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ABSTRACT 

Asphaltene precipitation and VIscous fmgering are two serious problems 

encountered during gas injection. The objective of this project is to study the effect of 

asphaltene deposition on viscous fingering and oil recovery. This project includes 

critical literature review and simulation work. The simulation work has been done using 

a compositional oil simulator, CMG GEM. Two types of formation have been modeled; 

without asphaltene deposition and with asphaltene deposition. Fluid flow through the 

two formations has been simulated to observe viscous fingering that happens during 

carbon dioxide (C02) injection and water-alternating-gas (WAG) injection. Results 

show that presence of asphaltene slows down the propagation of viscous fingering and 

production of oil. At a similar injected pore volume (PVI), presence of asphaltene does 

not change the shape and size of viscous fingering during C~ injection but it slightly 

changes the shape and size of viscous fingering during different types of WAG 

injection. In addition, less fingering is observed at higher WAG ratio and severe 

fingering is observed in the case of C02 injection and lower WAG ratio. 
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CHAPTER! 

INTRODUCTION 

1.1 Background of Study 

Viscous fingering is the unstable displacement of a more viscous fluid by a less viscous 

fluid . The fingering of an injection fluid into an in-situ fluid can influence reservoir 

flow behavior and adversely impact recovery. If a low viscosity fluid is injected into a 

cell containing a high viscosity fluid, the low viscosity fluid will begin to form fingers 

as it moves through the fluid. It will not uniformly displace the higher viscosity fluid. 

These fingers can have different shapes. [IJ 

Figure 1: Viscous fingering in a Hele-Shaw cell 

Source: http://www. ulb. ac. be/ceno/iw3/spatio. html 

Asphaltene is the heavy component of a crude oil that constitutes a potential problem 

because of its tendency to precipitate and deposit causing formation damage and 

blockage in tubular, pipelines and surface facilities leading to decline in oil production. 

Asphaltene is insoluble inn-pentane or n-hexane, but is soluble in toluene or benzene. 

Asphaltene precipitation and deposition can cause serious problems. 

Abdallah et al. (20 1 0) £ll reported in their paper that there are numbers of wells affected 

with asphaltene in an onshore field in Abu Dhabi and this is likely to increase in the 

future implementation of artificial lift and gas injection for enhanced oil recovery 

(EOR). Another paper by Oskui, Jumaa & Abuhaimed (2009) [JJ reported that Kuwait 

Oil Company (KOC) is facing asphaltene deposition problems in the wellbore of some 
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of the Marrat Jurassic reservoirs in West Kuwait, South East Kuwait and North Kuwait. 

This has caused a reduction in production and shutting of some of the wells and a severe 

detrimental effect on the economics of oil recovery. [JJ 

EOR is the method for increasing the amount of crude oil that can be extracted from an 

oil field. Using EOR, 30-60% or more of the original oil in place can be extracted 

compared with only 20-40% if using primary and secondary recovery. Its function is not 

only to restore formation pressure, but also to improve oil displacement or fluid flow in 

the reservoir. £41 The three major types of enhanced oil recovery operations are chemical 

flooding, miscible displacement (carbon dioxide injection or hydrocarbon injection) and 

thermal recovery. £41 Water alternating gas process (WAG) is one type ofEOR. 

Simulation work has been done using a simulation software by Computer Modelling 

Group Ltd (CMG) to simulate viscous fingering during C02 and WAG injection in 

presence of asphaltene deposition. 
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1.2 Problem Statement 

Viscous fingering is an undesirable phenomenon during gas injection. It leads to poor 

sweep efficiency, early water breakthrough and slow oil recovery rate. [SJ The 

mobility/viscosity difference between the injected and displaced fluids is the cause of 

the fmgering. 

Asphaltene precipitation is another undesirable thing that happens during the injection 

of gas into the reservoir to displace oil. Asphaltene precipitation and deposition alters 

formation porosity, wettability and induces near-wellbore formation damage where 

permeability of the formation is reduced. As recognized by Boer et al. (1992) !61, light 

oil with small amount of asphaltene is more likely to cause problems during production 

than heavy oil even though heavy oil has larger amount of asphaltene. 

Viscous fingering and asphaltene precipitation are two serious problems that happen 

during gas injection. In this project, the relation between asphaltene deposition and 

viscous fingering is studied. The study is to know whether presence of asphaltene 

deposition in the reservoir affects the size and shape of viscous fingering. Since no 

literature on the relationship between asphaltene deposition and viscous fingering was 

found, this study can be considered one of a kind. 
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1.3 Objectives and Scope of Study 

The objectives of this study are: 

a. To simulate viscous fingering usmg a compositional oil simulator for a 

formation with presence of asphaltene deposition 

b. To study on the effect of asphaltene deposition on viscous fingering during C02 

injection and WAG injection 

c. To study the effect of asphaltene deposition on oil recovery 

The scope of study includes the following: 

a. Literature review on asphaltene, viscous fingering and enhanced oil recovery 

b. Familiarization of compositional oil simulator software 

c. Modeling of asphaltenic light oil using fluid modeling software, WinProp 

d. Conducting simulations of viscous fingering during C02 and WAG injections 

e. Comparison of viscous fingering and oil recovery between two types of 

formation; formation without asphaltene deposition and formation with 

asphaltene deposition for each type of injection method 
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1.4 Relevancy and Feasibility of Study 

This study is on the effect of asphaltene precipitation and deposition on viscous 

fmgering during WAG. Viscous fingering is an unavoidable problem encountered 

during gas injection that can reduce the speed of oil recovery. Asphaltene precipitation 

happens when gas is injected into oil reservoir hence induced oil instability. It causes 

problems from oil production to oil processing. It is known that gas injection is one of 

the most common EOR process used to improve oil recovery. The two problems pose 

serious threats to the efficiency of oil recovery till now. 

In this study, the effect of asphaltene deposition on viscous fmgering and oil recovery is 

studied. If asphaltene deposition is proved to have negative effects on viscous fingering 

and oil production, steps may be taken to reduce or prevent asphaltene deposition for 

future EOR program. 

This study is expected to be feasible because of the followings: 

a. Papers and journals for referencing purpose can be downloaded from the 

website, www.onepetro.org without any charge imposed to the student. 

b. The simulation software (by CMG) required for the simulation work is available 

in computer laboratory at Academic Block 15 complete with how-to-use 

manual. 

c. Since the study is on the simulation of viscous fingering, no other materials 

other than the software and a computer are needed. 
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CHAPTER2 

LITERATURE REVIEW AND THEORY 

2.1 Viscous Fingering 

Fingering often occurs in an injection project. It is an occurrence where the injected 

fluid does not contact with the entire reservoir but bypasses sections of the reservoir 

fluids in finger-like manner. Because of portions of the reservoir are not contacted by 

the injection fluid (poor sweep efficiency), fingering is not desirable. If viscous 

fmgering happens, considerable quantities of gas are needed to displace all the oil which 

makes the process expensive and time consuming. 

