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ABSTRACT 

 

The purpose of this study is to investigate the effect of earthquake in low, medium and 

high rise structures in Malaysia. Structural design in Malaysia may overlook the 

significance of earthquake loading as earthquakes rarely happen in Malaysia region. The 

occurrences of several tremors in neighboring countries such as Philippines and 

Indonesia have triggered a series of vibrations which were felt on some of the buildings 

in Malaysia. This study shows the analysis of low, medium and high rise steel structures 

subjected to earthquake loading in provision of Eurocode 8 EN 1998-1:2004. 
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CHAPTER 1 

 

PROJECT BACKGROUND 

 

1.1. BACKGROUND OF STUDY 

The issues of Malaysia’s safety on earthquake were raised by the public recently.  

Tremors in Peninsular Malaysia and East Malaysia due to Sumatra and Philippine 

earthquakes have been reported several times. Engineers are concerned of the seismic 

vulnerability of public buildings due to lack of earthquake consideration in Malaysia’s 

building design procedure (Rozaina et al., 2011). National Geographic reported that 

seismic activity in the earth’s crust happened every day in varying degrees of intensity 

and Malaysia, although not in the Pacific Ring of Fire danger zone, the danger still pose 

a significant threat. Malaysia may face medium earthquakes, which is strong enough to 

damage buildings nationwide. New Straits Times reported that the most powerful 

earthquake ever recorded in the country so far was of a medium-intensity measuring 5.8 

on the Richter scale in Lahad Datu, Sabah in 1976 which resulted in damage to property 

and buildings. In the interview by Selvarani (2012), Malaysian Meteorological 

Department Geophysics and Tsunami division director Dr Mohd Rosaidi Che Abas 

reminded that while Malaysia is not in the active subduction zone, it remained at risk if 

strong earthquakes, such as the one which hit Aceh on Dec 26, 2004, occurred anywhere 

along the western coasts of Sumatra and the Philippines. However, the construction of 

major reservoirs and dams, or the pumping of pollutants deep in the subsurface, can 

modify the stress and strain on the earth’s crust, this induce seismicity which can cause 

minor earthquakes and tremors.  
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1.2. PROBLEM STATEMENT 

Malaysia has been affected seismically by far field earthquakes events from neighboring 

countries since years back. Such matter should be factored in when designing structures. 

Most of the earthquakes so far occurred in low populated area with limited high rise 

structures, but are we ready to face the same magnitude of panic and havoc in more 

dense area with lots of superstructures and high rise building like in Kuala Lumpur? 

Azlan & Meldi (2009) stated that the nearest distance of earthquake epicenter from 

Malaysia is approximately 350 km. Natural phenomenon like earthquake causes damage 

to or collapse of buildings if not designed for lateral loads resulting due to Earthquake 

(Ventakesh et al., 2012). Hence, there are problems are raised in this seismic hazard 

analysis. This study is going to be vital in order to answer the question by assessing high 

rise structure in term of their structural integrity in facing earthquake and hurricane. We 

are going to evaluate how far our structure can withstand in various modes of shaking 

conditions concurrent with the seismic condition in Malaysia.  

1.3. OBJECTIVE 

The objectives of this study are as the following: 

i. To study the behavior of low, medium and high rise structure through 

determining natural frequency 

ii. To determine the multi-storey drift of the building on passing traditional or 

conventional Malaysia design. 

iii. To redesign such structure to earthquake loading and reevaluate the multi-

storey drifts. 
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1.4. SCOPE OF STUDY 

This study focus on the behavior of high-rise steel structures as designed by dead load, 

live load, and wind load to the additionally earthquake loads. The analysis will involve 

only bare frame of the structure without considering the effect on its infill. This study 

will only cover the height variation of buildings and its reaction towards possible 

earthquake in Malaysia. Although there are no visible and physical structural failures due 

to these loads in Malaysia, this analysis will observe the horizontal displacement in its 

serviceability limit states. Equivalent Static Analysis and Dynamic Analysis will be used 

to assess the building response due to earthquake loading. Simulation and analysis is 

done by using computer software such as StaadPro. Meanwhile, earthquake loading 

analysis will determine the approximate magnitude of ground acceleration where failure 

of the structures may happen. Once the structural failure configuration determined and 

understood, possible enhancement methods and improvement of structural members will 

be recommended. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

There are six (6) sub-sections in this chapter that are going to enlighten the readers 

regarding the study. First sub-section titled ‘Earthquake Hazard in Malaysia’ generally 

tells the readers about series of earthquake in Malaysia and its severances while the next 

part, ‘Building Response to Earthquake Loading’ will give the ideas of how building will 

react to earthquake loading. Later, ‘Earthquake Design Analysis’ will elaborate on the 

several techniques of analysis that can be applied to multistory structures. ‘Seismic 

Design Philosophy’ will explain the severity of the earthquake against the overall 

damage to the building. ‘Use of Computer Aided Design in Analysis’ will discuss on 

tools available to be used in analyzing structural behavior.  

