
 Copyright 2009 by Kenneth Wong Fatt Kong, UTP

Development of Stack Based Central Processing Unit for a

FORTH Computer Using FPGA

By

KENNETH WONG FATT KONG

FINAL YEAR PROJECT REPORT

Final Dissertation

Submitted to the Electrical & Electronics Engineering Program
in Partial Fulfillment of the Requirements for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

DECEMBER 2009

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

Development of Stack Based Central Processing Unit for a

FORTH Computer Using FPGA

by

Kenneth Wong Fatt Kong

A project Final Dissertation submitted to the
Electrical & Electronics Engineering Program

Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

__________________________ __________________________

Dr. Yap Vooi Voon Mr. Patrick Sebastian

Project Supervisor Project Co-Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2009

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

Kenneth Wong Fatt Kong

iii

ABSTRACT

This is the Final Dissertation for Electrical & Electronics Engineering Bachelor

Degree Final Year Project (FYP). The title for this FYP is “Development of Stack

Based Central Processing Unit for a FORTH Computer Using FPGA”. This project is

based on the design by a previous FYP student, Aaron Tang Shen Lee with his title,

“Development of a Stack-Based Centre Processing Unit (CPU) using TTL Logic”.

Using the same stack architecture and FORTH programming language, this CPU is

to be implemented using FPGAs instead of fully TTL. Besides, this project will make

reference to the FORTH computer, Mark 1 built by Andrew Holme, just as the

previous project did. This Final Dissertation will contain the progress on the

implementation of the stack-based CPU into FPGA. The achievements and obstacles

arise while completing this project will be recorded in this report.

iv

TABLE OF CONTENT

CERTIFICATION OF APPROVAL .. i

CERTIFICATION OF ORIGINALITY .. ii

ABSTRACT ... iii

LIST OF FIGURE .. viii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1 INTRODUCTION .. 1