Viscous fingering happens when a less viscous fluid, such as gas or water, is injected to 

displace a more viscous one, such as oil. However in the inverse scenario, no fingering 

patterns are form due to stable interface between the fluids in contact. In a reservoir, 

viscous fingering may be triggered by variations in permeability. [SJ 

The selection of the displacing fluid with particular characteristics becomes extremely 

significant in avoiding the growth and the propagation of finger-patterned flow, which 

leads to extremely poor displacement efficiency in both miscible and immiscible 

displacement for EOR. Fingering can be a reservoir heterogeneity problem or a fluid 

displacement problem. [IJ The physical instability causing viscous fingering is driven by 

the adverse mobility ratio across a fluid front. 

Alternating injection of water and gas reduces the effect of viscous fingering by 

reducing the mobility contrast between the fluids. Experiments by Naami, Catania & 

Islam (1999) [81 detected the existence of heterogeneity fmgers. From their experimental 

study, it was found that viscous fingers travel much faster than heterogeneity fingers. 
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2.1.1 Simulation of Viscous Fingering 

Tchelepi and Orr Jr. (1993) in their study [IOJ did two- and three-dimensional 

computations with a hybrid finite-difference/particle tracking technique. The two- and 

three-dimensional simulations were compared for unstable displacements. In both 

homogeneous and heterogeneous porous media, gravity segregation is much more 

effective in 3D than in 2D computations. 

Moissis et al. (1998) [IIJ studied the viscous finger in miscible displacement. In their 

study, they used numerical simulation for studying viscous fmgering. They found that 

the local permeability distribution near the entrance of the porous medium plays an 

important role in finger generation and the number of developing fingering and their 

growth rates depend strongly on the mobility ratio. 

The miscible displacement in porous media has been simulated by Ku et al. (1989) [l
21 

using pseudospectral matrix element method for displacing fluid in a horizontal slab and 

five-spot reservoirs. Compared to the case of uniform permeability, the region with 

higher permeability will induce the less viscous fluid with a faster speed, and hence a 

fingered front is appeared earlier as expected in the case of heterogeneous permeability. 

From the study, it was found that the less viscous finger with a higher permeability will 

shield the viscous one with a lower permeability and then both will merge into a single 

finger. For quartet five-spot reservoir, even without the perturbation of permeability, a 

finger still exists due to different fluid path caused by the geometrical effect. 

Blunt et al. (1992) l231 have developed a predictive theory that reduces to the Todd and 

Longstaff (1971) [241 model to account for viscous fingering in compositional 

displacements for fully miscible cases. The theory adopts a fractional-flow formulation, 

rather than a dispersive formulation to describe average unstable displacement behavior. 

The width of the fingered zone is predicted to grow linearly with time. The study was 

only limited to homogenous media neglecting gravity and capillary forces. 

7 



Moissis et al. (1993) [251 studied the effect of gravity and of the structure of the porous 

medium on unstable miscible displacements using numerical simulations. Based on the 

study, fingers are generated due to heterogeneities of the porous medium. Results 

indicate that a displacement may be dominated by gravity or by viscous fmgering or 

both mechanisms. When gravity tonguing is dominant, the results are early 

breakthrough and little oil recovery after breakthrough. 

In miscible flooding project, viscous fingering is likely when the mobility ratio between 

oil and miscible gas is adverse. The more mobile gas fingers through the oil, leading to 

early solvent breakthrough. Alternating injection of water and miscible gas in a WAG 

process has been suggested as a way to reduce the impact of viscous fingering. Christie 

et al. (1993) [271 in their research presented the results of 2D and 3D high resolution 

simulation to assess the impact and importance of 3D effects in viscous fmgering 

computations. The 3D computations give lower recovery and earlier breakthrough than 

the equivalent 2D calculations. 
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2.2 Gas Injection (EOR) 

Secondary recovery stage reaches its limit when the injected fluid (water or gas) is 

produced in considerable amounts from the production wells and the production is no 

longer economical. The successive use of primary recovery and secondary recovery in 

an oil reservoir produced about 15% to 40% of the original oil in place. 

Solvent flooding is a commonly used technology for EOR in hydrocarbon reservoirs, 

which aims at developing miscibility, thereby mobilizing the residual oil and enhancing 

the mobility of the hydrocarbon phase. [?J Two types of C02 displacement: [ZIJ 

a. Miscible COz displacement: 

Under suitable reservoir pressure and oil density conditions, injected C02 will 

mix thoroughly with the oil within the reservoir such that the interfacial tension 

between these two substances effectively disappears. Theoretically, all contacted 

oil can be recovered under miscible conditions. The suitable reservoir pressure 

and oil density conditions are generally deeper than I ,200 m with oil lighter than 

22° API gravity. 

b. Immiscible COz displacement: 

When reservoir pressure is too low and/or oil gravity too dense, the injected 

carbon dioxide remains physically distinct from the oil within the reservoir. 

However injected C02 can still improve oil recovery by causing the oil to swell, 

reducing the oil's density and improving mobility. 
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WAG is an EOR process where water and miscible solvent (gas) are alternately injected 

into a reservoir containing water and oil to provide better sweep efficiency. It helps to 

reduce the amount of viscous fingering in the reservoir by decreasing the apparent 

mobility contrast between the injected and displaced fluids hence improving sweep 

efficiency. [51 The fingering in a miscible flood, with only hydrocarbon flowing, can be 

modeled successfully using a Todd and Longstaff fractional flow. [5] 

co, 
Injection 

Well 

Production 
Well 

Figure 2 [211 
: Illustration of WAG process 

There is an optimum ratio of water to solvent injected (optimum WAG ratio), which 

minimizes the degree of fingering. PI Optimum WAG ratio is the value of injected 

fractional flow of water, hnj at which the solvent and water fronts move at the same 

speed. The estimates of the optimum WAG ratio that account for viscous fmgering are 

lower than those that ignore viscous fingering effects. [91 This means that the number of 

pore volume injected (PVI) for complete oil recovery is minimized by injecting a higher 

solvent fraction than predicted by the Stalkup method. 
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where 
W R =optimum WAG ratio 

w; _ finj 
R-

1- hnj 

fini = fractional flow of water injected 

(1) 

The injected solvent and injected water naturally travel at different speeds - if much 

more solvent than water is injected, the solvent front moves ahead of the water and we 

see severe fmgering of this solvent into the oil. If much more water than solvent is 

injected, the water moves ahead of the solvent. While this reduces the fingering, the 

recovery resembles that of a waterflood until the oil is contacted by the slow moving 

solvent front. 

In a secondary WAG process, water and solvent are injected into a reservoir containing 

oil and connate water. The solvent displaces the oil in the hydrocarbon phase, but since 

the solvent (or gas) is less viscous than the oil, it fmgers through the reservoir, resulting 

in early breakthrough. Water is more viscous than the solvent and so if water is injected 

together with solvent, the contrast in total mobility between the injected and displaced 

fluids is reduced thus there is less fingering. The physical origin of fingering is the 

contrast in total mobility between the injected and displaced fluids. [SJ 

Solvent flooding alone has high local displacement efficiency but the effectiveness of 

solvent injection is compromised by viscous fingering that leads to early water 

breakthrough and a slow rate of recovery. To counter the problem, WAG is introduced 

to control the mobility of the solvent by injecting alternating water and solvent slugs. 