 

2.2   EARTHQUAKE HAZARD IN MALAYSIA 

Although Malaysia are located on  a  stable  part  of  the  Eurasian  Plate,  buildings  on 

soft soil are occasionally subjected to tremors due to far-field effects of earthquakes in 

Sumatra (Balendra et  al.  1990).  In  the  last  few  years,  tremors  were  felt several 

times in tall buildings in Kuala  Lumpur,  the  capital  of  Malaysia,  due  to  large 

earthquakes  in  Sumatra. Although situated on the stable shelf, several places especially 

in Northern Peninsular Malaysia, which is Penang Islands, Alor Star and Ipoh have 

experienced ground shaking effect due to the long distant earthquake occurred in Acheh 

and Nias recently. Northern Penang are situated close to the earthquake tremors may 

demand a quick review on the existing design code for designing structures (Taksiah et 

al., 2007). The  high  frequency  earthquake waves  damped  out  rapidly  in  the  
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propagation  while the low frequency or long period waves are more robust to energy 

dissipation and as a result they travel long distances. Thus the seismic waves reaching 

the bedrock of Malaysia are rich in long  period  waves,  and  are  significantly  

amplified due  to  resonance  when  they  propagate  upward through the  soft  soil  sites  

with  a  period  close  to  the predominant  period  of  the  seismic  waves.  The  

amplified  waves  cause  resonance  in  buildings  with  a natural period close to the 

period of the site, and the resulting motions of buildings are large enough to be felt  by  

the  residence (Balendra and Li, 2008). The  recent  high  intensity  earthquakes  in  2004  

and  2005  from  Sumatra,  Indonesia have  severely  jolted  the  population  of  

Peninsular  Malaysia  with  appreciable  ground  movements. Bing & Tso (2004) 

mentioned that BS code 8110 used in Malaysia doesn’t not specify any requirement for 

seismic design or detailing of structures. These  have  raised  questions  on  the  

structural  stability  and integrity  of  existing  building  structures  in  Malaysia,  in  the  

face  of  such  seismic  effect  from Sumatra – which is termed as “Far Field Effect” of 

earthquake (Jeffrey, 2008).  

 

2.3 BUILDING RESPONSE ON EARTHQUAKE LOADING 

Buildings respond significantly when they are shaken at frequencies close to their natural 

frequency.  Hugo (2003) pointed out that if the ground moves rapidly back and forth, 

then the foundations of the building are forced to follow these movements. The upper  

part of the building however would prefer to remain where it is because of its mass of 

inertia. Azadbakht & Barghi (2009) state the natural frequency or period can be 

estimated using building design codes. The  response  of   a  building  to  an earthquake 

underneath it is different than that due  to  wind  blowing  on  it. Like all physical 

systems, buildings also respond to earthquake shaking through its modes of vibration.  

So  as  long  as  buildings  behave linearly,  these  modes  of   vibration  are  easy  to 

ascertain, because they are constant throughout the  shaking;  but,  when  buildings  go  

into nonlinear behaviour (in general, nonlinearity in buildings  is  of   softening-type),  

the  modes  of  vibrations  constantly  keep  changing (Murty, 2006). The effect of infill 

panel structure subjected to seismic action is widely recognized and has been subject of 
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numerous experimental investigations. Wakchaure & Ped (2012) found out that infill 

walls reduce displacements, time period and increase base shear. Diware & Saoji (2012) 

agreed that infills frame have greater strength as compared to frames without infills. 

Although infills have significant effect on the result output, the author only cover only 

for bare frame without considered the effect of infills for preliminary study. 

2.4 EARTHQUAKE DESIGN ANALYSIS 

Alsulaydani and Saaed (2009) pointed out that many methods are available for the 

structural analysis of buildings and other civil engineering structures under seismic 

actions. Abu (2010) stated that Seismic design of buildings depends on peak ground 

acceleration values and shape of Response Spectra curves as depicted by relevant 

Building codes. Carlos (2006) demonstrated 2 methods of seismic design of multistory 

structures; Equivalent Static Force and Dynamic Analysis which can take a number of 

forms. Mode superposition is one of these forms. Behaviour of buildings under dynamic 

forces depends upon the dynamic characteristics of buildings which are controlled by 

both their mass and stiffness properties, whereas the static behaviour is solely dependent 

upon the stiffness characteristics (Hemant et al., 2006). Sinadinovski et al. (2005) 

observed that dynamic analysis can provide more accurate distribution of the lateral load. 

The methods of dynamic analysis used are Time History Method and Response 

Spectrum Method. Time-history analysis is a step-by-step analysis of the dynamical 

response of a structure to a specified loading that may vary with time. The analysis may 

be linear or non linear. Time history analysis is used to determine the dynamic response 

of a structure to arbitrary loading. A response spectrum may be visualized as a graphical 

representation of the dynamic response of a series of progressively longer cantilever 

pendulums with increasing natural periods subjected to a common lateral seismic motion 

of the base (Mohan et al., 2011) 

Amit (2012) highlights the importance of explicitly recognizing the presence of the open 

storey in the analysis of the building if there is any. Infll walls, however, are treated as 

non-structural components even though they provide significant improvement in lateral 

stiffness of the frame structures. (Jigme, 2009). Experience from the past earthquakes 
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show that strong infill, although non engineered, often provide most of the lateral 

resistance and prevent collapse of relatively flexible and weak reinforced concrete 

frames that  are necessarily not designed for the seismic forces (Sujatha et al., 2009). The  

error  involved  in  modeling  such  buildings  as  complete  bare  frames,  neglecting  the  

presence  of  infills  in  the storeys,  is  brought  out  through  the  study  of  an  example  

building  with  different  analytical  models. According to Edward (2002) the mode 

displacement superposition method provides and efficient means of evaluating the 

dynamic response of most structures because the response analysis is performed only for 

a series of SDOF systems. The response analysis for the individual modal equations 

requires very little computational effort and in most cases only a relatively small number 

of the lowest modes of vibration need to be included in the superposition. The basic 

mode superposition method, which is restricted to linearly elastic analysis, produces the 

complete time history, response of joint displacements and member forces. Acceleration 

Time-histories of earthquake ground motions are required for analyzing the structural 

performances and response of soil deposits under seismic loading. Selection of 

appropriate time-histories for specific geological and seismological conditions plays an 

important role for obtaining accurate results. (Azlan, Hendriyawan, Amination, Masyur, 

2006). Andreas & Georgios (2004) propose time-history analysis as a tool of analysis. 

