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ABSTRACT 

In this particular project, a polymer composite called polyethylene-rice husk (RH-LDPE) 

were produced by using lignocellulosic materials such as rice husk flour as the 

reinforcing fillers and low density polyethylene as the matrix or polyols. From this 

material, a particle-reinforced composite will be used to determine testing data for the 

mechanical properties of the composite as the filler's volume and size are varies. The 

properties investigated are tensile modulus and impact strength. These properties are 

investigated according to the standard testing, namely the ASTM (American Society for 

Testing and Materials) standard.The effect of percentage of rice husk (by weight), and 

rice husk size on the tensile and impact properties were investigated. For most tests, the 

properties increased as the weight percentage of rice husk (RH) and sizes were increased. 

However, after exceeding a threshold value, the properties started to decrease. This 

phenomenon was attributed to two factors, which is percentage of rice husk (by weight) 

and percentage of rice husk OH groups. As the weight percentage of rice husk (RH) 

increased, the absorption and swelling decreased thus making the mechanical properties 

decreased. the size of rice husk (RH) also played a significant role in the properties, 

where smaller size rice husk produced composites with higher strength. This is due to 

greater surface area for interaction between the two materials. The result of the project 

shows that the possibility of using lignocellulosic materials as reinforcing fillers in the 

thermoplastic polymer composite is high. By using low density polyethylene (LDPE) as 

the matrix and rice husk as the reinforcing filler, a better particle-reinforced composites 

are managed to be produced in order to determine testing data for the physical and 

mechanical properties of the composite. 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

Globally, many lignocellulosic fiber options exist for the production of composite 

products. A literature search was conducted at the USDA Forest Service, Forest Products 

Laboratory to survey the worldwide use of agricultural fibers in composite building 

products. A total of 1,039 citations were selected from the vast number available. Among 

the material that have the potentials are rice husk, com stalk, cotton stalk, bagasse, 

coconut coir, jute and kenaf. 

In a broad sense, a composite can be defined as any combination of two or more 

resources, in any form, and for any use [2]. For the purposes of this discussion, the term 

composite describes two situations. The first is when the lignocellulosic serves as the 

main ingredient in the composite. The second is when the lignocellulosic serves as a 

reinforcing filler or aggregate within a matrix material. Whatever scenario is used, the 

objective of composite development is to produce a product whose performance 

characteristics combine the beneficial aspects of each constituent component. 

The study of polymer additives is not a relatively new subject; in fact, quite a lot of 

information could be obtained from books, journals and the Internet. However, it is 

considered quite a challenge to discover new material that is cheap and applicable to be 

used in polymer industries. Due to its availability in our local community, rice husk is 

considered the best material that can be used for this objective. In order to do this, a 

project need to be carried out to discover the effect of variation of rice husk filler 

additives to the physical properties and applicability oflow density polyethylene (LDPE). 

Thus, at the end of the project, the results and data collected can be the answer whether or 

not this idea is applicable to be commercialised. 



Before the project can be carried out, the study on the properties of rice husk and the low 

density polyethylene (LDPE) is essential. Therefore, the author needs to find out the 

properties of rice husk and how it can improve the properties of low density polyethylene 

(LDPE) composite. In this project, the effects of rice husk properties like it texture, size 

and mixture percentage (by weight) will be investigated. In this case, the author needs to 

study the effect of rice husk properties on the flexural, tensile and impact strength of 

polyethylene. Theoretically, the physical properties of polyethylene increased as the 

percentage of rice husk are increased. However, after exceeding a threshold value, these 

properties started to decrease. The size of the rice husk filler can also affect the findings 

where smaller rice husk size produced composites with a better and increased mechanical 

properties. 
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1.2 PROBLEM STATEMENT 

As the polymer composites is widely used in the various engineering products especially 

in plastic industry, the study of rice husk as an additives is indeed very important. 

Currently, most of the additives used in the commercial polymer industries are expensive 

and rare. Such additives are mica, silica and fibres. Therefore, the study to replace these 

additives with a new material is essential. The problem faced by the author is that the 

existing study on the rice husk is quite little that make the project have limited resources. 

It is the author's interest that this project would ascertain that rice husk is a good material 

that can be used as additives in polymer industries. 