1.1 Background of Study .. 1

1.2 Problem Statement ... 2

1.3 Objective .. 2

1.4 Outline of Report .. 3

CHAPTER 2 LITERATURE REVIEW AND THEORY 4

2.1 Computer System Architecture ... 4

2.1.1 Data Path ... 4

2.1.2 Control Path .. 5

2.1.3 Instruction Set Architecture (ISA) 5

2.2 FORTH .. 6

2.3 Stack Machine ... 7

2.3.1 What is Stack? ... 8

2.3.2 Advantages of Stack-Based Machine 9

2.3.3 Important of Stack-Based Machine.................................. 9

v

2.4 Stack-Based Machine and FORTH ... 10

2.5 Chapter Summary .. 10

CHAPTER 3 METHODOLOGY ... 11

3.1 Procedure Identification .. 11

3.2 Tools ... 12

3.2.1 Hardware ... 12

3.2.2 Software ... 13

3.3 Work Completed ... 13

3.3.1 Testing of UP2 Board.. 14

3.3.2 The Power Supply ... 14

3.3.3 The Expansion Card ... 14

3.3.4 TTL Module in HDL Design .. 15

3.3.5 Interfacing and Replacing TTL Module with FPGA 15

3.4 Chapter Summary .. 16

CHAPTER 4 RESULTS AND DISCUSSION ... 17

4.1 Test Result of the UP2 Board .. 17

4.2 Design of the Power Supply ... 17

4.3 Design and Simulation.. 18

4.3.1 Instruction Decoder Module ... 18

4.3.2 Diode ROM Module .. 21

4.3.3 Index Pointer Module ... 22

4.4 Interfacing Troubleshoot and Discussion 23

4.4.1 System Clock Derivation ... 24

4.4.2 Short Circuit Test .. 24

4.4.3 Voltage Drop Test .. 24

vi

4.4.4 Signal Waveform Test ... 26

4.4.5 Other Test .. 26

4.5 Implementation Results and Discussions 27

4.5.1 Instruction Decoder Module ... 27

4.5.2 Diode ROM Module .. 27

4.5.3 Index Pointer Module ... 27

4.6 Design Limitation ... 28

4.6.1 Memory Capacity ... 28

4.6.2 Complexity of Customization ... 29

4.7 Chapter Summary ... 29

CHAPTER 5 CONCLUSION AND RECOMMENDATION 30

5.1 Recommendation for Future Studies 30

5.2 Conclusion ... 30

REFERENCES ... 32

APPENDICES .. 33

Appendix I Mark 1 FPGA Specification 34

Specification .. 34

System Overview .. 34

µ-Instruction Format ... 35

FPGA I/O Pins and Back Pane Connection 37

Appendix II Mark 1 Design Schematics 38

Appendix III Mark 1 FPGA Module Design in Verilog Codes 43

Appendix IV Test Codes for UP2 Board 49

Appendix V Photo Collection of The Project 53

FLEX10K70 FPGA by Altera ... 53

vii

Power Supply .. 53

Expansion card .. 54

Testing stage ... 55

Appendix VI Application Notes on FPGA Design 58

TTL Compatibility with FPGA ... 58

Clock Signal Derivation .. 59

INOUT Port Implementation in Verilog HDL 59

Use of Buffers for OUTPUT Port ... 60

viii

LIST OF FIGURE

Figure 1 : Key parts of digital computer architecture (figure from [1] page 44) 1

Figure 2 : Example of data path (figure from [1], page 246) 4

Figure 3 : Example of LIFO stacks operation (from Philip Koorman, section 1.2 [7],)

 .. 8

Figure 4 : Flow Chart of Project ... 11

Figure 5 : Functional simulation waveforms for Instruction Decoder module 19

Figure 6 : Timing simulation waveform for Instruction Decoder module 20

Figure 7 : Functional simulation waveform for Diode ROM module 21

Figure 8 : Timing simulation waveform for Diode ROM module 22

ix

LIST OF TABLES

Table 1 : Modules in Mark 1 Clone .. 13

Table 2 : Voltage drop measurement ... 25

Table 3 : Memory requirement of Mark 1 Clone modules 28

x

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

AMD Advance Micro Device

ATX Advance Technology eXtended

CISC Complex Instruction Set Computers

CPLD Complex Programmable Logic Device

CPU Centre Processing Unit

FIG Forth Interest Group

FPGA Field Programmable Gate Array

HDL Hardware Description Language

I/O Input / Output

ISA Instruction Set Architecture

ISR Interrupt Sub-Routine

LIFO Last in First Out

RAM Random Access Memory

RISC Reduced Instruction Set Computers

ROM Read-Only Memory

VLSI Very Large Scale Integration

VM Virtual machine

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Computer architecture is the selecting, interfacing and interconnection between

hardware and software of a system. It is generally consisting of the Centre

Processing Unit (CPU), the I/O part and Memory [1]. Figure 1 shows the

interconnection between the major parts of computer architecture.

Figure 1 : Key parts of digital computer architecture (figure from [1] page 44)

A CPU design and architecture distinguish one from another. This project

explores a different type of CPU architecture from the widely used register-based

CPU designs – the stack-based CPU. Stack-based CPU is not as popular as registry-

based CPU in primary data handling for the reason many find stack a little complex

to handle. However, stacks have advantages of their own.

Programming language especially assembly level language are majority

processor based. Hence syntax of one assembly language maybe specific to a

particular CPU designs.

2

The stack-based CPU that this project explores has architecture oriented for

implementing a stack-oriented, reflective programming language – FORTH

language. FORTH is a structured stack-based programming environment and the

language itself is type check free. Hence it is said to be reflective where one can

expand the language itself.

On top of that, this project is based on a FYP project by Aaron Tang, which

studied the same FORTH Computer architecture, Mark 1 by Andrew Holme but

implemented using fully TTL chips – the Mark 1 Clone. The objective of this project

is to study the feasibility of implementing the Mark 1 Clone using FPGA. At the end

of this project, a hybrid version of Mark 1 using FPGA and TTL is developed for

FORTH Computer– Mark 1 FPGA.

1.2 Problem Statement

FORTH language or stacked-based computer system is an alternative type of

computer architecture. It has advantages of its own. However, there are engineers

who are not familiar with the advantages, design and implementation of such

computer architecture. It is a bigger challenge to implement a stack-based computer

using FPGA.

1.3 Objective

It is envisaged that the following is expected to be achieved.

• Implementation of FORTH computer in FPGA form

• Study the feasibility of CPU design using FPGA and its interaction with

TTL device.

3

1.4 Outline of Report

This report will consist of the following chapters.

