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ABSTRACT 
 

Acid gas removal from natural gas, synthesis gas and refinery gas stream is 

very important in plant industry to prevent corrosion in the subsequent piping and as 

per requirement by various organizations and companies. Because of the 

corrosiveness of H2S and CO2 the sales gas is required to be sweetened to contain no 

more than a quarter grain H2S per 100 standard cubic feet ( 4 parts per million) and 

to have a heating value of no less than 920 to 980 Btu/SCF, depending on the 

contract. The most widely used process to remove acid gas from natural gas is by 

using alkanlomines, and of the alkanolamines the most common are n-

methyldiethanolamine (MDEA) and diethanolamine (DEA).  

In this study, data from Khalid Osman et al (2012), A. Benamor et al (2005) 

and Zhang et al (2002) will be used to simulate the solubility of CO2 in DEA and 

MDEA mixtures using Multiple Linear Regression (MLR) and Artificial Neural 

Network (ANN) and the performance will be compared to show which model is 

better for CO2 absorption. Furthermore, data from Jou et al (1982) and Lee et al 

(1972) will be used to study the solubility of CO2 in pure DEA and MDEA aqueous 

solution and simulation of the models will be compared between the models and the 

reference research works mentioned earlier. 

 MLR has proved it cannot be used to predict CO2 for pure DEA, MDEA and 

their mixtures. The results clearly shown that the model is pressure dependent as it 

has large coefficient compared to other parameters which is very small and becomes 

dominant in the equation thus neglecting them in predicting the CO2 loading data. 

ANN proved the model can be used to predict CO2 solubility in the alkanolamines 

and their mixtures. Developed model for DEA and MDEA mixture has an absolute 

relative deviation δAAD  10.47 % while for data from Khalid Osman et al (2012), A. 

Benamor et al (2005) and Zhang et al (2002) are 17.06%, 12.09% and 9.82% 

respectively. In pure alkanolamines prediction, ANN model of CO2 solubility 

predicted in pure DEA has δAAD  4.02% while from the experimental data of A. 

Benamor et al (2005) has absolute relative deviation of 4.72%. As for prediction of 

CO2 in pure MDEA, the model resulted δAAD  of 9.77% compared to the reference 

paper from A. Benamor et al (2005) with 10.76%. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background Study 

  The oil and gas production industry has multiplied and become one of the 

important industry from around the globe. For decades to come, gas will be the energy 

source of choice to meet worldwide environmental standards. Fortunately gas reserves 

are growing; but new gas is often found to be of substandard quality in remote and / or 

stranded areas of the world.  

 Raw natural gases contain mainly different types of hydrocarbon as well as 

contaminants. The acid gas, which often refer to carbon dioxide (CO2) and hydrogen 

sulfide (H2S) is what makes the acid gas. Thus, the raw natural gases needs to be treated 

in order to remove the acid gas.  

 Dry carbon dioxide (CO2) is inert and is commonly used as an industrial 

material. However, CO2 is an acidic gas when it reacts with water to form carbonic acid 

(Informative guide for CO2). Carbonic acid corrosion is a formidable challenge and its 

effect on carbon steels has been recognized for years as a major source of damage in oil 

field equipment and gas pipelines. Hence, the formation of carbonic acid and moisture 
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will decrease pipeline flow capacities, even resulting in blockages, and potential harm to 

valves, filters and compressors that are being used throughout the process. 

 The separation of CO2 and H2S from natural gas is called gas sweetening. Gas 

sweetening is one of the important purification processes which is employed to remove 

acidic contaminants from natural gases prior to sale. One of the most common method 

yet effective and economic to separate CO2 is absorption by using aqueous solutions of 

alkanolamines. Although various processes have been proposed for such processed, the 

gas absorption method with different solvents is widely used.  

 Alkanolamine is broadly classified into primary, secondary and tertiary 

depending on the number of alkyl group(s) attached to the nitrogen atom in the molecule 

structure. Monoethanolamine(MEA), diethanolamine (DEA) and n-

methyldiethanolamine (MDEA) are such of the examples. While the CO2 absorption rate 

of the primary and secondary amines such as MEA and DEA is high, in the case of 

tertiary amines such as TEA and MDEA, the CO2 absorption rate is considerably lower. 

Thanks to low carbamate stability, the CO2 absorption capacity of the tertiary amine 

aqueous solutions is high and due to the formation of stable carbamate, the primary and 

secondary amines have low capacity of CO2 absorption (Guevara F.M.,1998) 

 Sterically hindered amines such as 2-Amino-2-Methyl-1-Propanol (AMP) could 

be a primary amine in which the amino group is attached to a tertiary carbon atom or a 

secondary amine in which the amino group is attached to secondary or tertiary carbon 

atoms (Sartori G., 1983). These amines have high capacity absorption and absorption 

rate as well as selectivity and degradation resistance. Since equilibrium data are 

indispensable for design of gas absorption units, many researchers have reported the 

solubility of acid gases in various types of amines. Solubility of CO2 in MEA, DEA and 

MDEA aqueous solutions at various temperatures, amine concentrations and pressures 

has been reported. Jane et al.(1997) determined the solubility of CO2, H2S and their 

mixtures in the system of DEA+AMP aqueous solution. Teng et al.(1989) measured the 

solubility of acid gases in AMP at 50
o
C and 3.43 kmol/m

3
 AMP. Roberts et al. (1988) 

reported the solubility of acid gases in AMP.  
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 Several model has been developed to analyze the solubility of CO2 in aqueous 

solution of alkanolamine and to correlate the solubility data such as Kent-Eisenberg 

(KE), Modified Kent-Eisenberg (M-KE), Electrolyte-NRTL, Extended Debye-Hückel 

(E-DH), Pitzer and Li-Mather models were proposed to correlate the solubility data. 

Kent & Eisenberg(1976) modeled the solubility of acid gases and their mixtures in MEA 

and DEA aqueous solutions. They considered equilibrium constants of carbamate 

formation and protonation of these amines to be temperature-dependent only. Since the 

KE model is an empirical model, in a wide range of temperature, pressure and amine 

concentrations it cannot properly predict the solubility of acid gases in amine aqueous 

solutions.  

 Although the KE equilibrium constant of carbamate formation was used in this 

work, the new correlations forMEA and DEA equilibrium constant of 

protonationreaction were presented.To increase the accuracy of predicting the 

solubilityof acid gases in amines, the activity coefficients mustbe considered. To do so, 

Deshmukh et al.(1981)and Pitzeret al.(1973, 1974)proposed the E-DH and Pitzer 

models,respectively. It should be noted that application of thesemodels would be more 

complicated than that of the K-Eand M-KE. In the Pitzer, E-DH and Li-Mather models 

theactivity coefficients were expressed in terms of longas well as short-range 

intermolecular forces.  

 The above models are based on the first principles model. Another type of 

modelling is using the empirical model technique. The disadvantage of using first 

principle model are the model is complex and time consuming. However, the advantages 

of using empirical model are the time is significantly reduced, less complex for on-line 

optimization, less time required to develop the model and it is easy to identify from 

input-output data. Among the empirical models are Multiple Linear Regression and 

Artificial Neural Network. 

 A multiple linear regression analysis is carried out to predict the values of 

adependent variable, Y, given a set of p explanatory variables (x1,x2,….,xp). In multiple 

linear regression, there are p explanatory variables, and the relationshipbetween the 

dependent variable and the explanatory variables is represented by the following 

equation: 
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𝑦𝑖 =  β0 +  β1x1i +  β2x2i  + . . . + β𝑝x𝑝𝑖 +  ei 

Where: 

β0 is the constant term and 

β1 toβ𝑝  are the coefficients relating the p explanatory variables to the variables of 

interest.  

 

Thus, multiple linear regression can be thought of an extension of simple linear 

regression, where there are p explanatory variables, or simple linear regression can be 

thought of as a special case of multiple linear regression, where p=1. The term 

‘linear’ is used because in multiple linear regression assumption has been made that y is 

directlyrelated to a linear combination of the explanatory variables. 

An artificial neural network (ANN) is a powerful modelling method in various 

scientific fields. The capability of learning from experimental results and the simplicity 

of implementation are the main advantages of the ANN over other mathematical 

modelling methods.  

 

 

1.2 Problem Statement 

 Before designing plant or pipeline in the large scale, the need to run simulation 

that replicate the process of the plant based on the actual parameters is really important 

as to predict the scenario. Hence, the modelling of the CO2 solubility in the amines is 

also important. By doing a model for the CO2 solubility, predicting the result for the 

actual process based on the modelling can be studied and further improved before 

implementing in the actual process. As the solubility of CO2 is highly non-linear [16], a 

nonlinear modelling technique is required in order to get accurate result. In this study, 

several empirical modelling techniquessuch as Multiple Linear Regression (MLR) and 

Artificial Neural Network (ANN)will be investigated to model the CO2 solubility in 

DEA and MDEA system. 
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1.3 Objectives 

1. To compile the equilibrium data of CO2 solubility in aqueous solutions of DEA, 

MDEA and their mixtures. 

2. To develop a model for CO2 solubility in DEA, MDEA and their mixtures using 

MLR and ANN modelling techniques. 

3. To analyze the predicted CO2 loading data in each of the modelling methods 

compared to the experimental data. 

4. To compare the performance of the predicted CO2 loading data for each 

techniques. 

 

1.4 Scope of Study 

In this study, the main focus are: 

1. The alkanolamines used are diethanolamine (DEA), n-methyldiethanolamine 

(MDEA) and their mixtures. This does not include the mixtures of the said 

chemicals with promoter such as piperazine (PZ).  