Recently, utilization of biomass resources has been the subject of various studies. In 

Malaysia, rice husk is one biomass materials that is a by-product from the rice industry. 

Many studies have been carried out on the utilization of biomass such as particle board, 

medium density fiberboard, pulp and composites [8]. In general, utilization of biomass in 

lignocellulosic composites have several advantages such as low density, greater 

deformability, less abrasiveness to equipment, biodegradability and low cost. However, 

in producing a good lignocellulosic composite, the main obstacle to be resolved is the 

compatibility of the fiber and matrix. The properties of the lignocellulosic composites are 

dominated by the interfacial interaction between the lignocellulosic filler and polymer 

matrix. 

As such, the problem statement for this project is to prove that rice husk can be used to 

change and improve the physical properties such as tensile and impact strength of low 

density polyethylene (LDPE) as the filler's volume fraction and size varies. 
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1.3 OBJECTIVES AND SCOPE OF STUDY 

1.3.1 Objectives 

The objectives of the project are as follows: 

• To study the effect of weight percentage and size of rice husk on the physical 

properties of low density polyethylene (LDPE). These physical properties are 

tensile modulus and impact strength. 

• To prove that rice husk is an applicable new material that can be used as additives 

in commercial polymer industries. 

• To run an experiment to collect results and investigate truth behind the theoretical 

fact on the rice husk. 

1.3.2 Scope of study 

The scope of this project would evolve around conducting the experiment in order to 

investigate the effect of weight percentage and size of rice husk on the physical properties 

of low density polyethylene (LDPE). In order to do this, the author required to grind the 

rice husk into the desired size and allow to mix with the polymers under certain 

procedures. The properties ofthe mixtures are then investigated. 

The calculation and measurement of the physical properties of the mixture would be 

conducted using the most readily available appliances, most probably using the 

mechanical procedures. 
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CHAPTER2 

LITERATURE REVIEW AND THEORY 

Recently, utilization of biomass resources has been the subject of various studies. In 

Malaysia, rice husk is one biomass materials that is a by-product from the rice industry. 

Many studies have been carried out on the utilization of biomass such as particle board, 

medium density fiberboard, pulp and composites. In general, utilization of biomass in 

lignocellulosic composites have several advantages such as low density, greater 

deformability, less abrasiveness to equipment, biodegradability and low cost. 

Therefore, vanous synthetic polymers are being prepared combined with vanous 

reinforcing fillers in order to improve the mechanical properties and obtain the 

characteristics demanded in actual application. Studies are ongoing to find ways to use 

lignocellulosic fibers in place of synthetic fibers as reinforcing fillers. These natural 

fillers are especially being sought since the production of composites using natural 

substances as reinforcing fillers is not only inexpensive but also able to minimize the 

environmental pollution caused by the characteristic biodegradability, enabling these 

composites to play an important role in resolving future environmental problems. 

2.1 GENERAL POLYMER PROCESSING 

Polymer processing can be divided into five basic processing operations - extrusion, 

molding, spinning, calendering, and coating. As for this project, the polymer processing 

required is injecting molding. 

Molding is normally a batch process where it is run through various ways. These are 

includes compression, injection, transfer, blow and rotational molding. In the molding 

polymer processing, a mold is used to create the desired plastic parts. Example of a 

simple molding process is compression molding where the resin is placed in the bottom 

half of an open heated mold. Then, the top half of the mold is placed over the bottom 

half. Next, the pressure is applied to cause the resin to completely fill the cavity, while 
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the excess resin is forced out of the mold as flash. Where else, in injection molding, the 

reciprocating screw is used to melt a measured volume of feed introduced through the 

hopper. After a sufficient time has elapsed to form a homogenous melt, the rotation of the 

screw ceases, and the melt is rammed into a mold under high pressure by a hydraulically 

driven thrust of the screw. The amount of resin that can be molded may vary with a 

particular machine from a few grams to few kilograms, with clamping forces up to 5000 

tons. 

Injection molding is used extensively for the manufacture of polymeric items. A 

reciprocating/rotating screw both melts polymer pellets and provides the pressure 

required to quickly inject the melt into a cold mold. The polymer cools in the mold and 

the part is ejected. Injection molding machines are sized primarily by the force available 

in the mold clamping unit; ranging from 20 tons in laboratory machines to over 5000 tons 

in large commercial machines. 