 

2.5 SEISMIC DESIGN PHILOSOPHY 

Edgar & Mark (2000) and Pankaj & Manish (2006) mentioned that the design 

philosophy is to ensure that the structures possess at least a minimum strength to; resist 

minor earthquake without damage, resist moderate earthquake (Design Basis 

Earthquake) without significant structural damage though some non-structural damage 

and resist major earthquake (Maximum Considered Earthquake) without collapse. 

According to Indian Standard (2002), Design Basis Earthquake (DBE) is defined as the 

maximum earthquake that reasonably can be expected to experience at the site during 

lifetime of the structure. The earthquake corresponding to the ultimate safety 

requirement is often called as Maximum Considered Earthquake (MCE). Generally, the 

DBE is half of MCE. The basic criteria of earthquake resistant design should be based on 

lateral strength as well as deformability and ductility capacity of structure with limited 
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damage. As stated in the Eurocode, the interstorey drift limitation for buildings having 

non-structural elements of brittle materials attached to the structure would be Storey 

Height/200.  

 

2.6 USE OF COMPUTER AIDED DESIGN IN ANALYSIS 

Pankaj & Manish (2006) state the procedure dynamic analysis of buildings may be based 

on 3D modeling of building. According to Bedabrata & Nagender (2007), STAAD.Pro 

features a state-of-the-art user interface, visualization tools, powerful analysis and design 

engines with advanced finite element and dynamic analysis capabilities. From model 

generation, analysis and design to visualization and result verification, STAAD.Pro is 

essential choice of computer aided design software for this project. Software ETABS 

may also used in this project as demonstrated Wakchaure (2012) in his earthquake 

analysis of high rise buildings. It has been proved by more and more practices that the 

simulation technique (ST) can get a more satisfied result than experiments in some cases 

like large-span or high-raise structures (Zhao et al., 2012).  

2.7 SUMMARY 

Based on thorough review from various journals and other types of literature, it is 

understood that the study on effects of lateral loading especially is very important to 

ensure that structures are prepared to face unforeseen and undesirable circumstances 

such as natural disaster. Buildings are built along with their integrity and consistency and 

it is very important to ensure that they can serve their functions and purposes without 

any major problem. Most part of the literature discussed on the behaviour of the frame 

structures as being imposed by lateral load. This is crucial to this study in order to check 

the possible failure modes and their adverse effects so that analysis could be done with 

the most accurate judgements and assumptions. It is important for the modelling to be as 

related as possible to the real condition and trending. In conclusions, these literature 

reviews are very critical and influential for this analysis of existing high rise steel 

structure in Malaysia with subject to earthquake loadings.    
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 INTRODUCTION 

The idea behind the following methodology is to compare the actual storey drift obtained 

against the allowable one stated in the Eurocode. There are two analysis involved in this 

report; Equivalent Static Analysis and Dynamic Analysis. The dynamic analysis will 

involve the appropriate selection of ground motion, apply to the structure and analyze it. 

Figure 1 shows the flow chart of methodology of this analysis. The details of the 

methodology will be explained further later in this chapter. 

 

Figure 1 Methodology Flow Chart 

Construct Building 
Model 

Apply Dead, Live 
and Wind Load 

Run Model 
Analysis  

Apply Seismic 
Lateral Load 

Extract 
Building 

Drift 

Result Analysis 

Discussion and 
Conclusion 
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3.2 SELECTION OF DESIGN RESPONSE SPECTRA 

In this project, we are focusing on using Response Spectrum Method in Dynamic 

Analysis to evaluate the drifting of multistory building due to earthquake loading. 

Response spectra method involve the determination of Eigenvalues and Eigenvectors 

based on the mass and stiffness of the structures, modal participation factors, modal 

mass. From the previous calculation, we would be able to determine the lateral force at 

each floor and corresponding storey shear forces in each mode. The peak storey shear 

force in particular storey due to all modes considered is obtained by combining those due 

to each mode in accordance with modal combination such as SRSS (Square Root of Sum 

of Squares) or CQC (Complete Quadratic Combination) methods. However, the respond 

spectra method can only calculated manually up to 3 storeys only due to tedious and long 

process of calculation. The design response spectra (Fadzli, 2007) used for this study is 

shown in Figure 2. The details of the value of response spectrum acceleration against 

period are shown in Table 1. 

 

 

Figure 2 Design Response Spectrum (Taksiah, A. M., Shaharudin, S. Z., Fadzli, M.N., Mohd, R. A. & Izatil, F. M. S. 
(2007). Development of Design Response Spectra For Northern Peninsular Malaysia Based on UBC 97 Code. School 

of Civil Engineering, Universiti Sains Malaysia) 
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Period (s) Modified RSA (g) 