Chapter 2 Literature Review And Theory contains the literature review of

computer system architecture, stack based machines and also FORTH language. It

provides an overview of the mentioned topics.

In Chapter 3 Methodology, an outline of the method used to implement this

project will be discussed. The list of tools used in completing this project will also be

described as well as providing some description on the work completed during the

duration of this project.

As for Chapter 4 Results And Discussion, the achievement of this project will

be reported and discussed. The obstacles and challenges faced throughout the

duration of this project will also be discussed.

Lastly Chapter 5 Conclusion And Recommendation will provide some

recommendation for future improvement and development and also a recap of this

project.

4

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Computer System Architecture

The architecture of computer system can be divided into a few operation

structures. These operation structures rely on one another to perform a required

computational task. This sub-chapter will discuss each the typical structure of a

computer system.

2.1.1 Data Path

Data path is the part of a computer system which manipulates and control the

data flow in the system according to the instruction’s definition. A simple computer

will have a simple linear data path which is controlled by the control path for

execution of an instruction set for the path. However, a more complicated computer

will have multiple data path branch out and perhaps interconnect with each other to

perform an operation or instruction. [1]

Figure 2 : Example of data path (figure from [1], page 246)

Next Addr

Reg File Instr Cache
Data

Cache

Control

PC ALU

jta

rs, rt, rd (rs)

Address

Data (rt)

imm

inst

fn op

5

Figure 2 show an example of data path, which is the instruction execution unit

of the MicroMIPS architecture [1]. A simple single-cycle data path is basically

consisting of a program counter, instruction files, register files, ALU and data cache

or memory. The data cache forms the data buses of the data path while the remaining

components form the functional units of the data path. [1]

2.1.2 Control Path

The control path is responsible for controlling the data flow according to given

instruction. Control of data flow is needed so that the system execution could flow

from a completed instruction to the next instruction sequence. Control path does not

have memory. It forms the control signals as a function according to certain bit from

the instruction code. [1]

The control signals can be executed easily for single-cycle implementation.

However, most of the time the system instructions will requires a certain resource to

be used for more than once. Such instructions required a more complex execution

and implementation called multi-cycle implementation. [1]

2.1.3 Instruction Set Architecture (ISA)

Instructions are words of the machine language used by a machine. Instruction

sets are the language and word vocabulary. Instruction set architecture is the

vocabulary of words together with parts of the machine which functions to provide

guidance to both data path and control path to perform a task. [1]

Understanding of ISA is important for a computer system engineer and

programmer to produce fast, compact and correct program for a machine. [1] This is

because the operation of data path and control path of a given system architecture

rely on a given instruction.

Some example of instructions used in basic operation includes arithmetic, logic

instruction, data instruction and control flow instruction. These instructions are in a

6

specific set of operational codes (opcodes) which means machine language, the

native commands implementation by the computer design. [2]

However, ISA is distinguished from the term micro-architecture which simply

means the data path and control path of a CPU design. Reason being a different CPU

design may share a common instruction set. Example could be taken from the Intel

Pentium and AMD Athlon. Both of the CPU architecture is different but sharing the

same ISA, which is the x86 32-bit instruction set. [2]

2.2 FORTH

FORTH is a structured, stack-based computer language and programming

environment. [3] It can be implemented on a virtual machine like Java VM. It is

normally implemented using indirect threaded code, which is a form of programming

code. This makes a compiled FORTH extremely compact. FORTH has a compiler

and command-line interpreter besides supporting structured programming. Besides

having compiler that is free to use (for example Fig-FORTH), FORTH is simple,

elegant and compact. [4]

FORTH is a procedural, stack-oriented and reflective programming language

without type check. It features both interactive execution of command and the ability

to compile sequences of commands for later execution. Earlier versions of FORTH

compile threaded codes but later versions compiler generate optimized machine

code. [3]

FORTH language is said to be a reflective programming language because of

the ability to extend the language as a whole. Reason being the core language of

FORTH has virtually no syntax. As you extend the language, you are actually

defining your own syntax. [4]

As FORTH is a stack-oriented program language, most data or parameters

passing are done completely on the stack. Therefore, there is no need to define a lot

of variables. However, it is recommended to comment the stack effect of every

7

FORTH word, because in FORTH, you are actually naming the actions and not the

data itself. [4]

FORTH is originally developed for small embedded control miniature

computers. FORTH is implemented on many major processors manufactured. [5]

However, FORTH lack the support from large industry for it is unique and the

acceptance of it has to be done from basic fundamental. Hence, it is not as popular as

other programming language such as C, C++ as well as other similar level languages.

