
i-UTP Building Utilities Control using GSM - SMS Services

by

Noriza bt Zakaria

Dissertation submitted in partial fulfilment of

the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

DECEMBER 2004

Universiti Teknologi Petronas

Bandar Seri Iskandar

*c 31750 Tronoh

"^ Perak Darul Ridzuan

•>«5"CA

CERTIFICATION OF APPROVAL

i-UTP Building Utilities Control using GSM - SMS Services

by

Noriza bt Zakaria

A project dissertation submitted to the

Electrical & Electronics Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved m,

(Mr Morula rzman Zakariya)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

^Hfc
NORIZA~BT ZAKARIA
820909-02-5036

MatricID:1642

in

ABSTRACT

Telecommunication system is one of the major components in industry. It can be

summarized as the transmission, reception, and processing of information between

two or more locations, using either digital or analogue transmission. The rapidly

growing Global System for Mobile Communication (GSM) industry has provided the

need for further studies on its capabilities and producing more useful services. This

project will combine the Short Messaging Service (SMS) with the Peripheral

Interface Controller (PIC) capability to produce another system that will be able to

monitor and control the utilities in a certain building such as the air conditioner,

lamps and doors. This system will make building monitoring and controlling a much

easier task for the maintenance personnel. This system is also equipped with a

security features to ensure that this system will not be misused by other unauthorized

people.

The platform that this project has built offers a wide variety of other new system.

There are several projects that are being conducted using the same platform or

principal as this project which is SMS based system. Among the topics is SMS Car

Parking Payment, SMS Bill Reminder Payment Systems, Machine-to-Machine

(M2M); Mobile-to-machine and Machine-to-mobile, Home Surveillance with Mobile

Phones and Mobile Phone Based Ticketing (transportation, train, parking meters etc).

It is hoped that this system will gives benefits to the community and can be

implemented in real environment in the future.

IV

ACKNOWLEDGEMENT

I am very grateful to Universiti Teknologi Petronas for giving me a golden

opportunity to conduct my research and use the facilities and equipment provided in

the lab. My supervisor Encik Mohd Azman b Zakariya should be greatly

acknowledged for his supervision, guidance and the project plans that he had

prepared for me. I also would like to thanks all lecturers and staff who have been

very helpful in assisting me either directly or indirectly in completing this thesis.

My special tribute to Ms Siti Hawa, the lab technician for final year project for

helping me with the project. My special thanks also to my closest friend Azizan

Hashim, Wan Zaharah Mohd Nazar and other students of the Universiti Teknology

of PETRONAS for their encouragements, advises and the priceless feedbacks which

drive and motivate me and bring the best out off of me while completing tasks and

works. Their support, comment and cooperation are much appreciated.

Finally, I am forever indebted to my family for their support and encouragement

when it was most required. A final word of thanks to God for making this project

successful and can be completed in the time given.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL i

CERTIFICATION OF ORIGINALITY ii

ABSTRACT iii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

ABBREVIATIONS AND NOMENCLATURES viii

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 2

1.3 Objectives and Scope of Study 3

1.3.1 Objectives of the Project 3

1.3.2 Scope of Study 4

CHAPTER 2: THEORY 5

2.1 Global System for Mobile Communication (GSM) 5

2.1.1 History of GSM 5

2.1.2 Services Provided by GSM 6

2.1.3 Architecture of the GSM Network 9

2.1.4 Radio Link Aspect 12

2.1.5 Network Aspect 13

2.2 Peripheral Interface Controller (PIC) 16

2.3 Serial Interface 17

2.4 Overview of the System 19

2.5 Nokia 3310 and F-Bus Protocol 21

2.6 Nokia F-Bus Protocol Characteristics 22

vi

CHAPTER 3: METHODOLOGY/PROJECT WORK 24

3.1 Desk Study 24

3.2 Project Milestone 24

3.3 Tools and Equipment Used 26

3.4 Project Work 26

3.5 Sample Preparation & Testing 27

CHAPTER 4: RESULTS AND DISCUSSION 28

4.1 Hardware 28

4.2 Software 29

4.3 Serial Interface 33

4.4 GSM Modem 35

4.5 Sending SMS 38

4.6 Peripheral Interface Controller (PIC) PIC16F877 42

4.7 Final Software-I-UTP Building Control vl.O 43

4.8 Visual Basic 48

4.9 Limitation of the System 51

CHAPTER 5: CONCLUSION AND RECOMMENDATION 52

5.1 Conclusion 52

5.2 Recommendations 53

REFERENCES 54

APPENDICES

vn

LIST OF FIGURES

FIGURE 2.1 Events in the development of GSM

FIGURE 2.2 GSM Network Architecture

FIGURE 2.3 GSM Signaling Protocol Architecture

FIGURE 2.4 Pin Layout of PIC 16F877

FIGURE 2.5 Pin Configurations for Serial Port

FIGURE 2.6 Overview of the System

FIGURE2.7 Nokia3310

FIGURE 2.8 Com Port Configuration

FIGURE 2.9 Message Characteristics

FIGURE 3.1 System Block Diagram

FIGURE 4.1 Hardware Block Diagram

FIGURE 4.2 MAX232 Configuration

FIGURE 4.3 F-Bus/M-Bus Connection Pin in Nokia 3310

FIGURE 4.4 Data Cable for Nokia 3310

FIGURE 4.5 Data Cable Connection to Nokia 3310

FIGURE 4.6 PIC Pin Configuration

FIGURE 4.7 I-UTP Building Control Main Window

FIGURE 4.8 Serial Connection Established Successfully

FIGURE 4.9 F-Bus Connection Established Successfully

FIGURE 4.10 Message Receive and Reply Sent

FIGURE 4.11 The Terminal Logs

APPENDICES

FIGURE A-l Architecture of the PIC16F877 Microcontroller

FIGURE A-2 Simplified Block Diagram of the PIC16F877 ADC Module

FIGURE A-3 PIC16F877 Register File Map

FIGURE A-4 Multisim Hardware Circuit

FIGURE A-5 Hardware Test Board

FIGURE A-6 Hardware Implementation on Vero Board

FIGURE A-7 Checksum Program

FIGURE A-8 Packer Program

FIGURE A-9 Serial Interface Program

FIGURE A-10 Main Page for i-UTP Building Control

VIII

FIGURE A-l1 Terminal Log for i-UTP Building Control

FIGURE A-12 ASCII Code Window

FIGURE A-13 Serial Information Window

FIGURE A-14 How Data Is Transferred in MAX232 and Displayed In

Oscilloscope

FIGURE A-15 PIC C Language Program

FIGURE A-16 Visual Basic Code

FIGURE A-17 User Manual

ABBREVIATIONS AND NOMENCLATURES

1. GSM

2. SMS

3. PIC

4. I/O

5. GPS

6. GIS

: Global System for Mobile Communication

: Short Messaging Service

: Peripheral Interface Controller

; Input/Output

: Global Positioning System

: Geographical Information System

IX

CHAPTER 1

INTRODUCTION

This chapter serves an overview of the communication system which emphasis on

the communication systems available for Global System for Mobile Communication

(GSM) transmission. A brief descriptions of the system used is discussed. The

problem statement for the project is discussed on line-of-sight communication

system. All the external factors that should be considered in designing a

communication links are briefly explained. The specific objectives and scope of

study of this project is discussed on the last section of this chapter.

1.1 BACKGROUND OF STUDY

Communication has always been an important element in our daily life. Nowadays,

there are many method of conveying the information. Information can be delivered

using medium such as wires and air. This project will go in depth into the world of

wireless communication.

With the growing usage and rapid growth of the mobile phone technology and better

coverage of the GSM services, a new area of study can be implemented which is

controlling certain devices using Short Messaging Services (SMS). In order to

accomplish this objective, knowledge about how the data is transferred in the GSM

network is essential.

Knowledge on data protocol is also needed due to some mobile phone manufacturer

who has created their own protocol in order to deliver the data in a GSM network.

For this project, a specific manufacturer is chosen. Nokia is chosen because of its

wide variety of mobile phone models and its availability in the market. The protocol

that is being used by Nokia is calledthe F-Bus protocol.

1.2 PROBLEM STATEMENT

Mobile communication has developed and grows in Malaysia during the last three or

four years. Nowadays, nearly every family has at least one mobile phone. The

competition can also be seen between the phone manufacturer and also the service

provider. Because of this competition, the services and coverage has also been

upgraded and is more reliable. Many researches are done on how to improve and

design new services using the existing technology. This project will use this

expanding technology and try to incorporate it with another existing system in order

to produce a better system.

Large buildings are not easy to maintain especially new buildings such as the new

UTP buildings. They contain valuable machinery and confidential information. This

building usually has its own control system. This control system is used to monitor

the building area and its components.

This project will study and design an Intelligent Building Control and Monitoring

System. This chosen building is the new UTP building. The system will use SMS

technology and incorporate it with the building control system. The user can access

the system by sending a command using their mobile phone SMS service. This is an

easier way because the user does not have to check the buildingmanuallywhich will

consume more time and energy. The system must also posses a security or safety

features to avoid others from entering the system. Only authorized personnel will be

able to use this system.

1.3 OBJECTIVES AND SCOPE OF STUDY

1.3.1 General Objectives of the Project

This Final Year Project course plays a vital role in achieving UTP's vision

which is to produce a well rounded graduate. It is also a very great

opportunity for students to relate the theoretical knowledge from class and

applying it in project. Despitethat, students will develop skills in work ethics,

communication, management, interpersonal skills and etc. The objectives of

the Final Year Project are:

• To develop a framework, this will enhance student's skills in the

process of applying knowledge, expanding thoughts, solving problem

independently and presenting findings.

• Develop a system that can locate a vehicle using communication

system preferably wireless communication.

• To produce a system that is reliable and can be easily handled by

other peopleand also low in cost if possible.

• To integrate the hardware and the software part of the system to make

it easier to handled and managed.

1.3.2 Specific Objectives of the Project

The specific objectives of the project are:

• To design a building control system using Short Messaging

Service(SMS) through the usage ofNokia F-Bus protocol

• To acquire knowledge on Programmable Integrated Circuit (PIC)

programming using MPLAB and its hardware implementation.

• To enhance knowledge on digital circuit and real-time data

communication in real-world application.

1.3.2 Scope of Study

The scope of study for this project is the potential of integrating GSM network

and its services with other existing system. In order to fully utilize the GSM

network and its services, further knowledge about the network and how it work

using its own protocol must be gained. Other than that, more advance knowledge

about programming language must be acquired in order to program the controller

using C language and designing the software using Visual Basic. Some circuit

designing skill must also be acquired in order to build a model to represent the

whole system at a smaller scale.

CHAPTER 2

LITERATURE REVIEW/THEORY

This chapter discussed on the theories and literature review of the project. Among

the theories that will be discussed are the history of GSM, what is PIC and its

advantages, how the serial interface is used, the Nokia F-Bus characteristics and the

overview of the proposed system.

2.1 Global System for Mobile Communication (GSM)

2.1.1 History of GSM

During the early 1980s, analog cellular telephone systems were experiencing

rapid growth in Europe, particularly in Scandinavia and the United Kingdom,

but also in France and Germany. Each country developed its own system,

which was incompatible with everyone else's in equipment and operation.

This was an undesirable situation, because not only was the mobile

equipment limited to operation within national boundaries, which in a unified

Europe were increasingly unimportant, but there was a very limited market

for each type of equipment, so economies of scale, and the subsequent

savings, could not be realized.

The Europeans realized this early on, and in 1982 the Conference of

European Posts and Telegraphs (CEPT) formed a study group called the

Groupe Special Mobile (GSM) to study and develop a pan European public

land mobile system.

The proposed system had to meet certain criteria:

good subjective speech quality,

low terminal and service cost,

support for international roaming,

ability to support handheld terminals,

support for range of new services and facilities,

spectral efficiency, and

ISDN compatibility.

In 1989, GSM responsibility was transferred to the European

Telecommunication Standards Institute (ETSI), and phase I of the GSM

specifications were published in 1990. Commercial service was started in

midl991, and by 1993 there were 36 GSM networks in 22 countries, with 25

additional countries having already selected or considering GSM. This is not

only a European standard - South Africa, Australia, and many Middle and Far

East countries have chosen GSM. By the beginning of 1994, there were 1.3

million subscribers worldwide. The acronym GSM now (aptly) stands for

Global System for Mobile telecommunications.

The developers of GSM chose an unproven (at the time) digital system, as

opposed to the then as standard analog cellular systems like AMPS in the

United States and TACS in the United Kingdom. They had faith that

advancements in compression algorithms and digital signal processors would

allow the fulfillment of the original criteria and the continual improvement of

the system in terms of quality and cost. The 8000 pages of the GSM

recommendations try to allow flexibility and competitive innovation among

suppliers, but provide enough guidelines to guarantee the proper interworking

between the components of the system. This is done in part by providing

descriptions of the interfaces and functions of each of the functional entities

defined in the system.

2.1.2 Services Provided by GSM

From the beginning, the planners of GSM wanted ISDN compatibility in

services offered and control signaling used. The radio link imposed some

limitations, however, since the standard ISDN bit rate of 64 kbps could not be

practically achieved.

Using the ITUT definitions, telecommunication services can be divided into

bearer services, teleservices, and supplementary services. The digital nature

of GSM allows data, both synchronous and asynchronous, to be transported

as a bearer service to or from an ISDN terminal. Data can use either the

transparent service, which has a fixed delay but no guarantee of data

integrity, or a nontransparent service, which guarantees data integrity through

an Automatic Repeat Request (ARQ) mechanism, but with a variable delay.

The data rates supported by GSM are 300 bps, 600 bps, 1200 bps, 2400 bps,

and 9600 bps.

The most basic teleservices supported by GSM is telephony. There is an

emergency service, where the nearest emergency service provider is notified

by dialing three digits (similar to 911). Group 3 fax, an analog method

described in ITUT recommendation T.30, is also supported by use of an

appropriate fax adaptor. A unique feature of GSM compared to older analog

systems is the ShortMessage Service (SMS). SMS is a bidirectional service

for sending short alphanumeric (up to 160 bytes) messages in a store and

forward fashion. For point to point SMS, a message can be sent to another

subscriber to the service, and an acknowledgement of receipt is provided to

the sender. SMS can also be used in a cell broadcast mode, for sending

messages such as traffic updates or news updates. Messages can be stored in

the SIM card for later retrieval.

Supplementary services are provided on top of teleservices or bearer services,

and include features such as caller identification, call forwarding, call

waiting, multiparty conversations, and barring of outgoing (international)

calls, among others.

Year Events

1982

1985

CEPT establishes a GSM group in order to develop the standards
for a pan-European cellular mobile system

Adoption of a list of recommendations to be generated by the
group

1986
Field tests were performed in order to test the different radio
techniques proposed for the air interface

1987

TDMA is chosen as access method (in fact, it will be used with
FDMA) Initial Memorandum of Understanding (MoU) signed by
telecommunication operators (representing 12 countries)

1988 Validation of the GSM system

1989
The responsibility of the GSM specifications is passed to the
ETSI

1990 Appearance of the phase 1 of the GSM specifications

1991 Commercial launch of the GSM service

1992
Enlargement of the countries that signed the GSM- MoU>
Coverage of larger cities/airports

1993 Coverage of main roads GSM services start outside Europe

1995 Phase 2 of the GSM specifications Coverage of rural areas

Figure 2.1: Events in the development of GSM

2.1.3 Architecture of the GSM network

Urn

Interface j^-ls
Interface

A

Interface

Base Station

Subsystem

SIM Subscriber Identity Module
MS Mobile Station

BTS Base Transceiver Station

BSC Base Station Controller

MSC Mobile services Switching Center
PSTN Public Switched Telecomm Network

Network Subsystem

HLR Home Location Register
VLR Visitor Location Register
EIR Equipment Identity Register
AC Authentication Center

VLR Visitor Location Register
ISDN Integrated Services Digital
Network

Figure 2.2 GSM Network Architecture

A GSM network is composed of several functional entities, whose functions

and interfaces are defined. Figure 2.2 shows the layout of a generic GSM

network. The GSM network can be divided into three broad parts. The

Mobile Station is carried by the subscriber; the Base Station Subsystem

controls the radio link with the Mobile Station. The Network Subsystem, the

main part of which is the Mobile services Switching Center, performs the

switching of calls between the mobile and other fixed or mobile network

users, as well as management of mobile services, such as authentication. Not

shown is the Operations and Maintenance center, which oversees the proper

operation and setup of the network. The Mobile Station and the Base Station

Subsystem communicate across the Um interface, also known as the air

interface or radio link. The Base Station Subsystem communicates with the

Mobile service Switching Center across the A interface.

2.1.3.1 Mobile Station

The mobile station (MS) consists of the physical equipment, such as

the radio transceiver, display and digital signal processors, and a

smart card called the Subscriber Identity Module (SIM). The SIM

provides personal mobility, so that the user can have access to all

subscribed services irrespective of both the location of the terminal

and the use of a specific terminal. By inserting the SIM card into

another GSM cellular phone, the user is able to receive calls at that

phone, make calls from that phone, or receive other subscribed

services.

The mobile equipment is uniquely identified by the International

Mobile Equipment Identity (IMEI). The SIM card contains the

International Mobile Subscriber Identity (IMSI), identifying the

subscriber, a secret key for authentication, and other user

information. The IMEI and the IMSI are independent, thereby

providing personal mobility. The SIM card may be protectedagainst

unauthorized use by a password or personal identity number.

2.1.3.2 Base Station Subsystem

The Base Station Subsystem is composed of two parts, the Base

Transceiver Station (BTS) and the Base Station Controller (BSC).

These communicate across the specified Abis interface, allowing (as

in the rest of the system) operation between components made by

different suppliers.

10

The Base Transceiver Station houses the radio transceivers that define

a cell and handles the radio link protocols with the Mobile Station. In

a large urban area, there will potentially be a large number of BTSs

deployed. The requirements for a BTS are ruggedness, reliability,

portability, and minimum cost.

The Base Station Controller manages the radio resources for one or

more BTSs. It handles radio channel setup, frequency hopping, and

handovers, as described below. The BSC is the connection between

the mobile and the Mobile service Switching Center (MSC). The

BSC also translates the 13 kbps voice channel used over the radio link

to the standard 64 kbps channel used by the Public Switched

Telephone Network or ISDN.

2.1.3.3 Network Subsystem

The central component of the Network Subsystem is the Mobile

services Switching Center (MSC). It acts like a normal switching

node of the PSTN or ISDN, and in addition provides all the

functionality needed to handle a mobile subscriber, such as

registration, authentication, location updating, handovers, and call

routing to a roaming subscriber. These services are provided in

conjunction with several functional entities, which together form the

Network Subsystem. The MSC provides the connection to the public

fixed network (PSTN or ISDN), and signaling between functional

entities uses the ITUT Signaling System Number 7 (SS7), used in

ISDN and widely used in current public networks.