0.01 0.2331 

0.1271 0.5828 

0.6356 0.5828 

0.70 0.4500 

0.80 0.3938 

0.90 0.3500 

1.00 0.3150 

1.50 0.2100 

2.00 0.1575 

2.50 0.1260 

3.00 0.1050 

3.50 0.0900 

4.00 0.0788 

4.50 0.0700 

5.00 0.0630 

5.50 0.0573 

6.00 0.0525 

6.50 0.0485 

7.00 0.0450 

7.50 0.0420 

8.00 0.0394 

8.50 0.0371 

9.00 0.0350 

9.50 0.0332 

10.00 0.0315 
Table 1 Response Spectrum Value 

3.3 CONSTRUCT BUILDING MATERIAL IN STAADPRO 

3.3.1 General 

There are several multi-storey buildings involved which have height 

variation; 3, 5, 10, 20 & 30 storey buildings. They are modeled in StaadPro 

2004 and checked against British Code BS 5950 after all the loads and 

member properties are assigned. The details of loadings and property 

materials will be explained further in the later section. The building is 

constructed in a way that it has column to column distance of 6 meter, on 

both x-axis and z-axis. The slab thickness is taken as 150 mm and made up 

of concrete with inclusive of finishes. The storey height will be as 3 meter as 
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it is common practice in Malaysia and also stated in Malaysia Law that it is 

the minimum required storey height of buildings. The buildings will be 

treated as residential buildings due to huge number of multistory buildings 

are built for residential purpose for increasing population in city centre. The 

building is made up of steel frame material as stated in scope. The design of 

the beam and column are made typical as much as possible for optimization 

and ease of analysis. 

 

3.3.2 Loadings 

The loads involved in the building design are mainly consisting of Dead 

Load, Live Load and Wind Load. The load combination also will follow as 

stated in the British Code. The design loads for buildings and other 

structures shall be as specified in BS 6399 except as specified herein.  

 

Dead Load 

Dead load is the load due to self weight of the structure, the weight of all 

walls, permanent partitions, floors, roofs, finishes and all other permanent 

construction including services of a permanent nature. The brick wall load 

will be assigned to the entire beam in between storey. The unit weight of 

structure proper shall be as follows: 

Reinforced Concrete : 24.0 kN/m
3
 

Plain Concrete  : 23.0 kN/m
3
 

Steel   : 77.0 kN/m
3
 

Full Brick wall  : 5.2   kN/m
2
 

  

 The details of Dead Load applied on the structure will be as followed: 

a) RC Slab  = 24 kN/ m
3
 x 0.15m   = 3.6 kN/m

2
 

b) Finishes  = 24 kN/ m
3
 x 0.05m   = 1.2 kN/m

2
 

Total = 4.8 kN/m
2
 

c) Brick wall  =5.2 kN/m
2 

x 3.0 m   = 15.6  kN/m  
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Live Load 

Live Load is the load assumed to be produced by the intended occupancy or 

use, including the weight of movable partitions, distributed, concentrated, 

impact and inertia, loads, but excluding wind loads. The value of 2 kN/m
2
 

will be used as live load according to BS 6399 and applied from first floor 

until roof floor. Reduction in total distributed imposed floor loads shall be 

in accordance with table 2 & 3 of BS 6399 Part 1. This reduction is 

necessary because the resulted loads on the ground floor column will be 

very tremendous and not design optimized if it is not considered. 

 

Table 2 Reduction in Total Distributed Imposed Floor Loads with Number of Storey 

 

 

Table 3 Reduction in Total Distributed Imposed Floor Loads on A Supporting Beam Or Girder 
With Floor Area 

 

 

 

Wind Load 

The wind load design as per Eurocode 1: Actions on structures - Part 1-4: 

General actions - Wind actions. 
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Determination of basic wind velocity:  

vb   = cdir × cseason × vb,0   

Where:    

vb    basic wind velocity  

cdir   directional factor  

cseason   seasonal factor  

vb,0    fundamental value of the basic wind velocity 

 

The fundamental value of the basic wind velocity, vb,0, is the characteristic 

10 minutes mean wind velocity, irrespective of wind direction and time of 

year, at 10 m above ground level in open country terrain. Malaysian 

Standard, MS 1553: 2002 provide the value of 33.5 m/s for 3 second gust 

wind speed when translated into 10 minutes mean wind speed is: 

vb,0   = 24 m/s 

Since the area of study is located in Kuala Lumpur, the selection for terrain 

categories and terrain parameters will be the area in which at least 15 % of 

the surface is covered with buildings and their average height exceeds 15 

m: 

Terrain category IV   ⇒  z0 = 1 m  

      zmin = 10 m 

      zmax = 200 m 

      z = Building Height (in meter) 

So the basic wind velocity will be: 

vb   = cdir × cseason × vb,0  = 24 m/s 

For simplification the directional factor cdir and the seasonal factor cseason 

are in general equal to 1.0. 

 

The peak velocity pressure, qp(z) at height  z, which includes mean and 

short-term velocity fluctuations, should be determined. 
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Where: kI is the turbulence factor (Recommended value for kI is 1.0) 

co(z)  is the orography factor (1.0) 

ρ is the air density (1.25 kg/m
3
) 

kT is the terrain factor, depending on the roughness length z0 

calculated using  

 

Where:  z0,II = 0,05 (terrain category II) 

Thus, kT = 0.234 

Internal and external pressures are considered to act at the same time. The 

wind loadings per unit length w (in kN/m
2
) are calculated: 

  w = (cpe + cpi) × qp 

 

Where cpe is the pressure coefficient for the external pressure depending on 

the size of the loaded area A. (equal to cpe,10 because the  loaded area A, 

36m
2
 for the structure is larger than 10 m²). For all the height/width is more 

than 1 and less than 5, cpe,10 is equal to +0.8). 

 

The internal pressure coefficient, cpi depends on the size and distribution of 

the openings in the building envelope. Within this study, it is not possible to 

estimate the permeability and opening ratio of the building. So cpi should be 

taken as the more onerous of + 0.2 and – 0.3. In this case cpi is unfavorable 

when cpi is taken to + 0.2. 

