i-UTP Building Utilities Control using GSM - SMS Services

by

Noriza bt Zakaria
Dissertation submitted in partial fulfilment of
the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

DECEMBER 2004

Universiti Teknologi Petronas

Bandar Seri Iskandar

e 31750 Tronoh
T Perak Darul Ridzuan
w30

PN

LN

S

) QAVAP-AVL NN @Mw\ba\ﬁuﬁ %"‘6"‘"7‘-“"&’
2y KT - TNARN

CERTIFICATION OF APPROVAL

i-UTP Building Utilities Control using GSM - SMS Services

by

Noriza bt Zakaria

A project dissertation submitted to the
Electrical & Electronics Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

(Mr Moh man Zakariya)'

UNIVERSITI TEKNOLOGI PETRONAS

\

TRONOH, PERAK

December 2004

ii

CERTIFICATION OF ORIGINALITY

This is to certify that T am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

ALy,
NORIZA BT ZAKARIA
820909-02-5036
Matric ID:1642

iii

ABSTRACT

Telecommunication system is one of the major components in industry. It can be
summarized as the transmission, reception, and processing of information between
two or more locations, using either digital or analogue transmission. The rapidly
growing Global System for Mobile Communication (GSM) industry has provided the
need for further studies on its capabilities and producing more useful services. This
project will combine the Short Messaging Service (SMS) with the Peripheral
Interface Controller (PIC) capability to produce another system that will be able to
monitor and control the utilities in a certain building such as the air conditioner,
lamps and doors. This system will make building monitoring and controlling a much
easier task for the maintenance personnel. This system is also equipped with a
security features to ensure that this system will not be misused by other unauthorized

people.

The platform that this project has built offers a wide variety of other new system.
There are several projects that are being conducted using the same platform or
principal as this project which is SMS based system. Among the topics is SMS Car
Parking Payment, SMS Bill Reminder Payment Systems, Machine-to-Machine
(M2M); Mobile-to-machine and Machine-to-mobile, Home Surveillance with Mobile
Phones and Mobile Phone Based Ticketing (transportation, train, parking meters etc).
It is hoped that this system will gives benefits to the community and can be

implemented in real environment in the future.

iv

ACKNOWLEDGEMENT

I am very grateful to Universiti Teknologi Petronas for giving me a golden
opportunity to conduct my research and use the facilities and equipment provided in
the lab. My supervisor Encik Mohd Azman b Zakariya should be greatly
acknowledged for his supervision, guidance and the project plans that he had
prepared for me. I also would like to thanks all lecturers and staff who have been

very helpful in assisting me either directly or indirectly in completing this thesis.

My special tribute to Ms Siti Hawa, the lab technician for final year project for
helping me with the project. My special thanks also to my closest friend Azizan
Hashim, Wan Zaharah Mohd Nazar and other students of the Universiti Teknology
of PETRONAS for their encouragements, advises and the priceless feedbacks which
drive and motivate me and bring the best out off of me while completing tasks and

works. Their support, comment and cooperation are much appreciated.

Finally, I am forever indebted to my family for their support and encouragement
when it was most required. A final word of thanks to God for making this project

successful and can be completed in the time given.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL.....c.cveviiiiininininsiieriernrariersarisesnion. i

CERTIFICATION OF ORIGINALITY.....c.ccciiiiiiiiiiiiiiciisiicnnesicann, ii

ACKNOWLEDGEMENTS ... iiiiiiiiiiiiniiiriraneseniticiintiersrsnessssscassaonss iv
LIST OF FIGURES ... i iiiiiiiitimertinstinerisariraricrsiisarinisencsisssensasen vii
ABBREVIATIONS AND NOMENCLATURES.......c.cciviiiiiiiniiierinrinian. viii
CHAPTER 1: INTRODUCTION 1
1.1 Background of Study...ccoisiiineniiinsieiiiiniiiiiiiiinrncsineiniinnenes 1

1.2 Problem Statement...cocvveesrecrsesraesrsescsriessarncirsninsesaresarenenss 2

1.3 Objectives and Scope of Study..eererrrrseieinmaiiiniiiaiiiiiiiinnn 3

1.3.1 Objectives of the Project.ceueerresrresiernrrciriimciieciiciiecn, 3

1.3.2 Scope of StUdY..isvveveerirareenrsnrmiiiiaraeieieiessiissenn 4

CHAPTER 2: THEORY 5
2.1 Global System for Mobile Communication (GSM)......oeveviiiiann. 5

2.1.1 History 0f GSMuuisrererrnirrnnssmseinsiniinianinciiirsniarseeanicass 5

2.1.2 Services Provided by GSM.....iiiniiiiiiiiiiciicicnirernenes 6

2.1.3 Architecture of the GSM Network.......cciviiiniiiniiiiiiiannin 9

2.1.4 Radio Link ASPECt suveeeerrrariecerriervuririnniienrissionsinnsens 12

2.1.5 Network ASPECt cueuvuinveseresrierierisnriairerisarsnssorsronseonse 13

2.2 Peripheral Interface Controller (PIC) c.eveveerieiiiiiieniiiiiiiiinnnnn 16

2.3 Serial INTerface vvvvveviriiiieriessionstosrreniesrsssesisarsnsrsansrarsnasns 17

2.4 Overview of the System...ccciciviiiiiiiiaiiieiiiiirisicrirenn. 19

2.5 Nokia 3310 and F-Bus Protocol....ccccvieviiniiiiieniiiiinennin, 21

2.6 Nokia F-Bus Protocol CharacteristicSeevenverasnverrensesairernrnsnreae 22

Vi

CHAPTER 3:

METHODOLOGY/PROJECT WORK 24

3.1 Desk Study cveeeieieiiiiiii e e 24

3.2 Project MIlEStONE vuivvusiusurisinersniasisrsressenreresarssrissensirorsenn 24

3.3 Tools and Equipment U.sed ... 26

3.4 Project WOrk ciiveeeirenreerncrsnrsssisaraniesiiiarienciientenincsinararenne 26

3.5 Sample Preparation & Testing..cerveerineireererieiiniiniianeiiiennenn 27

CHAPTER 4: RESULTS AND DISCUSSION 28

2 SR = F: § 1 (= 28

4.2 SOEWATE tvrerivernenireriissriressssrosssesrisaraoraonssnsarsnasssssrnsesaase 29

4.3 Serial [Nterface ...cveveriieeriesinerireninnnierisrireiecirienieirsn. 33

4.4 GSM MOCEM cvirineiiiiciirieieiiiiiiesiissrsssostssssassossrsssernensases 35

4.5 Sending SMS ..ot s 38

4.6 Peripheral Interface Controlier (PIC) PIC16F877 .vcuveinveiiinrinenns 42

4.7 Final Software- [-UTP Building Control v1.0 «..cvvevieniinnienionninn 43

4.8 Visual BasiC cisiviviriiiiiiiiiraiiiniionisiiiiinisiosiisieniisncrisnsniesnn 48

4.9 Limitation of the System ..vcvivsesreirrirerssnssermessererinciiiararesae. 51

CHAPTER §: CONCLUSION AND RECOMMENDATION 52

5.1 CONCIUSION 4iutriiiiiiiiirieiiirnsisssieturiisesseassassarsesssinsnee 52

5.2 Recommendations suuievearesesesssressensiesncnraonsartonersrasarnenanarinn 53

REFERENCESccciiiiiiiiiieiiieniiieiiistienironiinsiiaranierieriessensssicansesiseons 54
APPENDICES

vil

FIGURE 2.1 Events in the development of GSM
FIGURE 2.2 GSM Netwaork Architecture

FIGURE 2.3 GSM Signaling Protocol Architecture
FIGURE 2.4 Pin Layout of PIC 16F877

FIGURE 2.5 Pin Configurations for Serial Port
FIGURE 2.6 Overview of the System

FIGURE 2.7 Nokia 3310

FIGURE 2.8 Com Port Configuration

FIGURE 2.9 Message Characteristics

FIGURE 3.1 System Block Diagram

FIGURE 4.1 Hardware Block Diagram

FIGURE 4.2 MAX232 Configuration

FIGURE 4.3 F-Bus/M-Bus Connection Pin in Nokia 3310
FIGURE 4.4 Data Cable for Nokia 3310

FIGURE 4.5 Data Cable Connection to Nokia 3310
FIGURE 4.6 PIC Pin Configuration

FIGURE 4.7 I-UTP Building Control Main Window
FIGURE 4.8 Serial Connection Established Successfully
FIGURE 4.9 F-Bus Connection Established Successfully
FIGURE 4.10 Message Receive and Reply Sent

FIGURE 4,11 The Terminal Logs

APPENDICES

FIGURE A-1 Architecture of the PIC16F877 Microcontroller
FIGURE A-2 Simplified Block Diagram of the PIC16F877 ADC Module
FIGURE A-3 PIC16F877 Register File Map

FIGURE A-4 Multisim Hardware Circuit

FIGURE A-5 Hardware Test Board

FIGURE A-6 Hardware Implementation on Vero Board
FIGURE A-7 Checksum Program

FIGURE A-8 Packer Program

FIGURE A-9 Serial Interface Program

FIGURE A-10 Main Page for i-UTP Building Control

LIST OF FIGURES

viii

FIGURE A-11
FIGURE A-12
FIGURE A-13
FIGURE A-14

FIGURE A-15
FIGURE A-16
FIGURE A-17

Terminal Log for i-UTP Building Control

ASCII Code Window

Serial Information Window

How Data Is Transferred in MAX232 and Displayed In
Oscilloscope

PIC C Language Program

Visual Basic Code

User Manual

ABBREVIATIONS AND NOMENCLATURES

1. GSM
SMS
PIC
1/0
GPS
GIS

A

: Global System for Mobile Communication
: Short Messaging Service

: Peripheral Interface Controller

» Input/Output

: Global Positioning System

: Geographical Information System

ix

CHAPTER 1

INTRODUCTION

This chapter serves an overview of the communication system which emphasis on
the communication systems available for Global System for Mobile Communication
(GSM) transmission. A brief descriptions of the system used is discussed. The
problem statement for the project is discussed on line-of-sight communication
system. All the external factors that should be considered in designing a
communication links are briefly explained. The specific objectives and scope of

study of this project is discussed on the last section of this chapter.
1.1 BACKGROUND OF STUDY

Communication has always been an important element in our daily life. Nowadays,
there are many method of conveying the information. Information can be delivered
using medium such as wires and air. This project will go in depth into the world of

wireless communication.

With the growing usage and rapid growth of the mobile phone technology and better
coverage of the GSM services, a new area of study can be implemented which is
controlling certain devices using Short Messaging Services (SMS). In order to
accomplish this objective, knowledge about how the data is transferred in the GSM

network is essential.

Knowledge on data protocol is also needed due to some mobile phone manufacturer
who has created their own protocol in order to deliver the data in a GSM network.
For this project, a specific manufacturer is chosen. Nokia is chosen because of its
wide variety of mobile phone models and its availability in the market. The protocol

that is being used by Nokia is called the F-Bus protocol.

1.2 PROBLEM STATEMENT

Mobile communication has developed and grows in Malaysia during the last three or
four years. Nowadays, nearly every family has at least one mobile phone. The
competition can also be seen between the phone manufacturer and also the service
provider. Because of this competition, the services and coverage has also been
upgraded and is more reliable. Many researches are done on how to improve and
design new services using the existing technology. This project will use this
expanding technology and try to incorporate it with another existing system in order

to produce a better system.

Large buildings are not easy to maintain especially new buildings such as the new
UTP buildings. They contain valuable machinery and confidential information. This
building usually has its own control system. This control system is used to monitor

the building area and its components.

This project will study and design an Intelligent Building Control and Monitoring
System. This chosen building is the new UTP building. The system will use SMS
technology and incorporate it with the building control system. The user can access
the system by sending a command using their mobile phone SMS service. This is an
easier way because the user does not have to check the building manually which will
consume more time and energy. The system must also posses a security or safety
features to avoid others from entering the system. Only authorized personnel will be

able to use this system.

1.3

OBJECTIVES AND SCOPE OF STUDY

1.3.1 General Objectives of the Project

This Final Year Project course plays a vital role in achieving UTP’s vision
which is to produce a well rounded graduate. It is also a very great
opportunity for students to relate the theoretical knowledge from class and
applying it in project. Despite that, students will develop skills in work ethics,
communication, management, interpersonal skills and etc. The objectives of
the Final Year Project are:

o To develop a framework, this will enhance student’s skills in the
process of applying knowledge, expanding thoughts, solving problem
independently and presenting findings.

» Develop a system that can locate a vehicle using communication
system preferably wireless communication.

e To produce a system that is rcliable and can be easily handled by
other people and also low in cost if possible.

e To integrate the hardware and the software part of the system to make

it easier to handled and managed.

1.3.2 Specific Objectives of the Project

The specific objectives of the project are:
e To design a building control system using Short Messaging
Service(SMS) through the usage of Nokia F-Bus protocol
e To acquire knowledge on Programmable Integrated Circuit (PIC)
programming using MPLAB and its hardware implementation.
o To enhance knowledge on digital circuit and real-time data

communication in real-world application.

1.3.2 Scope of Study

The scope of study for this project is the potential of integrating GSM network
and its services with other existing system. In order to fully utilize the GSM
network and its services, further knowledge about the network and how it work
using its own protocol must be gained. Other than that, more advance knowledge
about programming language must be acquired in order to program the controller
using C language and designing the software using Visual Basic. Some circuit
designing skill must also be acquired in order to build a model to represent the

whole system at a smaller scale.

CHAPTER 2

LITERATURE REVIEW/THEORY

This chapter discussed on the theories and literature review of the project. Among

the theories that will be discussed are the history of GSM, what is PIC and its

advantages, how the serial interface is used, the Nokia F-Bus characteristics and the

overview of the proposed system.

2.1

Global System for Mobile Communication (GSM)
2.1.1 History of GSM

During the early 1980s, analog cellular telephone systems were experiencing
rapid growth in Europe, particularly in Scandinavia and the United Kingdom,
but also in France and Germany. Each country developed its own system,
which was incompatible with everyone else's in equipment and operation.
This was an undesirable situation, because not only was the mobile
equipment limited to operation within national boundaries, which in a unified
Europe were increasingly unimportant, but there was a very limited market
for each type of equipment, so economies of scale, and the subsequent

savings, could not be realized.

The Europeans realized this early on, and in 1982 the Conference of
European Posts and Telegraphs (CEPT) formed a study group called the
Groupe Spécial Mobile (GSM) to study and develop a pan European public

land mobile system.

The proposed system had to meet certain criteria:
« good subjective speech quality,
¢ low terminal and service cost,
» support for international roaming,
« ability to support handheld terminals,
» support for range of new services and facilities,
» spectral efficiency, and

e ISDN compatibility.

In 1989, GSM responsibility was ftransferred to the European
Telecommunication Standards Institute (ETSI), and phase I of the GSM
specifications were published in 1990. Commercial service was started in
mid1991, and by 1993 there were 36 GSM networks in 22 countries, with 25
additional countries having already selected or considering GSM. This is not
only a European standard - South Africa, Australia, and many Middle and Far
East countries have chosen GSM. By the beginning of 1994, there were 1.3
million subscribers worldwide. The acronym GSM now (aptly) stands for

Global System for Mobile telecommunications.

The developers of GSM chose an unproven (at the time) digital system, as
opposed to the then as standard analog cellular systems like AMPS in the
United States and TACS in the United Kingdom. They had faith that
advancements in compression algorithms and digital signal processors would
allow the fulfillment of the original criteria and the continual improvement of
the system in terms of quality and cost. The 8000 pages of the GSM
recommendations try to allow flexibility and competitive innovation among
suppliers, but provide enough guidelines to guarantee the proper interworking
between the components of the system. This is done in part by providing
descriptions of the interfaces and functions of each of the functional entities

defined in the system.

2.1.2 Services Provided by GSM

From the beginning, the planners of GSM wanted ISDN compatibility in
services offered and control signaling used. The radio link imposed some
limitations, however, since the standard ISDN bit rate of 64 kbps could not be

practically achieved.

Using the ITUT definitions, telecommunication services can be divided into
bearer services, teleservices, and supplementary services. The digital nature
of GSM allows data, both synchronous and asynchronous, to be transported
as a bearer service to or from an ISDN terminal. Data can use either the
transparent service, which has a fixed delay but no guarantee of data
integrity, or a nontransparent service, which guarantees data integrity through
an Automatic Repeat Request (ARQ) mechanism, but with a variable delay.
The data rates supported by GSM are 300 bps, 600 bps, 1200 bps, 2400 bps,
and 9600 bps.

The most basic teleservices supported by GSM is telephony. There is an
emergency service, where the nearest emergency service provider is notified
by dialing three digits (similar to 911). Group 3 fax, an analog method
described in ITUT recommendation T.30, is also supported by use of an
appropriate fax adaptor. A unique feature of GSM compared to older analog
systems is the Short Message Service (SMS). SMS is a bidirectional service
for sending short alphanumeric (up to 160 bytes) messages in a store and
forward fashion. For point to point SMS, a message can be sent to another
subscriber to the service, and an acknowledgement of receipt is provided to
the sender. SMS can also be used in a cell broadcast mode, for sending
messages such as traffic updates or news updates. Messages can be stored in

the SIM card for later retrieval.

Supplementary services are provided on top of teleservices or bearer services,
and include features such as caller identification, call forwarding, call
waiting, multiparty conversations, and barring of outgoing (international)

calls, among others.

