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ABSTRACT 

Tension leg platform (TLP) is a type of compliant offshore structure where its 

excess buoyancy over the weight produces pretension in the tethers connecting the hull to 

the seabed. TLP technology preserves many of the operational advantages of a fixed 

platform at the same time reducing the cost of production in deep water. Its production and 

maintenance operations are similar to those of fixed platforms. TLP combines the initial 

cost-saving benefits associated with floating production system with the operational 

benefits attributed to the fixed platforms. 

The dynamic responses of TLP such as the motions and the tether tensions when it 

is subjected to wave forces are needed for the design and maintenance of the structure. The 

amplitudes of motion responses must be within permissible limits to prevent flexural 

yielding of the drilling risers which connect the platform to the sea bed completion 

template. Limiting these responses leads to better stability and safe drilling operations. 

In this study, a MATLAB computer program was developed for determining the 

dynamic responses of rectangular, triangular and inclined-tether TLPs subjected to random 

waves. The platform was considered as a rigid body and all the six motions were 

determined. The hydrodynamic drag and inertia coefficients at each point on the platform 

were revised after each time step. Second order wave theory and Modified Morison 

equation were used for wave force calculations. Newmark Beta Method of time domain 

analysis was used for the dynamic analysis. The response amplitude operators (RAO) for 

typical square TLPs were compared with available theoretical results. The inclined-tether 

stiffuess matrix was developed, using which the responses of inclined tether square TLP 

under regular and random waves were determined. Also, parametric studies were made 

varying parameters such as water depth, pretension, wave angle and position of CG. The 

inclined-tether square TLP results were compared with the results for the square and 

triangular TLPs. The results proved the capability of the developed programme in 

predicting the responses. The results also indicated that the square TLPs performed much 

better compared to triangular TLPs under random waves. The parametric studies 
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highlighted the remarkable change in platform responses caused by changing the above 

mentioned parameters. It was also shown that the inclined-tether square TLP had better 

performance compared with vertical-tethered rectangular and triangular TLPs. 
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ABSTRAK 

Pelantar Kaki Tegang atau lebih dikenali sebagai Tension Leg Platform (TLP) 

adalah sejenis struktur pelantar luar pantai yang berhemah dimana apungan lebihan 

berbanding berat menghasilkan daya pra-tegasan pada kabel sokongnya (tether) yang 

menghubungkan pelantar ke permukaan tanah dasar !aut. Teknologi TLP menyimpan 

kebanyakkan kelebihan operasi pelantar tetap pada masa yang sama mengurangkan kos 

pengeluaran dilaut dalam. Operasi pengeluaran dan penyelenggaraannya sama dengan 

pelantar tetap. TLP menggabungkan keuntungan penjimatan kos permulaan yang berkaitan 

dengan sistem pengeluaran apungan dengan keuntungan operasi yang diberikan oleh 

pelantar tetap. 

Tindakbalas Dinamik TLP seperti pergerakan dan tegasan pada tether hila 

dikenakan daya ombak adalah diperlukan untuk rekabentuk dan penyelenggaraan struktur 

ini. Amplitud tindakbalas pergerakan mestilah didalam had yang dibenarkan untuk 

mengelakkan alahan fleksur (flexural yielding) pada paip gerudi yang menegak yang 

menghubungkan pelantar dengan struktur tetap didasar !aut. Menghadkan tindakbalas ini 

meningkatkan kestabilan dan operasi gerudian yang selamat. 

Dalam kajian ini, perisian komputer MATLAB telah diusahakan untuk menentukkan 

tindakbalas dinamik bagi TLP yang berbentuk segiempat, segitiga dan yang mempunyai 

tether yang condong; yang dikenakan ombak tidak menentu (random waves). Andaian 

telah dibuat bahawa pelantar sebagai sebuah jasad tegar dan kesemua enam jenis 

pergerakan adalah telah ditentukan. Geseran dinamik hidro dan pemalar momen sifat tekun 

jasad disetiap titik pada pelantar telah dikaji semula selepas setiap langkah masa. Teori 

Ombak Peringkat Kedua dan Persamaan Morison yang diubahsuai digunakan untuk 

mengira daya ombak. Kaedah Beta Newmark dari analisa domain masa telah digunakan 

untuk analisa dinamik. Operator Amplitud Tindakbalas (RAO) untuk TLP segiempat sama 

dan segitiga telah dibandingkan dengan keputusan teori yang sedia ada. Matrik kekukuhan 

tether condong dapat dihasilkan. Dengan menggunakan hasil keputusan, tindakbalas tether 

condong TLP segiempat sama dengan menggunakan ombak biasa dan ombak tidak 

menentu diperolehi. Juga, kajian parametrik telah dibuat dengan mengubah parameter 
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seperti kedalaman air, pra-tegasan, sudut ombak, dan kedudukan pusat graviti. Keputusan 

TLP segiempat sama bagi tether condong telah dibandingkan dengan keputusan bagi TLP 

segiempat sama dan segitiga. Keputusannya menunjukkan keupayaan program yang 

dihasilkan dalam menjangkakan tindakbalasnya. Keputusan juga telah menunjukkan 

bahawa TLP segiempat sama berfungsi dengan lebih baik berbanding TLP segitiga dibawah 

ombak yang tidak menentu. Kajian parametrik menjelaskan perubahan yang ketara di 

dalam tindakbalas pelantar apabila parameter-parameter seperti di atas diubah. Jelas juga 

bahawa TLP segiempat sama dengan tether condong berfungsi dengan lebih baik 

berbanding TLP segiempat tepat dan segitiga dengan tether menegak. 
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Chapter one: Introduction 1 

CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The last three decades showed tremendous increase in the demand of 

hydrocarbon products, which necessitated increased efforts in exploring and producing 

oil, especially in deep water. As there is about 72 % water and 28 % of the dry land on 

the earth, therefore the future of the hydrocarbon is going to be in offshore, especially in 

deep water. Deep water reservoirs present new challenges for the structures due to its 

harsh environment, therefore innovative structures and modifications have to be proposed 

to optimize the stability of the structures, safety of the drilling operation and cost 

effectiveness ofthe project. 

1.2 Offshore platform development 

The offshore exploration of oil dates back to the nineteenth century. The first 

offshore oil wells were drilled from piers extending into the water at Summerland, 

California during the 1890's. However, the first offshore oil platform was built in 

Louisiana in 1947 that stood 7 m water depth in the Gulf of Mexico. Since the 

installation of the first platform in the Gulf of Mexico about 61 years ago, the offshore 

industry has seen many innovative structures placed in deeper waters and more hostile 

environments [1]. The depth of water extended to 2133 m in 2005 with BP Atlantis 

project. Lately in 2007, Independence Hub production platform was installed in the 

Mississippi canyon area in the eastern Gulf of Mexico in more than 2439 m deep water. 

There will undoubtedly be a progression into further deeper waters in the future. 
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An offshore structure (OS) may be defined as one which has no fixed access to 

dry land and which is required to stay in position in all weather conditions. While major 

offshore structures support the exploration and production of oil and gas from beneath the 

sea floor, other major structures such as structures designed to derive power from the sea 

are also developed. Offshore structures are typically built of steel, concrete or 

combination of them, commonly referred to as hybrid construction. There are two 

general classes of (OS), fixed and compliant. A structure is considered fixed if it 

withstands the environmental force on it without substantial displacement or deformation. 

Compliant structures have two types: one is rigid and floating but connected to the sea 

floor by some mechanical means, while the other allows large deformation of its 

members when subjected to waves, wind and current loads [1]. 

The structures with compliant nature have more advantages in deep water than 

the fixed platform. Tension leg platform became one of the most important choices for 

deep-water production in the Gulf of Mexico in the last ten years [2]. 

1.3 Offshore Structure Configurations 

Offshore structure may be defined as being either bottom-supported or floating. 

Bottom supported structures are either fixed such as jackets and gravity base structures, 

or compliant such as the guyed tower and the compliant tower. Floating structures are 

compliant by nature. They can be viewed either as "neutrally buoyant", such as the semi­

submersible-based, ship-shaped and Mono-column spar, or "positively buoyant", such as 

the tension leg platform (TLP). 

1.4 Tension Leg Platform (TLP) 

The tension leg platform is one of the most prom1smg compliant structural 

concepts among different structural systems being considered for deep water 

applications. Unlike conventional platforms which resist environmental loads by their 
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stiffness, the TLP is compliant in nature and has lower natural frequency in the horizontal 

plane that precludes resonance at the dominant wave frequency [3). However, this 

particular character presents new problems because the compliant structures become 

more sensitive to the low frequency component of hydrodynamic loads. The cost curves 

for fixed offshore structures will raise more rapidly than the TLP in deep water reservoir, 

because for a TLP, only the cost of mooring system and its installation increases as the 

water depth increase. Figure 1.1 depicts the relation between the cost and the water depth 

for various offshore structures. It clearly shows that the cost of TLP is less in deep water 

[4). 

Water Depth 

Figure 1.1: Cost effectiveness comparison for deep water platforms 

1.4.1 TLP origin and growth 

The first TLP, Conoco's Hutton platform in the UK North Sea, was installed in 

1984 in approximately 150 m of water. Since that date about two decades ago, the TLP 

has seen many developed structures placed in deeper water and more hostile 

environments up to third quarter of2004 when ABB has designed a TLP for nearly 1500 

m of water for Conoco's Magnolia project in the Gulf of Mexico (GOM). This is 

considered as deepest TLP so far. Table 1.1 shows some of the existing TLPs in deep 

water. The accelerating rate of industry acceptance of the TLP is very much linked to the 

concept's rapid growth in technology. For example, specific design enhancements have 

allowed the concept to carry heavier payloads into deeper water [5]. 
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Table 1.1: Existing Tension leg platforms 

S.N. TLP Name Location Water Year Notes 

depth 

1 Hutton North sea, UK 148m 1984 First TLP removed in 2001 

2 Jollie! Green Canyon, GOM 335m 1989 First deep water well head TLP 

3 Snorre Norwegian North sea 310m 1992 

4 Auger Garden Banks, GOM 872 m 1994 

5 Heidrun Norwegian North sea 350m 1995 First concrete TLP 

6 Maras Mississippi Canyon 894 m 1996 

7 Ram/Powell Viosca Knoll, GOM 980 m 1997 

8 Morpeth Gulf of Mexico 532 m 1998 

9 Uras Mississippi Canyon 1204 m 1999 Largest TLP in GOM 

10 Marlin Gulf of Mexico 1012 m 1999 

11 Allegheny Gulf of Mexico 1030 m 1999 

12 Brutus Green Canyon, GOM 914 m 2001 

13 Prince Gulf of Mexico 469m 2001 

14 Typhoon Gulf of Mexico 659m 2001 

15 Matterhorn Gulf of Mexico 891 m 2003 

16 Marco Polo Gulf of Mexico 1350 m 2004 

17 Magnolia ABB, Gulf of Mexico 1500 m 2004 DeepestTLP 

1.4.2 Basic features of TLPs 

TLP is a type of compliant platform since it carries a lot of similarities in concepts except 

for tether system and foundation techniques. The platform is supported by extra 

buoyancy which provide a positive tension in the tether system and produce a tension in 

the pile foundation system. This positive tension restricts the motion of the platform in 

the vertical direction (heave, roll and pitch) and minimizes the horizontal motion (surge, 

sway and yaw) by its horizontal component. Amplitudes of motion are kept sufficiently 

small to prevent flexural yielding of the drilling risers which connect the platform to the 

sea bed completion template [6]. 



Chapter one: Introduction 5 

1.4.3 Hull Requirements 

The principal function of the hull is to provide the buoyancy to support the weight, most 

of which is in the deck load. A considerable amount of the buoyancy is devoted for 

developing tendon tension. It should be noted that the hull is also required to support the 

deck above the highest wave. In addition to providing buoyancy, the principal function 

of the pontoons is to provide a vertical hydrodynamic force (heave) to balance the 

hydrodynamic force on the column bottoms. For multi- column TLPs, the pontoons also 

have a structural function as part of a space frame consisting of the deck, columns and the 

pontoons. The height of the columns should be sufficient to support the deck with 

adequate clearance above the highest waves taking into account maximum set-down [1]. 

1.4.4 Deck support functional requirements 

The deck supports the functional requirements. It has to provide space for 

accommodation, working area, processing equipments, derricks, cranes, pumps, helideck, 

control room, etc. Like all other compliant platforms, TLP's deck provide the above 

requirements but with different layout and hook-up procedure. It should be kept in mind 

that the TLP is sensitive to payload increase, directly affecting its displacement 

requirements [6]. Other factors that can influence the displacement and leg spacing of 

TLPs are the platform response characteristics, tow-out stability and barge size carrying 

the deck for mating. 

1.4.5 Mooring system 

Mooring system design is to make the system compliant enough to avoid excessive forces 

on the platform, and making it stiff enough to avoid difficulties, such as damage to 

drilling or production risers, caused by excessive offsets. Unlike other compliant 

platforms TLPs mooring system is subjected to a considerable pretension that 

necessitates special design considerations. High-strength materials or composites could 

also be used as tendons in addition to solid or hollow pipes or wire ropes, especially in 
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deep waters. Risers and their relevant structural components as vertical tension members 

can contribute to the station-keeping capability of the mooring system. Both tendon and 

riser analysis make the proper design of the platform complex [1,6]. 

1.4.6 Construction of platform 

Construction of the platform is done in onshore fabrication yard. The weight and volume 

of the platform play a major role in the construction procedure and hence optimizing 

these parameters very much required for saving cost of the platform hull, foundation and 

mooring system. Heavy weight and large volume could be a hindrance for the platform 

during the tow-out and delivery operation. As the TLP move into deeper water, these 

two factors can impose restrictions on the mooring and foundation design. It is 

significant to note that the platform design is not affected by the field location and water 

depth [6]. 

1.4. 7 TLP designs for different water depths 

TLP design for different water depths is almost same except for tethers whose length 

increases in deep waters. Increasing water depth decreases tether stiffness which leads to 

the vertical response frequencies entering the wave frequency range. In this case high 

modulus material should be used to balance that condition. These and other installation 

issues make TLP mooring system the most important criteria in the design of TLP in 

deep waters. 

1.4.8 Installation of TLPs 

A method and system for attaching a TLP to its tendons use pull-down lines to rapidly 

submerge the hull to installation draft. This compensates for inherent hull instability 

during submergence, provides motion arrest and aids in station keeping. The system 

includes tensioning devices mounted on the TLP, usually one for each tendon. Each 

tensioning device is equipped with a pull-down line which is connected to the 



Chapter one: Introduction 7 

corresponding tendon. The TLP hull is submerged to lock-off draft by applying tensions 

to the pull-down lines connected to the top of the tensions, or by a combination of 

applying tensions to the pull-down lines and ballasting the hull. As the tensioners take in 

pull-down line, the hull submerges, i.e. the draft increases. After lock-off, high levels of 

tension in the pull-down lines can be rapidly transferred to the connection sleeves by 

slacking the pull-down lines, thus allowing the TLP to be made storm-safe much faster 

than by prior art methods which require de-ballasting to tension the tendons. Along with 

TLP installation, this method may be used to attach the mooring tendons to the seabed by 

suspending and lowering the tendons into their foundation receptacle in the seabed [ 1 ,6]. 