A numerical simulation study ofEOR alternatives has been conducted for a reservoir by 

Todd eta/. (1999) [IJJ The high asphaltene content of the crude, together with indication 

of plugging if precipitation is allowed to occur in the reservoir, has forced the 

maintenance of pressure by injection. The modeling work indicates significant 

seusitivity to both process and well configuration. Continuous gas injection predicted to 
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recover O.Q3 to 0.09 oil initially-in-place (OIIP) more oil than water injection, and 1:1 

WAG predicted to recover 0.06 to 0.10 OOIP more oil than continuous gas injection, 

depending on the well configuration. 
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2.3 Asphaltene 

Asphaltene deposition causes serious problems in production operations, from the 

reservoir, through production tubing and in surface facilities. It also alters formation 

porosity, wettability and induces near-wellbore formation damage where permeability 

of the formation is reduced. 

2.3.1 Definition 

There are many definitions of asphaltene and the definitions are based on the 

asphaltene's solubility. Asphaltene recently defined by chemists as the part precipitated 

by addition of low-boiling paraffin solvent such as normal-pentane and benzene soluble 

fraction whether it is derived from carbonaceous sources such as petroleum, coal or oil 

shale. 

For simplicity, asphaltene are the fraction of oil that is insoluble in n-heptane or n­

pentane but soluble in benzene or toluene. Asphaltene are very complex molecules and 

they are the heaviest and most polar fractions found in crude oil. 

2.3.2 Where asphaltene deposits are found? [ISJ 

Asphaltene can be found: 

a. In surface facilities (pipelines and separators). Asphaltene deposition affects all 

the flow lines and it occurs regardless of the temperature conditions. 

b. In production tubing. Deposits were subsequently found in the tubing in which 

deposits form at corresponding to the bubble pressure of produced oil. 

c. Then the asphaltene deposit zone can migrate to bottomhole and well 

neighboring formation as reservoir depletion proceeds. 
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An important fact about asphaltene that often is overlooked is that they are deposited 

only after flocculation. [191 Avoiding asphaltene flocculation is a key to preventing 

asphaltene-induced formation damage. During flocculation, the asphaltene micelles 

rearrange, by losing resin molecules to form larger bodies. 

Asphaltene deposition onto the rock surface causes wettabilty alteration from water-wet 

to oil-wet. Water-wet reservoir rocks permit more efficient oil production because of 

the favorable relative permeability to oil. [ZOJ Inversely, oil flows with more difficulty 

through pore channels and throats that are more oil-wet than water-wet. 

2.3.3 Relation between Asphaltene and Resin 

Asphaltene precipitation is the result of instability of oil. The asphaltene are in nature 

stabilized by resins and maintained in the oil. The resins play an important role in the 

stability stability of petroleum and prevent separation of the asphaltene as separate 

phase. The resins will keep the asphaltene well dispersed in the oil and prevent them 

from precipitate, flocculate and lastly deposit on rock surface. Asphaltene precipitates 

due to several reasons like pressure drop, gas injection and change in oil composition 

and the asphaltene can cause problems to hydrocarbon production when it deposited in 

the reservoir and the wellbore. Higher rock heterogeneities would lead to higher 

asphaltene accumulation in a formation. f141 

The injected C02 when come in contacts with oil, can cause changes in the fluid 

behavior and equilibrium conditions and also alter the asphaltene-to-resin ratio of crude 

oil which results in asphaltene precipitation. [I?J Precipitated asphaltene can either be 

flowing as suspended particles or deposited onto the rock surface causing formation 

damage. Asphaltene stability is factored by fluid composition, pressure and 

temperature. 
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As recognized by Boer et a/. (1992) !61, light oil with small amount of asphaltene is 

more likely to cause problems during production than heavy oil even though heavy oil 

has larger amount of asphaltene. The explanation for this is the heavier oil contains 

plenty of intermediate components that are good asphaltene solvents whereas the light 

oil may consist mainly of lighter components which asphaltene have limited solubility. 

Field and laboratory data confirm that asphaltene will precipitate more easily in light oil 

compared to heavy oil even though heavy oil have much higher asphaltene content 

compared to light oil. The Venezuelan Boscan crude with 17.2 wt% asphaltene was 

produced without asphaltene related problem, while the crude of Hassi-Messaoud in 

Algeria with only 0.15 wt% asphaltene has many asphaltene related production 

problems. [161 

2.3.4 Relation between C02 Coneentration and Asphaltene Preeipitation 

Asphaltene precipitation increases with increasing concentration of injected C02 as 

reported by Alta'ee eta/. (2010) [171. The study was done on light oil sample at constant 

pressure and temperature. Moghadasi et al. (2006) !181 concluded from their results that 

the amount of asphaltene precipitation due to C02 injection is dependent on 

concentration of injected C02 gas and will rapidly increase when the gas concentration 

exceeds one critical value. 

Based on the research by Srivastava eta/. (1999) [Z6J, static asphaltene precipitation tests 

indicated that the most important factor on which the asphaltene precipitation depended 

was C02 concentration. The effect of the presence of brine on asphaltene flocculation 

seemed to be negligible. 
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2.3.5 Asphaltene Precipitation, Flocculation and Deposition 

Field conditions conducive for precipitation include normal depletion, acid stimulation, 

gas-lift operations, and miscible flooding. Precipitation of asphaltene depends on the 

composition of the oil and concentration of asphaltene in the oil. 1221 Precipitation occurs 

above the saturation pressure, reaches a maximum value at around the saturation 

pressure and decreases as pressure drops below the saturation pressure. As the light 

components come out of the solution, the solubility of asphaltene in the liquid phase 

increases. 

Recent research has shown that asphaltene precipitation process is largely reversible. 

However, the time required for asphaltene to go back into solution may be longer than 

the time required for the original precipitates to form. Precipitated asphaltene that have 

not flocculated into larger particles may flow with the fluids without any harmful 

effects on production. 

Flocculated asphaltene contributes to the formation of organic deposits causing 

problems such as formation damage, flow restriction due to partial plugging of the 

production string of pipelines and limitations in the crude oil and produced water 

treatment facilities due to the formation of stable emulsions. The precipitated asphaltene 

are fine particles that may form larger aggregates, which are large enough to be retained 

at small pore throats. Precipitated asphaltene can deposit onto the rock and cause 

plugging and wettability alteration. 
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3.1 Research Methodology 

CHAPTER3 

MEmODOLOGY 

Below is the general work flow of this project: 

Selection of Title 

l'i!lalyear,jko)ect title selection or •piOpesill . • Preliminary Research/Literature Review 

.·liearntllgot·tunifafllentalt~eorles~hd·coneepts thcil1cilrig,l~iat~rereview · . • Familiarization of Simulation Software 

Data Gathering 

Simulation Work 
' I I I I • ~ I I ' 

·'~ 
Results Analysis 

I • ~ " • ~ l 

alld ()il rec.ollery duriv, alld WAG lrljectiolls 

Discussion on Results 

Report Writing 
• I • . t I ! • 

re·vi~W, _ res~circh oOt~ome t!tC~) 

Figure 3: Research flowchart 
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3.1.1 Brief Explanation on Simulation Work 

For the simulation work, it has been done using a set of software provided by CMG. 

