
STATUS OF THESIS

Title of thesis Separator Database and SPM-Tree Framework for Mining
Sc uential Patterns us in PrefixS an with Pseudo ro · ection

I DHANY SAPUTRA hereby allow my thesis to be placed at the Information
Resource Center (IRC) ofUniversiti Teknologi PETRONAS (UTP) with the
following conditions:

I. The thesis becomes the property of UTP
2. The IRC ofUTP may make copies of the thesis for academic purposes only
3. This thesis classified as

D Confidential

[TI Non-confidential

If the thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for years. --
Remarks on disclosure:

Endorsed b

Jalan 1-layam Wuruk B-11
Jombang
Jawa Timur- 61411
Indonesia

Date: Jv.NE 3 0. 2oo g

Department of Computer and Information Sciences
Universiti Teknologi PETRONAS
Bandar Seri Iskandar, Perak
Malaysia

Date: ~ 30, J-.00 8

APPROVAL

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisors

The Undersigned certify that they have read, and recommend to The Postgraduate

Studies Programme for acceptance, a thesis entitled "Separator Database and SPM-

Tree Framework for Mining Sequential Patterns Using PrefixSpan with

Pseudoprojection" submitted by Dhany Saputra for the fulfillment of the

requirements for the degree of Master of Science in Computer Information and

Science.

Date

Signature

Main Supervisor

Date

Signature

Co-Supervisor

Date

~ . ~ =':) (£.ol. ~ II:) '-"' e1"5 Ills. rn.l.l ·

~ 60/ d--00&

~2
pooNG 01 ME.A-N

iJ lA)"\ \?_. 3 0 J z.oo '8

11

UNIVERSITI TEKNOLOGI PETRONAS

Separator Database and SPM-Tree Framework for Mining Sequential Patterns

Using PrefixSpan with Pseudoprojection

By

Dhany Saputra

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

IN COMPUTER INFORMATION AND SCIENCE PROGRAMME

BANDAR SERI ISKANDAR

PERAK

APRIL 2008

Ill

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

Signature

Name

Date

IV

DEDICATION

This thesis is dedicated to my beloved father and mother
for their prayer and encouragement.

v

ACKNOWLEDGEMENT

All praise is for Allah Almighty, Most Merciful, Most Compassionate, and may His

blessing, peace, and favors descend in perpetuity on our beloved Prophet Muhammad

SAW, who is a mercy for ali the worlds.

To my family: Thank you my father and my mother, for your endless support, for

your care, and for your love all the time. Also thanks to my two younger sisters, Nila

and Elsa.

To UTP academic staffs: I would like to express my gratitude and appreciation to my

main supervisor, Dr Dayang Rohaya Awang Rambli, not only towards my

accomplishment to this work but also towards very careful reading on my thesis,

continuous guidance, support, and valuable advices throughout my study here in UTP.

I am also thankful and appreciative to my co-supervisor, Ms. Foong Oi Mean, for her

considerate and conscious guidance for the completion of this research work. I would

also like to express my gratitude to Prof. Dr. Jubair Jwamear A.S. Al-Jaafar, Dr.

Etienne Schneider, Dr. Mohamed Nordin Zakaria, and Ms. Yong Suet Peng for

brightening my mind with their expertise and insightful discussions during the

completion of this research.

To the university, staffs and technicians: I am grateful to Computer and Information

Sciences Department and Postgraduate Studies Programme in Universiti Teknologi

PETRONAS, which have provided all necessary supports including my presentation

on international conference held in Kuching as well as publishing three papers and

one international journal. I wish to thank Mr Rasky (VR Lab Technician), Ms Azarina

(Multimedia Lab IV and V Technician), and Encik Muhamad (PO Office Workstation

1.6 Technician) for their help on providing me access and privilege to the computers

for research; Encik Fadil Ariff, Kak Norma, Kak Aida, and all other as postgraduate

VI

office staffs for their superb benevolence on helping me with the postgraduate

research administration matters.

To my partners in research: I would like to express my special gratitude to Pak Dani

Adhipta and Pak Agus Arif for helping and guiding me through the thesis writing

process; Pak Ayok, Om Arief Rahman, and Pak Bayu Erfianto for being my

supportive research discussion partners; extraordinary appreciation to Barkah Y usuf

for being my great sensei on Data Mining; great gratefulness to Dr J iawei Han

(University of Illinois), Prof. Dr. Stephan Olariu (University of Old Dominion), and

Mr. Febriliyan Samopa (Ph.D. candidate at Hiroshima University, Japan) for their

kind comments and helpful inputs to my research. Also to all of IT PG Students in

Block 2: Aini and Intan (thank you for your great help to translate my abstract into

BM), Pak Jati, Pak Totok, Pak Bambang Ariwahjoedi, and Andri Kusbiantoro (thank

you for helping me with spiritual support on research).

Tremendous gratitude to all of my supportive UTP postgraduate friends especially

citizen of VSC (Pak Balzach, Pak Eko, Pak Rofiq, Pak Lava, Pak Hudiyo, Mas Dedi

BS Uhuy, Pak Agus, Pak Budi Agung, Mang Rulli, Pak Oyas, Pak Warda), citizen of

V 4 and Y3 (Dewa 132, Pak Agni, Rizal, Faisal, Fauzan, Acong, Kiki, Amelia, and

Afny), citizen of Bandar U (Bang Adi, Farhat, Mas Agung Dewandaru, Mas Irfan,

Mas Rahmat, Mbak Erna, Pak Totok, Pak Ridho, and Bu Ayok), and PG Students

partner-in-crimes, especially on makan-makan and die-hard member of DCFC-girls

(Chin, Ari, Diyana, Shu, Sha, Mas, Fadziella, Fatimah and Rashidah). I really enjoyed

every single moment I have spent with you. You are all unquestionably great friends

to me.

VII

ABSTRACT

Sequential pattern mining is a new branch of data mining science that solves inter­

transaction pattern mining problems. Efficiency and scalability on mining complete

set of patterns is the challenge of sequential pattern mining. A comprehensive

performance study has been reported that PrefixSpan, one of the sequential pattern

mining algorithms, outperforms GSP, SPADE, as well as FreeSpan in most cases, and

PrefixSpan integrated with pseudoprojection technique is the fastest among those

tested algorithms. Nevertheless, Pseudoprojection technique, which requires

maintaining and visiting the in-memory sequence database frequently until all patterns

are found, consumes a considerable amount of memory space and induces the

algorithm to undertake many redundant and unnecessary checks to this copy of

original database into memory when the candidate patterns are examined. Moreover,

improper management of intermediate databases may adversely affect the execution

time and memory utilization. In the present work, Separator Database is proposed to

improve PrefixSpan with pseudoprojection through early removal of uneconomical

in-memory sequence database, whilst SPM-Tree Framework is proposed to build the

intermediate databases. By means of procedures for building index set of longer

patterns using Separator Database, some procedure in accordance to in-memory

sequence database can be removed, thus most of the memory space can be released

and some obliteration of redundant checks to in-memory sequence database reduce

the execution time. By storing intermediate databases into SPM-Tree Framework, the

sequence database can be stored into memory and the index set may be built. Using

Java as a case study, a series of experiment was conducted to select a suitable API

class named Collections for this framework. The experimental results show that

Separator Database always improves, exponentially in some cases, PrefixSpan with

pseudoprojection. The results also show that in Java, ArrayList is the most

suitable choice for storing Object and ArrayintList is the most suitable choice

VIII

for storing integer data. This novel approach of integrating Separator Database and

SPM-Tree Framework using these choices of Java Collections outperforms

PrefixSpan with pseudoprojection in terms of CPU performance and memory

utilization. Future research includes exploring the use of Separator Database in

PrefixSpan with pseudoprojection to improve mining generalized sequential patterns,

particularly in handling mining constrained sequential patterns.

IX

ABSTRAK

Perlombongan pola berjujukan adalah penemuan baru dalam sains perlombongan data

yang diaplikasikan bagi mengenal pasti bentuk perlombongan pola antara transaksi.

Cabaran bagi aplikasi perlombongan pola berjujukan ini adalah ketepatan dan

keberkesanannya untuk mengenal pasti himpunan pola dalam perlombongan itu.

Beberapa kajian yang telah dibuat menunjukkan PrefixSpan, penambahbaikkan GSP,

SPADE, dan Juga FreeSpan dapat memperbaiki kepantasan algoritma dalam

perlombongan pola berjujukan ini. Namun, dengan pengenalan persepaduan

PrefixSpan dan teknik pseudoprojection, kajian telah menunjukkan bahawa ia

merupakan algoritma yang terpantas dalam perlombongan pola berjujukan. Walau

bagaimanapun, teknik pseudoprojection memerlukan data disimpan dalam memori

dan datanya per!u sentiasa dipantau sehingga kesemua pola dikenalpasti; memer!ukan

jumlah ruang memori yang besar di samping memer!ukan algoritma PrefixSpan

melakukan pemeriksaan yang berulang dan ber!ebihan. Pemeriksaan ini dibuat ke atas

salinan data yang telah diambil dari pangkalan data asal ke dalam memori komputer

ketika proses bentuk pola-pola dikenalpasti. Tambahan pula, pengurusan yang tidak

sempurna ketika proses perantaraan data di antara pangkalan data boleh menyebabkan

tempoh masa yang diambil adalah lama dan ia juga memerlukan penggunaan ruang

memori yang besar. Justeru, bagi kajian ini Separator Database dicadangkan untuk

penambahbaikkan penggunaan sediaada persepaduan PrefixSpan dengan teknik

pseudoprojection. Menerusi kaedah ini, data yang tidak ekonomis yang telah disalin

ke dalam memori dari pangkalan data akan dinafikan seawal mungkin. Sementara itu,

SPM-Tree Framework juga diketengahkan dalam membina proses perantaraan data di

antara pangkalan data. Dengan penggunaan prosedur untuk membina himpunan indek

bagi pola yang panjang menerusi Separator Database, beberapa prosedur bagi data

yang telah disalin ke dalam memori dari pangkalan data dapat dikecualikan. Justeru,

penggunaan kapasiti ruang di dalam memori dapat dikurangkan di san1ping

mengurangkan pengulangan pemeriksaan ke atas memori di dalam pangkalan data

X

dan ini sekaligus mengurangkan tempoh masa pemprosesan yang diperuntukan. Di

sam ping itu, kemasukan pangkalan data perantara ke dalam SPM-Tree Framework,

membolehkan pangkalan data berjujukan disimpan di dalam memori dan himpunan

indek dapat dibina. Dengan menggunakan Java dalam kaj ian kes, beberapa siri

eksperimen telah dijalankan untuk memilih satu kelas API bernama Collections

yang sesuai untuk rangka kerja ini. Hasil dari beberapa siri eksperimen menunjuk.kan

bahawa Separator Database sentiasa menyumbang kepada penambahbaikkan

persepaduan PrefixSpan dengan teknik pseudoprojection dan peningkatannya adalah

pesat dalam kebanyakan kes. Hasil kajian tersebut juga telah menunjukkan, dalam

Java; ArrayList adalah pilihan yang paling sesuai untuk menyimpan Object, dan

ArrayintList adalah pilihan yang paling sesuai untuk penyimpanan data integer.

Pendekatan baru yang menyepadukan Separator Database dan SPM-Tree Framework

ini, jelas menunjuk.kan penambahbaikan yang positif ke atas penyepaduan Prefix Span

dengan teknik pseudoprojection dari aspek prestasi CPU dan penggunaan memori.

XI

TABLE OF CONTENTS

STATUS OF THESIS .. i
APPROVAL ... ii
DECLARATION ... iv
DEDICATION ... v
ACKNOWLEDGEMENT ... vi
ABSTRACT ... viii
ABSTRAK .. X

TABLE OF CONTENTS .. xii
LIST OFT ABLES ... xiv
LIST OF FIGURES .. XV

CHAPTER I INTRODUCTION ... !
1.1 Background .. I
1.2 Problem Statement ... 3
1.3 Research Aim and Contributions ... 4
1.4 Scope and Limitations .. 5
1.5 Thesis Organization ... 7

CHAPTER 2 LITERATURE REVIEW ... 8
2.1 Sequential Pattern Mining .. 8
2.1.1 Definition ofTerms .. 9
2.2 Approaches to Mining Sequential Pattems .. l2
2.2.1 Generate and Test Approach (A priori Approach) ... 12
2.2.1.1 AprioriAII, AprioriSome, Dynamic Some .. 13
2.2.1.2 GSP .. 16
2.2.1.3 PSP ... J9
2.2.1.4 Discussion .. 20
2.2.2 Vertical Format Approach ... 20
2.2.3 Pattern Growth Approach .. 22
2.2.3.1 FreeSpan .. 25
2.2.3.2 PrefixSpan .. 27
2.2.3.3 PrefixSpan with Pseudoprojection Technique ... 33
2.2.3.4 MEMISP .. 37
2.2.3.5 Discussion .. 38

CHAPTER 3 IMPROVEMENTS ON PREFIXSPAN WITH
PSEUDO PROJECTION42

3.1 SPM-Tree Framework .. .42
3.1.1 The Need for a Framework .. 42
3.1.2 Definition ofTerms43
3.1.3 The SPM-Tree Framework .. 44

XII

3.1.4 Data Structure Requirements for The Framework .. .46
3.1.5 Data Structure Candidates for The Framework .. .48
3.2 Separator Database ... 49
3.2.1 Background49
3.2.2 Definition ofTerms .. 50
3.2.3 The Separator Database ... 51
3.2.4 Effects of Separator Database to Several Database Characteristics 54

CHAPTER 4 RESULTS AND DISCUSSION ... 56
4.1 Selection of Suitable Data Structure for SPM-Tree Framework 56
4.1.1 CPU Performance of Appending Integers into Different List

Collections ... 57
4.1.2 CPU Performance of Retrieving Integers into Different List Collections

.. , ... 58
4.1.3 Memory Usage of Appending Integers into Different List Collections

.. 60
4.1.4 Memory Usage of Retrieving Integers into Different List Collections61
4.1.5 CPU Performance of Appending Objects into Different List

Collections ... 62
4.1.6 CPU Performance of Retrieving Objects into Different List

Collections ... 63
4.1. 7 Discussion .. 63
4.2 Performance and Scalability Test of Separator Database 64
4.2.1 CPU Performance versus Minimum Support .. 65
4.2.2 CPU Performance versus Dataset Density ... 67
4.2.3 CPU Performance versus Dataset Size .. 68
4.2.4 CPU Performance versus Transaction Length ... 69
4.2.5 Memory Usage versus Transaction Length ... 70
4.2.6 Discussion .. 71

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS ... 74
5.1 Conclusions .. 74
5.2 Future Works ... 75

BIBLIOGRAPHY .. 76

APPENDIX A: EXPERIMENT DATA .. 80

XIII

LIST OFT ABLES

Table 1: Example of Transactional Database ... ! 0
Table II. Sequence Database Version .. !!
Table Ill. Database projection and the set of sequential patterns 31
Table IV. Index set for I-patterns .. 35
Table V: Index Set for n-patterns (n> I) ... 36
Table VI. Separator Database .. 52
Table VII. Execution time of Appending Integers (in second) 80
Table VIII. Execution time of Retrieving Integers (in second) 80
Table IX. Memory Usage of Appending Integers (in MB) ... 81
Table X. Memory Usage of Appending and Retrieving Integers (in MB) 81
Table XI. Execution Time of Appending Objects (in second) 82
Table XII. Execution Time of Retrieving Objects (in second) 82
Table XIII. Execution Time versus Database Density (in second) 83
Table XIV. Execution Time versus Database Size (in second) 83
Table XV. Execution Time versus Minimum Support Threshold (in second) 83
Table XVI. Execution Time versus Average Transaction Length (in second) 84
Table XVII. Memory Usage versus Average Transaction Length (in MB) 84

XIV

LIST OF FIGURES

Figure I. Approaches to Mining Sequential Patterns .. 12
Figure 2. PrefixSpan with Pseudoprojection ... 29
Figure 3. SPM-Tree Framework .. 44
Figure 4. CPU performance of appending integers into different List
Collections ... 57
Figure 5. CPU performance of retrieving integers into different List
Collections ... 58
Figure 6. Memory usage of appending integers into different List Collections
.. 60
Figure 7. Memory usage of appending and retrieving integers into different List
Collections ... 61
Figure 8. CPU performance of appending Objects into different List
Collections ... 62
Figure 9. CPU performance of retrieving Objects into different List
Collections ... 63
Figure I 0. CPU Performance versus Minimum Support on Dataset-1 65
Figure I I. CPU Performance versus Dataset Density on Dataset-2 67
Figure 12. CPU Performance versus Dataset Size on Dataset-3 68
Figure 13. CPU Performance versus Transaction Length on Dataset-4 69
Figure 14. Memory Usage versus Transaction Length on Dataset-4 70

XV

1.1 Background

CHAPTER I

INTRODUCTION

Rapid progress in digital data acquisition and storage technology has resulted

in the growth of huge databases. This amazing progress is happening in all

areas such as supermarket transactional data, credit card usage records,

telephone call details, government statistics, images of astronomical bodies,

and molecular databases(!). However, data collected are seldom revisited and

most often important decisions are made based not on the information gained

from these data but rather on a decision maker's intuition. Therefore, this

progress couples with high interest of extracting valuable information to the

decision makers have motivated the growth of knowledge discovery in

database (KDD). In essence, knowledge discovery in databases comprises

following steps (2]:

• Data cleaning (to remove noise and irrelevant data)

• Data integration (to combine multiple data sources)

• Data selection (to retrieve only relevant data to the analysis task)

• Data transformation (to transform the data into forms suitable for

mining)

• Data mining (to apply intelligent methods and to extract patterns)

• Pattern evaluation (to identify the truly interesting patterns)

• Knowledge presentation (to visualize the mined knowledge to user)

The discipline of data mmmg focuses on extracting interesting patterns or

knowledge from large information repositories. A pattern is interesting if it is

easily understood by human, valid on new or test data with some degree of

2

certainty, potentially useful, and novel.

