
Cl R I!! It \110\ 01 .\i'!'RO\ ,\I

l!l r.!:-IJ:d rul!illmL'nt ofth~..· r~qum:nh.:nt ti•r thl'

IL\CHU.OR OF E\Cii\Ei'R!\t; (liothl

(LiH 'I RIC\ I. A\:ll UH'TRO\:!t'S 1:\(;1\HRI\t ;I

l \1\I·RSIIIITK\OUXiii'LIRO'\AS

lR0'\011, i'FRAK

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original

work is my own except as specified in the references and acknowledgements, and that the

original work contained herein have not been undertaken or done by unspecified sources or

persons.

KELLY LIEW\, SUET SWEE

ii

ABSTRACT

Fast multiplication is used to replace the conventional multiplier to increase the performance and

efficiency of the multiplier since multipliers are becoming more important in Digital Signal

Processing. Multipliers designed in this project were the Radix-based Multiplier inclusive of

Radix-2, Radix-4, Radix-8, Radix-16 and Radix-32 Booth Encoding multipliers. These Radix

based multipliers are able to increase the compression time, contribute to a great savings in

silicon area and also the number of stages to be added that is known as speed. The speed and the

partial products in these Radix-based multipliers reduced significantly compared to the common

addition and shift multiplication.

In this Final Year Project, the Radix-based Booth Encoding multipliers were designed, logic

simulation was conducted and logic synthesize was performed to obtain the area and timing. The

relative performance of each multiplier was compared to determine the suitable type of Digital

Signal Processing applications in terms of its speed and area performances.

The Project began by defming the problem statement and identifying the objectives and

outcomes of the project. Next, the Radix-based multipliers were designed using Verilog

Hardware Description Language. It was then logic simulated using Modelsim, simulation

software produced by Mentor Graphics to verify the multiplier designs created. Then, the designs

were synthesized in Leonardo Spectrum to obtain the performance parameters such as area and

timing of the Radix-based multipliers. The synthesis process was done by synthesizing it in

TSMC 0.35-microns ASIC standard cell library.

An analysis of the performance obtained were then compared in order to determine whi~h type

of Radix-based multipliers give better results in different aspects of performances. The

performance of Radix-based designs will then be compared to the five other multiplier designs

performances created previously by Chris Lee inclusive of Array, Wallace, Dadda and Reduced

Area multipliers. The Project ended with a conclusion and recommendations.

iii

ACKNOLEDGEMENT

First of all I would like to thank my UTP Supervisor for my Final Year Project, Mr Lo Hai

Hiung for all the guidance and advices throughout the duration of completing my Final Year

Project. Without his encouragements and motivations, I would not be able to complete my

project on time. His high demands and expectations drove me into producing the outcome and

fulfilling the objectives of my project.

Secondly, I would like show my warmest gratitude to Edmond Ang from Emerald System

Design located in Penang for setting up a special workplace for me in the company in order for

me to do my logic synthesis using Leonardo Spectrum software. Edmond was very helpful in

assisting me throughout the duration that I was at Emerald System Design. He never failed to

lend me a helping hand whenever I needed guidance.

Besides, I would also like to acknowledge Dr Zuhairi and the Final Year Project coordinators

who were very cooperative and patience whenever I go and see them for any advices or problem

encountered. Without them, the submission and application process would not have run smoothly.

Here, I would also want to express a special thanks my university, Universiti Teknologi Petronas

for introducing Final Year Project I and Final Year Project II for two semesters which had taught

me a lot ranging from technical knowledge, soft-skills and also communication skills. With the

skills learned in the university, hard work and self-determination, I managed to overcome the

challenges and it was truly a bitter sweet memory.

iv

TABLE OF CONTENTS

<:~Jl1r1Jfl(;)l1rl()~ ··· i

JliJS1rlti\C:1r ••••••••••••••••••••••••.••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••• iii

)l(;KN()L~DG~ME~1r ... iv

<:HAP1r~lll: 1~1rllODUC:1rl()~
1.1 Background of Study .. i

1.1.1 Booth Encoding Multiplier I
1.1.2 Radix-2 Booth Encoding Multiplier 3
1.1.3 Radix-4 Booth Encoding Multiplier 5
1.1.4 Radix-8 Booth Encoding Multiplier 7
1.1.5 Radix-16 Booth Encoding Multiplier 8
1.1.6 Radix-32 Booth Encoding Multiplier I 0
1.1.7)lrray Multiplier ... 12
1.1.8 Wallace Multiplier 12
1.1.9 Dadda Multiplier .. 14
1.1.1 0 Reduced-Area Multiplier 15

1.2 Problem Statement ... 16
1.3 Objective .. 17
1.4 Scope of Study .. 17

<:HAP1r~ll2: Ll1r~AA1r~ ~VIEW

2.1 Comparison of 32-bit Multipliers for Various
Performance Measures ... 19

2.2 54x54-bit Radix-4 Multiplier Based on Modified
Booth Algorithm ... 20

2.3 A Performance Comparison Study on Multiplier
Designs .. 20

2.4 Binary Multiplication ofRadix-32 and Radix-256 21
2.5 A 16x16 Bit Modified Radix-16 Booth Encoded Parallel

Multiplier ... 22

<:HAP1r~ll3: ME1rHODOLOGY
3 .I Flow Chart ... 23
3.2 Project Activities .. 24

3.2.1 Project Definition and Objective
Identification .. 24

3.2.2 Literature Review ... 24
3.2.3 Further Research and Study 24
3.2.4 Design Entry in Verilog HDL 24
3.2.5 Logic Simulation .. 25
3.2.6 Logic Synthesis ... 25
3.2.7 Results Analysis in Timing and Area 25