1.5 Problem statement 

Although the earlier investigations have covered many aspects of the TLP 

behavior, TLP needs more studies to reach the best possible configuration. 

1- The calculation of the maximum surge and sway responses are very important as 

they should be limited to prevent flexural yielding of the drilling risers which 

connect the platform to the sea bed completion template. Also large values of 

surge and sway would change water line location on the buoyancy hull which 

permits waves to strike the deck structure. 

2- The weight and volume of the platform play a major role in the construction 

procedure and hence optimization of these parameters is very much required for 

saving cost of the platform hull, foundation and mooring system. 

3- In the earlier studies, the hydrodynamic coefficients in the platform were 

considered either as constant values for the platform or separate constants for 

columns and pontoons. Variation of the hydrodynamic coefficient at every point 

of the TLP has not been considered. 

4- Due to limited literature about the compansons between frequency and time 

domain analyses, it is important to conduct this comparison to know the degree of 

accuracy of the frequency domain compared to the time domain analysis. 
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5- The responses of triangular TLP have been compared with the responses of 

rectangular TLP under regular waves. The same comparisons have not been done 

for random waves. 

1.6 Objectives of the study 

A comprehensive study on triangular, square and inclined tether tension leg 

platform will be conducted to satisfy the following objectives; 

1. To study the effect of varying hydrodynamic coefficients m the behavior of 

tension leg platform. 

2. To improve the behavior of the Tension Leg Platforms by applying the concept of 

inclined tether TLP after formulating its stiffness matrix. 

3. To study the effect of varying parameters like water depth, pretension, position of 

center of gravity and wave angle on the responses ofTLPs. 

4. To conduct a dynamic analysis for normal square, triangular and inclined tether 

TLPs and to find out the difference between their responses. 

1.7 Scope of study 

l. To develop a computer program (using MATLAB programming) for conducting 

dynamic analysis in time domain to determine the responses of TLP subjected to 

regular and random waves 

2. To evaluate the degree of accuracy of the frequency domain analysis compared 

with the time domain analysis. 

3. To formulate the wave force equations for the elements of column and pontoons 

of the square and triangular TLPs. 



Chapter two: Literature Review 9 

CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Although the Tension Leg Platform is not a new concept, the variations 

incorporated in the analysis and design of the tension leg platforms have produced great 

innovative studies and achievements. The estimation of hydrodynamic forces on 

structural members ofTLP is vital for its economic and safe design. Several studies were 

carried out in last two decades to gain understanding of the TLP structural behavior and 

determine the effect of several parameters on the dynamic responses and average life 

time of the structure. In this chapter some of the recorded studies were reported to 

explain the considerable progress in the TLP behavior and to highlight the significant 

issues and modifications, which represent most of the researchers' concern. The most 

important wave theories those are commonly used in the design of offshore structures, 

have been illustrated in this chapter with their applicability conditions. Finally, 

summarizing the literature was necessary to support the objectives and approaches of the 

current study. 

2.2 TLP Types and Configurations 

A typical TLP hull configuration consists of four vertical columns that can be 

cylindrical or square in cross section. Rectangular pontoons connect the columns below 

the water surface. On top of the columns, and integral to the hull, is the structural deck 

that supports the topsides production facilities, drilling system, production risers, living 

quarters, etc. Figure 2.1 shows the main components ofTLP. 
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Tension leg platform takes a lot of shapes such as square, triangular, sea star, Moses and 

Extended Tension Leg Platform (ETLP). 

• The classic square TLP consists of a square deck supported on four cylindrical 

columns, which are provided at each comer and are interconnected at their bottom 

by four cylindrical pontoons (Figure 2.2 a). The columns are anchored to the 

seabed by cylindrical steel tethers and fixed in place with templates. 