The Home Location Register (HLR) and Visitor Location Register

(VLR), together with the MSC, provide the call routing and (possibly

international) roaming capabilities of GSM. The HLR contains all

the administrative information of each subscriber registered in the

corresponding GSM network, along with the current location of the

mobile. The current location of the mobile is in the form of a Mobile

11

Station Roaming Number (MSRN) which is a regular ISDN number

used to route a call to the MSC where the mobile is currently located.

There is logically one HLR per GSM network, although it may be

implemented as a distributed database.

The Visitor Location Register contains selected administrative

information from the HLR, necessary for call control and provision of

the subscribed services, for each mobile currently located in the

geographical area controlled by the VLR. Although each functional

entity can be implemented as an independent unit, most manufacturers

of switching equipment implement one VLR together with one MSC,

so that the geographical area controlled by the MSC corresponds to

that controlled by the VLR, simplifying the signaling required. Note

that the MSC contains no information about particular mobile stations

- this information is stored in the location registers.

The other two registers are used for authentication and security

purposes. The Equipment Identity Register (EIR) is a database that

contains a list of all valid mobile equipment on the network, where

each mobile station is identified by its International Mobile

Equipment Identity (IMEI). An IMEI is marked as invalid if it has

been reported stolen or is not type approved. The Authentication

Center is a protected database that stores a copy of the secret key

stored in each subscriber's SIM card, which is used for authentication

and ciphering of the radio channel.

12

2.1.4 Radio link aspects

The International Telecommunication Union (ITU), which manages the

international allocation of radio spectrum (among other functions) allocated

the bands 890-915 MHz for the uplink (mobile station to base station) and

935-960 MHz for the downlink (base station to mobile station) for mobile

networks in Europe. Since this range was already being used in the early

1980s by the analog systems of the day, the CEPT had the foresight to reserve

the top 10 MHz of each band for the GSM network that was still being

developed. Eventually, GSM will be allocated the entire 2x25 MHz

bandwidth.

Since radio spectrum is a limited resource shared by all users, a method must

be devised to divide up the bandwidth among as many users as possible. The

method chosen by GSM is a combination of Time and Frequency Division

Multiple Access (TDMA/FDMA). The FDMA part involves the division by

frequency of the total 25 MHz bandwidth into 124 carrier frequencies of 200

kHz bandwidth. One or more carrier frequencies are then assigned to each

base station. Each of these carrier frequencies is then divided in time, using

a TDMA scheme, into eight time slots. One time slot is used for

transmission by the mobile and one for reception. They are separated in time

so that the mobile unit does not receive and transmit at the same time, a fact

that simplifies the electronics.

2.1.5 Network aspects

Ensuring the transmission of voice or data of a given quality over the radio

link is only half the problem in a cellular mobile network. The fact that the

geographical area covered by the network is divided into cells necessitates the

implementation of a handover mechanism. Also, the fact that the mobile can

roam nationally and internationally in GSM requires that registration,

authentication, call routing and location updating functions exist in the GSM

network.

13

Um

Interface

CM

GSM Layer 1
MM

RR

GSMLaver2 LAPDm

GSM Layer 3
TDMA

Mobile Station

RR DTAP

BSSMAP

LAPDm
SCCP

TDMA
MTP

BTS BSC

Base Station

Subsystem

A

Interface

CM

MM

DTAP

SCCP

MTP

MSC

Figure 2.3: GSM Signaling Protocol Architecture

The signaling protocol in GSM is structured in three layers shown in Figure

2.3. Layer 1 is the physical layer, which uses the channel structures

discussed above. Layer 2 is the data link layer. Across the Um interface, the

data link layer uses a slight modification of the LAPD protocol used in ISDN,

called LAPDm. Across the A interface, the lower parts of Signaling System

Number 7 are used. Layer 3 is subdivided into 3 sub layers.

RadioResourcesManagement

Controls the setup, maintenance, and termination of radio channels

Mobility Management

Manages the location updating, handovers, and registration

procedures, discussed below

Connection Management

Handles general call control, similar to CCITT Recommendation

Q.931, and provides supplementary services.

14

Signaling between the different entities in the network, such as between the

HLR and VLR, is accomplished through the Mobile Application Part (MAP).

Application parts are the top layer of Signaling System Number 7. The

specification of the MAP is complex. It is one of the longest documents in the

GSM recommendations, said to be over 600 pages in length.

15

2.2 Peripheral Interface Controller (PIC)

The PIC is a high performance RISC CPU. It operatesat 4MHz and 25ms instruction

per cycle. It contains three type of memory which is the FLASH Program Memory,

Data Memory (RAM) and EEPROM Data Memory. The PIC16F877 is a high-

performance FLASH microcontroller that provides engineers with the highest design

flexibility possible. In addition to 8192x14 words of FLASH program memory, 256

data memory bytes, and 368 bytes of user RAM, PIC16F877 also features an

integrated 8-channel 10-bit Analogue-to-Digital converter. Peripherals include two 8-

bit timers, one 16-bit timer, a Watchdog timer, Brown-Out-Reset (BOR), In-Circuit-

Serial Programming™, RS-485 type UART for multi-drop data acquisition

applications, and I2C™ or SPI™ communications capability for peripheral

expansion. Precision timing interfaces areaccommodated through two CCP modules

and two PWM modules.

MGLRWP

RAQ'ANO

RftVANI

RA2fAN2ftfrlEF-

RA3/AN3AtaEF-t

RA4JTDCW

RASAN4SS

REQJREMNS

RE1WWAN6

RE2CSAN7

VCD

ms

OSC1/CLK1N

DSCXCLKOUT

RcamosarriGKi

RcvnosYccpa

RC^CCPI

RC&5CKSCL

RDWP3PD

RD-WPSP1

Figure 2.4: Pin Layout of PIC 16F877

In this project, the PIC will be used as a controller. It will control the building's

lamps, air-conditioner and doors. The base station or terminal will communicate with

the PIC in order to know the status of each device and to control them. The overall

architecture of the PIC can be seen in Appendix A-l.

16

2.3 Serial interface

The serial port is an I/O device. An I/O device is just a way to get data into and out

of a computer. There are many types of I/O devices such as serial ports, parallel

ports, disk drive controllers, Ethernet boards, universal serial buses and many others.

Most PC's have one or two serial ports. Each has a 9-pin connector or sometimes 25-

pin on the back of the computer. Computer programs can send data (bytes) to the

transmit pin (output) and receive bytes from the receive pin (input). The other pins

are for control purposes and ground.

f]n_ MWL

2 3

1

• o out*

ft ft ft ft

6 7 8 9

Jb
Data Carrier Detect

Re^ivetfD^
3 Transmitted Data

4 Data TerminalReady

5 Signal Ground

ilooaL

Revest losers
Clear lo Send

Ring indicator

Figure 2.5: Pin Configuration for Serial Port

The serial port is much more than just a connector. It converts the data from parallel

to serial and changes the electrical representation of the data. Inside the computer,

data bits flow in parallel, using many wires at the same time. Serial flow is a stream

of bits over a single wire, such as on the Transmit or Receive pin of the serial

connector. For the serial port to create such a flow, it must convert data from parallel

insidethe computerto serial on the transmitpin and conversely.

17

The serial port is harder to interface than the parallel port. In most cases, any device

connected to the serial port will need the serial transmission converted back to

parallel so that it can be used. This can be done using a UART. On the software side

of things, there are many more registers that have to be attended to than on a standard

parallel port.

The advantages of using serial data transfer rather than parallel are:

> Less wires than parallel transmission. If your device needs to be mounted a

far distance away from the computer then 3 core cable (Null Modem

Configuration) is going to be a lot cheaper that running 19 or 25 core cable.

However you must take into account the cost of the interfacing at each end.

> Microcontrollers have also proven to be quite popular recently. Many of these

have in built SCI (Serial Communications Interfaces) which can be used to

talk to the outside world. Serial communication reduces the pin count of these

MPU's. Only two pins are commonly used, Transmit Data (TXD) and

Receive Data (RXD) compared with at least 8 pins using an 8 bit Parallel

method. Furthermore, it may also require a Strobe.

> Serial cables can be longer than parallel cables. The serial port transmits a '1'

as -3 to -25 volts and a '0' as +3 to +25 volts where as a parallel port transmits

a '0' as Ov and a T as 5v. Therefore the serial port can have a maximum

swing of 50V compared to the parallel port which has a maximum swing of 5

Volts. Therefore cable loss is not going to be as much of a problem for serial

cables as they are for parallel.

2.4 Overview of the System

Figure 2.6 shows the overview of the proposed system. To use the system user must

have a mobile phone and the system uses short messaging services (SMS) to send

commands to the terminal located at each building. Every building will have its own

terminal and different ID that will enable the user to control each building separately.

This is done for the security reason. Unauthorized personnel can't access the system.

The basic idea is to use the GSM network to convey the message from the user to the

controller.

There will be a main controller that will control the devices while a special software

to convert the message from the user into instructions that the controller understands.

A mobile phone will be connected to the computer or terminal. This hand phone

serves as a GSM modem that will receive messages from users and sends the reply to

the user. The terminal is equipped with special software called i-UTP Building

Control that will convert the message into instructions that the I/O controller

understands. I/O controller is made up from the PIC16F877. The I/O controller is

connected to the devices such as air-conditioner, doors and lamps. The terminal will

process the SMS message or command sent by the user and gives instruction to the

I/O controller to do the necessary action requested by the user. The detail operation

of the system will be discussed in the discussion section.

19

S
e
rv

e
r

T
e
r
m

in
a
l

I/
O

M
a
in

C
o

n
tr

o
ll

e
r

C
e
ll

S
ta

ti
o

n

^
.-

G
S

M
S

M
^

T
ra

n
s
c
e
h

i'
i"

<

:.
/
'

D
o

o
r

S
e
n

s
o

r

C
o

n
tr

o
ll

e
r

~
,

„
„-

-_
-.

...
p

—
-\

:.
V

W
m

A
m

C
e
ll

S
ta

ti
o

n

A
ir

-c
o

n
d

.
S

w
it

c
h

F
ig

ur
e

2.
6:

O
ve

rv
ie

w
o

ft
h

e
P

ro
je

ct

2
0

I
]

I'
It

ll
ll

ll
ll

l!
!

2.5 Nokia 3310 and F-Bus Protocol

For this project, Nokia 3310 is used because of its availability, cost and functions.

Furthermore the data cable can be easily purchased. The F-Bus protocol is owns by

Nokia and only Nokia phones use this protocol. The protocol allows the user to

explore the phone capability and use it to interface with other software. This sms

feature is utilized in the project mainly sending and receiving sms.

NOKIA

3310

Figure 2.7: Nokia 3310

The mobile phone will act as a gsm modem that will send and receive the messages

from the user and controller. The message cost depends on the service provider rate.

The mobile phone is connected to the terminal or computer via a data cable that can

be connected through the serial port of the computer. In order to make this project

successful, a minimum number of two mobile phones are needed. One serves as the

GSM modem and the other is used by the user to give the appropriate commands.

The detailed explanation on how the phone actually works in this project will be

discussed in the discussion chapter.

21

2.6 Nokia F-Bus Protocols Characteristics

The F-Bus is designed by Nokia for the phone to interact with a computer. It has its

own protocol. To settingto properly configure the com port are as follows:

speed 115 200

num bits 8

parity none

Stop bit 1

Figure 2.8: Com Port Configuration

A standard message looks like this one:

IE 02 00 04 00 0B 01080002010463020401 40 00 3900

This corresponds to:

[Frame type(1)][Src dev(l)][Dst dev(l)][CMD(l)][Frame

type(l)][Len(l)][DATA(X)][Seq(l)][Padd (1 or

0)][Chksum(2)]

-Message Frame Characteristics-

Frame

Type
Source

Device

Destination

Device
CMD

Frame

Type
Length Data

Sequence
Num

Padding
Check

Sum

Figure 2.9: Message Characteristics

2.5.1 Frame type

The frame type indicates which type of protocol is usin|

• IE : Serial F-bus frame

• lc : Irda F-bus frame

22

2.5.2 Source device and Destination device

Indicate the source and the destination device

• 02 Phone

• 00 Computer

2.5.3 CMD

This is the command type, it define which type of information is about.

• need a fix

2.5.4 Frame type

Used if the message exceeded 255 then it give which part is sending.

2.5.5 Length

The length of the packet. To calculate it: Data + Sequence number. So in

other word: length = data + 1 (in hex)

2.5.6 Data

The packed data.

2.5.7 Sequence number for regular packet

The sequence number for the standard frame seems to be between 40 up to

47. So always initialize it to 40 at the beginning seems to be working.

2.5.8 Padding

Since the packet as to be an odd number, if the length is even it as to be

added. The padding is always 00.

2.5.9 Checksum

The check sum is in fact two different checksum. The first hex represents the

XOR of all the odd hex block from the packet, the second represent the XOR

of all the even Hex block of the packet.

23

CHAPTER 3

METHODOLOGY/PROJECT WORK

The methodology on how the project was conducted is discussed in this chapter. The

preliminary research wasconducted to get the overview of the topic and to design the

milestone or Gantt chart. This project was planned to be completed in two semester,

where the first half of the semester was to concentrate on how the data will be sent

from one place to another and the basic structure of the system. The real circuit and

implementation of the system was designed in the second half of the semester. The

project work uses PIC and mainly Visual Basic to develop the software.

3.1 DESK STUDY

Desk study plays significant impact to strengthen the basic knowledge about

anything related to the project. Internet is the main source for the study, as well as

referring to books, journals, articles and reports. Visual Basic and C language need to

be self-studied in order to design the software for the project. Other than

programming, knowledge about designing and constructing circuit must also be

studied.

3.2 PROJECT MILESTONE

The student as well as the supervisor can easily monitor the progress of the project.

Since this project is for two semester project, the milestone should be planned in

such a way that the time is enough to complete the overall task planned for the two

semesters.

24

The overall suggested milestone is in Appendices Figure B-l and Figure B-2. A

summary of the project phases can be listed as follows;

• Phase 1: Planning Phase

• Phase 2: Research and Literature Review

• Phase 3: Designing Theoretical Circuit

• Phase 4: Implementing PracticalCircuit

• Phase 5: Final Testing and Documentation

Phase 1 of the project involves the planning of a specific outline of the proposed

work, requirements, and goals of the project. A Gantt chart is produced asa guide for

the studentas well as the supervisor to complete this project.

Phase 2 encompassed a literature review and background research on the topic, the

determination of resources requirements, the division of the project into logical steps,

and the choosing of a methodology and implementation process for the completion

of the project.

Phase 3 is the design process and testing process. This includes designing of the

theoretical circuit and testing the circuit. Some PIC programming will also be

included as well as designing the software using Visual Basic.

Phase 4 will involve implementing the theoretical circuit on to the test board and

debugging the circuit. Only after this process the circuit can be transferred into the

real board.

The final phase of the project includes final testing on the software and

documentation of the project. At this phase, the project is expected to be completed

and in working condition.

25

3.3 TOOLS AND EQUIPMENT USED

Visual Basic is the main software that is used in this project to develop the software

while the PIC uses the WARP13 software to program it. The compiler used for PIC

is PIC C compiler. Other than these software, basic components are used to construct

the hardware.

3.4 PROJECT WORK

The main focus is to develop the software using Visual Basic which will integrate the

sms from telephone to the terminal and the connection from terminal to the PIC. In

order to achieve this objective, the program was divided into smaller functional

program (Appendices A-4 and Appendix A-5).

Beside from the software programming, the PIC also needs to be program so that it

can be used with the test board that has been constructed. After the board is tested,

the circuit has to be transferred to the real board. The final stage is testing the whole

system and makes correction if there are errors.

Phase 3

Door Sensors /i t\
(Push Button) \r—1/

Lamps
(LED)

Air-cond

(Motor)

$=S
Main I/O

Controller

(PIC 16F877)

System Block Diagrams

Phase 2

RS232 Serial

Interface

(MAX232)

Terminal

(Visual Basic)

GSM Modem

Figure 3.1: System Block Diagram

26

Phase 1

User

GSM Modem

3.5 SAMPLE PREPARATION & TESTING

There are three different types of input samples being used in the process of

developing the simulation program. Each sample is tested to verify that the program

algorithm work and give the expected output. This bottom-up testing is important to

make sure that each subprograms work correctly integrates them.

At the first stage, the input samples are defined manually with a limited number of

input sequences. At this stage, the purpose of the input samples is to verify the

ftinctionality (black-box testing) either the subprograms will give the correct

expected outputs. The input of the subsystems also might be from the other

subsystem outputs. Inthis case, the lower level programs are tested first before move

to the higher level programs.

The testing process occurred at each stage of the project. After a small part of the

project is finish, then some testing is done to make sure that the part is working. The

final testing is done when the final product is completed. The testing covers different

command sent or received other than the specified commands and using different

models and brand of hand phone.

27

CHAPTER 4

RESULTS AND DISCUSSION

This chapter discussed on detail theory behind the construction of the hardware and

software of the project. Other than that, the final product is also included and

discussed. The steps on how to use the final product is also included in this chapter.

This includes the SMS commands that will monitor and control the dedicated devices

in the building.

4.1 Hardware

The test circuit have been constructed and tested with a test program. The real testing

can be done when the software is fully developed. The layout of the circuit can be

seen in Appendix A-4.

Switches

(Toggle switch)

Indicators

(LED) V

Prototype Hardware Block Diagrams

Power Supply
(9V)

3E
5V Regulator

(LM7805)

IE

Main I/O

Controller

{PIC 16F877)

3E
Clock

(4MHz crystal)

-v

«

Door Sensors

(Push Button)

Lamps
(LED)

Air-cond Switch Controller

(Relay)

RS232 Serial Interface

(MAX232)

Figure 4.1: Hardware Block Diagrams

28

tt>

Air-cond

(Motor)

To terminal server

(Computer)

The Figure 4.1 describes the configuration of the hardware; how each device is

connected to each other and what they represent in the real system. Among the

components used to construct the hardware are:

• Motor • LEDs

• Relay • Switch

• MAX232 • LM7805 Voltage Regulator

• PIC16F877 • Push Button

• 4Mhz Crystal Oscillator

The circuit is first constructed on the bread board. This is done to see and correct the

error before implementing the circuit into the final product. The test board can be

viewed in Appendix A-5. When the circuit has been tested and is operational, then it

was transferred into the vero board.