[6] Nevertheless, it is still being used in some embedded system especially in space

application and also boot loader such as Open Firmware. [3]

2.3 Stack Machine

Stack-based hardware supports Last in First out (LIFO) stacks is being used on

computer since the late 1950s. Stack is originally designed to increase the execution

efficiency of high level languages such as ALGOL. However, this approach has not

gain popularity and in favor of designers and hence is being used only as secondary

data handling structure in most computers. Many designers prefer to use register-

based machine for their primary data handling due to the reason some finds stack

rather dismay compared to registers. [7]

Emergence of VLSI processors brings forward the question on conventional

methods of computer designs. CISC and RISC instruction sets evolves to incorporate

the advancement of VLSI processors. With this, stack machines are being considered

as an alternative design style. VLSI allows new stack computers to attain impressive

combination of speed, flexibility and simplicity with their features. [7]

With VLSI, stack machines could offer lower processor complexity than CISC

machines and lower overall system complexity than either RISC or CISC machines.

These good performances are achieved without complicated compilers or cache

control hardware. The first successful application is in the area of real-time

embedded control environment, where they outperformed other system design. [7]

8

Stack machine uses lower raw resources but produce superior performance for

a given price in most of the programming environment. It shows great performance

while executing logic programming language such as Prolog, functional

programming language such as Miranda and Scheme, and artificial intelligence

research language such as OPS-5 and Lisp. [7]

2.3.1 What is Stack?

Stack is also known as LIFO stacks or “push down” stacks. It is conceptually

the simplest way to save information in a temporary storage location for common

computer operations such as mathematical expression evaluation and recursive

subroutine callings. [7]

LIFO can best be described using cafeteria tray example. Consider a spring-

loaded tray dispenser. Assuming each try has number on it and is being loaded in

from the top one after another. Each of the loaded tray will rest on the already loaded

trays with the spring is being compressed to make room for more trays. Figure 3

illustrates the loading of tray with number 42, 23, 2 and 9, with 42 loaded first and 9

loaded last. [7]

Figure 3 : Example of LIFO stacks operation (from Philip Koorman, section 1.2 [7],)

EMPTY
STACK

42

PUSH 42

23

42

PUSH 23

2

23

42

PUSH 2

9

2

23

42

PUSH 9

2

23

42

POP 9

23

42

POP 2

42

… POP 42

OTHER
OPERATIONS

9

As illustrated in Figure 3, the ‘Last In’ tray is number as 9 and the ‘First Out’

tray is also tray numbered 9. The next tray that will be removed after 9 will be 2 and

so on. However, if more trays were to be added at this point, they had to be removed

from the stack before the very first tray, tray 42 could be removed. Any pushes and

pops on the top will retain tray 42 in illustration on the bottom. The stack would only

be empty again after the tray 42 is being popped from the top of the stack. [7]

2.3.2 Advantages of Stack-Based Machine

Stack machines are more efficient in running certain type of program than

register-based machines, in particular modularized program. Stack machines are also

simpler than other machine besides providing good computational power with little

hardware. Real time embedded control application favor the use of stack machines.

This is because it requires a combination of small size, high processing speed and

excellent support for interrupt handling that can only be achieved with stack

machines. [7] Following are some highlight of stack machines from the point of view

of someone who had made a living with stack machines. [8]

• Stack processors do not need to pipeline ALU and operands because operands

are immediately available in the top of stack buffer registers.

• Only about 16 deep on-chip stack buffers are needed and spilling can be done

by stack overflow interrupts hence reduce cost for interrupt-driven overflow.

• Context switching for interrupts needs only zero time, whereby no registers is

needed to be saved. ISR values are placed on the top of the stack and are

being clean off when done.

• Program size makes a lot of difference in embedded control. Stack computer

small program size can be achieved with compact opcodes, reuse of short

code segment and implicit argument passing without subroutines.