There are various types of data mining techniques (3], such as classification,

clustering, and association rules mining. Classification builds a model that can

classify a class of objects to predict the accurate classification. Clustering

groups set of objects based on their similarities. Meanwhile, association rule

mining, known as frequent pattern mining, extracts interesting frequent

patterns. It is widely used for market basket or transaction data analysis.

Association rules mining concerns with finding intra-transaction patterns, i.e.

concurrent purchase pattern. Nevertheless, association rules mining is not

capable of figuring out inter-transaction patterns, i.e. sequence of purchase

patterns. Thus, a new branch of data mining science, named sequential

patterns mining was born to solve inter-transaction patterns mining.

Sequential pattern mining plays a paramount role in many data mining tasks

(4], such as mining complete sequential patterns [5], [6], [7], [8], [9], [I 0],

(11], (12], (13], mining constrained sequential patterns [6], [14], (16], (17],

[18], mining closed sequential patterns (19], [20], (21], mining approximate

sequential patterns [22], (23], incremental mining sequential patterns (24], and

mining structured patterns [25]. Sequential pattern mining also has broad

applications, such as stock and market analysis, web log click streams analysis

(26], natural disasters (e.g., earthquakes), mining sequential alarm patterns in a

telecommunication database [27], DNA sequences analysis and gene

structures analysis (28].

Mining complete sequential patterns or simply named sequential pattern

mmmg has been intensively studied during recent years. Efficiency and

scalability on mining complete set of sequential patterns is the challenge of

sequential pattern mining. Several approaches have been proposed to cope

with this challenge. They are generate-and-test approach, vertical format

approach, and pattern growth approach. Earlier algorithms, such as AprioriAll

3

[5], GSP [6], and PSP [7], adopt apriori approach to discover sequential

patterns. Then, Zaki came with an efficient SPADE algorithm (8], which

proposed vertical forn1at sequence database, instead of using apriori approach.

SPADE outperforms GSP by a factor of two through experiments. Meanwhile,

pattern growth approach was introduced [9] by proposing FreeSpan algorithm

(10]. Still applying pattern growth approach, Jian Pei et al [II] proposed

PrefixSpan algorithm and pseudoprojection technique, which outperforms

SPADE, FreeSpan, and GSP (12]. Despite outperforming others, PrefixSpan

still bears an inherent cost in performance due to the inefficiency of using in­

memory sequence database. Therefore, the focus of this thesis is to propose

further improvements on PrefixSpan with pseudoprojection.

1.2 Problem Statement

PrefixSpan with pseudoprojection builds two intermediate databases, i.e. index

set (also known as pseudoprojection database) and in-memory sequence

database when searching for patterns. If the data structure implementation

strategy to build and use those two temporary databases is not managed

carefully, then the execution time and memory utilization will be considerably

affected. Thus, a framework to store the intermediate databases in PrefixSpan

with pseudoprojection is an essential implementation issue to bring up to front.

PrefixSpan, though reducing recursive construction of projected database

through pseudoprojection technique (II], [12], bears an inherent cost in

performance due to the inefficiency of using in-memory sequence database.

Pseudoprojection technique requires to maintain and to visit the in-memory

sequence database frequently until all patterns are figured out. Maintaining in­

memory sequence database consumes considerable amount of memory space

during mining. Frequent access to in-memory sequence database is not

efficient since there are many redundant and unnecessary checks to this copy

4

of original database into memory when the candidate patterns are examined.

1.3 Research Aim and Contributions

The overall aim of this research is to improve the performance of PrefixSpan

with pseudoprojection by speeding up the mining process and reducing the

memory utilization.

To cope with the highly efficient and scalable mmmg complete set of

sequential patterns as the challenge of mining sequential patterns, this thesis

improves PrefixSpan with pseudoprojection technique on the following two

contributions:

• Separator Database was proposed to substitute the uneconomical in­

memory sequence database in PrefixSpan with pseudoprojection technique.

• SPM-Tree Framework was proposed as a framework to build in-memory

sequence database and to build index set. Using Java as a case study, it

was shown that ArrayList is the most suitable Collections for

storing Object and ArrayintList IS the most suitable

Collections for storing integer data.

The work in this thesis has resulted in the following publications.

• Dhany Saputra, Dayang Rohaya Awang Rambli, Foong Oi Mean, "An

Efficient Data Structure for General Tree-Like Framework in Mining

Sequential Patterns using MEMlSP", in Proceedings of The 5'"

International Conference on Information Technology in Asia (CITA '07),

2007, pp. 133-139.

• Dhany Saputra, Dayang Rohaya A wang Rambli, Foong Oi Mean, "Mining

Sequential Patterns using 1-PrefixSpan", in Proceedings of World

Academy of Science, Engineering, and Technology, International

Conference on Knowledge Mining {ICKM '07), 2007, pp. 499-504.

5

• Dhany Saputra, Dayang Rohaya A wang Rambli, Foong Oi Mean, "Mining

Sequential Patterns using 1-PrefixSpan", International Journal of

Computer Science and Engineering (IJCSE '08), vol 2, pp. 49-54, Spring

2008.

• Dhany Saputra, Dayang Rohaya Awang Rambli, Foong Oi Mean,

"Sequential Pattern Mining using PrefixSpan with Pseudoprojection and

Separator Database", in Proceedings of World Academy of Science,

Engineering, and Technology, International Conference on Knowledge

Mining (ICKM '07), 2007, pp. 49-54.

The first publication has contributed on SPM-Tree Framework, which is

covered in Chapter 3 and 4. The second and third publication have contributed

on the incorporation of SPM-Tree Framework and Separator Database, which

is covered in Chapter 3, while the fourth publication has contributed on more

experiments and lemma justifications to Separator Database, which is covered

in Chapter 3 and 4.

1.4 Scope and Limitations

This thesis focuses on mining sequential patterns of small database. The

intermediate databases for mining, either the extraction from sequence dataset

to in-memory sequence database or the recursive index set creation for longer

patterns must be able to fit into main memory when the database is small. It is

quite plausible to mine sequential patterns from large dataset using PrefixSpan

with pseudoprojection and many researchers have developed this, but this

thesis confines only for small database since to cope with large database, it is

required to partition the in-memory sequence database and this problem needs

another careful techniques and experiments.

The output is complete sequential patterns with user-specified minimum

6

support threshold. It is not the purpose of this thesis to study mining maximal

sequential patterns, mining constrained sequential patterns, mining closed

sequential patterns, mining approximate sequential patterns, incremental

mining sequential patterns, and mining structured patterns. Thus, no attempt

has been made here to develop mining sequential patterns with user-specified

constraints such as (I) time constraints, i.e. minimum and/or maximum time

gaps between adjacent itemsets in a pattern; (2) sliding windows, i.e. the new

definition of time for phrase "same transaction" as specified by user; and (3)

taxonomies, where putting super-category patterns is necessary.

The system is implemented on Java programming language. Programs written

in Java are typically slower and require more memory than those written in

natively compiled languages such as C or C++ [29]. However, the speed of

programs built in Java has improved a lot due to Just In Time (JIT)

compilation in 1998 for Sun Java Virtual Machine (JYM) [30] and

optimizations in the JYM itself introduced over time, such as HotSpot has

become the default for Sun JVM in 2000 [31]. Hence, when JIT is compiled,

Java's performance is mostly lower than performance of compiled languages

(e.g. C or C++), close to other JIT compiled languages (e.g. C#), but much

better than languages without an effective native-code compiler (e.g. PHP,

Perl). Based on Dr. Dobb's Journal on Microbenchrnarking C++ and Java [32],

while array operation performance is better in C than in Java; but 32 and 64

bits arithmetic operations, file VO, and exception handling have similar

performance to comparable C programs; and most importantly

Collect ions, Object creation/destruction performance, and method

calls are much better in Java than in C++. Moreover, as of2006, it is estimated

there are millions of Java developers [33] and many businesses have already

used Java as their integrated enterprise system. Thus, this thesis chooses Java

as the study case for selecting suitable Collections for SPM-Tree

Framework.

7

1.5 Thesis Organization

The remainder of the thesis is arranged as follows.

• In Chapter 2, the thesis presents description of sequential pattern

mining, definition of terms in sequential patterns mining, and

discussion on three approaches in sequential pattern mining.

• In Chapter 3, the two proposed improvements of PrefixSpan with

pseudoprojection, SPM-Tree Framework and Separator Database are

explained. The correctness of both improvements is verified using

lemmas.

• Chapter 4 shows the results of performance analysis of the five Java

List Collections, which will be suitable for the proposed SPM­

Tree Framework. This chapter also shows the results of performance

analysis of Separator Database on small database.

• The thesis concludes in Chapter 5 and some future works are presented.

8

CHAPTER2

LITERATURE REVIEW

This chapter is organized around three major topics: a general introduction to

sequential pattern mining, the definition of terms in sequential pattern mining,

and a review of the three main approaches to sequential pattern mining

including the algorithms.

2.1 Sequential Pattern Mining

Sequential pattern mining is one of data mining functionalities having high

complexity of data [5]. It is recently becoming an intensive study in data

mining. Sequential pattern mining differs from frequent pattern mining.

Frequent pattern mining discovers which items are bought together in a

transaction [34], [35]. It is concerned with finding intra-transaction patterns,

while sequential pattern mining finds inter-transaction patterns [5].

The objective of sequential pattern mining is to find all frequent sequential

patterns with a user-specified minimum support [5]. User-specified minimum

support threshold enables mining to prune non-interesting patterns. The

discovery of sequential patterns problem was inspired by retailing industry

problems. As part of market basket analyses, sequential pattern mining helps

multi-item retailing business with registered customers to increase their

profitability.

To illustrate the input and output of sequential pattern mining, suppose the

computer shop database contains list of customers, list of transaction time of

each customer, and list of items bought for each customer's transaction time.

9

Then "80% of customers buy computer, then earphone, and then digital

camera" may be one of the worthwhile sequential patterns found. This

purchasing need not be consecutive. Those customers who buy several other

items in between also support this pattern.

As part of market basket analyses, sequential pattern mining helps multi-item

retailing business with registered customers to increase their profitability.

There might be several competitive advantages of sequential pattern mining in

retailing industry:

I. The sales representatives could persuade the customers to buy the

predicted subsequent item(s) the next time customers come again. Special

discounts, for instance, may attract the customers to buy just then.

2. The retailing industry may accelerate the subsequent purchases chains.

Thus, the sales figure as well as, for sure, profits can be obtained earlier.

3. The retailing industry could take special eyes on sequential patterns sales

and consider some different strategies apart from the regular sales.

2.1.1 Definition of Terms

In this subsection, some terminologies that are used throughout the thesis are

introduced. Let I be a set of all distinct items. An itemset is a non-empty

subset of/, denoted as (x 1 x2 ... xm) where each x; (i =I, 2, ... , m) is an item in

I. If an itemset contains only one item, the bracket can be omitted. Without

loss of generality, we assume that items in an itemset are sorted alphabetically.

A sequence, is an ordered list of itemsets, denoted by <s 1s2 .• • sn> where each s1

(j = I, 2, ... , n) is an itemset. An item can occur at most once in an itemset of a

sequence, but it can occur multiple times in different itemsets of a sequence. A

sequence with k items (k = L
1

!s1!) is called a k-sequence. A sequence

a=<a,aJ ... an> is called a subsequence of another sequence j3=<b 1b2 ... bm>,

10

denoted as a C: /], if there exists integers 1 :S j, < h < ... < jn :S m such

A sequence database S is a collection of <sid, s>, where sid is the unique

identifier of sequences. The support of any candidate pattern a in a sequence

database S is defined as the total number of sequences in the database

containing a, i.e.,

support (a) = j{ (sid,s)j{ (sid, s) e S) 1\ (ac.O) }j.

Given a positive integer minimum support min_sup as the user-specified

support threshold, a candidate pattern a is called a sequential pattern, or

simply pattern, in a sequence database provided that supporl(a) 2: min _sup. A

pattern s is maximal if s is not a subsequence of any other pattern. A pattern

with k items is called a k-pattern. Sequential pattern mining finds the

complete set of sequential patterns in the sequential database, given minimum

support threshold. The following example illustrates these terminologies.

Table 1: Example of Transactional Database

Customer ID Transaction Time Items Bought
I Nov 2 '07 a
I Nov 3 '07 a, b,c
I Nov 9 '07 a, c
I Nov 22 '07 d
I Nov 25 '07 c, f
2 Nov 19 '07 a,d
2 Nov 22 '07 c
2 Nov 23 '07 b,c
2 Nov 30 '07 a, e
3 Nov 2 '07 e, f
3 Nov 27 '07 a, b
3 Nov 28 '07 d, f
3 Nov 29 '07 c
3 Nov 30 '07 b
4 Nov 5 '07 e
4 Nov 10 '07 g
4 Nov 16 '07 a, f
4 Nov 20 '07 c
4 Nov 25 '07 b
4 Nov 29 '07 c

I I

Table II. Sequence Database Version

Sequence ID Sequence
I <a(abc)(ac)d(c{J>
2 <(ad)c(bc)(ae)>
3 <_(e/)(ab)(d{Jcb>
4 <ef!.(a{Jcbc>

Example 2.1: Let our database in Table I (used as a runmng example

throughout the thesis) be the transactional database on hand and the

minimum support = 50%. The transactional database must initially be

transformed into sequence database format before sequential pattern

mining is started. Table II represents the transformed sequence database

from Table I. This sequence database contains four sequences and the set

of distinct items ofthis sequence database is {a, b, c, d, e,f,g}.

Consider the sequence with sequence ID I, which is <a(abc)(ac)(d)(c/)>.

This sequence has five itemsets: a, (abc), (ac), d, and (c/). This sequence is

a 9-sequence since there are nine items forming this sequence. As

<a(bc)a> is a subsequence of <a(abc)(ac)(d)(c/)>, the sequence with

sequence lD = I contributes one support count for the candidate pattern

<a(bc)a>.

Since only sequences with sequence 10 I and 2 contribute candidate

pattern <a(bc)a>, the support of this candidate pattern is 2. Consequently,

<a(bc)a> is a pattern owing that its support does not go below 50% of the

total number of sequences in the sequence database. In addition, this

pattern is a 4-pattern since it contains four items. This pattern is also

maximal pattern in consequence that it is not a subsequence of any other

patterns.

2.2 Approaches to Mining Sequential Patterns

Three approaches in sequential pattern mining

1. Apriori Approach

• AprioriAll

• AprioriSome

• Dynamic Some

•GSP

• PSP

}A~owol & Srikoo" 995;

(Srikant & Agrawal1996)

(Masseglia et al.1998)

2. Vertical Format Approach

• SPADE (Zaki 2001)

3. Pattern Growth Approach

• Free Span (Han et al. 2000)

• PrefixSpan (Pei et al. 2001. 2004)

• MEMISP (Lin & Lee 2005)

Figure I. Approaches to Mining Sequential Patterns

12

In the previous decade, several approaches have been proposed to cope with

highly efficient and scalable mining complete set of sequential patterns as the

challenge of mining sequential patterns. Those approaches were generate-and­

test (also known as apriori approach), pattern growth (also known as divide­

and-conquer), and vertical format approach, as depicted in Figure I. The

subsequent subsections analyze and evaluate algorithms of those approaches.

2.2.1 Generate and Test Approach (Apriori Approach)

Most of the basic and earlier algorithms in mining sequential patterns were

based on the Apriori property proposed in association rule mining, stating that

all sub-pal/ems of a frequenl pal/ern are always frequenl [35]. These

algorithms include AprioriAII, AprioriSome, DynamicSome, GSP, and PSP.

13

2.2.1.1 AprioriAII, AprioriSome, DynamicSome

In 1995, Agrawal and Srikant introduced the sequential patterns mmmg

problem and proposed three algorithms to solve it, i.e. AprioriAII,

AprioriSome, and DynamicSome [5]. These three algorithms were the first

proposed algorithms to solve sequential pattern mining problem. In this work,

instead of finding complete set of patterns, Agrawal and Srikant defined

mining sequential patterns as finding maximal patterns amongst all sequences

within user-defined minimum support threshold. These three algorithms

follow similar five phases but different iteration jump and non-maximal

sequence prunmg.