The set of software are: 

a. GEM - is a full Equation of State compositional reservoir simulator with 

advanced features for modeling recovery processes where the fluid composition 

affects recovery. 

b. WINPROP - is used for modeling the phase behavior and properties of reservoir 

fluids. 

c. Builder - is an application used in the preparation of reservoir simulation 

models. 

d. Results 3D and Results Graph - are the applications used for interpreting 

simulation results. 

Two types of formation have been modeled using Builder software in CMG. One 

formation is without presence of asphaltene deposition and another one with presence of 

asphaltene deposition. WINPROP was used to characterize the fluids that were used in 

the simulations. Tutorial for modeling asphaltene precipitation can be found in the 

manual that comes with the software. 

The reservoir input data file needed for GEM simulation software was created using 

Builder. Then, data file from WINPROP (fluid characterization software) and Builder 

was imported to GEM. GEM simulated the flow of fluids injected and displaced during 

C02 and WAG injection process in the formation with and without asphaltene 

deposition. 
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Results 3D was used to see the fluid flow in a formation in 3D grid blocks while Results 

Graph was used to plot the necessary plots for this project. Size, shape and propagation 

of viscous fmgering in all of the simulations have been observed and compared. 

Simulation workflow: 

I. Fluid characterization using WinProp. 

Fluid data was taken from a paper. 

2. Reservoir characterization, rock-fluid interaction properties, well configuration 

and initial reservoir conditions determination using Builder. 

3. Running of data sets from Builder into GEM, compositional oil simulator. 

Simulation, 
I 

2:1 WAG 

Figure 4: Main simulations for this project 

4. Comparisons of viscous fingering and oil recovery between different types of 

simulation using Results 3D and Results Graph. 
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Below is an example of fluid analysis and asphaltene precipitation data taken from a 

journal paper by Burke, Hobbs and Kashou (1990) 1221: 

Component 

Nitrogen 

Carbon Dioxide 

Methane 

Ethane 

Propane 

i-Butane 

n-Butane 

i-Pentane 

n-Pentane 

Hexanes 

Heptanes plus 

Total 

C7_ molecular weight 

c7+ specific gravity 

Live oil molecular weight 

Stock tank oil API gravity 

Asphaltene content in stock tank oil, wt% 

Reservoir temperature, °F 

Saturation pressure, psia 

Oill 

0.57 

2.46 

36.37 

3.47 

4.05 

0.59 

1.34 

0.74 

0.83 

1.62 

47.96 

100.00 

329 

0.9594 

171.4 

19.0 

16.8 

212 

2950 

Figure 5: Example of oil compositions and properties 

3.2 Tools Required 

The tool required for this study is simulation software provided by Computer Modelling 

Group Ltd. (CMG). The software has been used to simulate viscous fingering during 

COz and WAG injection process in presence of asphaltene deposition. 
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3.3 Project's Gantt Chart and Key Milestones 

Week (Final Year Project 2) 

2 

3 

4 

5 Pre-EDX 

6 

B 
7 Submission R 

.E 
A 

8 K 

• Oral Presentation 

10 Submission 

*Key milestones 

Figure 6: Gantt chart with key milestones 
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CHAPTER4 

RESULTS AND DISCUSSION 

Viscous fingering effect simulation depends on grid size, injected solvent and produced 

oil viscosity and also the injection rate of solvent. In order to observe the fingering in 

detail, the number of grid block for the simulation must be high enough. 

The valid license installed at the EOR Centre, Academic Block 15, UTP has limitations 

due to the type oflicense which is academic license. First, the maximum number of grid 

block that can be used is only 20,000. Second, the maximum number of processor core 

to be used for simulation is limited to only one. Because of the first limitation, all the 

simulations in this study were done using 17,600 grid blocks in 2D. 3D simulation 

needs higher amount of grid block in order to see viscous fingering in detail which is 

impossible due the limitation of academic license. Difference in initial viscosity of 

injected solvent and produced oil was kept high enough to see serious viscous fmgering 

effect. CMG version 2009.10 has been used in this study. 

4.1 Compositional Reservoir Simulation of Asphaltene Precipitation, Flocculation 

and Deposition using CMG GEM Ill! 

This section deals with the asphaltene precipitation, flocculation and deposition models 

implemented in CMG GEM for compositional simulation of asphaltene precipitation 

and plugging in hydrocarbon formations. 
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4.1.1 Asphaltene Precipitation Model 

The precipitated asphaltene is modeled as a pure solid. The pure solid is described by 

splitting the heaviest pseudo component in the oil characterization into a non­

precipitating component and a precipitating component. The two components have 

identical critical properties and acentric factors, but different interaction parameters 

with the light components in the system. The precipitating component may be 

considered to include both asphaltene and resin molecules. 

The component fugacities in the oil and gas phases are calculated from the Peng­

Robinson EOS. The solid fugacity, fsh is given by: 

where 

* - In fs 
I 

f,, = fugacity of solid sh kPa 

• f, = reference solid fugacity, kPa 

Y,
1 

= solid molar Yolume, mJ'mol 

p = pressure, kPa 
p* = reference pressure, kPa 

R " uniYersal gas constant 
T = temperature, K 

(2) 

As the formation of the precipitated solid is governed solely by thermodynamic 

equilibrium conditions, it will exhibit complete thermodynamic reversibility that is any 

precipitated solid s1 will go back into solution when the system is returned to a state 

outside the asphaltene precipitation envelope. 
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4.1.2 Asphaltene Flocculation Model 

Asphaltene flocculation refers to the flocculation of precipitated asphaltene particles 

into larger aggregates. Irreversibility of solid precipitates is modeled by allowing solid 

s, to be transformed via a simple reversible chemical reaction into another solid, s2. This 

can be viewed as the flocculation of smaller asphaltene particles into larger aggregates. 

(3) 

Solid s2 can go back into solution first by becoming solid St through the reverse 

reaction. The solid then dissolving into the oil phase through thermodynamic 

equilibrium. 

The reaction rate for the formation of solid s2 is: 

where 

kt2 

k2t 

r 
C,t,o 

Cs2,o 

= 
= 
= 
= 

= 

forward rate of formation of solid s2 from s1 [day-1
] 

reverse rate of formation of solid s1 from s2 [day-1
] 

reaction rate [mo!!(m3 day)] 
concentration of suspended solid s1 in oil phase 
[mol/m3

] 

concentration of suspended solid s2 in oil phase 
[mol/m3

] 

(4) 

If k21 is zero, the reaction is reversible and solid Sz will not go back into the solution. If 

kzt < k12, the precipitation of solid sz is reversible. The reversal may take a long time to 

complete. The above reaction allows the modeling of irreversible precipitation or a slow 

redissolution of precipitated asphaltene. 
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4.1.3 Asphaltene Deposition Model 

Wang and Civan (2001) 1281 presented an equation relating asphaltene deposition rate to 

the primary physical deposition processes including solid adsorption, pore throat 

plugging and re-entrainrnent. The model has been implemented in CMG GEM. Based 

on the implementation, only solid sz (flocculated particles) is considered to deposit. 