3.3 Materials and Equipments .. 25

v

3.3.1 Hardware .. 25
3.3.2 Software .. 26

3 .4 Gantt Chart .. 26

CHAPTER4: DISCUSSIONS AND RESULTS
4.1 Results of Area and Delay Comparison Performances

among 32-bits Multiplier Designs 27
4.1.1 Results of Area Comparison among 32-bits

Multiplier Designs .. 27
4.1.2 Results of Delay Comparison among 32-bits

Multiplier Designs .. 33
4.2 Discussions ... 40

CHAPTERS: CONCLUSION ... 42

REFERENCES .. 44

APPENDICES ... 46

VI

LIST OF FIGURES

Figure 1.1: Example of Booth multiplication

Figure 1.2: Dot-notation representation ofRadix-2 Booth Encoding multiplier

Figure 1.3: Dot diagram ofRadix-4 Booth Encoding multiplier

Figure 1.4: Blocks of three are divided in the multiplier

Figure 1.5: Example of Radix-4 Booth Encoding multiplication

Figure 1.6: Dot-notation ofRadix-8 Booth Encoding multiplier

Figure 1.7: Dot-notation ofRadix-16 Booth Encoding multiplier

Figure 1.8: Dot diagram representing Radix-32 Booth Encoding multiplier

Figure 1.9: Dot-notation of 8x8 Wallace multiplier

Figure 1.10: Dot diagram of 8x8 Dadda multiplier

Figure 1.11: Dot diagram of 8x8 Reduced-Area

Figure 1.12: An example of the common multiplication

Figure 3.1: Project flow chart

Figure 4.1: Area changes in Area-Optimized Among Radix-based Booth Encoding Multiplier

Designs

Figure 4.2: Area changes in Speed-Optimized Among Radix-based Booth Encoding Multiplier

Designs

Figure 4.3: Area changes in Auto-Optimized Among Radix-based Booth Encoding Multiplier

Designs

Figure 4.4: Area changes in Area-Optimized Among 32-bits Multiplier Designs

Figure 4.5: Area changes in Speed-Optimized Among 32-bits Multiplier Designs

Figure 4.6: Area changes in Auto-Optimized Among 32-bits Multiplier Designs

Figure 4.7: Delay changes summarized in the Speed-Optimized mode

of Radix-based Booth Encoding multipliers

Figure 4.8: Delay changes summarized in the Area-Optimized mode

of Radix-based Booth Encoding multipliers

Figure 4.9: Delay changes summarized in the Auto-Optimized mode

of Radix-based Booth Encoding multipliers

Figure 4.10: Delay changes summarized in the Speed-Optimized mode

of 32-bits multipliers

vii

Figure 4.11: Delay changes summarized in the Area-Optimized mode

of32-bits multipliers

Figure 4.12: Delay changes summarized in the Auto-Optimized mode

of 32-bits multipliers

LIST OF TABLES

Table 1.1: Booth Algorithm Table

Table 1.2: Combinations of Ck and Sk for Radix-2 Booth Encoding multiplier

Table 1.3: Combinations ofCk and Sk for Radix-4 Booth Encoding multiplier

Table 1.4: Combinations ofCk and Sk for Radix-8 Booth Encoding multiplier

Table 1.5: Combinations ofCk and Sk for Radix-16 Booth Encoding multiplier

Table 1.6: Combinations of Ck and Sk for Radix-32 Booth Encoding multiplier

Table 4.1: Area comparison of Radix-based multipliers on Area-Optimized, Speed-Optimized

and Auto-Optimized

Table 4.2: Area performance of32-bits multipliers in Area-Optimized, Speed-Optimized

and Auto-Optimized modes

Table 4.3: Delay comparison of Radix-based multipliers in Area-Optimized, Speed-Optimized

and Auto-Optimized

Table 4.4: AD and AD2 computed for all the Radix-based Booth Encoding

designs in all three modes

Table 4.5: Delay performance of32-bits multipliers in Area-Optimized, Speed-Optimized

and Auto-Optimized modes

Table 4.6: AD and AD2 computed for 32-bits multiplier designs

viii

CHAPTER I

1. INTRODUCTION

1.1 Background of study

Multipliers are used in many different places in microprocessor design. It is the non

memory sub-block of the microprocessor with the largest size and delay that has a big

impact on the cycle time. Multipliers are very crucial in Digital Signal Processing and

various other applications to run complex high speed calculations. [1]

With the advancement in technology, researchers are done on multipliers that can

produce low power consumption, high speed, and regularity of layout and minimize the

area or a combination of two or more criteria in one multiplier. [2] The main focus and

objectives are to produce multiplier designs that are suitable for high speed, low power

and compact VLSI implementations.

1.1.1 Booth Encoding Multiplier

• Find 3 x (-4); with: Multiplicand- 3; Multiplier- -4;

Number of bits for multiplicand or multiplier= 4;

A =0011 0000 0; S = 1101 0000 0; P=OOOO 1100 0;

• Since the number of bits in the Multiplicand or Multiplier is equal to 4, the loop is being repeated 4

times.

• According to Table 1.1,

Loop 1:

l> P = 0000 1100 0. The last two bits are 00. So, arithmetic right shift. P = 0000 OliO 0.

Loop2:

l> P = 0000 OliO 0. The last two bits are 00. So, aritlunetic right shift. P = 0000 0011 0.

Loop3:

l> P = 0000 0011 0. The last two bits are 10.

l> So, P = P + S. 0000 0011 0 + 1101 0000 0. P = llOI OOll 0.

l> So, arithmetic right shift. P = Ill 0 I 00 I I.

Loop4:

l> P = 1110 1001 I. The last two bits are II. So, arithmetic right shift. P = 1111 0100 1

• The final result of the Product is 1111 0 I 00 = -12.

Ftgure 1.1. Example of Booth Encodmg multiplicatton

1