 

Thus,  w = (cpe + cpi) × qp = (0.8+0.2) × qp = qp 

The details of wind load can be shown in Table 4. 
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No of Storey Building Height, z Peak Pressure, qp (kN/m2) Wind Load, w (kN/m2) 

3 9 0.775 0.775 

5 15 0.818 0.818 

10 30 0.876 0.876 

20 60 0.935 0.935 

30 90 0.969 0.969 

 Table 4 The Details of Wind Loads to Respective Buildings 

Below is the screenshot how the wind loads are applied to the 20 storey in 

StaadPro. 

 

Figure 3 Wind Load Applied to 20 Storey Steel Building in StaadPro 
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3.3.3 Load Combination 

 The load combinations involving predominant wind load as per Eurocode 1: 

 1.35 Dead Load + 1.05 Live Load + 1.5 Wind Load 

3.3.4 Material Property 

The determination of material property of the multistory structure was done 

with optimization. The members were made as typical as possible, for ease 

of design and it is a usual practice for building design in terms of 

construction simplicity. These materials were checked against code BS 

5950 with combination of Dead Load, Live Load and Wind Load in ultimate 

state as its benchmark for earthquake loading design. The details of material 

property can be shown in Table 4.  

No of 
Storey 

Building 
Height (m) 

Beam Size Column Size Remarks 

3 9 UB 457 x 191 x 82 UC 203 x 203 x 71 All Floors 

5 15 UB 457 x 191 x 89 
UC 254 x 254 x 107 1st - 3rd Floor 

UC 203 x 203 x 60 4th - 5th Floor 

10 30 UB 457 x 191 x 89 

UC 356 x 368 x 202 1st - 4th Floor 

UC 356 x 368 x 129 5th - 7th Floor 

UC 203 x 203 x 71 8th - 10th Floor 

20 60 UB 533 x 210 x 109 

UC 356 x 406 x 467 1st - 4th Floor 

UC 356 x 406 x 340 5th - 8th Floor 

UC 305 x 305 x 283 9th - 12th Floor 

UC 356 x 368 x 177 13th - 16th Floor 

UC 305 x 305 x 97 17th - 20th Floor 

30 90 UB 610 x 229 x 113 

UC 356 x 406 x 634 1st - 5th Floor 

UC 356 x 406 x 467 6th - 10th Floor 

UC 356 x 406 x 393 11th - 15th Floor 

UC 356 x 406 x 287 16th - 20th Floor 

UC 356 x 406 x 235 21st - 25th Floor 

UC 305 x 305 x 198 26th - 30th Floor 
Table 5 Building Material Property 
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Figure 4 StaadPro Modelling of 20 Storey Building 

 

3.4 SEISMIC ANALYSIS IN STAADPRO 

3.4.1 Introduction 

Unlike wind loading, earthquake loading also analyzed based on Eurocode 

8: Design of structures for earthquake resistance. Where wind loading that is 

basically acting toward the column of the structure, earthquake loading is 

acting toward the mass of the floors in StaadPro. Seismic analysis will be 

including static analysis and dynamic analysis. Static analysis will be made 

by manual calculation while dynamic analysis will be calculated by using 

StaadPro.  

3.4.2 Static Analysis 

For calculation by using static analysis, base shear needed to be determined 

first based on response spectrum, which the function of structure natural 

period, and the total mass of the building. The response spectrum is based on 

the earlier section of methodology which is representing locally. The 

equation of base shear force and natural period are shown in the following 

equation.  
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Base Shear Force, 

 where  

Sd (T1)  is the ordinate of the design spectrum at period T 1;  

T1  is the fundamental period of vibration  of the building for lateral 

motion in the direction considered (s). T1 may be approximated by 

the following expression: 

 

where 

Ct  is 0,085 for moment resistant space steel frames, 0,075 for 

moment resistant space concrete frames and for eccentrically 

braced steel frames and 0,050 for all other structures;  

H  is the height of the building, in m, from the foundation or from 

the top of a rigid basement. 

m  is the total mass of the building, above the foundation or above 

the top of a rigid basement (kN) 

λ  is the correction factor, the value of which is equal to: λ = 0,85  

The calculation of storey mass and base shear force are shown in the 

following tables: 

Storey 
Brickwall 

(kN) 
Beam 
(kN) 

Column 
(kN) 

Slab Load 
(kN) 

Total Mass 
(kN) 

3 0.0 193.1 52.2 3628.8 3874.1 

2 3744.0 193.1 52.2 3628.8 7618.1 

1 3744.0 193.1 26.1 3628.8 7592.0 

    
∑ 19084.2 

Table 6 3 Storey Building Mass Calculation 
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Storey 
Brickwall 

(kN) 
Beam 
(kN) 

Column 
(kN) 

Slab Load 
(kN) 

Total Mass 
(kN) 

5 0.0 209.5 22.1 3628.8 3860.4 

4 3744.0 209.5 44.1 3628.8 7626.5 

3 3744.0 209.5 61.4 3628.8 7643.8 

2 3744.0 209.5 78.7 3628.8 7661.1 

1 3744.0 209.5 78.7 3628.8 7661.1 

    
∑ 34452.8 

Table 7 5 Storey Building Mass Calculation 

Storey 
Brickwall 

(kN) 
Beam 
(kN) 

Column 
(kN) 

Slab Load 
(kN) 

Total Mass 
(kN) 