2. Modelling technique to be used are Multi Linear Regression (MLR) and 

Artificial Neural Network (ANN). 

3. The tool to be used for modelling is Matrix Laboratory (MATLAB) software. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Carbon Dioxide 

 Carbon dioxide comprises two oxygen atoms covalently bonded to a single 

carbon atom, with an O-C-O angle of 180°. As such it is very stable, no process other 

than photosynthesis having been discovered that is able effectively to reduce carbon 

dioxide to carbon monoxide. Carbon dioxide is not classified by the UN as toxic(United 

Nations, 2007). 

 CO2 is a colourless, odourless gas found within the earth's atmosphere. It is the 

product of combustion and of respiration and is also utilised in the process 

of photosynthesis in plants. It has an interesting property in that it sublimes or changes 

from a solid (it freezes at −78 °C) directly into a gas at atmospheric pressure, without 

first becoming a liquid. This is why it is sometimes referred to as 'dry ice'. CO2 is 

produced commercially for use in fizzy drinks, dry cleaning and in de-caffeinating 

coffee. It can be transported or stored in liquid form, but only when held at a very high 

pressure. 

 Carbon dioxide gas is colourless, heavier than air (1 521 times as heavy, with a 

density of about 1,98 g/litre), has a slightly irritating odour, and freezes at −78,5 °C to 

form carbon dioxide snow. Carbon dioxide cannot exist as a liquid at atmospheric 

pressure. At a pressure of anything above 5,11 bar(a) and at a temperature between 

−56,6 °C and 31,1 °C it becomes liquid (see Figure 2.1), and its density rises with 

temperature to 1 180 kg/m
3
. The liquid/gas equivalent (1,013 bar and 15 °C (per kg of 

solid)) is 845 vol/vol. If the temperature of liquid carbon dioxide drops below 56,6 °C it 

becomes solid (see Figure 2.1). Solid carbon dioxide usually has a snow-like 

appearance, and can be compressed into blocks to form ‘dry ice’. Solid CO2 will form in 

http://www.globalccsinstitute.com/publications/good-plant-design-and-operation-onshore-carbon-capture-installations-and-onshore-pipe-5#fig_001
http://www.globalccsinstitute.com/publications/good-plant-design-and-operation-onshore-carbon-capture-installations-and-onshore-pipe-5#fig_001
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vessels/pipelines when conditions fall below the triple point and this may not be snow-

like. 

 

 

 

 

 

 

 

Figure 2.1: Pressure-Temperature phase diagram for CO2 

 The triple point (at a pressure 5,11 bar and temperature of −56,7 °C) is defined as 

the temperature and pressure where three phases (gas, liquid and solid) can exist 

simultaneously in thermodynamic equilibrium. The solid-gas phase boundary is called 

the sublimation line, as a solid changing state directly into a gas is called sublimation. 

Physically, this boundary implies that the gas and solid can co-exist and transform back 

and forth without the presence of liquid as an intermediate phase. 

 Above the critical point (73,8 bar and 31,1 °C), the liquid and gas phases cannot 

exist as separate phases, and liquid phase carbon dioxide develops supercritical 

properties, where it has some characteristics of a gas and others of a liquid.  

 A phase diagram, as shown in Figure 2.1 is a common way to represent the 

various phases of a substance and the conditions under which each phase exists. 

However, it tells us little regarding how the changes of state for carbon dioxide occur 

during a transient.  

 CO2 is considered to be the most important of the greenhouse gases. With human 

activity, CO2 is emitted into the atmosphere whenever organic matter burned as fuel. 

http://www.geos.ed.ac.uk/sccs/public/glossary.html#greenhouse_gas
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The carbon in the organic matter reacts with air to produce CO2 and energy. The largest 

sources of CO2 are fossil fuel powered power stations (those that use coal, oil or gas) 

and petrol or diesel powered transport (most cars and lorries). 

 Known as acid gas, CO2 has to be removed from natural gas to avoid problems 

such as corrosion equipment plugging due to the formation of CO2 solid in the low 

temperature system and also reducing the heating value of natural gas. CO2 have to be 

eliminated from the natural gas to increase the heating value and fulfill the product 

demand specification. The process of removing CO2 and H2S from natural gas is known 

as gas treating or gas sweetening. The gas sweetening process refers to the removal of 

the sour odour of the gas from the sulphur in H2S.Acid gases (CO2 and H2S) are the 

main impurities in natural gas. Acid gases are corrosive to the pipeline and have a very 

low heating value.  

 

2.2 Alkanolamine 

Alkanolamines are chemical compounds that carry hydroxy (-OH) and amino (-

NH2, -NHR, and -NR2) functional groups on an alkane backbone. Alkanolamine is 

broadly classified into primary, secondary and tertiary depending on the number of alkyl 

group(s) attached to the nitrogen atom in the molecule structure. Monoethanolamine 

(MEA), diethanolamine (DEA) and n-methyldiethanolamine (MDEA) are such of the 

examplesrespectively as well as sterically hindered amines such as 2-Amino-2-Methyl-

1-Propanol (AMP). 

 

2.3 Methyldiethanolamine (MDEA) 

 Methyldiethanolamine is a clear, colorless or pale yellow liquid with ammonical 

odor. It is miscible with water, alcohol and benzene. Methyldiethanolamine is also 

known as a MDEA or n-Methyldiethanolamine. Methyldiethanolamine is widely used as 

a decarbonizer and sweetening agent in chemical, oil refinery, gas synthesis, natural gas 

& gas. MDEA is more efficient absorber then MEA & DEA for sulphur contains 

impurity and acid gases found in natural gas processing.  

http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Amino
http://en.wikipedia.org/wiki/Functional_group
http://en.wikipedia.org/wiki/Alkane
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 MDEA is versatile bifunctional molecules compound that combines the 

characteristic of Amine and hydroxyl group. Thus,  during the reaction it behaves like 

alcohol and amine group but amine group usually exhibits the greater activities. MDEA 

can be modified with the help of some additives, the product is known as an Activated 

Methyl Diethanolamine. 

 

Figure 2.2: Molecular structure of MDEA 

 MDEA is considered moderately irritating to the eyes, but only slightly irritating 

to the skin. The product is not corrosive under the conditions of the corrositivity test and 

is not regulated as a hazardous material for transportation purposes. Because of the low 

vapour pressure of MDEA, exposure to vapours is not expected to pose significant 

hazard under normal workplace conditions (Huntsman, 2007). 

SPECIFICATION : METHYL DIETHANOLAMINE 

METHYL DIETHANOLAMINE - MDEA Content (% Wt.) 99 (Minimum) 

Chemical Formula CH3N (C2H4OH) 

Specific Gravity at 20/20`C. 1.040 - 1.044 

Distillation Range (760 mm/Hg.) : I.B.P. 242`C. (Minimum) 

: D.P. 260`C. (Maximum) 

Moisture 0.2- 0.5% 

Colour 150 APHA (Maximum) 

Refractive Index at 20`C 1.4694 

Viscosity at 20`C 101 CPS (Approx.) 

Flash Point (pmcc) 135ºC (Approx.) 

Equivalent Mass 118 -121 

Cas No. 105-59-9 

Figure 2.3: Specification and properties of MDEA 
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 MDEA is widely used as an absorption solvent of removing acid gases in 

sweetening gas process, because of it possesses the characteristic such as higher 

hydrogen sulphide selectivity, bigger absorption capacity, lower regeneration energy, 

smaller hot degradation and lesser corrosive. 

 

2.4 Diethanolamine (DEA) 

 Diethanolamine, often abbreviated as DEA or DEOA, is an organic 

compound with the formula HN(CH2CH2OH)2. This colorless liquid is polyfunctional, 

being a secondary amine and a diol. Like other organic amines, diethanolamine acts as 

a weak base. Reflecting the hydrophilic character of the alcohol groups, DEA is soluble 

in water, and is even hygroscopic. Amides prepared from DEA are often also 

hydrophilic. 

 Diethanolamine is produced by reacting ethylene oxide with ammonia. In most 

production facilities, ethylene oxide and ammonia are reacted in a batch process that 

yields a crude mixture of ethanolamine, diethanolamine and triethanolamine. The 

mixture is then distilled to separate and purify the individual compounds(Edens MR et 

al, 2004). 

 

 

Figure 2.4: Molecular structure of DEA 

The reaction of ethylene oxide with aqueous ammonia first produces ethanolamine: 

C2H4O + NH3 → H2NCH2CH2OH 

which reacts with a second and third equivalent of ethylene oxide to give DEA 

and triethanolamine: 

C2H4O + H2NCH2CH2OH → HN(CH2CH2OH)2 

http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Diol
http://en.wikipedia.org/wiki/Weak_base
http://en.wikipedia.org/wiki/Hygroscopic
http://en.wikipedia.org/wiki/Ethylene_oxide
http://en.wikipedia.org/wiki/Ammonia
http://en.wikipedia.org/wiki/Ethanolamine
http://en.wikipedia.org/wiki/Triethanolamine
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C2H4O + HN(CH2CH2OH)2 → N(CH2CH2OH)3 

 DEA is used as a surfactant and a corrosion inhibitor. It is used to 

remove hydrogen sulfide and carbon dioxide from natural gas. In oil refineries, DEA in 

water solution is commonly used to remove hydrogen sulfide from various process 

gases. It has an advantage over a similar amine ethanolamine in that a higher 

concentration may be used for the same corrosion potential. This allows refiners to 

scrub hydrogen sulfide at a lower circulating amine rate with less overall energy usage. 

 Diethanolamine helps to overcome the limitation of MEA, and can be used in the 

present of COS and CS2. Operating with solutions containing 25-30% by weight of 

DEA can be used to process natural gas with even high acid  gases content. 