Year |Events
1CEPT establlshes a GSM group in order to develop the standards

1982 |for a pan-European cellular mobile system

1985 |Adoption of a list of recommendations to be generated by the
{group
(Field tests were performed in order to test the dlfferent radlo

1986 : techmques proposed for the air 1nterface

HTDMA is chosen as access method (in fact 1t will be used with
1987 FDMA) Initial Memorandum of Understanding (MoU) signed by
[telecommunication operators (representing 12 countries) r

‘1988 WIValldahon of the GSM system

The responsibility of the GSM spemﬁcatlons is passed to the

1989 1ETSI
[1990 :jAppearance of the phase 1 of the GSM specifications
’1991 _ _________iCommercral launch of the GSM service o
Enlargement of the countries that signed the GSM MOU>
1992 :
{Coverage of larger crtres/alrports

‘1993 _______]Coverage of main roads GSM services start outside Europe

1995 [Phase 2 of the GSM specifications Coverage of rural areas

Figure 2.1: Events in the development of GSM

2.1.3 Aprchitecture of the GSM network

Um A
Interface Abis Interface
| Interface I
| i ||| VIR HLR
BTS || Other
SM | | . | MSCs
| | | BSC ||| msc
Ms || = | PSTN /
| BTS 1 | ISDN
|
\ EIR AC
| : |
I ’ I
Base Station Network Subsystem
Subsystem

SIM Subscriber Identity Module HLR Home Location Register
MS Mobile Station VLR Visitor Location Register
BTS Base Transceiver Station EIR Equipment Identity Register
BSC Base Station Controller AC Authentication Center
MSC Mobile services Switching Center YLR Visitor Location Register
PSTN Public Switched Telecomm Network ISDN Integrated Services Digital

Network

Figure 2.2 GSM Network Architecture

A GSM network is composed of several functional entities, whose functions
and interfaces are defined. Figure 2.2 shows the layout of a generic GSM
network. The GSM network can be divided into three broad parts. The
Mobile Station is carried by the subscriber; the Base Station Subsystem
controls the radio link with the Mobile Station. The Network Subsystem, the
main part of which is the Mobile services Switching Center, performs the
switching of calls between the mobile and other {ixed or mobile network
users, as well as management of mobile services, such as authentication. Not

shown is the Operations and Maintenance center, which oversees the proper

operation and setup of the network. The Mobile Station and the Base Station
Subsystem communicate across the Um interface, also known as the air
interface or radio link, The Base Station Subsystem communicates with the

Mobile service Switching Center across the A interface.

2.1.3.1 Mobile Station

The mobile station (MS) consists of the physical equipment, such as
the radio transceiver, display and digital signal processors, and a
smart card called the Subscriber Identity Module (SIM). The SIM
provides personal mobility, so that the user can have access to all
subscribed services irrespective of both the location of the terminal
and the use of a specific terminal. By inserting the SIM card into
another GSM cellular phone, the user is able to receive calls at that
phone, make calls from that phone, or receive other subscribed

services.

The mobile equipment is uniquely identified by the International
Mobile Equipment Identity (IMEI). The SIM card contains the
International Mobile Subscriber Identity (IMSI), identifying the
subscriber, a secret key for authentication, and other user
information. The IMEI and the IMSI are independent, thereby
providing personal mobility. The SIM card may be protected against

unauthorized use by a password or personal identity number.

2.1.3.2 Base Station Subsystem

The Base Station Subsystem is composed of two parts, the Base
Transceiver Station (BTS) and the Base Station Controller (BSC).
These communicate across the specified Abis interface, allowing (as
in the rest of the system) operation between components made by

different suppliers.

10

The Base Transceiver Station houses the radio transceivers that define
a cell and handles the radio link protocols with the Mobile Station. In
a large urban area, there will potentially be a large number of BTSs
deployed. The requirements for a BTS are ruggedness, reliability,

portability, and minimum cost.

The Base Station Controller manages the radio resources for one or
more BTSs. It handles radio channel setup, frequency hopping, and
handovers, as described below. The BSC is the connection between
the mobile and the Mobile service Switching Center (MSC). The
BSC also translates the 13 kbps voice channel used over the radio link
to the standard 64 kbps channel used by the Public Switched
Telephone Network or ISDN.

2.1.3.3 Network Subsystem

The central component of the Network Subsystem is the Mobile
services Switching Center (MSC). It acts like a normal switching
node of the PSTN or ISDN, and in addition provides all the
functionality needed to handle a mobile subscriber, such as
registration, authentication, location updating, handovers, and call
routing to a roaming subscriber. These services are provided in
conjunction With several functional entities, which together form the
Network Subsystem. The MSC provides the connection to the public
fixed network (PSTN or ISDN), and signaling between functional
entities uses the ITUT Signaling System Number 7 (857), used in
ISDN and widely used in current public networks.

The Home Location Register (HLR) and Visitor Location Register
(VLR), together with the MSC, provide the call routing and (possibly
international) roaming capabilities of GSM. The HLR contains all
the administrative information of each subscriber registered in the
corresponding GSM network, along with the current location of the

mobile. The current location of the mobile is in the form of a Mobile

11

Station Roaming Number (MSRN) which is a regular ISDN number
used to route a call to the MSC where the mobile is currently located.
There is logically one HLR per GSM network, although it may be

implemented as a distributed database.

The Visitor Location Register contains selected administrative
information from the HLR, necessary for call control and provision of
the subscribed services, for each mobile currently located in the
geographical area controlled by the VLR. Although each functional
entity can be implemented as an independent unit, most manufacturers
of switching equipment implement one VLR together with one MSC,
so that the geographical area controlled by the MSC corresponds to
that controlled by the VLR, simplifying the signaling required. Note
that the MSC contains no information about particular mobile stations

- this information is stored in the location registers.

The other two registers are used for authentication and security
purposes. The Equipment Identity Register (EIR} is a database that
contains a list of all valid mobile equipment on the network, where
each mobile station is identified by its International Mobile
Equipment Identity (IMEI). An IMEI is marked as invalid if it has
been reported stolen or is not type approved. The Authentication
Center is a protected database that stores a copy of the secret key
stored in each subscriber's SIM card, which is used for authentication

and ciphering of the radio channel.

12

2.1.4 Radio link aspects

The International Telecommunication Union (ITU), which manages the
international allocation of radio spectrum (among other functions) allocated
the bands 890-915 MHz for the uplink (mobile station to base station) and
935-960 MHz for the downlink (base station to mobile station) for mobile
networks in Europe. Since this range was already being used in the early
1980s by the analog systems of the day, the CEPT had the foresight to reserve
the top 10 MHz of each band for the GSM network that was still being
developed. Eventually, GSM will be allocated the entire 2x25 MHz
bandwidth.

Since radio spectrum is a limited resource shared by all users, a method must
be devised to divide up the bandwidth among as many users as possible. The
method chosen by GSM is a combination of Time and Frequency Division
Multiple Access (TDMA/FDMA). The FDMA part involves the division by
frequency of the total 25 MHz bandwidth into 124 carrier frequencies of 200
kHz bandwidth. One or more carrier frequencies are then assigned to each
base station. Fach of these carrier frequencies is then divided in time, using
a TDMA scheme, into eight time slots, One time slot is used for
transmission by the mobile and one for reception. They are separated in time
so that the mobile unit does not receive and transmit at the same time, a fact

that simplifies the electronics.

2.1.5 Network aspects

Ensuring the transmission of voice or data of a given quality over the radio
link is only half the problem in a cellular mobile network. The fact that the
geographical area covered by the network is divided into cells necessitates the
implementation of a handover mechanism. Also, the fact that the mobile can
roam nationally and internationally in GSM requires that registration,
authentication, call routing and location updating functions exist in the GSM

network.

13

Um A

Interface Interface
CM l I CM
GSM Layer 1 RR DTAP
MM | Bssmap | | | | MM
. LAPDm
RR || SCCP | | prap
GSM Lava;; 2 o LAPDm I TDMA MTP I SCCP
GSM Layer 3 TDMA : BTS BSC : MIP
I Base Station I
Mobile Station Subsystem MSC

Figure 2.3: GSM Signaling Protocol Architecture

The signaling protocol in GSM is structured in three layers shown in Figure

2.3. Layer 1 is the physical layer, which uses the channel structures

discussed above. Layer 2 is the data link layer. Across the Um interface, the

data link layer uses a slight modification of the LAPD protocol used in ISDN,

called LAPDm. Across the A interface, the lower parts of Signaling System

Number 7 are used. Layer 3 is subdivided into 3 sub layers.

Radio Resources Management

Controls the setup, maintenance, and termination of radio channels
Mobility Management

Manages the Ilocation updating, handovers, and registration
procedures, discussed below

Connection Management

Handles general call control, similar to CCITT Recommendation

Q.931, and provides supplementary services.

14

Signaling between the different entities in the network, such as between the
HLR and VLR, is accomplished through the Mobile Application Part (MAP).
Application parts are the top layer of Signaling System Number 7. The
specification of the MAP is complex. It is one of the longest documents in the

GSM recommendations, said to be over 600 pages in length.

15

2.2 Peripheral Interface Controller (PI1C)

The PIC is a high performance RISC CPU, It operates at 4MHz and 25ms instruction
per cycle. It contains three type of memory which is the FLASH Program Memory,
Data Memory (RAM) and EEPROM Data Memory. The PIC16F877 is a high-
performance FLASI microcontroller that provides engineers with the highest design
flexibility possible. In addition to 8192x14 words of FLASH program memory, 256
data memory bytes, and 368 bytes of user RAM, PICI16F877 also features an
integrated 8-channel 10-bit Analogue-to-Digital converter. Peripherals include two 8-
bit timers, one 16-bit timer, a Watchdog timer, Brown-Out-Reset (BOR), In-Circuit-
Serial Programming™, RS-485 type UART for multi-drop data acquisition
applications, and I2C™ or SPI™ communications capability for peripheral
expansion.' Precision timing interfaces are accommodated through two CCP modules

and two PWM modules.

WCLRep ——a] 1 NS w] i RETPGD
RANANG a—uw[] 2 3 [] =—= REAIPGC
RATANT w—ael] 3 3 [=—pr RB5

RAZAHZAREE - gt 4 7 [=—a R4
RAJIANVEER wb—ie]] & 38 [- RENKGM
RAUTECK [& 35 [w—= RB2 -

RASANAES a—ae[] 7 wp M= RB1
REWRIVANS wbein-[] 2 M= 33 [] e RBOINT
REVRRANS sl 5 H] :.-— Yoo
REZESANT e} 10 o 31 [Jew ves
von —— I 11 E 30 [wwem- ROTPEPT
VEE e [12 W 29 [=—= RDGPSPE
GSCHCLKIN —emtee[] 13 5 2 [] a—ie= ROEFIPS
OBCZULKOUT agpmel] 14 T 2¢ [e RO4PSPY
RCOTIOSOVTICK el 45] X] e RCTHKDT
RCHNTIOSVCEP? setee 1 15 25 [] w——te- RCBITACK
RCHCCE —pe[] 7 24 [] st RCSSOO
REREEKSCL -a—uaT] 18 23 [] =—= RC4SDISE0OA
ROUPSPD w—eL] 18 22 [st ROIPEP3
ROVPSE L] & 21 [} #—w RO2PEP2

Figure 2.4: Pin Layout of PIC 16F877

In this project, the PIC will be used as a controller. It will control the building’s
lamps, air-conditioner and doors. The base station or terminal will communicate with
the PIC in order to know the status of each device and to control them. The overall

architecture of the PIC can be seen in Appendix A-1.

16

2.3 Serial interface

The serial port is an /O device. An /O device is just a way to get data into and out
of a computer. There are many types of I/O devices such as serial ports, parallel
ports, disk drive controllers, Ethernet boards, universal serial buses and many others.
Most PC's have one or two serial ports. Each has a 9-pin connector or sometimes 25-
pin on the back of the computer. Computer programs can send data (bytes) to the
transmit pin (output) and receive bytes from the receive pin (input). The other pins

are for control purposes and ground.

in

b

7
3 Transmitted Data 8 Clear lo Send
4 Daia Terminal Ready 9 Ring Indicator
] Signal Ground

Figure 2.5: Pin Configuration for Serial Port

The serial port is much more than just a connector. It converts the data from parallel
to serial and changes the electrical representation of the data. Inside the computer,
data bits flow in parallel, using many wires at the same time. Serial flow is a stream
of bits over a single wire, such as on the Transmit or Receive pin of the serial
connector. For the serial port to create such a flow, it must convert data from parallel

inside the computer to serial on the transmit pin and conversely.

17

The serial port is harder to interface than the parallel port. In most cases, any device
connected to the serial port will need the serial transmission converted back to
parallel so that it can be used. This can be done using a UART. On the software side
of things, there are many more registers that have to be attended to than on a standard

parallel port.

The advantages of using serial data transfer rather than parallel are:

> Less wires than parallel transmission. If your device needs to be mounted a
far distance away from the computer then 3 core cable (Null Modem
Configuration) is going to be a lot cheaper that running 19 or 25 core cable.
However you must take into account the cost of the interfacing at each end.

» Microcontrollers have also proven to be quite popular recently. Many of these
have in buift SCI (Serial Communications Interfaces) which can be used to
talk to the outside world. Serial communication reduces the pin count of these
MPU's. Only two pins are commonly used, Transmit Data (TXD) and
Receive Data (RXD) compared with at least 8 pins using an 8 bit Parallel
method. Furthermore, it may also require a Strobe.

> Serial cables can be longer than parallel cables. The serial port transmits a 'l’
as -3 to -25 volts and a '0" as +3 to 25 volts where as a parallel port transmits
a'0' as Ov and a 'l' as 5v. Therefore the serial port can have a maximum
swing of 50V compared to the parallel port which has a maximum swing of 5
Volts. Therefore cable loss is not going to be as much of a problem for serial

cables as they are for parallel.

18

24 Overview of the System

Figure 2.6 shows the overview of the proposed system. To use the system user must
have a mobile phone and the system uses short messaging services (SMS) to send
commands to the terminal located at each building. Every building will have its own
termina} and different ID that will enable the user to control each building separately.
This is done for the security reason. Unauthorized personnel can’t access the system.
The basic idea is to use the GSM network to convey the message from the user to the

controller,

There will be a main controller that will control the devices while a special software
to convert the message from the user into instructions that the controller understands.
A mobile phone will be connected to the computer or terminal. This hand phone
serves as a GSM modem that will receive messages from users and sends the reply to
the user. The terminal is equipped with special software called i-UTP Building
Control that will convert the message into instructions that the I/O controller
understands. I/O controller is made up from the PIC16F877. The 1/O controller is
connected to the devices such as air-conditioner, doors and lamps. The terminal will
process the SMS message or command sent by the user and gives instruction to the
I/O controller to do the necessary action requested by the user. The detail operation

of the system will be discussed in the discussion section.

19

0C

32af04] oY) JO MRAAAIIAQ 1977 2INSLY

Fi n . , % JA[[00U0))
uppng 410 | e

JeUImIa [,
JAIIG

JDATIISTRA],
SIS NSD

amoyg L ; 1

MOIN 135() 3|0 4 o ?
pumg due| MG PU0I-FFY

Ja[[o1ue)
105038 X00(]
aonels 112D nonElS 100

25 Nokia 3310 and F-Bus Protocol

For this project, Nokia 3310 is used because of its availability, cost and functions.
Furthermore the data cable can be easily purchased. The F-Bus protocol is owns by
Nokia and only Nokia phones use this protocol. The protocol allows the uset to
explore the phone capability and use it to interface with other software. This sms

feature is utilized in the project mainly sending and receiving sms.

Figure 2.7: Nokia 3310

The mobile phone will act as a gsm modem that will send and receive the messages
from the user and controller. The message cost depends on the service provider rate.
The mobile phone is connected to the terminal or computer via a data cable that can
be connected through the serial port of the computer. In order to make this project
successful, a minimum number of two mobile phones are needed. One serves as the
GSM modem and the other is used by the user to give the appropriate commands.
The detailed explanation on how the phone actually works in this project will be

discussed in the discussion chapter.

21

2.0 Nokia F-Bus Protocols Characteristics

The F-Bus is designed by Nokia for the phone to interact with a computer. It has its

own protocol. To setting to properly configure the com port are as follows:

Figure 2.8: Com Port Configuration

speed

115 200

num bits!

8

pafi.tS/”

hone

Stop bit

—

A standard message looks like this one:

1E 02 00 04 00 OB 01080002010463020401 40 00 3900

This corresponds to:

type (1)1 [Len{l)][DATA(X)][Seq(l)][Padd (1 or
0] [Chksum(2)]

[Frame type(l)][Szrc dev(l)][Dst dev(1l)][CMD{1l)][Frame

Frame Characteristics

Frame
Type

Source
{evice

Destination
Device

CMD

Frame
Type

Length

Data

Sequence
Num

Padding

Gheck
Sum

Figure 2.9: Message Characteristics

2.5.1 Frame type

The frame type indicates which type of protocol is using:

1E : Serial F-bus frame

1c : Irda F-bus frame

22

2.5.2 Source device and Destination device
Indicate the source and the destination device
e (2 Phone

e 00 Computer

253 CMD
This is the command type, it define which type of information is about.

e needafix

2.5.4 Frame type
Used if the message exceeded 255 then it give which part is sending.

2.55 Length
The length of the packet. To calculate it: Data + Sequence number. So in
other word: length = data + 1 (in hex)

2.5.6 Data
The packed data.

2.5.7 Sequence number for regular packet
The sequence number for the standard frame seems to be between 40 up to

47. So always initialize it to 40 at the beginning seems to be working.

2.5.8 Padding
Since the packet as to be an odd number, if the length is even it as to be

added. The padding is always 00.

2.5.9 Checksum

The check sum is in fact two different checksum. The first hex represents the
XOR of all the odd hex block from the packet, the second represent the XOR
of all the even Hex block of the packet.

23

CHAPTER 3

METHODOLOGY/PROJECT WORK

The methodology on how the project was conducted is discussed in this chapter. The
preliminary research was conducted to get the overview of the topic and to design the
milestone or Gantt chart. This project was planned to be completed in two semester,
where the first half of the semester was to concentrate on how the data will be sent
from one place to another and the basic structure of the system. The real circuit and
implementation of the system was designed in the second half of the semester. The

project work uses PIC and mainly Visual Basic to develop the software.