4.2 Software

The development of the software requires a lot of phases. Before the realproduct can

be produced, there are many test and small program that have to be created and

tested. All of these small programs will then be group and combined to form the final

software. The test program is done in C language but the final program will be in

Visual Basic.

4.2.1 Subprograms

Several subprograms have been created. These subprograms will be

combined in the final program. Each subprogram has its own functions. The

codes can be found in Appendix A-7 and Appendix A-8.

The packer program is used to pack the 7 bit data into an 8 bit data. This is

crucial because the F-Bus system only used 8 bit configuration. If a 7 bit data

is used, then the decoded data will not be the same with the data that have

been sent.

29

Meanwhile the Check Sum program is used to calculate the parity of the odd

and even bits in each message frame. This is a kind of safety measure because

the message frame is sentwiththe check sum and the receiver must calculate

the parity again and verify the result with the sent checksum. By doing this,

any lossof data can be detected. The print screen of the final software can be

seen in Appendix A-10 to Appendix A-13.

4.2.2 Commands Sets

These commands sets are created to help design the software. This syntax

will be used in the system and onlythese commands will be recognize by the

SMS terminal.

4.2.2.1 User->Terminal Command Set

System Check

Al. I-UTP ACAD22 System Info

Status Check

Bl. I-UTP ACAD22-01-04 Status Lamp 1

B2. I-UTP ACAD22-01-04 Status Lamp 2

B3. I-UTP ACAD22-01-04 Status Aircond 1

B4. I-UTP ACAD22-01-04 Status Aircond 2

B5. I-UTP ACAD22-01-04 Status Door 1

B6. I-UTP ACAD22-01-04 Status Door 2

B7. I-UTP ACAD22-01-04 Status Room-Door 1

B8. I-UTP ACAD22-01-04 Status Room-Door 2

Switch Control

CI. I-UTP ACAD22-01-04 Switch Lamp 1 ON

C2. I-UTP ACAD22-01-04 Switch Lamp 1 OFF

C3. I-UTP ACAD22-01-04 Switch Lamp 2 ON

C4. I-UTP ACAD22-01-04 Switch Lamp 2 OFF

C5. I-UTP ACAD22-01-04 Switch Aircond 1 ON

C6. I-UTP ACAD22-01-04 Switch Aircond 1 OFF

C7. I-UTP ACAD22-01 -04 Switch Aircond 2 ON

C8. I-UTP ACAD22-01-04 Switch Aircond 2 OFF

30

4.2.2.2 Terminal~>User Command Set

System Check

Al. I-UTP ACAD22 System OK

Status Check

Bl. I-UTP ACAD22-01-04 Lamp 1 ON

Bl. I-UTP ACAD22-01-04 Lamp 1 OFF

B2. I-UTP ACAD22-01-04 Lamp 2 ON

B2. I-UTP ACAD22-01-04 Lamp 2 OFF

B3. I-UTP ACAD22-01-04 Aircond 1 ON

B3. I-UTP ACAD22-01-04 Aircond 1 OFF

B4. I-UTP ACAD22-01 -04 Aircond 2 ON

B4. I-UTP ACAD22-01-04 Aircond 2 OFF

B5. I-UTP ACAD22-01-04 Door 1 Opened

B5. I-UTP ACAD22-01-04 Door 1 Closed

B6. I-UTP ACAD22-01-04 Door 2 Opened

B6. I-UTP ACAD22-01-04 Door 2 Closed

B7. I-UTP ACAD22-01-04 Room Door 1 Opened

B7. I-UTP ACAD22-01-04 Room Door 1 Closed

B8. I-UTP ACAD22-01-04 Room Door 2 Opened

B8. I-UTP ACAD22-0I-04 Room Door 2 Closed

Switch Control

CI. I-UTP ACAD22-01-04 Lamp 1 has been switched ON

CI. I-UTP ACAD22-01-04 Lamp 1 has been switched OFF

CI. I-UTP ACAD22-01-04 Request denied. Lamp I is already ON

C1. I-UTP ACAD22-01 -04 Request denied. Lamp 1 is already OFF

C2. I-UTP ACAD22-01-04 Lamp 2 has been switched ON

C2. I-UTP ACAD22-01-04 Lamp 2 has been switched OFF

C2. I-UTP ACAD22-01 -04 Request denied. Lamp 2 is already ON

C2. I-UTP ACAD22-01-04 Request denied. Lamp 2 is already OFF

C3. I-UTP ACAD22-01-04 Aircond 1 has been switched ON

C3. I-UTP ACAD22-01-04 Aircond 1 has been switched OFF

C3. I-UTP ACAD22-01-04 Request denied. Aircond 1 is already ON

C3. I-UTP ACAD22-01-04 Request denied. Aircond 1 is already OFF

31

C4. I-UTP ACAD22-01-04 Aircond 2 has been switched ON

C4. I-UTP ACAD22-01-04 Aircond 2 has been switched OFF

C4. I-UTP ACAD22-01-04 Request denied. Aircond 2 is already ON

C4. I-UTP ACAD22-01-04 Request denied. Aircond 2 is already OFF

4.2.2.3 Terminal->Controller Command Set

Switch Control

Start cmdgrp block floor room device dev no on/off stop

CI. OxAA 0x03 0x16 0x01 0x04 0x00 0x00 0x01 OxFF

C2. OxAA 0x03 0x16 0x01 0x04 0x00 0x00 0x00 OxFF

C3. OxAA 0x03 0x16 0x01 0x04 0x00 0x01 0x01 OxFF

C4. OxAA 0x03 0x16 0x01 0x04 0x00 0x01 0x00 OxFF

C5. OxAA 0x03 0x16 0x01 0x04 0x01 0x00 0x01 OxFF

C6. OxAA 0x03 0x16 0x01 0x04 0x01 0x00 0x00 OxFF

C7. OxAA 0x03 0x16 0x01 0x04 0x01 0x01 0x01 OxFF

C8. OxAA 0x03 0x16 0x01 0x04 0x01 0x01 0x00 OxFF

4.2.2.4 Controller~>Terminal Command Set

Switch Control

Ifexecution succeeds:

Device dev no on/off

CI. 0x00 0x00 0x01

C2. 0x00 0x00 0x00

C3. 0x00 0x01 0x01

C4. 0x00 0x01 0x00

C5. 0x01 0x00 0x01

C6. 0x01 0x00 0x00

C7. 0x01 0x01 0x01

C8. 0x01 0x01 0x00

32

4.2.2.5 Error Reply

If I-UTP is not sent as a prefix

(No reply)

Ifwrong command is sent

I-UTP ACAD22-01-04 Unidentified request

4.3 Serial Interface

In order for the PIC to communicate with the terminal, a serial interface must be

developed using Visual Basic. A tester program has been developed for testing

purposes. The screen shot of the interface is shown in Appendix A-9. This tester

program is used to test the serial communication between PIC and the terminal. The

program was developed using VisualBasic

The serial port is an Asynchronous port which transmits one bit of data at a time,

usually connecting to the UART Chip. Serial Ports are commonly found on the

majority of PC Compatible computers In order to achieve this communication, a

special IC is uses called MAX232 from Maxim or RS232 from RS. RS232 signals

are represented by voltage levels with respect to a system common (power / logic

ground). The "idle" state (MARK) has the signal level negative with respect to

common, and the "active" state (SPACE) has the signal level positive with respect to

common. RS232 has numerous handshaking lines (primarily used with modems),

and also specifies a communications protocol.

The RS-232 interface presupposes a common ground between the DTE and DCE.

This is a reasonable assumption when a short cable connects the DTE to the DCE,

but with longer lines and connections between devices that may be on different

electrical busses with different grounds, this may not be true.

RS232 data is bi-polar; +3 TO +12 volts indicate an "ON or 0-state (SPACE)

condition" while A -3 to -12 volts indicates an "OFF" 1-state (MARK) condition.

33

Modern computer equipment ignores the negative level and accepts a zero voltage

level as the "OFF" state. In fact, the "ON" state may be achieved with lesser positive

potential. This means circuits powered by 5 VDC are capable of driving RS232

circuits directly; however, the overall range that the RS232 signal may be transmitted

/ received may be dramatically reduced.

The output signal level usually swings between +12V and -12V. The "dead area"

between +3v and -3v is designed to absorb line noise. In the various RS-232-like

definitions this dead area may vary. For instance, the definition for V.10 has a dead

area from +0.3v to -0.3v. Many receivers designed for RS-232 are sensitive to

differentials of Iv or less.

Data is transmitted and received on pins 2 and 3 respectively. Data Set Ready (DSR)

is an indication from the Data Set (i.e., the modem or DSU/CSU) that it is on.

Similarly, DTR indicates to the Data Set that the DTE is on. Data Carrier Detect

(DCD) indicates that a good carrier is being received from the remote modem.

Pins 4 RTS (Request to Send - from the transmitting computer) and 5 CTS (Clear to

Send - from the Data set) are used to control. In most Asynchronous situations, RTS

and CTS are constantly on throughout the communication session. However where

the DTE is connected to a multipoint line, RTS is used to turn carrier on the modem

on and off. On a multipoint line, it's imperative that only one station is transmitting at

a time (because they share the return phone pair). When a station wants to transmit, it

raises RTS. The modem turns on carrier, typically waits a few milliseconds for

carrier to stabilize, and then raises CTS. The DTE transmits when it sees CTS up.

When the station has finished its transmission, it drops RTS and the modem drops

CTS and carrier together.

Clock signals (pins 15, 17, & 24) are only used for synchronous communications.

The modem or DSU extracts the clock from the data stream and provides a steady

clock signal to the DTE.

34

ci+ —

C2+ —

ci- —

C3+ —

C3- —

C4- —

MAX 232

Vcc

Ground

Pin 2 Serial Connector

— Pin 3 Serial Connector

— Pin 26 PIC

Pin 25 PIC

Figure 4.2: MAX232 configuration

For this project, only three pin is used which pin 2; received data, pin 3; transmitted

data and pin 5; signal ground. These pin are connected to the MAX 232 through its

pin 13 and 14. Four luF capacitor labeled CI to C4 is used with MAX232.

4.4 GSM Modem

The GSM modem is the most important element in this project because the data

transfer from one place to the terminal is done by the GSM modem using the GSM

network. The hand phone is used as a GSM modem because its capability and

features.

Most Nokia phones have F-Bus and M-Bus connections that can be used to connect a

phone to a terminal or microcontroller. Forthisproject, a Nokia 3310 is used. This is

because the data cable for this model can be easily found and the model is quite

cheap to purchase. The connection canbe usedfor controlling just aboutall functions

of the phone, as well as uploading new firmware etc. This bus will allow the userto

send and receive SMS messages. The pin for the connection is located under the

battery compartment. The four pin are labeled M-Bus/F-Bus, ground, receive and

transmit.

35

Figure 4.3: F-Bus/M-Bus Connection Pin in Nokia 3310

M-Bus is a one pin bi-directional bus for both transmitting and receiving data from

the phone. It is slow (9600bps) and only half-duplex. Only two pins on the phoneare

used. One is ground pin and the other one is the data pin. M-Bus runs at 9600bps, 8

data bits, odd parity, and one stop bit. The data terminal ready (DTR) pin must be

cleared with the request to send (RTS).

F-Bus is the later high-speed full-duplex bus. It uses one pin for transmitting data and

one pin for receiving data plus the ground pin. Very much like a standard serial port.

It is fast 115,200bps, 8 data bits, no parity, and one stop bit. For F-Bus the data

terminal ready (DTR) pin must be set and the request to send (RTS) pin cleared. The

serial cable contains electronics for level conversion and therefore requires power.

The first thing to do is supply power to the cable electronics and this is done by

setting the DTR (Data Terminal Ready) pin and clearing the RTS (Request to Send)

pin. The next step is to synchronize the UART in the phone with your PC or

microcontroller. This is done by sending a string of 0x55 or U' 128 times. The bus is

now ready to be used for sending frames.

36

Figure 4.4: Data Cable for Nokia 3310

The Nokia protocol has a series of commands that allow the user to make calls, send

and get SMS messages and lots more. The data cable is needed to connect the phone

to the terminal via serial connector. Different models of phone require its own data

cable. Figure below shows how the data cable is connected to Nokia 3310. After

being connected to the terminal via serial port, the phone can be used as a GSM

modem. The data received from the phone must be manipulated using software. In

this project special designed software is used to manipulate the data received and

sent by the user.

Figure 4.5: Data Cable Connection to Nokia 3310

37

4.5 Sending SMS

The standard SMS protocol is GSM 03.38 - Alphabets and ianguage-specific

information. This is the Technical Specification that describes the packing of 7-bit

characters and shows the standard character map. For example, the string 'hello' is

decoded. First, 'hello' must be displayed in hexadecimal using the character map

provided in GSM 03.38. For A to Z and numbers it's just the standard ASCII

conversion.

hello (ASCII characters;

68 65 6C 6C 6F (In hexadecimal)

1101000 1100101 1101100 1101100 1101111 (In Binary)

When dealing with binary, it makes life easier to write everything backwards. The

first byte in the string is on the right. The least significant bit is then displayed on the

left with the most significant bit on the left. Shown below is the same string of'hello'

just displayed in reverse order. Then it's just a matter to dividing the binary values

into bytes starting with the first character in the string. (Start from right and go to

left.) The first decoded byte is simply the first 7 bits of the first character with the

first bit of the second character added to the end as shown below. The next decoded

byte in then the remaining 6 bits from the second character with two bits of the third

byte added to the end. This process just keeps going until all characters are decoded.

The last decoded byte is the remaining bits from the last character with the most

significant bits packed with zeros.

6F 6C 6C 65 68

1101111 1101100 1101100 1100101 1101000 (The ASCII characters shown

in binary)

110 11111101 10011011 00110010 11101000 (The above binary just split

into 8 bit segments)

06 FD 9B 32 E8 (The 8 bit segments decoded

into hex)

38

The message hello is therefore E8 32 9B FD 06 when packed.

GSM 03.40 - Technical realization of the Short Message Service (SMS) Point-to-

Point (PP). This specification describes the following SMS fields in detail.

Sample frame sent to Nokia 3310 (showed as a Hex dump) 98 Bytes

Byte: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Data: IE 00 OC 02 00 59 00 01 00 01 02 00 07 91 16 14 91 09 10 F0 00

Byte: 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Data: 00 00 00 15 00 00 00 33 0A 81 40 30 87 00 47 00 00 00 00 00 A7

Byte: 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Data: 00 00 00 00 00 00 C8 34 28 C8 66 BB 40 54 74 7A 0E 6A 97 E7 F3

Byte: 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

Data: F0 B9 OC BA 87 E7 A0 79 D9 4D 07 Dl Dl F2 77 FD 8C 06 19 5B C2

Byte: 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Data: FA DC 05 1A BE DF EC 50 08 01 43 00 7A 52

F-Bus Frame Header

Byte 0: F-Bus Frame ID. Cable is OxlE.

Byte 1: Destination address.

Byte 2: Source address.

Byte 3: Message Type or 'command'. 0x02 (SMS Handling).

Byte 4 & 5: Message length. In our case it is 0x0059 bytes long or 89 bytes in

decimal.

(SMS) Short Message Service Frame Header

Byte 6 to 8: Start of the SMS Frame Header. 0x00, 0x01, 0x00

Byte 9 to 11: 0x01, 0x02, 0x00 - Send SMS Message

(SMSC) Short Message Service Centre (12 Bytes)

Byte 12: SMS Centre number length. 0x07 is 7 bytes long. This includes SMSC

Number Type and SMS Centre Phone Number

39

Byte 13: SMSC number type e.g. 0x81-unknown 0x91-international Oxal-national

1XXX IIII: Where I is the Numberin j-plan-identification (Refer to

GSM 03.40 - 9.1 2 5 Address fields)

1TTT XXXX: Whe re T is the Type-of -number (Refer to GSM 03 40 -

9.1.2 .5 Address fields)

Byte 14 to 23: (Octet format) SMS Centre Phone Number In this case +61

411990010

(TPPID Transfer Protocol Data Unit

Byte 24: Message Type

XXXX XXXI - SMS Submit - The short message is transmitted from the

Mobile Station (MS) to the Service Centre (SC).

XXXX XXX0 = SMS Deliver - The short message is transmitted from the

SC to the MS.

(Refer to GSM 03.40 - 9.2.3 Definition of the TPDU parameters) In this case it is

0x15 ~ 0001 0101 in binary. The message is SMS Submit, Reject Duplicates, and

Validity Indicator present.

Byte 25: Message Reference if SMS Deliver & Validity Indicator used (Not used in

this case). Refer GSM 03.40 - 9.2.3.6 TP-Message-Reference (TP-MR)

Byte 26: Protocol ID. Refer to GSM 3.40 - 9.2.3.9 TP-Protocol-Identifier (TP-PID)

Byte 27: Data Coding Scheme. Refer to GSM 03.38 & GSM 3.40 - 9.2.3.10 TP-

Data-Coding-Scheme (TP-DCS)

Byte 28: Message Size is 0x33 in hex or 51 bytes long in decimal. This is the size of

the unpacked message.

Refer to GSM 03.40 - 9.2.3.16 TP-User-Data-Length (TP-UDL)

Destination's Phone Number (12 Bytes)

Byte 29: Destination's number length.

Byte 30: Number type e.g. 0x81-unknown 0x91-international Oxal-national

Byte 31 to 40: (Octet format) Destination's Phone Number

40

Validity Period (VP)

Byte 41: Validity-Period Code. Time period during which the originator considers

the short message to be valid.

Byte 42 to 47: Service CentreTime Stamp. For SMS-Deliver

The SMS Message (SMS-SUBMIT)

JByte 48to 92: This is the SMS message packed into 7 bit characters. SMS Point-to-

Point Character Packing

Byte 93: Always 0x00

The F-Bus Usual Ending

Byte 94: Packet Sequence Number

Byte 95: Padding Byte - String is oddandhas to be even.

Byte 96 & 97: Odd & even checksum bytes.

41

4.6 Peripheral Interface Controller (PIC) PIC16F877

The PIC is used as the microcontroller in the system. It receives the data from the

terminal and the devices and processes them. After processing the information, the

required response is sent either to the terminal or to the devices.

