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ABSTRACT 

The aim of this project is to build a Self-Balancing Robot. The robot built 

comprises three round platforms arranged vertically with two wheels attached at the 

bottom of each side. The robot is equipped with self-balancing mechanism. The 

project started with thorough literature review and research and ended with the 

presentation of a moving two-wheels robot. A programmed microcontroller chip, 

AtMegal6, connected to its development circuit with input component, Memsic2125 

accelerometer, and output components, Futaba servo motors, are attached unto the 

robot as the main elements for the self-balancing mechanism. Hence, the robot should 

be able to stand upright and balance itself, move from one point to the other as pre- 

programmed and carry object. The self-balancing robot built possibly counter many 

problems facing by people nowadays from all background as it is able to carry object 

efficiently, consumes small space and conquer the not flat floor surfaces. Besides as 

to could able to serve the community a higher of transportation technology yet 

manages to take part in contributing to saving the earth mission. 
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CHAPTER I 

INTRODUCTION 

1.1 Background of Study 

Technology develops and enhances in every possible ways in order to fulfill 

needs and demands raised by human race. One of the daily concerns raised by people 
from all backgrounds is that, is there any easier ways to carrying things from one 

point to other point regardless of the sizes and distances efficiently, and this includes 

transportation mean. Left massive object transportation alone as it is firmly taken 

care, lets focus on something that can be utilized in smaller area or somewhere that is 

indoor, specifically. People from all background are lacking of an object carrier that 

build in smaller size and can be utilized in smaller area yet efficiently transfer object 
from one point to other point despite the condition of the floor. 

Hence, the aim of this project is to build a Self-Balancing Robot. Basically, 

this project is to produce a two-wheeled self-balancing robot that is equipped with a 

successful balancing mechanism. The robot comprises three platforms arranged 

vertically with two wheels attached at the bottom of each sides, Memsic2125 

accelerometer as the input component, servo motors as the output components and 
AtMegal6 microcontroller chip as well as the circuitry and the other hardware which 
it is needed for the robot to work successfully. The robot should able to stand upright 

and balance itself when either static or moving. Memsic2125 feeds in information on 

the stability of the robot in terms of tilting angle to the AtMegal6. This input data 

will be process through algorithm and instructions set pre-programmed in the 
AtMega 16. 
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From this, output data will be prepared and sent to servo motors for them to operate 

as desired. The servo motors will rotate either clockwise or anti-clockwise with 

certain speed accordingly as an attempt to keep the robot at balance. This project 

involves with a precise weight distributed fabricated structure and very effective 

microcontroller chip, input and output components in ensuring the stability of the 

robot. 

1.2 Problem Statement 

As compared to four-wheels trolley, having a platform with only two wheels 

that is able to balance itself and move around is advantageous as it possibly 

maneuvers better, move on either flat or sloppy surfaces, and to be further enhances, 

apply for carrying limitless tasks, hence benefit the community. Yet, the main 

challenges to this possibility is how to have a two wheels robot that is able to stand 

upright and balance itself, furthermore carry object from one point to other point 

efficiently. This is where the significant of this project comes from which is to build a 

self-balancing robot. 

1.3 Objectives 

The main objective for this project is to build a self-balancing robot. The 

robot is comprised platforms with two wheels and equipped with successful 
balancing mechanism. The self-balancing robot should be able to; 

1. Stand upright and balance itself. 

2. Move from one point to other point as pre-programmed. 
3. Carry an object from one point to the other. 
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1.4 Scope of Study 

This project is divided into five major stages which are literature review, 

designing, fabrication, assembling and programming. The project started with 

literature review. In this stage, information about from physics laws and theories 

related for balancing a structure to real life applications are gathered in developing 

understanding required in building the self-balancing robot for this project. Then the 

project continued to designing stage. In this stage, based on the knowledge gathered 

and understanding developed, detailed designs on physical of the robot, circuitry as 

well the programming needed in order for the robot to work successfully are drawn. 

Based on the designs, the each element of the robot is the fabricated. The project is 

then carried to assembling stage. In this stage, all the hardware are fabricated then 

together with electronic components and its circuitry constructed for the project are 

assembled for the self-balancing to take form as designed. Testing is then took place 

in ensure the working and reliability of the mechanical part of the robot. Then, the 

final stage of this project which is programming took turn. In this stage, the 

programming codes are listed and programmed unto the AtMegal6 microcontroller 

chip. The testing is then took place to ensure that the self-balancing robot built meets 

the objectives of this project. In any part error occurred, it is corrected 

instantaneously. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview on Self-Balancing Robot 

Over the last decade, the research on self-balancing robot has gained interest 

of many robotics enthusiasts as well gained momentum in a number of robotics 

laboratory around the world. This situation is due to the inherent unbalance dynamics 

of the system. Such robots are built with ability to self-balance on its two wheels. 

This ability added better maneuverability into its features and allows effective 

navigation on various terrains. A two-wheeled self-balancing robot that is able to 

balance itself and carry object from one point to the other more efficiently especially 

when compared to the widely used four-wheeled trolley as its trail is limited to flat. 

These capabilities have the potential to conquer the challenges in industry and 

society. 

As a matter of fact, the application of self-balancing robot is beyond the 

boundary. With its ultimate capability being added with more additional features and 
its physical structure are specified into its purpose, and then it can serve the 

community and encounter the problems of the many raised. For example, a motorized 

wheelchair utilizing this technology would give the operator greater maneuverability 

and thus access to place most able-bodied people take for granted [3]. Small carts 
built utilizing this technology allows humans to travel short distance in a small area 

or factories as opposed to using cars or buggies which is more polluting [3]. Besides 

that, self-balancing robot can be applied in small business or domestic areas, such as 

an object carrier which specifically be an orders carrier around a restaurant, for 
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example, or an object carrier around a house. Adding suitable camera to it, it may be 

carry surveillance task efficiently [16]. Indeed the application of self-balancing robot 

is limitless. 

Many individuals have actually built a self-balancing robot and named their 

robot as they accordingly. Figure 1 shows a few of the self-balancing robots built by 

David P. Anderson, Felix Grasser et all and Ted Larson, named as nBot, Joe and 
Bender accordingly. Some of these self-balancing robots have participated in several 

of robotics competition held in many places and have intrigued the other parties to get 
involved with this massive phenomena. 

(a) (b) 

Figure 1: a) nBot, b) Joe c) Bender 

(c) 

Moreover, some parties have taken the idea of self-balancing robot to a higher 

level and have actually produced a product that is now available in market for all 

people to get benefited from it. Segway H. T, shown in figure 2, is one of these 

marketed products. Note that, Segway H. T is a human transporter which is designed 

by Dean Kamen and is produced by Segway Incorporation. This human transporter is 
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available in almost all countries and they come in various models suited for specific 

purposes. In addition to this good news, this human transporter, Segway II. T, is 

environmental friendly as it will not pollute the environment. Hence, people 

nowadays can get one level ahead in terms of transportation technology yet contribute 

to saving the earth mission. 

(a) (b) 

Figure 2: Segway H. T model; a) i2 and b) x2 adventure 

2.2 Theories applied for Balancing Mechanism 

Despite the diversity in possible application of self-balancing robot, still the 

ultimate puzzle needed to be solve here is how to have a two-wheeled robot to 

balance itself? The balancing mechanism which it is required to work as desired has 

to be ascertained or else it will not work successfully. Understanding in related physic 

laws and theories is prior in deriving the balancing mechanism. Also, understanding 

and get familiar with the main electronic components which are essential in building 

a self-balancing robot is as well a must. 
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2.2.1 Inverted Pendulum 

Inverted pendulum states that an unbalance structure may be stabilized by 

oscillating the support rapidly up and down [1]. In experiment, inverted pendulum 

theory is always modeled with a cart and a vertical stick that attached either above or 

below the cart. For this self-balancing robot concern, focus the modeling to the one 

with stick attached at the above part of the cart as shown in figure 3. This vertical 

stick falls at either side due to instability. The cart has to move to either side (left or 

right) as an attempt to get the vertical stick at balance, upright. The same condition in 

applied in balancing a two-wheeled robot. The wheels of the robot have to 

continuously move to back and forth to achieve stability. 

Figure 3: Inverted Pendulum Modeling 

2.2.2 Rotational Inertia (Balancing a slick on one hand) 

Another theory that is related in deriving the balancing mechanism for self- 
balancing robot is rotational inertia. Rotational inertia states that for a body to be at 
equilibrium (balance), there must be no net force acting on it [17]. For clear 
understanding, consider a modeling for rotational inertia which is balancing a stick on 
one hand. Referring to figure 4, a stick falls due to the gravity and there is one hand 

where it is placed on as to support it. As the stick is falling (losing its vertical straight 
orientation) due to the gravity force which as well is indicated as unbalance, hand has 
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to move horizontally straight, to the left and to the right, as to apply force, of the 

same magnitude but opposite in direction, the stick to keep it from falling. The 

direction of the hand movement as to in accordance to the direction of which side the 

stick is falling to. Besides that, the speed of the hand movement has to proportional to 

the degree of falling. Thus, in order to keep the stick from unbalance condition, these 

two forces (force exerted by hand and force due to the gravity) has to apply on the 

stick to keep at the same time. 

T hand 

Figure 4: Forces acting on a vertical stick that is balanced on one hand 

2.3 Main Electronic Components essential in building Self-Balancing Robot 

Following are the main electronic components, input components, output 

component and the vital one, microcontroller, generally used in building self- 
balancing robot. Other electronic components may as well be added into the robot 
description as for specific purposes or perhaps for more advance self-balancing robot. 
Yet, what matters the most are the components that allows the robot to self-balance 
successfully. 
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2.3.1 Input Components fr balancing mechanism 

The most widely used input components by many self-balancing robot 

inventors are gyroscope and accelerometer. Fundamentally. note that gyroscope used 

to measure angular momentum of a body whereas for accelerometer used to measure 

the gravitational acceleration of a body. Some used both of the input components for 

better control of stability of the robot. Others used only one of the input components 

yet still manage to get their robots to self-balance. 

Gyroscope 

Basically, gyroscope used to measure the position of a body. It is widely used 

in a system called Inertial Navigation System (INS), as in to control the navigation of 

an aerospace [5]. Gyroscope measures the angular momentum acting on an airplane, 

for example, to provide precise information on the airplane's position to the INS 

hence for INS to control the navigation of that airplane [5]. Usually, one airplane is 

equipped with a lot of gyroscopes, considering its size and to get precise information 

on its position. 

However, this inertial system is widely used in aerospace applications but not 

quite in robotics applications. This situation is due to the high-quality aerospace 
inertial system is comparatively too expensive for most robotics application. Despite 

that, due to the needs of the automotive industry, a low-cost solid-state inertial system 
is increasingly being made commercially available. Although a considerable 
improvement on past systems, they clearly provide substantially less accurate 

position information than equivalent aerospace systems. An approach is developed to 

undertake this problem. This approach is to incorporate in the systems a piori 
information about the error characteristics of the inertial sensors and to use it directly 

in a Kalman Filter to estimate position before supplementing the gyroscope with 

absolute sensing mechanism. [5] In fact, some robot inventors have implemented 

gyroscope in robotics inventions for the same purpose, to measure the precise 
information on the robot's position hence for better control of the robot movement. 
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Accelerometer 

The function of accelerometer is to measure the acceleration of which a body 

is experiencing due to the gravity. This acceleration is divided into two types which 

are static; constant force of gravity pulling down, and dynamic; caused by moving or 

vibrating 1141. Note that, by measuring the amount of static acceleration due to 

gravity, the angle that the device is tilted at with respect to the earth can be 

determined and by sensing the amount of dynamic acceleration, the way the device is 

moving can be analyzed [17]. There are two types of accelerometer, categorized 

according to its features; 2-axis accelerometer and 3-axis accelerometer, as shown in 

figure 5.2-axis accelerometer measures acceleration with reference only to X-axis 

and Y-axis whereas 3-axis accelerometer measures acceleration with reference to X- 

axis, Y-axis and Z-axis. 

(a) (b) 

Figure 5: a) 3 axis accelerometer board and b) 2-axis accelerometer 

There are several different ways to make an accelerometer. Some 

accelerometers made use of piezoelectric effect. This type of accelerometer contains 

microscopic crystal structure that gets stressed by the accelerative forces which cause 

a voltage to be generated. Another way to do it by sensing changes in capacitance. 