There are five phases 111 mining (maximal) sequential patterns usmg these

three algorithms, i.e. sort phase, litemset phase, transformation phase,

sequence phase, and maximal phase [5]. The term "litemset" was introduced

to mention an itemset having support no less than the minimum support

threshold. In addition, in this work a k-pattern is a pattern with k itemsets

instead of items. For instance, if itemset (abc) is frequent, then (abc) is a large

itemset and (abc) is also considered to be large !-pattern.

The basic concept of AprioriAII algorithm is to make multiple passes over the

database. In the first pass, all litemsets substitute the seed set. Then, using the

seed set on hand, the new potential large sequences, named candidate

sequences, are generated. At the end of each pass, the support of each

candidate sequence generated is counted and only candidates with minimum

support are considered as the patterns and, of course, as the seed set for the

next pass. The algorithm terminates when no patterns are produced at the end

of a pass or when no candidate sequences could be generated.

14

The rest of the algorithms, AprioriSome and DynamicSome [5], compnses

fonvard phase, in which one finds all patterns of certain lengths, followed by

backward phase, in which one finds all remaining patterns. Both phases

generate candidates for any passes only by patterns found on the previous pass

and then both phases scan over the database to find their supports. However,

DynamicSome generates candidates "on-the-fly" whereas AprioriSome

generates candidates using apriori-gen function [5].

Based on those procedures, it may be concluded that AprioriAll, AprioriSome,

and DynamicSome brought several optimizations to sequential patterns mining:

• To avoid checking on every item, AprioriAII, AprioriSome, and

DynamicSome map the litemsets to integers and create the

transformed database. Since non-litemsets is deleted in transformed

database and litemsets containing more than one item is mapped into

integers, the first three phases of these three algorithms, which are sort

phase, litemset phase, and transformation phase, reduce the mining effort.

If a transaction contains no litemsets, then in the transformed database the

transaction is deleted. This benefits the mining especially when there are

many infrequent itemsets.

• Candidate generation ensures all possibilities to be checked. The on­

the-fly as well as the apriori-generate functions ensure all

possible candidate sequences to be checked. In apriori-generate, a

new candidate Ck is generated if and only if there are two patterns from

previous pass Lk.J of whose first to (k-2)1
h itemsets are exactly the same.

Furthermore, the candidate sequences need to be pruned before their

supports are counted. The pruning method follows apriori property, "all

sub-pallerns of a frequent pal/ern are always frequent" [35]. However,

on-the-fly function has no pruning, thus DynamicSome performs the

worst among all these three algorithms.

• AprioriSome focuses on mining maximal sequences. AprioriSome

avoids counting many non-maximal sequences. Thus, AprioriSome

15

performs better than AprioriAII especially for lower minimum supports in

mining maximal sequences.

However, it may also be concluded that AprioriAII, AprioriSome, and

DynamicSome draw several pitfalls:

• Data preparation is considered as the part of mining process. Three of

the earliest phases, which are sort phase, litemset phase, and

transformation phase, were not supposed to squander the total mining time

and were rather supposed to be directly gone to the sequence phase with

the already-prepared sequence database.

• Multiple scan over the database is required. If the longest sequential

pattern was a k-pattern, the database scans with AprioriAII, AprioriSome,

or DynamicSome k times. Mining using these three algorithms turn to be

uneconomical when very long patterns existed.

• The number of candidate sequences generated could be large.

Principally, candidate sequence set was grown from the permutation of

existing litemsets, thus a truly large set of candidate sequences is generated.

For instance, two itemsets <(30)(40)> and <60> will generate five

candidates of 2-pattem: <(30)(40)(30)(40)>, <(30)(40)(60)>,

<(60)(30)(40)>, <(60)(60)>, and <(30)(40 60)>. If there were 100

frequent itemsets, these algorithms created I 00 * I 00 + I OO * 99
= 14 950 2 ,

candidates of2-pattern.

• AprioriSome and DynamicSome were intended only for mining

maximal sequential patterns. Both algorithms skip the discovery of

several intermediate patterns. They were developed to optimize the mining

maximal patterns only. Certain length to discover patterns on is decided by

next function for AprioriSome and pre-specified step variable for

DynamicSome [35]. If both next function and step variable were

removed away for mining complete patterns, then AprioriSome and

DynamicSome will work similarly with AprioriAll.

16

• DynamicSome generates a much larger number of candidates in the

fon\'ard phase. On-the-fly candidate generation function causes

performance degradation of DynamicSome in terms of execution time and

memory utilization as this function had no pruning method. Pruning

method on apriori-generate function cannot be applied to the

forward phase of DynamicSome since a candidate Ck+step is generated from

Lk and Lstep, while pruning Ck+stcp need to acknowledge the frequent

patterns in ck+step-1·

• The number of candidate sequences generated using AprioriSome can

be significantly large. A k-pattern Lk could contain candidate sequence Ck

with minimum support, thus ILkl ::0 ICkl, and Ck+l is supposed to be

generated from joining Lk. However, sometimes AprioriSome uses Ck to

generate Ck+l· If Ck+l is generated from joining Ck, the support counting of

Ck will include some useless-to-count candidates.

• Despite being skipped, the candidate sequences in AprioriSome are

still generated and stay memory resident. If the current iteration counter

k is not equal with the leap number resulted by next function then the

counting candidate is skipped but candidate sequences are still generated.

Albeit AprioriSome skipped over counting candidates of some lengths, all

candidate sequences are still generated and stay in memory.

• AprioriAII, AprioriSome, DynamicSome fail to perform in large

database. Those three algorithms do not have any special treatment when

the database is getting larger.

2.2.1.2 GSP

The following year, Srikant and Agrawal proposed GSP (Generalized

~equential ,Eatterns) algorithm, which includes handling: (I) time constraints,

i.e. minimum and/or maximum time gaps between adjacent itemsets in a

pattern; (2) sliding windows, i.e. the new definition of time for phrase "same

17

transaction" as specified by user; and (3) taxonomies, when putting super­

category patterns is necessary [6]. GSP implicitly changed the definition of

mining sequential patterns, from finding maximal patterns to finding complete

set of patterns.

The underlying concept of this algorithm was similar to AprioriAll, except for

absence of litemset concept as well as the candidate generation procedure.

GSP introduced large items, instead of large itemsets, as the seed set for the

first pass. Hence, the candidate generation procedure changed a little. In GSP,

the new candidates are joined from two contiguous subsequences. In the prune

phase of candidate generation, candidate sequences that have a contiguous (k-

1)-subsequence whose support count is less than minimum support is deleted.

It uses hash-tree structure [35] to reduce the number of candidates checked for

a sequence and follows forward and backward phase to process the

minimum/maximum gap rule and time windows filtration. It was reported in

the experiments that GSP outperformed AprioriAll with on-the-fly data

transformation by up to 20 times and was up to three times faster than

AprioriAll with caching the transformed database into disk [6].

Based on those procedures, it may be concluded that GSP algorithm brought

several benefits to sequential patterns mining:

• GSP does not require litemsct phase and transformation phase. It is

computationally expensive to transform the dataset, even on the fly.

AprioriAll finds litemsets, transforms the database into mapped integer of

litemset (either disk-based or on-the-fly) and uses litemsets as the seed set

for second pass, while GSP uses frequent items as the seed set for the first

pass instead and no data transformation is required.

• GSP is capable to cope with time constraints, sliding windows, and

taxonomies. GSP is the generalization of the Apriori approach, which

allows the mining to associate with time constraints, sliding windows, and

18

taxonomies. However, as explained in Section 1.5, those three constraints

are not being considered in this thesis.

• GSP reduces the candidate checking effort. GSP employs hash-tree data

structure (35]. In GSP, candidate sequences are stored in the leaves of

hash-tree while the internal nodes contain hashtables. Each customer in the

dataset is hashed to find the candidates contained in the associated

customer sequence. By organizing candidate sequences in a hash-tree,

GSP accesses the candidate sequences in efficient way.

• GSP was the first sequential pattern mining algorithm capable to mine

large databases. In any pass k, GSP needs to store (k-1)-patterns Lk.1, the

generated candidate sequences Ck, and at least one page to buffer the

database transactions. If Lk-1 fits m memory but Ck does not, GSP

generates as many candidates as will fit in the memory. The frequent

sequences Lk are then written to disk, while the candidates without

minimum support are deleted. If Lk- 1 does not fit in memory either, GSP

generates candidates using relational merge-join techniques without any

pruning. The correctness is confirmed [6], in spite of the redundant

counting effort.

• GSP counts fewer candidates than AprioriAJJ. AprioriAll prunes

candidate sequences by checking whether they obtained by dropping an

itemset having no minimum support, while GSP checks the candidates

obtained by dropping an item having no minimum support. Thus, GSP

spend less time and memory space than AprioriAll.

It may also be concluded that GSP draws several pitfalls:

• No nodes in hash-tree but leaf nodes store candidate sequences. In

hash-tree data structure, all candidates are stored in the leaves. The bulky

interior nodes are merely to shows the direction to arrive to the intended

leaf. It is memory waste to employ these inefficient interior nodes.

• GSP generates a combinatorially explosive number of candidates

especially in mining long sequential patterns. For example, suppose the

19

longest pattern of a sequence database is of length I 00. First, GSP has to

I 00 * 99 () generate I 00 • I 00 + = 14,950 length-2 candidates and ~00 =
2

161 ,700 Iength-3 candidates. Without pruning, the number of length-3

candidates is I 00 • I 00 * I 00 + I 00 * I 00 * 99 + I OO * 99
•

98
=

3*2

2,151 ,700. As candidate pruning was performed on GSP, the number of

candidates to be generated on each pass is (~00), where n is the length of

candidates and n > 3. Hence, the total number of candidate sequences to be

100

generated is roughly L (: 00
) = 2 100

- I :::: I 030
.

i•l

2.2.1.3 PSP

In 1998, Masseglia, Cathala, and Poncelet proposed PSP, which merely

introduced a novel data structure to organize candidate sequences, named

prefix-tree. This data structure improves efficiency of candidate sequences

retrieval [7). The algorithm was quite similar with GSP.

In hash-tree structure, all candidate sequences are fully stored in the leaves.

Hence, GSP traverses through the tree with the direction of interior nodes until

reaching a leaf. In the correct leaf, GSP starts examining the support count. In

contrast, prefix-tree structure organizes candidates according to their common

items. Hence, after traversing to leaf, PSP just need to increment the support

value. Moreover, after the supports of all candidates on current pass are

counted, the prefix-tree is pruned to minimize the used memory space. After

pruning, the tree only stores the patterns from previous passes. Nevertheless,

PSP approach still does not solve the general Apriori drawbacks. It is also

reported that prefix-tree structure used to store candidate sequences in PSP

20

requires less memory than the hash-tree structure used in GSP [7]. Thus, PSP

avoids costly operations in candidate sequences verification.

2.2.1.4 Discussion

Despite those improvements, Apriori approach still draws several

shortcomings due to the nature of candidate generation. Generally, Apriori

approach has three major pitfalls to solve:

I. A very large set of candidate sequences could be generated since candidate

sequences are built from all possible permutations of the items.

2. Apriori approach requires scanning the database as many as the length of

longest pattern found.

3. Apriori approach generates a combinatorially explosive number of

candidates when mining longer sequential patterns. Hence, this approach

may not be efficient in mining databases having numerous and/or long

patterns.

Due to these above inefficiencies of Apriori approach, some researchers

started to propose other approaches analogous to ones on association rules

mining, such as vertical format approach and pattern growth approach.

2.2.2 Vertical Format Approach

In 2001, Zaki proposed SPADE ~equential PAttern Discovery usmg

Equivalence class) algorithm, which decomposes the original problem into

smaller sub-problems using equivalence classes on frequent patterns, and

minimizes computational costs by using efficient searching scheme [8].

Initially, SPADE transforms the dataset into vertical format, in which each

item has its own ctid-list, i.e. lists of pairs of customer and transaction

identifiers in which the associated item occurs. Each sequence in SPADE has

21

a ctid-list, an array of items in the sequence, a support counter, and an integer

representing the sequence-template. The main phases of SPADE include

computing the frequent items and 2-patterns, the decomposition into prefix­

based parent equivalence classes, and the enumeration of all other frequent

sequences via breadth first search or depth first search within each class. It is

reported that SPADE outperforms GSP by more than a factor of 2, and by

more than an order of magnitude with precomputed support of 2-sequences.

SPADE has resulted in several improvements to sequential patterns mining:

• SPADE scans database only three times. Unlike Apriori approach,

which needed abundant scan of database, SPADE needed only three times

database scanning, one to obtain the frequent items, one to obtain 2-

patterns, and the other to obtain the rest of patterns. Thus, it cuts down the

110 costs.

• SPADE has a space-efficient join strategy to discover patterns. SPADE

uses the concept of id-list, which records the sequence ids and the

transaction index positions of each frequent items found. Hence, any

sequence can be obtained as a temporal join of several items. However,

SPADE does not require naive production of id-lists of longer patterns by

storing the transaction index positions for all items in each potential

pattern. SPADE can still generate a sequence by joining the sequence's

lexicographically first two (k-1) length subsequences, thus SPADE

reduces the use of memory space by storing only (sid,eid) pairs for any

sequence.

• SPADE has a fast join strategy to discover patterns. The cardinalities of

intermediate id-lists keep shrinking for longer patterns. As the length of

discovered patterns increased, the size of its id-lists decreased, and

consequently, it caused very fast temporal joins and support counting in

SPADE.

• The lattice can be decomposed into smaller pieces such that each piece

can be solved independently in main memory. One could enumerate all

22

frequent patterns by traversing the lattice and then performing temporal

joins to obtain the support. Practically, it squanders memory space to

enumerate all patterns and no intermediate id-lists will fit into memory.

Nevertheless, by holding temporary id-lists for each sub-lattice, each

partition can be solved independently. The supports of all patterns in each

sub-lattice still can be generated using temporal joins. Then, when the

main memory cannot hold the temporary id-lists of each sub-lattice,

recursive sub-lattice decomposition is the solution. Concisely, depending

of the main memory availability, the sub-lattices are partitioned into

smaller ones, until each sub-lattice was small enough to be handled

independently.

• SPADE has excellent locality. Hash-tree structure used in GSP has very

poor locality [36] and incur the overhead of generating and searching

subsequences. On the contrary, a join in SPADE requires only a linear

scan of two lists, thus SPADE has excellent locality.

Despite these numerous advantages, SPADE still requires time and memory

resource to convert the given database to vertical format. Once the database is

converted into vertical format, SPADE is efficient in terms of memory

utilization and execution time. Thus, some researchers still develop algorithms

using this approach. However, other researchers started to propose algorithms

exploiting pattern growth approach analogous to pattern growth approach on

frequent pattern mining.

2.2.3 Pattern Growth Approach

In 2000, Jiawei Han, Jian Pei, and Yiwen Yin proposed FP-Tree (frequent

pattern tree) structure and developed an efficient FP-Tree based mining

method, FP-Growth, for mining complete set of frequent patterns by pattern

23

growth approach. Efficiency of mining is achieved with these techniques (3 7],

[38]:

• A large database is compressed into a highly condensed, much smaller FP­

trcc data structure, which is constructed to store the frequent items and

avoids costly, repeated database scans. Only frequent items had nodes in

the tree and the tree nodes are arranged in a such way that more frequently

occurring nodes have better chances of sharing nodes than less frequently

occurring ones.

• Pattern growth method using FP-tree was developed to avoid the costly

generation of a large number of candidate patterns. This method starts

from a frequent items, examines only its conditional pattern base,

constructs its FP-tree, and mines recursively with this FP-tree. The pattern

growth is achieved via concatenation of suffix pattern with the new ones

generated from a conditional FP-tree. The major operations of mining are

count accumulation and prefix path count adjustment, which are usually

much less costly than candidate generation and pattern matching in Apriori

approach in finding frequent patterns.

• Partitioning-based, divide-and-conquer method was the search

technique for the mining, which decomposes the mining task into a set of

smaller tasks for mining confined patterns in conditional databases.

Compared to Apriori's bottom-up generation of frequent itemsets

combinations, it reduces the size of conditional FP-tree and conditional

pattern base generated at the subsequent level. The frequent patterns

mmmg looks for short frequent patterns then concatenates the suffix,

instead of finding long ones.

All of these three techniques contribute to substantial reduction of pattern

searching costs. Performance study showed that FP-Growth method is

efficient and scalable for mining frequent patterns, and is about an order of

magnitude faster than Apriori algorithm and also faster than TreeProjection

(37].

24

Pattern Growth approach for efficient mmmg of frequent patterns without

candidate generation [37], [38] inspired many research works on sequential

pattern mining. FP-Growth uses FP-tree data structure to store compressed

frequent patterns in transaction database and recursively mines the projected

conditional FP-trees to achieve high performance. FP-tree structure explores

maximal sharing of common prefix paths by reordering the items m

transactions. Yet, one cannot mme sequential patterns by any sort of

extensions of FP-tree structure since there is no common prefix subtree

structure can be shared among them and one cannot change the order of items

just to form sharable prefix subsequences. If FP-tree were used to mine

sequential patterns, the FP-tree will be huge and cannot benefit mining.