10 0.0 209.5 26.1 3628.8 3864.5 

9 3744.0 209.5 52.2 3628.8 7634.6 

8 3744.0 209.5 52.2 3628.8 7634.6 

7 3744.0 209.5 73.6 3628.8 7655.9 

6 3744.0 209.5 94.9 3628.8 7677.3 

5 3744.0 209.5 94.9 3628.8 7677.3 

4 3744.0 209.5 121.8 3628.8 7704.1 

3 3744.0 209.5 148.6 3628.8 7731.0 

2 3744.0 209.5 148.6 3628.8 7731.0 

1 3744.0 209.5 148.6 3628.8 7731.0 

    
∑ 73041.0 

Table 8 10 Storey Building Mass Calculation 
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Storey 
Brickwall 

(kN) 
Beam 
(kN) 

Column 
(kN) 

Slab Load 
(kN) 

Total Mass 
(kN) 

20 0.0 256.6 35.7 3628.8 3921.1 

19 3744.0 256.6 71.4 3628.8 7700.8 

18 3744.0 256.6 71.4 3628.8 7700.8 

17 3744.0 256.6 71.4 3628.8 7700.8 

16 3744.0 256.6 100.8 3628.8 7730.2 

15 3744.0 256.6 130.2 3628.8 7759.7 

14 3744.0 256.6 130.2 3628.8 7759.7 

13 3744.0 256.6 130.2 3628.8 7759.7 

12 3744.0 256.6 169.2 3628.8 7798.7 

11 3744.0 256.6 208.2 3628.8 7837.6 

10 3744.0 256.6 208.2 3628.8 7837.6 

9 3744.0 256.6 208.2 3628.8 7837.6 

8 3744.0 256.6 229.2 3628.8 7858.6 

7 3744.0 256.6 250.2 3628.8 7879.6 

6 3744.0 256.6 250.2 3628.8 7879.6 

5 3744.0 256.6 250.2 3628.8 7879.6 

4 3744.0 256.6 296.9 3628.8 7926.3 

3 3744.0 256.6 343.6 3628.8 7973.0 

2 3744.0 256.6 343.6 3628.8 7973.0 

1 3744.0 256.6 343.6 3628.8 7973.0 

    
∑ 152687.0 

Table 9 20 Storey Building Mass Calculation 

  



22 
 

 

Storey 
Brickwall 

(kN) 
Beam 
(kN) 

Column 
(kN) 

Slab Load 
(kN) 

Total Mass 
(kN) 

30 0.0 266.0 72.8 3628.8 3967.7 

29 3744.0 266.0 145.7 3628.8 7784.5 

28 3744.0 266.0 145.7 3628.8 7784.5 

27 3744.0 266.0 145.7 3628.8 7784.5 

26 3744.0 266.0 145.7 3628.8 7784.5 

25 3744.0 266.0 159.3 3628.8 7798.1 

24 3744.0 266.0 172.9 3628.8 7811.7 

23 3744.0 266.0 172.9 3628.8 7811.7 

22 3744.0 266.0 172.9 3628.8 7811.7 

21 3744.0 266.0 172.9 3628.8 7811.7 

20 3744.0 266.0 192.0 3628.8 7830.9 

19 3744.0 266.0 211.2 3628.8 7850.0 

18 3744.0 266.0 211.2 3628.8 7850.0 

17 3744.0 266.0 211.2 3628.8 7850.0 

16 3744.0 266.0 211.2 3628.8 7850.0 

15 3744.0 266.0 250.2 3628.8 7889.0 

14 3744.0 266.0 289.1 3628.8 7928.0 

13 3744.0 266.0 289.1 3628.8 7928.0 

12 3744.0 266.0 289.1 3628.8 7928.0 

11 3744.0 266.0 289.1 3628.8 7928.0 

10 3744.0 266.0 316.4 3628.8 7955.2 

9 3744.0 266.0 343.6 3628.8 7982.4 

8 3744.0 266.0 343.6 3628.8 7982.4 

7 3744.0 266.0 343.6 3628.8 7982.4 

6 3744.0 266.0 343.6 3628.8 7982.4 

5 3744.0 266.0 405.0 3628.8 8043.9 

4 3744.0 266.0 466.5 3628.8 8105.3 

3 3744.0 266.0 466.5 3628.8 8105.3 

2 3744.0 266.0 466.5 3628.8 8105.3 

1 3744.0 266.0 466.5 3628.8 8105.3 

    
∑ 233332.9 

Table 10 30 Storey Building Mass Calculation 
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No of 
Storey 

Natural 
Period (s) 

Response 
Spectrum (Se/g) 

Total Weight 
(kN) 

Base Shear 
Force (kN) 

3 0.44 0.5828 19084.18 709.04 

5 0.65 0.5531 34452.81 1214.82 

10 1.09 0.2961 73041.04 1378.75 

20 1.83 0.1754 152687.05 1706.82 

30 2.48 0.1273 233332.94 1892.99 
Table 11 Building Base Shear Force Calculation 

After getting the mass of each storey, the force applied to each storey 

can now be calculated. The force, Fi (in kN) at each storey are 

expressed as the following: 

 

where 

zi, zj  are the heights of the masses m i mj above the level of 

application of the seismic action (foundation or top of a rigid 

basement). 