3.1 DESK STUDY

Desk study plays significant impact to strengthen the basic knowledge about
anything related to the project. Internet is the main source for the study, as well as
referring to books, journals, articles and reports. Visual Basic and C language need to
be self-studied in order to design the sofiware for the project. Other than
programming, knowledge about designing and constructing circuit must also be

studied.

3.2 PROJECT MILESTONE

The student as well as the supervisor can easily monitor the progress of the project.
Since this project is for two semester project, the milestone should be planned in
such a way that the time is enough to complete the overall task planned for the two

semesters.

24

The overall suggested milestone is in Appendices Figure B-1 and Figure B-2. A

summary of the project phases can be listed as follows;

e Phase 1: Planning Phase

» Phase 2: Research and Literature Review
» Phase 3: Designing Theoretical Circuit

e Phase 4: Implementing Practical Circuit

e Phase 5: Final Testing and Documentation

Phase 1 of the project involves the planning of a specific outline of the proposed
work, requirements, and goals of the project. A Gantt chart is produced as a guide for

the student as well as the supervisor to complete this project.

Phase 2 encompassed a literature review and background research on the topic, the
determination of resources requirements, the division of the project into logical steps,
and the choosing of a methodology and implementation process for the completion

of the project.

Phase 3 is the design process and testing process. This includes designing of the
theoretical circuit and testing the circuit. Some PIC programming will also be

included as well as designing the software using Visual Basic.

Phase 4 will involve implementing the theoretical circuit on to the test board and
debugging the circuit. Only after this process the circuit can be transferred into the

real board.
The final phase of the project includes final testing on the software and

documentation of the project. At this phase, the project is expected to be completed

and in working condition.

25

3.3 TOOLS AND EQUIPMENT USED

Visual Basic is the main software that is used in this project to develop the software
while the PIC uses the WARP13 software to program it. The complier used for PIC
is PIC C complier. Other than these software, basic components are used to construct

the hardware,

34 PROJECT WORK

The main focus is to develop the software using Visual Basic which will integrate the
sms from telephone to the terminal and the connection from terminal to the PIC. In
order to achieve this objective, the program was divided into smaller functional

program (Appendices A-4 and Appendix A-5).

Beside from the software programming, the PIC also needs to be program so that it
can be used with the test board that has been constructed. After the board is tested,
the circuit has to be transferred to the real board. The final stage is testing the whole

system and makes correction if there are errors.

System Block Diagrams

Phase 3 Phass 2 Phase 1
/‘—:“> RS232 Serial
N Interface
Door S (MAX232)
oor Sansors
{Push Button) <:,\|/ jt
Usar
Main /O
'E::g)s @ Controller Tarminal
(PIG 16F877) (Visual Baslc)
Alr-cond
e i) I
GSM Modem ——I———| GSMModem

Figure 3.1: System Block Diagram

26

3.5 SAMPLE PREPARATION & TESTING

There are three different types of input samples being used in the process of
developing the simulation program. Each sample is tested to verify that the program
algorithm work and give the expected output. This bottom-up testing is important to

make sure that each subprograms work correctly integrates them.

At the first stage, the input samples are defined manually with a limited number of
input sequences. At this stage, the purpose of the input samples is to verify the
functionality (black-box testing) either the subprograms will give the correct
expected outputs. The input of the subsystems also might be from the other
subsystem outputs. In this case, the lower level programs are tested first before move

to the higher level programs.

The testing process occurred at each stage of the project. After a small part of the
project is finish, then some testing is done to make sure that the part is working. The
final testing is done when the final product is completed. The testing covers different
command sent or received other than the specified commands and using different

models and brand of hand phone.

27

CHAPTER 4

RESULTS AND DISCUSSION

This chapter discussed on detail theory behind the construction of the hardware and

software of the project. Other than that, the final product is also included and

discussed. The steps on how to use the final product is also included in this chapter.

This includes the SMS commands that will monitor and control the dedicated devices

in the building.

4.1 Hardware

The test circuit have been constructed and tested with a test program. The real testing

can be done when the software is fully developed. The layout of the circuit can be

seen in Appendix A-4.

Prototype Hardware Block Diagrams

Power Supply
v
&V Regulator
{LMT805}
Door Sensors
Switches G {Push Button)
{Toggle switch)
:> Lamps
(LED)
Main VD .
Controller :J_l> Air-cond Switch Controller Air-cond
{PIC 16F87TT) {Refay) {Motor)
{ndicators A | - .
{LED) N— RS232 Serial Interface To terminal server
(MAX232) {Computer)
Clock
{4MHz crystal)

Figure 4.1: Hardware Block Diagrams

28

The Figure 4.1 describes the configuration of the hardware; how each device is
connected to cach other and what they represent in the real system. Among the

components used to construct the hardware are:

s Motor o LEDs

+ Relay e Switch

o MAX232 o LM7805 Voltage Regulator
» PICI6F877 e Push Button

s 4Mhz Crystal Oscillator

The circuit is first constructed on the bread board. This is done to see and correct the
error before implementing the circuit into the final product. The test board can be
viewed in Appendix A-5. When the circuit has been tested and is operational, then it

was transferred into the vero board.
4.2 Software

The development of the software requires a lot of phases. Before the real product can
be produced, there are many test and small program that have to be created and
tested. All of these small programs will then be group and combined to form the final
software. The test program is done in C language but the final program will be in

Visual Basic.

42,1 Subprograms
Several su’bprograms' have been created. These subprograms will be
combined in the final program. Each subprogram has its own functions. The

codes can be found in Appendix A-7 and Appendix A-8.

The packer program is used to pack the 7 bit data into an 8 bit data. This is
crucial because the F-Bus system only used 8 bit configuration. If a 7 bit data
is used, then the decoded data will not be the same with the data that have

been sent.

29

Meanwhile the Check Sum program is used to calculate the parity of the odd
and even bits in each message frame. This is a kind of safety measure because
the message frame is sent with the check sum and the receiver must calculate
the parity again and verify the result with the sent checksum. By doing this,
any loss of data can be detected. The print screen of the final software can be

scen in Appendix A-10 to Appendix A-13.

4.2.2 Commands Sets
These commands sets are created to help design the software. This syntax

will be used in the system and only these commands will be recognize by the
SMS terminal.

4.2.2.1 User->Terminal Command Set

System Check

Al. I-UTP ACAD22 System Info

Status Check

Bl. I-UTP ACAD22-01-04 Status Lamp 1

B2. I-UTP ACAD22-01-04 Status Lamp 2

B3. [-UTP ACAD22-01-04 Status Aircond 1

B4. I-UTP ACAD22-01-04 Status Aircond 2

B5. 1-UTP ACAD22-01-04 Status Door 1

B6. I-UTP ACAD22-01-04 Status Door 2

B7. 1-UTP ACAD22-01-04 Status Room-Door 1
B8, [-UTP ACAD22-01-04 Status Room-Door 2
Switch Control

Cl. I-UTP ACAD22-01-04 Switch Lamp 1 ON
C2. I-UTP ACAD22-01-04 Switch Lamp 1 OFF
C3. 1-UTP ACAD22-01-04 Switch Lamp 2 ON
C4. I-UTP ACAD22-01-04 Switch Lamp 2 OFF
C5. 1-UTP ACAD22-01-04 Switch Aircond 1 ON
C6. [-UTP ACAD22-01-04 Switch Aircond 1 OFF
C7. 1-UTP ACAD22-01-04 Switch Aircond 2 ON
C8. I-UTP ACAD22-01-04 Switch Aircond 2 OFF

30

4,2.2.2 Terminal->User Command Set

System Check

Al.

I-UTP ACAD22 System OK

Status Check

BI.

I-UTP ACAD22-01-04 Lamp 1 ON

Bl. I-UTP ACAD22-01-04 Lamp 1 OFF

B2. 1-UTP ACAD22-01-04 Lamp 2 ON

B2. I-UTP ACAD22-01-04 Lamp 2 OFF

B3. I-UTP ACAD22-01-04 Aircond 1 ON

B3. I-UTP ACAD22-01-04 Aircond 1 OFF

B4. I-UTP ACAD22-01-04 Aircond 2 ON

B4. I-UTP ACAD22-01-04 Aircond 2 OFF

B5. I-UTP ACAD22-01-04 Door 1 Opened

B5. I-UTP ACAD22-01-04 Door 1 Closed

B6. I-UTP ACAD22-01-04 Door 2 Opened

B6. I1-UTP ACAD22-01-04 Door 2 Closed

B7. I-UTP ACAD22-01-04 Room Door 1 Opened

B7. I-UTP ACAD22-01-04 Room Door 1 Closed

B8. I-UTP ACAD22-01-04 Room Door 2 Opened

B8. I-UTP ACAD22-01-04 Room Door 2 Closed

Switch Control

Cl. I-UTP ACAD22-01-04 Lamp 1 has been switched ON

Cl. I-UTP ACAD22-01-04 Lamp 1 has been switched OFF

Cl. I-UTP ACAD22-01-04 Request denied. Lamp 1 is already ON
Cl. 1-UTP ACAD22-01-04 Request denied. Lamp 1 is already OFF
C2. I-UTP ACAD22-01-04 Lamp 2 has been switched ON

C2. I-UTP ACAD22-01-04 Lamp 2 has been switched OFF

C2. 1-UTP ACAD22-01-04 Request denied. Lamp 2 is already ON
C2. I-UTP ACAD22-01-04 Request denied. Lamp 2 is already OFF
C3. [-UTP ACAD22-01-04 Aircond 1 has been switched ON

C3. I-UTP ACAD22-01-04 Aircond 1 has been switched OFF

C3. I[-UTP ACAD22-01-04 Request denied. Aircond 1 is already ON
C3. I-UTP ACAD22-01-04 Request denied. Aircond 1 is already OFF

31

C4. I-UTP ACAD22-01-04 Aircond 2 has been switched ON

C4. 1-UTP ACAD22-01-04 Aircond 2 has been switched OFF

C4. 1-UTP ACAD22-01-04 Request denied. Aircond 2 is already ON
C4. [-UTP ACAD22-01-04 Request denied. Aircond 2 is already OFF

4,2.2.3 Terminal->Controller Command Set

Switch Control
Start cmdgrp block floor room device dev no on/off stop

Cl. OxAA 0x03 O0xl6 0x01 0x04 0x00 O0x00 O0x01 OxFF
C2. OxAA 0x03 O0x16 0x01 0x04 0x00 0x00 0x00 OxFF
C3. OxAA 0x03 0x16 O0x01 0x04 0x00 0x01 0x01 OxFF
C4. OxAA 0x03 0x16 O0x01 0x04 0x00 Ox01 0x00 OxFF
C5. O0xAA 0x03 0x16 0x01 0x04 0x01 O0x00 Ox01 OxFF
C6. OxAA 0x03 Ox16 0x01 0x04 0x01 0x00 Ox00 OxFF
C7. O0xAA 0x03 0xl6 Ox01 0x04 0x01 Ox01 Ox01 OxFF
C8. OxAA 0x03 Oxl6 O0x01 0x04 0x01 0x01 Ox00 OxFF

4.2.2.4 Controller->Terminal Command Set

Switch Control
If execution succeeds:
Device dev no on/off

Cl. 0x00 0x00 0x01
C2. 0x00 0x00 0x00
C3. 0x00 O0x01 0x01
C4. 0x00 0x01 0x00
C5. 0x01 0x00 0x01
C6. 0x01 0x00 Ox00
C7. 0x01 0x01 0x01
C8. 0x01 o0Ox01 0x00

32

4.2.2.5 Error Reply
If I-UTP is not sent as a prefix

(No reply)

If wrong command is sent
I-UTP ACAD22-01-04 Unidentified request

4.3 Serial Interface

In order for the PIC to communicate with the terminal, a serial interface must be
developed using Visual Basic. A tester program has been developed for testing
purposes. The screen shot of the interface is shown in Appendix A-9. This tester
program is used to test the serial communication between PIC and the terminal. The

program was developed using Visual Basic

The serial port is an Asynchronous port which transmits one bit of data at a time,
usually connecting to the UART Chip. Serial Ports are commonly found on the
majority of PC Compatible computers In order to achieve this communication, a
special IC is uses called MAX232 from Maxim or RS232 from RS. RS232 signals
are represented by voltage levels with respect to a system commeon (power / logic
ground). The "idle" state (MARK) has the signal level negative with respect to
common, and the "active" state (SPACE) has the signal level positive with respect to
common. RS232 has numerous handshaking lines (primarily used with modems),

and also specifies a communications protocol.

The RS-232 interface presupposes a common ground between the DTE and DCE.
This is a reasonable assumption when a short cable connects the DTE to the DCE,
but with longer lines and connections between devices that may be on different

electrical busses with different grounds, this may not be true.

RS232 data is bi-polar; +3 TO +12 volts indicate an "ON or O-state (SPACE)
condition” while A -3 to -12 volts indicates an "OFF" 1-state (MARK) condition.

33

Modern computer equipment ignores the negative level and accepts a zero voltage
level as the "OFF" state. In fact, the "ON" state may be achieved with lesser positive
potential. This means circuits powered by 5 VDC are capable of driving RS232
circuits directly; however, the overall range that the RS232 signal may be transmitted

/ received may be dramatically reduced.

The output signal level usually swings between +12V and -12V. The "dead area"
between +3v and -3v is designed to absorb line noise. In the various RS-232-like
definitions this dead area may vary. For instance, the definition for V.10 has a dead
area from +0.3v to -0.3v. Many receivers designed for RS-232 are sensitive to

differentials of 1v or less.

Data is transmitted and received on pins 2 and 3 respectively, Data Set Ready (DSR)
is an indication from the Data Set (i.e., the modem or DSU/CSU) that it is on.
Similarly, DTR indicates to the Data Set that the DTE is on. Data Carrier Detect

(DCD) indicates that a good carrier is being received from the remote modem.

Pins 4 RTS (Request to Send - from the transmitting computer) and 5 CTS (Clear to
Send - from the Data set) are used to control. In most Asynchronous situations, RTS
and CTS are constantly on throughout the communication session. However where
the DTE is connected to a multipoint line, RTS is used to turn carrier on the modem
on and off. On a multipoint line, it's imperative that only one station is transmitting at
a time (because they share the return phone pair). When a station wants to transmit, it
raises RTS. The modem turns on carrier, typically waits a few milliseconds for
carrier to stabilize, and then raises CTS. The DTE transmits when it sees CTS up.
When the station has finished its transmission, it drops RTS and the modem drops

CTS and carrier together.

Clock signals (pins 15, 17, & 24) are only used for synchronous communications.
The modem or DSU extracts the clock from the data stream and provides a steady

clock signal to the DTE.

34

Cl+ — — Vee

C2+ — — Ground

Cl- —— — Pin 2 Serial Connector
C3+ — MAX 232 — Pin 3 Serial Connector
C3- — — Pin 26 PIC

C4- — — Pin 25 PIC

Figure 4.2: MAX232 configuration

For this project, only three pin is used which pin 2; received data, pin 3; transmitted
data and pin 5; signal ground. These pin are connected to the MAX 232 through its
pin 13 and 14. Four 1pF capacitor labeled C1 to C4 is used with MAX232.

4.4 GSM Modem

The GSM modem is the most important element in this project because the data
transfer from one place to the terminal is done by the GSM modem using the GSM
network. The hand phone is used as a GSM modem because its capability and

features.

Most Nokia phones have F-Bus and M-Bus connections that can be used to-connect a
phone to a terminal or microcontroller. For this project, é Nokia 3310 is used. This is
because the data cable for this model can be easily found and the model is quite
cheap to purchase. The connection can be used for controlling just about all functions
of the phone, as well as uploading new firmware etc. This bus will allow the user to
send and receive SMS messages. The pin for the connection is located under the
battery compartment. The four pin are labeled M-Bus/F-Bus, ground, receive and

transmit.

35

Figure 4.3: F-Bus/M-Bus Connection Pin in Nokia 3310

M-Bus is a one pin bi-directional bus for both transmitting and receiving data from
the phone. It is slow (9600bps) and only half-duplex. Only two pins on the phone are
used. One is ground pin and the other one is the data pin. M-Bus runs at 9600bps, 8
data bits, odd parity, and one stop bit. The data terminal ready (DTR) pin must be
cleared with the request to send (RTS).

F-Bus is the later high-speed full-duplex bus. It uses one pin for transmitting data and
one pin for receiving data plus the ground pin. Very much like a standard serial port.
It is fast 115,200bps, 8 data bits, no parity, and one stop bit. For F-Bus the data
terminal ready (DTR) pin must be set and the request to send (RTS) pin cleared. The
serial cable contains electronics for level conversion and therefore requires power.
The first thing to do is supply power to the cable electronics and this is done by
setting the DTR (Data Terminal Ready) pin and clearing thé RTS (Request to Send)
pin. The next step is to synchronize the UART in the phone with your PC or
microcontroller. This is done by sending a string of 0x55 or "U' 128 times. The bus is

now ready to be used for sending frames.

36

Figure 4.4: Data Cable for Nokia 3310

The Nokia protocol has a series of commands that allow the user to make calls, send
and get SMS messages and lots more. The data cable is needed to connect the phone
to the terminal via serial connector. Different models of phone require its own data
cable. Figure below shows how the data cable is connected to Nokia 3310. After
being connected to the terminal via serial port, the phone can be used as a GSM
modem. The data received from the phone must be manipulated using software. In
this project special designed software is used to manipulate the data received and

sent by the user.