However, one still can explore the notion of FP-growth: divide and conquer,

that is dividing the patterns to be mined based on the subsequences obtained

so far and projecting the database based on the partition of such patterns.

Sequential pattern mining by pattern growth approach applied this idea and

there is no candidate generation in this approach. Instead of generating

nonexistent candidate sequences, pattern growth approach m sequential

pattern mining only grows longer sequential patterns from the shorter frequent

ones. There were, basically, three algorithms applying this approach: FreeS pan

[10] PrefixSpan [II], [12], and MEMISP [16].

In short, pattern growth approach has several features in general:

I. It preserves the only essential groupings of the original databases for

mining, instead of generating a large number of candidates.

2. It partitions the database into database projections, instead of scanning

entire database to match all candidates in each pass.

3. A substantial portion of data can be put into main memory for mining.

25

2.2.3.1 FrecSpan

In 2000, Jiawei Han and colleagues introduced FreeSpan, the first projection

based, pattern-growth approach algorithm for mining sequential patterns [l OJ.

It used frequent items to recursively project the database into smaller projected

databases and to grow subsequences in each projected database by exploring

only locally frequent fragments. FreeS pan partitions data and frequent patterns

to be tested and restricts each test to the corresponding smaller projected

database.

The algorithm follows these five steps:

I. Find frequent items sort by support m descending order and discard

infrequent items.

2. Draw Frequent Item Matrix to generate length-2 sequential patterns and

projected databases.

3. Generate a set of annotations on item-repeating patterns and annotations of

projected databases, and then the matrix can be discarded.

4. Scan database one more time to generate item-repeating patterns and

projected databases.

5. Recursively do matrix projection mining on projected databases if there

are sti II longer candidate patterns to be mined.

Based on experiments conducted in the proposal, FreeSpan with bi-level

projection ran faster than FreeSpan with level-by-level projection since

FreeSpan with level-by-level projection requires more memory than bi-level

projection and when the minimum support was below a certain point, page

thrashing occurred in FreeSpan with level-by-level projection [10]. In addition,

of course, FreeS pan with bi-level projection outperformed GSP on execution

time and scalability.

FreeS pan has brought in several improvements to sequential patterns mining:

26

I. FreeSpan scanned database only three times: to find the set of frequent

items, to construct the frequent item matrix, and to generate item-repeating

patterns and projected databases.

2. FreeSpan need not have the sequence database residing in the mam

memory. Most of used memory space is only to keep the frequent item

matrix. The computation of projected database can be done one by one,

and mining each will require much less memory than mining the original

database since the projected database size shrinks on each fragment growth.

3. FreeS pan projects and partitions the original database recursively into a set

of progressively smaller intermediate databases. Consequently, the

subsequent mining is confined to each projected database, relevant to a

smaller set of candidates.

4. FreeSpan generated no candidate sequences. It adopted Apriori approach

well but avoided generating a large number of candidates. Consequently,

its search space was reduced.

Despite the significant improvements, FreeSpan's performance is limited due

to the followings:

I. The k-sequence might grow at any position in projected database, thus the

search for (k+ I)-sequence needs to check all possible permutation, and it is

costly. Indeed, FreeSpan does not generate any candidate patterns, but

permutation inside testing candidate patterns is still costly in terms of

memory utilization and execution time.

2. Projection in FreeS pan needs to store the whole sequence from the original

database without length reduction since a pattern may be generated by any

substring combination in a sequence. Size of projected database in

FreeSpan is still too large since the projected database still requires

recording the whole sequence.

3. If a pattern appears in each sequence, its projected database does not

shrink, although the removal of infrequent items helps a little bit. The main

27

reason is that the projected database in FreeSpan keeps the whole sequence,

thus a large memory space is needed to store the projected database.

4. FreeSpan recursively constructs projected databases. In the worst case, it

constructs a projected database for every pattern. FreeSpan reqUires

excesstve looping of constructing projected databases and support

counting for each suspected candidate patterns until no more candidate

patterns can be constructed. This recursion, to be sure, progressively

requires more memory space as the patterns found is getting longer.

2.2.3.2 PrefixSpan

In 200 I, Jian Pei et a! proposed Prefix Span algorithm, which solves the first

abovementioned three costs of FreeSpan (11], (12] in terms of memory

utilization and execution time. Those three costs of FreeSpan are the

redundant checking at every possible position of potential sequences, the size

of projected database, and that the projected database does not shrink when the

patterns appear in each sequence. To illustrate this algorithm, the concept of

prefix, suffix, projected database, and support count in projected database are

introduced.

Definition 1 (Prefix). Given a sequence a = <ata2···an>, ~ = <btb2 ... b01>

(m ~ n) is called a prefix of a if and only if (I) b; =a; fori~ m-1; (2) b; s;;:a;;

and (3) all items in (am-bm) are alphabetically after those in bm.

Definition 2 (Suffix). Given a sequence a = <a1a2 ... an>. Let

~ = <a1a2 ... am-ta'm> (m ~ n) be the prefix of a. Sequence y = <a"mam+l· .. an> is

called the suffix of a with regards to prefix ~, denoted as y = a/~, where a" m =

(am- a'm). We also denote a= ~-Y·

28

Definition 3 (Projected database). Let a be a pattern in a sequence database.

The a-projected database is the collection of suffixes in the sequence database

with regards to prefix a.

Definition 4 (Support count in projected database). Let ~ be a sequence

with prefix a. The support count of~ in a-projected database is the number of

sequences y in the a-projected database such that ~I:: a· y.

In a nutshell, PrefixSpan (either with Pseudoprojection or without

Pseudoprojection) comprises three phases as illustrated in Figure 2.

1. Extraction Phase

In this phase, the sequence database transformed from transactional database

is extracted entirely into main memory. Such sequence database in memory is

called as in-memory sequence database. In this phase, the distinct items are

also obtained.

2. initial Mining Phase

At first, this phase selects !-patterns from the list of distinct items. Only

distinct items within minimum support are considered as !-patterns. Let n be

the number of !-pattern found. Next, the search space into n partitions is

divided according to n !-patterns as the prefixes. These partitions are going to

be mined by initially constructing the corresponding projected databases.

Hence, n projected databases exist for each prefix at the end of this phase, and

the size of each projected database is less or equal to the size of sequence

database.

3. Deeper Mining Phase

This phase produces all patterns other than !-patterns. The existing projected

database is mined recursively. Only suffix of sequences prefixed with the first

29

Sc<1ucncc ID Sctlucnce

I <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(eij(ab)(dijcb>

4 <eg(aijcbc>

Sequence database

D 1. Extraction Phase

In-memory sequence database

D 2. Initial Mining Phase

Se<1uence ID <n> <c> <d> <e> <f>

I 1,3,7 4 5.8.12 10 0 $

2 1,9 6 4.7 2 $ 0

3 4 5,12 10 7 1 2,8

4 5 10 8.12 0 1 6

Index Set for 1-pattems

D 3. Deeper Mining Phase

Sectnenr(' ID <aa> <u!J> <{ul!)> <~tc> <{ar)> <(a!lll:>

1 3.7 4 4 5.8.12 5.8 8,12

z 9 6 0 4,7 0 0

3 0 12 5 10 0 10

4 0 10 0 8 0 0

Index Set for n-patterns (n> 1)

Figure 2. PrefixSpan with Pseudoprojection

30

occurrence of corresponding prefix should be considered. A candidate k­

pattern (k> I) is formed by either appending or assembling the current pattern

to the candidate item, where current pattern is any (k-1) pattern and the

possible candidate item is all !-patterns. Only candidate patterns within

minimum support are considered as sequential patterns. Then the projected

databases are built according to yielded patterns and these processes repeat

until there are no patterns found in the current projected database.

Below is the example of mining sequential patterns using PrefixSpan.

Example 2.2: Given the sequence database in Table II with minimum support

50%, The distinct items are a, b, c, d, e, f, and g. Since the support of

candidate pattern g is I, the !-patterns are <a>:4, :4, <c>:4, <d>:3,

<e> :3, and <f> :3, where the notation "<pal/ern> :count" represents the

pattern and its corresponding support count.

Next, the search space is divided into six partitions, i.e. the one with

prefix <a>, , <c>, <d>, <e>, and <f>. For partition with prefix <a>,

initially build the <a>-projected database which consists of four suffixes,

i.e. <(abc)(ac)d(cj)>, <(_d)c(bc)(ae)>, <(_b)(dj)cb>, and <(_j)cbc>,

where (_d) means that the last item of prefix, that is a, together with d, are

in the same itemset. From this <a>-projected database, one can discover

six local frequent items, which is items within minimum support, they are

a:2, b:4, _b:2, c:4, d:2, and/2. Thus all 2-patterns prefixed with <a> are

found, and they are <aa>=2, <ab>=4, <(ab)>=2, <ac>=4, <ad>=2, and

<af>=2. Recursively, all sequential patterns with prefix <a> can be

divided into six partitions, i.e. the one with prefix <aa>, <ab>, <(ab)>,

<ac>, <ad>, and <aj'>.

For partition with prefix <aa>, initially build the <aa>-projected

database which consists of two suffixes, i.e. <{_bc)(ac)d(cf)> and <(_e)>.

As there are no patterns found from <aa>-projected database, the mining

recursion of <aa> branch terminates.

31

For partition with prefix <ab>, the <ab>-projected database consists

of three suffix sequences, i.e. <(_c)(ac)d(cf)>, <(_c)a>, and <c>.

Recursive mmmg on <ab>-projected database <ab> returns four

sequential patterns : <(_c)>, <(_c)a>, <a>, and <c>. Thus, patterns

found from <ab> branch are <a(bc)>, <a(bc)a>, <aba>, and <abc>.

The <{ab)>-projected database consists of only two sequences, 1.e.

<(_c)(ac)d(cj)> and <(dj)cb>, which leads to the finding of four patterns

<c>, <d>, <f>, and <de>. Thus, patterns found are <(ab)c>, <(ab)d>,

<(ab)f>, and <(ab)dc>.

Likewise, the <ac>-, <ad>-, <af>-, -, <c>-, <d>-, <e>-, and

</>-projected databases are build in the same way. The set of sequential

patterns found are shown in Table III below.

Table III. Database projection and the set of sequential patterns

Prefix Projected database Sequential patterns
<a>:4, <aa>:2, <ab>:4, <aba>:2,
<abc>:2, <a(bc)>:2, <a(bc)a>:2,

<a>
<(abc)(ac)d(ct)>, <(_d)c(bc)(ae)>, <ac>:4, <aca>:2, <acb>:3, <acc:--:3,

<(_b)(dt)cb>, <(_t)cbc> <ad>:2, <adc>:2, <af>:2, <(ab)>:2,
<(ab)c>:2, <(ab)d>:2, <(ab)dc>:2,

<(ab)J>:2

<(_c)(ac)d(ct)>, <(_c)(ae)>,
, <ba>:2, <bc>:3, <bd>:2,

 <bdc>:2, <bf>:2, <(bc)>:2,
<(dt)cb>, <c>

<(bc)a>:2
<c> <(ac)d(ct)>, <(bc)(ae)>, , <be> <c>, <ca>:2, <cb>:3, <cc>:3
<d> <(ct)>, (c(bc)(ae)>, <(t)cb> <d>, <db>:2, <dc>:3, <dcb>:2

<e>, <ea>:2, <eab>:2, <eac>:2,

<e> <(_t)(ab)(dt)cb>, <(at)cbc> <eacb>:2, <eb>:2, <ebc>:2, <ec>:2,
<ecb>:2, <ef>:2, <efb>:2, <efc>:2,

<efcb>:2

<J> <(ab)(dt)cb>, <cbc> <J>, <fb>:2, <fbc>:2, <fc>:2,
<fcb>:2

To reduce the redundant checking at every possible position of potential

sequences (first pitfall of FreeSpan), the items within each itemset need to be

ordered. Without loss of generality, one can assume that they are always listed

32

alphabetically. For example, the sequence is written as <c(abd)ab(de)> instead

of <c(bda)ab(ed)>.

To reduce the size of projected databases (second pitfall of FreeSpan), one

follows the order of the prefix of a sequence and only their suffixes are

projected into projected databases instead of considering all possible

occurrences of frequent subsequences. In each projected database, sequential

patterns are grown by exploring only local frequent patterns. With PrefixSpan,

no candidate sequence needs to be generated as PrefixSpan only grows longer

sequential patterns from the shorter frequent ones while GSP generates and

tests a significant number of candidate sequences.

Moreover, projected databases in PrefixSpan keep shrinking as only the

postfix subsequences of a frequent prefix are projected. FreeS pan does not just

take postfixes (third pitfall of FreeSpan), but Prefix Span does.

To summarize, PrefixSpan is more performance preferable than FreeSpan in

terms of the following:

I. The redundant checking at every possible position of potential sequences

was reduced by assuming that items within each element are always listed

alphabetically. Thus, the first cost of FreeS pan is solved.

2. Projected databases keep shrinking since only the suffix subsequences are

projected. Usually only small set of sequential patterns grow quite long in

a sequence, thus projection in PrefixSpan only takes suffix subsequences.

Thus, the second and third costs of FreeS pan are solved.

3. Compared to FreeSpan which needs three time database scans, PrefixSpan

scans database only once. The subsequent process counts on the projected

databases created in a file.

33

However, the fourth drawback of FreeSpan, which is the recursive

construction of projected databases, is still unable to be resolved by Prefixspan.

In the worst case, PrefixSpan builds one projected database for each pattern.

2.2.3.3 PrefixSpan with Pseudoprojection Technique

Pseudoprojection technique was proposed to reduce the number and size of

projected databases significantly [II], [12) on the same journal. Unlike

projected database, it avoids physically copying suffixes. It uses pointers

referring to the sequences in the database. The very basic concept of the

pointer-based traversal Pseudoprojection technique is explained as follow.

Instead of generating extravagant projected databases by copying the whole

suffixes, one may just register all the position index of the associated customer

into an index set by means of a (pointer, position) pair, where pointer is a

pointer to the corresponding sequence and position represent the position

indices of the projected suffix in the sequence. Offset should be an integer, if

there is a single projection point; and a set of integers, if there are multiple

projection points. Each offset indicates the starting projection position in a

sequence.

Based on the concepts, pseudoprojection follows lemmas as shown below.

Lemma I: Let a be the current pattern, ~ is the candidate item, and a new

candidate pattern y is yielded by appending ~ to a. The index set of y

contains all position indices of~ that is

(I) Not located in the same itemset with, and

(2) Not less than

the smallest index of a.

34

Proof. If y is the pattern resulted by appending p to a then there exists a that is

not located in the same itemset with p but located before p. If there exists

position index of p after position index of a in the different itemset then

there exists position index of p after the smallest index of a in the different

itemset. Hence, the index set of y contains all position indices of the index

set that is not located in the same itemset with the smallest index of a. If 11

is appended to e then the 11 must be located after 8. Thus, the indices of y

must be greater than the index of a. Therefore, we have the lemma. Q. E.

D.

Lemma 2: Let a be the current pattern, p is the candidate item, and a new

candidate pattern y is yielded by assembling P to a. The index set of y

contains position indices of p located in the same itemset with all indices

of a.

Proof. If y is the pattern resulted by assembling p to a then there exists a that

is located in the same itemset with p but located before a due to

alphabetical order of items in an itemset. If there exists position index of p
after one position index of a in the same itemset then this index of p
cannot be applied to the other indices of a. Hence, the index set of y

contains position indices of the index set that is located in the same itemset

with all indices of a. Therefore, we have the lemma. Q. E. D.

Lemma 3: Let a be the current pattern, p is the candidate item, and a new

candidate pattern y is yielded by either assembling or appending p to a. It

still requires checking the in-memory sequence database to build the index

set of y.

Proof. To check whether a is located in the same itemset with p or not, one

needs to check the in-memory sequence database. Based on Lemma l, to

build the index set ofy yielded by appending p to a, it is required to check

whether all position indices of p are located in the different itemset with

the smallest index of a. Based on Lemma 2, to build the index set of y

35

yielded by assembling p to a, it is required to check whether position

indices of p are located in the same itemset with all indices of a. So, it still

requires checking the in-memory sequence database to build the index set

ofy. Therefore, we have the lemma. Q.E.D.

Below is the example of mining sequential patterns using PrefixSpan with

pseudoprojection technique.

Example 2.3: Given the sequence database in Table II with minimum support

50%, Table IV shows the index set for !-patterns, where $ indicates that

the prefix contributes the occurrence frequency of the sequence but its

projected suffix is empty, and 0 indicates no occurrence of the prefix in

the corresponding sequence.

Table IV. Index set for !-patterns

Sequence ID <a> <c> <d> <e> <f>

I I,3,7 4 5,8,I2 IO g $

2 I,9 6 4,7 2 $ g

3 4 5.I2 IO 7 I 2,8

4 5 IO 8,I2 g I 6

To obtain 2-patterns, reuse the index set for !-patterns. Suppose that

<a> is considered as the current pattern and the possible candidate items

are all !-patterns. Consequently, the candidate patterns are <aa>, <ab>,

<(ab)>, <ac>, <(ac)>, <ad>, <(ad)>, <ae>, <(ae)>, <aj'>, and <(aj)>.