The other type of accelerometer made use of hot air bubbles mechanism. Internally, 

this type of accelerometer contains a small heater. This heater warms a "bubble" of 

air within the device. When gravitational forces act on this bubble it moves. This 

movement is detected by very sensitive thermopiles (temperature sensors) and the 

onboard electronics convert the bubble position [relative to g-force] into pulse outputs 
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for the X-axis and Y-axis. There are more methods those including the use of 

piezoresistive effect, hot air bubbles and also light. [ 17][14] 

In application, accelerometer is used to understand a body's surrounding 
better, whether it is driving uphill or it is going to fall over when it takes another step 

and etc. A good algorithm can interpret data provided by an accelerometer and turn 

them into comprehendible version such as answers to the above questions. An 

accelerometer can analyze problems in a car engine using vibration testing or actually 

use one to make a musical instrument. [ 17] 

In the computing world, IBM and Apple have recently started using 

accelerometers in their laptops to protect hard drives from damages. If one 

accidentally drop the laptop, the accelerometer detects the sudden freefall, and 

switches the hard drive off so the heads do not crash on the platters. In a similar 

fashion, high accelerometers are the industry standard way of detecting car crashes 

and deploying airbags at just the right time. [ 17] 

2.3.2 Output Component 

Usually, self-balancing robot is built with two wheels as to have it to move 

any direction as well as a part of balancing mechanism. Hence, the output component 
for common self-balancing robot is the motors that control the wheels. Different 

types of motor may be used depending on the description of the robot. However, for 

robotics projects the most common used motor is servo motors. 
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Servo Motor 

Generally, servo motor is a motor used for motion control in robots, hard disc, 

etc. It is a small device that has an output shaft. This shaft can be positioned to 

specific angular positions by sending the servo a coded signal. As long as the coded 

signal exists on the input line, the servo will maintain the angular position of the 

shaft. As the coded signal changes, the angular position of the shaft changes. In 

practice, servos are used in radio controlled airplanes to position control surfaces like 

the elevators and rudders. They are also used in radio controlled cars, puppets, and of 

course, robots. [20] 

Servos are extremely useful in robotics. The motors are small, as shown in 

figure 6, they have built in control circuitry, and are extremely powerful for their size. 

A standard servo such as the Futaba S-148 has 42 oz/inches of torque, which is pretty 

strong for its size. It also draws power proportional to the mechanical load. A lightly 

loaded servo, therefore, does not consume much energy. The guts of a servo motor 

are shown in Figure 8; control circuitry, the motor, a set of gears, and the case, with 3 

wires that connect to the outside world. Note that, one is for power (+5volts), ground, 

and the white wire is the control wire. [201 

h! 

(a) (b) 

Figure 6: a) A Futaba S-148 Servo and b) a servo disassembled 
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The servo motor has some control circuits and a potentiometer (a variable 

resistor or well known as pot) that is connected to the output shaft. Referring to 

Figure 8, the pot can be seen on the right side of the circuit board. This pot allows the 

control circuitry to monitor the current angle of the servo motor. If the shaft is at the 

correct angle, then the motor shuts off. If the circuit finds that the angle is not correct, 

it will turn the motor the correct direction until the angle is correct. The output shaft 

of the servo is capable of travelling somewhere around 180 degrees. Usually, it is 

somewhere in the 210 degree range, but it varies by manufacturer. A normal servo is 

used to control an angular motion of between 0 and 180 degrees. A normal servo is 

mechanically not capable of turning any farther due to a mechanical stop built on to 

the main output gear, or else modification can be made to the servo motor to have it 

to rotate continuously. [201 

The amount of power applied to the motor is proportional to the distance it 

needs to travel. So, if the shaft needs to turn a large distance, the motor will run at full 

speed. If it needs to turn only a small amount, the motor will run at a slower speed- 
This is called proportional control. [20] 

The angle of the rotation of servo motor is determined by the duration of a 

pulse that is applied to the control wire. This is called Pulse Coded Modulation. The 

servo expects to see a pulse every 20 milliseconds (. 02 seconds). The length of the 

pulse will determine how far the motor turns. A 1.5 millisecond pulse, for example, 

will make the motor turn to the 90 degree position (often called the neutral position). 
If the pulse is shorter than 1.5 ms, then the motor will turn the shaft to closer to 0 

degrees. If the pulse is longer than I. 5ms, the shaft turns closer to 180 degrees. [20] 
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Figure 7: The pulse dictates the angle of the output shaft 

With reference to figure 7, the duration of the pulse dictates the angle of the 

output shaft (shown as the green circle with the arrow). Note that the times here are 
illustrative and the actual timings depend on the motor manufacturer. The principle, 
however, is the same. 

2.3.3 Microconlrollcr 

A microcontroller chip is the vital electronic components for any robotics 

project. This is due to the fact a robot system is a computerized system, hence needs 

microcontroller for it to work with the connection to input and output components. 
Even in other applications, there has to be a controller to control a whole system. 

A microcontroller (also known as microcomputer, MCU or µC) is a small 

computer on a single integrated circuit consisting internally of a relatively simple 
CPU, clock, timers, I/O ports and memory [22]. Microcontroller is designed for small 
dedicated applications. 
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Usually, microcontroller chips need to work incorporated with its appropriate 
development circuit for it two operate properly. This development circuit may differ 

one and another depending on the manufacturer and the series of that microcontroller 

chip. This development circuit may comprise power circuit, reset circuit, external 

clock circuit, 1/0 connections and better with in-circuit programming circuit. 

As well for the programming language, again this is depending on the 

manufacturer and series of that microcontroller chip. Most microcontroller chip uses 

assembly programming language; C, others may use high-level programming 

language. This language is for writing the programming code which would make the 

robot work as desired. The programming codes may then be compiled, assembled and 

then programmed into the chip. Another device is necessary for programming the 

microcontroller chip, which is a programmer. 

Microcontrollers are used in automatically controlled products and devices, 

such as automobile engine control systems, implantable medical devices, remote 

controls, office machines, appliances, power tools, and toys. By reducing the size and 

cost compared to a design that uses a separate microprocessor, memory, and 

input/output devices, microcontrollers make it economical to digitally control even 

more devices and processes. Mixed signal microcontrollers are common, integrating 

analog components needed to control non-digital electronic systems. [22] 
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CHAPTER 3 

METHODOLOGY 

3.1 Project Activities 

Project activities undertaken for this project towards completion are divided 

into five major stages which are literature review, designing, fabrication, assembling 

and programming. The detailed project activities undertaken are as shown in figure 8. 

This project has been divided into five major tasks namely literature review, 

designing, fabrication, assembling and programming, generally. Literature review 

took place at start allowed gathering as much as knowledge and understanding in any 

laws, concepts or principals in getting this project at success. On the basic of 

knowledge and understanding gained from literature review, design for the self- 

balancing robot is drawn. This design is including the physical structure of the robot, 

circuitry as well as the flowchart for the programming the microcontroller chip 

purpose. Based on the designs, each element of the robot is fabricated as well. 

Further, as all the hardware for the project is obtained, they are all assembled. Testing 

is done in making sure the mechanical and electrical work as desired. Further is 

programming the microcontroller chip. The microcontroller chip used in this project 
is AtMegal6, Atmel manufactured. Thus, familiarity and basic knowledge in 

programming the AtMegal6 is prior to successfully program the chip hence fulfill the 

objectives for this project. 
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Start 

Literature Review 

I 
Detailed Design on the robot and its circuitry 

Fabrication of the physical robot and test the circuit constructed 

Design the PCB for circuitry 

Assemble all the hardware according to design 

Programming the AtMega 16 

I 

Testing and correcting errors 

Complete 

Figure 8: Flowchart for project activities 

3. ]. 1 Gantt Charts 

Gantt Charts are as to ensure that the project activities undertaken are on track 

with period specified, one year. Hence, to ensure that the project carried would be 

completed within the given period. 
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3.2 Literature Review Methodology 

Thorough research is essential for this project. Therefore, reading materials 
from various sources are searched and gathered in developing understandings which 

are necessary for this project. The main source for the research is Internet. 

Encyclopedias, uploaded researches, patent-searches and uploaded projects on self- 
balancing robot from various sites are downloaded to obtain as much information 

hence derive clear understandings as possible. Other than internet, published 

materials also have been taken in. Several published books are referred to. Moreover, 

a few individuals are as well referred to eliminate confusion and misunderstanding. 

3.3 Design of Self-Balancing Robot 

In reference to knowledge gained in literature review stage, balancing 

mechanism needed for the robot to balance itself is determined. Hence the design for 

physical of the robot and design for the circuitry which the robot required to work 

properly are drawn. 

3.3.1 Balancing Mechanism for Self-Balancing Robot 

Inverted pendulum theory states that an unbalance structure may be stabilized 
by oscillating the support rapidly up and down. Rotational inertia theory states that 
for a body to be at equilibrium (balance), there must be no net force acting on it. A 

mechanism to balancing a vertical stick on one indicates that to have the vertical stick 
at balance, move the stick at the direction where the stick is falling to, also the speed 
of movement is proportional to the degree of falling. From these statements, the 
balancing mechanism for self-balancing robot is determined. 
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The input component for this project is Memsic2125 accelerometer. The 

Memsic2125 works as a sensor that senses the tilting angle of the robot. This tilting 

angle is obtained from measurement of the acceleration of the robot as it falls due to 

gravity. Note that, as the robot falls due to gravity it actually tilts at either side. The 

acceleration sensed by the Memsic2125 is interpreted as the tilting angle of the robot 

as it is tilting, as illustrated in figure 9. 

spacer 

platforms 

Figure 9: Tilting angle as the robot tilted 

Note that, the output of Memsic2125 is pulses form of duty cycles. The pulse 

outputs from the Memsic2l25 are set to a 50% duty cycle at 0 g. The duty cycle 

changes in proportion to acceleration. The higher the acceleration that is sensed, the 

more the duty cycle is. Hence, through calculation (refer to figure 10) the tilting angle 

can be derived and be used in preparing the output instruction for servo motor. 

Ti 
H--- "I 

T2 

A((J) = ((T1 / T2) - 0.5) / 12.5% 
Figure 10: Memsic2125 Pulse Output 
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The output components used for this project is servo motor. Note that, one 

servo motor is used for each wheels, hence two servo motors are used in this project. 

The main function of servo motor in this project is to control the rotation as well the 

speed of the wheels in according to the instruction executed by the AtMegal6. The 

direction of rotation of the wheels has to be ascertained in achieving the stability of 

the robot. In a case where the robot is tilting at front, the servo motor have to direct 

the wheel to move forward, drive the wheels in the direction that the upper part of the 

robot is falling, and vice versa, as illustrated in figure 11. As for the speed of the 

wheels, this is depending on the degree of the tilting angle. The larger the degree of 

the tilting angle, the faster the wheels should move. This condition is for recovering 

the robot from instability. This condition is applying the rotational inertia law. As the 

robot is tilted (take it is tilted at front) a force downward is acted at front due to 

gravity. Because of this condition, in order to have a structure at equilibrium 

(balance; no net force) a force of the same magnitude but different direction is 

required. Let the robot to move forward as applying inertia to counter the robot from 

continues to fall. This law is applied throughout the system as a mechanism that to 

keep the robot balance. 

Figure 11: Operation of the wheels of the robot 
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Based on the above mechanism determined for balancing the robot, a 

flowchart is derived in order to program the AtMegal6 orderly, as well to case the 

programming stage. Figure 12 shows the flowchart used in programming the 

AtMega 16. 

Power Supply on? 
no End 

yes 

Reset Button 

pushed? yes 

AO 

Figure 12: Flowchart for programming AtMegal6 
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Referring to the figure 12, note that, the AtMega 16 flow of operation begins 

at start and finishes at end. Once the flow is started, it ensures whether the power 

supply is turned on or off. In a case, where the power supply is not turned on, the 

flow goes to end and quit the whole flow. In another case where the power supply is 

turned on, it continues to reading reset button. 

Once it reads reset button, it detects whether the reset button is pressed or not. 

In a case where the reset button is pressed, the flow goes back to start. In another case 

where the reset button is not pressed. the flow continues to the getting input data from 

Memsic2I25. 