This implies that the small asphaltene precipitate particles are more likely to flow with 

the oil phase, while the larger aggregates are more likely to deposit on the reservoir 

rock. The deposition rate equation is: 

where 

v~ s: 
c s:. 
\" 

0 

\'~,;r.~ 

U..., 

a 
ll 
·; 

= 

= 

= 
= 
= 
= 
= 
= 

\·olume of deposited solid s: per gridblock volume 

\·olumetric concentration oftlowing solids: per volume of oil 

oil phase interstitial velocity 
critical oil phase interstitial velocity 
oil phase Darcy velocity 
surface deposition rate coefficient 
emrainmem rate coefficient 
pore throat plugging rate coefficiem 

(5) 

The surface deposition rate coefficient, a is a positive constant and is dependent on the 

rock type. The pore-throat plugging coefficient is set to zero if the average pore throat 

diameter is larger than some critical value. If it is smaller, the coefficient is calculated 

as: 

where 

i \ 

-,= ·:;tl ~ aY ... l ,, ' . \ s: > 

= 
= 

instamaneous pore throat plugging rate coefficient 
snowball-effect deposition constam 
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4.1.4 Permeability Resistance Factor in CMG GEM 

In a study by Reis and Acock (1994) l291 on inorganic solid deposition in sandstone 

cores, they concluded that exponential and power-law models may be used for 

deposition-induced permeability reductions of up to about 80% provided that proper 

empirical constants are used. The power-law model equation is: 

where 
k =absolute permeability, md 
ell= porosity 

(7) 

Once the solid phase has adsorbed on the reservoir rock, partial plugging of the 

formation is expected. GEM uses a simple model for these phenomena based on a 

resistance factor. The power law is used to derive an equation for the resistance factor, 

Rr which relates the original permeability ko to the instantaneous permeability k as a 

function of the ratio of the original porosity to the instantaneous porosity: 

,b k,, 
Rc = = 

k 

0· i 
-'-'I 
0 I 

where 

~ 

Rr =permeability resistance factor 
ko = original permeabiliy 
k = instantaneous permeability 
clio = original porosity 
ell = instantaneous porosity 

The instantaneous porosity equation is: 

where 
clio = original porosity 
ell = instantaneous porosity 

v,1 = volume of deposited solid s2 per gridblock volume 
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The resistance factor is divided into each of the gas, oil and aqueous phase mobilities, 

thereby reducing the volumetric flow rates for all flowing phases in order to account for 

the reduced permeability effect due to asphaltene deposition. In CMG GEM, the same 

factor is applied to oil, gas and water phases. 
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4.2 Asphaltenic Oil Modeling using WinProp 

This section covers the results and discussion on the asphaltene precipitation modeling 

work that has been done for this project. In order to model and simulate asphaltene 

flocculation and deposition in the formation using GEM, asphaltene precipitation must 

be modeled first using fluid modeling software, WinProp. The fluid model from 

WinProp is then imported to Builder. GEM, a compositional oil simulator uses the data 

files created by Builder. 

Asphaltene precipitation of Oil 1 (heavy oil) and Oil 2 (light oil) was modeled. Initial 

test simulations were using Oil 1 and main simulations for this project were using Oil 2. 

Fluid analysis data for Oil 1 and Oil 2 were taken from Burke, Hobbs and Kashou, 

"Measurement and Modeling of Asphaltene Precipitation", Journal of Petroleum 

Technology, November 1990, pp. 1440-1446. 

The crucial step in modeling asphaltene precipitation is the characterization of the solid 

forming components, both in solution and in the solid phase. It was found that by 

splitting the heaviest components into two components, a non-precipitating and a 

precipitating fraction, good quantitative match with experimental data was obtained. 
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Table 1: Oil 1 (heavy oil) and Oil2 (light oil) properties [221 

Oil 

Component 1 2 

Nitrogen 0.57 0.25 

C02 2.46 2.03 

Methane 36.37 32.44 

Ethane 3.47 15.50 

Propane 4.05 6.54 

i-Butane 0.59 0.81 

n-Butane 1.34 3.20 

i-Pentane 0.74 1.15 

n-Pentane 0.83 2.13 

Hexanes 1.62 2.46 

Hexanes plus 47.96 33.49 

Total 100 100 

c7+ molecular weight 329 223 

c7+ specific gravity 0.9594 0.8423 

Live-oil molecular weight 171.4 95.2 

API gravity, stock tank oil 19.0 38.8 

Asphaltene content in stock tank oil, wt"/o 16.8 1.7 

Reservoir temperature, op 212 234 

Saturation pressure, psia 2950 2492 
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Table 2: Modeled fluid composition for Oi11 and Oil2 in WinProp 

OIL I OIL2 

Coapo,81lt MO .. % MW ~ Mole% MW 

C02 2.46 44.01 C02 2.03 44.01 

N2 0.57 28.013 N2 0.25 28.013 

Cl 36.37 16.043 Cl 32.44 16.043 

C2 3.47 30.07 C2 15.5 30.07 

C3 4.05 44.097 C3 6.54 44.097 

i-C4 0.59 58.124 i-C4 0.81 58.124 

n-C4 1.34 58.124 n-C4 3.2 58.124 

i-C5 0.74 72.151 i-C5 1.15 72.151 

n-C5 0.83 72.151 n-C5 2.13 72.151 

FC6 1.62 86.000 FC6 2.46 86.000 

C7-C15 19.66 147.27238 C7-C12 15.6754 127.35883 

Cl6-C25 12.55 279.23117 C13-Cl7 7.28706 205.83943 

C26-C30 4.00 389.52739 C18-C23 4.92755 281.64483 

C31A+ 7.42 665.624 C24A+ 5.24928 461.442 

C31B+ 4.32 665.624 C24B+ 0.350756 461.442 

Based on Table 2, as mentioned earlier, the precipitated asphaltene is modeled as a pure 

solid. The pure solid is described by splitting the heaviest pseudo component in the oil 

characterization into a non-precipitating component and a precipitating component. The 

non-precipitating component is the C31A+ and C24A+ fraction while the precipitating 

component is the C31B+ and C24B+ fraction. The A and B components have identical 

critical properties and acentric factors, but different interaction parameters with the light 

components in the system. The B component has much higher interaction parameters 

with the light components compared to the A component. 
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Asphaltene precipitation as a function of pressure (Oil1) 
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Figure 7: Modeled asphaltene precipitation as a function of pressure for Oil 1 

Asphaltene precipitation as a function of pressure (Oil 2) 
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Figure 8: Modeled asphaltene precipitation as a function of pressure for Oil2 

31 



Based on Figure 7 and Figure 8, asphaltene onset pressure can be known for each oil 

type. Oil 1 has asphaltene onset pressure of 4600 psia while Oil 2 has asphaltene onset 

pressure of 4200 psia The asphaltene precipitation models were accurately modeled 

using WinProp since the maximum amount of asphaltene precipitation for each type of 

oil occurs around their saturation pressure. Precipitation occurs below the asphaltene 

onset pressure, reaches a maximum value at around the saturation pressure and 

decreases as pressure drops below the saturation pressure. [301 [311 

32 



4.3 Main Simulation of Viscous Fingering using GEM 

' This section covers the results of the viscous fingering simulations that have been done 

to satisfy the objective of this project. 