Figure 4.5: Data Cable Connection to Nokia 3310

37

4.5 Sending SMS

The standard SMS protocbl is GSM 03.38 - Alphabets and language-specific
information. This is the Technical Specification that describes the paéking of 7-bit
characters and shows the standard character map. For example, the string ‘hello’ is

decoded. First, 'hello' must be displayed in hexadecimal using the character map
provided in GSM 03.38. For A to Z and numbers it’s just the standard ASCII

conversion.
h e 1 1 o (ASCII characters)
68 65 6C 6C 6F (In hexadecimal)}

1101000 1100101 1101100 1101100 1101111 {(In Binary)

When dealing with binary, it makes life easier to write everything backwards. The
first byte in the string is on the right. The least significant bit is then displayed on the
left with the most significant bit on the left. Shown below is the same string of 'hello’
just displayed in reverse order. Then it's just a matter to dividing the binary values
into bytes starting with the first character in the string. (Start from right and go to
left.) The first decoded byte is simply the first 7 bits of the first character with the
first bit of the second character added to the end as shown below. The next decoded
byte in then the remaining 6 bits from the second character with two bits of the third
byte added to the end. This process just keeps going until all characters are decoded.
The last decoded byte is the remaining bits from the last character with the most

significant bits packed with zeros.

6F 6C 6C 65 68
1101111 11013100 1101100 11€0101 1101000 (The ASCII characters shown

in binary)

110 11111101 10011011 00110010 11101000 (The above binary just split
into 8 bit segments)
06 D SB 32 EB (The 8 bit segments decoded

into hex)

38

The message hello is therefore E§ 32 9B FD 06 when packed.
GSM 03.40 - Technical realization of the Short Message Service (SMS) Point-to-
Point (PP). This specification describes the following SMS fields in detail.

Sample frame sent to Nokia 3310 (showed as a Hex dump) 98 Bytes

Byte: 00 01 02 03 04 05 06 07 08B 09 10 11 12 13 14 15 1le¢ 17 18 19 20
Data: 1FE 00 0C 902 00 59 00 01 00 01 02 00 07 91 16 14 91 09 10 FO Q0

Byte: 21 22 23 24 25 26 27 28 29 30 31 32 33 24 35 3¢ 37 38 39 40 41
Data: 00 00 00 15 00 00 00 33 0OA 81 40 30 87 0C 47 C0 00 00 00 QO A7

Byte: 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
Data: 00 CO 00 00 00 00 C8 34 28 CB 66 BB 40 54 74 7A OE 6A 97 E7 F3

Byte: 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 18 7% 80 81 82 83
Data: F0O BS 0C BA 87 E7 RO 79 D9 4D 07 D1 D1 F2 77 Fb 8C 06 19 5B C2

Byte: 84 85 86 87 88 8% 20 91 92 93 94 85 96 87
Data: FA DC 05 1A BE DF EC 50 08 01 43 G0 7A 52

F-Bus Frame Header
Byte 0: F-Bus Frame ID. Cable is Ox!E.

Byte 1: Destination address.

Byte 2: Source address.

Byte 3: Message Type or 'command'. 0x02 (SMS Handling).

Byte 4 & 5: Message length. In our case it is 0x0059 bytes long or 89 bytes in

decimal.

(SMS) Short Message Service Frame Header
Byte 6 to 8: Start of the SMS Frame Header. 0x00, 0x01, 0x00
Byte 9 to 11: 0x01, 0x02, 0x00 = Send SMS Message

(SMSC) Short Message Service Centre (12 Bytes)
Byte 12: SMS Centre number length. 0x07 is 7 bytes long. This includes SMSC
Number Type and SMS Centre Phone Number

39

Byte 13: SMSC number type ¢.g. 0x81-unknown 0x9 1-international 0xal-national

1¥XX TIIII: Where I is the Numbering-plan-identification (Refer to
GSM 03.4C - 9.1.2.5 Address fields)

1TTT XXXX: Where T is the Type-of-number (Refer to GSM 03.40 -
9.1.2.5 Address fields)

Byte 14 to 23: (Octet format) SMS Centre Phone Number In this case +61
411990010

{FPDU) Transfer Protocol Data Unit

Byte 24: Message Type

XXXX XXX1 = SMS Submit - The short message is transmitted from the
Mobile Station (MS) to the Service Centre (SC).

XXXX XXX0 = SMS Deliver - The short message is transmitted from the
3C to the MS.

(Refer to GSM 03.40 - 9.2.3 Definition of the TPDU parameters) In this case it is
0x15 = 0001 0101 in binary. The message is SMS Submit, Reject Duplicates, and
Validity Indicator present.

Byte 25: Message Reference if SMS Deliver & Validity Indicator used (Not used in
this case). Refer GSM 03.40 - 9.2.3.6 TP-Message-Reference (TP-MR)

Byte 26: Protocol ID. Refer to GSM 3.40 - 9.2.3.9 TP-Protocol-Identifier (TP-PID)
Byte 27: Data Coding Scheme. Refer to GSM 03.38 & GSM 3.40 - 9.2.3.10 TP-
Data-Coding-Scheme (TP-DCS)

Byte 28: Message Size is 0x33 in hex or 51 bytes long in decimal. This is the size of
the unpacked message.

Refer to GSM 03.40 - 9.2.3.16 TP-User-Data-Length (TP-UDL)

Destination's Phone Number {12 Bvtes)

Byte 29: Destination's number length.
Byte 30: Number type e.g. 0x81-unknown O0x9%1-international Oxal-national
Byte 31 to 40: (Octet format) Destination’s Phone Number

40

Validity Period (VF)
Byte 41: Validity-Period Code, Time period during which the originator considers

the short message to be valid.

Byte 42 to 47: Service Centre Time Stamp. For SMS-Deliver

The SMS Message (SMS-SUBMIT)
Byte 48 to 92: This is the SMS message packed into 7 bit characters. SMS Point-to-

Point Character Packing
Byte 93. Always 0x00

The F-Bus Usual Ending

Byte 94: Packet Sequence Number
Byte 95: Padding Byte - String is odd and has to be even.
Byte 96 & 97: Odd & even checksum bytes.

41

4.6 Peripheral Interface Controller (PIC) PIC16F877

The PIC is used as the microcontroller in the system. It receives the data from the
terminal and the devices and processes them. After processing the information, the

required response is sent either to the terminal or to the devices.

Ve] [
Port A] — Port B
(A0-Reset Switch) — — (Doors & Switches)
Port E {] —
] — Vo
(Not Used) — — v
Voo —] PIC16F877 — 88 Port D
Ves | — (Device Indicator)
ClockIn — —
Port C] — Port C
(Lamps & Air-Cond) — — } (MAX 232)
Port D L] [} Port D
evice Indicator evice Indicator
(Device Indi Device Indi

Figure 4.6: PIC Pin Configuration

As can be seen in figure 4.6, there are five input output port that can be used. In Port
A, only one pin is used which is A0 as a reset switch for the PIC. The other pin is
unused. Port B is used for the devices such as doors and switches for the lamps and
air conditioner. Port C is used for the lamps and motor which represent air
conditioner. Port I is used for LEDs that function as a status indicator for each
device. Port E is still left unused. Therefore, there are still 14 pin left unused and a
number of 7 more devices can be placed in the system. If the building requires
controlling more devices, a larger capacity microcontroller has to be used. The PIC is
programmable and C language is used to program it. The final program for the PIC

can be seen in Appendix A-13.

42

4.7 Final Software- I-UTP Building Control v1.0

The final software is called I-UTP Building Control v1.0. The main window is
divided into several parts which are the controller connection, F-Bus connection,
switch panel, sensor panel, provider server information and the status log. Besides
that, there are also buttons such as view terminal logs, view ASCII code, view serial

information and close button.

The controller connection is used to connect the terminal with the microcontroller
which is the PIC, When connected, the switch panel and the sensor panel will be on
according to the current status given by the PIC. The F-Bus connection is used to
connect the GSM modem to the terminal. When it is connected, the provider server
information will be displayed. If the information is not displayed, there is a

possibility that an error has occurred in the F-Bus connection.

The status log will show all the activities that occurred during the connection. The
view terminal log button will direct the user to another window (Appendix A-14)
which is mainly used for debugging purposes. At this window the real data that is
sent and receive is shown. The view ASCII code is a window that shows the ASCII
code and its equivalent conversion. This is very useful in the debugging process. The
view serial information is just for the user to gain information about serial pin

connection. The last button which is the close button will end the program.

43

Contreller
Connection

s HOTR R

F-Bus
Connection

Status Log

Switch Panel

View
Terminal
Logs

Provider Server
Information

Sensor Panel

Code View Serja Cloge
Info

Figure 4.7: I-UTP Building Control Main Window

Section

Controller Connection
F-Bus Connection
Switch Panel

Status Panel

Provider Server Information

Status Log

View Terminal Logs
View ASCII code
View Serial Info

Close

Fuanction

To on/off the controller connection

To on/off the F-Bus connection

To manually on/off the devices

To show the current status of the monitored
devices

Contain the necessary information of the server
when connected

Contain the log of all the activities done
Direct the user to the Terminal Logs window
Direct the user to the ASCII code window
Direct the user to the Serial Info window

To off the software

44

How to Use the System

1. Connect the serial cable and the F-Bus cable to the controller and mobile
phone
2. Switch on the serial connection. Wait until the status log shows that the serial

connection has been established.

e i-UTP Building Control v1.00

Figure 4.8: Serial Connection Established Successfully

3. Turn on the F-Bus connection on the software and waits for the F-Bus server

to be ready. Type the required SMS message

45

Figure 4.9: F-Bus Connection Established Successfully

4. Wait for the controller to response and reply

Figure 4.10: Message Receive and Reply Sent

46

Figure 4.11: The Terminal Logs

47

4.8 Visual Basic

Visual Basic is a very important software in designing the system’s software. Many
of its function such as serial communication and F-Bus ActiveX Control are used.
The section below discusses in detail what the functions that are used in developing

the final software for this project.

4.8.1 Serial Connection

The serial connection software is used to test the serial connection whether
the connection is functioning correctly or not. The following table lists the

properties that are used to establish the serial connection:

Property Description
CommPort Sets and returns the communications port number.
Settings Sets and returns the baud rate, parity, data bits, and

stop bits as a string.
PortOpen Sets and returns the state of a communications port.

Also opens and closes a port.
The sample screen of the software can be seen in Appendix A-9.
4.8.2 F-Bus ActiveX Control
Mobile FBUS 1.5 is a freeware ActiveX control that you can use to create
softiware for mobile phones. Send SMS messages, manipulate operator logos,
use monitoring, access phonebook, and much, much more. Mobile FBUS is

the ideal tool for connecting your Visual Basic application to mobile phones.

In this project, only the SMS message object is used.

48

This object can be used to read and send SMS messages. The SMS object has

the following properties, method and sub-objects:

Property Description
LastError

TotalMessages

UnreadMessages

Method Description
Refresh

SendMessage

Object Description
DeliveryNotifications
Inbox

Outbox
FBSmsMessage

Property Description

Count

Property Description
Date'Time

Destination

LastError

Returns the last error code.
Returns the total number of SMS messages
stored.

Returns the number of unread messages.

Retrieves stored messages from the phone.

Sends an SMS message.

Message box containing delivery notifications.
Message box containing incoming messages.
Message box containing sent messages.
Sub-object representing one message in a

message box.

Number of messages in box (read-only Integer).

Messages have indexes between 1 and Count.

Timestamp of message (read-only Date).
Destination of message (read-only String). In
most phone types this property is only available
in the OutBox.

Last FBUS error, 0 if last action was successful

{read-only Integer).

49

Sender

SentRead

Text

Method Description
Delete

Sender of message (read-only String). In most
phone types this property is only available in
the InBox.

SentRead property returns true if the message is
sent or read (read-only Boolean).

Returns the message text (read-only String).

Deletes the message from the phone memory.
You have to call SMS. Refresh to update the
state of the SMS object after deleting messages.

50

4.9 Limitation of the System

Every system has its own limitation including this system. There are several
limitations to this system. Some of it is beyond the designer’s capability to avoid.

Among them are:

s Number of devices that can be controlled or monitor

e Service provider connection

4.9.1 Number of devices

PIC16F877 is used in this project. This number of devices that the controller can
handle problem occurs because the controller used is the PIC16F877. It only has
five ports that could only accommodate 33 1/O. This problem can be overcome
by using a bigger capacity controller or placing one microcontroller for each
building level. Although the cost might increase, this does not cause a very
significant impact because the cost of this system is not very expensive. Another
approach to overcome this problem is to install this system can at each building

level,

4.9.2 Service Provider Connection

The system also depends on the connection that the service provider provides. If
the connection is poor, there is a chance that the message send will be delayed or
not received by the gsm modem. This will result in the system not functioning
correctly. This is also not a very big problem because the services offers now are
very efficient because there are competitions between the providers. Because of

this healthy competition, the services quality is increasing by each passing day.

51

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This chapter is divided into two topics which is the conclusion and the
recommendation. The conclusion part discussed about what the project’s objectives
and how the project is completed. The recommendation part discussed about the
future improvement of the project and in what other area the project can be

implemented.

51 CONCLUSION

In conclusion, this project is very useful to understand in-depth about Nokia F-Bus
protocol and its application features. The knowledge gained is very helpful to

identify and understand all other communication protocols generally.

In order to complete this project, knowledge about F-Bus protocols and PIC
programming is very important. A lot of research is done first before the real
implementation can be done. The system is hoped to help make the monitoring and
controlling a building a much easier task. Using this system, the worker does not
have to go up the building to check each device. They only have to do such things

only when there is an emergency or device breakdown happen.

The communication using GSM and the services it offers nowadays are becoming
more popular and can be utilize further more with new innovation and integrating the
system with other existing system to make them more efficient and better. This

project is only one way of making the full use of the GSM network.

The objectives of this project have been fulfilled and the project is hoped to make

UTP building a more cost effective and easy to monitor building.

52

52 RECOMMENDATIONS

Despite of the success of the project, there are still rooms for improvements. For
example, the delay the system takes to initialize especially the F-Bus connection can
be reduced. This problem arise because of the system needs to refresh every 60
seconds to check for incoming messages. This time can be reduced to minimize the

delay.

Other recommendation is to use a higher power PIC to accommodate more devices.
The PIC16F877 can only accommodate 11 devices, this is not enough to control and

monitor a building with a lot of devices such as computers and machinery.

The system can also be expanded to make it have more functions such as integrate it
with voice recognition. The users just have to call the server and tell the controller

what to do by using some specific commands.

Other than using the SMS to control devices or building, it can also be used to keep
track of vehicle. This can be done by integrating the SMS with the Global
Positioning System (GPS) system. The system can also be integrated with the
Geographical Information System (GIS) System to make it easier for the driver to

find certain route to the destination.

There are also on going research about the usage of SMS service in other system
such as SMS Car Parking Payment, SMS Bill Reminder Payment Systems, Machine-
to-Machine (M2M); Mobile-to-machine and Machine-to-mobile, Home Surveillance
with Mobile Phones and Mobile Phone Based Ticketing (transportation, train,

parking meters etc)

53

REFERENCES

[1] http://www.comms.eee.strath.ac.uk/~gozalvez/gsm/gsm.html, An Overview of the
GSM System by Javier Gozilvez Sempere

[2] http://kbs.cs.tu-berlin.de/~jutta/gsm/js-intro.html, A Brief Overview of GSM, by

John Scourias

[3] http://www.embedtronics.com/nokia/fbus.html#partl, Nokia F-Bus Protocol
Made Simple by Wayne Peacock

[4] William Stallings, Data and Computer Network, 7" Edition, Prentice Hall 2004

[5] Dr P.Sellapan, Visual Basic through Examples, 1** Edition, Federal Publication
Sdn. Bhd. 2003

[6] http://www.ihub.com/GSM%20Modems.htm, GSM Modems

[71 http://www.handytel.com/technology/gsm03.htm, GSM System Architecture
[8] http://softwarecaves.com, MFBus 1.5 ActiveX Control

[9] http://gnokii.org, Linux Gnokii Projects

[10] http://www.weethet.nl/, Pin Layout for Nokia 3310

[11] http://www.activexperts.com/activcomport, Nokia GSM AT Commands

[12] PICI6F877 Data Sheet, 28/40 Pin 8-Bit CMOS FLASH Microcontrollers by
Microchip

54

APPENDICES

35

PIC16F874/7

APPENDIX A

Vg § Dropane stepe
g Bl Fiiats] FEEREAL szt ool
weis | o [.
A 18 i P’ln;!sm Lol el
" dHlevet atnet T
weEr gl |
T, Diss- ivtbus
4 Lol {oie
A
ddshmrlize
LEL Lesgte o 0
A

Tecidul
3 conirl

Fli !ﬁ i")\ =]

Sweazifslog
cod dEpay
NN

Frawss -ty
Liart
Eisnabit
A AT
Froes 4
Toisers!