As stated, Memsic2125 provides information on tilting angle of the robot, 

whether the robot is tilting at front or at back. This tilting angle is indicated by the 

position of the robot. For this project, take whichever side as front and the other one 

as back and determined the arrangement of the servo motors. In a case where the 

wheels are required to move forward, pre-ascertained this condition hence set the 

rotation of the wheels, either clockwise or anti-clockwise. Note that, Memsic2125 

senses the acceleration of which the robot experienced at X-axis and Y-axis, as 

indicated in figure 13. Hence, set the positive X-axis as front and negative X-axis as 

back as illustrated in figure 14. Furthermore, in a case where the robot is tilted at 

front, the tilting angle being sensed is negative as illustrated in figure 15. In another 

case where the robot is tilted at back, the tilting angle being sensed is positive as 

illustrated in figure 16. These pre-determined conditions would simplify the 

programming codes as well as reduce confusion. 
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Y-axis 

I i I 
accelerometer 

Figure 13: X-axis and Y-axis of accelerometer 

I Y-axis 

negative = back positive = front 

i 

circuitry board 

1ýý-------ýý-X-axis 

i 

Figure 14: Front and back side of the robot 

Ir-axis 

tilting angle = 360-8 

I 
front 

Figure 15: Robot is tilted at front 

or 
-8 

- -X-ass 
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titling angle =0 

back 

Figure 16: Robot is tilted at back 

As for the operation, in a case where the robot is tilted at the front, AtMegal6 

would receive input data of negative tilting angle from Memsic2125 hence instructed 

the servo motors to move forward, rotate in clockwise direction, as an attempt to 

recover the robot from tilting, as shown in figure 17. In another case where the robot 

is tilted at the back, AtMegal6 would receive input data of positive tilting angle from 

Memsic2125 hence instructed the servo motors to move backward, rotate in anti- 

clockwise direction, as an attempt to recover the robot from tilting as shown in figure 

18. 

Figure 17: Wheels rotate in clockwise direction 
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- -X-axis 

Figure 18: Wheels rotate in anti-clockwise direction 

According to the flowchart in figure 12, this flow is looping back to the 

beginning of the flow, start, where the AtMegal6 is then repeat the same operation, 

until the power supply is turned off which will send the flow to end. This flow allows 

the Memsic2125 and servo motors to continuously send and receive data to and from 

AtMegal6 respectively. Memsic2125 is always checking on the stability of the robot, 

whether it is tilting at the front or at the back, as well as the degree of the tilting 

angle. The AtMegal6 is always running the input data through calculation and logics 

algorithm and prepare the output data. Servo motors are always receiving output data 

from the AtMegal6 to always move either forward or backward accordingly. This 

condition allows the robot to self-balance itself so long the power is supplied to the 

circuitry. 
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3.4 Design of Self-Balancing Robot 

3.4.1 Physical Design 

The design of the physical of the robot has in reference to the principal 
determined for balancing the robot. As well as meeting the third objective, the 

physical of the robot must able to carry object by mean of equip with a feature for 

object to place on. 

As for this matter, the structure is chose to be able to stand upright 

(vertically). This is copying the phenomena of balancing a vertical stick on one hand. 

For this project, the structure design comprises three round platforms arranged 

vertically, two wheels at the bottom of each side, with circuitry, servo motors and 

batteries attached to the structure as illustrated in figure 19. 

Figure 19: Illustration for physical structure 
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The base area for this structure is chose to be reasonably wide. Theoretically, 

the wider the base area is the more stable the structure would be. Even so, the 

structure for this project is not required to be perfectly stable without the balancing 

mechanism. The structure needed to wobble or tilt at significant for the Memsic2125 

to sense it easily, or else the balancing mechanism may not work as expected. At the 

same time, the structure should not be in the state of not very stable or else it would 

difficult for it to balance. Hence, the base is determined as 150mm in diameter in 

accordance to the dimension of the platforms, as illustrated in figure 20. Note that, the 

size of the wheels, which is 50mm in diameter, is taken into consideration in 

determining the base area. Also note that, the material of the platforms is 2.5mm 

(thick) Perspex. The purpose of this choice is to keep the total weight of the structure 

at a range that the servo motors can operate at, which is 8 kg at maximum. 

Figure 20: Dimension of the platform 

As stated, three round platforms are used in this project. The second and the 

third platforms from below (as arranged) are kept at round shape. The first platform 

from below, which is the base platform, is at round shape with two rectangle shapes 

are taken out at each side, as shown in figure 21. Those rectangles are meant for the 

wheels as a purpose to keep the base area of the structure at round shape with 150mm 

in diameter. 
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Third platform from below Second platform from below 

Figure 21: Platforms for structure 

First platform from below 

The dimension of the wheels for this project is chose to be reasonably large 

also depends on its availability in market. Hence the dimension of the wheels is 

50mm at diameter and 25mm at wide. The wheels are Tamiya manufactured. 

3.4.2 Circuitry Design 

Note that, different microcontroller chip requires different development circuit 

for it to work properly. For this project, since the microcontroller chip used is 

AtMegal6, the development circuit is as shown in figure 22. This development 

circuit comprises power circuit, reset circuit, clock circuit, input and output 

connections, and, as for in-circuit programming purpose, serial programming circuit. 
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Figure 22: Schematic for circuitry 

11 servo motors 

The purpose of power circuit, as shown in figure 23 (a), is to regulate the 

battery's voltage from 12V to 5V as appropriate for this circuit. The purpose of reset 

circuit, as shown in figure 23 (b), is to reset the operation of AtMegal6. The purpose 

of the clock circuit, as shown in figure 23 (c), is to provide clock cycle for the 

AtMegal6, which also meant to have the AtMega 16 to operate faster. Note that, 

connecting to high frequency of crystal clock may not assure that the microcontroller 

chip to work as desired, in a worse case may damage the chip. Therefore, a proper 
frequency of crystal clock has to be ascertained depending on the type of 

microcontroller chip. Accelerometer pinouts are for the Memsic2125 connections, as 

shown in figure 23 (d), and servo motors pinouts are for servo motors connections, as 

shown in figure 23 (e). The purpose to have in-circuit programming circuit, as shown 
in figure 23 (f), is to eliminate the need to detach and reattach AtMegal6 for 

programming. This as well would eliminate the possibility of damaging the pins of 
AtMegal6 also ease the process. 
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pM 34 of to pin 35 of 
AtMegal6 (PA6) AtMegal6 (PA5) VCC 

to pin 33 of 
AtMega 16 (PA7) 

(e) 

lOuF 

-I1 II. I+ luF 

0 
luF lcý Mý 

Tý 
; r- 1 1uF 

+ 

MAX232 

to pin 2 of RS232 
to pin 3 of RS232 

to pin 14 of AtMega 16 (RXD) 
- to pin 15 of AtMega 16 (M) 

(0 
Figure 23: Main circuit for AtMegal6 Development Circuit: a) power circuit, b) reset 

circuit, c) clock circuit, d) connection for servo motors, e) connection for 

Memsic2125 and t) in-circuit programming circuit 
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The circuit design is then transferred to PCB (printed circuit board) design. 

The design for the PCB is as shown in figure 24. Note that, the software used for 

designing the PCB is EAGLE Layout Editor 5.2.1. This design is then fabricated and 

all the components are soldered unto it. 

Figure 24: PCB layout for circuitry 
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3.5 Tools Required 

3.5.1 Hardware 

Hardware required is as listed in table I below, together with their quantity 

and costs. 
Table 1: Cost Items 

No. Item Quantity Total Price (RM) 
1 Atmel Microcontroller, ATMEGA16 1 35.00 
2 MAX232 1 4.00 
3 RC Servo Motor 2 120.00 
4 Memsic 2125 Dual-axis Accelerometer 1 260.00 
5 Sorts Tire Set, 70111 1 set 31.00 
6 Perspects 3 pieces 30.00 
7 Brass M-F Threaded Hex Spacer 40mm 8 Taken from EE store 
8 Capacitor 0.1 uF 4 Taken from EE store 
9 Capacitor 22pF 2 Taken from EE store 
10 Capacitor I OuF 3 Taken from EE store 
II Capacitor 1 uF 4 Taken from EE store 
12 Resistor I OOkQ I Taken from EE store 
13 Push Button I Taken from EE store 
14 Crystal Clock 16M1 lz 1 Taken om EE store 
15 Single Core Wire Taken from EE store 
16 Voltage Re gulator 74L05 1 Taken from EE store 
17 Battery 12V 1 9.90 
18 Battery 6V 2 17.00 

TOTAL 506.90 

3.5.2 Software 

For programming the Atmegal6 Microcontroller Chip is by using WinAVR 

incorporated with AVR Studio 4. The language used for programming coding is C 

language. The software used to program the Atmegal6 Microcontroller Chip is 

unfamiliar, yet through thorough literature review, the software is explored. The 

language used is familiar hence eased the writing the programming codes. Note that, 

all the software used is free-software. 
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CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Mechanical and Electrical parts of Self-Balancing Robot assembled 

Hence, the self-balancing robot is built. Figure 25 shows the balancing robot 

for this project and figure 26 shows the top, side and bottom view of the robot. 

Figure 25: Self-Balancing Robot 

1 %Iirw-J 

(a) 

a 

0a 
'I, f 

(b) (c) 

Figure 26: self-balancing robot: a) top view, b) side view and c) bottom view 
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Following are the disassembled self-balancing robot. Note that, figure 27 (a) 

is the top platform of the robot which as functions as carrier platform where the 

object to be carried to be placed on. Next, figure 27 (b) is the second platform from 

below which also is the circuitry platform. This is where the main board of circuitry 

is screwed on. Then, figure 27 (c) is the first platform from below which also is the 

base platform of the robot. This is where the servo motors and wheels are attached at. 

Lastly, figure 27 (d) is the 33mm spacers, nuts and screws used to attach all the three 

platforms all together and arranged them vertically. 

holes for 
spacers 

(a) 

ýi' 

ID 
--ýý 

r 
ýl 

ý 1ý 
ýýýý. 

(b) 

\ 

--33mm spacer 
screw 
nut 

circuitry 
board 

(c) (d) 

Figure 27: Platforms: a) top platform, b) circuitry platform, c) base platform and d) 

33mm spacers, nuts and screws 
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Figure 28 shows the circuitry platform together with the circuitry board and 
its electronic components. All these components are carefully soldered unto it using 

soldering iron and soldering lead not to damage the PCB board. The components 

soldered are as designed. Testing is then carried out to ensure that the circuit is 

working properly and no components are damaged during the soldering process. This 

testing process mainly involved with ensuring all the connection is correct, current 

supplied at the precise amperes and no other contaminants to the circuit. 

The soldering process is quite difficult due to unfamiliarity. However, the 

circuit is managed be assembled as designed as shown. 

4 

NrNK 

Memsic2125 

r capacitor IOuF 

munture 
switch 

/ 
lýI 

_ ý-.. ý 

Voltage 
Regulator 

i ý ii 
ý ýý 

heat sink 'capacitor 22pF 

- capacitor luF 

Crystal Clock 
16MHz 

Figure 28: Circuitry platform with circuitry board and its electronic components 
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Figure 29 shows the base platform of the robot together with servo motors and 

wheels. The servo motors used is bought from Bizchip and the wheels used are 

Tamiya Sport tires. After the servo motor is connected to wheel, testing is carried out 

to ensure that the wheels have no problem in rotating. 

1ý 

Servo motor 
Tamiya Sport tires 

wires to circuitry board, 
and battery 6V 

Figure 29: Base platform with servo motor and wheels 

Note that, in order to have the servo motors to rotate continuously, 

modification to the shaft has to be done. During this process, the modification has to 

be done carefully or else the servo motor would not work properly. The potentiometer 

of the servo needed to be adjusted so that the rotation is not limited to 180 degrees. 

The first attempt was a failure since the servo motor is damaged and cannot be used. 

Hence, another servo motor needed to replace the damaged servo motors. Luckily, the 

second attempt is successful. 

Also note that, one 6V battery is supplied voltage to each servo motor. Hence, 

there are two 6V battery voltage are used for this robot. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Self-balancing robot is a developing idea towards providing the society an 

object carrier that is able to balance itself and carry object from one point to the other 

efficiently. This object carrier will better replace the current technology of object 

carrier as it can move on either flat or sloppy floor without losing its balance. In 

addition, object carrier consumes smaller space and suitable for indoor purpose. With 

further enhances, self-balancing robot could carry more tasks, not just an object 

carrier. 

In general, this project is divided into five major stages. Those major stages 

are literature review, designing, fabrication, assembling and programming. In the end, 

the outcome of the project should fulfill all the objectives as stated. 

There several problems encountered towards completing the project. Most of 

problems took place during the fabrication and programming stages. Some hardware 

got broken and damaged and needed replacement. Luckily the hardware is easy to 

obtain. Besides that, a few of software which are required to use for fabrication and 

programming, which are EAGLE Layout Editor 5.2.1 and software to write program 
for AtMegal6, are unfamiliar and there are less resource for direct learning. 