2.2 GENERAL POLYMER TESTING 

The properties of the polymers can be determined through different kind of testing under 

different variety ofloading condition. These testing can be classified as static (tensile and 

shear), transient (creep and stress relaxation), impact (Izod and Charpy) and cyclic 

(fatigue testing). 

Tensile tests are used to measure the force response when a sample is strained, 

compressed or sheared at constant rate. This provides a means to characterize the 

mechanical properties of a polymer in terms of modulus, strength and elongation to 

failure. 

Impact testing measures the energy expended up to failure under conditions of rapid 

loading. There are a number of different types of impact tests. This includes the widely 

used Izod and Charpy tests in which the harnmerlike weight strikes a specimen and the 

energy to break is determine from the loss in the kinetic energy of the hammer. Other 
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variations include the falling-ball or dart test, whereby the energy-to-break is determined 

from the weight of the ball and the height from which it is dropped. Values of impact 

strength may also be calculated from the area under the stress-strain curve in high-speed 

tensile test. 

Information obtained from the impact test may be used to determine whether a given 

plastic has sufficient energy-absorbing properties to be useful for a particular application 

such as plastics for beverage bottles or window replacement. In such cases, it is important 

that the material be tested at temperatures and impact conditions close to those of actual 

use because impact strength will decrease with decreasing temperature and increasing 

rate of deformation. The presence of defects that act as stress concentrators will also 

reduce impact strength. In order to standardize impact results or to study the effect of 

cracks and other defects on impact properties, samples with inscribed notches of 

specified dimensions are often used. 

2.3 PROPERTIES OF RICE HUSK 

Rice husk is an agricultural waste that available in fairly large quantities in Malaysia. 

Trees "store on the stump" and with rare exception other lignocellulosics do not share 

this luxury. Rice husks are a notable exception because they are stored on the grain. The 

grain is stored to be milled year round, making the availability of rice husks reasonably 

uniform. Rice usually comes to the mill at about an 8% moisture content level. Rice 

husks are quite fibrous by nature and little energy input is required to prepare the husks 

for board manufacturer. To make high-quality boards, the inner and outer husks are 

separated and broken at their "spine." This can be accomplished by hammer milling or 

refining. Rice husks have a high silica content, and present the same cutting tool 

problems. The density of the rice husk is calculated at the methodology section to be at 

about 0.7252 g/cm3
. 
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Rice husks are generated during the first stage of rice milling, when rough rice or paddy 

rice is husked i.e. husk is separated from the rest ofthe grain. 

• In general, I 00 kg of paddy rice will generate 20 kg of husks. Short grain varieties 

produce slightly more hull than medium or long grain varieties. 

• Moisture content of rice husk is around 1 0%; the equilibrium moisture content is 

lower than that of paddy or rough rice. 

• Bulk density of rice husks is 100 to 150 kg/m3 If rice husks are ground, bulk 

density increases to 200 to 250 kg/m3
. 

• Rice husk contains 16 to 22% ash, and 90-96% of the ash is composed of silica. 

Therefore, rice husk ash can be considered a slightly impure form of silica. 

• The ash composition and structure give rice husks an abrasive character. Metal 

surfaces in frequent contact with rice husks will wear out and eventually puncture. 

• The calorific value of rice hull is 14-16 MJ/kg on a 10% moisture content basis. 

In comparison, most dry woods contain 18-20 MJ/kg, and coal contains 25-30 

MJ/kg. The higher the ash content of rice husks, the lower the calorific value. 

• The main carbohydrate components of rice husks are cellulose and lignin. 

• Rice husks contains only minor levels of potassium and chlorine, and therefore 

ash melting temperatures of rice hull are much higher than those of rice straw. 

The size of rice husk also played a significant role in the properties, where smaller size 

rice husk produced composites with higher strength. This is due to the greater surface 

area for interaction between the rice husk and the polymers, which could be detected by 

scanning electron microscope (SEM) analysis. The rice husk must be grinded to the 

desired size and dried at 1 00 oc for 24 h before conducting the experiment. This is to 

ensure that the rice husk flour is at best condition for the experiment. 
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2.4 PROPERTIES OF LOW DENSITY POLYETHYLENE (LDPE) 

Low density polyethylene (LDPE) is the low density version of polyethylene (PE). This 

has less hardness, stiffness and strength compared to high density polyethylene (HDPE), 

but better ductility. It is opaque and only thin foils can be transparent. 

