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ABSTRACT 

Fast multiplication is used to replace the conventional multiplier to increase the performance and 

efficiency of the multiplier since multipliers are becoming more important in Digital Signal 

Processing. Multipliers designed in this project were the Radix-based Multiplier inclusive of 

Radix-2, Radix-4, Radix-8, Radix-16 and Radix-32 Booth Encoding multipliers. These Radix

based multipliers are able to increase the compression time, contribute to a great savings in 

silicon area and also the number of stages to be added that is known as speed. The speed and the 

partial products in these Radix-based multipliers reduced significantly compared to the common 

addition and shift multiplication. 

In this Final Year Project, the Radix-based Booth Encoding multipliers were designed, logic 

simulation was conducted and logic synthesize was performed to obtain the area and timing. The 

relative performance of each multiplier was compared to determine the suitable type of Digital 

Signal Processing applications in terms of its speed and area performances. 

The Project began by defming the problem statement and identifying the objectives and 

outcomes of the project. Next, the Radix-based multipliers were designed using Verilog 

Hardware Description Language. It was then logic simulated using Modelsim, simulation 

software produced by Mentor Graphics to verify the multiplier designs created. Then, the designs 

were synthesized in Leonardo Spectrum to obtain the performance parameters such as area and 

timing of the Radix-based multipliers. The synthesis process was done by synthesizing it in 

TSMC 0.35-microns ASIC standard cell library. 

An analysis of the performance obtained were then compared in order to determine whi~h type 

of Radix-based multipliers give better results in different aspects of performances. The 

performance of Radix-based designs will then be compared to the five other multiplier designs 

performances created previously by Chris Lee inclusive of Array, Wallace, Dadda and Reduced

Area multipliers. The Project ended with a conclusion and recommendations. 
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CHAPTER I 

1. INTRODUCTION 

1.1 Background of study 

Multipliers are used in many different places in microprocessor design. It is the non

memory sub-block of the microprocessor with the largest size and delay that has a big 

impact on the cycle time. Multipliers are very crucial in Digital Signal Processing and 

various other applications to run complex high speed calculations. [ 1] 

With the advancement in technology, researchers are done on multipliers that can 

produce low power consumption, high speed, and regularity of layout and minimize the 

area or a combination of two or more criteria in one multiplier. [2] The main focus and 

objectives are to produce multiplier designs that are suitable for high speed, low power 

and compact VLSI implementations. 

1.1.1 Booth Encoding Multiplier 

• Find 3 x (-4); with: Multiplicand- 3; Multiplier- -4; 

Number of bits for multiplicand or multiplier= 4; 

A =0011 0000 0; S = 1101 0000 0; P=OOOO 1100 0; 

• Since the number of bits in the Multiplicand or Multiplier is equal to 4, the loop is being repeated 4 

times. 

• According to Table 1.1, 

Loop 1: 

l> P = 0000 1100 0. The last two bits are 00. So, arithmetic right shift. P = 0000 OliO 0. 

Loop2: 

l> P = 0000 OliO 0. The last two bits are 00. So, aritlunetic right shift. P = 0000 0011 0. 

Loop3: 

l> P = 0000 0011 0. The last two bits are 10. 

l> So, P = P + S. 0000 0011 0 + 1101 0000 0. P = llOI OOll 0. 

l> So, arithmetic right shift. P = Ill 0 I 00 I I. 

Loop4: 

l> P = 1110 1001 I. The last two bits are II. So, arithmetic right shift. P = 1111 0100 1 

• The final result of the Product is 1111 0 I 00 = -12. 

Ftgure 1.1. Example of Booth Encodmg multiplicatton 
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