FUser-s 

Fo-ur-. d ..-tlo-r-. 

~~~--~~~~~~~~~Tennp~e 

Figure 2.1 :Components ofTLP 

• The Triangular TLP consists of a triangular deck supported on three cylindrical 

columns, which are provided at each comer and are interconnected at their bottom 

by three cylindrical pontoons (Figure 2.2 b). The columns are anchored to the 

seabed by cylindrical steel tethers and fixed in place with templates. 

• Sea star (Mini TLP) is a small TLP with a single surface piercing column. The 

column is necked down near the sea surface to reduce surface loads on the 

structure. The submerged hull spreads into three structural members at the 

bottom in a triangular fashion which are used to support and separate taut tubular 

steel tendons (Figure 2.3 a). The hull provides sufficient buoyancy to support the 
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deck, facilities and flexible nsers. The excess buoyancy provides tendon 

pretension. 

Figure 2.2: Square and Triangular TLPs 

• Moses TLP appears to be a miniaturized TLP as the deck structure is supported by 

four rectangular columns and the columns are connected by pontoons (Figure 2.3 

b). Motion characteristics ofMoses are similar to that of the sea star [1]. 

Figure 2.3: Sea Star and Moses TLP 

• Extended tension leg platform (ETLP) is a modem configuration of TLPs. The 

primary difference between a classic TLP and the new ETLP platform is the hull, 
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form. Previously, tendons were connected to the lowermost outboard portion of 

the hull on the columns [5]. For the ETLP concept, the columns have been 

moved inboard allowing a more favorable support condition for the deck and its 

associated riser and drilling related loads (Figure 2.4). Pontoon extensions on the 

outboard edge of the column are used as tendon connection points. 

Figure 2.4: Rectangular and Triangular ETLP 

2.3 Behavior of TLPs 

TLPs can be considered as hybrid structures. The surge, sway and yaw 

degrees of freedom have very high natural periods of about 80 to 120 second which are 

well above the periods of dominant waves. On the other hand, TLPs are stiff in the 

heave, pitch and roll motions with natural periods of about 2 to 5 seconds which are 

below the periods of the exciting waves. Therefore, TLPs act as compliant structures in 

the low frequency degrees of freedom [4] . These features, which allow the TLPs to avoid 

the exciting wave frequency zone, are mainly achieved by the buoyancy exceeding the 

hull weight. The difference between these forces imposes initial tension forces in the 

tendons. Such forces ensure that, the tendons are always kept in tension. Also, the 

tensions in tethers limit the horizontal motion and preclude vertical motion. 
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2.4 Wave theories 

Many wave theories have been developed and applied to evaluate the sea 

environment for the different sea conditions dependent upon the specific environmental 

parameters, e.g., water depth, wave height and wave period (Figure 2.5). Each theory has 

its own assumptions and is applicable only under certain conditions. Airy's linear wave 

theory and Stokes second-order theory are applicable in the current study According to the 

classification in Figure 2.6 which was developed by Dean (1968) and LeMehaute (1970) 

[7],. In this chapter, only the above mentioned theories and its applications are presented. 

2.4.1 Airy's linear wave theory 

This wave theory is also known as sinusoidal wave theory or small amplitude 

wave theory. It is based on the assumption that the wave height is small compared to the 

wave length or water depth. For the linear wave theory, the wave has the form of a sine 

curve and the free surface profile is represented by the Equation 2.1: 

H 
'7 = -cos( lex- OJt) 

2 
(2.1) 

Where, H is the wave height. While the symbol k is the wave number and OJ is the wave 

frequency. 

The Equations for Airy's wave theory are listed in Table 2.1 [1,7-9]. The Table includes 

the kinematics properties of wave like horizontal and vertical particle velocity u and v as 

well as horizontal and vertical particle acceleration ax and liz respectively. 
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2.4.2 Stokes Second-Order theory 

Stokes second-order wave provides two components for the wave kinematics, the first 

one is the linear part and the second one is the second-order contribution. The second 

order-component is smaller than the first-order contribution. The two components 

provide a steeper crest and shallower trough. Steeper waves in the ocean will have a 

similar form. Therefore, in selecting a regular wave theory in the calculation of response 

of an offshore structure, the higher wave resulting from large storms require application 

of second-order theory or higher [1,7]. Table 2.2 shows the relevant formula for the two 

components 

d =Water depth 

H =Wave height 

L =Wave length 

T =Wave period 

11 =Wave profile 

T,L 
~I 

Seabed 

Figure 2.5: Parameters of wave 

d 
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Figure 2.6: Range of suitability of various wave theories [7) 

2.5 Wave spectrum 

There are two basic approaches in choosing the design wave environment for an 

offshore structure. One of this uses a single design wave method which considers the 

platform subjected to regular wave. The other approach takes into consideration an 

appropriate density distribution of the sea waves at the site by choosing a suitable wave 

spectrum. 

There are many types of wave spectrums used, the most common one is Pierson­

Moskowitz (P-M) Spectrum which describes a fully-developed sea condition. The P-M 

spectrum model (Equation 2.2) has been found to be useful in representing a sever storm 

wave in offshore structure design [7). 
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Table 2.1: Linear wave theory formulae 

Quantity Formula 

Wave profile H 
7] =-cos( kx - wt) 

2 

Horizontal velocity nH cosh ks 
u =- cos( kx - wt) 

T sinh kd 

Vertical velocity nH sinh ks . ( kx ) 
V =- Sill - (J}( 

T sinh kd 

Horizontal 2n 
2 
H cosh ks . ( kx ) a = yz Sill - (J}( 

acceleration 
.t sinh kd 

Vertical acceleration 2n 2 H sinh ks 
az = - cos( kx - wt) yz sinh kd 

S(f)= ag
2

4 f- 5 exp(-1.25(L)-

4

] 

(2n) fo 
(2.2) 

Where a=0.0081, fa =W
0
!2n and w~ =0.161g/H, 

2.6 Frequency domain analysis 

The frequency domain is a general approach for evaluating the dynamic 

responses of the structures, and the amplitude coefficients corresponding to each 

frequency are determined. The main equations were used to determine the responses in 

the frequency domain analyses are given as below; 

(2.3) 

Where RAO, is the Response Amplitude Operator in a particular direction (x), F; is the 

inertia force amplitude which is linear with wave height. K; is the stiffness where m; is the 
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total mass of the system and C; IS the damping coefficient. The subscript IS the 

particular direction of motion. 

Sx(f) = RAO/ S(f) (2.4) 

When S, (f) response spectral density and S (f) is wave spectral density. 

Table 2.2: Second-order wave theory formulae 

Quantity Formula 

Wave H 1CH 2 

1J =-cos( kx - OJt) +--cos( 2(/cx - OJt)) 
profile 2 4L

0 

Horizontal 1CH cosh ks 3 ( 1CH) 1CH cosh 2ks u =- cos( /ex- OJt) +- - - cos(2(kx- OJt)) 
velocity T sinh kd 4 L T sinh 4 kd 

Vertical 1CH sinh ks . (kx ) 3 ( 1CH) 1CH sinh 2ks . ( 2(/cx )) v = - sm - OJt + - - -- sm - OJt 
velocity T sinh kd 4 L T sinh 4 kd 

Horizontal 21C
2
H cosh ks . (kx ) h

2
H ( 1CH)cosh 2ks . ( 2(/cx )) a = 

T2 
sm - OJt + -- sm - OJt 

acceleration 
X sinh kd T

2 L sinh 4 kd 

Vertical 21C
2 
H sinh ks (kx ) 31C

2 
H ( 1CH) sinh 2ks ( 2(/cx )) a =-

T2 
cos -~- - oos -~ 

acceleration 
z 

sinh kd T
2 L sinh 4 kd 

2. 7 Review of the literature 

There are many factors affecting the design of tension leg platforms. In this review 

the main concentration was on the behavior of the TLP and its dynamic analysis (time 

and frequency domain analysis). The hydrodynamic coefficients and some parameters 

were also presented. 

2. 7.1 Platform behaviour 

The nonlinear coupled response ofTLPs to regular wave, presented in Jain (1995) [10], 

considered the coupling between the degrees of freedom and the nonlinearities produced 
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due to change in cable tension and drag term. The results showed that the coupling effect 

leads to sway and yaw motion of the TLP even when the wave force acts in the surge 

direction due to the coupling of the heave motion with surge, sway and yaw. The author 

also found that the fluctuations in the tension of the tethers of the TLP could be large due 

to a possible resonance effect with heave frequency since the heave period of the TLP is 

normally close to frequently occurring wave periods. Finally he observed that the heave 

response will be highly underestimated if the coupling effect between various degrees-of­

freedom is ignored in the analysis ofTLP. 

Hsien H. eta! (1999) [11] presented the dynamic behavior of both the platform and tether 

tension in the tension leg platform system when the platform system was subjected to the 

wave-induced surge motion and the flow-induced drag motion. The study took into 

account the material property and the dimensional effect for the tether which was 

incorporated in the tension leg platform in analysis. The scattering problem and radiation 

problem were first solved separately and then combined together to resolve for all 

unknowns. The dynamic behavior of the platform and tethers was further solved based on 

these solutions. It was found that, the dynamic behavior of both the tethers and the 

platform itself was closely related to the material property and the dimensions of the 

tethers since the traditional analysis on the tension leg platform system without 

considering these factors tended to underestimate the vibration amplitude for both the 

platform and tethers. 

M. S. Turnbull eta! (2003) [12], presented the wave-structure interaction using coupled 

structured-unstructured finite element meshes. The interaction of inviscid gravity waves 

with submerged fixed horizontal structures was modeled in two dimensions using a finite 

element numerical wave tank. They also conducted a validation test including free and 

forced sloshing in a rectangular tank, regular progressive wave propagation in a flume, 

and regular wave loading on a horizontal cylinder. They stated that the experimental 

results closely agreed with the analytical solutions for waves of small amplitudes. TLPs 

have to safely withstand frequently occurring environmental forces arising due to wave, 
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wind, water current, and also those forces arising due to collision of ships with icebergs 

or any other huge sea creature. Because these forces are less probable in nature, the 

literature does not address response behavior of TLPs due to these small duration 

impulsive forces. 

Zeng Xiao-hui eta! (2007) [13) developed a theoretical model for analyzing the nonlinear 

behavior of TLP with finite displacement, in which a lot of nonlinearities like finite 

displacement, coupling of the six degrees of freedom, instantaneous position, 

instantaneous wet surface, free surface effects and viscous drag force, were taken into 

account. The comprehensive nonlinear equations were formulated and the nonlinear 

dynamic analysis of TLP in regular waves was conducted in time domain analysis. The 

result illustrated that the nonlinearities exerted a significant influence on the dynamic 

responses of the TLP. 

Y.M. Low, R.S. Langley, 2007 [14], conducted a study in time and frequency domain 

coupled analysis for deepwater floating systems and their aim was to develop and 

validate a more efficient linearized frequency domain approach. Both time and 

frequency domain models of a coupled system were developed, which incorporated both 

first and second order motions. Although their study reflected a good compatibility 

between the frequency and time domain analysis in the responses prediction, they still 

preferred using time domain coupled analysis to verify the results at the final design 

stage. 

A Monte Carlo simulation was conducted by A. Naessa eta/ in 2007 [15], to predict the 

extreme response for nonlinear floating offshore structures subjected to random seas. 

The first and second order wave frequencies were taken in to account to predict 

horizontal surge response of a tension leg platform. The study revealed that the 

commonly assumed obstacle against using the Monte Carlo method for estimating 
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extreme responses could be circumvented, bringing the computation time down to quite 

acceptable levels. 

2.7.2 Environmental forces on the platform 

Ahmad (1996) [16] studied the stochastic TLP response under long crested random sea. 

The response analysis was based on simulation technique which duly considered various 

nonlinear effects. Time histories for various results were developed until steady state was 

achieved. Segments of time histories were statistically analyzed and the salient 

characteristics such as maximum, minimum, mean and standard deviation were 

determined for important parametric combination. He stated that, when the sea-state was 

simulated as long crested, there was no effect of directionality. All the harmonics 

simulating the random sea were at random phase with respect to time, but not with 

respect to the direction. The variable submergence was found to be a source of major 

nonlinearity and significantly enhanced the surge and heave responses, which, in turn 

introduced tether tension fluctuations. 

J.L.B. Carvalho and C.E. Parente (2000) [17], described a directional wave measuring 

system using a slope array system. The directional wave spectra were determined from 

direct measurements of sea surface elevation and slopes using resistive wave-staffs were 

disposed in a square array. The wave meter performance was successfully compared 

with a pitch-and-roll buoy. Their results showed that the use of resistive wave staffs to 

determine time series of surface elevation and slope was a promising technique since 

could develop a good estimation for the directional spectral functions, particularly the 

angular spreading function, which was difficult to determine in many other systems. 

More over they considered these equipments as low cost which allowed them to be used 

for several structures. Finally they recommended some useful improvements and tests 

for more accurate results. 
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Tabeshpour et a! (2006) [ 18] studied the nonlinear dynamic analysis of TLP in random 

sea in both frequency and time domains. The main objective of this work was to develop 

a comprehensive interpretation of the responses of the structure related to wave excitation 

and structural characteristics. The hydrodynamic forces were calculated using the 

modified Morison equation according to Airy's linear wave theory and based on Pierson­

Moskowitz spectrum. The power spectral densities (PSDs) of displacements, velocities 

and accelerations were calculated from nonlinear responses. This kind of analysis was 

necessary for checking the response of a designed TLP under environmental loads. 

The response behavior of triangular TLPs under impact loading was investigated by 

Chandrasekaran et a! (2007) [ 19]. Two triangular TLP models were selected at different 

water depths 1200 and 528m. A dynamic analysis was performed under regular wave 

along with impulse load acting at angle of 45 degrees at the column. Modified Morison 

equation based on Stokes' fifth order wave theory was used in this work. They stated 

that impulsive loading acting on comer column of TLP significantly affected its response 

while that acting on pontoons did not affect TLP behavior. Although the impulsive load 

was less probable in nature, its effect was significant and should be considered in 

response analysis. 

2. 7.3 Parameters affecting TLPs behavior 

Chakrabarti (1987) [7] explained that for computing the wave load on the components of 

offshore structures, a suitable wave theory must be selected based on the wave 

parameters. The basic parameters that are important in describing wave theories are 

water depth (d), wave height (H), and wave period (T). The linearity of waves was 

determined by the wave height or by the wave slope. The structural response calculated 

based on Airy's theory which is linear with the wave height is quite often straightforward 

even though the response may not be necessarily linear. He also presented the 

expressions for the water particle kinematics of the Airy's linear theory for structures 

located at free surface. 
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A. Ertas and S. Ekwardo-Osire (1991) [20] presented the effect of damping and wave 

parameters on offshore structure under random excitation. The main target of their study 

was to investigate the effect of the structural damping and wave parameter on both 

nonlinear and linear dynamic response of the TLP, then two analysis procedures were 

applied in this work namely nonlinear time domain and linear frequency domain analysis. 

For the nonlinear time domain analysis the wave properties were simulated for a given 

wave spectrum and the responses were obtained by integrating the equation of motion. 