The position indices set of <aa> are obtained from current indices of

<a> with omitting its first position index for each sequence (see Lemma

I). Thus, pointer 3 and 4 does not support the candidate pattern <aa>, and

since the support is no less than the minimum support, <aa> is decided to

be pattern.

36

The position indices set of <ab> contains all position indices of

located at the different itemset with the first index of <a> (see Lemma I).

Thus, all pointers support the candidate pattern <ab> and this candidate is

put as the pattern.

The position indices set of <{ab)> contains position indices of

located in the same itemset with all indices of <a> (see Lemma 2). Thus,

pointer 2 and 4 do not support the candidate pattern <(ab)>, and since the

support is no less than the minimum support, <(ab)> is decided to be the

pattern.

The position indices set of <(ac)> contains position indices of <c>

located in the same itemset with all indices of <a> (see Lemma 2). Thus,

only pointer I supports the candidate pattern <{ac)>, and since the support

is less than the minimum support, <(ac)> is not considered to be pattern.

The index set of longer candidate pattern <{ab)c> contains all position

indices of <c> located at the different itemset with the first index of

<{ab}> (see Lemma 1). Thus, pointer 2 and 4 does not support the

candidate pattern <(ab)c>, and since the support is no less than the

m1mmum support, <(ab)c> is decided to be pattern. Table V below

illustrates position indices for some patterns.

Table V: Index Set for n-patterns (n> I)

Pointer <a a> <ab> <(ab)> <ac> <(ac)> ... <(ab)c> . ..

I 3,7 4 4 5,8,12 5,8 ... 8,12 ...

2 9 6 g 4,7 g ... g . ..

3 g 12 5 10 g ... 10 ...

4 g 10 g 8 g ... g . ..

Pseudoprojection reduces the cost of projection substantially when the

database can fit into main memory (4), (II), (12). The use of physical

projections may cause repeatedly copying different suffixes of the sequence,

37

which is costly. Index position pointers of a sequence may prevent the cost of

physical projection of the suffix and, thus, may save both space and time from

generating the physical intermediate projected databases. However, it may not

be efficient if the Pseudoprojection is used for disk-based accessing since 1/0

access is costly. Thus, PrefixSpan applies the physical projection if the

projected databases cannot be fit into main memory.

Based on the performance study of PrefixSpan [12), FreeS pan ran faster than

GSP, SPADE outperformed FreeSpan, and PrefixSpan is the fastest among all

those three tested algorithms. PrefixSpan with pseudoprojection is consistently

faster than PrefixSpan without pseudoprojection although the gap is not big in

most cases. In addition, PrefixSpan consumes almost one order of magnitude

less memory than SPADE as well as GSP. This means that PrefixSpan is not

only efficient, but also stable in memory utilization, compared to SPADE and

GSP. PrefixSpan only needs memory space to hold the sequence data sets plus

a set of header tables and pseudoprojection tables. Figure 2 illustrates mining

sequential patterns using PrefixSpan with pseudoprojection.

2.2.3.4 MEMISP

In 2005, Ming-Yen Lin and Suh-Yin Lee proposed MEMISP algorithm [13).

A careful analysis of MEMISP reveals that MEMISP seems quite similar to

PrefixSpan with pseudoprojection. PrefixSpan with pseudoprojection differs

with MEMISP in two cases: (I) when the database can be held in main

memory; and (2) when the database cannot be held in main memory.

When the database can be held in mam memory, PrefixSpan with

pseudoprojection removes infrequent items while MEMISP removes no items.

Thus, MEMISP is not efficient since it requires more memory to store the

38

useless infrequent items and it pointlessly requires time to check for infrequent

items in the recursive deeper mining phase.

When the database cannot be held in main memory, PrefixSpan with

pseudoprojection generates and scans the projection databases that might be

several times the original database size, while MEMISP only scans the

database twice or more without generating any projected databases using

partition-and-validation technique, which is the only breakthrough in

MEMISP. This technique partitions the database, therefore each partition can

be held into main memory. The set of potential patterns is obtained by

collecting the discovered patterns from each partition. Then the true patterns

can be validated by one more database scan for support counting.

Based on the experiments of MEMISP, although MEMISP outperformed GSP,

MEMISP has never been compared to the real PrefixSpan with

pseudoprojection, which dynamically swaps into PrefixSpan without

pseudoprojection when the database cannot fit into main memory. Once

PrefixSpan is swapped into PrefixSpan without pseudoprojection, it applies

physical projection. Rather, MEMISP was compared to PrefixSpan-1, which

applies no pseudoprojection when the database either can or cannot fit into

memory, and PrefixSpan-2, which applies pseudoprojection when the database

either can or cannot fit into memory. It is reported that PrefixSpan-2

outperforms MEMISP but when the database cannot be held into main

memory, PrefixSpan-2 is slowing down due to disk-based pseudo projection.

2.2.3.5 Discussion

Initially Han et al. proposed FreeS pan [I 0], which outperforms an algorithm

based on apriori approach, GSP. However, SPADE [8], which was proposed

in the following year, has been proven to run faster than FreeS pan [I OJ.

39

Subsequently, Pei et al. proposed PrefixSpan and pseudoprojection technique

[4], [II], which outperforms SPADE, GSP, as well as FreeSpan [I2]. In 2005,

Lin and Lee proposed MEMISP [I3], which is precisely equal to PrefixSpan

with pseudoprojection when the database can fit into main memory, except

that MEMISP removes no items. Based on thorough investigation, below are

seven reasons why the implementation of PrefixSpan with pseudoprojection

outperforms the implementation of other tested algorithms when the database

can fit into main memory.

I. PrefixSpan generates no candidates while Apriori approach algorithms

must handle the exponential number of candidates. Therefore, Apriori

approach takes a great deal of time and substantial amount of memory to

generate and test a tremendous number of candidates.

2. PrefixSpan scans database only once, while Apriori approach scans

database many times depending on the length of longest pattern, and

SPADE as well as FreeS pan scan database three times.

3. Unlike SPADE, PrefixSpan need not transform the database into vertical

format.

4. PrefixSpan orders items within each itemset, thus it need not check at

every possible position of potential patterns as FreeSpan does.

5. PrefixSpan reduces the size of projected databases by projecting only the

suffixes instead of considering all possible occurrences of patterns.

6. The longer the prefix, the more projected databases in PrefixSpan shrink.

Moreover, pseudoprojection eliminates the effort of building projected

database by only registering the index of suffixes.

7. Pseudoprojection technique prevents repeatedly copying suffixes of each

sequence, thus it is efficient in terms of memory space and execution time.

Despite those benefits, PrefixSpan with pseudoprojection bears two maJor

setbacks. First, PrefixSpan with pseudoprojection builds two intermediate

databases, i.e. index set (also known as pseudoprojection database) and in­

memory sequence database when searching for patterns. If the way PrefixSpan

40

with pseudoprojection builds and uses those two temporary databases is not

managed carefully, then the execution time and memory utilization will be

considerably affected. For instance, if the items bought are stored into a

dynamic array with a large growth factor, the mining will need bigger memory

space to reserve the extension of array that may be unused. If they are stored

into a dynamic array with growth factor of I, the mining will only spend its

time to raise the size of array by one. Thus, a framework to store the

intermediate databases in PrefixSpan with pseudoprojection is an essential

implementation issue to bring up to front.

MEMISP, which is similar to PrefixSpan with pseudoprojection, stores its

index set and its in-memory sequence database as a variable-length array in

memory (13]. However, using variable-length array to store the whole index

set and sequence database into main memory is impossible. The sequence

database contains the list of customers and the same customer may come to

the shop more than once, thus each customer contains the list of transaction

time. Each time customer comes he/she might buy more than one item, thus

each transaction time contains the list of items bought. If one uses variable­

length array to store just the items bought, then the list of customers and the

list of transaction time are missing. Likewise, the index set contains the list of

prefixes, each prefix contains the list of pointers, and each pointer contains the

list position indices. If one uses variable-length array to store just the position

indices of certain customer and for certain prefix, then Prefix Span misses the

list of prefixes and the list of pointers. Thus, to solve this problem, a

framework to store the in-memory sequence database and to construct the

index set is proposed in the next chapter.

The second setback IS the use of in-memory sequence database.

Pseudoprojection technique requires to maintain and to visit the in-memory

sequence database frequently until all patterns are figured out. Maintaining in­

memory sequence database consumes a quite amount of memory space during

41

mining. Frequent access to in-memory sequence database is not efficient since

there are many redundant and unnecessary checks to this copy of original

database into memory when the candidate patterns are examined. Earlier

elimination of the in-memory sequence database in mining using PrefixSpan

with pseudoprojection would certainly reduce the execution time and memory

utilization. The proposed work, which will be discussed on the next chapter,

indicates that this solution is possible and it is actually improve the

performance.

42

CHAPTER3

IMPROVEMENTS ON PREFIXSPAN WITH PSEUDOPROJECTION

Chapter 3 describes the two proposed improvements on PrefixSpan algorithm with

pseudoprojection for mining sequential patterns. The first proposed improvement

technique is SPM-Tree Framework to build the in-memory sequence database and to

construct the index set. Using Java as a case study, a series of experiments is

conducted to select suitable Collections for the framework. Finally yet

importantly, Separator Database is proposed to enable early removal of the m­

memory sequence database once the index set for !-patterns.

3.1 SPM-Tree Framework

3.1.1 The Need for a Framework

PrefixSpan with pseudoprojection builds two intermediate databases, i.e. index

set (also known as pseudoprojection database) and in-memory sequence

database when searching for patterns. Improper management of building and

using those two temporary databases PrefixSpan with pseudoprojection may

adversely affect the execution time and memory utilization. For instance, if the

items bought are stored into a dynamic array with a large growth factor, the

mining will need bigger memory space to reserve the extension of array that

may be unused. If they are stored into a dynamic array with growth factor of I,

the mining will only spend its time to raise the size of array by one. Another

example, if the items bought are stored into a dynamic array with a very large

initial size, the mining will need bigger memory space for this big initial size,

which may only be filled with one element. Thus, a framework to store the

intermediate databases in PrefixSpan with pseudoprojection is an essential

implementation issue to bring up to front.

43

As previously mentioned, MEMISP stores its index set and its in-memory

sequence database as a variable-length array in memory [13) and a plain

solution as variable-length array cannot solve problem of storing the index set

and sequence database into main memory.

Hence, SPM-Tree is proposed as an efficient framework for index set and in­

memory sequence database storage. In a nutshell, SPM-Tree Framework is a

tree framework with the following characteristics: (I) all leaves must be

located at the same depth that is the max-depth; and (2) the tree size can be

two or more. For now, this framework is only used for the purpose of mining

sequential patterns using PrefixSpan with pseudoprojection. Further study may

figure out that this framework also works for other cases than this algorithm.

3.1.2 Definition of Terms

To illustrate the framework, several definitions need to be introduced.

Definition 5 (Array of Items Bought, Array of Transactions, Array of

Customers). Array of items bought is a variable length array containing the

list of all items by a customer on a transaction time, denoted as Tc.t = {i1, i2, ... ,

in}, where c is the customer id, 1 indicates 1
1
h time this customer comes, and n

is the number of items bought on the t'h time customer c comes. Array of

transactions is a variable length array containing the list of transactions of

customer c, denoted as Cc = {Tc.f, Tc,2 • ... , Tc.m}, where m is the number of

transactions by customer c. Array of customers is a variable length array

containing the list of all customers, denoted as A = {C1, C2, ... , Cp}, where pis

the number of customers.

44

Definition 6: (Array of Offsets, Array of Pointers, Array of Prefixes)

Array of offsets is a variable length array containing the list of all offsets by a

prefix on a pointer, denoted as Rx,, = (o,, 02, ... , o,), where x is the prefix, r

indicates the pointer, and n is the number of offsets for prefix x of pointer r.

Array of pointers is a variable length array containing the list of pointers of

prefix x, denoted as Xx = {Rx,l. Rx.2 , Rx.m}, where m is the number of

pointers by prefix x. Array of prefixes is a variable length array containing the

list of all prefixes, denoted as B = {X1, X2, ... , Xp}, where p is the number of

distinct items.

3.1.3 The SPM-Tree Framework

Figure 3. SP/11-Tree Framework

Figure 3 above depicts the representation of SPM Tree Framework. The

framework is applied to store the sequence database into memory and to

construct the index set. The following lemma regarding to the SPM-Tree can

be stated.

Lemma 4: Three-level SPM-Tree can be used as framework to store in­

memory sequence database and the index set in PrefixSpan with

pseudoprojection.

Proof. For in-memory sequence database, let C = {C 1, C2, ... , C,) be an array

of customers, where n is the number of distinct customers in the sequence

45

database. c1 is an array of transaction time for customer J, where C1 = {Cf'·

c12, ... , C1m), m denotes how many transactions C1 makes, and 1 < f < n.

Then, C!J is an array of items bought by customer fin transaction time j,

where C!J = {81, 8 2, ... , Bk), k denotes how many items bought for

transaction time CJJ, 1 < j < m, B, s;;;; I, B2 s;;;; I, ... , Bk s;;;; I, I = {i ,, i2, ... , ip)

is the list of distinct items, and p is the number of distinct items. Then the

SPM-Tree Framework for in-memory sequence database is C.

For constructing index set, let A = {A 1, A2, ... , Ap) be an array of

prefixes, where p is the number of distinct items. Ax is an array of pointers

for item ix. 1 ::; x ::; p. Ax = {Ax,/. Ax.2 , A.,,n), where n is the number of

distinct customers in the sequence database. AxJ is the list of offset for

index set Ax for customer J, where 1 < f < n, and AxJ = (D,, D2, ... , D;J,

where y is the occurrence frequency for item i,, on array of customer Cf, I

::; y ::; Dy I < y < Iength(C}, where Iength(CJ is the number of items

bought by customer C + number of transaction times by customer C, and

1 < D, < Iength(CJ, 1 < D2 < Iength(CJ, ... , 1 < Dy < /ength(CJ. Then the

SPM-Tree Framework for index set is A. Q.E.D.

Based on above lemma, both in-memory sequence database and index set may

be stored in three-level SPM-Tree. The following lemma reducing the level of

SPM-tree for storing in-memory sequence database can be stated.

Lemma 5: For in-memory sequence database, SPM-Tree can be reduced into

two-level-tree by using separator signs to separate different transactions in

a sequence. However, this does not prevail for index set.

Proof. Once the in-memory sequence database is created, PrefixSpan with

pseudoprojection needs to walk through all sequences on the in-memory

sequence database to check whether the index of current pattern is located

in the same itemset with the candidate item (Lemma 3). Hence, there is no

need to traverse into specific transaction of a sequence just for checking

46

whether the index of current pattern is located in the same itemset with the

candidate item. PrefixSpan with pseudoprojection just needs to know

whether there exists an itemset separator between the index of the current

pattern and the index of candidate item. Thus, the items bought by a

customer could be represented as a list with separator sign to notify the

end of current itemset. Each time one goes to index the item of next

itemset, one may put a separator sign.

For index set, it is impossible to reduce the three-level framework to

become two-level since the retrieval of the offset for certain pointer is still

required for support counting. Q. E. D.

Below is the example for the application of Lemma 5.

Example 3.1: Let a sequence <(ad)(bc)(ae)> is stored m the in-memory

sequence database. It is stored on an array of items bought as [a, d, -, b, c,

-, a, e, -] without creating any array of transactions.

3.1.4 Data Structure Requirements for The Framework

The framework must be able to run fast for the operations required.

Consequently, information about operations required to be executed

repetitively by the data structure is necessarily considered. Here are analyses

of data structure requirement based on the workflow of PrefixSpan with

Pseudoprojection:

l. Constructing the in-memory sequence database

All items bought should be appended to the array of items bought and all

arrays of items bought should be appended to the array of customers,

which contains arrays of items bought. Thus, appending integers, which

are items bought, and appending Objects, which are arrays of items

bought, are required to be optimized.

47

2. Constructing index set for !-patterns

Constructing index set for !-patterns requires retrieval on items bought for

all customers in the in-memory database and appending their position

indices into the index set. Thus, the requirements of data structure on this

process are retrieving integers (items bought), retrieving Objects (arrays

of items bought), appending the integers (offsets), and appending the

Objects (arrays of offsets and arrays of pointers).

3. Discovering support count

In this stage, the offset for each pointers of certain prefix is exploited.

Thus, the requirements of data structure are retrieving integers (offsets)

and Objects (arrays of offsets and arrays of pointers).

4. Creating the intermediate index set

This stage retrieves the given intermediate index set, i.e. index set of the

current pattern, and the earlier-built index set, i.e. index set of the item to

be appended or assembled with current pattern. In addition, the projected

database yielded needs to be stored by means of whom the support of the

new pattern is counted. Thus, the requirements of data structure are

retrieving and appending integers (offset) as well as retrieving and

appending Objects (arrays of offset and arrays of pointers).

To sum up, the SPM-Tree only requires the data structure to be able to append

and retrieve integers and Objects frequently. It is not necessary to check the

other functionalities of the data structure, such as deleting and sorting

elements, since it is hardly ever been used in PrefixSpan.