 DEA is considered to be chemically stable; DEA can be heated to its normal 

boiling point (269 
o
C at 760 mmHg) before decomposition. Therefore reduce the solvent 

degradation during stripping and reduce solvent loss and accumulation in the unit. 

 The heat of reaction of DEA with CO2 is low compared to other amines hence 

the heat generated in the absorber during CO2 absorption process is low which increases 

the solvent loading in the absorber as solubility or loading of CO2 increases at low 

temperature.  

 

2.5 Multiple Linear Regression (MLR) 

A multiple linear regression analysis is carried out to predict the values of a 

dependent variable, Y, given a set of p explanatory variables (x1, x2,….,xp). In multiple 

linear regression, there are p explanatory variables, and the relationship between the 

dependent variable and the explanatory variables is represented by the following 

equation: 

 

𝑦𝑖 =  β0 +  β1x1i +  β2x2i  + . . . + β𝑝x𝑝𝑖 +  ei 

Where: 

β0 is the constant term and 

 

http://en.wikipedia.org/wiki/Corrosion_inhibitor
http://en.wikipedia.org/wiki/Hydrogen_sulfide
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Hydrogen_sulfide
http://en.wikipedia.org/wiki/Ethanolamine
http://en.wikipedia.org/wiki/Hydrogen_sulfide
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β1 toβ𝑝  are the coefficients relating the p explanatory variables to the variables of 

interest. So, multiple linear regression can be thought of an extension of simple linear 

regression, where there are p explanatory variables, or simple linear regression can be 

thought of as a special case of multiple linear regression, where p=1. The term‘linear’ is 

used because in multiple linear regression assumption has been made that y is directly 

related to a linear combination of the explanatory variables. MLR is one of the most 

used methods for forecasting. Thismethod is widely used to fit the observed data and to 

createmodels that can be used for the prediction in many researchfields. 

 

 When explanatory variables are correlated with each other, the application of this 

method usually presents some drawbacks due to the fact that high correlations between 

predictor variables can difficult a correct analysis. The dependence of the explanatory 

variables can be removed through the application of principal component analysis 

(PCA). PCA creates new variables, the principal components (PC), that are orthogonal 

and uncorrelated. These variables are linear combinations of the original variables. The 

PC are ordered in such a way that the first component has the largest fraction of the 

original data variability(Abdul-Wahab et al, 2005). 

 

 

2.6 Artificial Neural Network 

Artificial neural networks are inspired by the early models of sensory 

processingby the brain. An artificial neural networkcan be created by simulating a 

network ofmodel neurons in a computer. By applyingalgorithms that mimic the 

processes of realneurons, we can make the network ‘learn’ tosolve many types of 

problems. A model neuronis referred to as a threshold unit and itsfunction is illustrated 

in Figure 2.5(a). It receivesinput from a number of other units or externalsources, weighs 

each input and adds themup. If the total input is above a threshold,the output of the unit 

is one; otherwise it iszero. Therefore, the output changes from 0 to 1 when the total 

weighted sum of inputsis equal to the threshold. The points in inputspace satisfying this 

condition define a socalledhyperplane. In two dimensions, ahyperplane is a line, whereas 

in three dimensions,it is a normal plane. Points on one sideof the hyperplaneare 
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classified as 0 and thoseon the other side as 1. It means that a classificationproblem can 

be solved by a thresholdunit if the two classes can be separated by ahyperplane. Such 

problems, as illustrated inthree dimensions in Figure 2.5(b) , are said to belinearly 

separable. 

 

 

 

 

 

Figure 2.5: An artificial neural network is an interconnected group of nodes, replicating to the vast 

network of neurons in the human brain. 

 

 

 

 

 

 

 

 

 

Figure 2.6Artificial neural networks 

 

 

 Figure 2.6 (a) shows graphical representation of the McCulloch-Pitts model 

neuron or threshold unit. The threshold unit receives input from N other units or external 

sources, numbered from 1 to N. Input iis called xiand the associated weight is called wi. 

The total input to a unit is the weighted sum over all inputs,  𝑤𝑖
𝑁
𝑖=1 𝑥𝑖 = 𝑤1𝑥1  +

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Human_brain
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𝑤2𝑥2+ . . . + 𝑤𝑁𝑥𝑁. If this were below a threshold t, the output of the unit would be 1 

and 0 otherwise. Thus, the output can be expressed as 𝑔( 𝑤1𝑥1 − 𝑡𝑁
𝑖=1 , where g is the 

step function, which is 0 when the argument is negative and 1 when the argument is 

nonnegative (the actual value at zero is unimportant; here, we chose 1). The so-called 

transfer function, g, can also be a continuous sigmoid as illustrated by the red curve.  

 

 Figure 2.6 (b) explains linear separability. In three dimensions, a threshold unit 

can classify points that can be separated by a plane. Each dot represents input values x1, 

x2and x3to a threshold unit. Green dots correspond to data points of class 0 and red dots 

to class 1. The green and red crosses illustrate the ‘exclusive or’ function—it is not 

possible to find a plane (or a line in the x1, x2plane) that separates the green dots from the 

red dots.  

 

 Figure 2.6 (c) shows a feed-forward network. The network shown takes seven 

inputs, has five units in the hidden layer and one output. It is said to be a two-layer 

network because the input layer does not perform any computations and is not counted.  

 

 An over-fitting graph is shown in Figure 2.6 (d). The eight points shown by 

plusses lie on a parabola (apart from a bit of ‘experimental’ noise). They were used to 

train three different neural networks. The networks all take an x value as input (one 

input) and are trained with a y value as desired output. As expected, a network with just 

one hidden unit (green) does not do a very good job. A network with 10 hidden units 

(blue) approximates the underlying function remarkably well. The last network with 20 

hidden units (purple) over-fit the data; the training points are learned perfectly, but for 

some of the intermediate regions the network is overly creative. 

 

 Neural networks have been applied to many interesting problems in different 

areas of science, medicine and engineering and in some cases, they provide state-of-the-

art solutions. Neural networks have sometimes been used haphazardly for problems 

where simpler methods would probably have given better results, giving them a 

somewhat poor reputation among some researchers. 
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CHAPTER 3 

METHODOLOGY 

3.1 Project Methodology 

3.1.1 Reference data 

The first phase of the project is to collect all the data needed in order to calculate 

the CO2 solubility in the said alkanolamines. The data such as concentration of 

MDEA, DEA and their mixtures, CO2 partial pressure and temperature which is 

the crucial parameters for developing the models is obtained from various 

sources mostly from the past research works. During the study, the parameters of 

data based on the Table 3.1. 

Table 3.1: The reference data used as the parameters 

 

Author 

Temperature 

(K) 

Partial 

pressure 

CO2 DEA MDEA Mixtures 

HjSulaiman 

et al. (1998) 303,313,323 

0.1 – 104 

kPa / /  

A.Benamor et 

al. (2005) 303-323 

0.09-100 

kPa   / 

Khalid et al 

(2012) 

362.1, 392.1, 

412.1 

500 – 1500 

kPa     / 

Zang et al. 

(2002) 313,323,333,343 1 – 95 kPa    

    

 

    / 
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3.1.2 Multiple Linear Regression  

The next stage of the project is to develop the MLR and ANN models. Throughout this 

study, matrix laboratory (MATLAB) software will be used to develop the models. Let 

𝑦 = 𝛼 (𝛼 is being the CO2 solubility), then a proposed matrix for linear equation such 

that  

𝑋 =

 
 
 
 
 
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑋1 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  𝑋2 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑋3 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 𝑋𝑗   𝑋𝑘  𝑋𝑙  
 
 
 
 

 

 

And for multiple linear regression, the proposed matrix  

𝑋𝑚 =

 
 
 
 
 
𝑋1 𝑋2 𝑋3 𝑋1

2 𝑋2
2 𝑋3

2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑋𝑗 𝑋𝑘 𝑋𝑙 𝑋𝑚 𝑋𝑛 𝑋𝑜  

 
 
 
 

 

The multiple linear regression equation that can be derived such that  

𝛼 = 𝑎𝑇 + 𝑏𝑃 + 𝑐𝐶 + 𝑑𝑇2 +  𝑒𝑃2 + 𝑓𝐶2 + 𝑔 

The command LM = LinearModel.fit(X,y,'linear')  for linear expression and 

LM = LinearModel.fit(X,y,'quadratic') for quadratic expression is used in MATLAB 

software in order to regress the model with respect to X and y values. The objective is to 

find the value of the estimates as the coefficient of the parameters x1, x2 and x3 which 

are CO2 partial pressure, temperature and concentration of DEA, MDEA or ratio of the 

concentration of DEA and MDEA respectively and also to determine which of the 

parameters should be removed based on the p-value obtained. If the p-value is less than 

0.05, the parameter is kept and vice versa. 

 The model then needs to be re-regress containing only the values which are kept 

for p-value < 0.05. New matrix needs to be construct consist of the parameters which are 
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to be kept in the first regression. The regression process will be repeated until the p-

values is less than 0.05.  

 For the second form of the MLR model, all the parameters are kept the same 

except for temperature that will be using 1/T instead. This is to further study if the model 

can determine the CO2 solubility using different form of parameter, which in this case is 

1/T. 

For developing the ANN model, the first step is by randomizing the input data. All 

the data from the reference papers will be randomize and divided into three parts:  

1. 65% of data will be used for training the neuron. 

2. 10% of data will be used for validation. 

3. 25% of data will be used for testing the neuron.  