For the linear frequency domain analysis the nonlinear drag term was linearized by 

introduction of linearization coefficients. Their results showed that varying the damping 

ratio did not have any effect on the TLP mean response. They also observed that using 

linear frequency domain analysis resulted an inaccurate response in case of high damping 

and low wave energy. 

V. Vengatesan et a/, 2000 [21], performed an experimental study of hydrodynamic 

coefficients for a vertical truncated rectangular cylinder subjected to regular and random 

waves. The experiments were conducted in 2.2 m water depth for regular and random 

waves with low KC number up to 6. The rectangular cylinder was of 2 m length, 0.2 m 

breadth and 0.4 m width with draft of 1.45 m from still water level. The relationship 

between drag and inertia coefficient were evaluated and expressed as a function of KC 

number for various values of frequency. Drag and inertia coefficients obtained through 

regular wave tests were used for the random wave analysis to compute the force 

spectrum. The results of their study showed that the hydrodynamic coefficients were 

very sensitive to the variation in the aspect ratios of the cylinder. The drag coefficient 

decreased and inertia coefficient increased with increase in KC number. 

Chandrasekaran et a! (2004) [22], presented the influence of hydrodynamic coefficients 

in the response behaviour of triangular TLP in regular waves. Two triangular TLP 

models namely TLP1 and TLP2 were taken for the study at 600 and 1200 m water depths, 

respectively. The time domain analysis approach was applied using Newmark beta 
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method to solve the equation of motion. The forces in this work were evaluated using 

Morison equation since the diffraction effect was ignored. They found that for compliant 

structure like TLP, application of Morison equation without correctly estimated Co and 

CM values would result in a response behaviour significantly higher compared with that 

of the expected real behaviour. They also showed that responses in horizontal degrees­

of-freedom were highly influenced by the variation of the Co and CM values throughout 

the water depth. 

Chandrasekaran et a!. (2007) [23] studied the influence of wave approach angle and its 

influence on the coupled dynamic response of triangular TLPs. The hydrodynamic 

loading was modeled using Stokes fifth-order nonlinear wave theory with various other 

nonlinearities. Low frequency surge oscillations and high frequency tension oscillations 

of tethers were ignored in their analysis. They showed that wave approach angle 

influenced the coupled dynamic response of triangular TLP in all degrees of freedom 

except heave. Responses in roll and sway degrees of freedom were activated which 

otherwise were not present in TLPs response to unidirectional waves. It was also 

concluded that the heave response in TLP with lesser water depth is more due to its lesser 

buoyancy. 

2.7.4 Different shapes of TLP 

Chandrasekaran and Jain (2002) [24] presented the dynamic behavior of square and 

triangular offshore TLPs under regular wave loads considering the coupling between all 

the degrees-of-freedom. A unique equilateral triangular TLP model was proposed and its 

response was compared with that of an equivalent four legged (square) TLP on the basis 

of two considerations. i) Total initial pretension (To) and total weight were kept same for 

both the triangular and four legged (square) TLP. Therefore, the initial pretension per leg 

in triangular TLP was more. ii) Initial pretension per tether and the buoyancy were kept 

same for both triangular and four legged (square) TLP and hence weight of triangular 
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TLP model was more than that of four legged (square) TLP model. They stated that 

triangular TLPs exhibited a lower response in the surge and heave degree-of-freedom 

than that of four-legged TLP considered for comparing the response under regular waves. 

However, their study showed that pitch response was more than that of a square TLP due 

to wave forces attracted on inclined pontoons. 

Their study also investigated the behavior of triangular TLP subjected to random waves 

(2002) [25]. The surge power spectral density function (PSDF) indicated that the mean 

square response was affected by the amplification at the natural frequency of the surge 

degree of freedom and also the peak frequency of the wave loading. The PSDF of the 

heave response showed higher peak values near the surge frequency and near the peak 

frequency of the wave loading. Surge response, therefore, influenced heave response to 

the maximum. Variable submergence seemed to be a major source of the nonlinearity. 

Reddy and Mani (2004) performed a numerical model study to evaluate wave field 

transmission and wave forces on a single structure of arbitrary shape. After testing 

different structure shapes they considered that the deflection coefficient reduced 

considerably in the front side of the structure and increased at the rear side of the 

structure. Finally, the sequence of deflection profiles was also presented [ 19]. 

John eta! (2004) [5] studied the advantages of Extended Tension Leg Platform (ETLP) 

compared with the classic TLP. He discussed the main principals of the tension leg 

platform like its configuration, behavior and components. Then the development and 

applications of the new Extended Tension Leg Platform technology were presented. He 

found that the ETLP had less cost and more stability than classic TLP. Moreover, a low 

risk installation operation that minimized offshore exposure time was also possible with 

the ETLP platform. 
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Xiaohong Chen eta/ (2006) [26], performed a couple dynamic analysis for a Mini TLP. 

Their study focused on the importance of the coupled dynamic interaction and the 

effectiveness of different approaches for their prediction. An experimental work was 

achieved to measure the motion of the selected platform and validate the numerical code 

(COUPLE) which was developed to compute the behavior of the platform. The 

developed code was able to predict the dynamic interaction between the hull and its 

tendon and riser systems while the related quasi-static analysis failed. The comparisons 

showed that wave loads on the mini-TLP could be accurately predicted using the Morison 

equation, provided that the wavelength of incident waves was much longer than the 

diameters of the columns and pontoons. This result was obtained for a mini-TLP only 

but the authors expected this result to be relevant to a wide range of deep water 

structures. 

2.7.5 TLPs tethers system 

Lotsbuge (1991) studied the probabilistic design of tethers of tension leg platform. He 

discussed various aspects of dynamic and reliability assessments of TLPs under 

conventional environmental forces. He concluded that the angle of loading had 

remarkable effects on the dynamic stability ofTLP [19]. 

N.A. Siddiqui, S. Ahmad 2000 [27], performed a study in the reliability analysis against 

progressive failure of TLP tethers in extreme tension. The limit state function was 

derived for maximum and minimum tension and von-mises failure criterion was applied 

to evaluate the failure of tether against maximum tension. It was noted that the minimum 

tension failure occurred when the tethers were slack due to loss of tension. The 

probabilities of failure were also obtained for different sea states to assess the annual life 

time probability of failures. Finally they compared the case of missing one tether with 

that of intact TLP. They found that in case of missing one tether due to maximum 

tension the probable life time for the other tethers were different in magnitude and same 
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in order with that of intact TLP. However, they recommended an immediate replacement 

for the damaged tether to avoid further failures. They also investigated that in minimum 

tension case for both regular and long crested sea, the probable life time was less 

compared to intact TLP. 

N.A. Siddiqui and Suhail Ahmad 2001 [28], studied a non-linear dynamic analysis of the 

TLP to assess the reliability of the TLP tethers against fatigue and fracture due to long 

crested random wave loading. Palmgren-Miner's rule and fracture mechanics approaches 

were used to estimate the fatigue damage while first order reliability method and Mote 

Carlo simulation technique were employed for reliability estimation. This study 

highlighted that the partial safety factor, an essential requirement of reliability based 

probabilistic design, was quite sensitive to the idealization of sea environment. A typical 

value of the reliability index of the system, as in the present study, was about 30% less 

than that for a joint. The study also showed that if the number of joints in the tether 

system increased, the fatigue failure also increased and vice versa. 

A technical note in stability analysis of TLP tethers was written by S. Chandrasekaran et 

a/2006 [29], on which the dynamic analysis ofTLP's tethers was carried out. The cable 

equation for the tether modeling subjected to tension was considered as linear equation 

and varying along the length. The study considered the end conditions as simply 

supported, there were no current effects and the flexural rigidity of the tether was 

neglected. Different water depths and different TLP shapes were tested using Mathieu 

stability analysis to obtain the amplitudes of tether vibrations. Form the results, the 

authors concluded that increasing tether tension increased the stability of the platform and 

improved the equilibrium by increasing hydrodynamic loading contributing to added 

mass. The results also revealed that the triangular TLPs with increased pretension 

performed better than the rectangular TLPs in the first vibration mode. 
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A Dynamic response of an axially loaded tendon of a tension leg platform was studied by 

Mangala M. Gadagi and Haym Benaroya 2006 [30], they derived a set of nonlinear 

equations of motion for the tested model using Hamailton's principle. The finite 

difference method was used to analyze the dynamic response of the tower for various end 

tension and Morison equation was used for fluid force calculations. In their work they 

considered the tower as an elastic beam subjected to end tension in plane motion due to 

random wave excitation. They also studied the effects of some parameters such as 

significant wave height, increase in the constant end tension and harmonically varying 

end tension. From the numerical study it was seen that at low tension, the axial motion 

was mainly induced by geometry while at higher tension, the axial motion was mainly 

due to elongation. The study also showed that changing the above mentioned parameters 

had significant effects in the tendons behavior. 

Khan et a! (2006) [31] presented the reliability assessment of TLP tethers against 

maximum tension under combined action of extreme wave and impulsive loads. A limit 

state function for maximum tension was applied using Von-Mises theory of failure. The 

responses were obtained under sinusoidal, half-triangular and triangular impulsive forces. 

Effects of some parameters like load angle, variable submergence and material yield 

strength on tether reliability were also studied They found in their study that there was 

less safety in tether tension under sinusoidal and triangular impulsive loads if they act at 

any one of the TLP columns. That meant, if a TLP tether was safe for impulse load acted 

at one angle of impact, it would become completely unsafe for the same impulse but 

acting at different angle of impact. It was also observed that the effects of impulsive 

loads on TLP tethers were very severe when they acted on TLP columns. However, there 

was no significant effect on TLP tethers if impulsive loads acted on TLP pontoons. 

Claes-Goran Gustafson and Andreas Echtermeyer (2007) [32] studied the properties of 

carbon fiber composite tethers. An extensive test program was done to characterize the 

performance of the strand end fitting. Static and fatigue testes were carried out. The 
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studied tether was based on pultruded carbon fiber composite rods assembled into strands 

of 31 and 85 rods. Single pultureded rods with 6 mm diameter were tested first to 

establish the fatigue performance of the basic building block. Fatigue testing was 

extended to strands built of 85 rods and terminated in a special metallic end-fitting. The 

results were drawn in SN-diagrams. It was evident from the diagrams that there was a 

lower fatigue strength associated with the strand compared to that of the single rod. The 

failure mechanism was always shear failure inside the end-fitting. Performance of the 

strand with its end-fitting was slightly lower than the performance of the individual rods. 

F. Barranco-Cicilia et al 2008 [33], studied the reliability-based design criterion for TLP 

tendons. They presented the procedures to perform a load and resistance Factor Design 

criterion for the design of the TLPs tendons in their intact condition. The design criterion 

considered the ultimate limit state condition for tendon sections, taking into account both 

dynamic interactions of load effects and the statistics of associated extreme response. 

The partial safety factors were calibrated for the storm environmental conditions in deep 

waters of Mexico. They observed that the partial safety factors reflected both the 

uncertainty content and the importance of the random variables. Finally, it was seen that 

the target reliability value had a strong influence over the safety factor values and thus 

over the final size of the structural elements. 

2.8 Summary of the literature 

The literature survey showed the need for more studies on the dynamic behavior of the 

TLP varying shapes, hydrodynamic coefficients and other parameters like water depth, 

wave angle, center of gravity position and tether pretension. The following points were 

highlighted from the above literature. 
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1- The natural frequencies in all the degrees of freedom in TLP system must not 

come close to the wave frequency, thus avoiding the occurrence of resonance and 

reducing the horizontal motion and hence loading on the tether platform system. 

Handling the responses of the platform represented the main factor to control the 

resonance phenomena. 

2- Most of the analysis reported rigid body uncoupled analysis in frequency or time 

domain using Airy's linear wave theory or stokes theories to calculate wave 

properties. Morison equation and its modified version were commonly used in 

force calculation after adapting them to that particular case. 

3- Main TLP responses for practical interest are surge, sway motion and tether 

tension. Surge and sway play vital role in the behavior of the TLP since they 

affected the offset and sit-down of the platform. An accurate prediction of the 

surge and sway responses and limiting them represent the major concern of the 

current study. The reliability assessments of the TLP mooring system and their 

behavior under all load conditions necessitated more efforts and analysis on the 

behavior of the platform tether system. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

The methodology adopted for this study is explained in this chapter. A time 

domain analysis treating the platform as a rigid body was formulated. The wave forces 

and the dynamic responses of the square and triangular TLPs were presented. Linear and 

second order wave theories were presented first, and then Morison's Equation was 

formulated for TLP columns and pontoons. The stiffness matrices for square and 

triangular TLPs were introduced while the stiffness matrix for the inclined tether TLP 

was formulated. The Newmark integration scheme with constant-average-acceleration 

method was used. Finally, a computer program was written and its flowchart was drawn 

and highlighted. 

3.2 Wave Force calculations 

An offshore structure in an ocean environment is subjected to loading due to 

wind, current and wave. The wave force is the most important load acting on the 

platforms. In general, there are three theories to calculate wave forces on the cylindrical 

members namely Morison Equation, Froude-Krylov theory and the diffraction theory. 

If the diameter of the structure is small compared to the wave length (D/L < 0.2), 

the Morison Equation is applicable [7-9]. If the structure is not small compared to the 

wave length, then the diffraction theory must be used. In this case, the inertia force is 

predominant. If the inertia force is still predominant and the drag force is small, but the 

structure is still small compared with the wave length, Froude-Krylov theory is applied. 
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In this study, the Morison Equation 1s applied according to the above mentioned 

classification. 

3.2.1 Morison equation 

When a rigid structure is free to move in waves, the Modified Morison Equation can be 

used (Equation 3.1), which takes relative velocity and acceleration between the structure 

and water particles into account [7,34-38]. While calculating the wave forces, water 

particle kinematics for each member are determined with respect to the position of the 