LDPE is used for packaging like foils, trays and plastic bags both for food and non-food 

purposes. Used as protective coating on paper, textiles and other plastics, for instance in 

milk cartons. LDPE can be categorizes as thermoplastic. The products that can be use 

from LDPE are wrapping foil for packaging, plastic bag (soft type that does not crackle), 

garbage bag and tubes. Used PE plastic can be recycled through remelting although there 

is a quality loss. Incineration is straightforward and comparable to oil, since PE is only 

consist of hydrogen and carbon atoms. LDPE has excellent resistance to water, moisture 

and most organic solvents and chemicals except ones with aromatic or chlorine content. 

Polyethylene is one of the simplest and most inexpensive polymers. It is a waxy, 

chemically inert plastic. It is named thus because it is obtained by the polymerization of 

ethylene ( ethene ). It is also known as polythene, a contraction of the name and even more 

simply as PE. 

The ethene molecule (known almost universally by its non-IUPAC name ethylene), CzH4 

is CH2 = CHz, Two CHz connected by a double bond, thus: 

H H 
\ I 
C=C 

I \ 
H H 

Figure I : The covelent bonding of ethene molucules 
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In the polymerizationn process of ethene, the double bonds of the monomers are broken 

to allow additional single bonds to form amongst the carbon atoms, thus a macromolecule 

is created. 

Polyethylenes are classified according to their density, which in tum depends on the 

extent and type of branching present in the material. 

• HDPE (high density PE) 

• MDPE (medium density PE) 

• LDPE (low density PE) 

• LLDPE (linear low density PE) 

LDPE has many more branches than HDPE, which means that the chains do not "fit well" 

together. It has therefore less strong intermolecular forces as the instantaneous-dipole 

induced-dipole attraction is less. This results in a lower density and tensile strength, 

increased malleability and faster biodegradation. LDPE is created by free radical 

polymerization. 

History has recorded that Polyethylene was first synthesized by the German chemist Hans 

von Pechmann, who prepared it by accident in 1898 while heating diazomethane. When 

his colleagues Eugen Bamberger and Friedrich Tschimer characterized the white, waxy 

subsance he had created, they recognized that it contained long -CH2- chains and termed 

it polymethylene. 

The first industrially practical polyethylene synthesis was discovered (again by accident) 

by Eric Fawcett and Reginald Gibson at ICI Chemicals in 1933. Upon applying 

extrememly high pressure (several hundred atmospheres) to a mixture of ethylene and 

benzaldehyde, they again produced a white waxy material. Since the reaction had been 

initiated by trace oxygen contarninantion in their apparatus, the experiment was at first 
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difficult to reproduce, and it was not until 1935 that another ICI chemist, Michael Perrin 

developed this accident into a reproducible high-pressure synthesis for polyethylene that 

became the basis for industrial LDPE production beginning in 1939. 

For some polymers crystallized from the melt or from concentrated solution, crystallites 

can organize into larger spherical structures called spherulites. Each spherulite contains 

arrays of lamellar crystallites that are typically oriented with the chain axis perpendicular 

to the radial direction of the spherulite. In a few cases, such as occurs in the 

crystallization of polypropylene, chain folding will occur with the chain oriented along 

the radial direction [I]. 

Since no polymer is completely crystalline, even for most crystalline polymer like high­

density polyethylene have lattice defect regions that contain unordered, amorphous 

material. Crystalline polymers may exhibit, therefore, both a T g corresponding to long­

range segmental motions in the amorphous region and a crystalline-melting temperature, 

or T m, at which crystallites are destroyed and an amorphous, disordered melt is formed. 

For many polymers, Tg is approximately one-half to one-third of Tm. Below is the 

representative value ofTg and Tm for some semicrystalline polymer [2]. 

Polymer 
Polypropylene 
Polyethylene (LDPE) 
Polycaprolactone 

T °C 
-15 
-120 
-60 

Tm °C 
176 
115 
61 

Table I: Representative value of thermal transitions for semicrystalline polymers. 
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Below is the theoretical value of mechanical properties of representative polymers [2]. 