The trial and error method will then be used to determine number if nodes for the 

neuron. Every number of neuron will give different results in term of Mean Square Error 

(MSE) and Regression. The trial and error process will be perform by setting the number 

of nodes as 1 and the results will then be collected. Number of nodes will be increase to 

3, 5, 7, 9, 15, 20, 25, 30 and up to 35. The result from each iteration will be recorded and 

number of nodes that show lowest MSE and highest Regression wil be the optimal 

number of nodes for the ANN model. The basis of this model is that MSE equals to zero 

which means no error and Regression equals to one means no deviation of generated 

output data from the targeted data.   

All the data will be trained and tested based on the input and the target data which 

the CO2 is loading from the experimental data. The generated output will then be 

simulated with the network that has the optimal number of neurons that have been 

identified earlier together with the input parameters. The command used to simulated the 

output data is sim(network,input). The calculated CO2 loading data is the result from 

the simulated output data. 
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3.1.3 Model Assessment 

Before concluding the outcome of the project, the error analysis on the results need to 

calculate by comparing the generated CO2 loading with the experimental data from the 

reference papers. Error calculated in the form of average absolute relative deviation 

percent, δAAD using the following equation: 

 

 δAAD  =  

 
|αcalc − αexp |

αexp

N
i=1

N
 × 100% 

Where  

αcalc  = generated CO2 loading 

αexp  = experimental CO2 loading  

N = number of data points 

 

The summary of the methodology is shown in Figure 3.1. 
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Figure 3.1: Project flow chart 

  

 

 

 

 

 

Data collection of the CO2 solubility or loading,equations 
involved,concentrations,temperatures and pressures

Develop the models by using MATLAB

Predict the solubility of CO2 using different concentration of MDEA and DEA 

Testing and performance evaluation

Perform error analysis on the results obtained from the models 

Conclusion
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3.2 Gantt Chart 

 Table 3.1 explains the timelines for Final Year Project II (FYPII) that will be 

done in this semester. Several objectives are expected to be achieved during the end of 

FYPII. 

The first third weeks of the semester is allocated for the student to finalize the 

data of parameters and starts to develop the Multiple Linear Regression (MLR) model. 

Then the next task in starting week 4 is to develop the MLR model by using different 

forms of the parameters that is planned until week 6. 

The result is then need to be finalized during week 6 and week 7. Further 

thorough data analysis will be performed during week 6 until week 9. The generated 

CO2 loading data from the model and from the experimental data will be compared to 

analyze the error analysis. 

After that, the data will be compiled all together during week 6 until week 10. 

Further task is to identify appropriate solution and recommendation to improve the result 

of the model for week 10 until week 12. Week 13 and week 14 are planned to finalize 

the data and the result. 
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Table 3.2: Gant Chart of FYP II

Activities/Plan 

Final Year Project II (FYPII) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Finalizing data of parameters and developing MLR 

and ANN models                             

Develop different forms of parameters for the models                             

Finalizing the result of the model                           

Performing data analysis between the model data and 

the experimental data                             

Compile all data together                              

Identify appropriate solution and recommendation 

for improving the result of the models                             

Finalize all data and result                            

Key Milestones 

Final Year Project II (FYPII) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Thorough data analysis and interpretation                             

Completion of FYP Technical Paper                             

Final Year Project Oral Presentation                             

Submission of Project Dissertation (Hard Bound)                             
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CHAPTER 4 

RESULT AND DISCUSSION 

In this section, the result of the modesl that has been complete so far will be 

shown and discussed. By using experimental data from Zhang et al(2002), A 

Benamour et al (2005) and Khalid et al(2012) for mixture of DEA and MDEA, the 

models have been developed. 

4.1 Multiple Linear Regression of Pure DEA 

4.1.1 Linear Regression  

Estimated Coefficients: 

Table 4.1: Linear regression result for pure DEA 

4.1.2 Quadratic Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

(Intercept) 24.644 4.2618e-07 5.7825e+07 4.3973e-219 

x1 33.592 4.1662e-07 8.063e+07 1.4707e-223 

x2 -2.6819e-15 2.2528e-07 -1.1905e-08 1 

x3 -1.2769e-15 2.2082e-07 -5.7825e-09   1 

x1:x2 -3.1776e-16 2.4248e-07 -1.3105e-09    1 

x1:x3 3.2376e-15 2.3106e-07 1.4012e-08 1 

x2:x3 -1.269e-15 2.3777e-07 -5.3371e-09 1 

x1^2 3.5275e-16 2.5777e-07 1.3685e-09   1 

 Estimate SE tStat pValue 

  (Intercept) 24.644 9.7942e-08 2.5162e+08 1.9915e-283 

x1 33.592 9.9658e-08 3.3707e+08 3.9891e-288 

x2 -2.2469e-15 1.0071e-07 -2.2311e-08 1 

x3 2.5576e-15 1.0033e-07 2.5493e-08 1 
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x2^2 -1.6841e-15 2.9235e-07 -5.7608e-09 1 

x3^2 0 0 NaN NaN 

Table 4.2: Quadratic regression result for pure DEA 

4.2 Multiple Linear Regression of Pure MDEA 

4.2.1 Linear Regression 

Estimated Coefficients: 

Table 4.3: Linear regression result for pure MDEA 

4.2.2 Quadratic Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

(Intercept) 0 0 NaN NaN 

x1 1 0 Inf 0 

x2 -3.0239e-14 0 -Inf 0 

x3 3.4763e-12 0 Inf 0 

x1:x2 -1.5146e-17 0 -Inf 0 

x1:x3 -2.4012e-17 0 Inf 0 

x2:x3 3.0914e-16 0 Inf 0 

x1^2 6.7584e-19 0 -Inf 0 

x2^2 4.781e-17 0 Inf 0 

x3^2 -5.9515e-13 0 -Inf 0 

Table 4.4: Quadratic regression result for pure MDEA 

4.3 Multiple Linear Regression of Mixture of DEA and MDEA 

4.3.1 Linear Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

  (Intercept) 8.6707e-14 4.6864e-06 1.8502e-08 1 

x1 1 3.9598e-09 2.5254e+08 1.7403e-283 

x2 -2.4119e-16 1.4859e-08 -1.6231e-08 1 

x3 1.4738e-15 1.2029e-07 1.2251e-08 1 
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Table 4.5: Linear regression result for mixture of DEA and MDEA 

4.3.2 Quadratic Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

(Intercept) -4.8226e-12 0.00033751 -1.4289e-08 1 

x1 1 2.2692e-07 4.4069e+06 0 

x2 3.0518e-14 2.1579e-06 1.4143e-08 1 

x3 7.6219e-14 6.8729e-06 1.109e-08 1 

x1:x2 1.4353e-18 7.1878e-10 1.9969e-09 1 

x1:x3 2.8773e-17 4.5109e-09 6.3786e-09 1 

x2:x3 -2.3776e-16 2.1755e-08 -1.0929e-08 1 

x1^2 2.1172e-19 1.7945e-10 1.1798e-09 1 

x2^2 -4.8377e-17 3.4488e-09 -1.4027e-08 1 

x3^2 -1.0303e-15 2.8108e-07 -3.6656e-09 1 

Table 4.6: Quadratic regression result for mixture of DEA and MDEA 

From all the result presented in the table, shows that the loading data is 

dominant to x1, which is the CO2 partial pressure. This is because only x1 exhibit 

coefficient of 1, which is too big and become dominant in the equation. Other 

parameters show estimates with value too small. This would assume that other 

parameters has no significant contribution in the equation compared to the partial 

pressure. This would also conclude that the equation is in function of the partial 

pressure as it become dominant and others has coefficient too small to be considered 

in the equation. 

 

 

 

 Estimate SE tStat pValue 

  (Intercept) 1.5719e-13 0 Inf 0 

x1 1 0 Inf 0 

x2 -4.8422e-16 0 -Inf 0 

x3 -1.8782e-15 0 -Inf 0 
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4.4 Multiple Linear Regression of Pure DEA (1/T) 

4.4.1 Linear Regression 

Estimated Coefficients: 

Table 4.7: Linear regression result for pure DEA 

4.4.2 Quadratic Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

(Intercept) 24.644 4.2732e-07 5.7671e+07 4.7775e-219 

x1 33.592 4.1642e-07 8.0668e+07 1.449e-223 

x2 2.812e-15 2.2325e-07 1.2596e-08 1 

x3 -2.2832e-15 2.2066e-07 -1.0347e-08 1 

x1:x2 5.6915e-15 2.4131e-07 2.3586e-08 1 

x1:x3 -2.8411e-15 2.3057e-07 -1.2322e-08 1 

x2:x3 -1.9409e-15 2.3681e-07 -8.1959e-09 1 

x1^2 1.497e-16 2.5772e-07 5.8089e-10 1 

x2^2 -2.086e-15 2.9474e-07 -7.0775e-09 1 

x3^2 0 0 NaN NaN 

Table 4.8: Quadratic regression result for pure DEA 

4.5 Multiple Linear Regression of Pure MDEA (1/T) 

4.5.1 Linear Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

  (Intercept) 24.644 1.3851e-07 1.7792e+08 7.383e-278 

x1 33.592 1.4092e-07 2.3838e+08 1.471e-282 

x2 1.4257e-15 1.4237e-07 1.0014e-08 1 

x3 -4.4247e-15 1.4184e-07 -3.1194e-08 1 

 Estimate SE tStat pValue 

  (Intercept) 25.193 1.3851e-07 1.8188e+08 3.2683e-278 

x1 30.859 1.4109e-07 2.1872e+08 3.5539e-281 
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Table 4.9: Linear regression result for pure MDEA 