VPP

Port A
f —

—

PortB

(AO-Reset Switch) < — * (Doors & Switches)

^

PortE j
(Not Used) L —

vDD —

Vss ~

Clock In

PortC r —

(Lamps & Air-Cond) 1 —

PIC16F877

— vDD
Vss— y PortD

— r (Device Indicator)

"1 PortC

— J (MAX 232)

PortD -c 1 — 1 PortD

Figure 4.6: PIC Pin Configuration

As can be seen in figure 4.6, there are five input output port that can be used. In Port

A, only one pin is used which is AO as a reset switch for the PIC. The other pin is

unused. Port B is used for the devices such as doors and switches for the lamps and

air conditioner. Port C is used for the lamps and motor which represent air

conditioner. Port D is used for LEDs that function as a status indicator for each

device. Port E is still left unused. Therefore, there are still 14 pin left unused and a

number of 7 more devices can be placed in the system. If the building requires

controlling more devices, a larger capacity microcontroller has to be used. The PIC is

programmable and C language is used to program it. The final program for the PIC

can be seen in Appendix A-13.

42

4.7 Final Software- I-UTP Building Control vl.O

The final software is called I-UTP Building Control vl.O. The main window is

divided into several parts which are the controller connection, F-Bus connection,

switch panel, sensor panel, provider server information and the status log. Besides

that, there arealso buttons such as view terminal logs, view ASCII code, view serial

information and close button.

The controller connection is used to connect the terminal with the microcontroller

which is the PIC. When connected, the switch panel and the sensor panel will be on

according to the current status given by the PIC. The F-Bus connection is used to

connect the GSM modem to the terminal. When it is connected, the provider server

information will be displayed. If the information is not displayed, there is a

possibility that an error has occurred in the F-Bus connection.

The status log will show all the activities that occurred during the connection. The

view terminal log button will direct the user to another window (Appendix A-14)

which is mainly used for debugging purposes. At this window the real data that is

sent and receive is shown. The view ASCII code is a window that shows the ASCII

code and its equivalent conversion. This is very useful inthe debugging process. The

view serial information is just for the user to gain information about serial pin

connection. The lastbutton which is theclose button will end the program.

43

Controller

Connection

Switch Panel Sensor Panel Provider Server

Information

F-Bus

Connection

Status Log

View

Terminal

Logs
View Seri

Info

Figure 4.7: I-UTP Building Control Main Window

Section

Controller Connection

F-Bus Connection

Switch Panel

Status Panel

Provider Server Information

Status Log

View Terminal Logs

View ASCII code

View Serial Info

Close

Function

To on/off the controller connection

To on/off the F-Bus connection

To manually on/offthe devices

To show the current status of the monitored

devices

Contain the necessary information of the server

when connected

Contain the log of all the activities done

Direct the user to the Terminal Logs window

Direct the user to the ASCII code window

Direct the user to the Serial Info window

To off the software

44

How to Use the System

1. Connect the serial cable and the F-Bus cable to the controller and mobile

phone

2. Switch on the serial connection. Wait until the status log shows that the serial

connection has been established.

Figure 4.8: Serial Connection Established Successfully

3. Turn on the F-Bus connection on the software and waits for the F-Bus server

to be ready. Typethe required SMS message

45

Figure 4.9: F-Bus Connection Established Successfully

4. Wait for the controller to response and reply

/V/1U/7M04.21 25.23
2//1U/2UlM21:?5:?9
7 in

27/1
27/1
2//I

27/10/2004

'̂ Bjijj^-Bf"ipjlsi.3ni!om.cc1iFt',ihliJj ^jrjSf- ' -ST' ?- .•....*";. a

"*•

JU.Mef;_.,tf-: ujj

ii

V l/-':-DT 1 .TF

V

Figure 4.10: Message Receive and Reply Sent

46

Figure 4.11: The Terminal Logs

47

4.8 Visual Basic

Visual Basic is a very important software in designing the system's software. Many

of its function such as serial communication and F-Bus ActiveX Control are used.

The section below discusses in detail what the functions that are used in developing

the final software for this project.

4.8.1 Serial Connection

The serial connection software is used to test the serial connection whether

the connection is functioning correctly or not. The following table lists the

properties that are used to establish the serial connection:

Property Description

CommPort Sets and returns the communications port number.

Settings Sets and returns the baud rate, parity, data bits, and

stop bits as a string.

PortOpen Sets and returns the state of a communications port.

Also opens and closes a port.

The sample screen of the software can be seen in Appendix A-9.

4.8.2 F-Bus ActiveX Control

Mobile FBUS 1.5 is a freeware ActiveX control that you can use to create

software for mobile phones. Send SMS messages, manipulate operator logos,

use monitoring, access phonebook, and much, much more. Mobile FBUS is

the ideal tool for connecting your Visual Basic application to mobile phones.

In this project, only the SMS message object is used.

48

This object can be used to read and send SMS messages. The SMS object has

the following properties, method and sub-objects:

Property Description

LastError

TotalMessages

UnreadMessages

Method Description

Refresh

SendMessage

Object Description

DeliveryNotifications

Inbox

Outbox

FBSmsMessage

Property Description

Count

Property Description

DateTime

Destination

LastError

Returns the last error code.

Returns the total number of SMS messages

stored.

Returns the number of unread messages.

Retrieves stored messages from the phone.

Sends an SMS message.

Message box containing delivery notifications.

Message box containing incoming messages.

Message box containing sent messages.

Sub-object representing one message in a

message box.

Number of messages in box (read-only Integer).

Messages have indexes between 1 and Count.

Timestamp of message (read-only Date).

Destination of message (read-only String). In

most phone types this property is only available

in the OutBox.

Last FBUS error, 0 if last action was successful

(read-only Integer).

49

Sender

SentRead

Text

Method Description

Delete

Sender of message (read-only String). In most

phone types this property is only available in

the InBox.

SentRead property returns true if the message is

sent or read (read-only Boolean).

Returns the message text (read-only String).

Deletes the message from the phone memory.

You have to call SMS. Refresh to update the

state of the SMS object after deleting messages.

50

4.9 Limitation of the System

Every system has its own limitation including this system. There are several

limitations to this system. Some of it is beyond the designer's capability to avoid.

Among them are:

• Number of devices that can be controlled or monitor

• Service provider connection

4.9.1 Number of devices

PIC16F877 is used in this project. This number of devices that the controller can

handle problem occurs because the controller used is the PIC16F877. It only has

five ports that could only accommodate 33 I/O. This problem can be overcome

by using a bigger capacity controller or placing one microcontroller for each

building level. Although the cost might increase, this does not cause a very

significant impact because the cost of this system is not very expensive. Another

approach to overcome this problem is to install this system can at each building

level.

4.9.2 Service Provider Connection

The system also depends on the connection that the service provider provides. If

the connection is poor, there is a chance that the message send will be delayed or

not received by the gsm modem. This will result in the system not functioning

correctly. This is also not a very big problem becausethe services offers now are

very efficient because there are competitions between the providers. Because of

this healthycompetition, the services quality is increasing by each passingday.

51

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This chapter is divided into two topics which is the conclusion and the

recommendation. The conclusion part discussed about what the project's objectives

and how the project is completed. The recommendation part discussed about the

future improvement of the project and in what other area the project can be

implemented.

5.1 CONCLUSION

In conclusion, this project is very useful to understand in-depth about Nokia F-Bus

protocol and its application features. The knowledge gained is very helpful to

identify and understand all othercommunication protocols generally.

In order to complete this project, knowledge about F-Bus protocols and PIC

programming is very important. A lot of research is done first before the real

implementation can be done. The system is hoped to help make the monitoring and

controlling a building a much easier task. Using this system, the worker does not

have to go up the building to check each device. They only have to do such things

only when there is an emergency or device breakdown happen.

The communication using GSM and the services it offers nowadays are becoming

more popular and can be utilize further more withnew innovation and integrating the

system with other existing system to make them more efficient and better. This

project is onlyoneway of making the full use of the GSM network.

The objectives of this project have been fulfilled and the project is hoped to make

UTP building a more cost effective and easy to monitorbuilding.

52

5.2 RECOMMENDATIONS

Despite of the success of the project, there are still rooms for improvements. For

example, the delay the system takes to initialize especially the F-Bus connection can

be reduced. This problem arise because of the system needs to refresh every 60

seconds to check for incoming messages. This time can be reduced to minimize the

delay.

Other recommendation is to use a higher power PIC to accommodate more devices.

The PIC16F877 can only accommodate 11 devices, this is not enough to control and

monitor a building with a lot of devices such as computers and machinery.

The system can also be expanded to make it have more functions such as integrate it

with voice recognition. The users just have to call the server and tell the controller

what to do by using some specific commands.

Other than using the SMS to control devices or building, it can also be used to keep

track of vehicle. This can be done by integrating the SMS with the Global

Positioning System (GPS) system. The system can also be integrated with the

Geographical Information System (GIS) System to make it easier for the driver to

find certain route to the destination.

There are also on going research about the usage of SMS service in other system

such as SMS Car ParkingPayment, SMS Bill ReminderPayment Systems, Machine-

to-Machine (M2M); Mobile-to-machine and Machine-to-mobile, Home Surveillance

with Mobile Phones and Mobile Phone Based Ticketing (transportation, train,

parking meters etc)

53

REFERENCES

[I] http://www.comms.eee.strath.ac.uk/~gozalvez/gsm/gsm.html, An Overview of the

GSMSystem by Javier Gozalvez Sempere

[2] http://kbs.cs.tu-berlin.de/~jutta/gsm/js-intro.html, A Brief Overview of GSM, by

John Scourias

[3] http://www.embedtronics.eom/nokia/fbus.htmI#partl, Nokia F-Bus Protocol

Made Simple by Wayne Peacock

[4] William Stallings, Data and Computer Network, 7th Edition, Prentice Hall 2004

[5] Dr P.Sellapan, Visual Basic through Examples, 1st Edition, Federal Publication

Sdn. Bhd. 2003

[6] http://www.ihub.com/GSM%20Modems.htm, GSMModems

[7] http://www.handytel.com/technology/gsm03.htm, GSMSystem Architecture

[8] http://softwarecaves.com, MFBus 1.5ActiveX Control

[9] http://gnokii.org, Linux Gnokii Projects

[10] http://www.weethet.nl/, PinLayoutfor Nokia 3310

[II] http://www.activexperts.com/activcomport, Nokia GSMAT Commands

[12] PIC16F877 Data Sheet, 28/40 Pin 8-Bit CMOS FLASH Microcontrollers by

Microchip

54

APPENDICES

55

APPENDIX A

Figure A-J: Architecture of the PIC16F877 microcontroller

ANO/RAO

ANI/RAt-

AN2/RA2p

AN3/RA3*

AMP.M'

AN5/REi>-»-

ANG/REIw-*-

AN7/RE2^

t: Rlahs i'jsirna, 0: left justifies

[J ACQHI
FCFC-3 PCF02

FileSFfi ~l

PCF&t PCFffl

I I I I
I

'I

f-W-Vnn Ik
DO

01

^

-GJ-E52
BVuL, Ik

lrS
Ik

5K&r

I v.

I™
1k

-c=Hoe

•X,a 1k
•O-lDD

'h* Ik

.*

AC OHO

D3

Q4

/

B7

ADCSf AI>C80 CBsa; CH80

Aniojue ctijriri6l
a44nst

..*..)...•fm-yo ^ J

7k Sample
Swrtdi =^«0p

o
Q

v. <
CD

FiieiFh

cuk

A

APPENDIX A

ADRESH

«1 E >

V

File 1Eh

ADRESL

"\ • i—c an ep

10

File 9Eh

•ntiir.a dili ku:

Figure A-2: Simplified block diagram of the PIC16F877 ADC module

n

lltth inateaaaar. o
"UTfi IMHU

IXEh POL

usn siftiuy

IWh KBM

05H PORTA '
Ubh PORTS
UVh "'pwrc
08h ' PORTD
OSh MHI'fc
Ufth 1OTIH
OBh iwtcon
5Ch PIRt
ODh piro
UEfi"'' IMHIL
<£h ThPIH
10h iicum

m WHS
m T2CCW
Ut\ SSPBUF
Uh ttttPCON '

""«h" ' ' CCPR1L
ion W/fKlH

1/h CCH rjUH
ish "—"BCaTA '
10h TXREG
irth RCKfcU

'1BH'" 1 CCPR3L
iCh CCPR2H
IDh CCP2CON
1Eh" •'•••'•'"""A BRE9H
fFh AESCON8
IS

SI

General
Purpose
Register

80 Bytes

Tflh

TFh

General Puiposs
Global Register

16 Bytes

BankO

"q5H Un S'u.eYri6ikJ
"USn~ ' Cfcl'niJRFiHetll^d
"h/r Ui rrniCii'tiiH"
is- .:BTi— "

'•n f,F=FT-
"tT Thing gr-lrkj

i =:i.

T1-

EFh
TOFT

FFh

"Qfiimp'r-rl:::"

ADCONt

Genera

Purpose
Register

80 Bytes

Accesses Global
Rsgider
TflMFh

Bankl

TOW
luTFT
lUili'

TU3R"
Ttmr
"335HT
tost

s
wor

TUBE"

TUDFT
"TOT
TOFfi"
TTOfT

10Fh

nw

17Fh

Indirectaddr,0'

—FUC—

"5TBTOB"
-pgff

POffll*

MMB.
UWEPWI

TrT

TECKW
EEftDR..

1BXTFT
EEAORH

PUipDSB
Regiaer

96 Bytes

Register
TQb-JFh

Bank 2

Figure A-3: PIC16F877 register file map

in

APPENDIX A

leOh | Indirectaktr.m
TBTF
-rarer

OHHOWlHfct
tuc-

7B3FT
1BW

" 'gTn" ! T-ff

"WT05~
TW

"S^n, TJft'Tt e~e*l-'

5HR-! TffifTi o~u" I»
"•^n; i,M"::r"

d"

IWTCCN'
T5CF
T8DTT

1EFh
TFffFT

1FFH

EECOMI

Purpose
Regiaer

9B Bytes

Accesses Gldbal
Register
T0r>7Fh

Bank 3

A
p

p
an

d
i

H
:W

il
d

ci
rc

u
it

A
it

C
tm

fW
ta

tl

-A
-

SE
R

IA
L

IN
T

E
R

FA
C

E
C

IR
C

U
IT

F
ig

u
re

A
-4

:
H

ar
d

w
ar

e
C

ir
cu

it

B
tt

tf
at

ai
rr

,
H

H
ti

tX
if

cu
M

D
K

U
na

nI
N

IH
<

R
M

fe
ft

1.
1

C
B

W
tW

ty
"

A
tf

n
w

H
u

n
tn

M
»

Ju
n.

1*
,H

JM
s
u

A
S

tf
tm

w
a

it
y

it
r.

fm
m

sn
u

A
i

n
I

APPENDIX A

Figure A-5: Hardware Test Board

v

APPENDIX A

Figure A-6: HardwareImplementation on Vero Board

VI

//#include<I6F877.H>

//#fuses XI^NOPROTECT.NOWDT.NOLVP
//#use delay(clock=4000000)

include <conio.h>

#include <stdio.h>

//define bildata 27

void main()

{

int buffer1;
int countl;
int input_data_even[bildata];
int input_data_odd[bildata];

int checksum_result_even;
int checksum result_odd;

//All *even

input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_

input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_
input_data_

even[0]=0x03
even[l]=0x20
even[2]=0x34
even[3]=0x34
even[4]=OxOA
even[5]=0x31
even[6]=0x30
even[7]=0x2D
even[8]=0x31
even[9]=0x4E
even[10]=Ox4D
even[llj=0x35
even[12]=0x28
even[13]=0x29
even[14]=0x4E
even[15]=0x50
even[16]=0x00
eveD[17]=Ox47

even[18]=0x0C
even[19]=0x7F
even[20]=0x02
even[21]=0x00
even[22]-0x71
even[23]-0x0C
_even[24]=0xD2
_even[25]=0x26

input_data_even[26]=0x00;

//AH odd
input_data_
input_data_
inputjiata
input_data
input_data_
inputjiata
input_data
input_data_
input_data_^
input_data
input__data_
input_data_
input__data_

odd[0]=OxOO
odd[l]-0x56
odd[2]=0x30
odd[3]=0x2E
odd[4]=0x35
odd[5]=0x32
odd[6]=0x2D
odd[7]=0x36
odd[8]=Ox30
odd[9]=€xOA
odd[10]=0x48
odd[ll]-0x2D
odd[12]=0x0A

APPENDIX A

Vll

input_data_odd[13]=0x63
input_data_odd[14]=0x20,
input_data_odd[15]=0x4D
input_data_odd[16]=0x2E
input_data_odd[17]=0x01

input_data_
input_data_
input_data.
input_data_
input_data_
inputdata
input_data_
input_data_

odd[18)=0xlE
odd[193=0x00
odd[20]=0x00
odd[21]=0xDl
odd[22]=0xCF
odd[23]-0xlE
odd[24]=0x00
odd[25]=0x00

input_data_odd[26]=0x01;

//Start XOR even

checksum_result_even=input_data_even[0];
for(countl=l;countl<=(bildata-l);countl++)

{
buffer I=input_data_even[countl];

checksum_result_even=checksum_result_evenAburrerl;
}

//Start XOR odd

checksum_result_odd=input_data_odd[0];
for(countl=I;countl<=(bildata-l);counti++)

{
bufferl=input_data_odd[countl];

checksum_result_odd=checksum_result_oddAbufferl;
}

//Odd, Even

printf("Checksum = %X %X",checksum_result_odd,checksum_result_even);
getchf);

Figure A-7: Checksum Program

Vlll

APPENDIX A

////include <16F877.H>

////fuses XT,NOPROTECT,NOWDT,NOLVP
////use delay(clock=4000000)

////include <iostream.h>

include <conio.h>

//include <stdio.h>

//include <math.h>

//define bildata 40

//Debug
void DECj3IN(int choose, int input);

void main()

{

int input_data[bildata];
int buffer_array[biidata];

//for packing
int count1;
int count2;
int bufferl;
intbuffer2;
intbuffer3;
int buffer4;
intbuffer5;
int shift1;
int minus_array;
int minus_shift;
int had recursion;

//Swap from front to back, put into buffer
for (countl=0;countl<=(bildata-l);countl++)

{
buffer_array[(bildata-l)-count!]=input_data[countl];

//Mask with 01111111 (to confirm value of7 bits)
for(countlK);countl<=(bildata-l);countl-H-)

{
buffer5=burfer_array[countl];

buffer5=buffer5&0x7F;
buffer_array[countl]=buffer5;

}

//Pack septet to be octet

//minus_array=bildata/8; //will be used
//had_recursion=bildata-minus_array; //will be used

minus_shift=l;

for(countl=l;countl<=(bildata-l);countl++)

{
//Restart all 8 bytes

if (((countl-l)%7=0) && (countl>l))

{
//Pull all value to the front (one byte step)
for(count2=bildata-countl;count2>=l;count2~)

{
buffer_array [count2]=buffer_array[count2-1];

if(count2=l)

{
buffer_array [count2-1]=0x00;

}
I
//Reset shift counter

minus shiftM:

IX

APPENDIX A

//Temporarily hold current value
bufferl=buffer_atray[(bildata-countl)-1j;
buffer2=buffer_array[(bildata)-count1];
//Shift previous value to the left
shiftl-8-minus_shift;
buffer3=burferl«shiftl;

//Debug
buffer3=buffer3&0xFF;

//Insert new value to the current value

buffer3=buffer3|buffer2;
buffer_array[(biIdata)-countl]=buffer3;

//Shift previous value to the right
//Insert new value to the current previous value
buffer4=bufferl»minus_shift;
buffer_array[(bildata-count1)-1]=buffer4;

//Increase shift counter

++minus_shift;

//Debug
for (int counttest=0;counttest<=(bildata-l);counttest++)

{
//Dec-Bin

int digit,power=0,outpur=0;
int buffer=buffer_array[counttest];
while (buffer>0)

{
digit=buffer%2;

output=output+digit*pow(10,power);
burfer=buffer/2;

++power;

}
printf("%X= %d\t ",buffer_array[counttest],output);

}
printf("\n\n\n");

getch();

}

//Debug
printf("end");
getchO;

}

/* int digit,power=0,output=0;
int buffer=input;
while (buffer>0)

{
digit=buffer%10;
buffer=buffer/10;

output;=output+pow(2,power)*digit;
++power;

}

Figure A-8: Packer Program

x

APPENDIX A

Serial Communication v4.00

Si iidl >ullinn> .. .