Therefore, internet research on how to use the software is done also together with 

referring to other individual for understanding. Limited resource has delayed the 

progress of the project significantly. However, all these problems are overcome. 
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5.2 Recommendations 

There is no finish limit for self-balancing robot as it is can always be further 

enhances. Utilizing other stability sensor would improve the balancing system of the 

robot. For example, utilize gyroscope to provide information on the position of the 

body. Besides that, add more suitable sensors for better application. For example, add 
IR sensor for better maneuverability. Other than that, adding more other electronic 

components to add more function to it. For example, add on suitable camera to add 

on surveillance function. Moreover, specify its features to suit carrying specific task. 

For example, equip the physical features with suitable platform for carrying specific 

object. Furthermore, modify the whole design and enhance the balancing mechanism 

then it can definitely solve the many problems arising. The great example for this is 

Segway H. T. As a matter of fact, the enhancement of self-balancing robot could solve 

the many problems arising by human race. 
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programming, and correcting errors 
Submission of Draft Report 28 

APR 
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Report MAY 
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JUN 

Submission of Final Report 25 
JUN 
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Appendix B: AtMegal6 Datasheet 

1tures 
Ih-performance, Low-power AVR® 8-bit Microcontroller 
vanced RISC Architecture 

131 Powerful Instructions - Most Single-clock Cycle Execution 
32 x8 General Purpose Working Registers 
Fully Static Operation 
Up to 16 MIPS Throughput at 16 MHz 
On-chip 2-cycle Multiplier 

11h Endurance Non-volatile Memory segments 
16K Bytes of In-System Self-programmable Flash program memory 
S12 Bytes EEPROM 
7K Byte Internal SRAM 
Write/Erase Cycles: 10,000 Flash/100,000 EEPROM 
Oata retention: 20 years at 85°C/100 years at 25°C 
Optional Boot Code Section with Independent Lock Bits 
In-System Programming by On-chip Boot Program 

True Read-While-Write Operation 
Programming Lock for Software Security 4G (IEEE std. 1149.1 Compliant) Interface 
Boundary-scan Capabilities According to the JTAG Standard 
Extensive On-chip Debug Support 
Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface 

spheral Features 
Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes 
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture 
Mode 
Real Time Counter with Separate Oscillator 
Four PWM Channels 
8-channel, 10-bit ADC 

8 Single-ended Channels 
7 Differential Channels in TQFP Package Only 
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x 

byte-oriented Two-wire Serial Interface 
Programmable Serial USART 
Master/Slave SPI Serial Interface 
Programmable Watchdog Timer with Separate On-chip Oscillator 
On-chip Analog Comparator 

etial Microcontroller Features 
Power-on Reset and Programmable Brown-out Detection 
Internal Calibrated RC Oscillator 
External and Internal Interrupt Sources 
Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby 
and Extended Standby 

tk nd Packages 
32 Programmable VO Lines 
40-nin PDIP. 44-lead TOFP_ and 44-nad AFN/MI F 
rating Voltages 
2.7 - 5.5V for ATmegal 6L 
4.5 - 5.5V for ATmeaal6 
d Grades 

O-8 MHz for ATmegal6L 
Cl - 1R MH7 fnr ATmanalR 
er Consumption 01 MHz, 3V, and 25. C for ATmegal6L 
Active: 1.1 mA 
Idle Mode: 0.35 mA 
Power-down Mode: <1 NA 

ArMEL tM 
NIL! / 

8-bit AVR® 
Microcontroller 
with 16K Bytes 
In-System 
Programmable 
Flash 

ATmegal6 
ATmegal 6L 

Note: Not recommended for new 
designs. 

Rev. 2466S-AVR-05109 



ATmegal 6(L) 

Figure 1. Pinout ATmegal6 
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Typical values contained in this datasheet are based on simulations and characterization of 
other AVR microcontrollers manufactured on the same process technology. Min and Max values 
will be available after the device is characterized. 



ATmegal6(L) 

"týrview The ATmegal6 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC 
architecture. By executing powerful instructions in a single clock cycle, the ATmegal6 achieves 
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con- 
sumption versus processing speed. 

ltk Diagram Figure 2. Block Diagram 
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ý ATmegal6(L) 

B (PB7.. PBO) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port B output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, 
even if the clock is not running. 
Port B also serves the functions of various special features of the ATmegal6 as listed on page 
58. 

C (PC7.. PCO) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port C output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, 
even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins 
PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs. 

Port C also serves the functions of the JTAG interface and other special features of the 
ATmegal6 as listed on page 61. 

D (PD7.. PDO) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port D output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, 
even if the clock is not running. 

V Port D also serves the functions of various special features of the ATmegal6 as listed on page 
63. 

' ET 

Ali 

. A12 

fCC 

ýEF 

I 

e ýAVR-05/09 

Reset Input. A low level on this pin for longer than the minimum pulse length will generate a 
reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 
38. Shorter pulses are not guaranteed to generate a reset. 

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. 

Output from the inverting Oscillator amplifier. 

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally con- 
nected to Vcc, even if the ADC is not used. If the ADC is used, it should be connected to Vcc 
through a low-pass filter. 

AREF is the analog reference pin for the A/D Converter. 

AM EL 5 
_o 
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Appendix C: Memsic2125 Accelerometer Datasheet 

PfR9LýA: 
599 Menlo Drive, Suite 100 General: info@parallax. com 
Rocklin, California 95765, USA Technical: support@parallax. com 
Office: (916) 624-8333 Web Site: www. parallax. com 
Fax: (916) 624-8003 Educational: www. stampsinclass. com 

Memsic 2125 Accelerometer Demo Kit (#28017) 
Acceleration, Tilt, and Rotation Measurement 

Introduction 

The Memsic 2125 is a low cost, dual-axis thermal accelerometer capable of measuring dynamic 
acceleration (vibration) and static acceleration (gravity) with a range of 12 g. For integration into 
existing applications, the Memsic 2125 is electrically compatible with other popular accelerometers. 

What kind of things can be done with the Memsic 2125 accelerometer? While there are many 
possibilities, here's a small list of ideas that can be realized with a Memsic 2125 and the Parallax BASIC 
Stamp® microcontroller: 

" Dual-axis tilt sensing for autonomous robotics applications (BOE-Bot, Toddler, SumoBot) 

" Single-axis rotational position sensing 
" Movement/Lack-of-movement sensing for alarm systems 

Packing List 

Verify that your Memsic 2125 Demo Kit is complete in accordance with the list below: 

" Parallax Memsic 2125 Demo PCB (uses Memsic MXD2125GL) 
" Documentation 

Note: Demonstration software files may be downloaded from www. parallax. com. 

Features 

" Measure 0 to ±2 g on either axis; less than 1 mg resolution 
" Fully temperature compensated over 0° to 70° C range 
" Simple, pulse output of g-force for X and Y axis - direct connection to BASIC Stamp 
" Analog output of temperature (TOut pin) 
" Low current operation: less than 4 mA at 5 vdc 

Connections 

Connecting the Memsic 2125 to the BASIC Stamp is a straightforward operation, requiring just two IO 
pins. If single-axis tilt of less than 60 degrees is your requirement, only one output from the Memsic 
2125 need be connected. See Figure 1 for connection details. 

Xvii 
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Figure 1. Essential Memsic 2125 Connections 

T out 

How It Works 

P9 (Y out) 

P8 (X out) 

Internally, the Memsic 2125 contains a small heater. This heater warms a "bubble" of air within the 
device. When gravitational forces act on this bubble it moves. This movement is detected by very 
sensitive thermopiles (temperature sensors) and the onboard electronics convert the bubble position 
[relative to g-forces] into pulse outputs for the X and Y axis. 

The pulse outputs from the Memsic 2125 are set to a 50% duty cycle at 0 g. The duty cycle changes in 

proportion to acceleration and can be directly measured by the BASIC Stamp. Figure 2 shows the duty 
cycle output from the Memsic 2125 and the formula for calculating g force. 

Figure 2. Memsic 2125 Pulse Output 

Ti 
F"--ýI 

I-I__] 

I'm 
T2 

A(g) = ((T1 / T2) - 0.5) / 12.5% 

The T2 duration is calibrated to 10 milliseconds at 25° C (room temperature). Knowing this, we can 
convert the formula to the following BASIC Stamp routine: 

Read_X_Force: 
PULSIN Xin, HiPulse, xRaw 
xRaw = xRaw */ Scale 
xGForce = ((xRaw / 10) - 500) *8 
RETURN 

The T1 duration (Memsic output) is captured by PULSIN in the variable xRaw. Since each BASIC Stamp 
module has its own speed and will return a different raw value for the pulse, the factor called Scale (set 
by the compiler based on the BASIC Stamp module installed) is used to convert the raw output to 
microseconds. This will allow the program to operate properly with any BASIC Stamp 2-series module. 
At this point the standard equation provided by Memsic can be applied, adjusting the values to account 
for the pulse-width in microseconds. Fortunately, one divided by divided by 0.125 (12.5%) is eight, 
hence the final multiplication. The result is a signed value representing g-force in milli-g's (1/1000th g). 
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Experiments 

Experiment 1: Dual-Axis Tilt Measurement 

This experiment reads both axis values and displays the results in the DEBUG window. Calculations for 
g-force measurement and conversion to tilt were taken directly from Memsic documentation. Since the 
BASIC Stamp does not have an Arcsine function, it must be derived. Code for Arccosine and Arcsine are 
provided courtesy Tracy Allen, Ph. D. 

File...... MEMSIC2125-Dual. BS2 
Purpose... Memsic 2125 Accelerometer Dual-Axis Demo 
Author.... (C) 2003-2004 Parallax, Inc -- All Rights Reserved 
E-mail.... support@parallax. com 
Started... 
Updated... 07 SEP 2004 

{$STAMP BS2} 
{$PBASIC 2.5} 

------------------------------- ------------------------------------------ ------------------------------------------------------------------------- 

[ Program Description ] --------------------------------------------- 

Read the pulse outputs from a Memsic 2125 accelerometer and converts to 
G-force and tilt angle. 

'g= ((tl / 10 ms) - 0.5) / 12.5% 

' Tilt = ARCSIN(g) 

Refer to Memsic documentation (AN-OOMX-007. PDF) for details on g-to-tilt 
conversion and considerations. 

www. memsic. com 

-----[ Revision History ) ------------------------------------------------ 

' -----[ I/O Definitions ) ------------------------------------------------- 

Xin PIN 8X input from Memsic 2125 
Yin PIN 9'Y input from Memsic 2125 

I -----[ Constants I---------------------------------------- --------------- 

Set scale factor for PULSIN 

#SELECT $STAMP 
#CASE BS2, BS2E 

Scale CON $200 
#CASE BS2SX 

Scale CON $OCC 
#CASE BS2P 

1 2.0 us per unit 

1 0.8 us per unit 
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Scale CON $OCO 0.75 us per unit 
#CASE BS2PE 

Scale CON $1E1 1.88 us per unit 
#ENDSELECT 

HiPulse CON 1 measure high-going pulse 
LoPulse CON 0 

DegSym CON 176 degrees symbol 

------------------------------------------- -----[ Variables ------------ 

xRaw VAR Word pulse from Memsic 2125 

xmG VAR Word g force (1000ths) 

xTilt VAR Word tilt angle 

yRaw VAR Word 

ymG VAR Word 

yTilt VAR Word 

disp VAR Byte 

angle VAR Byte 

displacement (0.0 - 0.99) 
tilt angle 

I -----L EEPROM Data ]----------------------------------------------------- 

-----[ Initialization ]-------------------------------------------------- 

Setup: 
PAUSE 250 
DEBUG "Memsic 2125 Accelerometer", CR, 

' let DEBUG window open 

11 ------------------------- 
11 

------------------------------ I[ Program Code ---------------------- 

Main: 
DO 

GOSUB Read Tilt ' reads G-force and Tilt 

display results 

DEBUG CRSRXY, 0,3 
DEBUG "X Input... 

DEC (xRaw / 1000), ". ", DEC3 xRaw, " ms", 
CLREOL, CR, 
"G Force... (xmG. BIT15 * 13 + 
DEC (ABS xmG / 1000), ". ", DEC3 (ABS xmG), 
CLREOL, CR, 
"X Tilt.... (xTilt. BIT15 * 13 + 
DEC ABS xTilt, DegSym, CLREOL 

DEBUG CRSRXY, 0,7 
DEBUG "Y Input... 