4.5.2 Quadratic Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

(Intercept) 25.193 3.4424e-07 7.3183e+07 2.9663e-222 

x1 30.859 2.9733e-07 1.0379e+08 5.866e-227 

x2 2.9903e-15 1.7097e-07 1.749e-08 1 

x3 -2.3774e-15 1.6986e-07 -1.3996e-08 1 

x1:x2 2.4267e-15 1.8924e-07 1.2823e-08 1 

x1:x3 1.4515e-15 1.7797e-07 8.1555e-09 1 

x2:x3 -3.2334e-15 1.7441e-07 -1.8539e-08   1 

x1^2 5.3138e-15     1.9211e-07 2.766e-08 1 

x2^2 6.214e-15 2.3952e-07 2.5944e-08 1 

x3^2 0 0 NaN NaN 

Table 4.10: Quadratic regression result for pure MDEA 

4.6 Multiple Linear Regression of Mixture of DEA and MDEA (1/T) 

4.6.1 Linear Regression 

Estimated Coefficients: 

Table 4.11: Linear regression result for mixture of DEA and MDEA 

 

 

 

x2 1.686e-15 1.4089e-07 1.1967e-08 1 

x3 -3.7026e-15   1.4058e-07 -2.6338e-08 1 

 Estimate SE tStat pValue 

  (Intercept) 27.118 1.2549e-07 2.1609e+08 0 

x1 34.003 1.2627e-07 2.6928e+08 0 

x2 -6.6671e-16 1.2624e-07 -5.2812e-09 1 

x3 -5.918e-15 1.263e-07 -4.6856e-08 1 
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4.6.2 Quadratic Regression 

Estimated Coefficients: 

 Estimate SE tStat pValue 

(Intercept) -3.6044e-13 0.00018135 -1.9875e-09 1 

x1    1   1.1974e-07 8.3514e+06 0 

x2 2.2826e-10 0.11329 2.0148e-09 1 

x3 3.7671e-14 3.6792e-06 1.0239e-08 1 

x1:x2 -1.0858e-12 3.7525e-05 -2.8935e-08 1 

x1:x3 -2.9026e-17 2.4112e-09 -1.2038e-08 1 

x2:x3 -1.1112e-11 0.0011374 -9.7694e-09 1 

x1^2 3.582e-18 9.5931e-11 3.7339e-08 1 

x2^2 -3.638e-08 17.692 -2.0563e-09 1 

x3^2 -5.5345e-16 1.5024e-07 -3.6837e-09 1 

Table 4.12: Quadratic regression result for mixture of DEA and MDEA 

4.7 Artificial Neural Network of Mixture DEA and MDEA 

Net 
Neuro

n 
MSE 

(Training) 
Regression 
(Training) 

MSE 
(Validating) 

Regression 
(Validating) 

MSE 
(Testing) 

Regression 
(Testing) 

1 1 0.0254397 0.691581 0.0184513 0.884589 0.0232636 0.541711 

2 3 0.045492 0.201336 0.0226305 0.709831 0.0514549 0.115710 

3 5 0.0055930 0.944118 0.00544034 0.947366 0.0167729 0.777367 

4 7 0.00324365 0.961991 0.00574389 0.940929 0.115413 0.494238 

5 9 0.0120171 0.868242 0.0131435 0.822890 0.0301576 0.591231 

6 15 0.0174990 0.791978 0.0158619 0.811450 0.0164552 0.815500 

7 20 0.0142303 0.841923 0.0171880 0.838953 0.0149020 0.823227 

8 25 0.0105900 0.871120 0.0129695 0.808179 0.0148009 0.873302 

9 30 0.00729455 0.918009 0.0143475 0.839814 0.0438370 0.601202 

10 35 0.0105105 0.887976 0.0328929 0.694506 0.0243187 0.682179 

Table 4.13: Simulation Results 

 From the results above, network 8 with 25 neurons is selected as the best 

optimal result which shown the least MSE and highest R values for testing. Further 

analysis is illustrated in the graph below 
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Figure 4.1: Graph MSE vs No of Neurons 

 

 

Figure 4.2: Graph regression vs No of Neurons 

Based on the graphs, for this neural network model, the optimal neuron can 

be obtained at 5 neurons, which the model would give the minimum MSE and 

maximum value of R. 
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Besides MSE and Regression, there are also generated output data as a part of 

the results. The output data was simulated as a result of the training and testing by 

the neurons. However, there are small deviations between the generated output data 

and the target data. Generated output and calculated error are tabulated in the 

Appendix. Error is calculated using this equation: 

Error = Target data – Output data 

Deviations between generated and experimental data of the CO2 loading 

were plotted in the graphs. Results were divided into 6 parts based on the 

concentration of amines: 

1. 1.5M MDEA + 0.5M DEA 

2. 1.0M MDEA + 1.0M DEA 

3. 0.5M MDEA + 1.5M DEA 

4. 3.0M MDEA + 1.0M DEA 

5. 2.0M MDEA + 2.0M DEA 

6. 1.0M MDEA + 3.0M DEA 

 

Figure 4.3 Comparison of CO2 solubility in 1.5M MDEA + 0.5M DEA solution 

 

 

R² = 0.765

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0 0.2 0.4 0.6 0.8 1

α
ex

p
,
m

o
l C

O
2
/m

o
l M

D
EA

+D
EA

αcalc, mol CO2/mol MDEA+DEA

Comparison of CO2 solubility in 1.5M 
MDEA  + 0.5M DEA solution



30 
 

 

Figure 4.4 Comparison of CO2 solubility in 1.0M MDEA + 1.0 MDEA solution  

 

 

 

 

Figure 4.5 Comparison of CO2 solubility in 0.5M MDEA + 1.5M DEA solution  
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Figure 4.6 Comparison of CO2 solubility in 3.0M MDEA + 1.0M DEA solution  

 

 

 

 

Figure 4.7 Comparison of CO2 solubility in 2.0M MDEA + 2.0M DEA solution  
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Figure 4.8 Comparison of CO2 solubility in 1.0M MDEA + 3.0M  

      DEA solution  

 

 From the graph, all the generated data followed the same pattern as 

experimental data with the presence of some deviation. The deviation however, is 

small since proved by the average absolute relative deviation percent  δAAD  

calculated which is 10.47% while for data from Khalid Osman et al (2012), A. 

Benamor et al (2005) and Zhang et al (2002) are 17.06%, 12.09% and 9.82% 

respectively. From the value of δAAD  the model is considered as valid and has the 

ability to predict CO2 solubility in MDEA and DEA mixture since the deviation is 

smaller compared to the previous works that have been done before. 

4.8 Artificial Neural Network of Pure DEA and Pure MDEA 

In this method, only pure DEA and pure MDEA is used in each of the prediction 

method. The concentrations for both amines used are 2.0M and 4.0M respectively. 

Comparison of generated data and experimental data of CO2 loading are plotted in 

the graphs. 
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Figure 4.9 Comparison of CO2 solubility in 2.0M DEA solution  

 

 

Figure 4.10 Comparison of CO2 solubility in 4.0M DEA solution 
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Figure 4.11 Comparison of CO2 solubility in 2.0M MDEA 

 

 

Figure 4.12 Comparison of CO2 solubility in 4.0M MDEA 
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 In pure alkanolamines prediction, ANN model of CO2 solubility predicted in 

pure DEA has δAAD  4.02% while from the experimental data of A. Benamor et al 

(2005) has absolute relative deviation of 4.72%. As for prediction of CO2 in pure 

MDEA, the model resulted δAAD  of 9.77% compared to the reference paper from A. 

Benamor et al (2005) with 10.76%. 

 The error or deviations are small since new models were developed for each 

method. ANN models can learn the pattern from data input and the accuracy and 

precision were great as the deviations are small. 
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CHAPTER 5 

CONCLUSION 

The study of this project conclude that the MLR models still can be used to 

study the CO2 solubility in MDEA,DEA and their mixture. From the result as 

discussed in Chapter 4, it can be concluded that the equation is pressure dependent. 

This can be seen from the result as x1 has large value that it becomes dominant in the 

equation, neglecting other parameters. This proved that Multiple Linear Regression 

cannot be used to predict CO2 solubility in pure DEA, MDEA and their mixtures. 

On the other hand, Artificial Neural Network, the overall performance of the 

model was great as long as it is given chance to train and validate data the input data. 

This can be proven by the 𝛅𝐀𝐀𝐃  of the developed models which are smaller 

compared to the previous works. Since ANN was developed by learning the input 

data as well as the patterns of the inputs, it cannot interpret the data once the new 

input does not happen to have same pattern with the precious input.  