elements after dividing the columns and pontoons into small elements. 

(3.1) 

In which F (t) =wave force per unit length of the cylinder, Uw;. aw;, were the wave particle 

velocity and acceleration at the particular position respectively (given in Tables 2.1-2.2), 

while u5, a. were the structure velocity and acceleration respectively. Inertia and Drag 

coefficients were presented by Crni and C0 ;, where (i) term represent the specific element 

of the cylinder. A1= p 1r D2/4 and A0 = p D/2. The nonlinear drag term was linearised in 

Equation 3.2 [39]. 

8 
C D A D lu rei iu rei = -- C D A D lu re 1 I U rei 3JZ' max 

(3.2) 

c LD A D u rei , where c LD = _8_c lu I 
JJZ' D ret max 

Urel = Uw;- Us 

3.2.1.1 Forces on columns 

The total force on a column along x axis was given by summation of the forces of the 

column's elements as shown in Equation (3.3) [39]. 
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d d 

F,. = cos a L c M A I a wi X + u wi X A Dx - L A I a sx ( c M - 1) - A D.< u sx (3.3) 
s=l s=l 

Where A Dx = De C p-- LDx 2 

:rD c 
2 

AI p 
4 

C LDx CDC 
8 

-Usx)max = -(u 
3;r "'·' 

Where x n = x coordinate ofn1
h column and a represents the wave angle with x axis. 

A similar expression was applied for the total forces on the column along y axis, which is 

expressed in Equation (3.4). 

d d 

FYn =sina:L;CMA1a_.Y+u_.yADy-L: A1asy(CM -1)-ADyusy (3.4) 
s=l s=l 

Where A = DeC 
Dy p -2- LDy 

c LDy 

The total force on the column along z axis is given in Equation (3.5). 

cosh kl ;rD c 2 

pg h kd 4 '7 n cos 
(3.5) 
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3.2.1.2 Forces on pontoon 

The pontoon was divided into small elements (Figure 3.1 and Figure 3.2). The position 

of each element from wave reference line along the wave length (x;) was calculated for 

Square and Triangular TLPs. Then the forces in pontoon were applied [39), according to 

the element position. The values of x; for square and triangular TLPs were derived as 

below 

XnJ 

b 

X 
-·-·-·-·-· 

a Xn3 

y! 

Figure 3.1: Square TLP pontoon elements 

a. Square TLP pontoons: 

• Pontoon land 2, elements positions; 

b; =a tan a (3.6) 
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( ( 
D 2b- D )) x. 1 = (b + b;)- ----;{ + N c (0.5 + (n -1) (3.7) 

( ( 
D 2b- D )) x. 2 = (b- b;)- ----;{ + N c (0.5 + (n- 1) (3.8) 

Where N was the total number of pontoon elements and n was the element's number. 

The elements positions for pontoon 1 and 2 were 

X i I = X n I COS a (3.9) 

Xi 2 X n 2 COS a (3.1 0) 

• Pontoon 3and 4, elements positions; 

a; b tan a (3.11) 

le= .Jb 2 +a/ (3.12) 

And 

(3.13) 

(3.14) 

The values of lsi and 152 was calculated as 

lsi= xn3 sin a (3.15) 
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(3.16) 

Then, the elements positions for pontoon 3 and 4 were written as 

(3.17) 

(3.18) 

b. Triangular TLP pontoons: 

• Pontoon 1, elements positions; 

2 a sm a 
a;, = 

(.; ) (3.19) 
3 sm -a 

2 a sin a 
a; 2 = 

420 ) (3.20) 
3 sin 0 - a 

P1 
a ;3 = --tan 

3 
a (3.21) 

The values ofxn were written as 

(3.22) 

(0.5 + (n -l)))J (3.23) 

X n 3 = ((a - a; 3)- ( ~ c + (0.5 + (n -l)))J (3.24) 



Chapter three: Research methodology 

~ = 60° (3 = 120° 

P1 = 2a sin ~ o = ~ - a 

Figure 3.2: Triangular TLP pontoon elements 

The positions of elements Xi were calculated by 

Xi I = X n I COS ( a + ; ) 

X ; 2 = X n 2 cos ( a - ; ) 

Xi3 = - (/e3 + ls3) 

36 

0 

(3.25) 

(3.26) 

(3.27) 
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Where 

I e 3 = (3.28) 

And 

Is 3 X n3 Sill a (3.29) 

After locating the position of the pontoon elements, Modified Morison Equation for 

inclined cylinder was used to find out the total force in the pontoons taking into account 

the wave inclination. The inclined cylinder's Equations were as given below [7,39]. 

(3.30) 

(3.31) 

(3.32) 

The local x axis was taken along direction of wave propagation. Since the pontoons were 

horizontal, the angle of the cylinder axis to the vertical axis (~ was 90°. The values of 

the unit vectors Cx, Cy and Cz were substituted as 

C, = sint; cos a= cos a C, = sin t; sin a = sin a 

Where 

U xi u i ( 1 c X) 

u yi Vi (3.33) 

Uzi -u;CxCz 
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a xi = 

a yi = 

a zi = 

And 

C LDi 

A Dl 

u i ( 1 - c X ) 

v i 

- u ;C xC z 

+ Ui 
2

Cx'Cz') 
~· 

= pDP Cw; 
2 

;rrD ~ 
= p 4 
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(3.34) 

(3.35) 

The expressions for forces on each pontoon element (Fx;, Fy;, and F2 ;) after transforming 

the coordinate to the global system were as given in Equation (3.36-3.38) (39). 

Fxi = cos a (A Diu xi + A IP c MP a xi ) + 

sin a (A Diu zi + AlP c MP a zi ) - A Diu sx - AlP ( c MP - 1) a sx 
(3.36) 

Fyi =sin a(Aoiuy; + AIPCMPayi)-

cos a (A Diu zi + A IP c MP a zi ) - A Diu sy - A IP ( c MP - 1 ) a sy 
(3.37) 

(3.38) 
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3.2.1.3 Moments due to columns forces at Center of Gravity 

The total moment on the platform about a particular axis due to columns was 

equal to summation of each column force multiplied by the distance of that column from 

the platform center of gravity. 

a. Square TLP 

The moments about x axis of forces in y direction was given by the following 

equations and similar expression for y axis. 

n = 4 a , = ( dr - h c ) 

M xy L L Fy,az (3.39) 
n=l a:=-hc 

n = 4 a , = ( dr - h c ) 

Myx=L L Fxaz (3.40) 
n:;:;l az=::::.-hc 

Where, az was a moment arm measured vertically from the center of gravity to that 

particular point. The symbol n was the column number, dr was the column draft and he 

was the center of gravity height. 

The moments about x andy axis for column forces in z direction was given as by 

Mxz L F z.a r. (3.41) 
n = 2,3 

M yz = I F z a r, I F z a r, (3.42) 
n = 3 , 4 n = I , 2 
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The moments about z axis due to forces in x and y direction were given by 

M ,_, 
n = 2, 3 

""' F, a, L... ' ' 
n =I ,4 

Mzy = " Fy ar - " Fy ar ~ n n ~ n n 

11;1,2 11=3,4 

40 

(3.43) 

(3.44) 

Where, ar represented the moment arm measured horizontally from the platform center 

of gravity to column center. The suffix n was the column number. 

b. Triangular TLP 

The moments about x axis of forces in the y direction was given by the 

following Equations and similar expression for moments about y axis. 

11 = 3 a , = ( dr - h c ) 

M xy I I Fy,Qz (3.45) 

M yx (3.46) 

The moments about x and y axis of column forces in z direction were given as below 

M xz I F z,a r, (3.47) 
11 = 2 

Myz = " Fz Qr -" Fz Qr ~ n n ~ n n (3.48) 
11=1,2 11=3 
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The moments about z axis due to forces in x and y axis were given by 

Mzx = "Fz Clr - "Fz Clr ~ n n ~ n n (3.49) 

Mzy = " Fy ar - " Fy ar ~ n n ~ n n (3.50) 

3.2.1.4 Moments due to pontoons forces at center of gravity. 

The moment in the pontoons could be calculated similar to column moments, 

but instead of substituting column force time its distance from the CG position, the values 

of the forces at each pontoon element time its distance from the CG position have been 

taken. 

3.3 Mass matrix 

The mass matrix included the mass at each degree of freedom into account, so it 

was diagonal in nature. The added mass, M., due to the water surrounding the structural 

members and arising from the Modified Morison Equation has been considered up to the 

mean sea level (MSL). The presence of off-diagonal terms in the total mass matrix 

indicated a contribution of the added mass due to the hydrodynamic loading [24,40-42]. 

The mass matrix was as given below; 

M,, 0 0 0 0 0 

0 Mn 0 0 0 0 

0 0 MJJ 0 0 0 
[M;) = 

0 0 0 /44 0 0 
(3.51) 

0 0 0 0 I 55 0 

0 0 0 0 0 !66 
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Where 

M11=Mn=M33=M= Mass in surge, sway and heave degrees of freedom. 

M is the total mass of the entire structure 

l44 is the total mass moment of inertia about the X axis =Mr/ 

Iss is the total mass moment of inertia about the Y axis =Mr/ 

166 is the total mass moment of inertia about the Z axis =Mrz2 

42 

The added mass term was time dependent and was obtained by transferring the 

inertia terms from the right hand side of the Equation of motion. This indicated that, the 

total mass matrix [M] changed at each time step according to variation of added mass 

matrix. Finally the total mass matrix at each time step were written as 

[M] = [M;] + [Ma] (3.52) 

3.4 Stiffness matrix 

The stiffuess matrix [K] of the TLPs in general was formed as below 

K11 0 0 0 0 0 

0 K22 0 0 0 0 

KJJ K32 K33 K34 KJs K36 
(K) = 

0 K42 0 K44 0 0 
(3.53) 

Ks1 0 0 0 Kss 0 

0 0 0 0 0 K66 

Where Kij represented the reaction in i degree of freedom due to a unit displacement in j 

degree of freedom [39-40,43]. The formulae for Kii were different in the different types 

of the tension leg platform, like triangular, square and inclined tethers TLPs. The 

stiffuess matrix formulation for the above mentioned types were as explained below. 
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3.4.1 Rectangular TLP 

The values of rectangular TLP matrix components were as below [16,39-40]. 

3.4.1.1 Stiffness in surge direction 

By giving an arbitrary displacement x1 in the x direction the equilibrium of 

forces in the surge direction gave 

4 (Po+ P 1) 
.J(x 1

2 + / 2
) 

The equilibrium in z direction gave 

4Po 4P. 
K 31 =-(cosy, -1)+-1 cosr .. 

XI XI 

Summation of moment about y axis gave 

- hck II 

3.4.1.2 Stiffness in sway direction 

(3.54) 

(3.55) 

(3.56) 

By giving an arbitrary displacement x2 in the y direction the equilibrium of 

forces in the sway direction gave 

k 22 = 
4 (Po+ P,) 

.Jcx/ + Z') 
(3.57) 
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The equilibrium in z direction gave 

(3.58) 

Summation of moment about y axis gave 

- h ck 22 (3.59) 

3.4.1.3 Stiffness in heave direction 

By giving an arbitrary displacement x3 in the z direction the equilibrium of 

forces in the heave direction gave 

4AE 2 
K33 = --+ 1rDc pg 

I 

3.4.1.4 Stiffness in roll direction 

(3.60) 

By gtvmg an arbitrary rotation x4 m the roll direction the summation of 

moments along roll direction gave 

(3.61) 

The equilibrium in z direction gave 

(3.62) 
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Where 

(3.63) 

And P; = -~ in symmetric structure 

3.4.1.5 Stiffness in pitch direction 

By g1vmg an arbitrary rotation x5 m the pitch direction the summation of 

moments along pitch direction gave 

K - D 2 b2 4(Pohc sin x5 AEb
2 

cosx5 J 55 - 1(, c p g + + 
x 5 I 

The equilibrium in z direction gave 

Where 

AE 
P5 = -bx5 COSX5 

I 

And P; = - P5 in symmetric structures 

3.4.1.6 Stiffness in yaw direction 

(3.64) 

(3.65) 

(3.66) 

By giving an arbitrary rotation x6 in the yaw direction, the increase in the 

initial pre-tension, in each leg gave: 
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(3.67) 

While 

(3.68) 

And 

(3.69) 

3.4.2 Triangular TLP 

The values of triangular TLP matrix components were as given below [24]. 

3.4.2.1 Stiffness in Surge direction 

By giving an arbitrary displacement x1 in the surge direction, the increase in the 

initial pre-tension, in each leg, was given by: 

Equilibrium of forces in the surge direction gave 

3(Po + Pt) 
.Jcx,2+/2) 

(3.70) 

(3.71) 
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Equilibrium of forces in the heave direction gave · 

(3Po(cos yx- 1)+ 3PJ cos yx) = ~--~--~--~--------~~ (3.72) 

When 

(3.73) 

And Summation of moments along the pitch direction gave: 

(3.74) 

3.4.2.2 Stiffness in sway direction 

By giving an arbitrary displacement x2 in the sway direction, the increase in the 

initial pre-tension, in each leg, was given by: 

Equilibrium of forces in the sway direction gave 

3(Po+P2) 

.Jcx22+/2) 

Equilibrium of forces in the heave direction gave 

(3. 75) 

(3.76) 

(3.77) 
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When 

(3.78) 

And Summation of moments along the roll direction gave: 

- h ck 22 (3.79) 

3.4.2.3 Stiffness in heave direction 

The displacement in heave direction x3 affected heave direction alone. By taking 

Equilibrium of forces in the heave direction 

(3.80) 

3.4.2.4 Stiffness in roll direction 

By giving an arbitrary rotation x4 in the roll direction, the increase in the initial 

pre-tension, in each leg, was given by: 

P AE _ P' 
4 = a -- X 4 COS X 4 - 4 I 

(3.81) 

Equilibrium of forces in the heave direction gave: 

k34 = (3.82) 
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Summation of moments along the roll direction gave: 

(3.83) 

Where 

(3.84) 

3.4.2.5 Stiffness in pitch direction 

By giving an arbitrary rotation x5 in the pitch direction, the increase in the initial 

pre-tension, in each leg, was given by: 

AE ( 2 ) AE ( 1 ) p 5 = -
1
- X 5 3 pI COS X 5 - 2 X 5 -

1
- 3 pI COS X 5 (3.85) 

Equilibrium of forces in the heave direction gave: 

Ps 
(3.86) 

Summation of moments along the pitch direction gave: 

(3.87) 

3.4.2.6 Stiffness in yaw direction 

By giving an arbitrary rotation x6 in the yaw direction, the increase in the initial 

pre-tension, in each leg, was given by: 
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Where 

Equilibrium of forces in the heave direction gave: 

Summation of moments along the yaw direction gave: 

= 
3 

( P o + P 6 )( 2 a 2 
) 

/6 

3.4.3 Inclined tether square TLP 

50 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

The inclined tether TLP is a new concept for the square TLP (Figure 3.3). The 

tethers formed angle ('y) with the vertical axis and the platform Equation of equilibrium 

was modified as 

F b = W + Pot cos y (3.92) 

Instead of equation (3.93) for normal TLP tethers 

Fb=W+Pot (3.93) 
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Figure 3.3: Inclined tethers TLP 
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3.4.3.1 Stiffness in surge direction 

A displacement x1 in surge direction was assumed, Figure 3.4 showed the effect 

of the displacement. 

The length of tethers could be taken as 

I o = 
I (3.94) 

cos( r ) 

When horizontal distances between the platform column and its foundations could be 

located by 

xb = yb = sr cos 45 

The increase in tension could be determined by the following expressions 

AE 
--~/11 

l 

/),./12 = /12- fo 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

(3.100) 

(3.101) 
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p 12 
AE 
--ill12 

I 

The positions of the points after the displacement were 

_, ( I ) ytt =cos -
Ill 

= cos -I ( _, ) 

112 

sr' = .J /11 
2 

- /
2 

{) _, ( Yb ) 12 =cos --
sr 2 

53 

(3.1 02) 

(3.103) 

(3.104) 

(3.1 05) 

(3.1 06) 

(3.107) 

(3.108) 

Where, the angles B11 and {)12 were the deformed shape of angles {)1 and {)2 (in Figure 3.3) 

caused by displacement in surge direction. The symbol sr1 and sr2 were the displacement 

of the column along sr direction caused by displacement in surge direction. 

The equilibrium in x directions gave 

k11 = 3_ [(Po+ P11) sin(y11) sin( 811)- (Po+ P1z) sin(y1z) sin( 812)) (3.109) 
XI 

And the equilibrium in z directions gave 
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I 
kJJ =- (2((Po + P11) cos( y11) + (Po+ P12) cos( y12) )- 4Po cos( y)) (3.11 0) 

XI 

Summation of moments in pitch direction gave 

k 51 (3.111) 

3.4.3.2 Stiffness in Sway direction 

Using same procedure for the sway direction and taking the equilibrium in sway, heave 

and roll, the following expressions were obtained 

k22 = 2. [(Po+ P21) sin( y21) sin( 821)- (Po+ P22) sin( y22) sin( 822)] 
X2 

1 
kJ2 = - (2((Po + P21) cos( y21) +(Po+ P22) cos( y22) )- 4Po cos( y)) 

X2 

k 42 k 22 h c 

3.4.3.3 Stiffness in heave direction 

(3.112) 

(3.113) 

(3.114) 

A displacement x3 in heave direction was assumed. Figure 3.5 showed the 

effect of the displacement. 

~ F b = nD c 
2 p gx 3 (3.115) 

(3.116) 
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k 33 

2b 

i k3, I 
~----------~---1 105'----k·" f-.~.:.~.-..:~.::.~.:.-.~-=~.-..:.-.:_-.~.:. 

I I he 
twe I 

_..L ___ _ 

Figure 3.4: Surge motion 

AE 
P3 = --!!..!3 

I 

y 3 = cos -1((/+X3)) 
/3 

~1'12 
\ 

I ( AE ) - --4 £'1 I 3 cos y 3 + £'1 F b 

X 3 I 

(3.117) 

(3.118) 

(3.119) 

(3.120) 
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,----------------, 
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I I 

Figure 3.5: Heave motion 

3.4.3.4 Stiffness in roll direction 

56 

An arbitrary rotation X4 in roll direction was assumed. Figure 3.6 showed the 

effect of the displacement. The roll Equations were derived as follows 

e 4 h c sin x 4 (3.121) 

(3.122) 



Chapter three: Research methodology 

S 42 = b - e 4 

hcXr 
&r4=-­

cos(} 

The elongation in the tethers were expressed as 

~ /42 /42 - /o 

The tether tension increased by amounts as below 

AE 
P41 = --~/41 

I 

(
/ -bx ) 

y42 =COS-t /42 4 

57 

(3.123) 

(3.124) 

(3.125) 

(3.126) 

(3.127) 

(3.128) 

(3.129) 

(3.130) 

(3.131) 

(3.132) 
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Figure 3.6: Roll motion 

Then 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

Fb4e 2b ( ) 2cos () 
k44 =--+-cos r•1(Po + P•1)- cos r•2(Po + P•1) + ---

X4 X4 X4 
((Po+ P42)(hc + bx•)sin Y42- (Po+ P4l)(hc- bx•)sin Y•l) 

k 34 
2 

= - c P 41 cos r 41 + P 42 cos r 42) 
X4 

58 

(3.133) 

(3.134) 

(3.135) 



Chapter three: Research methodology 59 

3.4.3.5 Stiffness in pitch direction 

Using same procedure for the roll direction and taking the equilibrium in pitch and heave, 

the following expressions were obtained. 

F b 5 e 2 b ( ) 2 cos (} 