The details of the calculation of storey shear force are shown in the 

following tables: 

Storey 
Height, 
zi (m) 

Mass, mi 
(kN) 

zi∙mi zi∙mi/∑zj∙mj 
Lateral 

Force (kN) 

Uniform 
Lateral Force 

(kN/m) 

3 9 3874.1 34866.9 0.3374 239 9.97 

2 6 7618.1 45708.6 0.4423 314 13.07 

1 3 7592.0 22775.9 0.2204 156 6.51 

  
∑ 103351.4 1.0000 709 

 Table 12 Storey Lateral Force Calculation For 3 Storey Building 

Storey 
Height, 
zi (m) 

Mass, mi 
(kN) 

zi∙mi zi∙mi/∑zj∙mj 
Lateral 

Force (kN) 

Uniform 
Lateral Force 

(kN/m) 

5 15 3860.4 57906.2 0.2016 245 10.21 

4 12 7626.5 91517.8 0.3187 387 16.13 

3 9 7643.8 68794.0 0.2396 291 12.13 

2 6 7661.1 45966.4 0.1601 194 8.10 

1 3 7661.1 22983.2 0.0800 97 4.05 

  
∑ 287167.6 1.0 1215 
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Table 13 Storey Lateral Force Calculation For 5 Storey Building 

Storey 
Height, 
zi (m) 

Mass, 
mi (kN) 

zi∙mi zi∙mi/∑zj∙mj 
Lateral 

Force (kN) 

Uniform 
Lateral Force 

(kN/m) 

10 30 3864.5 115933.8 0.1007 139 5.79 

9 27 7634.6 206133.7 0.1791 247 10.29 

8 24 7634.6 183229.9 0.1592 220 9.15 

7 21 7655.9 160774.2 0.1397 193 8.03 

6 18 7677.3 138190.6 0.1201 166 6.90 

5 15 7677.3 115158.8 0.1000 138 5.75 

4 12 7704.1 92449.3 0.0803 111 4.61 

3 9 7731.0 69578.7 0.0604 83 3.47 

2 6 7731.0 46385.8 0.0403 56 2.32 

1 3 7731.0 23192.9 0.0201 28 1.16 

  
∑ 1151027.6 1.0000 1379 

 Table 14 Storey Lateral Force Calculation For 10 Storey Building 

Storey 
Height, 
zi (m) 

Mass, 
mi (kN) 

zi∙mi zi∙mi/∑zj∙mj 
Lateral 

Force (kN) 

Uniform 
Lateral Force 

(kN/m) 

20 60 3921.1 235266.8 0.0504 86 3.58 

19 57 7700.8 438945.4 0.0940 160 6.68 

18 54 7700.8 415843.1 0.0890 152 6.33 

17 51 7700.8 392740.7 0.0841 144 5.98 

16 48 7730.2 371050.9 0.0794 136 5.65 

15 45 7759.7 349184.6 0.0748 128 5.32 

14 42 7759.7 325905.6 0.0698 119 4.96 

13 39 7759.7 302626.6 0.0648 111 4.61 

12 36 7798.7 280751.5 0.0601 103 4.28 

11 33 7837.6 258642.3 0.0554 95 3.94 

10 30 7837.6 235129.4 0.0503 86 3.58 

9 27 7837.6 211616.5 0.0453 77 3.22 

8 24 7858.6 188606.8 0.0404 69 2.87 

7 21 7879.6 165471.3 0.0354 60 2.52 

6 18 7879.6 141832.5 0.0304 52 2.16 

5 15 7879.6 118193.8 0.0253 43 1.80 

4 12 7926.3 95115.7 0.0204 35 1.45 

3 9 7973.0 71757.2 0.0154 26 1.09 

2 6 7973.0 47838.1 0.0102 17 0.73 

1 3 7973.0 23919.1 0.0051 9 0.36 

  
∑ 4670437.9 1.0000 1707 

 Table 15 Storey Lateral Force Calculation For 20 Storey Building  
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Storey 
Height, 
zi (m) 

Mass, 
mi (kN) 

zi∙mi zi∙mi/∑zj∙mj 
Lateral 

Force (kN) 
Uniform Lateral 

Force (kN/m) 

30 90 3967.7 357091.8 0.0337 64 2.66 

29 87 7784.5 677253.7 0.0639 121 5.04 

28 84 7784.5 653900.2 0.0617 117 4.86 

27 81 7784.5 630546.6 0.0595 113 4.69 

26 78 7784.5 607193.0 0.0573 108 4.52 

25 75 7798.1 584860.3 0.0552 104 4.35 

24 72 7811.7 562445.9 0.0530 100 4.18 

23 69 7811.7 539010.6 0.0508 96 4.01 

22 66 7811.7 515575.4 0.0486 92 3.84 

21 63 7811.7 492140.2 0.0464 88 3.66 

20 60 7830.9 469852.7 0.0443 84 3.50 

19 57 7850.0 447450.4 0.0422 80 3.33 

18 54 7850.0 423900.4 0.0400 76 3.15 

17 51 7850.0 400350.4 0.0378 71 2.98 

16 48 7850.0 376800.4 0.0355 67 2.80 

15 45 7889.0 355005.1 0.0335 63 2.64 

14 42 7928.0 332975.9 0.0314 59 2.48 

13 39 7928.0 309191.9 0.0292 55 2.30 

12 36 7928.0 285407.9 0.0269 51 2.12 

11 33 7928.0 261623.9 0.0247 47 1.95 

10 30 7955.2 238656.6 0.0225 43 1.78 

9 27 7982.4 215525.9 0.0203 38 1.60 

8 24 7982.4 191578.6 0.0181 34 1.43 

7 21 7982.4 167631.3 0.0158 30 1.25 

6 18 7982.4 143684.0 0.0136 26 1.07 

5 15 8043.9 120658.2 0.0114 22 0.90 

4 12 8105.3 97263.8 0.0092 17 0.72 

3 9 8105.3 72947.8 0.0069 13 0.54 

2 6 8105.3 48631.9 0.0046 9 0.36 

1 3 8105.3 24315.9 0.0023 4 0.18 

  
∑ 10603470.5 1.0000 1893 

 Table 16 Storey Lateral Force Calculation For 30 Storey Building 

Below are the screenshot how the seismic loads are applied to the 20 

storey steel buildings in StaadPro. 
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Figure 5 Seismic Loading Applied to 20 Storey Steel Building in StaadPro 