&%u
:j\® ® ® ® ©

\,.',Z IF.: _-.•
:'*•- »••:•. -•

• 1 :<.ui._"i: ?,'!?•':• "11
"-••"i-.e'sjC"-. r-*;-t .
J-.TViiTyib—fT/j .
i •. 'r .•"••«• -'i ••-.::!/ .:j': I.""

..S.f.?r3iV:- •'•••••..•
. E-D.-Ev.'!*.-.-::' MZTfl . '.'

.•v'-jvi;."'*?)•":••' I.-
"!•".• ,Irj_Vi-j"- ' """;
* •• Jv.y *••"••
,2-»"lij.',4Hi..., i.!"rj

F'-.-—Tp-=_"- _".i" VI
• r.-i:-i,"i5-L.,. ' '•'••

.. •> • • •

$*i) <*> ti) © ®/l
® ® ® ©

torled
15:58:02 • Serialconnection hat not
let been established

.. /jenil_Mui«(ii|ii

•r-

I
I

!

„l

••--. 1

• ••'V • • •. .

Figure A-9: Serial Interface Program

•v, A^ ? U!fry ft; •&*¥•>.• • -•...:••. •-• ..••• •*•••

• •..•!4-.; *. - M/---.^/;t. .l'̂ -•-•••*.,.,- "Ji •*••• ••= -*• • • •/ -•••

Figure A-10: MainPage for I-UTP Building Control

XI

APPENDIX A

Q(§®

APPENDIX A

Figure A-ll: TerminalLog for I-UTP BuildingControl

Regular ASCII Chart (character codes 0 - 127>
000 <nul> 016 • (die) 032 sp 048 0 064 0 080 P 096 * 112 P

001 m (soh> 017 -i <dcl> 033 t 049 1 065 a 081 Q 097 a 113 1

002 Q <3tX> 018 t <dc2> 034 " 050 2 066 B 082 FC 098 b 114 r

003 V <etx> 019 !! <dc3> 035 tt 051 3 067 C 083 S 099 c 115 s

004 ♦ <eot> 020 11 <dc4> 036 $ 052 4 068 D 084 T 100 d 116 t

005 * <enq> 021 5 <nak> 037 y. 053 5 069 E 085 U 101 e 117 u

006 * <ack> 022 - Csyn) 038 & 054 6 070 F 086 U 102 f 118 u

007 a <bel> 023 J <etb> 039 * 055 7 071 G 087 W 103 g 119 w

008 • <bs> 024 t (can) 040 < 056 8 072 H 088 Y. 104 h 120 X

009 <tab> 025 4- (en) 041 > 057 9 073 I 089 V 105 i 121 9

010 <lf > 026 (eof > 042 »e 058 : 074 J 090 Z 106 j 122 •z

011 e <ut> 027 *- (esc > 043 + 059 ; 075 K 091 E 107 k 123 •C

012 s <np> 028 >- (fs> 044 r 060 < 076 L 092 S 108 1 124 !

013 <«•> 029 ** <gs) 045 — 061 = 077 M 093 3 109 m 125 >

014 n (so) 030 * (PS) 046 , 062 > 078 N 094 A 110 n 126
tv

015 at <si) 031 • (us) 047 /- 063 ? 079 0 095 _ 111 o 127 A

Extended ASCII Chart (character codes 128 - 255>

128 c 143 8 158 R 172 « 186 II 200 li 214

B
T

228 E 242 2

129 u 144 £ 159 J 173 i 187 7i 201
il 202

tj 215
ii 216

229 a 243 <

130 e 145 *e 160 a 174 « 188 230 jj 244 J131 a 146 ft 161 i 175 » 189 " 203 77 217
\\ 218

231 X 245

132 a 147 6 162 6 176 i 190 J 204

i
232 £ 246 T

133 a 148 b 163 A 177 H 191 n 205
L 206

219 233 8 247 ™

134 a 149 o 164 n 178 H 192 11 220
± 221

• 234 a 248 o

135
e

150 u 165 N 179 T 193 J- 207 r 235 6 249 -

136 151 h 166 a 180 -I 194 T 208
1- 209

11 222 j 236 TO 250

137 e 152 y 167 ^ 181 j 195 ^ 223 • 237 St 251 •J

138 e 153 0 168 L 182)j 196 210 rr 224
a 225

« 238 e 252 11

139 "i. 154 il 169 183 n 197 + 211 (i 239 n 253 V:

140 i 155 C 170 184

1\
198 h 212 fc 226

r
240 = 254 1

141 i 156 E 171 3£ 185 199 \\ 213 F 227 n 241 * 255

142 h 157 V

Figure A-12: ASCII Code Window

xn

Figure A-13: Serial Information Window

Start bit

""Space

5 volts

O volts i;jRlm
Bit Zero

of data

Previous

Stop bit or
Idle state

"JVIark"

Bit 7

of data

What the CRT sees at the PIC input pin

Space state = +12

Marie state =-12. V

Space state = +12

Mark state =-12V

h-5 volts at PIC

0 volts at PIC

/\

/\

U
Reverse the bits- to put the
LSB on the right so that
humans can read it.

1 0 o 0

0 0 0 0 0

Ox41 = *A"

J
Stop bit,
Ivlaybe
Followed.

By idle
states

**Marlc"

APPENDIX A

Figure A-14: How data is transferred inMAX232 anddisplayed in Oscilloscope

xni

PIC Program
/*
A0 =

Al =

A2 =

A3 =

A4 =

A5 =

BO= Lamp 1 Switch (I)
Bl = Lamp 2 Switch (I)
B2 = Aircond 1 Switch (I)
B3 = Aircond 2 Switch (I)
B4 = Main Door 1 Sensor (I)
B5 = Main Door 2 Sensor (I)
B6 = Room Door 1 Sensor (I)
B7 = Room Door 2 Sensor (I)

CO= Lamp 1 (O)
CI = Lamp 2 (O)
C2 = Aircond 1 (O)
C3 = Aircond 1 (O)
C4 =

C5 =

C6 = Serial Transmit (O)
C7 = Serial Receive (I)

DO = Lamp 1 Indicator (O)
Dl= Lamp 2 Indicator (O)
D2 = Aircond I Indicator (O)
D3 = Aircond 2 Indicator (O)
D4 = Main Door 1 Indicator (O)
D5 = Main Door 2 Indicator (O)
D6 = Room Door 1 Indicator (O)
D7 - Room Door 2 Indicator (O)

E0 =

El =

E2 =

*/

#include <16F877.H>

#fiises XT,NOWDT,NOPROTECT,NOLVP

#use delay(clock-4000000)
#use rs232(baud=9600, xmit=PIN_C6J rcv=PIN_C7)

byte data_counter=0;
bytedata_status=0; //0=Notransmission, l=Data completed succesfully, 2=Dataerror

//All commands data
byte frame_start_byte=0;
byte frame_cmd_grp=0;
byte frame_bldg_num=0;
byte frame_flr_num=0;
byte frame_room_num=0;
byte frame__dev_num=0;
byte frame_dev_ID_num=0;
byte frame_dev_onofT=0;
byte frame_stop_byte=0;

//Device Status for each device

#define device_qty2
byte lamp[device_qty];
byte aircond[device_qty];
byte door[device_qty];
byte roomdoor[device_qty];
//ON/OFF Switch Status for each device
//(topreventcontinuously ON whenuser pressswitch)

XIV

APPENDIX A

byte lamp_switch[device_qty];
byte aircond_switch[device_qty];

//Switch function

void SWITCH_COMMAND(int device_type,int device_no,int onoff_status);
void REPLY_INITIALIZATION(void);

//Interrupt for serial on-received
#int_rda
void serial_interruptO
{

int data rev;

data_rcv=getch();

//Check for start byte
frame_startj)yte^data_rcv;

if (frame_start_byte=OxAA)

{
//Reset data counter

data_counter=0;
//Reset data status

data_status=l;

}
else

switch(data_counter)

{

//Check for command group
case 1:

{
if(data_status=I)

{
frame_cmd_grp=data_rcv;
switch(frame_cmd__grp)

case 0x00

case 0x01

case 0x02

case 0x03

{
data_status=l;

break;

}
default:

{
data_status=2;

break;

}
}

break;

}

}

//Check for building number
case 2:

{
if(data_status=l)

!
frame_bldg_num=data_rcv;
switch(frame_bldg_num)

case 0x00:

case 0x16:

{
data status=l;

XV

APPENDIX A

break;

}
default:

{
data_status=2;

break;

}
}

}

break;

}

//Check for floor number

case 3:

{
if(data_status—1)

{
frame_flr_num=data__rcv;
switch(fiame_flr_num)

case 0x00:

case 0x01:

{
data_status=l;

break;

}
default:

{
data_status=2;

break;

}
}

}

break;

}

//Check for room number

case 4:

{
if(data_status=l)

{
frame_room_num=data_rcv;
switch(frame_room_num)

case 0x00:

case 0x04:

{
data_status=l;

break;

}
default:

{
data_status=2;

break;

}
}

}

break;

}

//Check for device number

case 5:

!
if(data_status=l)

{
frame__dev_num=data_rcv;
switch(frame_dev_num)

APPENDIX A

XVI

{
case 0x00:

case 0x01:

{
data_status=l;

break;

}
default:

{
data_status=2;

break;

break;

}

//Check for device ID number

case 6:

{
if(data_status=l)

{
frame_dev_ID_num=data_rcv;
switch(frame_dev_ID_num)

{
case 0x00:

case 0x01:

{
data_status=l;

break;

}
default:

{
data_status=2;

break;

}
}

}

break;

}

//Check for device on/off command

case 7:

{
if(data_status=T)

{
frame_dev_onoff=data_rcv;
switch(liame_dev_onoff)

{
case 0x00:

case 0x01:

{
data_status=l;

break;

}
default:

{
data_status=2;

break

}
}

}

break;

}

//Check for stop byte
case 8:

APPENDIX A

XV11

{

{

{
if(data_status—1)

{
frame_stop_byte=data_rcv;

switch(frame_stop_byte)

case OxFF:

{
data_status=l;

break;

I
default:

{
data_status=2;

break;

}
}

}

break;

}
}

if (data_counter=8)

//If all commands are correct
//.

if(data_status=T)

{

//Execute command!!
//.

//Check for command group
if (frame_cmd_grp=0x03)

{
//Check for building number

if (frame_bldg_num=Ox 16)

{
//Check for floor number

if (frame_flr_num::=0xO1)
{

//Check for room number

if (frame_room_num=0x04)

{
//Check for device number

//LAMP

if (frame_dev__num=0x00)
{

//Check for device ID number

//LAMP1

if (itame_dev_ID_num=OxOO)

{
//OFF

if (frame_dev_onoff=OxOO)

{
//Turn OFF

SWITCH_COMMAND(0,0,0);
}
else

//ON

if (frame_dev_onoff=0x01)

{
//Turn ON

SWITCH COMMAND(0,0,1);

APPENDIX A

XV111

}
}
else

//LAMP2

if (frame_dev_lD_num=OxO 1)

{
//OFF

if (frame_dev_onoff=OxOO)

i
//Turn OFF

SWITCH_COMMAND(0,1,0);

}
else

//ON

if (frame_dev_onoff=0x01)

{
//Turn ON

SWITCH_COMMAND(0,1,1);
}

}

}
else

//AIRCOND

if (frame_dev_num=0xO1)

{
//Check for device ID number

//AIRC0ND1

if (frame_dev_ID_num=0x00)

{
//OFF

if (frame__dev_onoff=0x00)

{
//Turn OFF

SWTTCH_COMMAND(1,0,0);

}
else

//ON

if(frame_dev_onoff=0x01)
{

//Turn ON

SWITCH_COMMAND(1,0,1);
}

}
else

//AIRCOND2

if (frame_dev_ID_num=0x01)
{

//OFF

.if (frame_dev_onoff=0x00)

{
//Turn OFF

SWITCH_COMMAND(1,1,0);

}
else

//ON

if(frame_dev_onoff=0x01)

{
//Turn ON

SWITCH_COMMAND(1,1,1);
}

}
}

}

XIX

APPENDIX A

APPENDIX A

}
S
else

/flf it is initialization frame

if (frame_cmd_grp=OxOO && frame_bldg_num=0x00&&frameJlr_num=0x00 && frame_room_num=0x00 &&
frame_dev_num=OxOO && frame_dev_ID_num=OxO0 &&frame_dev_onoff=0x00)

{
REPLY_INITIALIZATION();

}
}

//Reset counter n status

data_counter=0;
data_status=0;

}
else

{
//Increment counter

data_counter=data_counter+l;

}

void mainO

{
int count1;
int device_ID;

//Enable intrrupt for serial on-received
enable_interrupts(globaI);
enable_interrupts(int_rda);
//Enable weak internal pull-up resistor on Port B

port_b_pulIups(true);

//Output Initialization
//--Indicators-

output_bit(PIN_DO,l);
output_bit(PTN_Dl;l);
output_bit(PIN_D2,l);
output_bit(PIN_D3,l);
outputJ)it(PINJD4,1);
output_bit(PIN_D5,l);
output_bit(PIN_D6,l);
output_bit(PIN_D7,l);

//--Lamps-
outputJ>it(PIN_C0,1);
output_bit(PIN_Cl,l);

//-Airconds-

outpuO>it(PTN_C2,0);
output_bit(PIN_C3,0);

//Status Initialization

//-Lamps & Airconds-
for (countl=0;countl<=device_qty-l;countl++)
{

//Device Status

//0=OFF, l=ON
//(Default=0)

lamp[countl]=0;
aircond[countl]=0;
door[countl]=0;
roomdoor[countl]=0;

//ON/OFF Switch Status

//0-OFF, l=ON
//(Default^)

Iamp_switch[countl]=l;
aircond_switch[countl]=I;

}

XX

while(true)

{

// SWITCH DETECTION-

//*****LAMP 1+****

//If the switch is pressed
device_ID=0;

if(input(PIN_BO)==0)

{
//If the switch has been released previously
if(lamp_switch[device_ID]==l)

{
//If the device is currently OFF
if (lamp[device_ID]=0)

{
//Turn ON

SWITCH_COMMAND(0,device_ID,1);

}
else

//If the device is currently ON
if(lamp[device_ID]=l)

//Turn OFF

SWITCH_COMMAND(0,device_ID,0);

//Change switch status
lamp_switch[device_JD]=0;

}
}
else

}

//If its switch is released

if(input(PIN„B0)=l)

//Change switch status
lamp_switch[device_ID]=T;

//*****LAMP2*****

//If the switch is pressed
device_ID=l;

if(input(PIN_Bl)=0)

{
//If the switch has been released previously
if(iamp_switch[device_ID]=l)

{
//If the device is currently OFF
if(Iamp[deviceJD]=0)

{
//Turn ON

SWITCH_COMMAND(0,device_ID,l);

else

}

//If the device is currently ON
if(Iamp[device_ID]=l)

//Turn OFF

SWITCH_COMMAND(0,device_ID,0);

//Change switch status
lamp_switch[device_ID]=0;

}
}
else

//If its switch is released

if(input(PIN_Bl)=l)

{

APPENDIX A

XXI

//Change switch status
lamp_switch[device_ID]=l;

}

//*****AIRC0ND1*****

//If the switch is pressed
deviceJD=0;

if(input(PIN_B2)=0)

<
//If the switch has been released previously
if(aircond_switch[device_ID}=l)

{
//If the device is currently OFF
if (aircond[device_ID]=0)

{
//Turn ON

SWITCH_COMMAND(1,device_ID,1);
}

else

//If the device is currently ON
if(aircond[device_ID]=l)

//Turn OFF

SWITCH_COMMAND(l,deviceJD,0);

//Change switch status
aircond_switch[device_ID]=0;

}
}
else

//If its switch is released

if(input(PiN_B2)—I)

//Change switch status
aircond_switch[device_ID]=l;

//*****AIRCOND2*****

//If the switch is pressed
device_ID=l;

if(input(PTN_B3)=0)

<
//If the switch has been released previously
if(aircond_switch[device_ID]=l)

{
//If the device is currently OFF
if (aircond[device_ID]^=0)

{
//Turn ON

SWITCH_COMMAND(l,device_ID,1);

}
else

//If the device is currently ON
if (aircond [device_ID]=1)

//Turn OFF

SWITCH_COMMAND(l,device_ID,0);

//Change switch status
aircond__switch[device_ID]=0;

}
}
else

//If its switch is released
if(input(PIN_B3)=l)

//Change switch status
aircond_switch[device_ID]=l;

XX11

APPENDIX A

}

//*****D00R1*****

//If the sensor is pressed
device_ID=0;

if(input(PIN_B4)=0)

{
//If the device is currently Opened

if (door[device_ID]=l)

{
//Turn Closed

SWITCHj:OMMAND(2,deviceJD,0);

}
}
else

//If its switch is released

if(input(PIN_B4)=l)

<
//If the device is currently Closed

if (door[device_ID]=0)

{
//Turn Opened

SWITCH_COMMAND(2,device_ID,l);
}

}

//*****D0OR2*****

//If the sensor is pressed
device_ID=l;

if(input(PIN_B5)=0)

{
//If the device is currently Opened

if(door[device_ID]=l)

{
//Turn Closed

SWITCH_COMMAND(2,device_ID,0);

}
>
else

//If its switch is released

if(input(PIN_B5)—1)
{

//If the device is currently Closed
if(door[device_ID]=0)
{

//Turn Opened
SWITCH_COMMAND(2,device_ID,l);

}
}

//*****ROOMDOOR 1*****

//If the sensor is pressed
device_lD=0;

if(input(PIN_B6)=0)

{
//If the device is currently Opened

if (roomdoor[device_ID]=l)
!