k 55 = -- + - cos r 51 (Po + P 51) - cos r 52 (Po + P 51) + ---

x5 X5 X5 
(C Po + P 52)( h c + ax 5) sin r 52 - c Po + P 51)( h c - ax 5) sin r 51) 

2 
kJ5 = -(P51 cos y51 + P52 cos y52) 

X5 

3.4.3.6 Stiffness in yaw direction 

(3.136) 

(3.137) 

By giving an arbitrary rotation x6 in the yaw direction (see Figure 3. 7), the 

increase in the initial pre-tension, in each leg, was given by 

While 

AE 
P6 = --(/6 -/o) 

I 

-1( I) r 6 = cos t: 

[
4Po 4P6 ] k36 = --(cos y6- cosy)+ --cos y6 
X6 X6 

(3.138) 

(3.139) 

(3.140) 

(3.141) 

(3.142) 
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3.1 Damping matrix 
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Figure 3.7: Yaw motion 

I 
I 
I 
I 

k
66 

= 4(Po + P6)(a
2 + b 2

)sin Y6 

16 

60 

(3.143) 

The damping matrix had two parts namely structural damping (Cs) and 

hydrodynamic damping (Ch)· Structural damping was calculated based on a damping 

ratio (~) which was the ratio of the given damping to the critical damping. The 

hydrodynamic damping was due to hydrodynamic parameters. The structural damping 

matrix was given below [ 44-46). 



Chapter three: Research methodology 61 

C11 0 0 0 0 0 

0 C22 0 0 0 0 

0 0 C33 0 0 0 
[C,] = 0 0 0 c44 0 0 (3.144) 

0 0 0 0 Css 0 

0 0 0 0 0 c66 

While 

C·· =21:m·W· IJ <; I I 

The hydrodynamic damping term was time dependent and was obtained by 

transferring the drag terms from the right hand side of the Equation of motion. This 

indicated that, the total damping matrix [C] changed at each time step according to 

variation of structural and hydrodynamic damping matrix. The total damping matrix at 

each time step were written as 

(3.145) 

3.5 Equation of motion 

After calculating the wave forces in the structure and formulating the stiffness, 

mass and damping matrixes, all the components of the Equation of motion were ready. 

Then Equation of motion could be written as below [39,47-49]; 

[M] {a.}+ [C] {us}+ [K] {x} = {F (t, x, u., a.)} (3.146) 

Where x, u and a were the displacement, velocity and acceleration of the platform 

respectively. 



Chapter three: Research methodology 62 

3.6 Newmark beta method 

The Newmark with constant-average-acceleration method was used to solve the 

Equation of motion [50-51]. The displacement ofthe structure at end ofthe time step was 

given by Equation (3.147) 

(3.147) 

This had the form of a static equilibrium equation involving the effective stiffness matrix 

[K\] which was equal 

- 2 4 
[K,]= K 1 +-[C,]+-2 [M,] 

h h 
(3.148) 

The effective loading matrix [ f;] is given as below 

(3.149) 

Where, the terms M~, C1, and K1 referred to mass, damping and stiffness matrices for the 

first time step respectively. 

Using this formulation, the displacement at the end of the time step (x 1) were calculated 

directly by solving Equation (3.147), using only data that was available at the beginning 

of the time step. Then, the velocity at that time step (u81 ) could be calculated using 

Equation (3.150). Finally the acceleration at the end of the step (a.1) was derived by 

solving the dynamic equilibrium Equation at that time, as in Equation (3.151) [51]. 

2 
usl = h(x, -xo)-uso (3.150) 
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While 

a sl (3.151) 

3.7 Solution procedure 

The following steps were used in the program to find out the responses of the 

platform. 

1. The wave properties (wave length (L), wave frequency (w) and wave number (k)) 

were calculated. 

2. Displacement X0 , velocity Uo and acceleration ao of the platform at first time step 

were initialized. 

3. Stiffness matrix K, mass matrix M and structural damping matrix C were 

formulated. 

4. The wave forces acting on columns were evaluated. 

5. The added mass matrix Ma and the hydrodynamic damping matrix Ch due to 

column effects were determined. 

6. The wave forces acting on the pontoons were evaluated. 

7. The added mass matrix M. and the hydrodynamic damping matrix Ch due to 

pontoon effects were determined. 

8. By using Newmark method to solve equation of motion, the displacement, 

velocity and acceleration for the second time step x1, u1 and a1 were calculated. 

9. Steps 3 to 8 were repeated till time steps are over. 
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10. The responses, velocity and acceleration were drawn in time series. 

According to the above steps a computer program was written using MA TLAB 

programming and its flow chart is shown in Figure (3.8). 

( Start 

~ 
\ Readinput / 

! 
Calculate wave properties 

L, wand k 

! 
Initialize 

t, xo, uo, ao 
N 

I. 
~· 

Calculate pontoon force fp ] ~·"~ Calculate mass matrix er? 
Ml 

~ 
Calculate added mass and 
hydrodynamic damping for y 

[Calculate stiffness matrix K J pontoon Map & Chp 
Plot the 

! responses 

Calculate structural damping Cl J 
solve equation of moUon 

~ using Newmark method 

Calculate column force array fc l END 

! 
[~Calculate added mass and hydrodynamic Store x1, u1, a1 and 

damping for column Mac & Chc I- calculate tether tension r--

Figure 3.8: Program flow chart 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

The discovery of giant fields for oil and gas in deep water has presented a major 

challenge to the industry, resulting in remarkable developments in the way of equipment, 

procedures, instrumentation and construction [52]. The dynamic behaviour (motions and 

tether tensions) of the deep water structures such as TLPs, when it is subjected to wave 

forces are needed for the design and maintenance of the structure. In this chapter 

comprehensive studies on the behaviour of TLP to determine the TLP responses are 

discussed. The main content of this chapter is predicting accurate responses for the 

platform under different parameters and load conditions by using different theories and 

approaches like varying hydrodynamic coefficients, different wave theories, frequency 

and time domain analysis. Limiting these responses forms the second part of this chapter 

by studying different TLP shapes square, triangular, and inclined tether TLP concept. 

Limiting the responses of the platform leads to better stability and safe drilling 

operations. The response amplitude operators (RAO) for typical TLPs have been 

compared with recorded results in the literature. 

4.2 Selected data 

The TLPs with the details given in Table 4.1 were selected for the numerical 

studies. Four square TLPs and one triangular TLP were chosen. TLP1 is a square TLP. 

It was used to validate the results using studies reported in literature. TLP2 is a square 

TLP and it was used as the main (reference) platform while the all other platforms were 

compared related to its behaviour. TLP3 is the triangular TLP while TLP4 and TLP5 are 

inclined-tether TLPs. The last four TLPs were subjected to different load cases with 
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different parameters and their responses were determined and compared. A regular wave 

with 8 m height and 10 second period was applied with 45° incident angle to show the 

responses in all the six degrees of freedom due to regular wave in time series mode. A 

random wave of significant wave height 5 m using Pierson-Moskowitz (P-M) spectrum 

was chosen for the wave load calculations (Figure 4.1 ). 

Table 4.1: Platforms details 

Description TLP1 TLPz TLP3 TLP4 TLP5 

length (m) 70 75.66 75.66 75.66 75.66 
Dc(m) 17 14 19.42 14 13.85 
d (m) 600 300 300 300 300 
D0 (m) 12 12 12 12 12 
~ 0.04 0.05 0.05 0.05 0.05 
Fb (kN) 521,600 465,500 465,500 465,500 463,441 
G; (kN/m) 84,000 34,000 34,000 34,000 34,000 
he (m) 28.44 27.47 27.47 27.47 27.47 
Tether length (m) 568 269 269 273.15 273.15 
Pot (kN) 170,000 135,500 135,500 137,590 135,500 
rx (m) 35.1 35.1 35.1 35.1 35.1 
rv (m) 35.1 35.1 35.1 35.1 35.1 
Tz (m) 42.4 42.4 42.4 42.4 42.4 
p (K.g/m3) 1030 1030 1030 1030 1030 
W(kN) 351,600 330,000 330,000 330,000 330,000 

4.3 Discussion of the results 

The analyses were conducted for twenty frequencies varying form 0.05 Hz to 0.25 Hz at 

interval of 0.01 Hz. The heights of response from the program were divided by 

corresponding wave height to obtain the Response Amplitude Operator (RAO). The 

RAOs were calculated and analyzed for all the above mentioned TLPs. 

4.3.1 Square TLPs 

Comprehensive studies were conducted on the square TLPs and responses 

determined as time series and in RAO form. The studies were conducted in frequency 
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and time domain. Different wave theories and varying hydrodynamic coefficients were 

used. Parametric studies were also conducted varying water depth, tether pretension, CG 

position and wave incident angle. 

0 0.05 0.1 

P-M spectrum 

0.15 
frequency 

0.2 

Figure 4.1: P-M spectrum 

4.3.1.1 Frequency domain analysis 

0.25 0.3 

The Frequency Domain (FD) analysis is inherently linear, and in order to apply 

the approach to a nonlinear problem, all nonlinearities must be linearized. Due to the 

approximations made, the linearized frequency domain approach could not be expected to 

match the nonlinear time domain method exactly, and the expected degree of accuracy 

was not as well established due to the limited literature on the topic [53-54]. The 

frequency domain analysis results for TLP2 have been briefly discussed in this chapter 

and its degree of accuracy established compared with time domain analysis. 

Figures 4.2 to 4.5 show the responses for surge, heave, pitch and tether tension 

in RAO form. The highest value of RAO surge was 0.78 m/m at frequency 0.09 Hz 

which was the peak frequency of the P-M spectrum. The most effective period for heave 

response was between the frequencies 0.1 to 0.18 Hz with peak value 1.43 mm/m at 0.13 

Hz. The pitch response had three similar peaks, the highest one being 4.3x 1 o-s (rad/m) at 

0.14 Hz. The period between 0.1 to 0.23 Hz represented the most important frequencies 

in the tether tension while the peak value 74 kN/m occurred at 0.12 Hz. The surge, 

heave, pitch and tether tension responses spectra are shown in Figures 4.6 to 4.9. 
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From the above spectra, the responses could be converted as time series shown in Figures 

4.10 to 4. 13 which represent the actual response of the platform. The surge response was 

following a random trend with 1.8 m as the maximum response. The maximum heave 

response was 5.9 mm. The maximum pitch maximum response was 8.2x 104 rad and 354 

kN was the maximum value for the tether tension. 

4.3.1.2 Time domain analysis 

The Time Domain (TD) analysis was inherently more stable than the frequency 

domain analysis and it took the nonlinear factors in to consideration. The time domain 

analysis is the most efficient dynamic analysis for solving the equation of motion by 

integrating in time applying the Newmark beta method. 

The regular wave with details given in section 4.2 was applied to the platform 

TLP2 and the responses are given in Figures 4.14 to 4.19. The responses had a transient 

period before reaching the final stable response as seen in the figures. The surge and 

sway responses were almost same in the trends and values. The roll and pitch responses 

were also similar in trends and in values. 

4.3.1.2.1 Random wave results 

The Response Amplitude Operator (RAO) has been the most accurate and 

common criterion to evaluate and compare the random responses. The results of the 

square TLP2 were studied as RAO in time domain analysis for surge, heave, pitch and 

tether tension in Figures 4.20 to 4.23. Excluding the low wave frequencies (less than 0.07 

Hz), the highest RAO for surge response was 1.26 m/m at 0.14 Hz with periodic peaks 

decreasing gradually with the higher wave frequencies. Due to the sensitivity of the 

heave response to the wave height, the meandrous RAO curve was obtained and the 

highest RAO for heave was 1.1 mm/m at 0.12 Hz. The period between 0.07 to 0.18 Hz 

represented the most effective period in pitch and tether tension life with peak values 

1. 7x 104 rad/m and 218 kN/m respectively. 
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4.3.1.2.2 Typical responses 

The typical responses in surge, heave, pitch and tether tension for the above 

mentioned platform, were determined by converting the RAOs to the time series. Figures 

4.24 to 4.27 showed that the responses in surge, heave, pitch and tether tension and these 

follow a similar pattern as the input time series generated by the selected P-M spectrum. 

The maximum responses were 2 m in surge, 2.5 mm in heave, 0.00036 radians 

in pitch and 420 kN for tether tension. These are with in the permissible limits. 

4.3.1.2.3 Results validation 

The square TLP1 was used to compare and validate the results with the results 

reported in the literature. Figure 4.28 compared the results in surge and tether tension, 

obtained on TLP 1 for the University College London (UCL), results in Indian institute of 

technology, Madras (reported by Kurian V. John. [39]) with MATLAB computer 

program which was developed in this study. 

The surge RAO for the current study followed same trend for UCL and Kurian 

results with slight more or less values. The program showed a bit higher values for the 

period between 0.10 to 0.15 Hz probably because of the effects of recalculated 

hydrodynamic coefficients in the program. These will be discussed in detail for the three 

degrees of freedom in the coming paragraphs. 

The results obtained for tension RAO fluctuated between the lower and higher 

values of Kurian and UCL results. The period between 0.11 to 0.134 Hz recorded a bit 

higher RAO values and the period between 0.07 to 0.11 Hz recorded a bit lower RAO 

values probably because of the effects of recalculated hydrodynamic coefficients as 

mentioned before. 
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4.3.1.2.4 Comparison of Frequency and time domain results 

Due to the differences in approaches and approximations, the compansons 

between time and frequency domain is not fair. Yet these comparisons are shown in this 

work to assess the degree of accuracy for the frequency domain analysis. Figures 4.29 to 

4.32 summarized the comparisons of responses as RAO for surge, heave, pitch and tether 

tension. 

RAO surge in frequency domain was less than that for time domain, with a shift 

of frequency for peak values. The surge response calculated using frequency domain 

analysis was smaller than the equivalent surge response calculated by time domain 

analysis by about 19% 

RAO heave in frequency and time domain were same in trend and near in 

values with bit higher values for the frequency domain between the frequencies 0.12 to 

0.16 Hz. Heave response of frequency domain was higher than the heave response of 

time domain by about 35%. 

The RAO calculated usmg the frequency domain analysis showed the 

inaccuracy of the frequency domain analysis in the prediction of the pitch response. 

Although the trends of the RAOs were same, the values of time domain were more the 

double of the frequency domain response. 

Excluding the period less than 0.07 Hz, tether tension RAO by TD was higher 

than FD. The tether tension of TD was more than FD by 25%. According to the above 

comparisons, the frequency domain analysis was less accurate, because of the elimination 

of nonlinearities in the drag term, thereby underestimating the wave forces on the 

platform. Moreover the FD depends on the uncoupled analysis and hence is not preferred 

to be used in the design of real projects. 
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4.3.1.3 Square TLP Parametric studies 

The square platform TLP2 was used for the parametric studies. Water depth, 

tether pretension, center of gravity (CG) position, wave angle and hydrodynamic 

coefficients were varied and studied. The above mentioned parameters were important 

for study because of the possibility for them to change during installation and operation 

procedures. 

4.3.1.3.1 Water depth 

Figures 4.33 to 4.35 showed that water depth affected only surge response 

mainly. It could be observed that raising water depth from 300 m to 900 m increased the 

maximum surge RAO by about 47%. The effect on heave and pitch responses were only 

very little. 

4.3.1.3.2 Tether pretension 

Three values ofpretension were used namely 101000, 135500 and 170000 kN. 

Figures 4.36 to 4.38 showed that, for a 25% increase of pretension, the surge response 

decreased by about 10% and there was no considerable effect on heave and pitch 

response. Similarly, for a 25% decrease of pretension, the surge response increased by 

about 10%, and there was no considerable effect on heave and pitch response. These 

agree with the fact that increasing the pretension increased the restraint on the platform 

and thereby decreased the responses. 

4.3.1.3.3 Center of gravity position 

Figures 4.39 to 4.41 showed that the change in center of gravity (CG) had no 

effect in surge and heave degrees of freedom, but the pitch response decreased by about 

33% when the CG was decreased by 4 m downward. The reason of decreasing pitch 

response due to decreased CG poison was that reducing CG position reduced the 

balancing moment that affected pitch response. 
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4.3.1.3.4 Wave angle 

The change of wave angle generated responses in all the six degrees of freedom. 

The surge response at 45° wave angle was about 65% of that at zero wave angles. The 

heave and pitch responses at 45° wave angle were about 55% of that at zero wave angle. 