DEC (yRaw / 1000), 11.11, DEC3 yRaw, " ms", 
CLREOL, CR, 
"G Force... ", (ymG. BIT15 * 13 + 
DEC (ABS ymG / 1000), ". ", DEC3 (ABS ymG), 11 g", 
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CLREOL, CR, 
"Y Tilt.... ", (yTilt. BIT15 * 13 

DEC ABS yTilt, DegSym, CLREOL 

PAUSE 200 
LOOP 
END 

update about 5x/second 

-[ Subroutines I----------------------------------------------------- 

Read_G_Force: 
PULSIN Xin, HiPulse, xRaw read pulse output 
xRaw = xRaw Scale convert to uSecs 
xmG = ((xRaw / 10) - 500) *8' calc 1/1000 g 
PULSIN Yin, HiPulse, yRaw 

yRaw = yRaw */ Scale 
ymG = ((yRaw / 10) - 500) *8 
RETURN 

Read Tilt: 
GOSUB Read_G_Force 
disp = ABS xmG / 10 MAX 99 x displacement 
GOSUB Arcsine 
xTilt = angle * (-2 * xmG. BIT15 + 1) fix sign 
disp = ABS ymG / 10 MAX 99 y displacement 
GOSUB Arcsine 

yTilt = angle * (-2 * ymG. BIT15 + 1) fix sign 
RETURN 

' Trig routines courtesy Tracy Allen, PhD. (www. emesystems. com) 

Arccosine: 
disp = disp */ 983 /3 normalize input to 127 
angle = 63 - (disp / 2) ' approximate angle 
DO ' find angle 

IF (COS angle <= disp) THEN EXIT 
angle = angle +1 

LOOP 
angle = angle */ 360 convert brads to degrees 
RETURN 

Aresine: 
GOSUB Arccosine 

angle = 90 - angle 
RETURN 
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Experiment 2: Rotational Position Sensing 

If the Memsic 2125 is tilted up on its edge (X axis), the X and Y outputs can be combined to measure 
rotational position. Output from this program is in Brads (binary radians, 0 to 255, the BASIC Stamp's 
unit of angular measurement) and degrees (0 to 359). 

For this code to work, the Memsic 2125 PCB must be positioned such that the sensor is perpendicular to 
the ground. 

File...... MEMSIC2125-Rotation. BS2 
Purpose... Memsic 2125 Accelerometer Rotational Angle Measurement 
Author.... (C) 2003-2004 Parallax, Inc -- All Rights Reserved 
E-mail.... support@parallax. com 
Started... 
Updated... 07 SEP 2004 

{$STAMP BS2} 
{$PBASIC 2.5} 

-[ Program Description ]--------------------------------------------- 

Read the pulse outputs from a Memsic 2125 accelerometer and combine to 

calculation rotational position. 

' Refer to Memsic documentation (AN-OOMX-007. PDF) for details on angle 
conversion and considerations. 

www. memsic. com 

-----[ I/O Definitions ]------------------------------------------------- 

Xin PIN 8X input from Memsic 2125 
Yin PIN 9Y input from Memsic 2125 

---[ Constants ]------------------------------------------------------- 

' Set scale factor for PULSIN 

#SELECT $STAMP 
#CASE BS2, BS2E 

Scale CON $200 2.0 us per unit 
#CASE BS2SX 

Scale CON $OCC 0.8 us per unit 
#CASE BS2P 

Scale CON $OCO ' 0.75 us per unit 
#CASE BS2PE 

Scale CON $1E1 1.88 us per unit 
#ENDSELECT 

HiPulse CON 1 
LoPulse CON 0 

measure high-going pulse 
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DegSym CON 176 degrees symbol 

I[ Variables ]------------------------------ 
------------------------- 

pulse VAR Word pulse input 

xmG VAR Word g force (1000ths) 
ymG VAR Word 
brads VAR Word binary radians 
degrees VAR Word 

-L Initialization ]-------------------------------------------------- 

Setup: 
DEBUG "Memsic 2125 Rotation", CR, 

11 
-------------------- 

01 

' -[ Program Code ] ---------------------------------------------------- 

Main: 
DO 

GOSUB Read_G_Force 

brads = (xmG / 8) ATN (ymG / 8) 

read X and Y 

calculate angle 
degrees = brads */ 360 1 convert to degrees 

DEBUG CRSRXY, 0,3 
DEBUG "Axis A(g)", CR, 

"X ", (xmG. BITIS * 13 + 

DEC (ABS xmG / 1000), ". ", DEC3 (ABS xmG), " g", CR, 
"Y ", (ymG. BIT15 * 13 +" "), 
DEC (ABS ymG / 1000), ". ", DEC3 (ABS ymG), " g", CR, CR, 
"Tilt = ", DEC3 brads, " Brads", CR, 

DEC3 degrees, 11 Degrees" 

PAUSE 200 
LOOP 

END 

update about 5x/second 

-----[ Subroutines ] ----------------------------------------------------- 

Read G Force: 
PULSIN Xin, HiPulse, pulse ' read pulse output 
pulse = pulse */ scale convert to uSecs 
xmG = ((pulse / 10) - 500) *8 calc 1/1000 g 
PULSIN Yin, HiPulse, pulse 
pulse = pulse Scale 
ymG = ((pulse / 10) - 500) *8 
RETURN 

xxiii © Parallax, Inc. " Memsic 2125 Accelerometer Demo Kit (#28017) " 09/2004 7 



Experiment 3: Motion Detector 

This experiment uses the Memsic 2125 as a movement or vibration detector. The program starts by 
reading the initial state of the sensor and storing these readings as calibration values. By doing this, the 
starting position of the sensor is nullified. The main loop of the program reads the sensor and compares 
the current outputs to the calibration values. If the output from either axis is greater than its calibration 
value the motion timer is incremented. If both fall below the thresholds motion timer is cleared. If the 
motion timer exceeds its threshold, the alarm will be turned on and will stay on until the BASIC Stamp is 
reset. 

You can adjust the sensitivity (to motion/vibration) of the program by changing the XLimit and YLimit 
constants, as well as the SampleDelay constant (should be 100 ms or greater). The AlarmLevel 
constant determines how long motion/vibration must be present before triggering the alarm. 

File...... MEMSIC2125-Motion. BS2 
Purpose... Detects continuous motion for given period 
Author.... Parallax (based on code by A. Chaturvedi of Memsic) 
E-mail.... support@parallax. com 
Started... 
Updated... 15 JAN 2003 

{$STAMP BS2} 
{$PBASIC 2.5} 

---------------------------- 

' -[ Program Description ]--------------------------------------------- 

Monitors X and Y inputs from Memsic 2125 and will trigger alarm if 

continuous motion is detected beyond the threshold period. 

-----[ I/O Definitions ]------------------------------------------------- 

Xin PIN 8X pulse input 
Yin PIN 9Y pulse input 
ResetLED PIN 10 ' reset LED 
AlarmLED PIN 11 alarm LED 

-[ Constants ]------------------------------------------------------- 

HiPulse CON 1 
LoPulse CON 0 

measure high-going pulse 

SampleDelay CON 500 0.5 sec 
AlarmLevel CON 5'5x SampleDelay 

XLimit CON 5x motion max 
YLimit CON 5'y motion max 

- Variables -------------------------------- ------ -- -- - -- ---- ---- -- 
1---- 
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xCal VAR Word 

yCal VAR Word 

xMove VAR Word 

yMovc VAR Word 

xDiff VAR Word 

yDiti VAR Word 

moTimer VAR Word 

x calibration value 
y calibration value 
x sample 
y sample 
x axis difference 
y axis difference 

motion timer 

---[ Initialization 1-------------------------------------------------- 

Initialize: 
LOW AlarmLED 

moTimer =0 

Read_Cal_Values: 
PULSIN Xin, HiPulse, xCal 
PULSIN Yin, HiPulse, yCal 
xCal = xCal / 10 
yCal = yCal / 10 

HIGH ResetLED 
PAUSE 1000 
LOW ResetLED 

' alarm off 
clear motion timer 

' read calibration values 

filter for noise & temp 

show reset complete 

I[ Program Code 1---------------------------------------------------- 

Main: 
DO 

GOSUB Get Data 
xDiff = ABS (xMove - xCal) 
yDiff = ABS (yMove - yCal) 

IF (xDiff > XLimit) OR (yDiff 
moTimer = moTimer +1 

read inputs 
check for motion 

> YLimit) THEN 
update motion timer 

IF (moTimer > AlarmLevel) THEN Alarm-On 
ELSE 

moTimer =0 
ENDIF 

LOOP 
END 

---[ Subroutines ]------------------------- ---------------------------- 

Sample and filter inputs 

Get Data: 
PULSIN Xin, HiPulse, xMove 
PULSIN Yin, HiPulse, yMove 
xMove = xMove / 10 
yMove = yMove / 10 
PAUSE SampleDelay 
RETURN 

clear motion timer 

' take first reading 

' filter for noise & temp 

Blink Alarm LED 
-- will run until BASIC Stamp is reset 
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Alarm-On: 
DO 

TOGGLE A1armLED 
PAUSE 250 

LOOP 

Application Idea 

' blink alarm LED 

loop until reset 

Using the tilt code from Experiment 1, you can create a 3D joystick by mounting the Memsic 2125 and a 
pushbutton in a small, spherical enclosure (like a tennis ball). With just three pins you can measure tilt 
of each axis and the status of the switch. This would make an interesting, intelligent "leash" for a 
Parallax BOE-Bot. 

Using TOut 

Since the Memsic 2125 is a thermal device, the temperature is available from the TOut pin and can be 
measured using an external analog to digital converter (i. e., LTC1298). 

Details: 

" Output calibrated to 1.25 volts @ 25.0° C 

" Output change: 5 millivolts per degree C 
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Appendix D: Servo Motor Pulse Control 
Chapter 11. Introduction to Servomotor Programming 179 

11.8 Pulse Widths - The Servo's Heartbeat 
Each servo has it built-in processor that responds to electrical pulses sent to it. The BX-24 creates an electrical 
pulse by sending voltage to one of its pins for a very specific amount of time. The microcontroller cannot 
control how much voltage is sent - it simply turns the voltage on or off. When the voltage is on, the BX-24 
outputs +5V. When the voltage is off, OV is output. The BX-24 can turn the output voltage on and off rapidly, 
thereby creating pulses of high and low voltages. 

The duration of these pulses is known as the pulse width. The longer the voltage is applied, the larger the pulse 
width. The pulse width is measured in seconds, but we often use milliseconds (ms) to describe them because the 
pulse duration can be very short. Recall from your introductory science classes that is is equivalent to 1000ms, 
therefore I ms = 0. (X) I s. For example, Figure 11.24 shows a pulse width of 5ms. In our code, however, we 
always enter pulse widths in units of seconds, so we would enter 0.005s in this case. 

5ms 

+5V +5V 
Time 5ms 

311. 
OV pV Time -ý 
Figure 11.24. A high pulse whose pulse width Figure 11.25. A low pulse whose pulse width is also 
(duration) is 5ms (0.005s). 5ms in length. 

The BX-24 can send either a high pulse (as shown in Figure 11.24) or a low pulse (as shown in Figure 11.25). 
Notice in high pulse mode, the voltage is normally OV and pulses high when commanded. Conversely, in low 
pulse mode, the output is normally +5V and goes low when commanded. 

With Do-Loops and For-To-Next loops, the BX-24 can produce a series of pulses at a regular rate. This 
repetitive series of pulses is known as a pulse train and can be produced by inserting a fixed time delay between 
the pulses. For example, Figure 11.26 shows a train of pulses, each with aI ms pulse width, separated by a 5ms 
delay. The time between successive pulses is known as the period, which, in this case, is 6ms. It is easy to see 
why this output is often called a square wave. 

1ms 
ý E-- 

5ms 
im-ý 

6ms 
Figure 11.26. A train of l ms pulses. Since there is a 5ms delay between pulses, the pulse period is 6ms. 

Figure 1 1.27 shows the actual BX-24 output voltage of a train of Ims (0.001s) pulses with a 20ms (0.02s) delay 
between pulses. In reality, the pulses are not perfect square waves, as the above figures would lead us to believe. 

6-, 

U) 

ý 41 

ýý 
=2 

1ms 

20ms 

0 
0.00 0.01 0.02 0.03 0.04 

Time (s) 
Figure 11.27. A train of 0.001s-pulses with a 0.020s delay between pulses as measured by an oscilloscope. 