//Turn Closed

SWITCH_COMMAND(3,device_ID,0);
}

}
else

//If its switch is released

if(input(PIN_B6)—1)

{
//If the device is currently Closed

if (roomdoor[device_ID]=0)

{

APPENDIX A

XX111

//Turn Opened
SWITCH_C0MMAND(3,device_ID, 1);

}
}

//*****ROOMDOOR 2*****

//If the sensor is pressed
device_ID=I;

if(input(PIN_B7)=0)

{
//If the device is currently Opened

if (roomdoor[device_ID]=l)

{
//Turn Closed

SWITCH_COMMAND(3 ,device_ID,0);

}
}
else

//If its switch is released

if(input(PIN_B7)=l)

{
//If the device is currently Closed

if (roomdoor[device_ID]=0)

{
//Turn Opened

SWITCH_COMMAND(3,deviceJD,l);
}

}

}
}

void REPLY_INITIALIZATION(void)

<
intreply_array[4];

int count1;
int count2;

//Send all status ofdevice

//For lamp n aircond only the one that currentlyON
//For door n roomdoor only the one that currently Opened

for (count2=0;count2<=device_qty-l ;count2++)

{
//Reply for lamp
if (lamp[count2]=1)

//Set reply
reply_array[0]=0x03;
reply_array[1]=0x00;
replyarray[2]=count2;
reply_array[3]=0x01;

//Send reply
for(countl=0;countl<=3;countl++)

{
putchar(reply_array[countl]);

}

{

delay_ms(100);

//Reply for aircond
if (aircond[counl2]=1)

//Set reply
reply_array[0]=0x03;
reply_array[l]=0x01;
reply_array[2]=count2;

XXIV

APPENDIX A

reply_array[3]=0x01;

//Send reply
for(countl=0;countl<=3;countl++)

{
putchar(reply_array[countl]);

}

delay_ms(100);

)

//Reply for door
if (door[count2]=1)

}

//Set reply
rep!y_array[0]=0x03;
reply_array[l]=0x02;
reply_array[2]=count2;
reply_array[3]=0x01;

//Send reply
for (countl=0;countl<=3;countl++)

{
putchar(reply_array[count1]);

}

delay_ms(100);

//Reply for roomdoor
if(roomdoor[coun(2]=l)

{
//Set reply

reply_array[0]=0x03;
reply_array[1]=0x03;
reply_array[2]=count2;
reply_array[3]=0x01;

//Send reply
for (countl=:0;countl<=3;countl-H-)

{
putchar(reply_array[count1]);

}

delay_ms(100);

}

}

//Set reply
reply_array[0]=0x00
replyarray[1]=0x00
reply_array[2]=0x00
rep ly_array[3]=0x00

//Send reply
for (countl=0;countl<=3;countl++)

{
putchar(reply_array[count1]);

}

}

Figure A-15: PIC C Language Program

XXV

APPENDIX A

Visual Basic Coding

'Utk form resize property
Public tinggi_formJama
Public lebarformjama
Public tinggi_form_baru
Public lebarformbaru

Public constraint_tinggi
Public constraintjebar

'Problem note

'masalah nak initialize door n roomdoor, kena ask controller on start
'array door n roomdoor asalnye O^closed (tp gui tunjuk l=opened)
'masalah nak initialize lamp n aircond, kena ask controller on start

'Progress Note

'controller

'CTRL_SERIAL_CONNECT=complete
'CTRL_SERIAL_DISCONNECT=complete
'tgl_ctrlconnect_click=complete
'ENABLE_CTRL_OBJECT=complete

'STATUS_CTRLTX_INITIALIZATION=complete
'STATUS_CTRLRX_INITIALIZATION=complete
'STATUS_CTRLTX_REINITIALIZATION-complete
'STATUS_CTRLRX_REINITIALrZATION=complete

'MSCOMM_ctrI_oncomm= in progress

'fbus

'FBUS_SERIAL_CONNECT=complete
'FBUS_SERIAL_DISCONNECT=complete
'tgI_ibusconnect_click=complete
'ENABLE_FBUS_OBJECT=compIete

'STATUS_FBUSTX_REINITIALIZATION=complete
'STATUS_FBUSRX_REINITIALIZATION=complete

'BASE_CONVERTER=complete
'form_unload=complete
'form_resize=complete

'switches

'tgl_lamp_CIick=complete
'tgI_aircond__CI ick=complete

'send data

'WRITE_TERMINAL_STATUS=complete <- one of the component to writestatusin send data
'SWITCH_COMMAND=complete <- reflex the Ctrl tx

'Utk connection

Public ctrl_currentport
Public ctrl_currentbaudrate
Public ctrl_is_connected

Public tbus_currentport
Public fbus_is_connected
Public fbusstartdetection

'Utk data counter

Public ctrl tx counter

XXVI

APPENDIX A

Public ctrl_rx_counter

Public fbus_tx_counter
Public fbus_rx_counter

'Utk flex

Public ctrl_row_rx_counter
Public ctr!_row__tx_counter

'Utk array device status
'device_status_array(device_type,device_no)
Dim device_status_array(4,2)

'Utk atasi masalah togglebutton
Public serialcommand_dir

Private Sub Form_LoadO

'Constant utk form resize property
tinggiformjama = Height
tinggi_form_baru = 0
lebar_form_lama = Width
lebar_form_baru = 0
constraint_tinggi - 7245
constraintjebar = 9255

'All initialization

Call FORMJNITIALIZATION

Call STATUS_CTRLTXJNITIALIZATION
Call STATUS_CTRLRX_INITIALIZATION

Call ENABLE_CTRL_OBJECT(False)
Call ENABLE_FBUSJ)BJECT(False)

'Load Form2

Form2.ShowO,Me

'Write status

textmessage= Me.Caption& " started"
WRITE_STATUS (textmessage)
textmessage = "Controller connection hasnot yet beenestablished"
WRITE_STATUS (textmessage)
textmessage= "FBUS connection has not yet been established"
WRITE_STATUS (textmessage)

'testaje
'Call WRITEJTERMrNAL_STATUS(l, "testaje")
'CallWRITE_TERMiNAL_STATUS(l, "testaje")
Call WRITE_TERMINAL_STATUS(1, "testaje")
Call WRITE_TERMINAL_STATUS(1, "testaje")
Call WRITE_TERMINAL_STATUS(2, "testaje")
Call WRITE_TERMPWAL_STATUS(2, "testaje")
Call WRITE_TERMINAL_STATUS(3, "testaje")
Call WRITE_TERMINAL_STATUS(3, "testaje")
Call WRITE_TERMINAL_STATUS(4, "testaje")
Call WRITE_TERMINAL„STATUS(4, "testaje")
'Call SWITCH_COMMAND(l, 1,1)
'Call SWITCH_COMMAND(l, 0, 1)

'tglctrlconnect.Value = True
End Sub

'COMPLETE-CHECKED

Private Sub Form_Unload(Cancel As Integer)
Call CTRL_SERIAL_DISCONNECT
Call FBUS_SERIAL_DISCONNECT

End Sub

Private Sub FORMJNITIALIZATIONQ

XXV11

APPENDIX A

'Initialization

Me.Caption = AppTitle& "v"& App.Major & "." & App.Minor & App.Revision

'Combo box initialization

'Put value in the combo box

array_ctrlport = Array("l", "2")
array_fbusport= Array("l", "2")

For count1 = 0 To 1

cmb_ctrlport.List(countl)= array_ctrlport(countI)
Next

For countl = 0 To 1

cmb_fbusport.List(countl)= array_fbusport(countl)
Next

'Set initial value
cmb_ctr!port.ListIndex = 0
cmb_fbusport.ListIndex = 1

'Set initial global value
ctrl_currentport = cmb_ctrlport.List(cmb_ctrlport.ListIndex)
ctrl_currentbaudrate = "9600"

fbuscurrentport = cmb_fbusport.List(cmb_fbusport.ListIndex)

ctrl_is_connected = False
fbus_is_connected = False
fbus_start_detection = False

ctrl_tx_counter - 0
ctrl_rx_counter = 0
fbus_tx_counter = 0
fbus_rx_counter = 0

'Set initial device status

'0=OFF,10N
'O=closed,l=opened
For countl - 0 To 3

For count2 = 0 To 1

device_status_array(countl, count2) = 0
Next

Next

'serialcommand_dir=0 (dtg dr komp), serialcommand_dir=l (dtgdr controller)
serialcommand_dir = 0

End Sub

'COMPLETE-CHECKED

Private Sub STATUS_CTRLTX_INITIALIZATION()

ctrl_row_tx_counter = 0

'Column Width

Form2.flex_ctrIstatus_tx.ColWidth(0, 0) = 500
Form2.flex_ctrIstatus_tx.ColWidth(l,0)= 400
Form2.flex_ctrlstatus_tx.CoIWidth(2, 0) = 400
Form2.flex_ctrlstatusJx.CoIWidth(3,0) = 400
Form2.flex_ctrlstatus_tx.ColWidth(4, 0) - 820
Form2.flex_ctrlstatus_tx.ColWidth(5, 0) - 500

'Write title

Form2.flex_ctrlstatus_tx.TextMatrix(0, 0) = "No"
Form2.flex_ctrlstatus_tx.TextMatrix(0,1) = "Set"
Form2.flex__ctrlstatus_tx.TextMatrix(0, 2) = "Byte"
Form2.flex_ctrlstatus_tx.TexfMatrix(0,3) = "Dec"
Form2.flex_ctrlstatus_tx.TextMatrix(0, 4) = "Bin"
Form2.flex_ctrlstatus_tx.TextMatrix(0, 5) = "Hex"

'Alignment

XXV111

APPENDIX A

Form2.flex_ctrlstatus_tx.CoIAlignmentFixed(0) = 4
Form2.flex_ctrlstatus__tx.ColAlignmentFixed(l) = 4
Form2.fIex_ctristatus_tx.ColAlignmenfFixed(2) = 4
Form2.fIex_ctrlstatus_tx.ColAlignmentFixed(3) = 4
Form2.flex_ctrlstatus_tx.ColAlignmentFixed(4) = 4
Form2.flex_ctrlstatus_tx.ColAlignmentFixed(5) = 4

Form2.flexj:trlstatus_tx. ColAlignment(2)= 1

End Sub

'COMPLETE-CHECKED

Private Sub STATUS_CTRLRX_INITIALIZATION()

ctrl_row_rx_counter = 0

'Column Width

Form2.flex_ctrlstatus_rx.ColWidfh(0, 0) = 500
Form2.flex_ctrlstatus_rx.ColWidm(l, 0) = 400
Form2.flex_ctrlstatus_rx.ColWidth(2, 0) = 400
Form2.flex_ctrlstatus_rx.ColWidth(3, 0) = 400
Form2.flex_ctrlstatus_rx.ColWidth(4, 0) = 820
Form2.flex_ctrIstatus_rx.ColWidth(5, 0) = 500

'Write title

Form2.flex_ctrlstatus_rx.TextMatrix(0, 0) = "No"
Form2.flex_ctrlstatus_rx.TextMatrix(0, I) = "Set"
Form2.flex_ctrlstatus_rx.TextMatrix(0, 2) = "Byte"
Form2.flex_ctrlstatus_rx.TextMatrix(0,3) = "Dec"
Form2.flex_ctrlstatus_rx.TextMatrix(0, 4) = "Bin"
Form2.flex_ctrlstatus_rx.TextMatrix(0, 5)= "Hex"

'Alignment
Form2.flex_ctrlstatus_rx.ColAIignmenfFixed(0) = 4
Form2.flex_ctrIstatus_rx.CoIAlignmentFixed(l) = 4
Form2.flex_ctrtstatus_rx.ColAIignmentFixed(2) = 4
Form2.flex_ctrlstatus_rx.ColAlignmentFixed(3) = 4
Form2.flex_ctrIstatus_rx.ColAlignmentFixed(4) = 4
Form2.flex_ctrlstatus_rx.ColAlignmentFixed(5) = 4

Form2.flex_ctrlstatus_rx.ColAIignment(2) = 1

End Sub

'COMPLETE-CHECKED

Public Sub STATUS_CTRLTX_REINITIALIZATION()

ctrl_row_tx_counter = 0

Form2.txt_ctrlstatus_tx.TextRTF =""

Form2.flex_ctrlstatus_tx.Rows = 2
Form2.flex_ctrlstatus_tx.TextMatrix(l, 1) =""
Form2.flex_ctrlstatus_tx.TextMatrix(l, 2) = ""
Form2.flex_ctrlstatus_tx.TextMatrix(lJ 3) =""
Form2.flex_ctrlstatus_tx.TextMatrix(l, 4) =""
Form2.flex_ctrlstatus_tx.TextMatrix(l, 5) =""

End Sub

'COMPLETE-CHECKED

PublicSubSTATUS_CTRLRX_REINITIALIZATION0

ctrl_row_rx_counter = 0

Form2.txt_ctrlstatus_rx.TextRTF -""

Form2.flex_ctrlstatus_rx.Rows = 2
Form2.flex_ctrlstatus_rx.TextMatrix(l, 1)=""
Form2.flex_ctrlstatus_rx.TextMatrix(l, 2) =""

XXIX

APPENDIX A

APPENDIX A

Form2.flex_ctrlstatus_rx.TextMatrix(I, 3) =""
Form2.flexj;trlstatus_rx.TextMatrix(l, 4) =""
Form2.flex_ctrlstatus_rx.TextMatrix(l, 5) =""

End Sub

'COMPLETE-CHECKED

PublicSub STATUS_FBUSTX_RETNITIALIZATION0

Form2.txt_fbusstatus_tx.TextRTF =""

End Sub

'COMPLETE-CHECKED
Public Sub STATUS_FBUSRX_REINITIALIZATION()

Form2.txt_lbusstatus_rx.TexfRTF =""

End Sub

'COMPLETE-CHECKED

Private Sub cmd_close_Click()
Unload Me

End Sub

'COMPLETE-CHECKED

Private Sub cmd_showdata_ClickO
Form2.Show 0, Me

End Sub

'COMPLETE-CHECKED

Private Sub cmdjshowascii_Click()
Form3.ShowO,Me

End Sub

'COMPLETE-CHECKED

Private Sub cmd_showserial_Click()
Form4.Show 0, Me

End Sub

'COMPLETE-CHECKED

Private Sub cmb_ctrlport_C!ick()
ctrl_currentport = cmb_ctrIport.List(cmb_ctrlport.ListIndex)

End Sub

'COMPLETE-CHECKED

Private Sub cmb_fbusport_ClickO
fbus_currentport = cmb_fbusport.List(cmb_fbusport.ListIndex)

End Sub

'COMPLETE-CHECKED

Private Sub WRITE_STATUS(textmessage)
msg_datetime = Format(Now, "dd/mm/yyyy hh:mm:ss")
txt_status.TextRTF - "{" &txt_status.TextRTF & "\fi-2160\li2160\b "&msg_datetime & "\bO\tab "&textmessage & "\par}'
tx_status.TextRTF = "{" & txt_status.TextRTF& "\n}"
tx _sratus.SelStart= Len(txt_status.TextRTF)

End Sub

'COMPLETE-CHECKED
Private Sub ENABLE_CTRL_OBJECT(status_object As Boolean)

If status_object = True Then
For countl = 0 To 1

tgl_lamp(countl).Enabled = True
tgl_aircond(countl).Enabled= True
txt_door(countl).Enabled= True
txt_roomdoor(countl).Enabled= True

ledJamp(countl).FillColor- &HFF&
led_aircond(countl).FillColor= &HFF&
led_door(countl).Fi!IColor = &HFF&

XXX

Ied_roomdoor(countl).FillColor = &HFF&
Next

cmb_ctrIport.Enabled = False
Elself status_object = False Then

serialcommanddir -1

For countl = 0 To I

tgllamp(countl).Value = False
tgl_aircond(countl).Value = False

tgl_lamp(countl).Caption = "Turn ON"
tg!_aircond(countI).Caption = "Turn ON"

tgljamp(countl)Enabled = False
tgl_aircond(countl).Enabled = False

txt_door(countl).Enabled= False
txt_roomdoor(countl).Enabled= False

txt_door(countl).Text= "Closed"
txt_roomdoor(countl).Text = "Closed"

ledJamp(countl).FillColor = &HFF8080
led_aircond(countl).FillColor= &HFF8080
led_door(countl).FiIlCoIor = &HFF8080
led_roomdoor(countl).FillColor- &HFF8080

Next

serialcommand_dir = 0

cmb_ctrlportEnabled = True
End If

End Sub

'COMPLETE-CHECKED
Private SubENABLE_FBUSJ)BJECT(statusjjbjectAs Boolean)

If status_object= True Then
txt_provname.Enabled = True
txt_provsmsc.Enabled - True
txt_provcountry.EnabIed = True
txt_provcode.Enab!ed = True
txtjvwdate. Enabled = True
txtjiwtime.Enabled = True

cmb_fbusport.Enabled = False

Elself status_object = False Then
txt_provnameEnabled = False
txt_provsmsc.Enabled= False
txt_provcountry.Enabled = False
txt_provcode.Enabled = False
txtJrwdate.Enabled = False
txt_hwtime. Enabled = False

cmb_fbusport.Enab!ed = True

End If

End Sub

'COMPLETE-CHECKED

Private Sub cmd_clrstatus_Click()
txt_status.TextRTF-""

End Sub

'COMPLETE-CHECKED

Private Sub tgl_lamp_Click(Index As Integer)

If serialcommand_dir = 0 Then
If tgljamp(lndex) = True Then

XXXI

APPENDIX A

tgl_lamp(Index).Caption = "Turn OFF"
Call SWITCH_COMMAND(0, Index, 1)

Elself tgl_lamp(Index) = False Then
tgI_lamp(Index).Caption = "Turn ON"
Call SWITCH_COMMAND(0, Index, 0)

End If

End If

End Sub

'COMPLETE-CHECKED

Private Sub tgl_aircond_CIick(Index As Integer)

If serialcommand_dir = 0 Then
If tgl_aircond(Index) = True Then

tgl_aircond(Index).Caption = "Turn OFF"
Call SWITCH_COMMAND(l, Index, 1)