The sway response at 45 degree wave angle was three times that at 15 degree angle. The 

45 degree wave angle increased the roll response by 59% from that at 15 degree wave 

angle. The yaw responses at all the 3 inclinations were nearly the same. Increasing wave 

angle decreased the x axis components and increased the y axis components. Figures 

4.42 to 4.47 gave the wave angle effects. 

4.3.1.3.5 Second order wave theory and hydrodynamic coefficients 

It was decided to check the results of our study by comparing Airy linear wave 

theory and second order wave theory to see the degree of convergence between the 

results. 

The hydrodynamic coefficients (inertia and drag) were taken at each point on the 

platform according to its position (case one) and refreshed at each time step to give more 

accuracy in response calculation. The fixed hydrodynamic coefficients (case two) 

approach was compared with case one and their effects were compared for surge heave 

and pitch responses. Figures 4.48 to 4.50 compared the responses by Airy linear wave 

theory, second order wave theory and varied hydro dynamic coefficients. The Figures 

showed that in the current study there were no changes in responses whether Airy linear 

wave theory or second order wave theory were used. The responses by using varied 

hydrodynamic coefficients were more than that due to fixed hydrodynamic coefficient by 

about 15% in surge, 21% in heave and 22% in pitch. 

4.3.2 Triangular TLP 

The triangular TLP3 with the details given in Table 4.1 was selected for the 

study. The studies were conducted in time domain and it included random wave 
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applications, parametric studies and comparisons between square and triangular TLPs in 

all degrees of freedom under random wave excitation. 
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4.3.2.1 Random wave results 

The results of the triangular TLP3 were studied in RAO form in time domain 

analysis for surge, heave, pitch and tether tension in Figure 4.51 to 4.54. Excluding the 

low wave frequencies (less than 0.07 Hz) the highest RAO for surge response was 0.884 

m!m at 0.22 Hz with periodic peaks decreasing gradually with the higher wave 

frequencies. 

The highest RAO for heave was 3.5 mm!m at 0.10 Hz. The period between 

0.07 to 0.22 Hz represented the most effective period in pitch and tether tension when the 

highest pitch RAO was 0.0028 rad/m at 0.15 Hz while the highest tether tension RAO 

was 2724 kN/m at 0.12 Hz. 

4.3.2.2 Typical responses 

The typical responses in surge, heave, pitch and tether tension for the above 

mentioned platform, were determined by converting the RAOs to the time series. Figures 

4.55 to 4.58 showed that the responses in surge, heave, pitch and tether tension follow a 

similar pattern as the input time series generated by the selected P-M spectrum. 

The maximum responses were 2.18 m in surge, 6.3 mm in heave, 0.00786 

radians in pitch and 6000 kN for tether tension. These are within the permissible limits 

[6]. 

4.3.2.3 Square and Triangular TLPs comparisons 

The comparisons between the square and triangular TLPs were conducted in 

Figures 4.59 to 4.62. These comparisons aimed to clarify the effects of the platform 

shapes in the behavior of the structure. The platform TLP2 was the square TLP while 

TLP3 was the triangular TLP. The comparisons were made for surge, heave, pitch and 

tether tension in RAO terms. 
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The comparison in RAO surge showed that the highest square RAO value was at 

0.14 Hz and the highest triangular RAO was at 0.22 Hz. The wave frequencies for the 

worst surge responses were not same for the square and triangular TLPs. The maximum 

surge response for triangular TLP was higher than the maximum surge response for 

square TLP by 8.2% (Figure 4.59). 

RAO heave showed remarkable difference between square and triangular TLP in 

the values and the trends. Triangular TLP gave higher heave response with 60% higher 

values compared to the square one. That difference may be attributed to the tether 

system. While the square TLP resisted the displacements by four tether groups, the 

triangular had only three groups and the heave response was affected by the tether 

number and stiffness. 

The comparison of pitch responses showed the clear superiority of the square 

TLP that gave a better pitch performance. 

Except for frequencies above 0.24 Hz, the triangular tether tension RAO was 

higher than the rectangular one. The tether tension was affected by the responses of the 

platform specially the vertical motion (heave, roll, pitch). As the triangular TLP had 

higher responses in all degrees of freedom, the tether tension was much higher than the 

square one. 

4.3.2.4 Triangular TLP parametric studies 

The triangular platform TLP3 was used for the parametric studies. Water depth, 

tether pretension, center of gravity (CG) position and wave angle were studied. 

4.3.2.4.1 Water depth 

Figures 4.63 to 4.65 showed that unlike the square TLP the water depth affected 

all the degrees of freedom. It could be observed that raising water depth from 300 m to 

900 m increased the maximum surge RAO by about 47%. The heave response increased 

by 42% and the pitch response increased by 53%. 
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4.3.2.4.2 Tetber pretension 

Three values of pretension were used namely I 0 I 000, 135500 and 170000 kN. 

Figures 4.66 to 4.68 showed that, for a 25% increase of pretension, the surge response 

decreased by about 41%, the pitch response decreased by about 22.5% and there was no 

considerable effect on heave response. Similarly, decreasing the pretension by 25% 

increased the responses vice versa. 

4.3.2.4.3 Center of gravity position 

Figures 4.69 to 4.71 showed that the change in center of gravity (CG) had no 

effect in surge and heave degrees of freedom, but the pitch response increased by 64% 

when the CG was raised by 4 m. The reason of increase in the pitch response due to 

lowering CG position was that reducing CG position reduced the balancing moment 

which affected the pitch response. 

4.3.2.4.4 Wave angle 

The change of wave angle generated responses in all the six degrees of freedom. 

The surge response at 45° wave angle was about 70% less than that at zero wave angles. 

The heave response at 45° wave angle showed a jump between the periods 0.08 to 0.18 

Hz with amount 92% higher than that at zero degree angle. The pitch response was 

fluctuating between lower and higher with maximum difference 51% than that at zero 

wave angle. 

The sway response by 45 degree wave angle was three times that at 15 degree 

angle. The highest RAO roll occurred at 30 degree wave angle and the difference of 

values between 15 and 30 degree was 62%. The yaw responses for 15 and 45 degree 

inclinations were nearly same and less than that at 30 degree by 31%. Increasing wave 

angle decreased the x axis components and increased the y axis components. Figures 

4.72 to 4.77 gave the wave angle effects. 
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4.3.3 Inclined tether TLP 

Mooring system design is to make the system stiff enough to avoid damage to 

drilling or production risers, caused by excessive offsets [54]. The tension leg platform is 

vertically restrained precluding motions vertically (heave) and rotationally (pitch and 

roll) but it is compliant in the horizontal direction permitting lateral motions. The 

inclined tether TLP concept is introduced to increase the restraint in the horizontal 

degrees of freedom. The tethers were formed at angle with the three axes {x, y and z). 

The pretension and the stiffness components of the particular axis restrain the motion 

along that axis, which will distribute the restriction between horizontal and vertical axis. 

4.3.3.1 Inclined tether TLP behavior 

Inclined tether TLP was a normal square TLP with an inclination in the mooring 

system. The TLP4 and TLP5 in Table 4.1 were inclined tether TLP. The tethers were 

inclined by 10 degrees with the vertical z axis and 45 degree with x and y axis after 

solving it in x, y plane. The difference between TLP4 and TLP5 was that, TLP4 kept the 

buoyancy same with the normal tether TLP while TLP5 kept the pretension same. 

4.3.3.2 Inclined tether TLP RAOs 

Figures 4. 78 to 4.81 showed the inclined tether TLP 4 RAOs in surge, heave, pith 

and tether tension. The RAO surge gave 0.292 m/m at 0.14 Hz as maximum value 

followed by smaller crests in the higher wave frequency. The maximum heave RAO was 

2 mm/m at frequency 0.13 Hz. RAO pitch and tether tension hade almost same trend 

with values 0.00042 rad/m and 450 kN/m respectively at 0.14 Hz. 
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4.3.3.3 Typical responses 

Figures 4.82 to 4.85 showed the responses in surge, heave, pitch and tether 

tension. The maximum responses were 1.024 m in surge, 6 mm in heave, 8.9* I 04 

radians in pitch and 850 kN for the tether tension. These agreed with actual practical 

values. 

4.3.3.4 Inclined tether TLP comparisons 

The comparisons demonstrated in Figures 4.86 to 4.89 were between square 

(TLP2), triangular (TLP3) and inclined tether (TLP4 andTLP5). These comparisons were 

conducted to study the various shapes effects on the behavior ofTLPs and to compare the 

inclined tether TLPs with the square and triangular TLPs to conclude the optimum 

selection under the existing condition. 

Inclined tether TLP had the smallest RAO surge with remarkable difference 

with square and triangular TLPs. The inclined tether TLP4 and TLP5 had very little 

difference in RAO surge. RAO surge for inclined TLP was 79% less than the square one 

and 87% less than the triangular one. TLP4 followed same square TLP trend which were 

different from the triangular one. The horizontal pretension and stiffness components 

precluded the surge motion which made that difference. This insured that the inclined 

tether TLP reduced a great part of surge motion. 

Heave motion for inclined tether TLP was different in trend compared to square 

and triangular TLPs. The fixed buoyancy (TLP4) was lower in the responses than fixed 

pretension (TLP5) by 20% and lower than the triangular TLP3 by 43%. Although the 
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inclined TLP4 was higher than square TLP2 by 45%, the difference was very small. The 

reason of higher inclined TLP response is that unlike the normal TLP which resist the 

heave motion by almost full tether pretension and stiffness, the inclined tether TLP 

resisted the heave motion by the vertical components of pretension and stiffness. 
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Pitch RAO for inclined and normal TLPs had same trend and different values. The pitch 

RAO for TLP4 was lower 7% than TLP5 and 86% lower than the triangular TLP3• The 

difference between the square TLP2 and the Inclined TLP4 was 52% higher which could 

be considered as small because of the small pitch values. 
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Figure 4.88: RAO pitch for various types of TLPs 
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RAO tether tension for inclined TLP4 was a little higher than inclined TLP5 by 

7%. The triangular TLP3 was higher in tension than TLP4 by 83%. The difference 

between inclined TLP4 and square TLP2 was 52% (inclined was higher), because of the 

additional tension caused by restraining the surge response. Table 4.2 gave the values of 

the RAO for TLP2, TLP3, TLP4 and TLP5 in surge, heave, pitch and tether tension. 

4.3.3.5 Inclined Tether TLP advantages 

• According to the above studies, inclined tether TLP has much lower surge 

response that is the most important criterion for platform stability. 

• Unlike other compliant platforms, the TLP pile foundation expenence tension 

rather than compression. The pile tension in case of the inclined TLP is reduced 

because of the inclination. 
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• The horizontal components of the tether tension increases the friction force 

between the soil and pile skin thereby reducing the pile perimeter and thus the pile 

cost. 

• The vertical pretension in the inclined tether TLPs is less than that of the normal 

TLP. Decreasing the pretension decreases the buoyancy this leading to small hull 

sizes and hence smaller cost of platform. 

T bl 4 2 RAO ~ a e . . s or vanous T ens10n ~ PI U a orm 
Description RAOsurge RAOheave RAO pitch RAO tension 

(m/m) (mm/m) (rad/m) (kN/m) 

TLP2 1.26 1.1 1.7*10-" 218 

TLP3 0.880 3.5 2.8*10_, 2724 

TLP4 0.292 2.0 4.2* 1 0""" 450 

TLPS 0.290 2.3 4.2*10 .... 458 
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CHAPTER FIVE 

CONCLUSIONS AND FURTHER STUDIES 

5.1 Introduction 

In this work an elaborate study on the dynamic analysis of different types of 

Tension Leg Platforms were conducted in time and frequency domain using MATLAB 

language. The results ware validated with available results in the literature. Using this 

programmer, it was possible to conduct an accurate time domain dynamic analysis of any 

type of TLP. The response in all the degrees of freedom and the tether tension could be 

determined at any time. As these responses form the major criterion for the stability of a 

TLP during operation, this program will help in a great way for preliminary design, 

conceptual design, analysis and research for developing TLP technology for deep water. 

The dynamic responses of the various TLP configurations subjected to random waves 

were analyzed and compared. Parametric studies and hydrodynamic approximations 

were analyzed. The following conclusions were drawn. 

5.2 Conclusions 

1. The responses due to the varymg hydrodynamic coefficients showed higher 

values than the responses taking constant hydrodynamic coefficients in surge, 

heave and pitch degrees of freedom by amounts ranging from 15 % to 22%. 

2. The comparison between the frequency and time domain analysis showed that the 

frequency domain analysis was not accurate and could be used only for some 

preliminary analysis. 
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3. Increasing water depth increased the surge response, but there were no remarkable 

effects on the heave and pitch responses. 

4. The increase in the pretension decreased the surge and there was no considerable 

effect on heave and pitch response. The same was true vice versa also. 

5. The change in position of centre of gravity affected only the pitch responses. 

Raising the CG increased the pitch response. 

6. When the wave was incident at an inclination, there were responses in all the six 

degrees of freedom. Increasing wave angle with surge direction decreased x axis 

components and increased y axis components. 

7. When the square and triangular TLPs were compared, the surge responses of both 

square and triangular were nearly same and followed almost the same trend. The 

responses in heave, pitch, and tether tension for triangular TLPs were higher 

compared to square TLPs. Based on this study, it could be concluded that square 

TLPs have better performance criteria compared to triangular TLPs in random 

waves. 

8. The inclined-tether square TLP which was proposed by the author, had better 

performance compared with vertical-tethered rectangular and triangular TLPs. 

More over the inclined tether TLP decreased the cost by decreasing pile and hull 

SIZeS. 
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5.3 Further studies 

Based on the present study, the following works are proposed for the future 

studies. 

• Detailed Finite Element Analysis of TLP can be conducted dividing the platform 

and tether into different types of elements. 

• The wave force calculations can be improved by using diffraction theory instead 

of Morison Equation. 

• Detailed studies on the pile of the inclined tether TLPs can be incorporated in the 

analysis. 

• The compansons between inclined tether for square, triangular and extended 

tension leg platforms can be investigated 



REFERENCES 

[1]. S. K. Chakrabarti. Handbook of offshore engmeenng, Volume I, Offshore 

structure analysis, Inc. Plainfield, Illinois, USA (2005). Elsevier 0-08-044568-3. 

[2]. Zhihuang Ran. Coupled dynamic analysis of flouting structures in waves and 

current. Texas A&M University (2000). UMI 9994319. 

[3]. Jun Zhao. Nonlinear surge response statistics of complaint offshore structures. 

Department of Civil and Environmental Engineering, University of Houston 

(1993). UMI 9619071. 

[4]. Basim Behnam Mekha. Non-linear dynamic response of Tension Leg Platform. 

Faculty of the Graduate School of the University ofTexas at Austin (1994). UMI 

9519350. 

[5]. John W. Chianis. Advancement in Tension Leg Platform technology. 

PETRONAS International Research and Development (R&D) Forum, Kuala 

Lumpur, Malaysia (2004). 

[6]. Zeki Demirbilek. TLP- A State of the Art Review. American Society of Civil 

Engineers (ASCE), New York (1989), 0-87262-683-0. 

[7]. S. K. Chakrabarti. Hydrodynamics of Offshore structures. CBI Industries, Inc. 

Plainfield, Illinois 60544-8929, USA (1987). 0-925451-66-X. 

[8]. Seon Mi Han and Hayam Benaroya. Nonlinear and Stochastic Dynamics of 

Compliant Offshore Structures. Department of Civil Engineering, University of 

Waterloo, Ontario, Canada (2002). Kluwer Academic Publishers 1-4020-0573-3. 

[9]. James F. Wilson. Dynamics of Offshore Structures, Second Edition. Department 

of Civil and Environmental Engineering, Duke University, USA (2003). 