48

3.1.5 Data Structure Candidates for The Framework

Collections may be useful to store variable-length array.

Collections are Objects that groups many elements into a single unit.

Collections are used to store, retrieve, manipulate, and transmit data from

one type to another. The right choice of Collections could improve the

performance. Collections in Java consist of Set, Map, and List [19].

The implementation of Set is slower than the other Collections, and

must be avoided except when the functionality of Set is really needed.

Meanwhile, a Map is an object that maps keys to values, and cannot contain

duplicate keys. Thus, Map cannot be applied to this sort of collection as well.

Thus, the only possible Collection to apply is List. A List is an

ordered Collection (sometimes called a sequence) that may contain

duplicate elements. In addition, List includes operations for positional

access, search, list iteration, and range-view. List has a dynamic array

based implementation, facilitating the fast-indexing construction, and able to

search very fast when searching on an index position. Java Development Kit

has four general-purpose List implementations, i.e. Vector, Stack,

ArrayList, and LinkedList. LinkedList implements a doubly

linked list, Vector is a synchronized List, and Stack is subclass of

Vector, which has the same performance characteristic but has an additional

functionality, which is LIFO. Meanwhile, ArrayList is an asynchronous

List.

Java Development Kit (JDK)'s Collections are not type-specific, thus

programmers must cast the data type each time the elements are being used.

Jakarta Commons Primitives provides primitive Collections. Moreover,

these primitive Collections run faster than their java.util equivalents. A

primitive collection of integer named ArrayintList saves 75% of memory

space [39].

49

Therefore, the data structure candidates for storing integer data and storing

arrays are ArrayList, Vector, Stack, and LinkedList. For storing

integer data, ArrayintList IS an additional collection to try since

ArrayintList can only keep integers. The results of a series of

experiments to select the suitable candidates for SPM-Tree Framework are

later described in Chapter 4.

3.2 Separator Database

3.2.1 Background

Let us consider PrefixSpan algorithm.

Algorithm I (Prej"IXSpan)
Input: Sequence databaseS, minimum support min_support
Output : A complete set of sequential patterns
Method:
I) PrejixSpan(<> ,O,S)

procedure PrejixSpan (a, L, SJa)

The parameters are I) a is a sequential pattern; 2) Lis the length of a; and 3)

SJa is the a-projected database if a#<>, otherwise, it is the sequence database

s.
I) Scan SJa once, find each frequent item, b, such that:

a) b can be assembled to the last element of ex to form a new sequential
pattern.

b) can be appended to ex to form a new sequential pattern.
2) For each frequent item b, append it to ex to form a sequential pattern a'

and output a'.

3) For each a', construct a' -projected database Sla·.
4) PrejixSpan (a', L+ I, SJa·)

50

It is costly to keep the in-memory sequence database until mining is over. One

must pay for more space to store the in-memory sequence database and for

redundant checking on every single original sequence at deeper mining phase.

As per Lemma 3, PrefixSpan with pseudoprojection requires the in-memory

sequence database in deeper mining phase to build the index set of all patterns

except !-patterns. A new technique is needed to replace the functionality of

the in-memory sequence database. Hence, Separator Database is proposed to

cope with this necessity. Unfortunately, in-memory sequence database is

required to build the index set of frequent items as well as to construct the

Separator Database. To build the Separator Database, PrefixSpan with

pseudoprojection requires the original database to record all offsets of every

separator signs for each sequence, thus in the extraction phase the in-memory

sequence database cannot be removed. To build the index set of frequent items,

PrefixSpan with pseudoprojection requires the original database to record all

offsets of every certain frequent item for each sequence, thus in the initial

mining phase, the in-memory sequence database cannot be removed. The in­

memory sequence database can only be removed in deeper mining phase,

since it is merely used to check whether there are any separator signs between

the index set of current patterns and the index set of candidate items.

3.2.2 Definition of Terms

The concepts of separator list, Separator Database, and separator location need

to be introduced at first.

Definition 7 (Separator List, Separator Database, Separator Location)

Separator list is the list of separator sign indices on each sequence.

Separator Database is the collection of separator list for all sequences. Let

'7 = {i,, i2, ... , i1.,J be the index set of the current pattern of certain

sequence and K = {st. s2, ... , s1KJ be the separator list of the associated

51

sequence. Separator location of ip (for I < f.l < I'll) IS denoted as

{ rlr E K" r = m}n(r > ,u) J.

3.2.3 The Separator Database

The Separator Database is created when the in-memory sequence database is

scanned at the early stage of PrefixSpan. After the construction of index set for

all frequent items, the database can be deleted from memory. The mining

process may proceed without in-memory sequence database. The following

lemma states the correctness of replacing in-memory sequence database to

build the index set of frequent k-pattems.

Lemma 6: Let a. be the current pattern (a. is not empty), fJ is the candidate item,

and a new candidate pattern y is obtained by either assembling or

appending fJ to a.. Separator Database can replace the in-memory sequence

database to build the index set of y.

Proof. To check whether a. is located in the same itemset with fJ or not, one

need to check the in-memory sequence database. Based on Lemma I, to

build the index set of y constructed by appending fJ to a., it is required to

check whether all position indices of fJ are located in the different itemset

with the smallest index of a.. The Separator Database contains the

collections of the list of separator sign indices. To check whether all

position indices of fJ are located in the different itemset with the smallest

index of a, one just needs to compare the index of a. and the closer but

higher index of separator than a., then all position indices of fJ after this

separator location is obtained. Based on Lemma 2, to build the index set of

y constructed by assembling fJ to a, it is required to check whether position

indices of fJ are located in the same itemset with all indices of a. To check

whether position indices of fJ are located in the same itemset with all

indices of a., one just needs to compare the index of a and the closer but

52

higher index of separator than a, then all position indices of f3 before this

separator location and after a is obtained. Thus, the role of in-memory

sequence database can be replaced with Separator Database. Therefore, we

have the lemma. Q. E. D.

The construction of index set for longer pattern proceeds as following

conditions.

Condition 1: If the candidate item is assembled to the last element of current

pattern then the index set of candidate pattern is the index of candidate item

after current pattern but before the current pattern's separator location.

Condition 2: If the candidate item is appended to the current pattern then the

index set of candidate pattern is the index of candidate item after the current

pattern's separator location.

Let us examine how to mine sequential patterns using the Separator Database

based on the running example.

Example 3.2: Given the sequence database in Table II with minimum support

50%, the Separator Database is as shown in Table VI.

Table VI. Separator Database

Sequence 10 Separator List

I 2,6,9,11,14

2 3,5,8, II

3 3,6,9, II, 13

4 2,4,7,9,11,13

To obtain 2-patterns index set, the index set for !-patterns is employed, as

shown in Table IV, and the Separator Database. Suppose that <a> is

53

considered as the current pattern and the possible candidate items are all !­

patterns. Consequently, the candidate patterns are <aa>, <ab>, <(ab)>,

<ac>, <(ac)>, <ad>, <(ad)>, <ae>, <(ae)>, <af>, and <(aj)>.

To get indices of pattern <ac> of sequence id I, one can apply Condition

2. The first index of <a> is I, the separator location is 2, then all indices in

<c> with indices number closer but higher than 2 are {5, 8, I 2}. Thus, the

index set is obtained. However, the index list of <e> of sequence id I is

empty, thus there are no indices for candidate pattern <ae>. The index list

of <ac> and <ae> for other sequences, as well as the index set of <ab>,

<ad>, and <af> are generated similarly.

To get indices of candidate pattern <(ab)> of sequence id I, one can apply

Condition I. The first index of <a> is I, the separator location is 2 but

there are no index of between I and 2. Pull up to the next index of

<a>, which is 3, the separator location is 6, and index of is found

between 3 and 6, that is 4. Move to the next index of <a>, which is 7, the

separator location is 9, but again there are no index of between 7 and

9. Since 7 is the last element of the index list of <a>, the index set for

<(ab)> is {4}.

Likewise, to get indices of candidate pattern <(ac)> of sequence id I, one

still can apply Condition I. The first index of <a> is I, the separator

location is 2, but there are no index of <c> between I and 2. Pull up to the

next index of <(a)>, which is 3, the separator location is 6, and index of

<c> is found between 3 and 6, which is 5. Move to the next index of <a>,

which is 7, the separator location is 9, and index of <c> is found between

7 and 9, that is 8. Thus, the index set for <(ac)> is {5,8}. The index list of

<(ab)>, <(ac)> for other sequences, as well as the index set of <ad>,

<ae>, and <af> are generated similarly.

54

Similarly, to obtain indices of candidate pattern of longer patterns, for

instance <(ab)c> of sequence id I, one can apply Condition 2. The first

and only index of <(ab)> is 4, the separator location is 6, and all indices in

<c> with index number closer but higher than 6 are 8 and 12. Thus, the

index set of <(ab)c> is {8. 12}.

Finally, the complete set of patterns is found in Table III.

3.2.4 Effects of Separator Database to Several Database Characteristics

Besides examining the impact on memory usage, scalability tests need to be

conducted to examine how Separator Database affects numerous sequence

database characteristics on CPU performance. The following four sequence

database parameters are presumed to affect the CPU performance of Separator

Database.

• User specified minimum support threshold. There are much more

patterns figured out for smaller minimum support threshold. The lower

minimum support threshold, the more candidate patterns having smaller

support that is greater than or equals to the minimum support threshold.

Thus, the lower minimum support threshold, the more candidate patterns is

allowed to be the sequential patterns and the more recursions occurred in

mining patterns. Besides, minimum support is the classical measurement

of performance used in previous research.

• Dataset density. Suppose a sequence database having a certain number of

customers, average number of transactions per customer, average items

bought per transaction, and number of distinct items sold in a retail store.

If the number of distinct items sold is multiplied while the other

parameters (number customer, average number of transactions per

customer, average items bought per transaction) are still the same, then the

number of distinct items in the same sequence will increase. In other word,

the sequence will contain more various items, while the size of sequence

and the size of itemsets stay the same. We can also say that the database

55

gets denser while we add more distinct items sold. When the number of

items escalates, the size and length of Separator Database stay the same,

but the redundancy of checking in-memory sequence database is reduced

to the length of Separator Database. If the length of Separator Database is

twice smaller then the number of checking is reduced to twice and

Separator Database will help to mine twice faster.

• Dataset size. The number of customer sequence belongs to the size of

sequence database. The larger dataset size, the more rows of sequence

database is to be processed. Larger dataset size also means larger Separator

Database, since the size of a sequence database equals to the size of its

associated Separator Database. Thus, the size of dataset size affects the

performance and scalability of Separator Database.

• Average itemset length. Suppose that a consumption rate of customer

increases. Thus, the average number of distinct items bought per

transaction is also boosted. It means that the average itemset length rises,

while the number of customer, average number of transactions per

customer, and number of distinct items sold reach a plateau. Consequently,

the length of sequence increases but the number of item sets is on a steady

state. The average of itemset length should be the most influencing factor

to the performance and scalability of Separator Database since length of

the in-memory sequence database rises but the length of Separator

Database is changeless. Thus, there are redundant checks on the in­

memory sequence database as the average itemset length grows, while the

frequency of checking on Separator Database is in a stable state. Besides,

when the average itemset length is constant, the frequency of checking on

the Separator Database is less than then one on the in-memory sequence

database.

A series of experiments have been conducted to see the effects of these

database characteristics on Separator Database. The experiment details and

results are described further in Chapter 4.

56

CHAPTER4

RESULTS AND DISCUSSION

In this chapter, the performance of the five Java Lists for the proposed SPM-Tree

Framework is examined. Subsequently, the performance of PrefixSpan with

pseudoprojection technique, with Separator Database versus without Separator

Database on a series of small databases is conducted. The detailed experimental result

figures for the graphs shown in this chapter are shown on Appendix A.

4.1 Selection of Suitable Data Structure for SPM-Tree Framework

The experiments on this subsection aim to select the suitable Java List for

our proposed SPM-Tree Framework. The suitably chosen Java Lists for

SPM-Tree Framework should contribute towards efficiency improvement of

PrefixSpan with pseudoprojection in terms of speed and memory when it is

implemented on Java. Based on preceding chapter, SPM-Tree Framework

requires:

I. A List having high capability of frequently appending and retrieving

integer, and

2. A List having high capability of frequently appending and retrieving

Object.

For this purpose, the experiment scenarios are based on those two

requirements. Performance study was conducted on five Java Lists, 1.e.

ArrayList, LinkedList, Vector, Stack, and ArrayintList. All

experiments were conducted on an Intel ® Pentium 4 CPU 3.20 GHz (2

57

CPUs) with 64 MB memory, running Microsoft Windows XP Professional

(5.1, Build 2600) and implementing Java using JDK 1.6.

4.1.1 CPU Performance of Appending Integers into Different List

Collections

1600

" 1400
-+-- Arraylntlist

1:
0

" "' .!!!

.s.
"' E .,
1:
::J

0::

1200 --o- Vector

1000 --.-Array list

800 --><-Stack

600
__,._ Linkedlist

400

200

0
0.5 1.5 2 2.5 3 3.5

Number of Iteration (million)

Figure 4. CPU performance of appending integers into different
List Collections

4

Figure 4 shows the processing time of the five Java Lists at different sizes

of integer to be appended. Among all five tested Java List collections,

LinkedList is the slowest and earliest to give up as the number of element

appended escalates. Choosing LinkedList to append any Objects

repeatedly is not a good pick due to poor locality and separated memory

allocation for each new element appending. LinkedList needs extra storage

for references, thus it requires more memory and it cannot append on a

relatively small size of array. Meanwhile, Stack and Vector, which apply

dynamic array, run better than LinkedList since they do not have any

memory allocation for references. The method to append new element in

Stack extends the method to append new element in Vector, thus Stack

and Vector have a quite similar runtime performance on appending element.

58

However, ArrayList, which grows its capacity into Y, old_ capacity+ I

each time it is full, outperforms Vector and Stack, which grow their

capacities twice each time they are full. Nevertheless, ArrayintList is the

clear winner among all five tested Java Lists for appending either large or

small number of integer element. ArrayintList (331.4 seconds) runs over

four times more rapidly than ArrayList (1,450 seconds) and ArrayList

needs more than 64 MB memory to finish mining when 3.5 million of integer

elements are appended. The main reason is that an array of integer is declared

and initialized as the constructor of ArrayintList is invoked, while the

constructor of ArrayList contains the declaration and initialization of an

array of Object, which is not a primitive data type.

4.1.2 CPU Performance of Retrieving Integers into Different List

Collections

500

450 -+- Arraylntlist
:0 400 c: -<~-Vector

8 350 --.- Arraylist .,
~ 300 ---><---Stack ·e 2so
., 200 -->< E
"" 150 ::::::---c:

~ ~ 100
50 p--

0
0.5 1 1.5 2 2.5

Number of Iteration (million)

Figure 5. CPU performance of retrieving integers into different List
Collections

3

Figure 5 shows the processmg time of element retrieval of the five Java

Lists at different sizes of integer set. LinkedList is too slow compared

59

to the rest of four tested Java Lists. Indeed, LinkedList is not up to

scratch for random access since LinkedList does not implement

RandomAccess interface. Thus, there is no quick way for LinkedList to

retrieve the k1
h element other than a sequential scan from the front or back of

the LinkedList, which is very slow. Since Stack and Vector apply

dynamic array and implement RandomAccess interface, they run better than

LinkedList. Stack and Vector also run quite similarly because method

of accessing an element in Stack extends one in Vector. However, the

performance of random access of ArrayList and ArrayintList is much

better than Stack and Vector smce Stack and Vector are

synchronized, while ArrayList and ArrayintList are not.

Synchronized methods are a bit expensive in terms of performance because

Java Virtual Machine must lock the object whenever it finds synchronized

methods. ArrayintList only performs slightly better than ArrayList,

yet generally both of them perform comparably similar in terms of speed and

both of them are the most scalable among the rest of tested Java Lists.

60

4.1.3 Memory Usage of Appending Integers into Different List

Collections

70,---,

1l. 60 ..
"' :J 50
~s-
~ ~ 40 ., ..
E g' 30
E E
~- 20
';(

~ 10

0.5 1.5

--+--- Arraylntlist

-vector
--r-- Arraylist

-><-Stack

,. Linkedlist

2 2.5 3 3.5

Number of iteration (million)

Figure 6. Memory usage of appending integers into different List
Collections

4

Figure 6 shows the memory utilization of the five Java Lists at different

sizes of integer to be appended. The performance of Lin kedLi s t is still the

worst, followed by Stack, Vector, and ArrayList. At 500,000 and

1,000,000 integer data, Stack (10.65 MB and 21.39 MB) and Vector

(10.69 MB and 21.24 MB) performs slightly better than ArrayList (12.21

MB and 21.98 MB). However, ArrayList (32.82 MB) performs slightly

better than Stack and Vector (38.2 MB) when appending I ,500,000

integer data into the Lists. Stack and Vector again outperform

ArrayList when appending more than 1,500,000 integer data, and it is

getting clearer than before. This fluctuation happens since Stack and

Vector double their capacity, while ArrayList raises its capacity into

Y, old_ capacity+ I . The raise of Ar ra yLi s t capacity triggers fluctuation

on its runtime. Thus, owing to the fluctuation, Stack and Vector terminate

their executions when 3,000,000 of integer are appended and ArrayList

61

remmns continuing. Nevertheless, Array I nt List exploits much Jess

memory than ArrayList and still runs when 3,500,000 integer data is

appended while ArrayList stops running. This shows that casting Object

into integer for storing integer value saves a lot of memory as well as speeds

up the appending and the access.