As the conclusion, Multiple Linear Regression cannot be used to predict CO2 

solubility in pure DEA, MDEA and their mixtures. ANN has great ability to predict 

CO2 solubility in pure DEA, MDEA and their mixtures only by developing models 

for each situation and condition due to the limitation of ANN itself which cannot 

simulate the new input data if they do not have the same patterns with the previous 

model developed.  
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 There are some recommendations that can be applied in order to improve the 

mathematical system. Firstly, by adding more experimental data to the system so that 

the neural network model can learn the patterns of the output more accurate and 

precise. Secondly, by using various forms of parameters, MLR might be able to 

predict CO2 solubility under those the conditions. 
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Appendix I 
 

% Mixture DEA and MDEA MLR 

% by fareez 16/8/2013 

 

%Data Input 

 

X=zeros(158,3); 

 

% CO2 Partial Pressure (kPa) 

 

X(:,1)=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 

28.9 50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 

10.3 29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 

10.2 31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 

47.4 95.1 4.81 6.10 8.40 9.61 11.80 16.80 21.40 25.20 29.80 9.01 11.0 14.50 17.10 23.50 

33.80 39.10 44.50 49.00 17.90 18.40 21.80 22.8 33.1 40.10 51.2 57.3 64.1 72.1 21.8 29.0 

40.80 48.2 55.2 61.0 63.50 12.1 15.2 18.9 37.7 42.8 14.6 19.0 27.4 35.5 46.1 56.8 150.00 

450.00 105.100 351.00 61.00 149.00 151.00 450.00 1153.00 49.00 160.00 351.00 450.0 

1050.0 152.00 57.00 351.00 152.00 153.00 1050.0 450.00 52.00 152.00 352.00]'; 

 

% Temperature (K) 

 

X(:,2)=[303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 323 323 

323 323 323 323 303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 

323 323 323 323 323 323 303 303 303 303 303 303 303 313 313 313 313 313 313 313 323 

323 323 323 323 323 323 313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 

313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 323 323 323 323 323 323 

323 323 323 333 333 333 333 333 333 333 333 333 333 343 343 343 343 343 343 343 333 

333 333 333 333 333 333 333 333 333 333 362.1 362.1 362.1 362.1 362.1 362.1 412.1 412.1 

412.1 412.1 412.1 412.1 362.1 362.1 362.1 362.1 362.1 362.1 412.1 412.1 412.1 412.1 412.1 

412.1]' ; 
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% Ratio of concentration (DEA:MDEA)  

 

X(:,3)=[0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.113 0.113 0.113 0.113 0.113 0.113 0.113 

0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 

0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.068 0.068 

0.068 0.068 0.068 0.227 0.227 0.227 0.227 0.227 0.227 1.143 1.143 1.143 1.143 1.143 1.143 

1.143 1.143 1.143 1.143 1.143 1.143 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 

0.76]' ; 

 

% y-value 

 

y=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 28.9 

50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 10.3 

29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 10.2 

31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 47.4 

95.1 4.81 6.10 8.40 9.61 11.80 16.80 21.40 25.20 29.80 9.01 11.0 14.50 17.10 23.50 33.80 

39.10 44.50 49.00 17.90 18.40 21.80 22.8 33.1 40.10 51.2 57.3 64.1 72.1 21.8 29.0 40.80 

48.2 55.2 61.0 63.50 12.1 15.2 18.9 37.7 42.8 14.6 19.0 27.4 35.5 46.1 56.8 150.00 450.00 

105.100 351.00 61.00 149.00 151.00 450.00 1153.00 49.00 160.00 351.00 450.0 1050.0 

152.00 57.00 351.00 152.00 153.00 1050.0 450.00 52.00 152.00 352.00]' ; 

 

% Normalization 

 

[Z,MU,SIGMA] = zscore(X); 

 

%Regression  

LM = LinearModel.fit(Z,y,'linear') ; 
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% Mixture DEA and MDEA MLR 

% by fareez 16/8/2013 

 

%Data Input 

X=zeros(158,3); 

 

% CO2 Partial Pressure (kPa) 

X(:,1)=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 

28.9 50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 

10.3 29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 

10.2 31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 

47.4 95.1 4.81 6.10 8.40 9.61 11.80 16.80 21.40 25.20 29.80 9.01 11.0 14.50 17.10 23.50 

33.80 39.10 44.50 49.00 17.90 18.40 21.80 22.8 33.1 40.10 51.2 57.3 64.1 72.1 21.8 29.0 

40.80 48.2 55.2 61.0 63.50 12.1 15.2 18.9 37.7 42.8 14.6 19.0 27.4 35.5 46.1 56.8 150.00 

450.00 105.100 351.00 61.00 149.00 151.00 450.00 1153.00 49.00 160.00 351.00 450.0 

1050.0 152.00 57.00 351.00 152.00 153.00 1050.0 450.00 52.00 152.00 352.00]'; 

 

% Temperature (K) 

X(:,2)=[303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 323 323 

323 323 323 323 303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 

323 323 323 323 323 323 303 303 303 303 303 303 303 313 313 313 313 313 313 313 323 

323 323 323 323 323 323 313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 

313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 323 323 323 323 323 323 

323 323 323 333 333 333 333 333 333 333 333 333 333 343 343 343 343 343 343 343 333 

333 333 333 333 333 333 333 333 333 333 362.1 362.1 362.1 362.1 362.1 362.1 412.1 412.1 

412.1 412.1 412.1 412.1 362.1 362.1 362.1 362.1 362.1 362.1 412.1 412.1 412.1 412.1 412.1 

412.1]' ; 

 

% Ratio of concentration (DEA:MDEA)  

X(:,3)=[0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.113 0.113 0.113 0.113 0.113 0.113 0.113 

0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 

0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.068 0.068 

0.068 0.068 0.068 0.227 0.227 0.227 0.227 0.227 0.227 1.143 1.143 1.143 1.143 1.143 1.143 
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1.143 1.143 1.143 1.143 1.143 1.143 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 

0.76]' ; 

 

% y-value 

y=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 28.9 

50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 10.3 

29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 10.2 

31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 47.4 

95.1 4.81 6.10 8.40 9.61 11.80 16.80 21.40 25.20 29.80 9.01 11.0 14.50 17.10 23.50 33.80 

39.10 44.50 49.00 17.90 18.40 21.80 22.8 33.1 40.10 51.2 57.3 64.1 72.1 21.8 29.0 40.80 

48.2 55.2 61.0 63.50 12.1 15.2 18.9 37.7 42.8 14.6 19.0 27.4 35.5 46.1 56.8 150.00 450.00 

105.100 351.00 61.00 149.00 151.00 450.00 1153.00 49.00 160.00 351.00 450.0 1050.0 

152.00 57.00 351.00 152.00 153.00 1050.0 450.00 52.00 152.00 352.00]' ; 

 

% Normalization 

[Z,MU,SIGMA] = zscore(X); 

 

%Regression 

LM = LinearModel.fit(Z,y,'quadratic') ; 
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% Mixture DEA and MDEA MLR 

% by fareez 12/7/2013 

 

%Data Input 

X=zeros(88,3); 

 

% CO2 Partial Pressure (kPa) 

X(:,1)=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 

28.9 50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 

10.3 29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 

10.2 31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 

47.4 95.1]'; 

 

% Temperature (K) 

XT=[303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 323 323 323 

323 323 323 303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 323 

323 323 323 323 323 303 303 303 303 303 303 303 313 313 313 313 313 313 313 323 323 

323 323 323 323 323 313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 

313 313 313 313 313]' ; 

 

X(:,2)= 1./XT ; 

 

% Ratio of concentration (DEA:MDEA)  

X(:,3)=[0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0]' ; 

 

% y-value 

y=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 28.9 

50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 10.3 

29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 10.2 
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31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 47.4 

95.1]' ; 

 

% Normalization 

[Z,MU,SIGMA] = zscore(X); 

 

%Regression 

LM = LinearModel.fit(Z,y,'quadratic') ; 
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% Artificial Neural Network (ANN) 

% Mixture DEA and MDEA MLR 

% by fareez 19/8/2013 

 

%Data Input 

X=zeros(158,3); 

 

% CO2 Partial Pressure (kPa) 

X(:,1)=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 

28.9 50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 

10.3 29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 

10.2 31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 

47.4 95.1 4.81 6.10 8.40 9.61 11.80 16.80 21.40 25.20 29.80 9.01 11.0 14.50 17.10 23.50 

33.80 39.10 44.50 49.00 17.90 18.40 21.80 22.8 33.1 40.10 51.2 57.3 64.1 72.1 21.8 29.0 

40.80 48.2 55.2 61.0 63.50 12.1 15.2 18.9 37.7 42.8 14.6 19.0 27.4 35.5 46.1 56.8 150.00 

450.00 105.100 351.00 61.00 149.00 151.00 450.00 1153.00 49.00 160.00 351.00 450.0 

1050.0 152.00 57.00 351.00 152.00 153.00 1050.0 450.00 52.00 152.00 352.00]'; 

 

% Temperature (K) 

X(:,2)=[303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 323 323 

323 323 323 323 303 303 303 303 303 303 303 303 313 313 313 313 313 313 313 313 323 

323 323 323 323 323 323 303 303 303 303 303 303 303 313 313 313 313 313 313 313 323 

323 323 323 323 323 323 313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 

313 313 313 313 313 313 313 313 313 313 313 313 313 313 313 323 323 323 323 323 323 

323 323 323 333 333 333 333 333 333 333 333 333 333 343 343 343 343 343 343 343 333 

333 333 333 333 333 333 333 333 333 333 362.1 362.1 362.1 362.1 362.1 362.1 412.1 412.1 

412.1 412.1 412.1 412.1 362.1 362.1 362.1 362.1 362.1 362.1 412.1 412.1 412.1 412.1 412.1 

412.1]' ; 

 

% Ratio of concentration (DEA:MDEA)  

X(:,3)=[0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.113 0.113 0.113 0.113 0.113 0.113 0.113 

0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 
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0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.068 0.068 

0.068 0.068 0.068 0.227 0.227 0.227 0.227 0.227 0.227 1.143 1.143 1.143 1.143 1.143 1.143 

1.143 1.143 1.143 1.143 1.143 1.143 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 

0.76]' ; 

 

% y-value 

y=[.1 .6 1.1 5.4 10.8 33.2 55.1 107.1 .1 .5 1.1 5.3 10.6 32.1 53.2 102.8 .1 1.1 5.1 10.2 28.9 

50.9 90.7 .1 .6 1.1 5.4 9.8 32.1 49.3 106.4 .1 .5 1.1 5.4 10.6 32.3 53.0 102.1 .1 1.0 5.0 10.3 