Elself tgl_aircond(Index) = False Then
tgl_aircond(Index).Caption = "Turn ON"
Call SWITCH_COMMAND(l, Index, 0)

End If

End If

End Sub

'COMPLETE-CHECKED

Private Sub tgl_ctr!connect_ClickO

'Connect

If tgl_ctrlconnect.Value = True Then

tgl_ctrlconnect.Caption = "Disconnect"
Call CTRL_SERIAL_CONNECT

'Ifsuccesful

If ctrl_is_connected= True Then

'Reset counter

ctrl_tx_counter= 0
ctrI_rx_counter = 0
'Enable object
Call ENABLE„CTRL_OBJECT(True)

'Reset flex

CallSTATUS_CTRLTX_REINlTIALIZATION
Call STATUS_CTRLRX_REINITIALIZATION

'Acquire device status
Call CONTROLLER_ACQUIREJNFO

'If still not connected

Elself ctrl_is_connected = False Then

'Disable object
Call ENABLE_CTRL_OBJECT(FaIse)
tgl_ctrlconnect.Caption = "Connect"
'Turn OFF button back

tgl_ctrlconnect.Value - False

End If

'Disconnect

Elself tgl_ctrlconnect.Value = False Then

'Reset initial device status

'0=OFF,10N
'0-closed,l=opened
For countl = 0 To 3

For count2 - 0 To 1

device_status_array(countl, count2) = 0
Next

Next

XXX11

APPENDIX A

APPENDIX A

'Disable object
Call ENABLE_CTRL_OBJECT(False)
tgl_ctrlconnect.Caption = "Connect"
Call CTRL_SERIAL_DISCONNECT

End If

End Sub

'Belum siap
Private Sub MSComm_ctrl_OnComm()

Dim rcv_string As String

Select Case MSComm_ctrl.CommEvent
Case comEvReceive

'On receive data...

rcv_string = MSComm_ctrI. Input

'Process rev data

Call SWITCH_REPLY(rcv_string)
End Select

End Sub

'COMPLETE-CHECKED

Private Sub CTRL_SERIAL_CONNECT()
'set the active serial port
MSComm_ctrl.CommPort = ctrl_currentport

'set the baudrate,parity,databits,stopbits for the connection
MSComm_ctrl.Settings = ctrl_currentbaudrate & ",N,8,1"

'set the DTR and RTS flags
MSComm_ctrl.DTREnable = False
MSComm_ctrl.RTSEnable = False

'enable the oncomm event for every received character
'RThreshold=l,comEvReceive=enabled
'RThreshold=0,comEvReceive=disabled
MSComm_ctrl.RThreshold = 1

'disable the oncomm event for send characters
'SThreshold=l,comEvSend=enabled
'SThreshold=0,comEvSend=disabIed
MSComm_ctrl.SThreshold = 0

'Write status

textmessage= "Connectingto controller..."
WRITE_STATUS (textmessage)

On Error GoTo errorhandler
'open the serial port
MSComm_ctrl.PortOpen = True
ctrl_is_connected = True

'Write status
textmessage = "Serial connection tothecontroller hasbeen established successfully onPort " &ctrl_currentport & " in "&

ctrl_currentbaudrate & " baudrate"
WRITE_STATUS (textmessage)

'This exitsubis to prevent the normal flow (without error) goesintoerrorhandler
Exit Sub

errorhandler:

AI = MsgBox(Err.Description &vbCrLf & "[Error no. = "&Err.Number & "]", vbExclamation, "Error")
ctrl_is_connected = False

'Write status

XXX111

textmessage= Err.Description& ". Serial connectionattemptto the controllerfailed"
WRITE^STATUS (textmessage)

End Sub

'COMPLETE-CHECKED

PrivateSub CTRL_SERIAL_DISCONNECT()

'Close port if and only if it is currently connected
If ctrl_is_connected = True Then

'Write status

textmessage= "Disconnecting from controller..."
WRITE_STATUS (textmessage)

MSCommctrl.PortOpen = False
ctrl_is_connected = False

'Write status

textmessage= "Serial connection to the controllerhas been closed"
WRITE_STATUS (textmessage)

End If

End Sub

'COMPLETE-CHECKED

Private Sub tgl_fbusconnect_CHck()

'Connect

If tgMbusconnect. Value = True Then

tgl_fbusconnect.Caption = "Disconnect"
Call FBUS_SERIAL_CONNECT

'Ifsuccesful

If fbus_is_connected = True Then

'Reset counter

fbus_tx_counter = 0
fbus_rx_counter = 0
'Enable object
Call ENABLE_FBUS_OBJECT(True)
'Acquire info
Call FBUS_ACQUIRE_TNFO(0)
'Delete old msg
Call SERVERJNITIALIZATION

'Reset flex

Call STATUS_FBUSTX_REINITIALIZATION
Call STATUS_FBUSRXJREINITIALIZATION

'Start detection

fbus_start_detection = True

'If still not connected

Elself fbus_is_connected = False Then

'Disable object
Call ENABLE_FBUS_OBJECT(False)
tgl_fbusconnect.Caption = "Connect"
'Turn OFF button back

tgMbusconnect.Value = False

End If

'Disconnect

Elself tgl_fbusconnect.Value = False Then

'Disable object
Call ENABLE_FBUS_OBJECT(False)

XXXIV

APPENDIX A

APPENDIX A

tgl_fbusconnect.Caption = "Connect"
Call FBUS_SERIAL_DISCONNECT

End If

End Sub

'COMPLETE-CHECKED

Private Sub FBUS_SER1AL_C0NNECT()

'Write status
textmessage = "Connecting to server's FBUS..."
WR1TE_STATUS (textmessage)
DoEvents

On Error GoTo errorhandler

'open the serial port
MFBUS15Controll.Connect "COM" & fbusjcurrentport
fbus_is_connected = True

'Write status

textmessage = "Serial connection to the server's FBUS hasbeen established successfully on Port" & ibus_currentport & " in
I15200baudrate"

WRITE_STATUS (textmessage)

This exit sub is to prevent the normal flow (without error) goes into errorhandler
Exit Sub

errorhandler:

AI =MsgBox(Err.Description, vbExclamation, "Error")
ibus_is_connected = False

'Write status

textmessage = Err.Description & ". Serialconnection attempt to the server's FBUSfailed"
WRITE_STATUS (textmessage)

End Sub

'COMPLETE-CHECKED

Private Sub FBUS_SERIAL_DISCONNECT()

'Close port if and only if it is currentlyconnected
If fbus_is_connected = True Then

'Write status

textmessage= "Disconnectingfrom server's FBUS..."
WRITE_STATUS (textmessage)
DoEvents

MFBUSlSControll.Disconnect

fbus_is_connected = False

'Write status

textmessage = "Serial connection to the server's FBUS has been closed"
WRITE_STATUS (textmessage)

End If

End Sub

txt_provname.Text= MFBUS15Control 1.ProviderName
txt_provsmsc.Text - MFBUS15Control1.ProviderSMSC
txt_provcountry.Text = MFBUS15ControlI.ProviderCountry
txtjrovcode.Text = MFBUS15Control1.ProviderCode
txt_hwdate.Text = Format(MFBUS15Controll.DateTime, "DD/MM/YYYY")
txt_hwtime.Text = Format(MFBUS15Controll.DateTime, "hh:mm:ss")

'Write status

textmessage = "Information from server's FBUS succesfully retrieved..."
WRITE_STATUS (textmessage)

XXXV

Elself data_type = 1 Then
txtJiwdate.Text = Format(MFBUS15Controll.DateTime,"DD/MM/YYYY")
txt_hwtime.Text= Format(MFBUS15Controll.DateTime,"hh:mm:ss")

End If

End If

End Sub

'COMPLETE-CHECKED

Private Sub CONTROLLER_ACQUIREJNFO()

ctrl_tx_array= Array(&HAA, &H0, &H0, &H0, &H0, &H0, &H0, &H0, &HFF)

'Append all bytes again
commandjnessage =""
For countl =0To8

commandjnessage= command_message & Chr(ctrl_tx_array(countl))
Next

'Write status

textmessage= "Retrievinginitial device status from controller..."
WRITE_STATUS (textmessage)

'Send via serial to controller!

MSCommctrl.Output = command_message

'Increase transmit counter

ctrl_tx_counter = ctrltxcounter + 1
'Write status and flexgrid
Call WRITE_TERMINAL_STATUS(1, command_message)

End Sub

'COMPLETE-CHECKED

Private Sub Form_Resize()
'CONSTANT

lebarform = Width

tinggijbrm = Height

'Set minimum constraint for height
If tinggi_form>= constraint_tinggiThen

'Renew value

tinggi_form_baru = tinggi_form
Elself tinggi_form < constraint_tinggi Then

'Renew value

tinggi_form_baru = constraint_tinggi
End If

bezatinggijbrm = tinggi_form_baru- tinggi_form_!ama
tinggi_form_lama = tinggi_form_baru

'Reset object
cmd_close.Top = cmd_close.Top + bezatinggi_form
cmd_clrstatus.Top = cmd_clrstatus.Top + bezatinggi_form
cmd_showdata.Top = cmd_showdata.Top + bezatinggi_form
cmdshowascii.Top = cmd_showascii.Top + bezatinggi_form
cmd_showseriaI.Top = cmd_showseriaI.Top + bezatinggi_form

txt_status.Height = txt_status.Height+ bezatinggi_form
frm_status. Height = frm_status.Height+ bezatinggi_form

'Set minimum constraint for width

If lebar_form>= constraintjebar Then
'Renew value

lebar_form_baru = lebarjbrm
Elself lebar_form< constraintjebar Then

"Renew value

lebar_form_baru = constraintjebar
End If

XXXVI

APPENDIX A

bezalebarjbrm = lebar_form_baru - lebarjbrmjama
lebar_form_Iama = lebar_form_baru

'Reset object
cmd_close.Left= cmdclose.Left + bezalebarjbrm
cmd_clrstatus.Left = cmd_cIrstatus.Left + bezaiebarjbrm
cmd_showdata.Left = cmd_showdata.Left+ bezalebarjbrm
cmd_showascii.Left = cmd_showascii.Left+ bezalebarjbrm
cmd_showserial.Left = cmd_showserial.Left + bezalebarjbrm

txt_status.Width= txt_status.Width + bezalebar_form
frm_status.Width = frm_status.Width + bezalebarjbrm

txt_provname.Width = txt_provname.Width + bezalebarjbrm
txt_provsmsc.Width = txt_provsmsc.Width+ bezalebarjbrm
txt_provcountry.Width = txt_provcountry.Width + bezalebar_form
txt_provcode.Width = txt_provcode.Width + bezalebarjbrm
txtjiwdate.Width= txtJrwdate.Width + bezalebar_form
txtJiwtime.Width = txt_hwtime.Width+ bezalebarform

frmjnfo. Width= frmJnfo.Width + bezalebar_form

End Sub

'COMPLETE-CHECKED

PrivateFunctionBASE_CONVERTER(input_number, modeJrom, mode_to)

'0=Binary
'l=Decimal

'2=Hexadecimal

'Just for hex
array_hex = Array("0", "1", "2", "3", "4", "5", "6", "7", "8", "9","A", "B", "C", "D", "E","F")

'♦♦♦Convert from input base to decimal***
'dec->dec

Ifmodejrom- 1 Then

inputdecimal = input_number

'bin->dec

Elself modeJrom = 0 Then

bufferanswer = 0

For countl = 1 To Len(input_number)
accumulate = (Mid(input_number, Len(input_number) - countl + 1,1)) * (2 A(countl -1))

bufferanswer = bufferanswer + accumulate

Next

inputdecimal = bufferanswer

•hex->dec

Elself mode from = 2 Then

bufferanswer - 0

For countl = 1 To Len(input_number)

Forcount2 = 0Tol5

If array_hex(count2) = (UCase(Mid(inputjiumber, Len(input_number) - countl + 1,1))) Then
chartoint = count2

Exit For

End If

Next

accumulate = chartoint * (16 A(countl -1))

XXXV11

APPENDIX A

bufferanswer = bufferanswer + accumulate

Next

inputdecimal = bufferanswer

End If

'♦♦♦End conversion***

'***Convertfrom decimal to required base***
'dec->dec

If modeJo = 1 Then

returnvalue = inputdecimal

'dec->bin

Elselfmodejo = 0 Then

bufferanswer-""

bufferinput = inputdecimal

Do

remainder = ((bufferinput / 2) - Int(bufferinput / 2)) * 2

bufferanswer = remainder & bufferanswer

bufferinput = Int(bufferinput / 2)

If bufferinput = 0 Then Exit Do
Loop

returnvalue = bufferanswer

'dec->hex

Elselfmodejo = 2 Then

bufferanswer-""

bufferinput= inputdecimal

Do

remainder= ((bufferinput/ 16)-Int(bufferinput/ 16)) * 16

bufferanswer= array_hex(remainder) & bufferanswer

bufferinput = Int(bufferinput /16)

If bufferinput = 0 Then Exit Do
Loop

returnvalue = bufferanswer

End If

'***End conversion***

BASE_CONVERTER = returnvalue

End Function

'COMPLETE-CHECKED
Private Sub SWITCH_COMMAND(device_type, devicejio, onoff_state)

•Note

'device_type=0 lamp
'device_type=l aircond
'device_no=0 device number 1
'devicejio-! device number 2
'onoff state=0 turn OFF

XXXV111

APPENDIX A

'onoff_state=l turn ON

'General terminal->controller commands

'Set again for the 2nd,3rd and 4th last bytes
'2nd last byte=ON/OFF
'3rd last byte=device no
'4th last byte=device type
ctrI_tx_array = Array(&HAA, &H3, &H16, &H1, &H4, &H0, &H0, &H0, &HFF)
ctrl_tx_array(5) = device_type
ctrl_tx_array(6) = device_no
ctrl_tx_array(7) = onoff_state

'Append all bytes again
command_message ~-""
For countl =0To 8

command_message = command_message & Chr(ctrl_tx_array(countl))
Next

'Send via serial to controller!

MSComm_ctrl.Output = command_message

'Write status

Select Case devicejype
CaseO

devicejype_desc = "Lamp"
Casel

devicejype_desc - "Air-conditioner"
End Select

Select Case device_no
CaseO

device_no_desc = "1"
Casel

device_no_desc = "2"
End Select

Select Case onoff_state
CaseO

onoff_state_desc = "OFF"
Casel

onoff_state_desc = "ON"
End Select

textmessage = "Switching"& onoffjstate_desc& "" & devicejype_desc & "" & device_no_desc &
WRITEJSTATUS (textmessage)

'Increase transmit counter

ctrl_tx_counter = CtrlJx__counter+ 1
"Write status and flexgrid
Call WRITE_TERMTNAL_STATUS(1, commandjnessage)

End Sub

'COMPLETE-CHECKED

Private Sub SWITCH_REPLY(rcv_string)

'Increase receive counter

ctrl_jx_counter = ctrl_rx_counter + 1
'Write status

Call WRITE_TERMINAL_STATUS(2, rcv_string)

cmd_group= Asc(Mid(rcv_string, 1,1))
devicejype = Asc(Mid(rcv_string, 2, 1))
device_no = Asc(Mid(rcv_string, 3, 1))
onoff_status - Asc(Mid(rcv_string, 4,1))

If cmd_group = 3 Then

serialcommand_dir = 1
•Note

'Lamp & Aircond (0=OFF,1=ON)
'Door & roomdoor (0=Closed,l=Open)

XXXIX

APPENDIX A

'LAMP

If devicejype = 0 Then
If onoff_status = 0 Then

'Up button
tgI_lamp(device_no).Value = False
tgl_lamp(devicejio).Caption = "Turn ON"
'Red

led_lamp(devicejio).FillColor = &HFF&

'Write status

textmessage = "Lamp " & (devicejio + 1) & " has beenturnedOFF"
WRITE_STATUS (textmessage)

Elself onoff_status - 1 Then
'Down button

tgl_lamp(devicejio).Value - True
tglJamp(device_no).Caption = "Turn OFF"
'Green

led_lamp(devicejio).FillColor - &HFF00&

'Write status

textmessage= "Lamp " & (devicejio + 1) & " has been turned ON"
WRITEJSTATUS (textmessage)

End If

'AIRCOND

Elself devicejype = 1 Then
If onoff_status = 0 Then

'Up button
tgljjircond(device_no).Value = False
tgI_aircond(device_no).Caption = "TurnON"
'Red

ledjiircond(device_no).FillColor = &HFF&

'Write status

textmessage= "Air-conditioner" & (devicejio + 1)& " has been turned OFF"
WRITE_STATUS (textmessage)

Elself onoff_status = 1 Then
'Down button

tgl_aircond(device_no).Value = True
tgl_aircond(devicejio).Caption = "TurnOFF"
'Green

led_aircond(devicejio).FMColor = &HFF00&

'Write status

textmessage = "Air-conditioner" & (devicejio + 1)& "has beenturnedON"
WRITE_STATUS (textmessage)

End If

'DOOR SENSOR

Elself devicejype = 2 Then
If onoff_status = 0 Then

txt_door(device_no).Text = "Closed"
'Red

led_door(device_no).FilIColor - &HFF&

'Write status

textmessage= "Door " & (devicejio + 1) &" has been closed"
WRITE_STATUS (textmessage)

Elself onoff_status = 1 Then
txt_door(device_no).Text = "Opened"
'Green

led_door(device_no).FillColor = &HFF0O&

'Write status

textmessage= "Door" & (devicejio + 1) & " has been opened"
WRITE_STATUS (textmessage)

End If

Xl

APPENDIX A

APPENDIX A

'ROOM-DOOR SENSOR

Elself devicejype = 3 Then
If onoff_status - 0 Then

txt_roomdoor(devicejio).Text = "Closed"
'Red

led_roomdoor(devicejio).FiIIColor = &HFF&

'Write status

textmessage= "Room door" &, (devicejio + 1) & " has been closed"
WRITE_STATUS (textmessage)

Elself onoff_status = 1 Then
txtjoomdoor(device_no).Text = "Opened"
'Green

led_roomdoor(device_no).FilIColor = &HFFO0&

'Write status

textmessage= "Room door" & (devicejio + 1) & " has been opened"
WRITE_STATUS (textmessage)

End If

End If

serialcommandjiir = 0

'Change status
device_status_array(device_type, devicejio) = onoffjtatus

'testaje
'textmessage = "device_status_array(" & devicejype & ","& device_no & ")=" & device_status_array(devicejype, device_no)
'WRITE_STATUS (textmessage)

