Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

Ahmed Jad Elrab, Ahmed Mohammed (2008) Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems. Masters thesis, Universiti Teknologi Petronas.

[thumbnail of 2008 Master - Spatio-Temporal Processing for Optimum Uplink-Downlink WCDMA Systems.pdf] PDF
2008 Master - Spatio-Temporal Processing for Optimum Uplink-Downlink WCDMA Systems.pdf

Download (4MB)


The capacity of a cellular system is limited by two different phenomena, namely
multipath fading and multiple access interference (MAl). A Two Dimensional (2-D)
receiver combats both of these by processing the signal both in the spatial and temporal
domain. An ideal 2-D receiver would perform joint space-time processing, but at the
price of high computational complexity. In this research we investigate computationally
simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a
beamfom1er is fed into a succeeding temporal processor to take advantage of both the
beamformer and Rake receiver. Wireless service providers throughout the world are
working to introduce the third generation (3G) and beyond (3G) cellular service that will
provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA)
has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake
receiver can be an effective solution to provide the receivers enhanced capabilities
needed to achieve the required performance of a WCDMA system.
We consider three different Pilot Symbol Assisted (PSA) beamforming techniques,
Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square
(RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical
Circular channel model is considered, which is more suitable for array processing, and
conductive to RAKE combining. The performances of the Beam former-Rake receiver are
evaluated in this channel model as a function of the number of antenna elements and
RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that,
the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the
conventional beamformer by a significant margin. Also, we optimize and develop a
mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR)
of a Beam former-Rake receiver.
In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise
Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA
system for downlink. The performance is then compared with an omnidirectional antenna
system. Simulation shows that the best perfom1ance can be achieved when all the mobiles
with same Angle-of-Arrival (AOA) and different distance from base station are formed in
one beam.

Item Type: Thesis (Masters)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Departments / MOR / COE: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 09 Oct 2013 11:07
Last Modified: 25 Jan 2017 09:45

Actions (login required)

View Item
View Item