Elastic Yield Ultimate Elongation 
Polymer modulus, strength, strength, to break, 

GPa MPa MPa % 

Polypropylene 1.0-1.6 23 24-38 200-600 
Polystyrene 2.8-3.5 38-55 1-2.5 
Polycarbonate 2.4 55-69 55-69 60-120 
Polyethylene (low-density) 0.14-0.28 6.9-14 10-17 400-700 

Table 2: Mechanical properties of representative polymers 

Typical values of notched-Izod impact strength for several important polymers are given 

in the table below [2]; 

Polymer 

Polystyrene 
Poly (vinyl chloride) 
Polyethylene(LDPE) 
Polyethylene (HDPE) 

Impact strength, Jm-

13-21 
21- 160 
27- 107 
27- 1068 

Table 3: Value ofnotched-Izod impact strength for some representative polymer 
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CHAPTER3 

METHODOLOGY/PROJECT WORK 

3.1 LITERATURE RESEARCH 

As the matter of a fact, most of the literature researches are conducted throughout the 

whole project timeframe. In order to gain as much information as possible, various books, 

journals and websites have been the important sources of finding. The researchers 

covered the finding for the basic concept of polymer processing and testing. This 

approach of work's outcome can be clearly concluded as follows: 

1. Theoretical facts and information about rice husk and low density polyethylene. 

2. Standard test and procedures involved. 

3. Theoretical facts and information about properties to be investigated. 

By doing research also, standard test and procedure involve in this project also can be 

identified. The standards are listed according to the specific sample's testing to be done. 

The standards identified for this project is as follow: 

1. For tensile testing: ASTM D 638, standard test method for tensile properties of 

plastic. 

2. For impact testing: ASTM D 256, standard test method for determining the izod 

pendulum impact resistance of plastics. 
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3.2 MATERIAL PREPARATION 

LDPE pallets was supplied by The Polyolefin Company (Singapore) Pte. Ltd. With 

density of 0.917 g/cm3 were used as the binder material. Meanwhile, the rice husk is 

obtained from the Bernas rice factory located in Sungai Manik, Perak. 

3.3 SAMPLE PREPARATION 

RHF will be dried in an oven at I 00 oc for 24 h to adjust it to a moisture content of 1-2% 

to achieve ideal moisture of rice husk for interaction and then stored over desiccant in 

sealed containers. The rice husk is then grinded to the desired sizes by using mechanical 

grinder. The rice husk particle is separated according to size by using Endecotts sieve. 

There are six levels of particle sizes in this experiment. The sizes are 2000, 1180, 600, 

425, 300 and 212 Micron. The separated rice husk particle is then stored in separate trays 

in an oven at 25 oc for moisture maintaining. Seven levels of filler loading (2, 4, 6, 8, I 0, 

25 and 40 wt.%) will be used in the sample preparation. Tensile and Izod impact test 

specimens is prepared using an injection molding machine at 169 °C, an injection 

pressure of 1200 psi, and a device pressure of 1500 psi. After molding, test specimens 

will be conditioned before testing at 23 °C, 50% RH for at least 40 h according to ASTM 

D 618-99. 

3.4 DETERMINATION OF THE DENSITY OF RICE HUSK 

The mass of LDPE is weighted in a beaker by using electronic beam. Meanwhile, 

the mass of the rice husk is also weighted in a beaker by using electronic beam. The two 

materials are then mixed together by using mechanical stirrer. The mixture is molded by 

using internal mechanical mixer. The polyethylene will be blended with rice husk flour in 

a two-roll mechanical mixer. Mixing is continued at 200 oc for 15 min at a rotor speed 

of 20 rpm. A laboratory-size, twin-screw extruder is employed to compound the rice husk 

with the polyethylene as a matrix polymer. The extruded strand is pelletized and stored in 

sealed packs containing desiccant. The resultant composite was collected and the weight 
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and the volume of the specimen were determined. Finally, the density of the rice husk 

was determined from the formula. 

3.5 TENSILE TESTING 

Tensile tests were carried out according to ASTIM D638 on a Monsanto tensometer 

TlO. Dumbbell specimens of 2 mm thick were clamped at both ends to perform tensile 

test. Two crosshead speeds of 50 and 100 em/min was used and the test was performed 

at the temperature of26°C. Five specimens were tested and the average was calculated in 

each cases. 