3.4.3 Dynamic Analysis 

For obtaining seismic load in terms of dynamic analysis, it is generated by 

using computer software. This is due to complex and tedious calculation 

when determining the values of eigenvalues, eigenvectors, modal 

participation factors and modal mass. There are different storey shear forces 

depending on its corresponding participation mode. The peak storey shear 

force in storey due to all modes considered is obtained by combining those 

due to each mode in accordance with modal combination; CQC (Complete 

Quadratic Combination) methods. 
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3.4.4 Load Combinations 

When earthquake forces are considered on a structure, these shall be 

combined. In the elastic design of steel structures, the following load 

combinations shall be accounted for: 

1) 1.0 (Dead Load) + 0.45 (Live Load) + 1.0(Earthquake Load) 

 

3.5 MAPPING OUT RESEARCH TIMELINE 

The framework and timeline for each activity involved in this research are presented in 

the following Gantt chart and key milestone; 

 

 

Table 17 Gantt Chart FYP 1 

 

Table 18 Gantt Chart FYP 2 
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Table 19 Key Milestone FYP 1 

 

Table 20 Key Milestone FYP 2 

 

3.6 TOOLS 

 Microsoft Excel 2010 

 Staad Pro 2007  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 INTRODUCTION 

At this part, all results will be presented and interpreted in such ways that it could be 

easily understood. The results are divided into two (w) sub-sections; the first one will be 

the analysis of wind loading, followed by earthquake loading of the same approach.  

 

4.2 WIND LOADING ANALYSIS 

Wind loads are treated as the benchmark in determining the building lateral strength. The 

maximum allowable lateral deflection according to Eurocode is H/200. The relationship 

between structural height and total deflection due to wind load are presented graphically 

in the following graph. 

 

Figure 6 Building Drift due to Wind Load 

0 

50 

100 

150 

200 

250 

300 

350 

400 

0 20 40 60 80 100 

To
ta

l D
e

fl
ec

ti
o

n
 (

m
m

) 

Building Height (m) 

Storey Drift due to Wind Load 

Total Deflection (mm) 

Allowable Deflection 



30 
 

The building deflection is almost directly proportional to the height of the building. This 

is due to uniform distribution among column of the buildings with respect to design 

optimization. The total deflection is in the allowable state with pass all the British Steel 

Code, which is required initially by the preliminary design. 

 

4.3 SEISMIC LOADING ANALYSIS 

Seismic Loading is analyzed and presented. The relationship between structural height 

and total deflection due to seismic load are presented graphically in the following table 

and graph. 

No of 
Storey 

Wind Load (mm) 
Static Load 

(mm) 
Dynamic Load 

(mm) 
Allowable 

Deflection (mm) 

3 6.89 21 20 45 

5 9.14 39.6 38 75 

10 25.22 52.4 48 150 

20 57.59 68 60 300 

30 85 75 65 450 
Table 21 Building Drift due to Wind and Seismic Load 

 

Figure 7 Building Drift due to Wind and Seismic Load 

The deflection of the building due to seismic load are increasing with height due to more 

loads are applied. All the deflection did not exceed more than allowable deflection. 

However for 3 storey steel building, the deflection is nearing to the allowable deflection. 
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This is due to the plateau in the response spectrum where the building natural period is 

according to the highest spectral acceleration.  

It’s clear that the static analysis gives higher values for maximum displacement of the 

storey rather than dynamic analysis, especially in higher number of storey. As the 

number of storey goes up, deflection due to seismic loading is lower than wind loading. 

All the seismic loading is below the deflection limit of H/200. So it is safe to say that the 

building will not fail under seismic loading.  
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION 

 

Based on analysis, conclusions are made with respect to objectives of study as follow; 

1) Deflection due to wind loading is dependent on the ratio of exposed surface area 

to the number of columns 

2) Deflection due to seismic loading is dependent on the total mass of each storey 

3) However, these analyses are depending on building initial design. If the reserved 

strength is very high, the existing building might survive from seismic loading. 

4) Static analysis is not sufficient for high rise building and it is necessary to 

provide dynamic analysis. 

5) The difference of displacement values between static and dynamic analysis lower 

stories are insignificant but it increase in higher number of storey. 

6) The results of equivalent static analysis are approximately uneconomical because 

values of displacement are higher than dynamic analysis. 

7) As current condition in Malaysia, study shows that all structures are safe for 

seismic load in terms of deflection limit. These explain the zero documented 

structural failure so far due to these loads in Malaysia except some vibration on 

peninsular Malaysia due to far earthquake. 

 

5.2 RECOMMENDATION  

 

Analysis using static method is considered as very conventional and conservative in this 

decade. It is just a very basic theory whereby the accuracy of the results is often 

questioned. Dynamic analysis method can be used as it includes the damping of the 

structures as well as the time factor of the loadings being imposed. It is always good to 
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have comparison between the results of both static and dynamic analysis to see which 

one is more economical. However, it is agreed that static analysis provide higher values 

of displacement compare to dynamic analysis. However, dynamic analysis is still 

considered as more practical method in analysing behaviour of structure towards lateral 

loads. 

 

To extend the scope of this research, one may try to test it with other grades of steel and 

compare it with economical approach. In this way, we might get a better idea the 

difference of building performance based on the preliminary design with different steel 

yield strength.  
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