Bttt
teriart

L
Lrrmr

Caget e Clompare 2

Caprars' Ui pare |

e

Tiimer

105t B-Ohanncl AR

AU s i

et £

Figure A-1: Architecture of the PIC16F877 microcontroller

APPENDIX A

i
: ADRESH
l TE
I
b ‘ .
| I +
AN/ A — ! samhe . E : ™ -
¥ ¥ 1 [xlu}
t \.r;__:' l ; . L e I B
[+Vni;1 — - ——— —
AR Rt | ot R S S : M
| \{,_‘_-I_Iq’__g | [~
ANZR ' SR U |
TAPE R) er Yer B -
o
! VR = o B e
ANIIRA i % g O e
oyt e o v, X I:
T — R FI B % U B ADRESL
| n—— 04 = Sweitch o |
T I o) i 0 PR
- 2 cL X
Y ; £t ED—
ANGIRE | [T ML B L A1
| v ¥ r
| “"—H—V *
ANGIRE e tos S " [O
s (N -
| Ve T g
AN7 IR E 2 — T i : —-wfj/ g — -] i
Uy 4 e e = P
& 3
W B
I] RER
| N
File 9Eh
infatn g dali b
b G
y File 1Fh
Andrgue chanmel
Eg sddresz
Fr
CR

Figare A-2: Simplified block diagram of the PIC16F877 ADC module

i

Figure A-3: PIC16F877 register file map

TR Ihdie 3
Orh
TR PUL
T3 BIATUS
AR FER
(0] PORTA
il Jad
U7h FORTE
| 0Bh P
[Oan PORTE
T IRR PLIATH
(2]} TRTEON
i OCh FIFT
- O0R PIRY
TER THRRIT
h TRRTH
T 10h T
Th T
T2 T2
130 BLPHUF
Tah]
T5h TCPRIL -
TG CCPRTH
17h CCRTCOR |
TOh TAREG
TER FREN
L2 TCPRIC
TCH CLPRIN
TOR CLPICUR
TER ADORESH
T
[20h
. General Gonersd
. Pl Pumposs. -
. Reqider Regider
&0 Bylas 80 Byles
BFh EFh .
o Gengral Pumoss 0 * Aecasses Clabal
: Gitlal Reglder : Regider
TFh 16 Butas fEh TUrIFh
Bank 0 Bank 1

APPENDIX A

18FH

Generﬁ
‘Pupose
- Regider

26 Btes

17Fh-

Atteesng Olobal
- Régidar:
- YOTFh

- Generd
Puipo®
Fagidat

96 Bytes -

CAEEK
Bl

IFFh

Accassrs Ol cial
‘Ragides .
TOTFh

Bank 2

Bank 3

AR vy ke peeuddy

FOITLENY SO | WNTO NITY PR

MM RUneRed | wewIvmpew depsafmeg

PR Y
[]
NI MBMPICH P~V 2081
i LINZHID AOVAUALN TYRIAS =
Nedngs s s ._._,H
=] P
o2t i v ol v \4)
or T UL A - [
ol 1 oo Lm|H_
=k St T Se—
=2y i Lt - FI_ T_ Eald
- |_» 7 [
ir mn - -
I \m; i
- 83HILME 228404314
§ A Ly)) "
e] E] iy Aiind
T o i s
enst YN — BR ol
- —r b o eren
8 ST ge—aq-g | —
bR s 1050 pioy I | an e, [Y P
T [.t el —
o - o e =
J WS plt e e] i 2
™ . W N !_ln. = Tt “ -
. o = - UV ._H
[yeery— it i - - SUOLVIKINE
JrteT -3 g UxoozT AAHNDL b—
o APenn—) L1 WA e n
ot Lo AW T e LIROHD HETIOWLNGD NIWK
o HRHRDL T
O A YR Tl(..%si » ey 3 duary P &
o cuope [t M o Ei#-w m o 5 ke L. e o
an,~ s LA LA -
2aa com cmogay ¥
i ’ RUOSHIT ¥OOQ 3 ¢
N Tes
z rrapre /« 52 amsmN
+ Ay i a ¢ Ariey .H o \
| 4 wnanes ez &
HINDHED BRIHILIMS NG NIV »z % NEM
T LINOUID ATddng ¥aMOd
Apdny Jamng ~——
b= A¥
kA
L
g
[

UNDIET BIIAN H Aipruedy

APPENDIX A

Figure A-5: Hardware Test Board

APPENDIX A

Figure A-6: Hardware Implementation on Vero Board

/#include <16F877 H>

/AHuses

XT,NOPROTECTNOWDT,NOLVP

/f#use delay(clock=4000000)

#include <conio.h>
#include <stdio, h>

bildata 27

#define

void main()

{
int bufferi;
int countl;
int input_data_even[bildata];
int input_data_odd[bildata];
int checksum_result_even;
int checksum_result odd;

#All ¥even

input data_even{0]=0x03;
input_data_even[1]=0x20;
input_data_even[2]=0x34,
input_data_even[3]=0x34;
input_data_even[4]=0x0A,
input_data_even[5]=0x31;
input_data_even[6]=0x30;
input_data_even[7]=0x2D;
input_data_even[8]=0x31;
input_data_even[9]=0x4E;
input_data_even[10]=0x4D;
input_data_even[11=0x35;
input_data_even[12]=0x28,
input_data_even[13]=0x29,
input_data_even[14]=0x4E;
input_data_even[15]=0x50;
input_data_even[16]=0x00;
input_data_even{17]=0x47;

input_data_even[18]=0x0C;
input_data_even[19]=0x7F;
input_data_even[20]=0x02;
input_data_even[21]=0x00;
input_data_even[22]=0x71;
input_data_even[23}=0x0C,
input_data_even[24]-0xD2;
input_data_even[25]=0x26;

input_data_even[26]=0x00;

fAN odd
input_data_odd[0]=0x00;
input_data_odd[1]=0x%56;
input_data_odd[2]=0x30;
input_data_odd[3]=0x2E;
input_data_odd[4]=0x35,
input_data_odd[5]=0x32;
input_data_odd[6]=0x2D;
input_data_odd[7}=0x36;
input_data_oddf8]=0x30;
input_data_oddf9]-0x0A.,
input_data_odd[10]=0x48§;
input_data_odd[11]=0x2D;,
input_data_odd]12]=0x0A;

vii

APPENDIX A

input_data_odd[13]=0x63;
input_data_odd[14]=0x20;
input_data_odd[15}=0x4D;
input_data_odd[16]=0x2E;
input_data_odd[17]=0x01;

input_data_oddf18]=0x1E;
input_data_oddf19}=0x00,
input data_odd[20]=0x00;
input_data_odd[21]=0xDI;
input_data_odd[22]=0xCF;
input_data_odd[23]=0x1E;
input_data_odd{24]=0x00;
input_data_odd[25]=0x00;

input_data_odd{26]=0x01;

/Start XOR even
checksum_result_even=input data even[0];
for (count1=1;count] <=(bildata-1);count1++)

buffer[=input_data_even[countl];
checksum_result_even=checksum_result_even”buffert;

1
{/Start XOR odd
checksum result_odd=input_data odd[0];
for (countl=1;counti<=(bildata-1);countl++)

bufferl=input_data_odd[count1];
checksum_result_odd=checksum_result_oddbuffer];

}
#0dd, Even

printf{"Checksum = %X %X",checksum_result_odd,checksum_result_even);
getch();
}

Figure A-7: Checksum Program

viil

APPENDIX A

/include <16F&77 H>
ifffuses XT,NOPROTECT,NOWDTNOLVP
{#use delay(clock=4000000)

/f#include <iostream. h>
#include <conio.h>
#include <stdio.h>
#include <math.h>
#define bildata 40

HDebug
void DEC_BIN(int choose, int input);

void main()

{

int input_datafbildata];
int buffer_array[bildata];

fifor packing

int countl;

int countZ;

int bufferl;

int buffer2;

int buffer3;

int buffer4;

int buffers;

int shiftl;

int minus_array;
int minus_shift;
int had_recursion;

/ISwap from front to back, put into buffer
for (count1=0;count!<=(bildata-1};countl++}

{
!

/MMask with 01111111 (to confirm value of 7 bits)
for (count1=0;count]<=(bildata-1);countl++)

buffer_acray[(bildata-1)-countt]=input_data[count1];

buffer5=buffer_array[countl];
bufferS=buffer5&0x7F;
buffer_array[countl]=buffers;

}

{/Pack septet to be octet

{iminus_array=bildata/§; /hwilk be used

/thad_recursion=bildata-minus_array, //will be used

minus_shifi=1;
for {countl=1;count] <=(bildata-1);countl++)

{
/fRestart all 8 bytes
if (({countl-1)%7==0} && (count1>1})

//Pull all value to the front (one byte step)
for {count2=bildata-countl ;count2>=];count2--)

buffer_array{count2]=buffer_array[count2-17;

if (count2=1)

buffer_array[count2-1]=0x00;
}

//Reset shift counter
minus_shift=1;

APPENDIX A

APPENDIX A

/Temporarily hold current value
buffert=buffer_array[(bildata-countl}-1];
buffer2=buffer_array[(bildata)-count1];
/Shift previous value to the left

shift i=8-minus_shifi;
buffer3=buffer1<<shift1;

/Mebug
buffer3=buffer3&0xFF;

/fInsert new value to the current value
buffer3=buffer3|buffer2;
buffer_array[{bildata)}-countl]=buffer3;

/IShift previous value to the right

//Insert new value to the current previous value
bufferd=buffer] >>minus_shift;
buffer_array[{bifdata-count1)-1]=buffer4;

/Mncrease shift counter
++minus_shift;

/{Debug
for (int counttest=0;counttest<=(bildata-1);counttest++)

{
//Dec-Bin
int digit,power=0,output={;
int buffer=buffer_array[counttest];
while (buffer>0)

{
digit=buffer%2,
output=cutput+digit*pow(10,power);
buffer=buffer/2;
++power,

}
printf{"%X = %d\t ",buffer_array[counttest],output);

}
printf{ "n\a\n");

getch(};
1
/Debug
printf{"end");
geteh();
}
* int digit,power=0,output=0;
int butfer=input;
while (buffer>0)
digit=buffer%l10;
buffer=buffer/10;
output=output+pow(2,power)*digit;
+t+power;
}
*f

Figure A-8: Packer Program

APPENDIX A

Serial Comimunication v4.00

P Bailding Coniral v1.00

Figure A-10; Main Page for I-UTP Building Control

APPENDIX A

wh Terminal Lag

Figure A-11: Terminal Log for I-UTP Building Control

whe' ASCI Code

>

.

Regular ASCII Chavrt <character codes B - 12
816 kF {died B32 sp 848 a64d a
<del? B33 ¢

<dc2> a34
(ded> B35
¢dc1d A36
(nak a37
Ceyn) 238
(ethd> a39
{can’ a4a
Cem? 41
Ceof)

{esc

fsr

Cgsl

Crad

{us?

O+ £00
AW FT 4+ ==l DAz A
Py & KA =B
[A 1 WD 5D = 0 L I e
SZI-RL~IOTEEHEORDR
Yk P P PG S ET = Y 5 i M-

003 XSO RO DTN
D ivemNCXEEERRRAD

ErLl

Extended ASCII Chart <{character c -2
3 158 172] 186 284 214

&
]
.
it
5
o
o
@
o
o
u
¢
£
¥

PR e A

Rl
- N BL

m o =4l ERSRIES
AR ™l W
D MY 5 HEIDoiE G M

p-HEUEAES U T g T 0 N -)

Figure A-12: ASCII Code Window

xii

ute 2erial lnformation

®0 00 o))
©0 0 /|

IORORORORO)
®6® 006

Figure A-13: Serial Information Window

APPENDIX A

Start bit
“Space

5 volts

vl wth] lT

|-§/

Bit Zero

of data Bit 7
Previous of data
Swop bit or
Edle state
“Mlark’”

What the CRT sees at the PIC input pin

Stop bit,
Wiavbe
followrecd
By idle
states
“Nark™

Space state = +12 é\

Mark state =12 W

Space state = +12 I _’

Mark state =-12V

O ¢} o 0O

[1 0
-+3% volts at PIC __?‘l I-.—I
O volts at PIC

Rewverse the bits to put the
L5B on the right so that
humans can read it.

4] T ¢ 0 0 0 0O

Oxd4l = "A"

Figure A-14: How data is transferred in MAX232 and displayed in Oscilloscope

Xiii

APPENDIX A

PIC Program
,f*

AD=

Al=

A2=

A3=

Ad=

AS=

B0 = Lamp 1 Switch (I}

B1 = Lamp 2 Switch (I)

B2 = Aircond 1 Switch (I}

B3 = Aircond 2 Switch (I)
B4 = Main Door 1 Sensor (I)
B5 = Main Door 2 Sensor (I)
Bé = Room Door 1 Sensor (I}
B7 =Room Door 2 Sensor (I)

CO=Lamp 1 (O)
Cl=Lamp 2(0)

C2 = Aircond 1 (0)

C3 = Aircond I (O}
C4=

C5=

C6 = Serial Transmit (O)
C7= Serial Receive (I)

D0 =Lamp 1 Indicator (O}

D1 = Lamp 2 Indicator {O)

D2 = Aircond I Indicator (O)
D3 = Aircond 2 Indicator {O)
D4 = Main Door 1 Indicator (O}
D3 = Main Door 2 Indicator (O}
Dé = Room Door 1 Indicator (O)
D7 = Room Door 2 Indicator (O)

E0=
El=
E2=
*f

#include <16F877.H>
#fuses XT,NOWDT ,NOPROTECT,NOLVP

#use delay(clock=4000000)
#use rs232(baud=5600, xmit=PIN_C6, rcv=PIN_C7)

byte data_counter=0;
byte data_status=0; /0=No transmission, 1=Data completed succesfully, 2=Data error

//All commands data

byte frame_start byte=0;
byte frame_cmd_grp=0;
byte frame bldg_num=0;
byte frame flr num=0;

byte frame_room_num=0;
byte frame_dev_num=0,
byte frame dev_ID_num=0;
byte frame_dev_onoff=0;
byte frame stop_byte=0;

//Device Status for each device

#define device_qty2

byte lamp[device_qty];

byte aircond[device_qty];

byte door[device_qty];

byte roomdoor[device_qtyl;

/fON/OFF Switch Status for each device

/i(to prevent continuously ON when user press switch)

Xiv

APPENDIX A

byte lamp_switch[device_qty];
byte aircond_switch[device_gtyl;

//Switch function
void SWITCH_COMMAND(int device_type,int device no,int onoff_status);
void REPLY_INITIALIZATION(void);

Hlnterrupt for serial on-received
#int rda

void serial_interrupt()

{

int data_rev;
data_rcv=getch();
/{Check for start byte

frame_start_byte=data_rcv;
if (frame_start_byte=—0xAA)

//Reset data counter
data_counter=0;
//Reset data status
data_status=1;
}
else

{

switch(data_counter)

{
//Check for command group
case 1:
if (data_status=1}

{
frame_cmd_grp=data_rcy;
switch(frame_cmd_grp)

{
case Ox00:
case Ox01:
case 0x02:
case 0x03:
{
data_status=1;
break;
}
defavit:
{
data_status=2;
break;
}
}
}
break;
}
fiCheck for building number
case 2:
{
if (data_status==1)
frame_bldg_num=data_rcv;
switch{frame_bldg_num}
{
case 0x00:
case Ox16:
{

data_status=1;

XV

break;

default:
{

data_status=2;
break;
1
}

break;
1

{ICheck for floor number

case 3:
{
if (data_status—1)

frame_flr num=data_rcv;
switch(frame_flr_num)

case 0x00:
case Ox01:
{
data_status=1;
break;

default:
{

data_status=2;
break;
}
}

break;
1

/{Check for room number
case 4:

if (data_status=I)
{
frame_room_num=data_rcv;
switch{frame _room_numy)

case Ox00:
case 0x04:
{
data_status=1;
break;

}
default;

data_status=2,
break;
}
}

break;
)

{/Check for device number
case 5:

if (data_status==1)

{
frame_dev_num=data_rcv;
switch(frame_dev_numy)

APPENDIX A

case Ox00:
case Ox01:

{
data_status=1;
break;

!
default:

data status=2;
break;
}
!

break;
}

HCheck for device ID number
case 6;

{
if (data_status==1)

frame_dev_ID num=data_rcv;
switch(frame_dev_ID_num)

case 0x00;
case 0x01:

data_status=1;
break;

}
default:

data status=2;
break;

!
H

break;
}

1/Check for device on/off command
case 7

if (data_status==1)

frame_dev_onoff=data_rcv;
switch(frame_dev_onoff)

case Ox{0:
case 0x01:
{
data_status=1;
break;
}
default:
{
data_status=2,
break
}
}

break;
}

HCheck for stop byte
case 8§

xXvil

APPENDIX A

{

if (data_status==1)
frame stop byvte=data rcv;
switch(frame stop byte)

case OxFF:

{
data_status=1;

break;

!
defauit:
{
data_status=2;
break;

if (data_counter—=8)

/f all commands are correct

if {data_status==1)
{

/fExecute command!!

ffmemne
HCheck for command group
if (frame_emd_grp==0x03)

/ICheck for building number

if (frame_bldg num=0x16)

//Check for floor number
if {frame_flr_num=—=0x01}

/{Check for room number
if (frame_room_num=—=0x04)

{/Check for device number
HLAMP
if (frame_dev_num=—=0x00)

{/Check for device ID number

HLAMP1
if (frame_dev_ID_num==0x00)

/IOFF

if (frame_dev_onoft==0x00})

{
/Turn OFF

SWITCH_COMMAND(0,0,0);
}

else
HON

if (frame_dev_onoff==0x01)

{Turn ON

SWITCH_COMMAND(0,0,1);

APPENDIX A

}
H

else
HLAMP2
if (frame_dev_1D_mum==0x01)

/IOFF
if (frame_dev_onoff==0x00}

{
HTurn OFF

SWITCH_COMMAND(0,1,0);
}

else
HION
if (frame_dev_onoff==0x01)

{Turn ON

SWITCH_COMMAND(0,1,1);
}
H

}

else
HAIRCOND
if (frame_dev_num==0x01)

//Check for device ID number
HAIRCONDT1
if (frame_dev_ID_num==0x00}

HfOFF
if (frame_dev_onoff==0x00)

HTum OFF

SWITCH_COMMAND(1,0,0);
}
else
HON
if (frame_dev_onoff=0x01)

{
/iTurn ON

SWITCH_COMMAND(1,0,1};
H
}

else
HAIRCOND2
if (frame_dev_ID num=—0x01}

/fOFF
[if (frame_dev_onoff==0x00)

/fTum OFF

SWITCH_COMMAND(1,1,0;
i
else
fION
if (frame_dev_onoff=0x01)

{
fTurn ON

SWITCH_COMMAND(1,1,1);
}
}
}
}

Xix

APPENDIX A

}

else
HIf it is initialization frame

APPENDIX A

if (frame_cmd grp==0x00 && frame_bldg_num=0x00 && frame_flr_num—0x00 && frame_room_num==0x00 &&

frame_dev_num=0x00 && frame_dev ID num=0x00 && frame_dev_onoff—=0x00)

{
REPLY_INITIALIZATION(),
}
}
/Reset counter n status

data_counter=0,
data_stats=0,

clse

{Aincrement counter
data_counter=data_counter+1,

}
void main()

int countl;
int device_ID;

//Enable intrrupt for serial on-received
enable_interrupts{global);
enable_interrupts{int_rda);