20ms 
0. 
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11.9 Servo Operation 
So, how does the BX-24 control the servo? You have probably guessed that it does so with electrical pulses. 
The pulses are sent from the BX-24 to a control board within the servo itself. The servo's control board 
interprets the pulses and rotates its shaft either clockwise or counterclockwise based on the pulse widths. Servos 
will not respond to just any pulse width; rather, they are limited to a well-defined range of pulse widths. Most 

servos have a minimum pulse width limit around 0.0010s (1. Oms) and a maximum limit around 
0.0020s (2. Oms), although the actual minimum and maximum pulse widths will vary slightly between 
the various servo brands. Sending a pulse whose pulse width is outside this range may damage the 
servo's control board. Repeatedly sending these had pulses will almost certainly destroy the servo. 

Pulse Widths = Positions 
Servos interpret pulse widths as positions. Each position along the arc traced out by the rotating shaft has a 
corresponding pulse width. When we send a pulse to the servo, the control board calculates which way the shaft 
should rotate in order to reach the corresponding position. There are two ways that servo manufacturers can wire 
their servos: positions increasing clockwise, and positions increasing counterclockwise. The positions and 
corresponding pulse widths for Futaba and Blue Bird brand servos are shown in Figures 11.28 and 11.29. All 
servos have a center position, sometimes called the neutral position. Both servos below are in the center 
position as indicated by the dark pointers. Observe that the Futaba center position corresponds to 1.5ms and the 
Blue Bird's center is at the 1.8ms-position. " 

Center 
Position 

ý1 1. Oms - 

1.8ms 
1.4ms 

\I/2.2ms 
1.75ms 1.5ms 1.25ms 

\I/ 

2. Oms - ýI - 1. Oms 

Figure 11.28. The pulse width positions of a Futaba 
S3004 servo increase counterclockwise. 

Center 
Position 

- 2.6ms 

Figure 11.29. The pulse width positions of a 
Blue Bird BMS-380 servo increase clockwise. 

One popular servo model, Futaba's S3004, rotates counterclockwise with increasing pulse widths, while another 
servo, the Blue Bird BMS-380, rotates clockwise with increasing pulse widths. This difference is significant to 
note. If your servos were included as part of Robodyssey's Mouse kit then you probably have the Futaba S3004. 
Robodyssey does sell Blue Bird servos as well, but I assume that most readers own the Futaba servo, so I will 
focus my discussion on the S3004. Rest assured, the following discussion is valid for all servo models - you 
simply must keep in mind which servo you are using and program it accordingly. For a detailed comparison of a 
number of popular servo models, see Appendix E: Servo Comparisons and Physical Limitations. 

Modified Versus Unmodified Servos 
There is another important difference among servo brands: servos can be 
either modified or unmodified, and we must know which kind we are 
dealing with before we can program them. Unmodified servos are those 
that come straight off the hobby shop shelves and have never been 
"tampered" with. All you radio-control (R/C) hobby-types are certainly 
familiar with the unmodified servos, for they are used to control your 
airplanes, cars, or boats. Modified servos have been, well, modified - 
albeit by an expert and with good reason. Modified servos have been 
altered electrically and mechanically, making them capable of spinning 
indefinitely in either direction. This handy modification means that ý . býs. 
modified servos can act as drive motors for robots - drive motors that are easily controlled by the BX-24! Both 
modified and unmodified servos play an important role in robotics, as we are about to find out. 

14 These are approximate values, because center positions can vary greatly from servo to servo. 
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Figure 11.30. An unmodified Figure 11.31. A modified servo is capable of full 
servo can rotate only through 1802. rotation in either direction. For our purposes, 

modified servos are illustrated in green. 

You cannot tell the difference between modified and unmodified servos simply by looking at them. '5 If you 
purchased them from a hobby shop then you probably have unmodified servos. If you purchased a Robodyssey 
Mouse kit, the servos included with the robot have been modified for continuous rotation. As shown in 
Figures 11.30 and 11.31, an unmodified servo is designed to rotate only through an arc of roughly 180°, while 
the modified servo is able to rotate over 360° in either direction. Modified and unmodified servos respond 
differently to pulse width inputs. Let's look at the response of unmodified servos. 

Unmodified Servo Control 
When an unmodified servo detects a well-defined pulse, the servo shaft will begin rotating toward the position 
that corresponds to that pulse width. This is shown in Figure 11.32. Notice that the servo can move only a small 
distance with each pulse, so it may require several pulses to get the servo to actually reach the desired position. 16 
If the shaft's current position is sufficiently near the desired final position, one pulse may be all that is necessary 
to move the required distance. If the shaft is already at the desired final position, the shaft will not rotate at all. 
(It is important to note that the shaft rotates faster when it is far away from the desired position. This fact will 
be significant when we cover advanced servo operations in Chapter 13! ) 

Let's look at an example: A Futaba S3004 servo is initially situated at the 1.40ms-position when it receives a 
train of I. 75ms-pulses, as shown in Figure 11.32. The servo's control board determines that the shaft must rotate 
counterclockwise to reach the 1.75ms-position, and furthermore, it determines that the initial rotation speed 
should he high because the 1.40ms-position is far away from the 1.75ms-position. Since the first pulse does not 
move the shaft to the desired position, the process is repeated and the shaft continues to rotate counterclockwise 
with decreasing speed. After a few pulses, the shaft reaches the desired 1.75ms-position. 

1.75ms 

fi C1 
E-i 
1.75ms 

i 

1.75ms . 75ms 1.75ms 

r17 
U 

1.75ms 

Figure 11.32. This unmodified Futaba S3004 servo is originally at the 1.40ms-position when it receives a train of 1.75ms-pulses. The servo's control board interprets the pulses and causes the shaft to rotate (counterclockwise) 
toward the 1.75ms-position. After a few pulses, the shaft is in the desired 1.75ms-position. 

is In my figures, you can tell which are modified servos simply by looking because I've given them green shafts. "' I have found that a train of 17 individual pulses is sufficient to rotate my servos 180°; servo models are slightly 
different and may require more or fewer pulses to get the job done. 

1.40ms 1.75ms 

ýT 
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If additional 1.75rns-pulses are sent to the servo, they are ignored since the shaft is already in the 1.75ms- 
position. This is shown in Figure 11.33, below. 

1\5ms 

1.75ms 

Figure 11.33. Additional 1.75ms-pulses are sent to the unmodified servo but the control board ignores them since 
the servo is already at the 1.75ms-position. 

Figure 1 1.34 below shows another train of 1.75ms-pulses being sent to the Futaba servo, but this time the shaft 
will rotate clockwise since the desired 1.75ms-position is to the right of the original 2. Oms-position. In addition, 
the shaft will spin at a relatively slow speed since the 1.75ms-position is near the 2. Oms-position. 

1.75ms 

2. Oms- 
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Figure 11.34. In this example, the unmodified Futaba servo rotates clockwise to reach the 1.75ms-mark. 

Follow these general rules when programming a Futaba S3004 unmodified servo: 

"A train of pulses whose pulse widths are approximately 1.0ms will always rotate the shaft 
fully clockwise to its right-most position. 

"A train of pulses whose pulse widths are approximately 1Sms will rotate the shaft to its 

center position. 

"A train of pulses whose pulse widths are approximately 2. Oms will always rotate the shaft 
fully counterclockwise to its left-most position. 

For more details on the Futaba S3(X)4 and other servos, consult Appendix E: Servo Comparisons and Physical 
Limitations for handy data tables and comparisons. 

If you would like to write code for an unmodified servo, I strongly urge you to read 
Chapter 13 and Appendices Eand G. If you are not careful, unmodified servos can be 
easily damaged. 
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Modified Servo Control 
A modified servo behaves exactly like an unmodified servo, with two major exceptions: 

I. A modified servo is capable of spinning indefinitely either clockwise or counterclockwise. 

2. A modified servo receiving a train of pulses will come to rest only if the pulse widths correspond to the 
servo's center position. 

Modified servos are able to spin indefinitely because the servo's feedback mechanism has been removed with a 
handy bit of rewiring. This means the servo never knows the actual position of its shaft. Instead, it is tricked 
into thinking that the shaft is always in the center position. Therefore, any pulse whose pulse width does not 
correspond to the servo's center position will cause the servo to rotate either clockwise or counterclockwise. 
Moreover, the greater the difference between that pulse width and the center position, the faster the shaft will 
rotate - but that's for another chapter. 

If a stream of pulses with 1. Oms pulse widths is sent to a modified Futaba S3004 servo, the shaft will spin 
clockwise and will continue spinning clockwise until the pulses stop. Here's why: the modified Futaba servo 
always thinks its shaft is at the 1.5ms center position, so when it receives a pulse of 1. Oms it rotates the shaft 
clockwise, as shown in Figure 11.35. When the next l. Oms-pulse is received, the servo still believes it is at the 
I. 5ms center position and continues to rotate the shaft clockwise. The servo will never reach its desired I. Oms- 
position, and its shaft will continuously rotate clockwise as long as the stream of l. Oms pulses is being sent to 
the servo. 
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Figure 11.35. A train of 1 ms Figure 11.36. A train of 2ms Figure 11.37. A train of 1.5ms 
pulses will rotate a modified servo pulses will rotate a modified servo pulses will cause a modified servo 
clockwise. counterclockwise. to remain stationary in the center. 

Now consider a stream of 2. Oms pulses sent to a modified Futaba servo. In this case, the shaft will spin 
counterclockwise until the pulses cease, as shown in Figure 11.36. So, while an unmodified servo will rotate to 
a particular position and hold that position, the modified servo is tricked into thinking that the shaft is still at the 
center position. Roboticists are clever folks, aren't they? 

Finally, if a stream of 1.5ms pulses is sent to a modified Futaba servo (Figure 11.37), the servo will ignore the 
pulse train because it thinks it is already at the 1.5ms-position. 17 In this case, the servo will not rotate. 

Follow these general rules when programming a Futaba S3004 modified servo: 

" Any pulse less than approximately 1.5ms will rotate the shaft clockwise. 

"A train of pulses whose pulse widths are approximately 1.5ms will not rotate the servo as 
the servo always assumes it is at its center position, regardless of its actual physical 
position. (Thus, the 1.5ms pulse train will cause the shaft to remain stationary. ) 

" Any pulse greater than approximately 1.5m% will rotate the shaft counterclockwise. 

17 The 1.5ms center position is an approximation, and could vary by as much as ±0.25ms. 
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Obviously, the servos we will use to drive our robot must be modified servos, since we need them to continually 
spin the robot's wheels. So, are you ready to take your Mouse for a test drive? 

11.10 Let's Do The Hokey-Pokey! 
Put Your LEFT Foot In ... 

It's finally time to write some code and get the Mouse moving. Create a project entitled 
"MouseMove" and place it in a folder named "Mouse Move". Make sure the left and right Futaba 

Mouse Move servos are properly connected to the RAMB and then enter the following: 

fu : 'I 
li ýu:; ý,: iII O 

Call PulseOut(b, 0.0020,1) slJ*. vü 

Fnc1 `ýtit> 

Double-check that the middle number, (0.0020) was entered correctly. This is very 
important; otherwise, your servo could be damaged! Once you are sure the number is correct, 
compile and download this code to the BX-24 and see what happens. Don't blink - you may miss it! 
If everything was installed and programmed correctly, the Mouse's left wheel should have rotated a 
few degrees counterclockwise. That is, the left wheel of the Mouse should have moved one step 
forward. " Nothing to write home about yet, but it's a start. 

(If you received the Compile Error message shown at the 
right, check to make sure that you actually did include the 
right parenthesis in your code. Chances are your right 
parenthesis is sitting there, as pretty as you please. If so, this 
probably means you were lazy and did not include the 11 
keyword in your code! Put it in now and recompile. The error 
message should not appear again. ) 

I r1 Xi 

Line 4; Missing right parenthesis 

........... ..... 
i 

............ 

Let's make some sense of the I'u 1 a, flue procedure. The syntax for this procedure is as follows: 

Call PulseOut (Pin, Pulse Width, State) 

where Pitt is the pin number we wish to address, Pulse Width is the duration of the electrical pulse to be sent to 
the Pin, and State specifics whether the pulse is high or low. The data type for Pin is a Byte. PulseWidth is a 
Single data type that can have values that range from about 1.0851As (0.000001085s) to 7l. Ims (0.0711s). '9 The 
State argument has the Byte data type and can be either high (I) or low (0). ̀ 0 

The line '' <: III, ii I, (,,, cc.: (; ,I) procedure tells the BX-24 to send out one high pulse with a 
0.0020s (2. Oms) pulse width to the left servo via pin 5 on the BX-24 (pin 0 on the RAMB). Since we are using 
modified servos, the 0.0020s pulse rotated our modified Futaba servo counterclockwise, making the left wheel 
move forward. The pulse generated by our code is illustrated in Figure 11.38. 