Elself cmd__group = 0 Then

'Complete initial device status retrieval
If devicejype = 0 And devicejio = 0 And onoff_status = 0 Then

textmessage= "Initialdevice status has been retrieved"
WRITE_STATUS (textmessage)
textmessage = "Controller is ready"
WRITE_STATUS (textmessage)

End If

End If

End Sub

'COMPLETE-CHECKED

Private SubWRITE_TERMINAL_STATUS(flexJd, data_string)

"Note

'flex_id=l controller tx
'flexjd=2 controller rx
'flexjd=3 fbus tx
'flexjd=4 fbus rx

Dim flexjnitput As Object
Dim txt_output As Object

'Check for flexjd
Select Case flexjd

Casel

Set flex_output = Form2.flex_ctrlstatus_tx
Set txt_output = Form2.txt_ctristatus_tx
data_counter= ctrl_tx_counter
row_counter = ctrl_row_tx_counter

Case 2

Set flex_output= Form2.flexj;trlstatus_rx
Set txt_output= Form2.txt_ctrlstatusjx
data counter = Ctrl rx counter

xli

row_counter = ctrl_row_rx_counter

Case 3

Set txt_output = Form2.txtJbusstatusjx
data_counter = fbus_tx_counter

Case 4

Set txt_output = Form2.txtJbusstatus_rx
data_counter = fbus_rx_counter

End Select

If flexjd = 1 Or flexjd = 2 Then
'Start write status

textmessage = "Set" & data_counter & " (" & Len(data_string) & "bytes)= ["

'Run conversion to flexgrid
If Len(data_string) > 0 Then

flex_output.Rows = flex_output.Rows + Len(data_string)

For countl = 1 To Len(data_string)
•Number

flexjjutput.TextMatrix(row_counter + countl, 0) = row_counter + countl

'Set

flex_output.TextMatrix(row__counter + countl, 1)= data_counter

'Byte
flex_output.TextMatrix(row_counter + countl, 2) = (Mid(data_string, countl, 1))

'Decimal

flex_output.TextMatrix(row_counter + countl,3) = Asc(Mid(data_string, countl, 1))

'Binary
bufferl =BASE_CONVERTER(Asc(Mid(data_string, countl, 1)), 1,0)
IfLen(bufferl)<8Then

loopadd= 8 - Len(bufferl)

For count2 = 1 To loopadd
bufferl = "0" & bufferl

Next

End If

flexj?utput.TextMatrix(row_counter+ countl, 4) = bufferl

'Hex

buffer2 = BASE_CONVERTER(Asc(Mid(data_string, countl, 1)), 1,2)
IfLen(buffer2)<2Then

loopadd = 2 - Len(buffer2)

For count2 = 1 To loopadd
buffer2 = "0" & buffer2

Next

End If

flex_output.TextMatrix(row_counter + countl, 5) = "Ox" & buffer2

'Continue to write status

textmessage - textmessage & " Ox"& buffer2
Next

'Finally update actual public data
'Check for flexjd
Select Case flexjd

Casel

CtrljowJx_counter = ctrljowjxjiounter + Len(data_string)
Case 2

Ctrljowjxjxmnter = ctrl_rowj7c_counter + Len(data_string)
End Select

End If

'Continue to write status

xlii

APPENDIX A

APPENDIX A

msgjlatetime = Format(Now, "dd/mm/yyyy hh:mm:ss")
txt_output.TextRTF = "{"& txt_output.TextRTF & "\fi-2I60\li2160\b "& msgjlatetime& "\b0\tab " &. textmessage & "]\par}'
txtj>utput.TextRTF= "{" & txt_output.TextRTF & "\n}"
txt_output.SelStart = Len(txt_output.TexfRTF)

Elself flexjd = 3 Or flexjd = 4 Then

"Write status

textmessage= "Set " & data_counter & " (" & Len(datajitring) & " bytes) = '" & data_string & '""

msg_datetime = Format(Now,"dd/mm/yyyyhh:mm:ss")
txt_output.TextRTF = "{"& txt_output.TextRTF & "\fi-2160\Ii2160\b " & msg_datetime & "\bO\tab "& textmessage & "\par}"
txtjHitput.TexfRTF= "{" & txt_output.TextRTF & "\n}"
txtjJutput.SelStart = Len(txt_output.TextRTF)

End If

End Sub

Private Sub Timerl_Timer()
This is date & time updater!
If fbus_is_connected Then

'Acquire time n date only
Call FBUS_ACQUIREJNFO(l)

End If

End Sub

Private Sub Timer2_TimerO
This is received msg detector

If fbusjs_connected And fbus_start_detection Then
*Need to refresh first

MFBUS 15ControI 1.SMS.Refresh

'Scan how many msg in inbox
msg_qty= MFBUS15Controll.SMS.Inbox.Count

'Write status

textmessage - "Number of messages^ " & msg_qty
WRITEJSTATUS (textmessage)

Ifmsg_qty>OThen
'Read only the first msg!!!
'Write status
msg_sender_no = MFBUS15Controll.SMS.Inbox.ltem(l).Sender
msg_text = MFBUS15Controll.SMS.Inbox.Item(l).Text
'msg_date = Format(MFBUS15Controll.SMS.Inbox.Item(l).DateTime, "DD/MM/YYYY")
'msg_time = Format(MFBUS15ControIl.SMS.Inbox.Item(l).DateTime, "hh:mm:ss")

'Increase receive counter

fbus_rx_counter = fbus_rx_counter+ 1

'Write status

textmessage= "Commandmessage " & fbusjxj;ounter & " has been received.Sender=" & msg_sender_no & ", Message^ "
& msgjext

WRITE_STATUS (textmessage)

'Write terminal status

commandjnessage = msgjext
Call WRITEJTERMINAL_STATUS(4, commandjnessage)
DoEvents

Call SMS_MESSAGEJPROCESSOR(msg_text, msg_senderjio)

'Delete the first msg (tak kisah berapa byk yg sampai)
•Next msg will be execute next cycle
MFBUS15Controll.SMS.Inbox.Item(l).Delete

End If

xliii

End If

End Sub

Private Sub SMS_MESSAGEJ,ROCESSOR(sms_string, senderjio)

If fbus_is_connected And fbus_start_detection Then

'Convert to uppercase
smsjstringjicase = UCase(sms_string)

'Check commands

Select Case sms_string_ucase
'System info commands
Case "I-UTP ACAD22 SYSTEM TNFO"

If CtrlJs_connected - True Then

sendjnsg = "I-UTP ACAD22-01 -04 System OK"
MFBUSI5ControlI.SMS.SendMessage senderjio, sendjnsg

Elself ctrI_isj;onnected = False Then

sendjnsg = "I-UTP ACAD22-01-04 System not OK.Terminal is disconnected fromController"
MFBUSI5Controll.SMS.SendMessage senderjio, sendjnsg

End If

Figure A-16: Visual Basic Code

xliv

APPENDIX A

U
9

£
i
l
&

I
V

I
A

I
^

U
A

I
j

P
R

O
C

E
S

S
/P

R
O

C
E

D
U

R
E

P
C

/M
O

N
I
T

O
R

/F
-B

U
S

S
E

R
V

E
R

/V
B

P
I
C

C
O

N
T

R
O

L
L

E
R

/D
E

V
I
C

E
S

M
O

B
I
L

E
P

H
O

N
E

S
o

ft
w

a
re

In
st

a
ll

a
ti

o
n

1.
C

o
p

y
I-

U
T

P
B

ui
ld

in
g

C
on

tr
ol

fo
ld

er

a
n

d
A

c
ti

v
e
X

in
st

a
ll

a
ti

o
n

fo
ld

e
r

to

de
sk

to
p

2.
O

pe
n

th
e

A
ct

iv
eX

in
st

al
la

ti
on

fo
ld

er

3
.

F
o

ll
o

w
th

e
in

st
ru

c
ti

o
n

in
th

e
R

e
a
d

m
e

te
x

t
fi

le

4.
O

pe
n

th
e

pa
ck

ag
e

fo
ld

er

5.
R

u
n

th
e

S
et

up
fi

le

6
.

W
a
it

u
n

ti
l

in
st

a
ll

a
ti

o
n

fi
n

is
h

e
s

7.
T

o
op

en
th

e
so

ft
w

ar
e,

cl
ic

k
S

ta
rt

,

pr
og

ra
m

an
d

fi
nd

i-
U

T
P

B
ui

ld
in

g

C
o

n
tr

o
l

H
a
rd

w
a
re

In
st

a
ll

a
ti

o
n

1.
C

on
ne

ct
C

o
m

P
or

t
1

to
th

e
se

ri
al

po
rt

lo
c
a
te

d
a
t

th
e

c
ir

c
u

it

2
.

C
o

n
n

e
c
t

C
o

m
P

o
rt

2
to

th
e

F
-B

u
s

-

S
e
rv

e
r

3.
O

p
en

th
e

so
ft

w
ar

e,
cl

ic
k

st
ar

t,

pr
og

ra
m

an
d

i-
U

T
P

B
ui

ld
in

g
C

on
tr

ol

4
.

C
o

n
n

e
c
t

th
e

c
o

n
tr

o
ll

e
r

c
o

n
n

e
c
ti

o
n

5
.

C
o

n
n

e
c
t
th

e
F

-B
u

s
C

o
n

n
e
c
ti

o
n

->
T

ur
n

on
th

e
po

w
er

su
pp

ly
to

th
e

c
ir

c
u

it

(S
er

ve
rs

en
d

Pr
ov

id
er

Se
rv

er
^

In
fo

rm
a
ti

o
n

to
th

e
s
o

ft
w

a
re

-
re

fe
r

to

F
ig

ur
e

4.
9

pa
ge

46
)

P
IC

se
n

d
s

c
u

rr
e
n

t
st

a
tu

s
o

f
th

e

d
e
v

ic
e
s

to
th

e
s
o

ft
w

a
re

x
lv

S
en

di
ng

S
M

S
to

co
nt

ro
l

an
d

O
pe

n
th

e
so

ft
w

ar
e,

cl
ic

k
st

ar
t,

pr
og

ra
m

m
o

n
it

o
r

d
e
v

ic
e
s

an
d

i-
U

T
P

B
ui

ld
in

g
C

on
tr

ol

C
o

n
n

e
c
t

th
e

c
o

n
tr

o
ll

e
r

c
o

n
n

e
c
ti

o
n

C
o

n
n

e
c
t

th
e

F
-B

u
s

C
o

n
n

e
c
ti

o
n

M
a
k

e
su

re
c
o

n
tr

o
ll

e
r

a
n

d
F

-B
u

s

co
nn

ec
ti

on
ha

ve
be

en
su

cc
es

sf
ul

ly
*

T
yp

e
th

e
pr

op
er

co
m

m
an

d

e
st

a
b

li
sh

e
d

E
xa

m
pl

e:
i-

U
T

P
A

C
A

D
22

-0
1-

04

sw
it

c
h

a
ir

c
o

n
d

1
o

n

(R
ef

er
to

C
o

m
m

an
d

Se
t

pa
ge

3
0

)

S
en

d
th

e
m

es
sa

ge
to

th
e

se
rv

er
's

i\
X

a
fi

-r
a

n
c
t

r
a

r
-a

't
t'

a
A

k
i
r

t
h

o
r
e
n

i
P

r
j

n
u

m
b

e
r

M
es

sa
ge

is
re

ad
by

th
e

so
ft

w
ar

e,
di

sp
la

y

th
e

m
es

sa
ge

in
th

e
S

ta
tu

s
L

og
an

d

tr
a
n

sl
a
te

it
in

to
P

IC
in

st
ru

c
ti

o
n

s

(R
ef

er
to

T
er

m
in

al
to

C
on

tr
ol

le
r

C
om

m
an

d
Se

ts
pa

ge
3

2
)

k

In
st

ru
c
ti

o
n

se
n

d
s

to
P

IC
c
o

n
tr

o
ll

e
r

p
P

IC
pr

oc
es

s
th

e
in

st
ru

ct
io

n
an

d

ta
ke

th
e

pr
op

er
ac

ti
on

E
xa

m
pl

e:
T

ur
n

on
ai

rc
on

d
1

PI
C

se
nd

s
re

sp
on

se
to

th
e

so
ft

w
ar

e

S
of

tw
ar

e
di

sp
la

ys
th

e
re

sp
on

se
o

ft
he

PI
C

<4
—

af
te

r
co

m
pl

et
in

g
ta

sk

in
th

e
S

ta
tu

s
L

og
(r

ef
er

to
4.

10
pa

ge
46

)

S
of

tw
ar

e
au

to
m

at
ic

al
ly

up
da

te
s

th
e

sw
it

ch

pa
ne

l
an

d
se

ns
or

pa
ne

l

x
lv

i

T
he

so
ft

w
ar

e
co

nv
er

tt
he

re
sp

on
se

in
to

re
pl

y
m

es
sa

ge
an

d
se

nd
s

th
e

m
es

sa
ge

to

th
e

se
nd

er
's

ph
on

e
nu

m
be

r
th

ro
ug

h
th

e

s
e
r
v

e
r

'
S

en
d

er
re

ce
iv

e
re

p
ly

m
es

sa
g

e

fr
om

se
rv

er
.

E
xa

m
pl

e:
I-

U
T

P

A
C

A
D

2
2

-0
1

-0
4

A
ir

c
o

n
d

1
h

a
s

be
en

sw
it

ch
ed

O
N

(r
ef

er
to

T
e
rm

in
a
l

to
U

se
r

C
o

m
m

a
n

d
S

e
t

pa
ge

31
)

M
an

ua
ll

y
co

nt
ro

l
de

vi
ce

s

fr
o

m
so

ft
w

a
re

o
r

c
ir

c
u

it

O
pe

n
th

e
so

ft
w

ar
e,

cl
ic

k
st

ar
t,

pr
og

ra
m

an
d

i-
U

T
P

B
ui

ld
in

g
C

on
tr

ol

C
o

n
n

e
c
t

th
e

c
o

n
tr

o
ll

e
r

c
o

n
n

e
c
ti

o
n

C
lic

k
on

th
e

ap
pr

op
ri

at
e

bu
tt

on
on

th
e

S
w

it
c
h

P
a
n

e
l

to
tu

rn
o

n
d

e
v

ic
e
s

o
n

o
r

o
ff

If
m

a
n

u
a
l

sw
it

c
h

a
t

th
e

c
ir

c
u

it
is

tu
rn

ed
o

n
o

r
o

ff
,

P
IC

se
n

d
s

U
p

o
n

re
ce

iv
in

g
re

sp
o

n
se

fr
o

m
P

IC
,

so
ft

w
ar

e
up

da
te

s
th

e
St

at
us

L
og

,
Sw

itc
h

pa
ne

l
an

d
S

en
so

r
pa

ne
l

re
sp

on
se

to
th

e
so

rt
w

ar
e

F
ig

u
re

A
-1

7:
U

se
r

M
an

ua
l

x
lv

ii

A
P

P
E

N
D

IX
B

N
o

D
e
ta

il/W
o

rk
1

3
4

!
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
S

electio
n

of
P

ro
ject

T
o

p
ic

'..{•

2
P

relim
inary

R
esearch

W
o

rk
,

•.
•"

.:

3
L

o
g

b
o

o
k

p
rep

aratio
n

/
su

b
m

issio
n

.-.
•'•'•""

"•'•'
i

'•
•

•

-

•*
'

4
S

u
b

m
issio

n
of

P
relim

inary
rep

o
rt

:
<

'••••

5
P

ro
jectW

o
rk

•
R

e
fe

re
n

c
e
/

L
ite

ra
tu

re
K

,
'

•
R

e
s
e
a
rc

h
,*?'••"

•
-
.

•
P

ractical/
L

ab
o

rato
ry

W
o

rk
>

*

6
S

u
b

m
issio

n
of

P
ro

g
ress

R
ep

o
rt

>
"

.'"».

7
P

ro
ject

W
o

rk
C

o
n

tin
u

e
-"£

"
*

•**•
':•:•,:

•*&
"
^

•'
\.

•
P

ractical/
L

ab
o

rato
ry

W
o

rk
•V".:'

'
.

•*
"

."'JVL-fi-
\

V
,'!';

•
R

e
s
e
a
rc

h
•ft"

8
S

u
b

m
issio

n
o

f
In

terim
R

ep
o

rt
D

raft
•*l

9
S

u
b

m
issio

n
o

f
Interim

R
ep

o
rt

••>

F
ig

u
re

B
-1

:
S

em
ester

1
G

an
tt

ch
art

A
P

P
E

N
D

IX
B

N
o

D
e
ta

il
/W

o
rk

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
2

0

1
R

e
s
e
a
rc

h
W

o
rk

.1
-

i•
.

.-.•
(•

2
L

o
g

b
o

o
k

p
re

p
ar

at
io

n
/s

u
b

m
is

si
o

n
-1

.
&

•-
.

•
-a

ir
'"

»'
*

"
"C

"

•
"
^

V
.-

-
-:

:
f*

^3
&

3
S

u
b

m
is

si
o

n
of

P
ro

g
re

ss
R

ep
o

rt
1

--'
•/£

/••
-••

4
P

ro
je

ct
W

o
rk

_f
c.

-2
•

A
•*

i
'

':'•
>.
'
^

:A
'''

~
:••'•

?;
•

•

•
R

e
fe

re
n

c
e
/

L
it

e
ra

tu
re

.'J
.£

1
iW

S
iW

^
£

*
JL

t
IE

71

•
R

e
s
e
a
rc

h
•'

"3
1

"•'"
K

V
I
n

s
s

.>
ll

bi
-"

'-
4*

ia
-.

.:
i;

•
P

ra
ct

ic
al

/
L

ab
o

ra
to

ry
W

o
rk

#
W

z~
i&

&
3

F
R

5
S

u
b

m
is

si
o

n
o

f
P

ro
g

re
ss

R
ep

o
rt

2
S

_-

6
P

ro
je

ct
W

o
rk

C
o

n
ti

n
u

e
T

*•
*

t
*

#
Fl

iS
n8

__
|

•
P

ra
ct

ic
al

/
L

ab
o

ra
to

ry
W

o
rk

m

7
P

re
E

D
X

P
re

s
e
n

ta
ti

o
n

8
S

u
b

m
is

si
o

n
o

f
R

ep
o

rt
D

ra
ft

9
S

u
b

m
is

si
o

n
o

f
S

o
ft

C
o

v
e
r

D
is

se
rt

a
ti

o
n

1
0

F
in

a
l

P
re

s
e
n

ta
ti

o
n

i;.
'#

-:

F
ig

u
re

B
-2

:
S

em
es

te
r

2
G

an
tt

ch
ar

t