Figure 4 in Methodology Section shows the main simulations that were run for this 

study. Additional simulations will also be discussed in this report but they are not very 

significant in this study. All the main simulations were run in a heterogeneous 

formation since early simulations using homogeneous only resulted in the formation of 

gravity tongue and no viscous fingering occurred. Viscous fmgering was simulated in 

two types of formation; formation without asphaltene deposition and formation with 

asphaltene deposition during C02 injection and WAG injection. 

As mentioned earlier, asphaltene precipitation modeling was done using WinProp. 

However, WinProp does not have the ability to model asphaltene flocculation and 

deposition. This means that precipitated asphaltene will not flocculate and deposit in the 

formation. In order to model asphaltene flocculation and deposition, specific keywords 

have to be put in GEM data files manually. 

In general, viscous fmgering was only observed in the simulations where the formation 

is heterogeneous. No viscous fingering was observed in homogeneous formation. In 

homogeneous formation, only gravity tongue was observed which was due to gravity 

effect. Early test simulations were conducted using low resolution grid blocks and 

viscous fingering can be observed but in less detail. By refining the grid blocks used for 

the simulations, viscous fingering can be observed in more detail. 

Based on a research by Tchelepi & Orr. Jr. (1993) [IOJ, they presented various 

comparisons of viscous fingering between several cases at the same amount of pore 

volume injected by gas (PVI). In order to compare viscous fingering between two cases 

accurately, the comparison must be done at the same amount of PVI so in this project, 
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the results in terms of viscous fingering are compared at the same PVI. The comparison 

has been done in terms of oil saturation in the formation. 

Simulations of viscous fingering were run during C02 injection and WAG injection. In 

order to simulate the alternating injection of water and gas during WAG, two injectors 

must be specified at the same perforation in Builder. Below is the 3D view of the 

formation used: 

Figure 9: 80 x 1 x 20 grid block configuration (Length/height =- 16) 

Injectors is specified on the left end of the formation while producer is specified on the 

right end. The formation is 800 ft in length, 1 0 ft in width and 50 ft in thickness and has 

been modeled with 17,600 grid blocks which include refinement of grid block in the z­

direction in order to see viscous fingering in detail. Reservoir has been modeled as 

heterogeneous in order to see severe viscous fingering effect. The permeability 

distribution for the heterogeneous formation is attached in appendix section. 
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Table 3: Reservoir properties calculated by GEM 

Total bulk reservoir volume, res ft' 4.0 X 10' 

Total pore volume, res ft3 8.07148 X 104 

Total hydrocarbon pore volume, res ft3 6.45718 X I 04 

Original oil in place, std bbl 7.48775 X to> 

For every types of injection method, simulation results in terms of viscous fingering 

were compared at the same PVI and time for the two types of formation (with 

asphaltene deposition and without asphaltene deposition). The base case for each 

injection is the one without asphaltene deposition. The reason of comparing the viscous 

fingering in the two types of formation at the same PVI is to see whether asphaltene 

deposition affects the shape and size of the viscous fmgering. Viscous fingering is 

compared between the two types of formation at the same time to see the effect of 

asphaltene deposition on the speed of propagation of viscous fingering. 
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Figure 10: Colour scale used in showing C02 distribution across formation 

Figure 11 : Colour scale used in showing oil saturation across formation 
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Table 4: General simulation properties 

temperature 

Average permeability in 

X, Y and Z directions 

Porosity 

Oil saturation 

Connate water saturation 

Grid block dimension 

(XxYxZ) 

Initial condition 

C02 injector constraint 

Water injector constraint 

Producer constraint 

Injector fluid 

EORprocess 

Perforation 

3000 psia 

X=l72.5md, Y=l72.5md,Z=l9.75md 

0.20 

0.80 

0.20 

80 x I x 20 with refinement = II in z-axis 

(X=800 ft, Y=IO ft, Z=50 ft) 

Oil and water only present. Reservoir is 

undersaturated. 

38.8 

2492 psia 

Maximum pressure= 

pressure= 

pressure= 

Water 

COzandWAG 2:I 

WAG scheme) 

50 ft (ali layers) 
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4.3.1 Viscous Fingering Simulation during C02 Injection 

Below are the results: 

With asphaltene deposition (after 25.2 

days of injection) 
With asphaltene deposition (after 

40.19 days of injection) 

Figure 12: Oil saturation at 0.10 PVI (left) and 0.20 PVI {right) 

Without asphaltene deposition 

Figure 13: Oil saturation after 30 days of C02 injection 
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4.3.2 Viscous Fingering Simulation during 1:1 WAG Injection 

In 1:1 WAG injection scheme, it started with 10 days of water injection followed by 10 

days of C02 injection and then followed again by 10 days of water injection. The cycle 

keeps repeating until the simulation stops. 

Below are the results: 

With asphaltene deposition (after 977 

barrels of water injected) 

After 
39.6 days 

With asphaltene deposition (after 
1690 barrels of water injected) 

Figure 17: Oil saturation at 0.10 PVI (left) and 0.15 PVI (right) 
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Figure 18: Oil saturation after 30 days of 1:1 WAG injection 
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Figure 19: Cumulative oil produced, bbl vs. time 
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4.3.3 Viscous Fingering Simulation during 1:2 WAG Injection 

In 1 :2 WAG injection scheme, it started with 10 days of water injection followed by 20 

days of C02 injection and then followed again by 10 days of water injection. The cycle 

keeps repeating until the simulation stops. 

Below are the results: 

After 
40.9 days 

With asphaltene deposition (after 555 
barrels of water injected) 

With asphaltene deposition (after 555 
barrels of water injected) 

Figure 23: Oil saturation at 0.10 PVI (left) and 0.15 PVI (right) 
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4.3.4 Viscous Fingering Simulation during 2:1 WAG Injection 

In 2: 1 WAG injection scheme, it started with 20 days of water injection followed by 10 

days of C02 injection and then followed again by 20 days of water injection. The cycle 

keeps repeating until the simulation stops. 