3.6 IZOD IMP ACT TESTING 

Notched izod impact strength tests will be conducted according to ASTM D 256-97 [6] at 

room temperature. The composites produced were cut into the required dimension 

proposed by the standard testing. The dimension of the test specimen was cut to be 6.5 

em x 1.2 em x 0.8 em (length x width x thickness). The test was carried out on notched a 

sample using a Zwick Impact Pendulum Tester Model5101. 
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CHAPTER4 

RESULTS AND CALCULATION 

4.1 DETERMINATION OF THE DENSITY OF RICE HUSK 

Mass of beaker= 172.0750g 

Mass of beaker+ LDPE = 590.6443g 

Mass ofLDPE = 590.6443- 172.0750g 

= 418.5693g 

Mass of beaker= 162.4321g 

Mass of beaker+ rice husk= 194.021 Og 

Mass ofRH = 194.0210- 162.4321g 

= 31.5889g 

Calculation of rice husk density by using the formula, 

From, 

But 

mJ V, = (mhl Vh) vh + PPEVPE 

and 

PPEVPE = (mp£1 VPE) x (VPE I V,) = mrEI V, 

Therefore, 

PPE(1- Yh) = mp£ I V, 

The value calculated was substituted in mJ V, = PhVh + PPEVPE 

Mass of composite, m,= 418.5693g + 31.5889g = 50.1582g 

Volume of composite, V,= 500 cm3 

Subsitude, 

PPE(l- Yh) = mp£ I v, 
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The list of mass of the rice husk and LDPE are tabulated in the table below; 

%RH Mass of RH (g) Mass of LDPE (g) 

2 7.25 449.33 

4 14.50 440.16 

6 21.75 430.99 

8 29.00 421.82 

10 36.25 412.65 

25 90.63 343.88 

40 145.00 275.10 

Table 4: The list of mass of rice husk and LDPE for injection molding. 
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4.2 GRAPH AND ANAL YSYS 
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Figure 2: The graph ofload versus elongation for LDPE polymer and RH filled polymer 

composites at various filler loading. 

Figure 2 shows the effect of filler loading on the elongation strength of the RH-LDPE 

composites and the pure LDPE. As shown in the graph, the pure LDPE polymer shows 

more strength but less ductility. This is proven when the break happened at only 27 mm 

extension where else, the RH filled LDPE polymers breaks at a longer extension which is 

around 60-80 mm extension. This is because the RH filled LDPE polymers are more 

ductile if compared to the pure LDPE polymers. Toughness, from the graph of load 

versus elongation, can be quantified form the area under the graph. Referring to figure 2, 

the plain LDPE polymer is tougher compare to RH filled LDPE polymer composites. 
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Figure 3: The graph of ultimate tensile strength versus filler loading capacity for 

RH filled polymer composites at various filler loading. 

The tensile strength of LDPE polymer is significantly higher compares to the tensile 

strength of RH filled LDPE at various volumes fraction. At a big scale, the later are 

lingering in the range of 7.5 to 8.5 MPa. The tensile strength of the former pure LDPE 

polymer exceeds 36 MPa. With the introduction of RH as filler, the composites loose its 

strength. As the loading of the RH increases, the RH filled LDPE polymer composites' 

strength is degrading (Figur~ 3). No regular relationship that can tie the tensile strength 

and the RH loading. 

By looking at figure 3, it can be seen that the tensile strength is higher at 4-10% of RH 

filler loading. After this threshold value, the tensile strength is decreasing. However, the 

enhancement of the properties is only observed for composite with 4% RH by weight, 

exceeding which, the strength decreases as the percentage RH (by weight) are increased. 
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Figure 4: The graph of modulus of elasticity versus fillers' loading capacity for 

RH filled polymer composite at various filler loading. 

The modulus of elasticity of the RH filled LDPE polymer composites are almost the same 

as the loading capacity varies (Figure 4) and as they are observed in the bigger scale 

(Figure 2), compares to the LDPE polymer, the ratio of the former to later is 

approximately 1:8. The RH filled polymer composites have the average of modulus of 

elasticity of 340 N/mm as the volume fractions of the fillers are varied up to 30%. 

Looking at the effect of the variation of the RH loading capacity, as they are increased 

the modulus of elasticity also increased 
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Figure 5: The graph of maximum elongation versus fillers' loading capacity for 

RH filled LDPE polymer at various filler loading. 