29.3 50.8 97.7 .1 1.1 5.5 10.9 33.2 55.1 106.4 .1 1.1 5.4 10.7 31.9 53.9 103.8 .1 1.0 5.1 10.2 

31.0 50.1 101.0 .1 .9 4.8 9.8 28.5 47.6 95.1 .1 .9 4.8 9.5 28.6 47.4 94.1 .1 .9 4.8 9.5 28.5 47.4 

95.1 4.81 6.10 8.40 9.61 11.80 16.80 21.40 25.20 29.80 9.01 11.0 14.50 17.10 23.50 33.80 

39.10 44.50 49.00 17.90 18.40 21.80 22.8 33.1 40.10 51.2 57.3 64.1 72.1 21.8 29.0 40.80 

48.2 55.2 61.0 63.50 12.1 15.2 18.9 37.7 42.8 14.6 19.0 27.4 35.5 46.1 56.8 150.00 450.00 

105.100 351.00 61.00 149.00 151.00 450.00 1153.00 49.00 160.00 351.00 450.0 1050.0 

152.00 57.00 351.00 152.00 153.00 1050.0 450.00 52.00 152.00 352.00]' ; 

 

% Normalization 

[Z,MU,SIGMA] = zscore(X); 
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T(K) PCO2 

(kPa) 
DEA 

(kmol/m3) 
MDEA 

(kmol/m3) 
αCO2 (exp) αCO2(calc) Deviation 

303 0.1 0.5 1.5 0.079 0.275817391 -0.197 
303 0.6 0.5 1.5 0.153 0.279983885 -0.127 
303 1.1 0.5 1.5 0.214 0.284147945 -0.070 
303 5.4 0.5 1.5 0.426 0.319846768 0.106 
303 10.8 0.5 1.5 0.535 0.364337538 0.171 
303 33.2 0.5 1.5 0.706 0.542887852 0.163 
303 55.1 0.5 1.5 0.766 0.704054151 0.062 
303 107.1 0.5 1.5 0.853 1.014241508 -0.161 
313 0.1 0.5 1.5 0.065 0.155695686 -0.091 
313 0.5 0.5 1.5 0.119 0.158837355 -0.040 
313 1.1 0.5 1.5 0.161 0.163551135 -0.003 
313 5.3 0.5 1.5 0.348 0.196580517 0.151 
313 10.6 0.5 1.5 0.449 0.238294102 0.211 
313 32.1 0.5 1.5 0.613 0.406205454 0.207 
313 53.2 0.5 1.5 0.702 0.56509204 0.137 
313 102.8 0.5 1.5 0.764 0.892089525 -0.128 
323 0.1 0.5 1.5 0.043 0.127654534 -0.085 
323 1.1 0.5 1.5 0.121 0.134287934 -0.013 
323 5.1 0.5 1.5 0.257 0.160895912 0.096 
323 10.2 0.5 1.5 0.340 0.194961231 0.145 
323 28.9 0.5 1.5 0.501 0.320364104 0.181 
323 50.9 0.5 1.5 0.629 0.466222212 0.163 
323 90.7 0.5 1.5 0.724 0.714384081 0.010 
303 0.1 1.0 1.0 0.116 0.328526834 -0.213 
303 0.6 1.0 1.0 0.210 0.332048555 -0.122 
303 1.1 1.0 1.0 0.292 0.335562674 -0.044 
303 5.4 1.0 1.0 0.477 0.365459538 0.112 
303 9.8 1.0 1.0 0.538 0.395415819 0.143 
303 32.1 1.0 1.0 0.698 0.535737852 0.162 
303 49.3 1.0 1.0 0.730 0.628675643 0.101 
303 106.4 1.0 1.0 0.802 0.82419321 -0.022 
313 0.1 1.0 1.0 0.071 0.2564307 -0.185 
313 0.5 1.0 1.0 0.165 0.25927235 -0.094 
313 1.1 1.0 1.0 0.219 0.263530163 -0.045 
313 5.4 1.0 1.0 0.370 0.293869482 0.076 
313 10.6 1.0 1.0 0.485 0.330098665 0.155 
313 32.3 1.0 1.0 0.604 0.474094155 0.130 
313 53 1.0 1.0 0.677 0.596953514 0.080 
313 102.1 1.0 1.0 0.764 0.810183626 -0.046 
323 0.1 1.0 1.0 0.045 0.260657149 -0.216 
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T(K) PCO2` 

(kPa) 
DEA 

(kmol/m3) 
MDEA 

(kmol/m3) 
αCO2 (exp) αCO2(calc) Deviation 

323 1 1.0 1.0 0.160 0.266247892 -0.106 
323 5 1.0 1.0 0.304 0.290994145 0.013 
323 10.3 1.0 1.0 0.378 0.323489122 0.055 
323 29.3 1.0 1.0 0.514 0.436262001 0.078 
323 50.8 1.0 1.0 0.603 0.554128384 0.049 
323 97.7 1.0 1.0 0.670 0.759209994 -0.089 
303 0.1 1.5 0.5 0.239 0.312190134 -0.073 
303 1.1 1.5 0.5 0.328 0.318817985 0.009 
303 5.5 1.5 0.5 0.493 0.347532288 0.145 
303 10.9 1.5 0.5 0.575 0.381749204 0.193 
303 33.2 1.5 0.5 0.691 0.510535728 0.180 
303 55.1 1.5 0.5 0.764 0.61702643 0.147 
303 106.4 1.5 0.5 0.810 0.795642269 0.014 
313 0.1 1.5 0.5 0.145 0.243118115 -0.098 
313 1.1 1.5 0.5 0.271 0.250044554 0.021 
313 5.4 1.5 0.5 0.421 0.279500403 0.141 
313 10.7 1.5 0.5 0.478 0.315046014 0.163 
313 31.9 1.5 0.5 0.609 0.448106466 0.161 
313 53.9 1.5 0.5 0.692 0.569569641 0.122 
313 103.8 1.5 0.5 0.764 0.781422443 -0.017 
323 0.1 1.5 0.5 0.071 0.258823484 -0.188 
323 1 1.5 0.5 0.206 0.264363583 -0.058 
323 5.1 1.5 0.5 0.353 0.289412055 0.064 
323 10.2 1.5 0.5 0.422 0.320123519 0.102 
323 31 1.5 0.5 0.553 0.439934311 0.113 
323 50.1 1.5 0.5 0.606 0.541803186 0.064 
323 101 1.5 0.5 0.682 0.772921285 -0.091 
313 0.1 1.0 3.0 0.038 0.155695686 -0.118 
313 0.9 1.0 3.0 0.121 0.161979711 -0.041 
313 4.8 1.0 3.0 0.268 0.192646186 0.075 
313 9.8 1.0 3.0 0.306 0.231998297 0.074 
313 28.5 1.0 3.0 0.465 0.378374657 0.087 
313 47.6 1.0 3.0 0.525 0.523762343 0.001 
313 95.1 1.0 3.0 0.632 0.846703061 -0.215 
313 0.1 2.0 2.0 0.063 0.2564307 -0.193 
313 0.9 2.0 2.0 0.175 0.26211152 -0.087 
313 4.8 2.0 2.0 0.322 0.289655489 0.032 
313 9.5 2.0 2.0 0.385 0.322480571 0.063 
313 28.6 2.0 2.0 0.503 0.450505295 0.052 
313 47.4 2.0 2.0 0.540 0.565364206 -0.025 
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T(K) PCO2` 

(kPa) 
DEA 

(kmol/m3) 
MDEA 

(kmol/m3) 
αCO2 (exp) αCO2(calc) Deviation 

313 94.1 2.0 2.0 0.609 0.78395155 -0.175 
313 0.1 3.0 1.0 0.073 0.243118115 -0.170 
313 0.9 3.0 1.0 0.181 0.248661527 -0.068 
313 4.8 3.0 1.0 0.371 0.275422794 0.096 
313 9.5 3.0 1.0 0.441 0.30707353 0.134 
313 28.5 3.0 1.0 0.517 0.427795423 0.089 
313 47.4 3.0 1.0 0.579 0.535497304 0.044 
313 95.1 3.0 1.0 0.632 0.75057131 -0.119 
313 4.81 0.305 2.695 0.107 0.174917161 -0.068 
313 6.1 0.305 2.695 0.137 0.185396735 -0.048 
313 8.4 0.305 2.695 0.165 0.204109098 -0.039 
313 9.61 0.305 2.695 0.189 0.213965807 -0.025 
313 11.8 0.305 2.695 0.236 0.231823279 0.004 
313 16.8 0.305 2.695 0.275 0.272649993 0.002 
313 21.4 0.305 2.695 0.319 0.31022975 0.009 
313 25.2 0.305 2.695 0.356 0.341246945 0.015 
313 29.8 0.305 2.695 0.391 0.378713987 0.012 
323 9.01 0.305 2.695 0.135 0.138212547 -0.003 
323 11 0.305 2.695 0.167 0.151928302 0.015 
323 14.5 0.305 2.695 0.201 0.176147269 0.025 
323 17.1 0.305 2.695 0.223 0.194208945 0.029 
323 23.5 0.305 2.695 0.283 0.238876042 0.044 
323 33.8 0.305 2.695 0.320 0.311162073 0.009 
323 39.1 0.305 2.695 0.359 0.348431941 0.011 
323 44.5 0.305 2.695 0.398 0.386380573 0.012 
323 49 0.305 2.695 0.431 0.417944653 0.013 
333 17.9 0.305 2.695 0.128 0.143066332 -0.015 
333 18.4 0.305 2.695 0.160 0.146009126 0.014 
333 21.8 0.305 2.695 0.192 0.166054633 0.026 
333 22.8 0.305 2.695 0.218 0.171960534 0.046 
333 33.1 0.305 2.695 0.271 0.232960364 0.038 
333 40.1 0.305 2.695 0.301 0.274468586 0.027 
333 51.2 0.305 2.695 0.334 0.340079631 -0.006 
333 57.3 0.305 2.695 0.361 0.37590972 -0.015 
333 64.1 0.305 2.695 0.390 0.415576762 -0.026 
333 72.1 0.305 2.695 0.427 0.46178764 -0.035 
343 21.8 0.305 2.695 0.127 0.096403831 0.031 
343 29 0.305 2.695 0.194 0.134814385 0.059 
343 40.8 0.305 2.695 0.235 0.197525635 0.037 
343 48.2 0.305 2.695 0.261 0.236478997 0.025 
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T(K) PCO2` 