2.3.3 Important of Stack-Based Machine

Theoretically, stacks are important because they are the most basic and natural

tool that can be used in processing a well structured code. LIFO stacks machine are

required to compile computer languages and maybe the translation of natural

10

languages. A computer with support for stack structure will probably execute

application requiring stacks more efficiently than other machine. [7]

Compilers for stack machines are easier to be written simply because they have

fewer exceptional cases to complicate a compiler. This made some people says that

programming stack machines is easier than conventional machine and stack machine

program run more reliably than other programs. However, running compiler require

certain percentage of machine resources. Therefore, building a machine with

efficient compiler is important. [7]

2.4 Stack-Based Machine and FORTH

As mentioned, FORTH is a structured, imperative, stack-based programming

language, which runs on a stack-based computer. LIFO stacks, which is also known

as “push down” stacks is the key element for a stack machine and also FORTH.

Combining the advantages of FORTH programming language and the stack-based

machines, a high performance embedded system could be developed and perhaps

achieve low cost with different type of CPU construction technology.

2.5 Chapter Summary

This chapter provides a review on computer system architecture, stack

machines and FORTH language. We could generally divide a computer system into

three (3) major components, namely data path, control path and instruction set

architecture. A stack based machine uses LIFO stack for data handling. FORTH

language on the other hand, is a structured, stack-based computer programming

language, which required a stack machine for implementation.

11

CHAPTER 3

METHODOLOGY

3.1 Procedure Identification

Figure 4 : Flow Chart of Project

Start

Study and Understand FORTH Programming
Language, Stack CPU Architecture and Mark 1

Architecture

Transfer one module of Mark 1 CPU from
TTL form to FPGA form

Design module using Verilog HDL

Download code to FPGA

Simulate Verilog codes
for error

Replace the TTL
module

Repeat for another module until all possible
modules are implemented using FPGA

End of Project

Failed

Successful

Successful

Failed

12

The objective of this project is to implement Mark 1 Clone, a fully TTL

version FORTH computer using FPGA and study the interfacing capability of FPGA

and TTL. Hence, a modular approach is used in this project.

Implementation is done one module at a time as outlined by the flow chart in

Figure 4. Proper study of module design is done before design is made with Verilog

code. Verilog code is then downloaded into the FPGA and tested for compatibility

with TTL modules before another module is designed in Verilog. Module which

could not be fitted into the FPGA will be implemented using TTL, especially module

involves memory chips.

3.2 Tools

The main tool in this project would be the FPGA chip that the CPU will be

build into. Altera University Program 2 (UP2) board and other electronics

components and sockets are among some essential tools. Verilog HDL programming

language will be the main programming language used to program the FPGAs.

3.2.1 Hardware

Computer with connection cable to the FPGA chip used is the hardware

involved at the implementation stage. Altera UP2 board that houses the FPGA chip

will be the hardware required. The MAX7000 CPLD and FLEX10K FPGA on the

UP2 board will be used for this project.

Euro-cards and IDC connectors are among the electronic components that are

needed for interfacing and connecting the UP2 board to external components,

especially to the existing TTL CPU.

Besides, instrumentation tools such as oscilloscope, logic analyzer and digital

multi-meter are also used to aid analysis procedure. The tools eases troubleshooting

procedure in this project.

13

3.2.2 Software

The software that will be used for current stage of implementation would be

Altera ModelSim and also Altera Quartus II for HLD simulation, compilation and

also programming the compiled codes into the FPGA.

3.3 Work Completed

There are nine (9) modules build on euro cards that forms the Mark 1 Clone

FORTH CPU. Table 1 show the modules that forms the Mark 1 Clone CPU which

will be attempted to be implemented using FPGA.

Table 1 : Modules in Mark 1 Clone

1. Instruction Decoder

2. Diode ROM

3. Instruction Pointer Index

4. Address Pointer Index

5. ALU

6. Stacks

7. Memory

8. Microcode Sequencer and Power ON reset

9. I/O

Several steps are taken to examine the influential factors that could affect the

success of implementation. After ensuring all these factors were taken care of, the

implementation of TTL modules in FPGA forms started with the sequence of listing

14

as of above. The success of first module implementation will serves to guide the

implementation of the remaining modules.