{//Enable weak internal pull-up resistor on Port B
port_b_pullups{true);

HOutput Initialization
/I-Indicators—
cutput_bit(PIN_D0,1);
cutput_bit(PIN_D1,1;
output_bit(PIN_D2,1};
output_bit(PIN_D3,1);
output_bit(PIN_D4, 1);
output_bit(PFIN_D35,1);
output_bit(PIN_D&6,1);
output_bit(PIN_D7,1);
ff--Lamps--
output_bit(PIN_C0,1};
output_bit(PIN_C1,1);
ff--Airconds—
output_bit(PIN_C2.03;
output_bit(PIN_C3,0);

//Status Initialization
/f--Lamps & Airconds--
for (countl=0;countl <=device_qty-1;countl++)
{
/MDevice Status
H0=0FF, 1=0N
/H{Default=0)
lamp[count1]=0;
aircond[count!1]=0;
door[countl]=0;
roomdoor[count1]=0;
HON/OFF Switch Status
/10=0FF, 1=0ON
H(Default=1)
famp_switch[count]]=1;
aircond_switch[countl]=1;

XX

APPENDIX A

while(true)

H——-SWITCH DETECTION-----

Jiamaos] AN [Rk
/A1f the switch is pressed
device 1D=0;
if (input(PIN_BG)==0)

//1f the switch has been released previously
if (lamp_switch[device ID]==1)

/If the device is currently OFF
if (lamp[device_ID]==0)

HTum ON
SWITCH_COMMAND(0,device_ID,1);

else
fAf the device is currently ON
if (lamp[device_ID}—=1)

HTurn OFF
SWITCH_COMMAND(0,device_ID,0);
}

//Change switch status
lamp_switch[device_ID]=0;

else
//1f its switch is released
if (input(PIN_B0)y=1)

//{Change switch status
lamp_switch[device ID]=1;

JPRRRRL A MP JH ¥ RN
/1T the switch is pressed
device ID=1;
if (input(PIN_B1)==0)

J/If the switch has been released previously
if (famp_switch[device_ID]=1)

/1f the device is currently OFF
if (lampfdevice_ID]=0)

{Turn ON
SWITCH_COMMAND(0,device_tD,1};

else
//1f the device is currently ON
if (lampldevice_ID]=1)

{Tum OFF
SWITCH_COMMAND(0,device_ID,0);
}

HChange switch status
lamp_switch[device_[D]=0;

1
}
else

Hf its switch is released
if (input(PIN_B1)=1)

XXi

APPENDIX A

/{Change switch status
lamp_switch[device_ID]=1;

/"*****AIRCOND 1 222 1]
/If the switch is pressed
device (D=0
if {(input(PIN_B2)~=0)

//Tf the switch has been released previously
if (aircond_switch[device_ID]—=I1}

/1f the device is currently OFF
if (aircond{device_ID]==0)

{
/Turn ON
SWITCH_COMMANIX1,device 1D,1);
}
else
/f the device is currently ON
if (aircond[device_ID]==1})
{
/Turn OFF
SWITCH COMMAND(1,device_ID,0);
}

/iChange switch status
aircond_switch[device_ID}=0;,

1

)

clse
/Nf its switch is released

if (input{PIN_B2)=1})

//Change switch status
aircond_switch[device ID}=1;

}

/I'* #***AIRCOND 2*****
/1T the switch is pressed
device_ID=1,
if (input(PIN_B3)==0)

/1 the switch has been released previousty
if {aircond_switch[device_ID]==1)

{/1f the device is currently OFF
if (aircond[device ID]—0)

{
/Tum ON
SWITCH_COMMAND(! ,device_ID,1);
1
clse
H1f the device is currently ON
if (aircond[device_ID}==I)
{
/{Turn OFF
SWITCH_COMMAND(1,device_ID,0);
)

//Change switch status
aircond_switch[device_ID1=0;
}

H

else
HIT its switch is released
if (input(PIN_B3)=1)

- //Change switch status
aircond switch[device ID]=1;

Xxii

//*****DOOR_ 1 EEEL L]
//1f the sensor is pressed
device ID=0,
if (input(PIN_B4)=0)

HIf the device is currently Opened
if (door[device_ID}==1)

{fTurn Closed
SWITCH_COMMAND{2,device_ID,0);
)

}
else

/11 its switch is released

if (input(PIN_B4)=1)

{

//1f the device is currently Closed
if (door{device_ID}==0)

#Turn Opened
SWITCH_COMMAND(2,device_ID,1);
)
1

//*****DOOR 2*****
//Tf the sensor is pressed
device_ID=1;
if (input{PIN_B3)==0)

/1f the device is currently Opened
if (door[device_ID]=1)

HTum Closed
SWITCH_COMMAND(2 device ID.0);
H
}
clse
HIf its switch is released
if (input(PIN_B35)=—1)

/1f the device is currently Closed
if (door[device [D]=0)

//Turm Opened
SWITCH_COMMAND{2, device_ID,1);
!
}

JERESROOMDOOR | *hrs
//f the sensor is pressed
device_ID=0;
if (inpu{ PIN_B6)y==0)

/Mf the device is currently Opened
if (roomdoor[device ID]=1)

HTum Closed
SWITCH_COMMAND(3,device_ID,0);
)
}

else
HIf its switch is released
if (input(PIN_B6)=1)

{If the device is currently Closed
if (roomdoor[device_ID]==0}

xXXiil

APPENDIX A

/Turn Opened
SWITCH COMMAND(3,device_ID,1);
)
h

[AF*FAROOMDOOQR 234 %%
/Tf the sensor is pressed
device_ID=1;
if (input(PIN_B7)==0)

/f the device is currently Opened
if (roomdoor[device_[D]==1)

HTurn Closed
SWITCH COMMAND(3,device_ID,0);
!
!
glse
HIf its switch is released
if (input(PIN_B7)==1)

#/1f the device is currently Closed
if (roomdoor[device_1D]=0)

/Tum Opened
SWITCH_COMMAND(3,device_ID,1);
}
}

void REPLY_INITIALIZATION(void)

{
int reply_array[4];
int countl;
int count2;

//Send all status of device

//For kamp n aircond only the one that currently ON

/iFor door n roomdoor only the one that currently Opened
for {count2=0;count2<=device_qty-1;count2++)

/Reply for lamp
if (lamp[count2]==1)

//Set reply
reply_array[0]=0x03;
reply_array[1]=0x00;
reply_array[2]=count2;
reply_array[3]=0x01;

/1Send reply
for (count1=0;count]<=3;countl++)

putchar(reply_array[countl]);
delay_ms{100);

{/iReply for aircond
if (aircond[count2]==1)

/Set reply
reply_array[0]=0x03;
reply_array[1]=0x01;
reply_array[2]=countZ;

Xxiv

APPENDIX A

reply_array[3]=0x01;

//Send reply
for {countl=0;countl<=3;count1++}

puichar(reply _array[countl]},
}

delay_ms{100};

//Reply for door
if (door[count2]=1)
{

{/Set reply
reply_array[0]=0x03;
reply_array[1]=0x02;
reply_array[2]=count2;
reply_array[3]=0x01;

/iSend reply
for (countl=0;count1<=3;count1++)

{
!

puichar(reply_array[counti]);

delay_ms(100);

/iReply for roomdoor
if (roomdoor[count2]==1)
{

//Set reply
reply_array[0}=0x03;
reply_array[11=0x03;
reply_array[2j=count2;
reply array[3]=0x01;

{/Send reply
for (count1=0;countl<=3;countl++)

putchar{reply_array[countl]);

}
delay_ms(100};

/Set reply
reply_array[0]=0x00;
reply_array[1]=0x00;
reply_array[2]=0x00;
reply_array[3]=0x00;

/{Send reply
for (countl=0;count]<=3;count1++)

{
}

putchar(reply_array[countl]);

Figure A-15: PIC C Language Program

XXV

APPENDIX A

Visual Basic Coding

Utk form resize property
Public tinggi_form_lama
Public lebar form_lama
Public tinggi_form_baru
Public lebar_form_baru
Public constraint_tinggi
Public constraint_lebar

'Probletn note

'masalah nak initialize door n roomdoor, kena ask controller on start
'array door n reomdoor asalnye O=closed (tp gui tunjuk [=opened)
'masalah nak initialize lamp n aircond, kena ask controiier on start

"Progress Note

'controller
'

'CTRL_SERIAL_CONNECT=complete
'CTRL SERIAL_DISCONNECT=complete
'tgl_ctrlconnect_click=complete
‘ENABLE_CTRL_OBJECT=complete

"STATUS CTRLTX_INITIALIZATION=complete
'STATUS_CTRLRX_INITIALIZATION=complete
'STATUS_CTRLTX_REINITIALIZATION=complete
'STATUS_CTRLRX_REINITIALIZATION=complete

'MSCOMM_etrl_oncomtm= in progress
'fbus

‘FBUS_SERIAL_CONNECT=complete
‘FBUS_SERIAL_DISCONNECT=complete
'tol_fbusconnect_click=complete
'ENABLE_FBUS_OBJECT=complete

'STATUS_FBUSTX_REINITIALIZATION=complete
'STATUS_FBUSRX REINITIALIZATION=complete

'BASE_CONVERTER=complete
‘form_unload=complete
'form_resize=complete

'switches
'tgl_lamp_Click=complete
'tgl_aircond_Click=complete

‘send data

"WRITE_TERMINAL STATUS=complete <- one of the component to write status in send data
‘SWITCH_COMMAND=complete <- reflex the ctrl tx

Utk connection

Public etr]_currentport
Public ctr]_currentbaudrate
Public ctrl_is_connected

Public fbus_currentport
Public fbus_is_connected
Public fbus_start_detection

Utk data counter
Public ctrl_tx_counter

xXvi

APPENDIX A

APPENDIX A

Public ctr]_rx_counter

Public fbus_tx_counter
Public fous_rx_counter

Utk flex
Public ctrl_row_rx_counter
Public ctrl_row_tx_counier

'Utk array device status
'device_status_array(device type,device_no)
Dim device_status_array(4, 2)

‘Utk atasi masalah togglebutton
Public serialcommand_dir

Private Sub Form_Load(}

'Constant utk form resize property
tinggi_form_lama = Height

tinggi form baru=0
lebar_form_lama = Width
lebar_form_baru =0
congtraint_tinggi = 7245
constraint_lebar = 9255

‘Al initialization
Call FORM_INITIALIZATION

Call STATUS_CTRLTX_INITIALIZATION
Call STATUS_CTRLRX INITIALIZATION

Call ENABLE_CTRL_OBJECT(False)
Call ENABLE FBUS_OBIJECT{False)

'Load Form2
Form2.Show 0, Me

"Write status

textmessage = Me.Caption & " started”

WRITE_STATUS (textmessage)}

textmessage = "Controller connection has not yet been established"
WRITE_STATUS (textmessage}

textmessage = "FBUS connection has not yet been established”
WRITE_STATUS (textmessage)

‘testaje

'Call WRITE_TERMINAL_STATUS(, "testaje™)
'Call WRITE_TERMINAL_STATUS(1, "testaje™)
Call WRITE_TERMINAL_STATUS(1, "testaje")
Call WRITE_TERMINAL_STATUS(1, "testaje")
Call WRITE_TERMINAL_STATUS(2, "testaje")
Call WRITE_TERMINAL_STATUS(2, "testaje")
Call WRITE_TERMINAL_STATUS(3, "testaje")
Call WRITE_TERMINAL_STATUS(3, "testaje")
Call WRITE_TERMINAL_STATUS(4, "testaje")
Call WRITE_TERMINAL_STATUS(4, "testaje"}
‘Call SWITCH_COMMAND(, 1, 1)

'Call SWITCH_COMMANID{1, 0, 1)

'tgl_ctrlconnect. Value = True
End Sub

‘COMPLETE-CHECKED

Private Sub Form_Unload(Cancel As Integer)
Call CTRL_SERIAL_DISCONNECT
Call FBUS_SERIAL_DISCONNECT

End Sub

Private Sub FORM_INITIALIZATION()

XXVvil

APPENDIX A

‘Initialization
Me.Caption = App.Title & " v" & App.Major & "." & App.Minor & App.Revision

'Combo box initialization

'Put value in the combo box
array_ctrlport = Array("l", "2")
array_fbusport = Array("1", "2")

For countl =0 To 1

emb_ctrlport List(count1) = array_ctrlport(countl)
Next
For countl =0 To 1

cmb_fbusport. List{(count]) = array_fbusport(countl)
Next

'Set initial value
cmb_ctriport.Listindex =0
cmb_fbusport, Listindex = 1

‘Set initial global value
ctrl_currentport = cmb_ctrlport List(cmb_ctrlport, ListIndex)
ctrl_currentbaudrate = "3600"

fbus_currentport = cmb_fbusport.List{cmb_fbusport.ListIndex)

ctrl_is_connected = False
fous_is_connected = False
fbus_start_detection = False

ctrl_tx_counter =0
ctrl_rx_counter =0
fbus_tx_counter = 0
fous_mx_counter = 0

'Set initial device status

'0=0FF, 1=0N

‘0=closed,{=opened

For counti =0 To 3
Forcount2=0To 1

device_status_array(countl, count2) =0

Next

Next

‘serialcommand_dir=0 {dtg dr komp), serialcommand_dir=1 (dtg dr controller)
serialcommand_dir =0
End Sub

‘COMPLETE-CHECKED
Private Sub STATUS_CTRLTX_INITIALIZATION()

ctrl_row_tx_counter=10

'‘Column Width

Form2 flex_ctrlstatus_x.ColWidth(Q, 0) = 500
Form2.flex_ctristatus_tx.ColWidth(1, 0} =400
Form?2 flex_ctristatus_tx.ColWidth(2, 0} =400
Form2.flex_ctristatus_tx.ColWidth(3, 0) = 400
Form2. flex_ctristatus_tx.ColWidth(4, 0y = 820
Form2.flex_ctristatus_tx.ColWidth(5, 0) = 500

"Write title

Form2 flex_ctristatus_tx. TextMatrix(0, 0) = "No"
Form2.flex_ctristatus_tx. TextMatrix(0, 1) = "Set"
Form2.flex_ctristatus_tx. TextMatrix(0, 2) = "Byte"
Form2.flex_ctrlstatus_tx. TextMatrix(0, 3) = "Dec”
Form2 flex_ctrlstatus_tx. TextMatrix(0, 4) = "Bin"
Form2 flex_ctrlstatus_tx, TextMatrix(0, 5) = "Hex"

'Alignment

xxviii

Form2.flex_ctristatus_tx.ColAlignmentFixed(0) =4
Form2 flex_ctrlstatus_tx.ColAlignmentFixed(l) = 4
Form? flex_ctristatus_tx.ColAlignmentFixed(2) = 4
Form?2.flex_ctilstatus_tx.ColAlignmentFixed(3) = 4
Form2.flex_ctilstatus_te.ColAlignmentFixed(4) = 4
Form2 flex_ctristatus_tx.ColAlignmentFixed(5) =4

Form2 flex_ctristatus_tx.ColAlignment(2) =1
End Sub

'COMPLETE-CHECKED
Private Sub STATUS_CTRLRX_INITIALIZATION(}

ctrl_row_rx_counter =0

'Column Width

Form?2 flex_ctrlstatus_rx.ColWidth(0, 0) = 500
Form2.flex_ctrlstatus rx.ColWidth(1, 0) =400
Form2 flex_ctrlstatus_rx.ColWidth(2, 0) =400
Form2 flex_ctrlstatus_rx.ColWidth(3, 0) = 400
Form2.flex_ctrlstatus_rx.ColWidth(4, 0) = 820
Form2 flex_ctristatus_rx.ColWidth(S, 0) = 500

"Write title

Form?2 flex_ctrlstatus_rx. TextMatrix(0, 0} = "No"
Form2 flex_ctrlstatus_rx. TextMatrix(0, 1} = "Set”
Form2 flex_cirlstatus_rx.TextMatrix(0, 2} = "Byte"
Form?2 flex_ctrlstatus_rx TextMatrix(0, 3) = "Dec"
Form2 flex_ctristatus_rx. TextMatrix(0, 4) = "Bin"
Form?2 flex_ctristatus_rx. TextMatrix{0, 5) = "Hex"

'Alignment

Form2 flex_ctrlstatus_rx.ColAlignmentFixed(() = 4
Form2 flex_ctristatus_rx.ColAlignmentFixed(1) = 4
Form2 flex_ctristatus_rx.ColAlignmentFixed(2) = 4
Form2 flex_ctristatus_x.ColAlignmentFixed(3} =4
Form2 flex_ctrlstatus_rx.ColAlignmentFixed{4)} =4
Form2 flex_ctristatus_rx.ColAlignmentFixed(5} = 4

Form2.flex_ectrlstatus_rx.ColAlignment(2) =1
End Sub

‘COMPLETE-CHECKED

Pubtic Sub STATUS_CTRLTX_REINITIALIZATION()

ctrl_row_tx_counter =0
Form2.txt_ctrlstatus_tx. TextRTF =""

Form2.flex_ctristatus_tx. Rows =2

Form2.flex_ctrlstatus_tx. TextMatrix(l, 1) =""
Form2 flex_ctristatus_tx. TextMatrix(1, 2} =""
Form2.flex_ctristatus_tx. TextMatrix(1, 3}=""
Form2.flex_ctrlstatus_tx. TextMatrix(1, 4)=""
Form?2.flex_ctristatus_tx. TextMatrix(1, 5)=""

End Sub

'COMPLETE-CHECKED

Public Sub STATUS_CTRLRX_REINITIALIZATICN()

ctrl row_m¢_counter =0
Form2.txt_ctristatus_rx.TextRTF =""
Form?2.flex_ctrlstatus_ne.Rows =2

Form2 flex_etrlstatus_mx. TextMatrix(1, 1)=""
Form2.flex_ctrlstatus_rx. TextMatrix(t, 2)=""