4.1.4 Memory Usage of Retrieving Integers into Different List Collections

70 .--,

" 60 Cl

"' ~ 50

~" 0 ~40 E .c
" "' E g' 30
E E
:::J-

E 20
';(

~ 10

2 3

--+- Arraylntlist

-vector

--- Arraylist
~stack ~· •

4 5 6 7 8

Number of iteration (million)

Figure 7. Memory usage of appending and retrieving integers into different
List Collections

Figure 7 shows the memory utilization of element retrieval of the five Java

Lists at different sizes of integer set. For this test, the memory used for

appending elements is counted as well, since it is not plausible to test the

memory usage of retrieving of an empty List. The memory utilization of

retrieving and appending integer data are quite similar with the one of

appending integer data, except that LinkedList uses too much memory for

both appending and accessing integer data. With the exception of

LinkedList, this shows that integer retrieval requires almost no memory.

62

4.1.5 CPU Performance of Appending Objects into Different List

Collections

2400
-.-Vector

"C 1900 ---Array list c:
0

-.-Stack <J

"' ~ 1400 --¥-- Linkedlist

.s -:P .A

"' 900
-·--- 4 E

"' c: 400 :I
~ a:

-100
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Data (million)

Figure 8. CPU performance of appending Objects into different List
Collections

Figure 8 shows the processing time of Stack, vector, LinkedList, and

ArrayList at different sizes ofObj ects to be appended. Each Object in

this test is an array of 30 integer data. Changes in the size of the array does not

change the performance since Java considers the array of any size as an

Object and even if it does, the size of array is considered as constant

variable for comparison purpose. In addition, since ArrayintList only

stores integers, it is excluded from this test. The graph shows that the

performance is roughly similar to the CPU performance of appending integer

data. Among all four tested Java List collections, LinkedList is still an

unsatisfactory for appending Objects. Stack and Vector run better than

LinkedList, and ArrayList outperforms Vector and Stack.

63

4.1.6 CPU Performance of Retrieving Objects into Different List

Collections

800

"' 700
c:

600 0 ...
Q)

500 Ill

--+--Vector

-----Array list

---.-Stack

.s 400
Q) 300
E ., 200 c:
::1

"' 100

0
0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Data (million)

Figure 9. CPU performance of retrieving Objects into different List
Collections

Figure 9 shows the processing time of random access among four Java Lists

at different sizes of Objects. Each Object in this test is an array of 30

integer data. Again, the graph shows that the performance is roughly similar to

the CPU performance of retrieving integer data. Among all four tested Java

List collections, LinkedList is still a substandard for storing Objects.

Stack and Vector run better than LinkedList, and ArrayList

outperforms Vector and Stack.

4.1. 7 Discussion

Based on the results of all experiments conducted, Lin kedLi s t would never

be chosen since the performance is much worse than Stack, Vector,

ArrayList, and ArrayintList, either for storing integer data or for

storing Object data. Although the runtime performance of Stack and

64

Vector are better than LinkedList, they are worse than the runtime

performance of ArrayList. Thus, excluding ArrayintList,

ArrayList is the most suitable choice for storing Object, compared to

Stack, Vector, and of course LinkedList.

Whilst Stack, Vector, and ArrayList are used to store Object,

ArrayintList is specially designed for storing integer primitive data types

[20]. Since byte per element of ArrayintList is four times smaller than

ArrayList of Integer, ArrayintList could save 75% of memory

space. With this low memory requirement, as our studies results showed,

ArrayintList outperforms the other four List implementations for

storing integer data. Moreover, ArrayintList reduces the uncertainty of

the type of elements by pre-specifying it as an integer primitive data type,

while ArrayList of Integer needs three times more memory space than

ArrayintList to store an integer. Thus, ArrayintList is the most

suitable choice for storing integer data, compared to ArrayList, Stack,

Vector, and for sure LinkedList.

4.2 Performance and Scalability Test of Separator Database

The subsequent tests compare performance of PrefixSpan with

pseudoprojection [II], [12] with Separator Database versus without Separator

Database on a series of small databases. The following series of scalability test

aim to examine how Separator Database affects the execution time of

PrefixSpan with pseudoprojection with regards to user specified minimum

support threshold, dataset size, average itemset length, and dataset density.

The set of experiments also examine how Separator Database affects the

performance of PrefixSpan with pseudoprojection in terms of memory

utilization. The synthetic datasets used in our experiments were generated

using publicly available Quest Synthetic Data Generation Code for

65

Association and Sequential Patterns software [5]. The same data generator has

been used in most studies on sequential pattern mining [4], [5], [6], [7], [8],

[9], [10], [ll], [12], [13]. The datasets generated mimics real-world

transactions. Customers might come once or more, and each time they come

they might buy one or more items. The number of transactions per customer

and the number of items bought per transaction are set around a mean. All

experiments were conducted on an Intel ® Pentium 4 CPU 3.20 GHz (2

CPUs) with 2 GB memory, running Microsoft Windows XP Professional (5.1,

Build 2600) and implementing Java using JDK 1.6.

PrefixSpan with pseudoprojection actually has never been implemented in

Java. Owing to fair comparison, it is assumed that PrefixSpan with

pseudoprojection, either with or without Separator Database, follows the

SPM-Tree Framework and it stores arrays of integer and arrays of Objects

in ArrayintList and ArrayList data structure, respectively.

4.2.1 CPU Performance versus Minimum Support

1000000
-+- PP w/ Separator DB

-- PP w/o Separator DB
100000

-o

" 0 10000
l!l
.!!!. 1000 ..
E ., 100 " ::> a: 10

1
1% 3% 5% 7% 9%

Minimum Support

Figure 10. CPU Performance versus Minimum Support on Dataset-!

66

Figure I 0 shows the impact of Separator Database with alteration on minimum

support threshold to CPU performance on Dataset-! (C I Ok-N50-T2-S I O-t4-

i2), which contains I 0,000 sequences and 50 distinct items. Both the average

number of items in a transaction and the average number of transactions in a

sequence are set to 2. On average, a frequent sequential pattern consists of

four transactions, and each transaction is composed of 2 items. The parameters

of Dataset-! are set to show obviously the impact of Separator Database to the

minimum support threshold. When the minimum support is I 0%, Prefix Span

with pseudoprojection with Separator Database (runtime= 13.078 seconds) is

almost three times faster than PrefixSpan with pseudoprojection without

Separator Database (runtime = 36.437 seconds). However, as the minimum

support threshold dwindles to I%, Prefix Span with pseudoprojection with

Separator Database (runtime = 4,410.953 seconds) runs almost one order of

magnitude faster than PrefixSpan with pseudoprojection without Separator

Database (runtime = 26,276.110 seconds). It is shown that when the minimum

support gets lower, Separator Database helps PrefixSpan with

pseudoprojection to mine exponentially faster. The main reason is that there

are much more patterns found for smaller minimum support threshold.

4.2.2 CPU Performance versus Dataset Density

9000

8000

- 7000
"C

~ 6000
()

~ 5000

~ 4000

~ 3000

" 0:: 2000

-+- PP w/ Separator DB

--- PP w/o Separator DB

100~ ~~~~~~~~~~~~~~~~~=====i~~_j
700 900 1100 1300 1500 1700 1900 2100

Number of distinct items

Figure 11. CPU Performance versus Dataset Density on Dataset-2

67

Figure II shows the impact of Separator Database with alteration on the

database density to CPU performance on Dataset-2 (C I Ok-T2-S2-t4-i6), which

contains I 000 sequences with the number of items growing from 700 to 2200.

Both the average number of items in a transaction and the average number of

transactions in a sequence are set to 2. On average, a frequent sequential

pattern consists of four transactions, and each transaction is composed of 6

items. The minimum support is set to I%. The parameters of Dataset-2 are set

to show obviously the impact of Separator Database to the dataset density.

Consistently, Separator Database improves the performance of PrefixSpan

with pseudoprojection to approximately as much as twice faster. It is probably

not a big deal when the dataset contains 700 distinct items (runtime with

Separator Database = 354.031 seconds, runtime without Separator Database =

809.687 seconds), but it will be a significant disparity when the database

contains 2100 distinct items (runtime with Separator Database = 3261.688

seconds, runtime without Separator Database = 5725.344 seconds). The

sudden increase may occur anytime due to the steep increase on number of

68

patterns resulted from the parameter of distribution. The dataset density, in

fact, affects the performance of PrefixSpan with pseudoprojection due to the

absence of redundant checks to the copy of sequence database into memory.

However, the ratio of improvement nearly reaches a plateau since the density

of database does not affect the size and the length of both in-memory sequence

database and Separator Database.

4.2.3 CPU Performance versus Dataset Size

16000 -+- PPw' Separator 00

14000 -<~- PPw'o Separator 00

-g 12000 •
0
:;: 10000
.!!!.
(!) 8000
E . .,

8000 c
:::1
0:: 4000

2000

0
100 200 300 400 500 600 700 800 900 1000

Dataset Size (in Thousands Sequences)

Figure 12. CPU Performance versus Dataset Size on Dataset-3

Figure 12 shows the results of scalability test of PrefixSpan with

pseudoprojection, with Separator Database and without Separator Database on

Dataset-3 (N I O-T2-S2-t4-i2), with the database size growing from I OOK to

I ,OOOK sequences with minimum support threshold is set to I%. The

parameters of Dataset-3 are set to show obviously the impact of Separator

Database to the dataset size. Separator Database makes the performance of

PrefixSpan with pseudoprojection be marginally better as the database size

grows. For the database of I OOK sequences, Prefix Span with pseudoprojection

69

with Separator Database (runtime = 343.969 seconds) is twice faster than

PrefixSpan with pseudoprojection without Separator Database (runtime =

695.125 seconds). However, when the database grows to I ,OOOK sequences,

Separator Database (runtime = 5,269.828 seconds) improves more than twice

faster than PrefixSpan with pseudoprojection without Separator Database

(runtime= 12,503.97 seconds). More patterns to be checked cause the growth

of the ratio of improvement.

4.2.4 CPU Performance versus Transaction Length

1<XXXXXJ

1ro:XJJ ,
r::: 1CXXXJ 0
u

"' .!!!. 100J
"' E .,

1CO r:::
" a:

10

1

2 3 4

--+-- PP w Sepa"ata D3

__.,__ PP wo Ser;aa!a D3

5 6 7

Transaction Length

8 9 10

Figure 13. CPU Performance versus Transaction Length on Dataset-4

Figure 13 shows the effect of consumption rate of customer on Dataset-4

(C I k-N50-T2-t4-i2), with the average number of distinct items bought per

transaction grows from 2 to I 0 with minimum support I%. Separator Database

marginally improves PrefixSpan with pseudoprojection as the customer buy

more distinct items in each transaction. For the average distinct items per

transaction of 2, PrefixSpan with pseudoprojection with Separator Database

(44.86 seconds) runs more than twice as fast as PrefixSpan with

pseudoprojection without Separator Database (runtime = 94.25 seconds).

70

When the average distinct item per transaction grows to 6, PrefixSpan with

pseudoprojection with Separator Database (runtime = 566.641 seconds) is

nearly three times faster than PrefixSpan with pseudoprojection without

Separator Database (runtime = I ,655.671 seconds). Moreover, when the

average distinct items per transaction grow to I 0, Prefix Span with

pseudoprojection with Separator Database (4,41 0.953 seconds) is six times

faster compared to PrefixSpan with pseudoprojection without Separator

Database (26,276.11 seconds). It is plausible since in larger transaction length,

checking on in-memory sequence database is much more frequent than

checking on Separator Database.

4.2.5 Memory Usage versus Transaction Length

iii'
1!!.
~
Cl

" ..
::>
~
0
E
~

::;;

1000

BOO

600

400

200

0
50 100 150 200 250

Average Item set Length

-+- FP w I Separator DB

__._ PP w /o Separator DB

300 350

Figure 14. Memory Usage versus Transaction Length on Dataset-4

400

Finally, the memory usage is compared using Dataset-4 (Cik-N50-T2-t4-i2).

Figure 14 shows the effect of consumption rate of customer to the memory

usage on Dataset-4, with the average number of distinct items bought per

transaction grows from 50 to 400 with minimum support 0.5%, from which it

71

is clear that Separator Database improve PrefixSpan with pseudoprojection in

terms of memory utilization. For the average distinct items per transaction of

50, PrefixSpan with pseudoprojection without Separator Database consumes

732.60 MB while PrefixSpan with pseudoprojection with Separator Database

consumes only 637.19 MB, which is 95.42 MB less memory. However, the

growth of average itemset length triggers the memory requirement for

PrefixSpan without pseudoprojection without Separator Database. For the

average distinct items per transaction of 400, PrefixSpan with

pseudoprojection without Separator Database consumes 760.52 MB while

PrefixSpan with pseudoprojection without Separator Database consumes only

647.37 MB, which is 113.16 MB less memory. It is plausible since storing in­

memory sequence database requires more memory than storing Separator

Database. The length of Separator Database is always less than the length of

its associated in-memory sequence database. Moreover, if the length of item set

is big, then the length of Separator Database will be much smaller than its

associated in-memory sequence database.

4.2.6 Discussion

Based on the experiment results from previous subsections, it was shown that

Separator Database, as the substitution of in-memory sequence database,

improves PrefixSpan with pseudoprojection. With Separator Database, there is

no need to traverse along all items inside all data sequences, thus reducing the

frequent visiting database when mining and speed up the mining process. The

question becomes why Separator Database improve the performance of

Prefix Span with pseudoprojection: Is it because of some implementation tricks,

or is it inherently in the algorithm itself? The following analyses explain:

• The in-memory sequence database is removed once index set of !-patterns

are constructed, and Separator Database carries out this in-memory

database. Removing in-memory sequence database and replacing it with

72

Separator Database implies releasing some memory space. Thus, Separator

Database saves memory utilization when mining sequential patterns using

PrefixSpan with pseudoprojection.

• Separator Database substitutes the complete sequence database in memory

only with the list of separator locations for each customer. Using the

smaller substitute of in-memory sequence database reduces redundant

checking effort when counting the support of a candidate patterns and the

algorithm merely checks on the separator location index. Checking on in­

memory sequence database takes more processing time than executing

basic mathematical comparison operation in Separator Database.

Now let us analyze the results based on four data characteristics. For different

minimum support thresholds (Figure I 0), it is interesting to note that Separator

Database speeds up PrefixSpan with pseudoprojection in exponential ratio.

This indicates that the deletion of in-memory sequence database and the use of

Separator Database could improve PrefixSpan with pseudoprojection as the

minimum support gets lower.

As can be observed in Figure II, Separator Database roughly speeds up twice

as fast as PrefixSpan with pseudoprojection due to the shrinkage of in-memory

sequence database into Separator Database. Dataset density merely varies the

items distribution in the dataset but it does not change the transaction length,

while Separator Database will show its strength when the transaction size is

long. As the dataset gets denser, the size of Separator Database is proportional

to the in-memory sequence database of PrefixSpan with pseudoprojection.

However, according to Figure II, Separator Database still benefits Prefix Span

with pseudoprojection.

PrefixSpan with pseudoprojection, either with Separator Database or without

Separator Database, runs slower for larger datasets, as shown in Figure 12.

The main reason is that larger datasets means more sequences to handle.

73

Nevertheless, Separator Database still consistently improves the runtime of

PrefixSpan with pseudoprojection. Even in larger dataset size, PrefixSpan with

pseudoprojection with Separator Database is more scalable than PrefixSpan

with pseudoprojection without Separator Database.

Furthermore, based on Figure 13, PrefixSpan with pseudoprojection with

Separator Database clearly wins against PrefixSpan with pseudoprojection

without Separator Database when the customers buy more distinct items. It is

plausible since in larger transaction length, checking on in-memory sequence

database is much more frequent than checking on Separator Database. This

surprising ratio of improvement shows that when the customer prefer to buy

more distinct items in one basket, Separator Database enormously benefits the

performance of Prefix Span with pseudoprojection.

Based on Figure 14, although the improvement is only less than 20%,

Separator Database saves about I 00 MB of memory space. It shows that

Separator Database affects not only the execution time but also the memory

utilization.

Overall, the second series of experiments show that in terms of execution time

and memory utilization, Separator Database improves sequential pattern

mining using PrefixSpan with pseudoprojection, exponentially in some cases.

74

CHAPTERS

CONCLUSIONS AND FUTURE WORKS

In this chapter, this thesis is summarized and future research on this area is presented.

5.1 Conclusions

The goal of this thesis is to improve PrefixSpan with pseudoprojection in

terms of speed and memory utilization. This thesis proposes Separator

Database and SPM-Tree Framework. The set of experiments is divided into

two parts: (I) experiments to select suitable Collections for the proposed

SPM-Tree Framework and (2) experiments to examine how the proposed

Separator Database affects the performance of PrefixSpan with

pseudoprojection.