(kPa) 
DEA 

(kmol/m3) 
MDEA 

(kmol/m3) 
αCO2 (exp) αCO2(calc) Deviation 

343 55.2 0.305 2.695 0.295 0.272919955 0.022 
343 61 0.305 2.695 0.317 0.302743628 0.014 
343 63.5 0.305 2.695 0.326 0.315481818 0.011 
333 12.1 0.191 2.809 0.055 0.099792177 -0.045 
333 15.2 0.191 2.809 0.099 0.118159002 -0.019 
333 18.9 0.191 2.809 0.130 0.140178818 -0.010 
333 37.7 0.191 2.809 0.241 0.25306675 -0.012 
333 42.8 0.191 2.809 0.280 0.283788875 -0.004 
333 14.6 0.555 2.445 0.111 0.151170744 -0.040 
333 19 0.555 2.445 0.160 0.176339841 -0.016 
333 27.4 0.555 2.445 0.231 0.224490467 0.007 
333 35.5 0.555 2.445 0.280 0.270887322 0.009 
333 46.1 0.555 2.445 0.331 0.3312704 0.000 
333 56.8 0.555 2.445 0.370 0.391526943 -0.022 

362.1 150 2.4 2.1 0.107 0.23432021 -0.127 
362.1 450 2.4 2.1 0.296 0.361547271 -0.066 
362.1 105.1 2.4 2.1 0.789 0.26921722 0.520 
362.1 351 2.4 2.1 0.297 0.253404281 0.044 
362.1 61 2.4 2.1 0.043 0.234313915 -0.191 
362.1 149 2.4 2.1 0.101 0.235534998 -0.135 
412.1 151 2.4 2.1 0.098 -0.022718267 0.121 
412.1 450 2.4 2.1 0.304 0.306197893 -0.002 
412.1 1153 2.4 2.1 0.544 0.257093727 0.287 
412.1 49 2.4 2.1 0.042 0.086808361 -0.045 
412.1 160 2.4 2.1 0.102 -0.033028171 0.135 
412.1 351 2.4 2.1 0.200 0.104416938 0.096 
362.1 450 1.9 2.5 0.293 0.250484821 0.043 
362.1 1050 1.9 2.5 0.301 0.302613542 -0.002 
362.1 152 1.9 2.5 0.117 0.203570041 -0.087 
362.1 57 1.9 2.5 0.046 0.03899418 0.007 
362.1 351 1.9 2.5 0.344 0.05116639 0.293 
362.1 152 1.9 2.5 0.148 0.203570041 -0.056 
412.1 153 1.9 2.5 0.094 0.127408778 -0.033 
412.1 1050 1.9 2.5 0.301 0.301602257 -0.001 
412.1 450 1.9 2.5 0.236 0.341941364 -0.106 
412.1 52 1.9 2.5 0.043 0.051146505 -0.008 
412.1 152 1.9 2.5 0.155 0.127709857 0.027 
412.1 352 1.9 2.5 0.209 0.207833316 0.001 
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T(K) PCO2 

(kPa) 
DEA 

(kmol/m3) 
MDEA 

(kmol/m3) 
αCO2 (exp) αCO2(calc) Deviation 

       
303 1.1 2.0 0.0 0.388 0.321447988 0.067 

303 5.4 2.0 0.0 0.521 0.476092848 0.045 

303 10.7 2.0 0.0 0.593 0.592439864 0.001 

303 32.5 2.0 0.0 0.699 0.684016703 0.015 

303 54.2 2.0 0.0 0.73 0.706935315 0.023 

303 100.9 2.0 0.0 0.786 0.761923389 0.024 

313 0.1 2.0 0.0 0.172 0.223985468 -0.052 

313 0.5 2.0 0.0 0.278 0.241898831 0.036 

313 1 2.0 0.0 0.32 0.263560183 0.056 

313 5.3 2.0 0.0 0.459 0.416054054 0.043 

313 10.7 2.0 0.0 0.538 0.531620468 0.006 

313 32.1 2.0 0.0 0.597 0.610598882 -0.014 

313 53.8 2.0 0.0 0.662 0.661795180 0.000 

313 104.7 2.0 0.0 0.727 0.738526990 -0.012 

323 0.1 2.0 0.0 0.133 0.145289859 -0.012 

323 0.5 2.0 0.0 0.152 0.164120252 -0.012 

323 1 2.0 0.0 0.272 0.186910846 0.085 

323 5.1 2.0 0.0 0.398 0.342223840 0.056 

323 10 2.0 0.0 0.473 0.461338586 0.012 

323 30.4 2.0 0.0 0.546 0.567405857 -0.021 

323 50.8 2.0 0.0 0.611 0.601230048 0.010 

323 98.2 2.0 0.0 0.688 0.691887149 -0.004 

303 0.1 4.0 0.0 0.122 0.190675765 -0.069 

303 1 4.0 0.0 0.309 0.229332315 0.080 

303 4.9 4.0 0.0 0.471 0.376322206 0.095 

303 9.9 4.0 0.0 0.524 0.506277237 0.018 

303 29.4 4.0 0.0 0.588 0.644853063 -0.057 

303 48.9 4.0 0.0 0.633 0.640786806 -0.008 

303 98.6 4.0 0.0 0.671 0.759108360 -0.088 

313 0.1 4.0 0.0 0.091 0.168039894 -0.077 

313 0.9 4.0 0.0 0.281 0.199785193 0.081 

313 5.3 4.0 0.0 0.441 0.343563821 0.097 

313 10.4 4.0 0.0 0.499 0.450809920 0.048 

313 31 4.0 0.0 0.561 0.588854740 -0.028 

313 52.6 4.0 0.0 0.599 0.549833834 0.049 

313 102.1 4.0 0.0 0.639 0.649447464 -0.010 

323 0.1 4.0 0.0 0.091 0.137275630 -0.046 

323 0.9 4.0 0.0 0.193 0.161826759 0.031 

323 4.5 4.0 0.0 0.344 0.251652388 0.092 
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T(K) PCO2` 

(kPa) 
DEA 

(kmol/m3) 
MDEA 

(kmol/m3) 
αCO2 (exp) αCO2(calc) Deviation 

303 4.8 0.0 2.0 0.333 0.182 0.151 

303 10.5 0.0 2.0 0.483 0.307 0.176 

303 29.8 0.0 2.0 0.673 0.635 0.038 

303 48.4 0.0 2.0 0.793 0.736 0.057 

303 95.8 0.0 2.0 0.88 0.766 0.114 

313 1.1 0.0 2.0 0.103 0.110 -0.007 

313 3.1 0.0 2.0 0.197 0.168 0.029 

313 5.2 0.0 2.0 0.267 0.228 0.039 

313 10 0.0 2.0 0.974 0.355 0.619 

313 30.3 0.0 2.0 0.603 0.667 -0.064 

313 47.5 0.0 2.0 0.688 0.736 -0.048 

313 94 0.0 2.0 0.805 0.753 0.052 

323 1 0.0 2.0 0.079 -0.045 0.124 

323 2.9 0.0 2.0 0.148 0.003 0.145 

323 4.8 0.0 2.0 0.194 0.049 0.145 

323 9.7 0.0 2.0 0.298 0.159 0.139 

323 28.4 0.0 2.0 0.471 0.470 0.001 

323 44.1 0.0 2.0 0.59 0.629 -0.039 

323 91.5 0.0 2.0 0.726 0.725 0.001 

303 0.1 0.0 4.0 0.027 0.130 -0.103 

303 1 0.0 4.0 0.061 0.149 -0.088 

303 4.9 0.0 4.0 0.149 0.233 -0.084 

303 9.8 0.0 4.0 0.284 0.329 -0.045 

303 29.5 0.0 4.0 0.516 0.553 -0.037 

303 49.1 0.0 4.0 0.633 0.630 0.003 

303 98.2 0.0 4.0 0.761 0.739 0.022 

313 0.1 0.0 4.0 0.015 0.011 0.004 

313 0.9 0.0 4.0 0.052 0.032 0.020 

313 4.8 0.0 4.0 0.085 0.129 -0.044 

313 9.5 0.0 4.0 0.190 0.233 -0.043 

313 28.5 0.0 4.0 0.384 0.484 -0.100 

313 47.5 0.0 4.0 0.513 0.560 -0.047 

313 95.2 0.0 4.0 0.654 0.666 -0.012 

323 0.1 0.0 4.0 0.01 -0.001 0.011 

323 0.9 0.0 4.0 0.037 0.011 0.026 

323 4.5 0.0 4.0 0.084 0.059 0.025 

323 9 0.0 4.0 0.151 0.107 0.044 

323 27.1 0.0 4.0 0.251 0.226 0.025 

323 45.1 0.0 4.0 0.363 0.356 0.007 
 