XXiX

APPENDIX A

APPENDIX A

Form2 flex_ctristatus_rx. TextMatrix(1, 3)=""
Form2.flex_ctristatus_rx. TextMatrix(1, 4)=""
Form2.flex_ctristatus_rx. TextMatrix(1, 5)=""

End Sub

'‘COMPLETE-CHECKED
Public Sub STATUS_FBUSTX_REINITIALIZATION()

Form2.txt_fbusstatus_tx. TextRTF ="
End Sub

'COMPLETE-CHECKED
Public Sub STATUS_FBUSRX_REINITIALIZATION()

Form?2.txt_fbusstatus_rx. TextRTF =""
End Sub

'‘COMPLETE-CHECKED

Private Sub cmd_close_Click()
Unload Me

End Sub

'‘COMPLETE-CHECKED

Private Sub cmd_showdata_Click()
Form2.Show 0, Me

End Sub

'COMPLETE-CHECKED

Private Sub cmd_showascii_Click()
Form3.Show 0, Me

End Sub

'‘COMPLETE-CHECKED

Private Sub cmd_showserial_Click()
Formd.Show 0, Me

End Sub

'‘COMPLETE-CHECKED
Private Sub cmb_ctrlport_Click()

ctrl_currentport = cmb_ctrlport. List(cmb_ctrlport ListIndex)
End Sub

'COMPLETE-CHECKED
Private Sub cmb_fhusport_Click()

fhus_currentport = cmb_fbusport List(emb_fbusport ListIndex)
End Sub

'COMPLETE-CHECKED
Private Sub WRITE_STATUS(textmessage)
msg_datetime = Format{Now, "dd/mm/yyyy bh:mm:ss")
txt_status, TextRTF = "{" & txt_status. TextRTF & "fi-2160\i2160\ " & msg_datetime & "\bO\tab " & textmessage & "par}"
txt_status TextRTF = "{" & txt_status. TextRTF & "n}"
txt_status.SelStart = Len(txt_status. TextRTF)
End Sub

'COMPLETE-CHECKED
Private Sub ENABLE CTRI._OBJECT({status_object As Boolean}
If status_object = True Then
For countl =0 To 1

tgl_lamp{countl).Enabled = True
tg]_aircond(countl).Enabled = True
txt_door(countl).Enabled = True
txt_roomdoor(counti).Enabled = True

led_lamp{count!}.FillColor = &HFF&

led_aircond(countl).FillColor = &HFF&
led_door(countl)FillColor = &HFF&

XXX

led_roomdoor(countl).FillColor = &HFF&
Next

cmb_ctriport Enabled = False
Elself status_object = False Then
serialcommand_dir=1

For countl =0 To 1
tgl_lamp(countl). Value = False
tgl_aircond{countl). Value = False

tgl_lamp(countl).Caption = "Tum ON"
tgl_aircond{countl).Caption = "Tur ON"

tgl_lamp{countl) Enabled = False
tgl_aircond(countl).Enabled = False

txt_doot(countl).Enabled = False
txt_roomdoor{countl).Enabled = False

txt_door(countl). Text = "Closed"
txt_roomdoor{count]). Text = "Closed"

led_lamp(count1).FillColor = &HFFE080

led_aircond{countl1).FillColor = &HFF8080

led_door(count1).FillColor = &HFF8080

fed_roomdoor(countl) FillColor = &HFFE080

Next
serialcommand_dir =0
¢mb_ctrlport.Enabled = True
End If
End Sub

‘COMPLETE-CHECKED

Private Sub ENABLE_FBUS_OBIECT{status_object As Boolean)

If status_object = True Then
tx{_provname.Enabled = True
txt_provsmsc.Enabled = True
txt_provcountry.Enabled = True
txt_provcode.Enabled = True
ixt_hwdate.Enabled = True
txt_hwtime.Enabled = True

cmb_fbusport. Enabled = False

Elself status_object = False Then
txt_provname Enabled = False
txt_provsmsc.Enabled = False
txt_provcountry.Enabled = False
txt_provcode.Enabled = False
txt_hwdate.Enabled = False
txt_hwtime.Enabled = False

cmb_fbusport. Enabled = True

End If
End Sub

'‘COMPLETE-CHECKED

Private Sub emd_clrstatus_Click()
txt_status, TextRTF = "

End Sub

'‘COMPLETE-CHECKED
Private Sub tgl_lamp_Click(Index As Integer)

If serialcommand_dir = 0 Then
Iftgl_lamp(Index) = True Then

xxxi

APPENDIX A

tgl_lamp(Index).Caption = "Turn OFF"
Call SWITCH_COMMAND(D, Index, 1)
Elself tgl_lamp(Index) = False Then
tgl lamp(Index).Caption = "Turn ON"
Call SWITCH COMMAND(0, Index, 0)
End If
End If
End Sub

'‘COMPLETE-CHECKED
Private Sub tgl_aircond_Click(Index As Integer)

If serialcommand_dir =0 Then
If tgl_aircond(Index)} = True Then
tgl_sircond(Index).Caption = "Turn OFF"
Call SWITCH_COMMAND(1, Index, 1)
Elselftg] aircond(Index) = False Then
tgl aircond(Index).Caption = "Turn ON"
Call SWITCH_COMMAND(1, Index, 0)
End If
End If
End Sub

'‘COMPLETE-CHECKED
Private Sub tgl_ctrlconnect_Click()

'Connect
If tgl_ctrlconnect. Value = True Then

tgl ctriconnect.Caption = "Disconnect"
Call CTRL_SERIAL_CONNECT

If succesful
Ifctrl_is_connected = True Then

‘Reset counter

ctrl_tx_counter =0

ctrl_rx_counter =0

'Enable object

Call ENABLE_CTRL_OBJECT(True)

'Reset flex

Call STATUS_CTRLTX_REINITIALIZATION
Call STATUS_CTRLRX_REINITIALIZATION

‘Acquire device status
Call CONTROLLER_ACQUIRE_INFO

'If still not connected
Elself ctrl_is_connected = False Then

‘Disable object

Call ENABLE_CTRI._OBJECT(False)
tgl_ctrlconnect.Caption = *Connect™
Turn OFF button back
tgl_ctriconnect. Value = False

End If

'Disconnect
Elselftgl ctrlconnect. Value = False Then

'Reset tnitial device stafts

'0=0FF,1=ON

"O=closed, 1=opened

For countl =0 To 3
For count2 =0 To 1

device_status_array(countl, count2) =0

Next

Next

APPENDIX A

'Disable object

Call ENABLE_CTRL_OBIJECT(False)
tgl_ctrlconnect.Caption = "Connect"
Call CTRL_SERIAL_DISCONNECT

End if
End Sub

‘Belum siap
Private Sub MSComm _ctr]_OnComm()}

Dim rev_sfring As String

Select Case MSComm_ctrl. CommEvent
Case comEvReceive
'On receive data, ..
rev_string = MSComm_ctrf.Input

'Process rcv data
Call SWITCH_REPLY(rcv_string)
End Select

End Sub

'COMPLETE-CHECKED

Private Sub CTRL_SERIAL _CONNECT()
‘set the active serial port
MSComm_ctrl.CommPort = ctrl_currentport

'set the baudrate,parity,databits,stopbits for the connection
MSConum_ctrl. Settings = ctrl_currentbaudrate & "N,8,1"

'set the DTR and RTS flags
MSComm_ctrl. DTREnable = False
MSComm_ctrl RTSEnable = False

‘enable the oncomm event for every received character
‘RThreshold=1,comEvReceive=enabled
‘RThreshold=0,comEvReceive=disabled
MSComm_ctrl. RThreshold = 1

‘disable the oncomm event for send characters
'SThreshold=1,comEvSend=enabled
'SThreshold=0,comEvSend=disabled
MSComm_ctrl SThreshold = §

‘Write status
textmessage = "Connecting to controller..."
WRITE_STATUS (textmessage)

On Error GoTo errorhandler
‘open the serial port
MSComm_ctrl.PortOpen = True
ctrl_is_connected = True

"Write status

APPENDIX A

textmessage = "Serial connection to the controller has been established successfully on Port " & ctrl_currentport & ™ in " &

ctrl_currentbaudrate & " baudrate”
WRITE_STATUS (textmessage)

“This exit sub is to prevent the normal flow (without error) goes into errorhandler

Exit Sub

errorhandler:

Al = MsgBox(Err.Description & vbCrLE & "[Error no. = " & Err.Number & "}", vbExclamation, "Error”)

ctrl_is_connected = False

"Write status

XXXiii

textmessage = Err Description & ", Serial connection attempt to the controller failed"
WRITE_STATUS (textmessage)

End Sub

'‘COMPLETE-CHECKED
Private Sub CTRL_SERIAL_DISCONNECT()

'Close port if and only if it is currently connected
If ctrl_is_connected = True Then

'Write status
textmessage = "Disconnecting from controller...”
WRITE_STATUS (textmessage)

MSComm_ctrl.PortOpen = False
ctrl_is_connected = False

"Write status
textmessage = "Serial connection to the controller has been closed”
WRITE_STATUS (textmessage)

End If
End Sub

'‘COMPLETE-CHECKED
Private Sub tg]_fbusconnect Click()

'Connect
If'tgl fbusconnect Value = True Then

tgl_fbusconnect.Caption = "Disconnect”
Call FBUS_SERIAL_CONNECT

Tf succesful
if fbus_is connected = True Then

Reset counter

fbus_tx_counter =0

fbus_rx_counter =0

'Enable object

Call ENABLE_FBUS_OBJECT(Truc)
'Acquire info

Call FBUS_ACQUIRE_INFO(0)
‘Delete old msg

Cail SERVER_INITIALIZATION

Reset flex
Call STATUS_FBUSTX_REINITIALIZATION
Call STATUS_FBUSRX_REINITIALIZATION

‘Start detection
fbus_start_detection = True

'If still not connected
Elself fbus is_connected = False Then

'Disable object

Call ENABLE_FBUS_OBIJECT(False)
tgl_fbusconnect.Caption = "Connect"
‘Turn OFF button back
tgl_fbusconnect. Value = False

End If

'Disconnect
Elselftgl fbusconnect. Value = False Then

'Disable object
Call ENABLE_FBUS_OBJECT(False)

XXXV

APPENDIX A

APPENDIX A

tgl_fbusconnect.Caption = "Connect"
Call FBUS SERIAIL_DISCONNECT

End If
End Sub

'COMPLETE-CHECKED
Private Sub FBUS_SERIAL_CONNECT()

"Write status

teximessage = "Connecting to server's FBUS. "
WRITE_STATUS (textmessage)

DoEvents

On Error GoTo errorhandler

‘open the serial port

MFBUS15Controll.Connect "COM" & fbus_currentport
fbus_is_connected = True

‘Write status

textmessage = "Serial connection to the server's FBUS has been established successfully on Port " & fbus _currentport & " in
115200 baudrate”

WRITE_STATUS (textmessage)

'This exit sub is to prevent the normal flow (without error) goes into errorhandler
Exit Sub

errorhandler;
Al = MsgBox(Err.Description, vbExclamation, "Errotr™)
fous_is connected = False

"Write status
textmessage = Err.Description & ™. Serial connection attempt to the server's FBUS failed"
WRITE_STATUS (textmessage)

End Sub

'‘COMPLETE-CHECKED
Private Sub FBUS_SERIAL_DISCONNECT()

'Close port if and only if it is currently connected
If fbus_is_connected = True Then

"Write status

textmessage = "Disconnecting from server's FBUS..."
WRITE STATUS (textmessage)

DoEvents

MFBUS15Controll.Disconnect
fbus_is connected = False

'Write status
textmessage = "Serial connection to the server's FBUS has been closed"
WRITE_STATUS (textmessage)

End If
End Sub

txt_provname.Text = MFBUS1 5Controll. ProviderName

txt_provsmse. Text = MFBUS15Control1.ProviderSMSC
txt_proveountry. Text = MEBUS 1 5Contro! 1. ProviderCouniry
txt_proveode. Text = MFBUS 15Control 1 ProviderCode

txt_hwdate. Text = Format(MFBUS15Control 1. Date Time, "DD/MM/YYYY")
txt_hwtime. Text = Format(MFBUS15Controll.DateTime, "hh:mm:ss")

"Write status

textmessage = "Information from server's FBUS succesfully retrieved..."
WRITE_STATUS (textmessage)

XXXV

APPENDIX A

ElseIf data type = I Then
txt_hwdate. Text = Format(MFBUS 15Control 1. DateTime, "DD/MM/YYYY")
txt_hwtime. Text = Format{MFBUS 1 5Control1.DateTime, "hh:mm:ss")

End If
End If

End Sub

'COMPLETE-CHECKED
Private Sub CONTROLLER_ACQUIRE_INFO()

ctrl_tx_array = Array(&HAA, &H0, &HO0, &HO, &H0, &H0, &H0, &HY, &HFF)

'Append all bytes again
command_message = ""
For count]l =0 To 8
command_message = command_message & Chr{ctr]_tx_array(count1))
Next

‘Write status
textmessage = "Retrieving initial device status from controller..."
WRITE_STATUS (textmessage)

'Send via serial to controller!
MSComm_ctrl. Qutput = command_message

'Increase transmit counter

ctrl_tx_counter = ctrl_x_counter + 1

"Write status and flexgrid

Call WRITE_TERMINAL_STATUS(1, command_message)

End Sub

'COMPLETE-CHECKED
Private Sub Form_Resize()
'CONSTANT
lebar form = Width
tinggi_form = Height

'Set minimum constraint for height
If tinggi_form >= constraint_tinggi Then
Renew value
tinggi_form_baru =tinggi_form
Elself tinggi_form < constraint_tinggi Then
'Renew value
tinggi_form_baru = constraint_tinggi
End If

bezatinggi form = tinggi_form_baru - tinggi_form_lama
tinggi_form_lama = tinggi_form_baru

Reset object

cmd_close. Top = cmd_close. Top + bezatinggi_form

cmd clistatus. Top = cmd_clistatus. Top + bezatinggi form
cmd_showdata Top = cmd_showdata, Top + bezatinggi_form
cmd_showascii. Top = cmd_showascii. Top + bezatinggi_form
cmd showserial. Top = cmd_showserial. Top + bezatinggi form

txt_status.Height = txt_status.Height + bezatinggi_form
frm_status.Height = frm_status.Height + bezatinggi_form

'Set minimum constraint for width
If lebar_form >= constraint_icbar Then
‘Renew value
lebar_form_baru = lebar_form
Elself lebar_form < constraint_lebar Then
Renew value
lebar_form_baru = constraint_lebar
End If

XXXVi

APPENDIX A

bezalebar form =lebar form_baru - lebar_form_lama
lebar_form_lama = lebar_form_baru

'Reset object

cmd_close.Left = cmd_close.Left + bezalebar_form
cmd_clrstatns. Left = cmd_clrstatus. Left + bezalebar_form
cmd_showdata.Left = cmd_showdata Left + bezalebar_form
emd_showascii.Left = cmd_showascii.Left -+ bezalebar_form
emd_showserial. Left = cmd_showserial Left + bezalebar_form

txt_status. Width = txt_status. Width + bezalebar_form
frm_status, Width = frm_status. Width + bezalebar_form

txt_provname. Width = txt_provname, Width + bezalebar_form
txt_provsmsc. Width = txt_provsmsc. Width + bezalebar_form
xt_provcountry. Width = txt_provcountry. Width + bezalebar_form
txt_proveode. Width = txt_provcode. Width + bezalebar_form
txt_hwdate, Width = txt_hwdate. Width + bezalebar_form
txt_hwtime. Width = txt_hwtime. Width + bezalebar_form

frm_info. Width = frm_info. Width + bezalebar_form
End Sub

'COMPLETE-CHECKED
Private Function BASE_CONVERTER(input_number, mode_from, mode_to)

'0=Binary
'1=Decimal
‘2=Hexadecimal

‘Just for hex
array_hcx =A1Tay("0“, lll'l, II2|P, Il3ll= Il4l|, "5”, llﬁll, II7II, "S“, Ilgll’ |IAII’ I!Bl!, IICII’ llD‘t’ IIE"’ lIFll)

“***Convert from input base to decimal***
'dec->dec
If mode_from =1 Then

inputdecimal = input_number

‘bin->dec
Elseff mode_from = (Then

bufferanswer = 0

For countl = 1 To Len{input_number)
accumulate = (Mid(input_number, Len(input_number) - countl + 1, 1)) * (2~ (count! - 1))

bufferanswer = bufferanswer + accumulate
Next

inputdecimal = bufferanswer
‘hex->dec
Elself mode_from = 2 Then
bufferanswer = 0
For countl = 1 To Len{input_number)
For count2 =9 To 15
Ifarray_hex(count2) = (JCase(Mid(input_number, Len(input_number} - countl + 1, 1))) Then
chartoint = count2
Exit For
End If
Next

accumulate = chartoint * (16 * (countl - 1))

Xxxvii

bufferanswer = bufferanswer + accumulate
Next

inputdecimal = bufferanswer

End If
"***End conversion***

"#¥Convert from decimal to required base***
‘dec->dec
If mode_to=1 Then

returnvalue = inputdecimal

‘dec->bin
Elself mode_to =10 Then

bufferanswer
bufferinput = inputdecimal

Do
remainder = ((bufferinput / 2) - Int(bufferinput / 2)) * 2

bufferanswer = remainder & bufferanswer
bufferinput = Int(bufferinput / 2)

If bufferinput = 0 Then Exit Do
Loop

returnvalue = bufferanswer

'dec->hex
Elself mode to=2 Then

= nn

bufferanswer
bufferinput = inputdecimal

Do

remainder = ({bufferinput / 16) - Int(bufferinput / 16)} * 16

bufferanswer = array_hex{remainder) & bufferanswer
bufferinput = Int{bufferinput / 16)

If bufferinput = 0 Then Exit Do
Loop

returnvalue = bufferanswer
End If
"**¥*End conversion***
BASE_CONVERTER = returnvalue