Published by John Wiley 0-471-26467-9. 

[10]. A. K. Jain. Nonlinear coupled response of offshore Tension Leg Platforms to 

regular wave force. Department of Civil Engineering, Indian Institute of 

Technology, India (1995). Ocean Engineering 0029-8018(95)00059-3. 

[11]. Hsien Hua Lee, Pei-Wen Wang, Chung-Pan Lee. Dragged surge motion of 

Tension Leg Platforms and strained elastic tethers. Department of Marine 

109 



Environment, National Sun Yat-sen University, Kaohsiung, Taiwan (1999). 

Ocean Engineering 575-594. 

[12). M.S. Turnbull, A.G.L. Borthwick, R. Eatock Taylor, Wave-structure interaction 

using coupled structured-unstructured finite element meshes, HR Wallingford 

Ltd, Howbery Park, Wallingford, Oxon OXlO 8BA, UK (2003), Applied Ocean 

Research 63-77. 

[13]. Zeng Xiao-hui, Shen Xiao-peng, WU Ying-xiang. Governing equations and 

numerical solutions of tension leg platform with finite amplitude motion. 

Division of Engineering Sciences, Institute of Mechanics, Chinese Academy of 

Sciences (2007). Editorial Committee of Appl. Math 0253-4827. 

[14]. Y.M. Lowa, R.S. Langleyb. Time and frequency domain coupled analysis of 

deepwater floating production systems. Nanyang Technological University, 

School of Civil and Environmental Engineering, Nanyang Avenue, Singapore 

(2007). Elsevier 371-385. 

[15). A.Naess, 0. Gaidai, P.S. Teigen, Extreme response prediction for nonlinear 

floating offshore structures by Monte Carlo simulation, Centre for Ships and 

Ocean Structures, Norwegian University of Science and Technology, N0-7491 

Trondheim, Norway (2007), Applied Ocean Research 221-230. 

[16). S. Ahmad. Stochastic TLP Response Under Long Crested Random Sea. 

Department of Applied Mechanics, Indian Institute of Technology, Delhi, India 

(1996). Elsevier 0045-7949(96)00188-5. 

[ 17). J.L.B. Carvalho, C.E. Parente, Directional wave measurements using a slope 

array system, Laboratory of Physical Oceanography, University of Vale do 

ltajm ·, Rua Uruguai,458, ltajat '-SC 88.302-202, Brazil (2000), Applied Ocean 

Research 95-101. 

[18]. M.R. Tabeshpour, A.A. Golafshani, M.S. Seif. Comprehensive study on the 

results of tension leg platform responses in random sea. Department of Civil 

Engineering, Sharif University of Technology, Tehran, Iran (2006). J.Zhejiang 

Univ SCIENC 1305-1317. 

110 



[19]. S. Chandrasekaran, A.K. Jain, A. Gupta, A. Srivastava. Response behaviour of 

triangular tension leg platforms under impact loading. Department of Civil 

Engineering, Institute of Technology, India (2007). Ocean Engineering 45-53. 

[20]. A. Ertas and S. Ekwardo-Osire. Effects of damping and wave parameters on 

offshore structure under random excitation. Texas Tech University, Department 

of Mechanical Engineering, Lubbock, Texas 79409, U.S.A (1991). 

[21]. V. Vengatesan, K. S. Varyani, N. Barltrop, An experimental investigation of 

hydrodynamic coefficients for a vertical truncated rectangular cylinder due to 

regular and random waves, Department of Naval Architecture and Ocean 

Engineering, University of Glasgow, Glasgow, G 12 8QQ Scotland, UK (2000), 

Ocean Engineering 291-313. 

[22]. S. Chandrasekaran, A.K. Jain , N.R. Chandak, Influence of hydrodynamic 

coefficients in the response behavior of triangular TLPs in regular waves. 

Department of Civil Engineering, Institute of Technology, Banaras Hindu 

University Varanasi 221 005, India (2004), Ocean Engineering 2319-2342. 

[23]. S. Chandrasekaran, A.K. Jain, Anupam Gupta. Influence of wave approach angle 

on TLP's response. Department of Civil Engineering, IT BHU, Varanasi 

221005, Uttar Pradesh, India (2007). Elsevier 1322-1327. 

[24]. S. Chandrasekaran, A.K. Jain. Dynamic behaviour of square and triangular 

offshore tension leg platforms under regular wave loads. Rao Tula Ram College 

ofTechnical Education, New Delhi, India(2002). Ocean Engineering 279-313. 

[25]. S. Chandrasekaran, A.K. Jain. Triangular Configuration Tension Leg Platform 

behaviour under random sea wave loads. Department of Civil Engineering, I.I.T. 

Delhi, Haus Khas, New Delhi 110016, India (2002). Ocean Engineering 1895-

1928. 

[26]. Xiaohong Chen, Yu Ding, Jun Zhang, Pierre Liagre, John Niedzwecki, Per 

Teigen, Coupled dynamic analysis of a mini TLP: Comparison with 

measurements, Department of Civil Engineering, Texas A&M University, 

College Station, TX 77843-3136, USA (2006), Ocean Engineering 93-117. 

[27]. N.A. Siddiqui, S. Ahmad, Reliability analysis against progressive failure of TLP 

tethers in extreme tension, Department of Civil Engineering, Jamia Millia 

111 



Is lamia, New Delhi 110025, India (2000), Reliability Engineering and System 

Safety 195-205 

[28]. N.A. Siddiqui, Suhail Ahmad, Fatigue and fracture reliability of TLP tethers 

under random loading, Department of Civil Engineering, Aligarh Muslim 

University, Aligarh 202002, India (200 1 ), Marine Structures 331-352. 

112 

[29]. S. Chandrasekaran, N.R. Chandak, Gupta Anupam, Stability analysis of TLP 

tethers, Department of Civil Engineering, Institute of Technology, Banaras Hindu 

University, V aranasi-05, India (2006), Ocean Engineering 4 71-482. 

[30]. Mangala M. Gadagi, Haym Benaroya, Dynamic response of an axially loaded 

tendon of a tension leg platform, Department of Mechanical and Aerospace 

Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA 

(2006), Journal of Sound and Vibration 38-58. 

[31 ]. R.A. Khan, N.A. Siddiqui, S.Q.A.Naqvi and S. Ahmad. Reliability analysis of 

TLP tethers under impulsive loading. Department of Civil Engineering, Aligarh 

Muslim University, India (2006). Elsevier 73-83. 

[32]. Claes-Goran Gustafson , Andreas Echtermeyer. Long-term properties of carbon 

fibre composite tethers. Department of Engineering Design and Materials, 

Norwegian University of Science and Technology, N-7491, Norway (2007). 

Elsevier 1353-1362. 

[33]. F. Barranco-Cicilia , E.C.P. Lima, L.V.S. Sagrilo, Reliability-based design 

criterion for TLP tendons, Instituto Mexicano del Petroleo, Deep Waters 

Exploitation Department, Eje Central Lazaro Cardenas 152, Gustavo A Madero 

07730, D.F., Mexico (2008), Applied Ocean Research. 

[34]. Ivar Holand, ove T. Gudmestad and Erik Jersin. Design of Offshore concrete 

structures. Spon Press 11 New Fetter Lane, London (2000) 0-419-24320-8. 

[35]. R. Adrezin and H Benaroya. Non-Linear Stochastic dynamics of Tension Leg 

Platforms. Department of Mechanical Engineering, University of Hartford, West 

Hartford, USA (1999), Journal of Sound and Vibration, 27-65. 

[36]. S. Chandrasekaran1, A. K. Jain and N. R. Chandak. Response Behavior of 

Triangular Tension Leg Platforms under Regular Waves Using Stokes Nonlinear 



Wave Theory. Dept. of Civil Engineering, Indian Institute ofTechnology, Hauz 

Khas, New Delhi-16, India (2007). Journal of Waterway 0733-950X 

[37]. Inyeol Palk and Jose Roesset. Use of Quadratic Transfer Function to Predict 

Response of Tension Leg Platform. Department of Civil Engineering Kyungwon 

University, Korea (1996). Journal of Engineering Mechanics. 

113 

[38]. Anne M. Rustad, Carl M. Larsen, Asgeir J. S0rensen. FEM modeling and 

automatic control for collision prevention of top tensioned risers. Department of 

Marine Technology, Norwegian University of Science and Technology, Norway 

(2007). Elsevier. 

[39]. V. J. Kurian. Analytical and Experimental investigations on the behavior of Tension 

Leg Platform. Ocean Engineering Center Indian Institute of Technology, Madras, India 

(1993). 

[40]. Bhaskar Sengupta and Suhail Ahmad. Reliability assessment of tension leg 

platform tethers under nonlinearly coupled loading. Department of Applied 

Mechanics, liT Delhi, Hauz Kaus, New Delhi 110016, India (1996). Elsevier 47-

60. 

[41]. M.R. Tabeshpour, A.A. Golafshani, M.S. Seif. Second-order perturbation added 

mass fluctuation on vertical vibration of tension leg platforms. Department of 

Civil Engineering, Sharif University of Technology, Tehran, Iran (2007). Marine 

Structures 271-283. 

[42]. Joseph W. Tedesco, William G. McDougal and C. Allen Ross. Structural 

Dynamics "Theory and Applications". Civil Engineering Department, Auburn 

University. Addison Wesley Longman 0-673-98052-9. 

[ 43]. Dia ArefMalaeb. Dynamic Analysis of Tension Leg Platform. Civil Engineering 

Department, Texas A&M University (1982). UMI 48106. 

[44]. Chuel-Hyun Kim, Chang-Ho Lee, Ja-Sam Goo. A dynamic response analysis of 

tension leg platforms including hydrodynamic interaction in regular waves. 

Department of Naval Architecture and Marine Systems Engineering, Pukyong 

National University, Korea (2007). Ocean Engineering 1680-1689. 



[ 45]. John M. Biggs. Introduction to Structural Dynamics. Civil Engineering 

Department, Massachusetts Institute of Technology (1964). McGraw-Hill 07-

005255-7. 

[46]. Mario Paz and William Leigh. Structural Dynamic "Theory and Computation", 

Fifth Edition (2004). Kluwer Academic Publishers 1-4020-7667-3. 

[47]. A. J. Kappas. Dynamic Loading and Design of Structures. Department of Civil 

Engineering, Aristotle University of Thessaloniki, Greece (2002). Spon press 0-

203-30195-l. 

[ 48]. Xiaohong Chen. Studies on dynamic interaction between deep-water flouting 

structures and their mooring/tendon systems. Texas A&M University (2002). 

UMI 48 106-1346. 

[49]. Hsien Hua Lee, Wang Pei-Wen. Dynamic behavior of tension-leg platform with 

net-cage system subjected to wave forces. Department of Marine Environment 

and Engineering, National Sun Yat-sen University, Kaoshiung Taiwan (1999). 

Ocean Engineering 179-200. 

[50]. Anil K. Chopra. Dynamics of structures "Theory and applications to earthquake 

Engineering", Second Edition. University of California at Berkeley (2001). 

Prentice Hall 0-13-086973-2. 

[51). Ray W. Clough, Joseph Penzien. Dynamics of structures, Second Edition. 

University of California, Berkeley (1993). McGraw-Hill 0-07-011394-7. 

[52]. Ben C. Gerwick. Construction of Marine and Offshore Structures, Second 

Edition. University of California, Berkeley (2000). CRC Press 0-8493-7485-5. 

[53]. Xing Jian Jinga, Zi Qiang Langa, Stephen A. Billingsa, Geofrey R. Tomlinson. 

Frequency domain analysis for suppression of output vibration from periodic 

disturbance using nonlinearities. Department of Automatic Control and Systems 

Engineering, University of Sheffield, UK (2008). Elsevier 536-557. 

[54). S. K. Chakrabarti. Handbook of offshore engineering, Volume II, Offshore 

structure analysis, Inc. Plainfield, Illinois, USA (2005). Elsevier 0-08-044569-1. 

114 



PUBLICATIONS 

A: Published papers 

1. M.A. Gasim, V.J. Kurian, Effcts of Varying Hydrodynamic Coefficients on the 

Behaviour ofTLP, NPC 2008, UTP, March 2008. 

2. M.A. Gasim, V.J. Kurian, S.P. Narayanan, V. Kalaikumar, Responses of Square 

and Triangular TLPs Subjected to Random Waves, pp 133-140, ICCBT 2008, 

Kuala Lumpur, June 2008. 

3. V.J. Kurian, M.A. Gasim, S.P. Narayanan, V. Kalaikumar, Parametric Studies on 

the Behaviour of TLP under Regular and Random Waves, pp 213-222, ICCBT 

2008, Kuala Lumpur, June 2008. 

B: Papers under preparation. 

1. V.J. Kurian, M.A. Gasim, S.P. Narayanan, Parametric Studies of Triangular 

TLPs, Abstract submitted, EN CON 08, Kuching, December 2008. 

2. V.J. Kurian, M.A. Gasim, S.P. Narayanan, Frequency and Time Domain 

Analyses for TLP Responses, Abstract submitted, ICSTIE 2008, Penang, 

December 2008. 

3. V.J. Kurian, M.A. Gasim, S.P. Narayanan, Inclined Tether TLPs for Better 

Stability, Under preparation, Platform, UTP Journal, July- December2008. 

4. M. A.Gasim, V. J. Kurian, S. P. Narayanan, Dynamic behavior for various TLPs 

configurations, under preparation, IJOPE, October- December2008. 

115 



APPENDICES 

Relationships between KC and hydrodynamic coefficients [7]: 
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Figure A-1: KC and Drag coefficient relationship 
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Figure A-2: KC and Inertia coefficient relationship 
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RAOs for various Tension Leg Platforms: 

Table A-1:. RAOs for square TLP 

Frequency Surge Heave Pitch Tension Tension RAOs RAOH RAOp RAOr 

(Hz) (m) (m) (rad) (N) (kN) (m/m) (m/m) (rad/m) (kN/m) 

0.05 0.03802 7.13E-05 5.57E-07 3738 3.738 2.183008 0.004092 3.2E-05 214.6261 
0.06 0.4588 0.001413 1.09E-05 50650 50.65 1.453523 0.004477 3.46E-05 160.4642 
0.07 1.0429 0.002544 2.22E-05 97460 97.46 1.153914 0.002815 2.46E-05 107.8344 
0.08 1.0491 0.001601 4.87E-05 84700 84.7 0.806784 0.001231 3.74E-05 65.13637 
0.09 0.6289 0.000133 7.82E-05 101020 101.02 0.447883 9.45E-05 5.57E-05 71.94323 
0.1 0.08292 0.000956 0.000106 139870 139.87 0.062158 0.000716 · 7.93E-05 104.8483 
0.11 0.4304 0.001178 0.000129 172050 172.05 0.360138 0.000985 0.000108 143.9633 
0.12 0.8096 0.00112 0.000146 188460 188.46 0.776333 0.001074 0.00014 180.7161 
0.13 1.0014 0.000447 0.000148 188750 188.75 1.111898 0.000496 0.000164 209.5773 
0.14 0.9778 0.00027 0.000135 169100 169.1 1.260028 0.000348 0.000174 217.9082 
0.15 0.7806 0.00014 0.000101 128060 128.06 1.165283 0.000209 0.000151 191.1685 
0.16 0.4806 0.000215 6.22E-05 78470 78.47 0.827862 0.000371 0.000107 135.1692 
0.17 0.16768 0.000152 1.98E-05 24470 24.47 0.331667 0.000301 3.91E-05 48.40104 
0.18 0.09992 0.000126 1.66E-05 21990 21.99 0.225751 0.000286 3.75E-05 49.68249 
0.19 0.2694 0.00013 4.02E-05 51720 51.72 0.691547 0.000333 0.000103 132.7647 
0.2 0.31 8.36E-05 4.47E-05 57560 57.56 0.899445 0.000243 0.00013 167.0067 
0.21 0.2403 8.64E-05 3.49E-05 44900 44.9 0.784138 0.000282 0.000114 146.5159 
0.22 0.10445 0.00013 1.54E-05 19436 19.436 0.381523 0.000475 5.62E-05 70.99359 
0.23 0.03854 0.000115 5.47E-06 7394 7.394 0.156879 0.000466 2.23E-05 30.09762 
0.24 0.12864 0.000128 1.94E-05 25510 25.51 0.581104 0.00058 8.78E-05 115.2361 
0.25 0.137717 0.000123 2.17E-05 27780 27.78 0.687685 0.000615 0.000108 138.7184 

Table A-2. RAOs for triangular TLP 

Frequency Surge Heave Pitch Tension Tension RAOs RAOH RAOp RAOr 

(Hz) (m) (m) (rad) (N) (kN) (m/m) (m/m) (rad/m) (kN/m) 

0.05 0.032912 0.000568 0.000237 109559.8 109.56 1.88972 0.032619 0.013579 6290.634 
0.06 0.51904 0.009202 0.00369 1446656.4 1446.7 1.64437 0.029152 0.011689 4583.149 
0.07 1.222 0.026181 0.00731 2928340.8 2928.3 1.352079 0.028968 0.008088 3240.056 
0.08 1.44936 0.037692 0.005999 3350467.12 3350.5 1.114593 0.028986 0.004613 2576.591 
0.09 1.18328 0.043254 0.004419 3604147.68 3604.1 0.842694 0.030804 0.003147 2566.759 
0.1 0.7836 0.047682 0.002931 3501632.4 3501.6 0.587397 0.035743 0.002197 2624.868 
0.11 0.42888 0.032535 0.001784 3365023.2 3365 0.358866 0.027224 0.001493 2815.692 
0.12 0.22104 0.0252 0.00155 2840770.8 2840.8 0.211957 0.024165 0.001486 2724.043 
0.13 0.34936 0.019251 0.001671 2053808.4 2053.8 0.38791 0.021375 0.001856 2280.433 
0.14 0.42776 0.013456 0.001792 1020856.03 1020.9 0.551227 0.01734 0.002309 1315.511 
0.15 0.39544 0.010409 0.00189 526198.4 526.2 0.590314 0.015538 0.002822 785.511 
0.16 0.31176 0.006554 0.001151 205186.24 205.19 0.537025 0.011289 0.001983 353.4455 
0.17 0.21888 0.005142 0.000604 226420.992 226.42 0.432939 O.D1017 0.001194 447.855 
0.18 0.16264 0.005365 0.000415 324094.624 324.09 0.367456 0.012121 0.000937 732.2341 
0.19 0.16728 0.004963 0.000401 316808.8 316.81 0.429406 0.012739 0.00103 813.2451 
0.2 0.245016 0.003127 0.000642 82759.488 82.759 0.710898 0.009072 0.001862 240.1214 
0.21 0.2612 0.001405 0.000478 76252.064 76.252 0.852338 0.004584 0.001559 248.8228 
0.22 0.24208 0.000626 0.000075 62801.312 62.801 0.884242 0.002287 0.000274 229.3934 
0.23 0.16592 0.000478 3.89E-05 33253.248 33.253 0.675385 0.001945 0.000158 135.3589 
0.24 0.049448 0.000328 2.74E-05 21605.2704 21.605 0.223371 0.001483 0.000124 97.59727 
0.25 0.069088 0.000248 0.000284 9002.196 9.0022 0.344988 0.001237 0.001419 44.95212 
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Table A-3. RAOs for inclined tether TLP 

Frequency Surge Heave Pitch Tension Tension RAOs RAOH RAOp RAOr 

(Hz) (m) (m) (rad) (N) (kN) (m/m) (m/m) (rad/m) (kN/m) 

0.05 0.021718 0.001 1.2E·05 39450 39.45 1.246984 0.057394 0.000705 2265.115 
0.06 0.600533 0.005432 0.0008 905600 905.6 1.902549 0.01721 0.002541 2869.03 
0.07 1 0.005467 0.00068 653500 653.5 1.106448 0.006049 0.000754 723.0635 
0.08 0.9 0.00306 0.00031 403900 403.9 0.692122 0.002353 0.000238 310.609 
0.09 0.3852 0.00137 9.3E-05 84120 84.12 0.274327 0.000976 6.62E-05 59.90759 
0.1 0.04047 0.0011 0.00013 162360 162.36 0.030337 0.000825 9.92E-05 121.7071 
0.11 0.1629 0.0018 0.00026 319800 319.8 0.136307 0.001506 0.000221 267.5935 
0.12 0.2605 0.002049 0.00032 394800 394.8 0.249796 0.001964 0.000306 378.5776 
0.13 0.2669 0.002295 0.00034 399500 399.5 0.296351 0.002548 0.000382 443.5822 
0.14 0.2272 0.001796 0.00033 355800 355.8 0.292778 0.002314 0.00042 458.4964 
0.15 0.16607 0.00135 0.00025 277900 277.9 0.24791 0.002015 0.000376 414.8502 
0.16 0.095 0.000708 0.00014 171350 171.35 0.163643 0.001219 0.000249 295.1606 
0.17 0.02959 0.000424 4.8E-05 57390 57.39 0.058528 0.000838 9.56E-05 113.516 
0.18 0.017624 0.000533 3.4E-05 41753 41.753 0.039818 0.001204 7.64E-05 94.33347 
0.19 0.04431 0.000615 8.5E-05 95690 95.69 0.113743 0.001578 0.000217 245.6353 
0.2 0.0446 0.000674 9.9E-05 106400 106.4 0.129404 0.001956 0.000286 308.7129 
0.21 0.03551 0.000552 7E-05 82750 82.75 0.115875 0.001802 0.000228 270.0266 
0.22 0.015255 0.000317 3.5E-05 40056 40.056 0.055722 0.001156 0.000127 146.312 
0.23 0.005516 0.000189 1.2E-05 45910 45.91 0.022453 0.00077 4.77E-05 186.8788 
0.24 0.017723 0.00034 4.4E-05 44191 44.191 0.08006 0.001534 0.000198 199.6236 
0.25 0.018719 0.000364 4.8E-05 50762 50.762 0.093473 0.001819 0.000239 253.4781 