The first set of experiments draws two major conclusions. First, using Java as

a case study, ArrayList is the most suitable choice for storing Object,

compared to Stack, Vector, and LinkedList. Second,

ArrayintList is the most suitable choice for storing integer data,

compared to ArrayList, Stack, Vector, and LinkedList.

The second set of experiments shows the impact of Separator Database to the

performance of PrefixSpan with pseudoprojection on four database

characteristics. First, as the user-specified minimum support threshold

plummets from I 0% to I%, Separator Database helps the performance of

PrefixSpan with pseudoprojection to mine exponentially faster. Exponential

growth of patterns found on smaller minimum support causes more candidate

patterns need to be examined. Second, as the database gets denser, Separator

75

Database increases the performance of PrefixSpan with pseudoprojection to a

constant ratio. Third, the growth of the number of customer elevates the

performance of PrefixSpan with pseudoprojection. Fourth, as the number of

distinct items bought by customer escalates, the performance of PrefixSpan

with pseudoprojection also increases in exponential ratio. Separator Database

affects not only the execution time but also the memory utilization. The ratio

of improvement depends on the database characteristics. Based on the

experiment from the previous chapter, although the improvement of Separator

Database is only less than 20%, saving about I 00 MB of memory presents a

substantial improvement to PrefixSpan with pseudoprojection. Overall, the

second series of experiments show that Separator Database improves

sequential pattern mmmg usmg PrefixSpan with pseudoprojection,

exponentially in some cases.

5.2 Future Works

There are many interesting issues that need to be studied further.

I. It is of interest to study the effect of Separator Database on mmmg

generalized sequential patterns using the extension of PrefixSpan with

pseudoprojection for mining constrained sequential patterns [15], [17],

[18]. This study enables decision makers to put any sequential pattern

mining constraints, such as time windows, mininum/maximum gaps, and

taxonomy.

2. Often, large memory does not always exist in real life. Budget might be a

hindrance for a decision maker to use decision support system such as

sequential patterns. Thus, it is of interest to study mining sequential

patterns using PrefixSpan with pseudoprojection with Separator Database

on large database.

76

BIBLIOGRAPHY

[I] D. Hand, H. Manni Ia, and P. Smith, "Principles of Data Mining", Cambridge:

MIT Press, 200 l.

[2] J. Han and M. Kamber, "Data Mining: Concepts and Techniques", San

Fransisco: Elsevier Publishers, 2006.

[3] Q. Zhao and S. S. Bhowmick, "Sequential Pattern Mining: A Survey", CAIS,

Nanyang Technological University, Singapore, Tech. Rep. 2003 I 16, 2003.

(4] J. Han, J. Pei, and X. Yan, "Sequential Pattern Mining by Pattern-Growth:

Principles and Extensions", in W. W. Chu and T. Y. Lin (eds.), Recent Advances

in Data Mining and Granular Computing (Mathematical Aspects of Knowledge

Discovery), Springer, Verlag, 2004.

(5] R. Agrawal and R. Srikant, "Mining Sequential Patterns," in Eleventh

International Conference on Data Engineering (ICDE '95), I 995, pp. 3-14.

(6] R. Srikant and R. Agrawal, "Mining Sequential Patterns: Generalizations and

Performance Improvements," in Proceedings of the Fifth International

Conference on Extending Database Technology (EDBT '96), March I 996, pp. 3-

I 7.

[7] F. Masseglia, F. Cathala, and P. Poncelet, "The PSP Approach for Mining

Sequential Patterns," 2"d European Symposium on Principles of Data Mining and

Knowledge Discovery, 1998, pp. 176-184.

[8] M. J. Zaki, "SPADE: An Efficient Algorithm for Mining Frequent Sequences,"

Machine Learning, vol. 42, pp. 31-60, Jan/Feb 2001.

[9] J. Han and J. Pei, "Mining Frequent Patterns by Pattern-Growth: Methodology

and Implications," ACM SIGKDD Explorations Newsleller (special issue on

scalable data mining algorithms), vol 2, pp.l4-20, December 2000.

[IO]J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, "FreeSpan:

Frequent pattern-projected sequential pattern mining," in Proceedings of the

Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2000, pp. 355-359.

77

(Il]J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M.-C.,Hsu,

"PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern

Growth," in Proceedings of the Seventeenth International Conference on Data

Engineering (/CD£ 'Of), 2001, pp. 215-224.

(12]J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M.­

C.,Hsu, "Mining Sequential Patterns by Pattern Growth : The PrefixSpan

Approach", IEEE Transaction on Knowledge and Data Engineering, vol. 16,

pp.l 041-4347, November 2004.

[13] M.-Y. Lin and S.-Y. Lee, "Fast Discovery of Sequential Patterns through

Memory Indexing and Database Partitioning," Journal of Information Science

and Engineering, vol 21, pp. 109-128, January 2005.

(14] M. N. Garofalakis, R. Rastogi, and K. Shim, "SPIRIT: Sequential Pattern Mining

with Regular Expression Constraints," The VLDB Journal, pp. 223-234,

September 1999.

[15]J. Pei, J. Han, and W. Wang, "Mining Sequential Patterns with Constraints in

Large Databases," In Proceedings of the Eleventh !nternatinal Conference on

Information and Knowledge Management, 2002, pp 18-25.

[16] M.-Y. Lin, S.-Y. Lee, and S.-S. Wang "DELISP: Efficient Discovery of

Generalized Sequential Patterns by Delimited Pattern-Growth Technology," in

Proceedings of the Sixth Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining, London, 2002, pp 198-209.

(17]1.-D. Ren, Y.-B. Cheng, and L.-L. Yang, "An Algorithm for Mining Generalized

Sequential Patterns," in Proceedings of the Third International Conference on

Machine Learning and Cybernetics, 2004, pp 1288-1292.

[18]J. Pei, J. Han, and W. Wang, "Constraint-based sequential pattern mining: the

pattern-growth methods", Journal of Intelligent Information Systems, vol. 28, pp.

133-160, April 2007.

[19] X. Yan, J. Han, and R. Afshar, "CioSpan: Mining Closed Sequential Patterns in

Large Datasets," in Proceedings of SIAM International Conference on Data

Mining (SDM '03), 1999, pp. 166-177.

78

[20] D. Yuan, K. Lee, H. Cheng, G. Khrisna, Z. Li, X. Ma, Y. Zhou, J. Han, "C!Span:

Comprehensive Incremental Mining Algorithms of Closed Sequential Patterns

for Multi-Versional Software Mining", presented at Proceedings 2008 SIAM

International Conference on Data Mining (SDM'08), Atlanta, GA, April 2008.

[2 I]J. Wang, J. Han, and C. Li, "Frequent Closed Sequence Mining without

Candidate Maintenance", IEEE Transactions on Knowledge and Data

Engineering, vol. I 9, pp. I 042-1056, August 2007.

[22] C. Chen, X. Yan, F. Zhu, and J. Han, "gApprox: Mining Frequent Approximate

Patterns from a Massive Network", in Proceedings of International Conference

on Data Mining (ICDM'07), 2007, pp. 445-450.

[23] F. Zhu, X. Yan, J. Han, and P. S. Yu, "Efficient Discovery of Frequent

Approximate Sequential Patterns", in Proceedings of International Conference

on Data Mining (ICDM'07), 2007, pp. 75 I -756.

[24] H. Cheng, X. Yan, and J. Han, "IncSpan: Incremental Mining of Sequential

Patterns in Large Database", in Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD'04),

2004, pp. 527-532.

[25] J. Han, J. Pei, and X. Yan, "From Sequential Pattern Mining to Structured Pattern

Mining: A Pattern-Growth Approach," Journal of Computer Science and

Technology, vol. 19, pp. 257-279, May 2004.

[26] R. Kosala and H. Blockeel, "Web Mining Research: A Survey," ACM SIGKDD

Explorations Newsletter, vol. 2, pp 1-15, June 2000.

[27] P. H. Wu, W.C. Peng, and M.S. Chen, "Mining Sequential Alarm Patterns in a

Telecommunication Database," in Proceedings of the VLDB 2001 International

Workshop on Databases in Telecommunications II, 200 I, pp. 3 7-51.

[28] K. Wang, Y. Xu, and J. X. Yu, "Scalable sequential pattern mining for biological

sequences," in Proceedings of the Thirteenth ACM International Conference on

Information and Knowledge Management, 2004, pp. 178-187.

[29] Dejan Jelovic, "Why Java Will Always Be Slower Than C++, retrieved on March

I 0, 2008, http://www.jelovic.com/articles/why java_is_slow.htm.

79

(30] Sun Microsystem, Inc., "Sun Delivers Next Version of the Java Platform",

December 8, 1998, http://www.sun.com/smi/Press/sunflash/1998-

12/sunflash.981208.9.xml.

[31] Sun Microsystem, Inc., "Sun Releases Fastest Client-Side Java Platform to

Date", May 8, 2000, http://www.sun.com/smi/Press/sunflash/2000-

0 5/sunflash.20000508 .3 .xml.

[32] Or. Dobb's Journal, "Microbenchmarking C++, C#, and Java", July I, 2005,

http://www.ddj.com/java/18440 1976?pgno=l.

(33] M. F. Hornick, E. Marcade, S. Venkayala, "Java Data Mining: Strategy,

Standard, and Practice," San Fransisco: Elsevier Publishers, 2007.

(34] R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules between

Sets of Items in Large Databases," in Proceedings of the ACM SIGMOD

Conference on Management of Data, 1993, pp. 207-216.

(35] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules," in

Proceedings of the Twentieth International Conference on VLDB, 1994, pp. 487-

499.

(36] S. Parthasarathy, M. J. Zaki, and W. Li, "Memory Placement Techniques for

Parallel Association Mining," In Proceedings of Fourth International

Conference on Knowledge Discovery and Data Mining, 1998, pp. 304-308.

(37] J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate

generation," ACM SIGMOD Record, vol. 29, pp. 1-12, May 2000.

(38]1. Han, J. Pei, Y. Yin, and R. Mao, "Mining frequent patterns without candidate

generation: A Frequent-Pattern Tree Approach," in Proceedings 2000 ACM­

SIGMOD Int. Conf Management of Data (SIG-MOD '00), pages 1-12, Dallas,

TX, May 2004.

(39] The Apache Software Foundation, "Apache Commons Primitives", March 5,

2008, http://jakarta.apache.org/commons/primitives/.

80

APPENDIX A: EXPERIMENT DATA

Table VII. Execution time of Appending Integers (in second)

Number
Linked.List Vector Stack ArrayList ArrayintList

of Data

500,000 499.8 406.2 356.2 300 93.8

1,000,000 887.4 778.2 690.4 506.2 143.6
1,500,000 1294 934.4 943.4 703 200

2,000,000
Out of

1206.2 1212.8 912.4 243.6
memory

2,500,000
Out of

1359 1331 1228 262.4
memory

3,000,000
Out of Out of Out of

1450 331.4
memory memory memory

3,500,000
Out of Out of Out of Out of

356.6
memory memory memory memory

4,000,000
Out of Out of Out of Out of

365.6
memory memory memory memory

Table VIII. Execution time of Retrieving Integers (in second)

Number
Linked.List Vector Stack ArrayList ArrayintList

of Data

500,000 > I hour 43.8 44 3.2 3.2
I ,000,000 > I hour 75.2 87.4 12.4 12.4
I ,500,000 > I hour 116 115.6 12.6 24.8
2,000,000 > I hour 156.4 149.8 18.6 25
2,500,000 > I hour 190.6 190.6 28.4 28

3,000,000 > I hour Out of Out of
24.8 34.6

memory memory

81

Table IX. Memory Usage of Appending Integers (in MB)

Number
LinkedList Vector Stack ArrayList ArrayintList

of Data

500,000 19.4156 I 0.6521 10.6916 12.2068 3.7501

I ,000,000 38.5043 21.3935 21.2448 21.9843 8.0394

I ,500,000 57.6195 38.205 38.1979 32.822 11.9096

2,000,000
Out of

41.1572 41.1503 45.2433 17.7136
memory

2,500,000
Out of

48.5269 48.5476 60.1097 17.7146
memory

3,000,000
Out of Out of Out of

59.7118 26.4072
memory memory_ memory

3,500,000
Out of Out of Out of Out of

26.4082
memory memory memory memory

4,000,000
Out of Out of Out of Out of

26.4096
memory_ memory memory memory

Table X. Memory Usage of Appending and Retrieving Integers (in MB)

Number
LinkedList Vector Stack ArrayList ArrayintList

of Data

500,000 > I hour 10.7216 10.6288 12.1984 3.7461
I ,000,000 > I hour 21.4088 21.2421 21.9821 8.0396

I ,500,000 > I hour 38.2154 38.2208 32.8212 II. 91

2,000,000 > I hour 41.1577 41.1574 45.2423 17.7123
2,500,000 > I hour 48.5323 48.5239 60.0928 17.7137

3,000,000 > I hour
Out of Out of

59.3504 26.4106
memory memory

3,500,000 > I hour Out of Out of Out of
26.4079

memory memory memory

4,000,000 > I hour
Out of Out of Out of

26.4056
memory memory memory

82

Table XI. Execution Time of Appending Object 5 (in second)

Number of
Linked.List Vector Stack ArrayList

Data

500,000 340.6 128.2 134.2 115.8
I ,000,000 643.6 237.6 241 156.2
I ,500,000 965.6 365.4 365.6 215.6
2,000,000 1187.6 440.4 437.6 268.6
2,500,000 1677.8 509.4 515.8 371.8
3,000,000 Out of memory 687.8 687.6 381.4
3,500,000 Out of memory 759 750 509.2
4,000,000 Out of memory 834.4 834.4 522
4,500,000 Out of memory 925 825.6 549.8
5,000,000 Out of memory 1000 1000 565.4
5,500,000 Out of memory Out of memory Out of memory 647
6,000,000 Out of memory Out of memory Out of memory 656.2

Table XII. Execution Time of Retrieving Object 5 (in second)

Number of
Linked.List Vector Stack ArrayList

Data

500,000 >I hour 49.8 44 6.2
I ,000,000 >I hour 97 75.2 9.2
I ,500,000 >I hour 124.8 116 16
2,000,000 >I hour 162.4 149.8 25.2
2,500,000 >I hour 218.4 190.6 31
3,000,000 >I hour 231.2 Out of memory 28.2
3,500,000 >I hour 318.6 Out of memory 34.4
4,000,000 >I hour 317.8 Out of memory 47
4,500,000 >I hour 421.8 Out of memory 43.8
5,000,000 >I hour 468.8 Out of memory 56.2
5,500,000 >I hour Out of memory Out of memory 52.8
6,000,000 Out of memory Out of memory Out of memory 65.8

83

Table XIII. Execution Time versus Database Density (in second)

Number of PPw/ PP w/o
Ratio Difference

Distinct Items Separator DB Separator DB

700 354.031 809.687 2.287051134 455.656
1400 328.5 752.687 2.291284627 424.187
1600 290.281 653.906 2.252665521 363.625
1800 212.594 501.531 2.359102327 288.937
2000 262.672 438.047 1.667657763 175.375
2100 3261.688 5725.344 1.755331595 2463.656
2200 2943.672 5392.891 1.8320285 2449.219

Table XIV. Execution Time versus Database Size (in second)

Number of PPw/ PPw/o
Ratio Difference

Customers Separator DB Separator DB

100 343.969 695.125 2.020894325 351.156
200 724.344 1443.485 1.992816949 719.141
400 1337.531 2721.375 2.03462574 1383.844
600 2058.922 4181.422 2.359102327 2122.5
800 2960.281 6054.828 2.045355829 3094.547
1000 5269.828 12503.97 2.37274727 7234.142

Table XV. Execution Time versus Minimum Support Threshold (in second)

Minimum pp w/ PP w/o
Ratio Difference

Support Separator DB Separator DB

10% 13.078 36.437 2. 7861293 78 23.359
8% 20.438 56.375 2. 758342304 35.937
6% 45.797 137.438 3.001026268 91.641
4% 128.968 425.063 3.295879598 296.095
2% 770.391 3026.234 3.928179327 2255.843
1% 4410.953 26276.11 5.957014278 21865.157

0.5% 34249.078 263475.031 7.692908726 229225.953

84

Table XVI. Execution Time versus Average Transaction Length (in second)

Transaction pp w/ PP w/o
Ratio Difference

Length Separator DB Separator DB

2 44.86 94.25 2.100980829 49.39
4 148.891 384.86 2.584843946 235.969
6 566.641 1655.671 2.921904698 I 089.03
10 4410.953 26276.11 5.957014278 21865.157

Table XVII. Memory Usage versus Average Transaction Length (in MB)

Transaction PPw/ PPw/o
Ratio Difference

Length Separator DB Separator DB

50 637.185173 732.6030502 1.149749054 95.4178772
100 648.3291397 733.4485703 1.131290459 85.11943054
200 648.808876 760.4503708 1.172071466 111.6414948
300 647.5511551 759.7374573 1.173247011 112.1863022
400 647.3678436 760.5272369 1.174799219 113.1593933