BX-24 pin 5 
(RAMB pin 0) 

0.0020s 
jp- 

Figure 11.38. A diagram of the electrical pulse generated by (', ti --u .: i), . ). A 
high pulse, whose duration is 0.0020s (2. Oms), is sent to pin 5 on the BX-24 (pin 0 on the RAMB). 

1$ If you are using servos made by a company other than Futaba, your Mouse may move backwards rather than 
forwards. Keep reading to see how to correct your code. 
19 Just because the BX-24 can accept this wide range of pulse widths, don't assume that your servos can! 20 A high pulse sends a +5V pulse out of the signal pin, and a low pulse sends OV pulse. 
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... Put Your LEFT Foot Out ... 
Now add the following lines of code to your program: 

ý : II }i, i.. -u' (`, i, I) 

Run the program and you should observe the Mouse's left wheel move forward one "step", pause for half a 
second, and then move backwards one "step". The line that reads !;:!:., I; * (` ) will 
make the left servo turn counterclockwise a small amount, and the line 11: (' ,., 1 
will make the left servo turn clockwise approximately by the same amount. The net result is that the Mouse 
should end up where it started. The only difference in these two lines of code is the Pulse Width argument - 

and I. 1, i; the value makes the Futaba servo rotate counterclockwise and causes 
the servo to rotate clockwise. '' 

Recall that servos must receive pulse widths only within a well-defined range. Most servos, 
including the Futaha S3004 that are shipped with the Robodyssey Mouse, have a minimum pulse 
width-limit around 0. (x)lOs (l. Oms) and a maximum limit around 0.0020s (2. Oms). Sending the servo 
a pulse width outside this range may damage its control board, so check your code carefully to ensure 
that the pulse widths you are sending out are within the proper range. 

Servo manufacturers suggest placing a small delay of at least 0.02s (20ms) between pulses to prevent 
overdriving the servo! The delay of 0.5s (500ms) in our program is more than sufficient. ) 

The Pulse of Our Program 
Examine Figure 11.39, which will analyze what your program is doing. The program begins execution at point 
A, with the line Iiý;, i ii O. Very quickly the program reaches point B and the line of code that 
reads .: ('.: ' ), which sends a high pulse to the servo connected to pin 5 on the 
BX-24. The pulse width is 0.0020s, so the left wheel turns one step counterclockwise at this instant, causing the 
left wheel to move forward. At point C. pin 5 no longer outputs a pulse since the pulse duration has elapsed. 
The next line of code, (' . ýH) , 

begins at point C and will delay any processing done by the BX-24 for 
0.5s (500ms). The final line of code, i'''[ý;: ý1: - (` ,(., !), sends another high pulse to pin 5 
at point D. The pulse width here is 0. (X)10s, so the left wheel rotates one step clockwise, sending the left wheel 
backward. A brief instant after the termination of the final pulse at point E, the program terminates at point F, 
when the line f ,; ,i . '; iii 

is reached. 

Output to Pin 5 on the BX-24 
(RAMB pin 0) 

0.0020 s 
ýE 

© L 

0.50 s 

-0- 

3s 

0.0010 S 

I-1- 

00 

Figure 11.39. Two high pulses, whose durations are 2. Oms and 1.0ms, are sent to pin 5 on the BX-24 (pin 0 on the 
RAMB). A delay of 500ms separates the two pulses. The first pulse turns the Mouse's left wheel counterclockwise (forward) and the second pulse turns the Mouse's left wheel clockwise (reverse). 

21 This may be reversed for other servos. 
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Put Your RIGHT Foot In, Put Your RIGHT Foot Out... 
All of this can be repeated using the right servo, allowing both wheels to get into the act. Let's modify our 
existing code to make both the left and right wheels take one step backward and one step forward. 

To make the Mouse move forward, the left wheel must move counterclockwise, as we've already seen. The 
opposite is true for the right wheel: in order for the right wheel to move the Mouse forward, it must turn 
clockwise as shown in Figure 11.40. This is flip-flopped when we want the Mouse to move backwards: by 
moving the left wheel clockwise and the right wheel counterclockwise, the Mouse will be propelled backwards 
as shown in Figure 11.4 1. 

i 

Figure 11.40. In order for the Mouse to move forward, 
the left wheel must rotate counterclockwise while the right 
wheel rotates clockwise. 

Figure 11.41. In order for the Mouse to move in reverse, 
the left wheel rotates clockwise while the right wheel 
rotates counterclockwise. 

We can make this happen with code by sending a clockwise pulse to the right wheel immediately after we make 
the left wheel rotate counterclockwise. This will move the Mouse one step forward. Then, after the left wheel 
rotates clockwise, we can turn the right wheel counterclockwise, moving the Mouse backwards. 

Our code should now look like this: 

1 ý:, : In;, '.: iiI O 

Call PulseOut(5,0.0020,1) Left servo counterclockwise 
Call PulseOut(6,0.0010,1) Fight servo clockwise 

Delay(O. 5) ' 50Cms delay 

' Mow;, -, move; br, (ckwards 
Call PulseOut(5,0.0010,1) 
Call Pu l scout (5,0.0020,1) 

Left servo clockwise 
;? j (, ht- r; r- r'Tn ro 11nt-e-rr1Ockw7 Se 

Do you see what's going on? The left wheel needs a pulse of 0.0010s and the right wheel needs a pulse of 
0. (X)20s to make the Mouse move backwards because pulses of I. Oms and 2. Oms make the Futaba servos turn 
clockwise and counterclockwise, respectively. You should convince yourself that the Mouse does, in fact, move 
in reverse when the left wheel rotates clockwise and the right wheel rotates counterclockwise. When thinking 
about moving and turning the Mouse, always keep in mind: 

�A pulse width whose duration is less than 1. Sms will rotate Futaba servos clockwise. 
�A pulse width whose duration is greater than 1. Sms will rotate Futaba servos counterclockwise. 

Add Some CONSTants 
It can get confusing having to remember the proper pin numbers and pulse widths when mobilizing your robot, 
but we can make robot programming much easier for ourselves if we incorporate some constants in our program. 
At the beginning of the t; ,in program, create a constant to represent the BX-24 pin number that controls the left 
servo. Name the constant I-ti and assign it the value 5, since we connected our left servo to BX-24 
pin 5 (RAMS pin (b). Recall that the data type for the Pin argument of the F'u ! procedure is a Byte, so 
we must define our constant accordingly. " 

`` Revisit chapter 5: Variables, Constants, and Data Types to refresh your memory about using , t. 
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However, why stop here when we can create another constant that will further simplify our program? We should 
create a constant named Ii,! I and give it a value of 0. (X)20. We can then replace the line that reads 

1! 1 1111 ,i (' ý"'0.. ,I) with .IIiIII: ý. ,! u, (L, ' I,. 1,11 )), 

which does exactly the same thing. (Using these constants makes programming the Mouse almost too easy! ) To 
nee, it is certainly easier to read and understand the line i; II 
than Fý: ). 

To make it complete, create and define four more constants that can be used to propel the Mouse 
forwards and backwards. Specifically, name them !t-. ",, 'r-! -, 

.. and T and set them to the appropriate values. Be certain that 
the values for the direction constants are between the minimum servo pulse width value of 0.0010s 
and the maximum value of 0.0020! Otherwise, you could damage your servos. 

The following code shows how I defined and used the new constants. Running it will produce the same robot 
motion as before, but now the code is more versatile and much easier to read. 

i'lllýý I: ýU: i . ". ýilIi(ý 

. u'Ivo Fln 

Const LeftServo as Byte =5 
Const RightServo as Byte =6 

: l(, t vo f) i roct- i on Constanr s (Pulse widths) 
Const Left_Forward as Single = 0.0020 
Const Left_Reverse as Single - 0.0010 
Const Right_Forward as Single = 0.0010 
Const Right_Reverse as Single = 0.0020 

'Mouse rnov(ýr. forward:; 

Call PulseOut(LeftServo, Left_Forward, 1) 
Call PulseOut(RightServo, Right_Forward, 1) 

Call Delay(O. 5) 

I Moll'; (. h'lý , r:; 
Call PulseOut(LeftServo, Left-Reverse, 1) 
Call PulseOut(Right5ervo, Right_Reverse, 1) 

End Siih 

Pin #0 on RAMB 
Pin #1 on RAMB 

Counterclockwise rotation 
Clockwise rotation 
Clockwise rotation 
Counterclockwise rotation 

ý ; CCný du lay 

11.11 Do the Cha-Cha! 
Now that the Mouse can take baby steps, let's spice it up a hit and do the Cha-Cha! That is, let's make the 
Mouse take ten steps forward and five steps hack. I know, I know. This isn't the way the Cha-Cha is 
traditionally done, but then again mice don't traditionally dance the Cha-Cha! 

We could copy and paste the lines that make the Mouse take all of these steps, but why bother when we have 
For-To-Next loops at our disposal'! Add a Cha-Cha section to our existing program, but first separate your 
existing code from this new stuff below with a two-second delay. 

Call Delay(2.0) ' Separation delay 

Dim i as Integer 
Const NumF as Integer = 10 
Const NumB as Integer -5 
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For iý1 to NumF 
Call PulseOut(LeftServo, Left_Forward, 1) 
Call PulseOut(RightServo, Right_Forward, 1) 
Call Delay (0.25) 

Next 

' Move backwat d 
For i=1 to NumB 

Call PulseOut(LeftServo, Left_Reverse, 1) 
Call Pulseout(RightServo, Right_Reverse, 1) 
Call Delay (0.25) 

Next 

1 created the constants, Nuri F and 'lu: t ., to represent the number of forward and backward steps. Both were 
incorporated in For-To-Next loops with a counter, ;. The creation of these constants was perhaps unnecessary. 
We could have run our loops with numeric literals 10 and 5. However, programming with constants makes for 

efficient code and it is a good habit to get into. Finally, the four 1n! 'u` commands and quarter-second 
delays leave us with one swingin' Mouse. 

If you would like to sec it "dance" again, simply press the reset button on the RAMB! As an exercise at the end 
of this chapter, modify the code to make the Mouse repeat this dance any number of times. Create your own 
dance steps by varying the values of I..:, 1,: iii IL, and the delay. Experiment and have some fun. 

Do the Cha-Cha Faster! 
Rodents are supposed to be fast, so let's speed up the Mouse's dance by reducing the delay time between each 
step. Try replacing 'ý (I . `) with Run the program and you'll see that the dance is 

now faster, but still quite choppy. 

Let's make the dance go as fast as possible and see what happens. The manufacturer of our servos 
recommends a minimum delay time of 0.020s (20ms) between consecutive pulses to any one servo. 
This gives the servo ample time to fully rotate. Therefore, using ". ) is the smallest 
delay the servomotors can handle, pulsing the wheels about 50 times per second. 

Speed Is a Virtue 
As explained above, the Mouse's speed can be controlled by varying the delay times between servo pulses. We 
can alter the speed of the robot more readily with a- _j variable and a few constants. It makes sense to 
define three speeds for our Cha-Cha application: F '"'. ,dit:: i, and Si Let's arbitrarily pick delay times 
of 0.02s, 0.10s, and 0.50s for I' .: ", i1 11:: , and respectively. Add these lines to the beginning of your 
application, below the program's other constants: 

Const Fast as Single = 0.02 steps per second (tastes) 
Const Medium as Single = 0.10 ' IC steps per second 
Const Slow as Single = 0.50 steps per second 
Ui to , cl 1 i: I 

.. 

If we wish to have the Mouse move at the fastest possible speed, alI we have to do is define the Spf-d variable 
as Ent as shown here: 

., ý ýi Fý,... 

You can put this line anywhere in the program - just make sure that it comes before you need to use it. To use 
the . ̀1r,, I variable, simply change all the delay calls in your program as follows: 

cull t)clay (Speed) '-.: i'. tvls speed 
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Do you see how :: is used within the " procedure? Nifty, huh? Now it is easy to alter the Mouse's 
speed by simply altering the variable! Of course, you could incorporate the desired speed value directly 
into the I ', " call: 

i,. iýý . 
Feel free to alter the values of the constants, but remember that the smallest possible delay (i. e., the Mouse's 
fastest speed) is 0.02s (20ms)! In other words, I, is as fast as is safe. 