End Function

‘COMPLETE-CHECKED

Private Sub SWITCH_COMMAND(device_type, device_no, onofl_state)

‘Note

‘device_type=0 lamp
‘device_type=1 aircond
'device_no=0 device number 1
'device_no=1 device number 2
'onoff_state=0 tumn OFF

XXXVl

APPENDIX A

APPENDIX A

'onoff_state=1 tum ON

'General terminal->controller commands

‘Set again for the 2nd,3rd and 4th last bytes

"2nd last byte=ON/OFF

"3rd last byte=device no

‘4th last byte=device type

ctrl_tx_array = Array(&HAA, &H3, &H16, &HI, &H4, &H0, &HO, &H0, &HIT)
ctrl_tx_array(5) = device_type

ctrl_tx_array(6) = device_no

ctrl_tx_array(7) = onoff_state

‘Append all bytes again
command_message =""
For count =0 To 8
command_message = command_message & Chr(ctr]_tx_array(countl})
Next

‘Send via serial to controller!
MSComm_ctrl.Output = command_message

'Write status
Select Case device_type
Case 0
device type desc="Lamp"
Case 1
device type desc = "Air-conditioner"
End Select
Select Case device _no
Case 0
device_no_desc ="1"
Case 1
device_no_desc="2"
End Select
Select Case onoff_state
Case 0
onoff state_desc = "OFF"
Case 1
onoff state_desc="ON"
End Select

textmessage = "Switching " & onoff_state_desc & " " & device type desc & " " & device no_desc & "..."
WRITE_STATUS (textmessage)

Increase transmit counter

ctrl_tx_counter = ctrl_tx_counter + 1

"Write status and flexgrid

Call WRITE_TERMINAL_STATUS(1, command_message)

End Sub

'COMPLETE-CHECKED
Private Sub SWITCH_REPLY (rcv_string)

'Increase receive counter

ctrl_mx_counter = ctrl_rx_counter -+ 1

“Write status

Call WRITE_TERMINAL_STATUS(2, rcv_string)

cmd_group = Asc(Mid{rcv_string, 1, 1))
device_type = Asc(Mid(rev_siring, 2, 1))
device_no = Asc(Mid(rcv_string, 3, 1))
onoff_status = Ase(Mid(rev_string, 4, 1))

If emd_group =3 Then
serialcommand_dir=1
Note

Lamp & Aircond (0=OFF,1=0N)
'Doot & roomdoor (0=Closed,1=Open)

XXX1X

'LAMP
If device_type =0 Then
If onoff_status = 0 Then

‘Up button
tgl_lamp(device_no).Value = False
tel_lamp(device_no}.Caption = "Turn ON"
Red
led_lamp(device_no}.FillColor = &HFF&

"Write status

textmessage = "Lamp " & {device_no + 1} & " has been tumed OFF"

WRITE_STATUS (textmessage)
Elself onoff status = 1 Then
'Down button
tgl_lamp(device_no).Value = True
tgl lamp(device _no).Caption = "Tum OFF"
'Green
led_lamp(device_no).FillColor = &HFF00&

"Write status

textmessage = "Lamp " & (device_no + 1) & " has been turned ON"

WRITE STATUS (textmessage)
End If

'AIRCOND
Elself device_type = 1 Then
If onoff _status = 0 Then

'Up button
tgl_aircond(device_no).Value = False
tgl_aircond(device no).Caption = "Turn ON"
Red
led_aircond(device_no).FillColor = &HFF&

"Write status

textmessage = "Air-conditioner " & (device_no + 1) & " has been tumed OFF"

WRITE_STATUS (textmessage)

ElseIf onoft_status =1 Then
‘Down button
tgl aircond{device_no).Value = True
tgl_aircond(device_no).Caption = "Turn OFF"
‘Grreen
led_aircond(device_no).FillColor = &HFFOG&

'Write status

textmessage = "Air-conditioner " & (device_no + 1) & " has been turned ON"

WRITE_STATUS (textmessage)
End If

'DOOR SENSOR
Elself device_type =2 Then
If onoff status = 0 Then
txt_door{device_no).Text = "Closed"
Red
led_door(device_no).FiliColor = &HFFé&

"Write status
textmessage = "Door " & {device_no + 1) & " has been closed”
WRITE STATUS (textmessage)
Elself onoff_status = 1 Then
txt_door(device_no).Text = "Opened"
'Green
led door(device_no).FillColor = &HFF00&

"Write status
textmessage = "Door " & (device_no+ 1) & " has been opened"
WRITE_STATUS (textmessage)

End If

xl

APPENDIX A

APPENDIX A

'ROOM-DOOR SENSOR
Elself device_type =3 Then
If onoff_status = 0 Then
txt_roomdoor{device no).Text = "Closed"
Red
led_roomdoor(device no).FillColor = &HFF&

‘Write status
textmessage = "Room door " & (device_no + 1) & " has been closed"
WRITE_STATUS (textmessage)

Elself onoff_status = 1 Then
txt_roomdoor(device_no).Text = "Opened"
'Green
led_roomdoor(device no). FillColer = &HFF00&

"Write status
textmessage = "Room door " & (device_no + 1} & " has been opened"
WRITE_STATUS (textmessage)

End If

End If
serialcommand_dir=0

‘Change status
device_status_array{device_type, device_no) = onoff_ status

'testaje
‘textmessage = "device_status_array(" & device type & "," & device_no & ")=" & device_status_array({device_type, device_no)
‘WRITE_STATUS (textmessage)

Elself emd_group = 0 Then

'Complete initial device status retrieval

If device_type = 0 And device_no =0 And onoff_status =0 Then
textmessage = "Initial device status has been retrieved”
WRITE_STATUS (textmessage}
textmessage = "Controller is ready"
WRITE_STATUS (textmessage)

End If

End If
End Sub

'‘COMPLETE-CHECKED
Private Sub WRITE_TERMINAL_STATUS(flex_id, data_string)

Note

'flex_id=1 controller ix
'flex_id=2 controller rx
'flex_id=3 fbus x
‘flex_id=4 fbus rx

Dim flex_output As Object
Dim txt_output As Object

‘Check for flex_id
Select Case flex_id
Case |
Set flex_output = Form2.flex_ctristatus_tx
Set txt_output = Form2.fxt_ctristatus_tx
data_counter = ctrl_tx_counter
row_counter = ctrl_row_tx_counter

Case 2
Set flex_output = Form2.flex_ctristatus_rx
Set txt_output = Form2.txt_ctrlstatus_rx
data_counter = ctrl_rx_counter

xli

APPENDIX A

row_counter = ctr]_row_rx_counter

Case 3
Set txt_output = Form2.txt_fbusstatus_tx
data_counter = fbus_tx_counter

Case 4
Set txt_output = Form2.txt_fbusstatus_rx
data_counter = fbus_rx_counter
End Select

If flex_id =1 Or flex_id =2 Then
'Start write status
textmessage = "Set " & data_counter & " (" & Len(data_string) & " bytesy =["

'Run conversion to flexgrid
If Len(data_string) > 0 Then
flex_output.Rows = flex_output.Rows + Len(data_string)

For countl =1 To Len{data_string)
Number
flex_output. TextMatrix{row_counter + counti, 0) = row_counter + countl

Set
flex_output, TextMatrix(row_counter + countl, 1) = data_counter

Byte
flex_output. TextMatrix(row_counter + countl, 2) = (Mid(data_string, countl, 1)}

'Decimal
flex_output. TextMatrix(row_counter + countl, 3) = Asc(Mid(data_string, countl, 1})

‘Binary
bufferi = BASE_CONVERTER(Asc(Mid{data_string, countl, 1)}, 1, 0)
If Len(bufferl) < 8 Then

loopadd = 8 - Len(bufferl}

For count2 =1 To loopadd
bufferl ="0" & bufferl
Next
End If
flex_output. TextMatrix(row_counter -+ countl, 4) = buffer]

'Hex
buffer2 = BASE CONVERTER(Asc(Mid(data_string, countl, 1)}, 1, 2)
If Len(buffer2) < 2 Then

loopadd =2 - Len{buffer2)

For ¢count2 =1 To loopadd
buffer2 = "0" & buffer2
Next
End If
flex_output. TextMatrix(row_counter + countl, 5} = "0x" & buffer2

'Continue to write status
textmessage = textmessage & " 0x" & buffer2
Next

'Finally update actual public data
‘Check for flex id
Select Case flex_id

Case 1
ctrl_ row tx_counter = ctrl_row_ix_counter + Len(data_string)
Case 2
ctrl_tow_rx_counter = ctrl_row_rx_counter + Len(data_string)
End Select
End If

'Continue to write status

xlii

msg_datetime = Format(Now, "dd/mm/yyyy hh:mm:ss"}

APPENDIX A

txt_output. TextRTF = "{" & txt_output. TextRTF & "fi-2160Mi2160\b " & msg_datetime & "\b0itab " & textmessage & " J\par}"

txt_output. TextRTF = "{" & txt_output. TextRTF & "n}"
tt_output.SelStart = Len(txt_output, TextRTF)

Elself flex_id =3 Or flex_id =4 Then

"Write status

textmessage = "Set " & data_counter & " (" & Len(data_string) & " bytes) =" & data_string & ™

msg_datetime = Format(Now, "dd/mm/yyyy hh:mm:ss")

tet_output, TextRTF = "{" & txt_output TextRTF & "{i-21600i2160\ " & msg_datetime & "bO\tab " & textmessage & " \par}"

txt_output. TextRTF = "{" & txt_output. TextRTF & "n}"
txt_output.SelStart =Len(tet_output. TextRTF)

End If

End Sub

Private Sub Timerl_Timer()
'This is date & time updater!
If fbus_is_connected Then
‘Acquire time n date only
Call FBUS_ACQUIRE_INFO(1}
End If

End Sub

Private Sub Timer2_Timer()
This is received msg detector

If fhus is connected And fbus_start detection Then
Need to refresh first
MFBUS15Coentroll.SMS Refresh
‘Scan how many msg in inbox
msg_qty = MFBUS15Controf1, SMS.Inbox. Count

"Write status
textmessage = "Number of messages= " & msg_qty
WRITE_STATUS (textmessage)

If msg_qty > 0 Then
'Read only the first msg!!!
"Write status
msg_sender_no = MFBUS15Control1.SMS Inbox.Item{1).Sender
msg_text = MFBUS15Controll. SMS.Inbox.Item(1). Text

'msg_date = Format(MFBUS15Control1.SMS.Inbox. Item(1).DateTime, "DD/MM/YY YY"}
'msg_time = Format(MFBUS 15Centrol1.SMS.Inbox.Item(1) DateTime, "hh:mm:ss"}

‘[ncrease receive counter
fbus_rx_counter = fbus_rx_counter + 1

'"Write status

textmessage = "Command message " & fbus_x_counter & " has been received.Sender=" & msg_sender_no & ", Message="

& msg_text
WRITE_STATUS (textmessage)

"Write terminal status

command_message = msg_text

Call WRITE_TERMINAL_STATUS(4, command_message)
DoEvents

Call SMS_MESSAGE_PROCESSOR(msg_text, msg_sender_no)
'Delete the first msg (tak kisah berapa byk yg sampai)
Next msg will be execute next cycle

MFBUSI5Control1.SMS, Inbox.Item{1}.Delete
End If

xliii

End If

End Sub

Private Sub SMS_MESSAGE_PROCESSOR(sms_string, sender_no)
If fbus_is_connected And fbus_start_detection Then

‘Convert to uppercase
sms_string ucase = UCase(sms_string)

'Check commands
Select Case sms_string_ucase
'System info commands
Case "[-UTP ACAD?22 SYSTEM INFO"
If ctrl_is_connected = True Then

send_msg = "I-UTP ACAD22-01-04 System OK"
MFBUS15Control E.SMS.SendMessage sender_no, send_msg

Elselfctrl_is_connected = False Then
send_msg = "I-UTP ACAD22-01-04 System not OK. Terminal is disconnected from Controller”
MFBUS15Controll.SMS.SendMessage sender_no, send_msg

End If

Figure A-16: Visual Basic Code

xliv

APPENDIX A

ATX

(o 23ed ¢ 2T
2IBMIIOS 913 O} S2JIAID 0} 1921 -2JeMIJOS I} O} UOIBULIOFU]
943 JO SNJBIS JUILING SPUIS Did —) JOAIDG JOPIADL] PUSS I0AJRS)
UOTOSUUO) sng-J oY) Joeuuc)) ¢
UO[OAUUC IR[[OUO0D 3Y) J0UUCD)
[onu0)y Furpimng 4.1,0-1 pue wesdoid
“1e18 Y2Ip0 ‘elemyjos ayiuad(y ¢
NoN2 Jaaleg
oy o3 Ajddns Jomod o uo um], €— sng-g oY} 0] T HOJ WO IIDULOY) T
1NSIID 911 T8 pajeao]

yod [eLes oyl 03 [Log W0 109UI0) | uonB[[BISU] 2IEMPICH

[onuo)

Suipping J.1.0-1 puy pue weasoxd
“qre1g 21D “alemygos o) uado o]
SAUSTUIJ UCTIR[[RISUT [13UN B AL

a1y dmag ayp umy

<+ g

Iappog @3eyoed a3 uadQ
aqIy 1xa)

QLEPEEY S} Ul UOLONILSUI U} MO[[C]

en

IBP[0] UonEB[EISUL XaAnay apuadp 7

doyysap
0} I3P[0J UonB[[RISUI ¥IANOY pue
Joploy joyuo) Suipjing 41N-1 AdoD | UOHB[[EISU] 31eMY0S
ANOHd ATIFOW STHAAGATTIOTINOD DId A/ HTAHAS SAD-A/MOLINOW/Od | TINAAI0Yd/SSHDONd

MY NATYTAT MM

TAJX

Iaquinu
§.JaAI3S o1} 0] 25BSSaN S pUag
{Q¢ 98ed

195 pUBWITLOY) 0} JOIY)

Uo [PUOdIIe Youms

$0-10-72A VYOV d1N-1 e[dwexy
puewyos 1adoxd oty odAT

[oued Josuss pue joued

oS 1) sarepdn AJfEOTIBLUOMNE JIBMITOS

(9 o5ed o1 4 01 19]21) SorT smyvIg Oy UL

yse1 Sunsdwos oge — DI 2U3 Jo asuodsal o) sAr[dsIp auemYos

2IeM1JOS 91} 03 asuodsal spuss Did
1 puoaaie uo wn [, :ojdurexsy
uonoe Jodoid o oxel

pue uononysul 3} $59001d DId

Ia[[onuos DI 0} SPUas UOIIONISU]
(7 98ed s105 puewuo)
Ia[[0NUC) 0} [BUIWIR], 0] 1JaY)
SUOTIONIISUI D CIUT)] JJB|SUED
pue S0 stye1§ 2u) up a3essaw o}

Kepdsip ‘aremyyos sy Aq peaI s1 23essay

> I9AI9S 01 AQ POAIaDAI OFESSa

paysI{qeIse

A[[NISSIDONS U2 IABY UDIISUUOD

sng-J pue I9[j0JUO0D 2INS SYBW
UoNDANOY) sSng-J aY) 103UU0)
UONO2UUOD IS]]CIUCD BY) 109UU0)
Jonuo) Sulpiing d.LM-! pue

wesfoxd “9es o1 ‘QIemyos 2y} uadp

S30IASD JONuOW

pue jonuos 0) SIS Surpuag

HAX

[enURIA] 19S() 1]~V N3]

[eued 10susg pue [aued
[oumg ‘So smelg o sesepdn sremigos
aremyjos ayp o asuodsar | ‘314 wog ssuodsal Surareoal uodpy
spuss DIJ ‘o 0 uo pauin
SI 2IN2IID Y] J& YOIMS [enUBUl J]
J3o Iouo
PalIm 24 [[IM 9DIASD PIJOS[as A «-+—— SUOP SIIAIDE SPI03I FOT snyel§
$aDIASp UO WM 0] [aUed YONMS
a1 uo uonng aerdosdde aug uo o1 D
UONIRUUOY J[[OINI0D DK 103UU0Y)
jonuo) Juipjing £10-1 pue N2 1O 2IEMITOS WOl)
werdord ‘s Yoo ‘aremiyos oy uedQ SI0IAIP [OIU0I AJ[RNURIA
(1¢ o8ed
19§ PUBLILIOY) JOS[) Q) [BUIULIS],
0 JaJal) NO PRUIIMms uaaq
sey [puodlly +0-10-¢CAVOV
dIN-1 orduexy Ieaiss wol I9AIRS
aBessow A[dal 9A12091 JOPUIS < s ySnoxy tequinu suoyd s Jopuss syl
01 9Fessa oY) Spuss pue aFessow Ajdaa
oy asuodsal 2y WaALOD Emké% ayL

APPENDIX B

No

Detail/Work

Selection of Project Topic

Preliminary Research Work

Logbook preparation/ submission

Submission of Preliminary report

(S0 - [V |G

Project Work

o Reference/ Literature

e Research

e Practicall Laboratory Work

Submission of Progress Report

Project Work Continue

» Practical/ Laboratory Work

+ Research

Submission of Interim Report Draft

Submission of interim Report

Figure B-1: Semester 1 Gantt chart

Heyd Nuen) 7 191Sawag (7-g 2Insig

uofeluasald euld

0l

UONBIISSSI(] 18A0T) JOS JO UOISSIWANS

Yelq Hoday Jo usIssiugng

s}

uonejussaid Xxad o.d

YIOAMA AiCIeIOQET /|BONOBld o

anuiuod Yop 1osloid

0c | ¥l

€L

cl

bl

o)

Z Hoday s§se1b0.4 JO UCISSILIONS

YIOAA AloleioqeT JBONORld e

yolessay e

ainjesa)] /oouslajey e

MIOA J08[0U4

| Hodey ssalbold Jo uoissiwqns

uoissiwgns juoneledaid 40oqboT

MIOM Yoleasay

— | N| ™| =

MopviEereq

ON

4 XIANAIIY

