequent section, the result gained from Experiment 1 and Experiment 2 will be

summarized and discussed in further detail. The datasets gained will be analyzed to

answer two major questions as the following:

1. What type of mutation method to be used?

2. What is the appropriate mutationrate to be used?
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4.2 Results

From Experiment 1 conducted, the results of the best path (the shortest distance) andthe

worst path (the longest distance) obtained from Mutation 1 andMutation 2 operation

can be summarized as in Table 4.1.

Type Mutation Rate

(%)

Mutation 1

(Swapping Method)

Mutation 2

(Inversion Method)

pa

0.0 4.50787 4.90436

0.01 3.32732 3.31069

0.1 3.17689 2.16706

to

1

0.0 4.67287 5.28178

0.01 4.58081 4.08983

0.1 5.54012 6.05351

Table 4.1: The Comparison of Result for Experiment 1

Where as from Experiment 2, the results of the best path (the shortest distance) and the

worst path (the longest distance) obtained from Mutation 1 and Mutation 2 operation

can be summarized as in Table 4.2.

Type Mutation Rate

(%)

Mutation 1

(Swapping Method)

Mutation 2

(Inversion Method)

CQ

0.0 8.18551 8.75471

0.01 4.77022 4.25060

0.1 5.25729 5.23935

0.0 8.18551 8.75471

0.01 5.12152 4.95347

0.1 10.36468 8.69953

Table 4.2: The Comparison of Result for Experiment2
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4.3 Discussions

4.3.1 Experiment 1 (Radial City Locations)

From the result obtained in Experiment 1, it can be clearly seen that for no mutation rate

(0%); Mutation 1 performs better than Mutation 2 in achieving optimize result.

However, when the mutation rate takes place, Mutation 2 performs better than Mutation

1. For low level of mutation rate (1%) as well as high level of mutation rate (10%);

Mutation 2 outperforms Mutation 1.

In term of the level of mutation rate, it is clearly seen that when the mutation rate is

increasing, the better optimum result is obtained. The difference between the best path

and the worst path is apparently getting wider as well when the mutation rate is

increased. Regardless of the type of city locations, the performance of Mutation 1 and

Mutation 2 towards the mutation rate in used is the same.

4.3.1 Experiment 2 (Random City Locations)

The same thing goes to Experiment 2. From the result obtained, it can be clearly seen

that for no mutation rate (0%); Mutation 1 performs better than Mutation 2 in achieving

optimize result. However, when the mutation takes place, Mutation 2 performs better

than Mutation 1. For low level of mutation rate (1%) as well as high level of mutation

rate (10%); Mutation 2 outperforms Mutation 1.

In term of the level of mutation rate, it is also clearly seen that when the mutation rate is

increasing, the better optimum result is obtained. The difference between the best path

and the worst path is apparently getting wider as well when the mutation rate is

increased. Regardless of the type of city locations, the performance of Mutation 1 and

Mutation 2 towards the mutation rate in used is the same.
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4.4 Observations

From the experiments also some observation on the other parameters used was made. It

can be seen clearly from all the graphs that the optimum result tends to be better when

the number of iteration is increasing. The graph is sloping down across the number of

iterations. The optimize result among all is getting shorter across the iterations which is

awesome.
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CHAPTERS

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This project was successfully developed to find the path optimization by using the

implementation of GA. The system prototype simulate the optimize result referring to

the shortest length of distance among all possible tours. To ensure the effectiveness of

the system, GA itself was studied in depth together with the operators and parameters.

In this project, mutation operator functionality was focused in detail. Therefore,

experiments were conducted to measure the effectiveness of two different types of

mutation method namely swapping method and inversion method. The comparison of

both performances in achieving optimum result had been analyzed. The result can be

concluded as follows:

1. When there is no mutation rate implemented, Mutation 1 (Swapping Method) is

more effective than Mutation 2 (Inversion Method).

2. When there is mutation rate implemented, Mutation 2 (Inversion Method is more

effective than Mutation 1 (Swapping Method) regardless of the level of mutation

rate in used.

3. The higher the level of mutation rate in used, the better result of optimum

solution is obtained.
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4. The type of mutation and rate of mutation to be used are important in resolving

optimization problem and need to be determined accordingly.

5. The type of city locations in used gives no effect at all to the performance of

both Mutation 1 (Swapping Method) and Mutation2 (InversionMethod).

Therefore, to optimize the optimum result, it is recommended to use Mutation 1

(Swapping Method) when no mutation rate takes place where else it is better to use

Mutation 2 (Inversion Method) when there is mutation rate involved.

Other than that, some observation was alsomade on the otherparameters used. From the

observation, it is also can be concluded that:

1. The higher the numbers of iterations, the better result of optimum solution it

would be.

2. The maximum number of iterations is also vital in achieving optimum result.

Hence, it is also recommended to increase the maximum number of iterations in

achieving a fairly good result. However, a faster machine is required because higher

number of maximum iterationsused will lead to a longer time taken in searching for the

optimize result. The performance ofcurrent machine used is Intel Pentium-4 1.5GHz.

In this case, it is overseenthat GA operators particularly mutation as well as parameters

particularly mutation rate and number of iterations play a vital role in GA function for

optimization purpose. External factor which is the speed of machine performance need

to be considered. For example, the application performs better when it runs on faster

machine such as Pentium 4 processor compared to slower machine such as Celeron

processor.
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5.2 Limitations of Project

The limitation of this project is it only caters for the static constraint referring to the

length of distance in achieving the optimize path. The project only focuses in finding the

shortest distance of tour among all possible solutions. Other dynamic factors namely

traffic congestion, type of transportation used as well as cost incurred are assumed to be

constant. Besides that, the project is also focusing mainly on the back-end of the

algorithm. It is not applied yet to the real world situations.

5.3 Recommendations

Future enhancements recommended for the system are as the following:

1. Inclusion of dynamic constraints as fitness function in evaluating the solutions.

Due to the point that the shortest distance of tour is not necessarily the best when

traffic congestion comes into the place. The time taken to complete the tour will

definitely be longer resulting the tour as no more the optimize tour to be used.

The shortest path is no more the fastest tour among all.

2. Incorporate the use of real data to increase the efficiency of the system. In this

case, the use of real map data as problem area together with the simulation of

optimize path on the map is an awesome output to the user. Furthermore, the

systemis focused mainly on the back-end of the algorithm.
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