Below are the results: 

With asphaltene deposition (after 

1,756 barrels of water injected) 
With asphaltene deposition (after 

3,302 barrels of water injected) 

Figure 29: Oil saturation at 0.10 PVI (left) and 0.15 PVI (right) 
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4.4 Discussion 

In this section, simulation results of the 4 types of injection method are discussed. As 

stated earlier in this report, the objective of this study is to investigate the effect of 

asphaltene deposition on viscous fingering and oil recovery. The effect of asphaltene 

deposition on viscous fingering that has been studied was in tenns of size, shape and 

speed of propagation. For each type of injection method, the viscous fingering in 

formation without asphaltene deposition is compared with the viscous fmgering in 

fonnation with asphaltene deposition at the same PVI to see whether asphaltene 

deposition affects the shape and size of viscous fingering. The same comparison but at a 

similar amount of days injected is to see the effect of asphaltene deposition on 

propagation speed of viscous fmgering. PVI refers to the pore volume injected by gas. 

Based on Figure 13, Figure 18, Figure 24, and Figure 30, the propagation of viscous 

fingering is slower in the presence of asphaltene deposition for all the 4 types of 

injection method. This is the most noticeable effect of asphaltene deposition on viscous 

fingering and it can be explained by knowing how CMG GEM models the effect of 

penneability reduction due to asphaltene deposition. It is generally known that 

asphaltene deposition causes pore-throat plugging and penneability reduction. CMG 

GEM uses a simple model for these phenomena based on a resistance factor. The 

resistance factor relates the original penneability, ko to the instantaneous penneability, k 

as a function of the ratio of the original porosity to the instantaneous porosity. The 

penneability resistance factor used in CMG GEM is stated and explained in more detail 

earlier in Chapter 4. 

Equation (8) mentioned earlier in this chapter is the equation for the resistance factor 

while Equation (9) is the equation for the instantaneous porosity. Based on Equation 

(9), increase in volume of deposited solid s2 per gridblock volume will increase the 

value of resistance factor. The resistance factor is divided into each of the gas, oil and 

aqueous phase mobilities, thereby reducing the volumetric flow rates for all flowing 

phases in order to account for the reduced penneability due to asphaltene deposition. In 

53 



other words, the permeability reduction by adsorption of asphaltene on rock surface 

causes increase in permeability resistance factor for all the flowing phases which in turn 

decreasing their mobilities. These explain the slow propagation of viscous fingering in 

presence of asphaltene deposition. Figure IS, Figure 16, Figure 20, Figure 21, Figure 

n.~~~~~2~~32,~33~~34~~~ 

of asphaltene deposition on gas, water and oil rate. 

Gas travels faster than water especially in high permeability zones. Therefore, in every 

WAG simulations conducted in this study, even though water is injected first, gas still 

travels ahead of water. The most noticeable propagation of gas is at the one section of 

upper part of the formation where horizontal permeability is the highest. Gas travels 

faster in that section while water travels quite uniformly in all section. 

At a similar PVI, it is known that the amount of gas injected into the formation is also 

similar. Based on Figure 12, at 0.1 PVI and 0.2 PVI, no noticeable changes of fingering 

are observed in terms of shape and size between the formation with and without 

asphaltene deposition during C02 injection. Based on Figure 17, Figure 23, and Figure 

29, for every types of WAG injection, the shape and size of viscous fmgering is slightly 

different between the formation with and without presence of asphaltene deposition 

when compared at 0.10 PVI and 0.15 PVI. 

Based on Figure 17, Figure 23, and Figure 29, viscous fmgering is compared between 

the case of formation with and without asphaltene deposition for every WAG injection 

schemes at the same PVI. First thing to take note is at the same amount of PVI, for 

every type of WAG injection schemes, there are differences in the amount of water 

injected and the number of WAG cycle needed to achieve that PVI between the two 

cases. 
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As discussed earlier, asphaltene deposition causes permeability reduction which in turn 

reduces the volumetric flow rate of water, gas and oil in a formation. The reduced flow 

rate of injected water and gas caused by asphaltene deposition reduces the amount of 

water and gas injected into the formation in one WAG cycle which means, formation 

with asphaltene deposition needs more WAG cycles to achieve the same PVI as the 

formation without asphaltene deposition. For example, 0.20 PVI can be achieved after 

only 2 1:1 WAG cycles for the case of without asphaltene deposition but for the case of 

with asphaltene deposition, the number of 1:1 WAG cycle needed to achieve 0.20 PVI 

is 4. The higher number of WAG cycle needed by the formation with asphaltene 

deposition causes higher amount of water injected into the formation so less fingering is 

generally observed. 

In addition, between C02 injection and WAG injection, viscous fingering is the worst in 

C02 injection since there is no injected water to suppress the fingering. Out of the 3 

WAG schemes, viscous fingering is the worst in 1 :2 WAG injection since the amount of 

gas injected in one cycle is the highest compared to other schemes. Fingering is 

successfully suppressed in 2:1 WAG injection because of the higher amount of injected 

water in one cycle. 

The injected solvent and injected water naturally travel at different speeds. If much 

more solvent than water is injected, the solvent front moves ahead of the water and we 

see severe fingering of this solvent into the oil. If much more water than solvent is 

injected, the water moves ahead of the solvent. While this reduces the fingering, the 

recovery resembles that of a waterflood until the oil is contacted by the slow moving 

solvent front. 

There is an optimum ratio of water to solvent injected called optimum WAG ratio, 

which minimizes the degree of fingering. Optimum WAG ratio is the value of injected 

fractional flow of water, /inj at which the solvent and water fronts move at the same 

speed. However, this project does not include the simulation of WAG injection at the 

optimum WAG ratio since it does not directly relate to the objectives of this project. 
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This study does not investigate the effectiveness of different EOR methods but to show 

the effect of asphaltene deposition on oil recovery for each of the methods. Based on the 

cumulative oil produced vs. time plot below, asphaltene deposition slows down the rate 

of oil production for every EOR methods simulated. The dotted lines in the plot 

represent EOR in presence of asphaltene deposition. The same explanation goes for this 

case. Asphaltene deposition causes permeability reduction which increases the 

permeability resistance factor. Increase in permeability resistance factor causes the rate 

of all the flowing phases to reduce including oil. 
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For the case of without presence of asphaltene deposition, the permeability resistance 

factor is I but for the case of with presence of asphaltene deposition, the factor is more 

than I. Based on Equation (9) and Figure 36, permeability resistance factor is the 

function of the amount of deposited asphaltene. The resistance factor increases with the 

increase of deposited asphaltene volume. 
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Figure 37: Distribution of asphaltene deposited mass per bulk volume (lb/rf) after 80 

days of 1:1 WAG injection 

Figure 37 shows that general field observations which indicate the majority of 

asphaltene deposition problem occur in near-wellbore region are consistent with the 

CMG GEM simulation results. 
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4.5 Additional Simulations 

In this section, results of additional simulations are presented and discussed. The 

purpose of conducting the additional simulations was to experiment with some of the 

simulation variables such as: 

1. Using homogeneous formation instead of heterogeneous formation 

ii. Using 1:3 and3:1 WAG scheme 

m. Removing grid refinement 

tv. Increasing the amount of deposited asphaltene in the formation 

However, the results from these simulations were not incorporated with the results from 

the main simulations for discussion since the results from the main simulations are 

already enough to satisfy this project's objectives. 