The following Self Test shows how you can alter your program to make the Mouse move eight steps forward at 
! :., speed and eight steps backward at : speed. Try doing this yourself before looking at my solution. 

Self Test # 1. Spring Ahead, Fall Back 

Problem: Alter the Cha-Cha part of your current project so that the Mouse will move eight steps forward 

at Fast speed and eight steps backward at Slow speed. Take note of the distances traveled in each leg 

of the journey 

Solution: This is an almost trivial solution, but you will need to carefully alter the necessary constant and 
variable values. (I've indicated these in bold. ) 

Const NumF as Integer =8 
Const NumB as Integer =8 

Speed = Fast 
' Move forward 
For iý1 to NumF 

Call PulseOut(LeftServo, Left_Forward, 1) 
Call PulseOut(RightServo, Right_Forward, 1) 
Call Delay (Speed) 

Next 

Speed = Slow 
' Move backward 
For i=1 to NumB 

Call PulseOut(LeftServo, Left_Reverse, 1) 
Call PulseOut(RightServo, Right_Reverse, 1) 
Call Delay (Speed) 

Next 

Compare the distance traveled by the Mouse in the forward and backward directions. Running the 
program, I find that my Mouse moves forward about one inch and backwards about three. This 
difference is due to the Speed value (that is, the delay time between pulses). At Fast speed, new 
PulseOut commands are received by the servo while it is still carrying out the previous command and 
complete rotations are not possible. 

11.12 To Everything Turn, Turn, Turn 
Going forwards and backwards is great, but it wouldn't be much of a robot if we couldn't make it turn. There 
are many ways to do this, and in this section we will use For-To-Next loops to make the Mouse turn in circles. 
To do so is actually quite easy; perhaps you've already figured it out. Here are a few ways that it can be done. 
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Turning on a Dime - Literally 
To make the quickest and tightest turn possible, we must simultaneously counter-rotate each of the Mouse's 
wheels. This has the effect of pivoting the Mouse to the left about its center - literally turning it on a dime. 
Therefore, to make the Mouse rotate to the left, we must reverse the left wheel while the right wheel is rotating 
forward. In other words, for sharp left turns, both wheels must turn clockwise, as shown in Figure 11.42. To 
make the Mouse rotate to the right, reverse the right wheel and drive the left wheel forward; for sharp right 
turns, both wheels must rotate counterclockwise. 

Figure 11.42. To make the Mouse turn left, as if pivoting about its center, rotate both wheels clockwise. That is, 
turn the left wheel backwards and the right wheel forwards. 

To make the Mouse spin ten "steps" to the left, try this bit of code. (I added another two-second delay in my 
program to separate this new code from the old code. What can I say - I'm a creature of habit. ) 

r.....,: ý"L: ý 

Call Delay(2.0) cparation delay 
Speed = Slow Choose a speed 

IuIII T. CtI] 
.;? 

i 
.. 

}IC I: t 
For i=1 to 10 

Call PulseOut(LeftServo, Left_Reverse, 1) 
Call PulseOut(RightServo, Right_Forward, 1) 
Delay (Speed) 

Next 

1 arbitrarily chose to use the I speed for this exercise - the delay time is 0.50s (500ms). After 10 pulses, 
how far did your Mouse rotate? Mine rotates approximately 90° with fresh batteries and 700 with run-down 
batteries. (Changing the 'ý; i variable will affect how far ten pulses will rotate the robot - the greater the 
speed, the more pulses are required. ) 

To turn to the right, simply reverse the process by rotating the left wheel forward and the right wheel backward: 

For i=1 to 10 
Call Pul. seOut(LeftServo, Left_Forward, 1) 
Call PulseOut(RightServo, Right_Reverse, 1) 
Delay (Speed) 

Next 
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The Wheels on the Mouse Go `Round and `Round ... 
One question worth asking is, "How many pulses does it take to turn my Mouse a total of 360°? " I wish I could 
say that all servos behave identically, but I can't. Even if they did, my Mouse would move in a different way 
from yours due to differences in battery power, smoothness of the tail wheel, and friction forces within the servo 
and between the wheels and tabletop. Even our delay times play an important role. For example, my Mouse, 
with fully charged batteries on a smooth surface, is capable of pivoting 360° about its center in 22 steps with a 
delay time of 0.5s (. ) and in 57 steps with a delay time of 0.02s (. ). 

Take the time to work Challenge Problem #I at the end of this chapter and fill in the worksheet documenting the 
number of pulses required to rotate your Mouse 360°. It will come in handy as a reference as you complete this 
hook or when you decide to compete in a local robot competition! 

Sidewinder Turning 
You need not always turn your Mouse by rotating it about its center - you can pivot it about one of its wheels. 
To do this, simply keep one wheel stationary and make the other rotate. For instance, to make a wide turn to the 
left, rotate the right wheel clockwise and leave the left wheel alone, as shown in Figure 11.43. 

Figure 11.43. Wide turns can be made by rotating one wheel while keeping the other stationary. Here the 
Mouse is pivoting about its left wheel by rotating the right servo clockwise. 

This type of turning action reminds me of the motion of the sidewinder snake. To see this sidewinder-turn ing in 

action, perform the following Self Test, which will make the Mouse take three large strides. 

Self Test # 2. The Side-Winding Mouse 

Problem: Make the Mouse move left-to-right by alternately rotating the left and right servos forward. If 
done properly, this motion will resemble that of a sidewinder snake. Make three of these large lumbering 
steps as quickly as possible. 

Solution: The Mouse's first step is a half-circle turn pivoting 180° about the right wheel. When the first 
turn is completed, rotate the Mouse 180° about the left wheel. Repeat this process of rotating about the 
right wheel and then about the left two more times. 

To make the Mouse turn as quickly as possible, use the Fast speed (with a delay of 0.02s between 
pulses to the servo). At this rate, I know that my Mouse requires 70 pulses to complete one 180° "step". 
Furthermore. I know that the Mouse is to make six such steps, or three pairs of right-left strides. To do 
this most efficiently, we should use nested For-To-Next loops, using one counter to keep track of the 
three of big strides and another counter to count the individual pulses required to make each step. 

Check it out! 

Solution continued on the next page... 
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Self Test # 2. The Side-Winding Mouse (Continued from previous page) 

Solution: (Continued) 

- *"*** Side-Winder Turning ***** 
CalL Delay(2.0) ' Separation delay 

Dim StrideCounter as Integer ' Our stride counter 
Const NumOfStrides as Integer =3' Easy to change! 
Const PulsesPerStep as Integer = 70 ' 70 pulses = 180 deg. 

Speed = Fast 

For StrideCounter =1 to NumOfStrides 
' Pivot about the RIGHT wheel: 
For i=1 to PulsesPerStep 

Call PulseOut(LeftServo, Left_Forward, 1) 
Call Delay(Speed) 

Next 

' Pivot about the LEFT wheel: 
For i=I to PulsesPerStep 

Call PulseOut(RightServo, Right_Forward, 1) 
Call Delay(Speed) 

Next 
Next 

To run this program you will need about 2.5 feet of desk or floor space, so clear away an area before 

running the code! 

Both center-pivot and sidewinder turning have advantages and disadvantages. Because it requires fewer pulses, 
center-pivot turning can be done more rapidly. On the other hand, sidewinder turning is more precise since the 
Mouse will turn fewer degrees per pulse. Of course, center-pivot turning requires virtually no additional room to 
turn around, while sidewinder turning needs a considerable amount of space. 

11.13 It Keeps Going, and Going, and Going,... 
There is no reason that our Mouse ever has to stop moving (unless the batteries run down or the robot collides 
with an immovable object! ). Therefore, we will finish this chapter with a rather simple program that will allow 
the Mouse to move forward indefinitely. 

Why don't you try to figure out how to do it, and then examine the following Self Test to see how I did it? 

Self Test # 3. Forward - Ho! 

Problem: Make the Mouse move forward indefinitely at medium speed. 

Solution: Using a For-To-Next loop is fine if you wish to make a pre-determined number of steps like 
we did with the Cha-Cha, but now we want the Mouse to run indefinitely. How should we do this? With 
a Do-Loop, of course! 

Solution continued on the next page... 
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Self Test # 3. Forward - Ho! (Continued from previous page) 
Solution: (Continued) 

***** Forever Forward! 
Call Delay(2.0) 
Speed = Medium 

Do 

' Separation delay 

****# 

Call PulseOut(LeftServo, Left_Forward, 1) 
Call PulseOut(RightServo, Right_Forward, 1) 
Call Delay (Speed) 

Loop 
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Since we've programmed the Mouse to never stop, be prepared to manually stop the program's 
execution with the Stop button on the Downloader or with the power switch on the RAMB. Otherwise, 
your Mouse may run off the table and crash to the floor! Challenge Problem #4 at the end of this chapter 
asks you to modify this program so the LEDs blink as the Mouse moves. How does this affect the 
Mouse's speed? 

11.14 Troubleshooting and Final Comments 
Wheel Wobbles 
Run the code from Self Test #3, but alter it so that it runs at Fast speed. Carefully examine the Mouse's wheels 
as they rotate. If one wheel wobbles, make sure that the axle screw, which attaches the wheel to the servo shaft, 
is tight - but do not over tighten! If the wobble continues, remove the wheel, rotate it a few degrees and reattach 
it to the shaft. Repeat this procedure until the wobble stops or is lessened. 

Straight Shooter 
Program your Mouse to move forward, take note of its motion. The Mouse should move in a perfectly straight 
line, but some robots will veer in a slight arc as shown in Figure 11.44. 

Figure 11.44. Sometimes a robot will veer from the desired straight-line path and travel in a slight arc. 

Il' you experience this problem, there are several things to check that may correct the problem: 

Q If you are using the rear tail wheel, replace it with the phenolic ball. 

Q Make sure that you are sending the correct pulse widths to your servos - the minimum pulse width 
should be 0. (X)1Os and the maximum should be 0.0020s. 

Q Run the Mouse at .. " speed. 

U Place the Mouse on different surfaces - sometimes the wheels will slip on hard or slick surfaces. 
Q Recharge the batteries. All robots behave more predictably when they operate at full power. 
U Make sure your servos are firmly attached to the Mouse chassis. 
Q Try calling the 1 1: ,- commands in reverse order. If you are pulsing out the right servo first, try 

pulsing to the left one first. 

If these suggestions don't make your Mouse move in a straight line, don't fret; I will show you how to tweak the 
robot's movement in Chapter 13: Advanced Servo Operalions. 
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Smoothing Out the Curves 
My students often want their Mouse to turn in smooth arcs rather than with sharp 900 turns, as shown in the 
figures below. I tell them this is certainly possible to do, and in fact, it is covered in Chapter 13: Advanced 
Servo Operations. I also point out that all robot programmers start off turning their robots with sharp turns. 23 

i ------ 

Figure 11.45. It is easy to make a robot turn 
in sharp 90° angles. 

/ý 

Figure 11.46. Soon we will learn how to 
make the robot turn in smooth arcs. 

Personally, I think that it is important for novice programmers to practice the rudimentary basics before making 
their robot behave more gracefully. With that in mind, try the following Challenge Problems, and put to use the 
skills you learned in the previous chapters. I strongly suggest that you pick a few problems that interest you and 
sink your teeth into them. 

Happy problem solving! 

"09 

llý 
Remember: always keep your pulse widths between the minimum and maximum allowed values! 
That is, between 0.0010s and 0.0020s. Use the constants, i- 

_i , i, i : ýr !_ii, etc, 
to ensure you don't enter a wrong number. Also, always use a delay of at least 0.02s between 
successive pulses. 

11-1. Determine how many pulses it takes to turn your Mouse 360° about its center, and fill in the 
worksheet below. Vary the delay time between pulses and the direction of rotation. You should 
simulate actual conditions and remove the serial cable before performing the test. 

Number of Pulses to Rotate the Mouse 360° 

Pulse Widths: 

Delay time: 

Delay time: 

Delay time: 

Delay time: 

Delay time: 

0.02s 

OAS 

0.5s 

Maximum: 

Turning Left 

# of Pulses: 

# of Pulses: 

# of Pulses: 

# of Pulses: 

# of Pulses: 

Minimum: 

Turning Right 

# of Pulses: 

# of Pulses: 

# of Pulses: 

# of Pulses: 

# of Pulses: 

2; To make the turns more consistent, you may wish to put a 0.25s or so delay between any forward movements 
and your turns. This small delay will give the Mouse time to coast to a stop before turning. 
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