LDPE polymer registers maximum elongation before failure of less than 30 mm. 

Meanwhile, the RH filled LDPE polymer composites are far more ductile than LDPE 

alone. As the percentage of volume of filler increases, the ductility of the composite is 

improved tremendously. (Figure 5). Nonetheless, at 30% of volume fraction of the filler, 

the composite get brittle. No regular relationship between ductility and loading capacity 

of the RH can be established. 
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Figure 6: The graph of modulus of elasticity versus filler sizes at 8%wt filler 

loading 

Figure 6 shows that there is a slight decrease in modulus of elasticity at filler size of 300 

Micron but it started in increased at filler size of 425 Micron to 2000 micron. This 

indicates that the modulus of elasticity increase as the filler size increases. 
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Figure 7: The graph of tensile strength versus filler sizes at 8%wt filler loading 

Figure 7 shows that the tensile strength of the RH filled polymer decreases at 

filler sizes of 300-425 Micron. However, the tensile strength started in increase at filler 

size of 600 micron and started to decrease back. This indicates that the ideal size for 

better tensile strength of RH filled LDPE is around 600-1000 micron. This because 

composite with smaller size RH displayed higher strength than those with a bigger size ' 

filler. This is expected because a smaller size filler gives a larger surface area for the 

interaction. This result is in agreement with other studies where composites with smaller 

size fillers produced higher tensile strength than those of larger size. 
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Figure 8: The graph of maximum elongation versus filler sizes at 8%wt filler 

loading 

Figure 8 shows the maximum elongation versus filler sizes at 8%wt filler loading. It can 

be seen in the graph that the maximum elongation at break happened at filler size of 3 00 

micron. However, after this threshold value, there is the reduction as the percentage of 

RH filler size increases at 425 micron. Again, it is believed that the deciding factor is the 

reduction of LDPE content, which resulted in the reduction of the matrix material in the 

composites to sustain elongation. 
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CHAPTERS 

DISCUSSION 

Low density polyethylene as the matrix and rice-husk flour as the reinforcing filler were 

used to prepare a particle-reinforced composite in order to determine testing data for the 

physical, mechanical and morphological properties of the composite according to the 

filler loading in respect to thermoplastic polymer, low density polyethylene. In the 

sample preparation, seven levels of filler loading (2, 4, 6, 8, 10, 25 and 30 wt.%) were 

designed. For the filler size, there are six level of filler sizes were introduced (212, 300, 

425, 600, 1180 and 2000 micron). In the tensile testing, there are two level of crosshead 

speed (50 and 100 mm/min) were designed. Tensile strengths of the composites slightly 

decreased as the filler loading increased. Tensile modulus improved with increasing filler 

loading. Notched Izod impact strengths were lowered by the addition of rice-husk flour. 

The tests will be conducted at room temperature. Generally, fiber-reinforced composites 

have higher tensile strength than particle-reinforced composites. Tensile strengths of RH­

LDPE composites slightly decreased with increasing filler loading. As the filler loading 

increased, thereby increasing the interfacial area, the worsening interfacial bonding 

between filler (hydrophilic) and matrix polymer (hydrophobic) decreased the tensile 

strength, which nevertheless remained within acceptable levels. 

Tensile modulus improved with increasing filler loading. For irregularly shape fillers, the 

strength of the composites decreases due to the inability of the filler to support stresses 

transferred from the polymer matrix while poor interfacial bonding causes partially 

separated micro-spaces between filler and matrix polymer, which obstructs stress 

propagation when tensile stress is loaded and induce increased brittleness. 

As the filler loading and crosshead speed increased, the composite became more brittle. 

As the filler loading increased, the fraction of thermoplastic polymer decreased and 

interfacial area increased, which increased the brittleness as described above. As the 

crosshead speed increased, the frictional resistance between filler matrix polymer 
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decreased, and this increased the brittleness. The nonlinearity in the curves is mainly due 

to the plastic matrix deformation. 