4.5.1 Viscous Fingering Simulation in Homogeneous Formation 

Permeability distribution for homogeneous formation is attached at appendix section. 

This simulation was using Oil I as the fluid in the homogeneous formation. 

Without asphaltene deposition With asphaltene deposition 

Figure 38: C02 distribution after 30 days of C02 injection in homogeneous formation 
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According to Figure 38, no viscous fingering is observed in homogeneous formation. 

Only gravity tongue is observed which is due to the gravity effect. Since gas is very low 

in density, injected gas migrates upward and sweep the upper part of the formation 

faster than the lower part which results in poor sweep efficiency. Permeability 

heterogeneity in a formation acts as a trigger for viscous fingering which in this case is 

absent. 

4.5.2 Viscous Fingering Simulation during 1:3 WAG Injection 

The simulation properties for 1 :3 WAG injection is the same as the other WAG 

injection except for the injection cycle. 1 :3 WAG injection consists of 10 days of water 

injection followed by 30 days of C(h injection which means more gas is injected than 

water in one cycle. 

Without asphaltene deposition (after 

194 barrels of water injected) 

With asphaltene deposition (after 549 

barrels of water injected) 

Figure 39: Oil saturation at 0.30 PVI 

The viscous fingering in 1 :3 WAG injection is the worst if compared to 1:1, 1 :2, 2:1 and 

3:1 WAG injection scheme because 1 :3 WAG injection has the highest amount of C02 

injection in one WAG cycle. Higher amount of water injection are needed to reduce the 

degree of viscous fingering or in other words higher WAG ratio is needed. 
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4.5.3 Viscous Fingering Simulation during 3:1 WAG Injection 

The simulation properties for 3:1 WAG injection is also the same as the other WAG 

injection except for the injection cycle. 3: 1 WAG injection consists of 30 days of water 

injection followed by 10 days of C02 injection which means more water is injected than 

gas in one cycle. 

77.1 days 

Without asphaltene deposition (after 
2,885 barrels of water injected) 

With asphaltene deposition (after 
3,207 barrels of water injected) 

Figure 40: Oil saturation at 0.10 PVI 

The results show that amount of viscous fingering is decreased with increasing WAG 

ratio meaning higher amount of water injected compared to gas in one cycle. Water 

injection helps to reduce the amount of viscous fingering in the reservoir by decreasing 

the apparent mobility contrast between the injected and displaced fluids hence 

improving sweep efficiency. [SJ 
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4.5.4 Viscous Fingering Simulation without Grid Refinement 

The default amount of grid block for the main simulations for this project is 17,600. In 

this simulation, the effect of number of grid block for exactly the same formation is 

studied. To achieve the objective, grid refinement was removed which resulted in the 

number of grid block to only 1 ,600. 

The type of injection method for this simulation is 2: 1 WAG injection scheme in a 

formation without asphaltene deposition. Below are the results: 

With grid refinement ( 17,600 grid 

blocks) 

Without grid refinement (1 ,600 grid 

blocks) 

Figure 41: Oil saturation at after 30 days of 2:1 WAG injection 

From the above figure, the most noticeable difference between the two simulations is 

the detail of viscous fingering which is more refined in the case of with grid refinement 

due to higher amount of grid block used. The second noticeable difference is the 

propagation of viscous fingering in the case of without grid refinement is faster than the 

one in the case of with grid refinement. After 30 days of WAG injection, the amount of 

PVI in the case without grid refinement is larger. 

Due to the critical differences between the two simulations, in order to accurately 

compare the viscous fingering in this project, the number of grid block used must be 

kept constant. Number of grid block must be high enough to simulate viscous fingering 

in detail. 

62 



4.5.5 Higher Amount of Aspbaltene Deposition 

In CMG GEM, the amount of asphaltene deposition can be controlled using a certain 

keywords in the data file. 'SOLID-CONV-RATE' keyword specifies the amount of 

forward reaction rate (1/day) for the conversion of precipitated asphaltene to flocculated 

asphaltene particles and backward reaction rate (1/day) for the conversion of flocculated 

asphaltene particles back to precipitated asphaltene. 'SOLID ALPHA' keyword 

specifies the surface deposition rate constant (1/day). 

In this case, the value for 'SOLID-CONV-RATE' and 'SOLID_ALPHA' was increased 

from 2 to 1 000. Below are the results: 

SOLID-CONV -RATE = 2 
SOLID ALPHA = 2 

SOLID-CONV-RATE = 1000 

SOLID ALPHA = 1000 

Figure 42: Oil saturation after 60 days of 1:1 WAG injection 

Based on the above figure, no significant changes in size and shape of viscous fingering 

can be observed. However, if closely observed, the viscous fingering in the case with 

higher value of 'SOLID-CONV-RATE' and 'SOLID_ALPHA' propagates just a little 

bit slower compared to the other case. This is due to the slightly higher amount of 

asphaltene deposition volume increases the permeability resistance factor a bit which 

slows down the propagation of viscous fingering a little more. The changes are almost 

unnoticed maybe because by using the value of only 2, the maximum amount of 

asphaltene precipitation and deposition can already been achieved since the amount of 

asphaltene content in the oil used is relatively minute which is 1. 7 wr'/o. Any increase in 

the value above 2 makes no appreciable effect on viscous fingering. 
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CHAPTERS 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The most important and noticeable effect of asphaltene deposition on viscous fmgering 

is the slow propagation of viscous fingering which is due to the increase in permeability 

resistance factor. Asphaltene deposition slows down the volumetric flow rate of all the 

flowing phases in a formation which explains the slow propagation of injected water 

and gas and also the slow production of oil. 

At a similar PVI, presence of asphaltene deposition does not affect the size and shape of 

viscous fingering in C02 injection. In WAG injection, at a similar PVI, presence of 

asphaltene deposition changes slightly the shape and size of viscous fmgering due to 

permeability resistance factor and the degree of changes varies upon the type of WAG 

injection scheme. 

No viscous fingering is observed in homogeneous formation. Only gravity tongue can 

be observed where lighter gas migrates upward in the formation which is the result of 

density difference between gas and oil. Formation must be heterogeneous where 

permeability distribution is varied across the formation in order to initiate the viscous 

fingering. Less fmgering is observed at high WAG ratio and vice versa. 

CMG has provided an easy to use set of simulation software. With various advanced 

features offered and very good software support, the use of CMG as an alternative to 

ECLIPSE by Schlumberger is recommended. 
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5.2 Recommendations 

Since asphaltene deposition causes pore-throat plugging and permeability reduction 

which in turn slows down the flowing phases in a formation, it must be avoided. 

This study was conducted using 20 simulation. For futnre work, 30 simulation could 

be done instead of 20 simulation to see if there are any differences in results between 

them. Experimental study is highly recommended to see the effect of viscous fmgering 

during WAG in presence of asphaltene deposition. The results from the experimental 

study can be compared with the results from this study and might support each other. 
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