For the impact testing, the tests were performed at room temperature. The notched Izod 

impact strength of the composites slightly decreased as the filler content increased. In the 

case of notched samples, the impact strength decreased with increasing amounts of RH 

added until a plateau was reached at a filler content of about 8 wt. %. Poor interfacial 

bonding induces micro-spaces between the filler and matrix polymer, and these cause 

numerous micro-cracks when impact occurs, which induce crack propagation easily and 

decrease the impact strength of the composites. The notched tip, which is the stress 

concentrating point, causes relatively low impact strength in the notched sample, thereby 

allowing the crack to propagate easily, and the same effect appeared at the filler-matrix 

interfacial area in the filler contained urmotched sample. 

The urmotched Izod impact energies were considerably larger than notched Izod impact 

energies. This is due to the different fracture process for notched and uunotched samples. 

The urmotched impact behavior is controlled to a considerable extent by fracture 

initiation processes that, in turn, are controlled by stress concentrations at defects in the 

system. Notched impact behavior, meanwhile, is controlled to a greater extent by factors 

affecting the propagation of fracture initiated at the predominating stress concentration at 

the notched tip. In other words, unnotched Izod impact energies are not only a measure of 

crack propagation but also of crack initiation. 

Based on the analysis, the data or results obtained are considered not I 00 percent 

accurate. However, the results obtained can be considered as acceptable since the testing 

conducted is accordance to the ASTM standard. The results of this properties testing can 

be more elaborated and more accurate if examination into the microscopic level can be 

made. Due to time constraint and some technical problem faced, the microscopic level 

examination carmot be done in this project. Furthermore, if there are sufficient facilities, 

test according to ASTM standard can be done accordingly thus giving more accurate and 

better results. 
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CHAPTER6 

CONCLUSION AND RECOMMENDATION 

Tensile strengths of the composites slightly decreased while the tensile modulus 

improved as the filler loading and crosshead speed increased, but the composites had an 

acceptable strength up to a filler loading of 30 wt. %. RH could be utilized as a 

biodegradable filler at end-of-use in polymeric materials to minimize environmental 

pollution rather than produce strong reinforcing filler. As the filler loading increased, the 

tensile property became more ductile, and the poor interfacial bonding between filler and 

matrix polymer caused decreased tensile and impact strength of the composites. 

Nevertheless, this problem could be reduced by using a compatibilizing or coupling 

agent, and further extended research is suggested. 

Agricultural fibers have been successfully utilized in a variety of composite panels, most 

notably conventional composite panels and inorganic-bonded composites. 

Lignocellulosic/thermoplastic composites are a newer area of lignocellulosic utilization. 

It is anticipated that interest and commercial development will continue in this area. More 

than enough agricultural fiber residues are available to support composite manufacturing 

needs, although the agro-based materials may not have a suitable geographical 

distribution to provide an economically feasible endeavor. Lignocellulosics are attractive 

material sources for composites because they are lightweight, economical, and require 

low amounts of energy for processing. In addition, their growth, use, and disposal are 

generally considered environmentally friendly. As renewable materials, they can be used 

to replace or extend non-renewable materials such as those based on petroleum. 

This report is a conclusion of student's Final Year Project accomplishment. The author 

has accomplished the objective of the project within the student's scope of study. 

However, there are some areas that could be improved in terms of accomplishment and 

achievement. The obvious one is the achievement of producing good dumbbell RH­

LDPE composite specimens during injection molding. This is because the entire project 

is dependent on the accuracy of the sample prepared. 
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Nevertheless, due to some technical and non-technical problem faced, this investigation 

is conducted in a very simple way but still managed to meet the project requirement. As 

for others properties investigated, the aimed objectives are considered had been achieved 

since the test is conducted in accordance to specified ASTM standard. 

This project can be continued further because some of the tests cannot be done due to the 

time constraint. This is because a lot of time is required during the sample preparation. If 

there are more test conducted, there must be more analysis can be performed and hence 

provide better results. It is highly recommended that this project will be continued for 

further testing with higher sophisticated equipment. Finally, it is recommended that the 

university can provide the facilities and more sources of technician available. This is 

because the university have only two technicians that are shared among number of 

student at the same time. The technician provided is essential to guide the student 

especially during conducting of a machine. I would recommend that the technicians are 

committed and only specialized in final year project so that they are available every time 

needed. 
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APPENDIX 

APPENDIX 1.1: The injection molding machine 

APPENDIX 1.2: The Monsanto tensometer TlO machine 
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APPENDIX 1.3: The internal mixer machine 
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