3.3.1 Testing of UP2 Board

The first step of implementation of the FORTH Computer System in Verilog

form is to perform hardware check, testing and verification for error. Therefore, the

first task upon recipient of the UP2 board is to write a test program to be run on the

UP2 board. This is to ensure that the board is functional before the actual program is

loaded into it. The test program code is attached on Appendix IV . Result on testing

of the UP2 board will be discussed in the next section, Chapter 4.1 .

3.3.2 The Power Supply

Besides this, there is a need to build a power supply for the existing stack-CPU

built by the previous FYP student. Two different power supplies are being built for

the Mark 1 Clone. One of the power supplies was modification of a variable 12VDC

power supply and another is from the desktop computer ATX power box. However,

only the ATX power box is capable of supplying sufficient current for the operation

of Mark 1 Clone. Detail of design is discussed in Chapter 4.2 .

3.3.3 The Expansion Card

An expansion card is made using a Euro card to interface the Mark 1 Clone

with UP2 board for design verification on the Verilog codes functionality. In

addition, this board also functions to allow the FPGA connect to the existing TTL

modules during the implementation.

In order to make the expansion board flexible and universally connectable,

more work had been done in adding inter-changeable connectors on the board. This

allows the assigned FPGA I/O pins to be connected to any of the pins on the Mark 1

Euro card backbone. Sub-section “Expansion card” under Appendix V contains the

photo of expansion card mentioned.

15

Besides, an expansion card Version 2 also being built on later stage to

accommodate more I/O pins from the UP2 board. Reason being one (1) expansion

port from UP2 FLEX10K FPGA provides only forty-two (42) programmable I/O

pins. Hence, to allow connection from the FPGA to sixty-two (62) I/O pins of the

Mark 1 Clone back panel, two (2) expansion ports is needed.

3.3.4 TTL Module in HDL Design

The next task after hardware examination would be designing the Mark 1

modules in Verilog form for implementing in the FPGA. The sequence of

implementation would be according to the sequence of Table 1. The modules are

being redesign and coded into Verilog HDL according to sequence. The Verilog

designs of the modules are attached in Appendix III . A top module is used in to

combine the individual modules before interfacing to the TTL modules during the

testing of multiple modules.

3.3.5 Interfacing and Replacing TTL Module with FPGA

After simulating and verifying the designed module using Altera ModelSim

and Altera Quartus II software, the respective TTL module is ready to be replaced.

Interfacing is done using the expansion card that is tested with error free.

During the replacing process, the respective TTL module will be removed from

back panel and the Verilog design of the respective module will be downloaded into

the FPGA. After connecting the FPGA to the back panel using the expansion card,

the Mark 1 Clone is power up to verify if the system is being replaced correctly.

However, the success of implementation was not as expected every time the

design is being implemented. Several analyses and troubleshooting are done in the

process of implementation. Chapter 4.4 and 4.5 records the analysis and discussion

of the troubleshooting result.

16

3.4 Chapter Summary

This chapter discusses the methodology used to implement this project. A flow

chart (Figure 4) is used to illustrate the process of implementation. Besides, the

achievement of this project is recorded under Chapter 3.3 “Work Completed”.

17

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Test Result of the UP2 Board

Several versions of Verilog code is designed and programmed to test the UP2

board. The Verilog codes used to test the board is attached in Appendix IV .

Two UP2 board were used but only one was tested working properly with the

test code on the MAX7000 CPLD chip. The FLEX10K FPGA chip did not respond

properly to the test. However, when the FLEX10K chip is revisited, it responded to a

test code which uses input driven by the MAX7000 chip.

After carrying out more testing with the FLEX10K FPGA, using test codes

attached, it is concluded that the FPGA chip is functional. Further test shows that the

on-board oscillator is accessible but there are problem deriving clock signals from

FPGA. This will be further discussed in Chapter 4.3.1 , 4.5.1 and Appendix VI .

Besides, under Appendix V “Testing stage” contains pictures taken during

testing of the FPGA with various test code attached in Appendix IV .

4.2 Design of the Power Supply

Two different power supplies were utilized for Mark 1 Clone.

The first is a DC power supply that could supply power varying from 10VDC

to 15VDC. Therefore, a voltage regulator circuit is made to limit the supply current

to 5VDC. However, it is not able to supply sufficient power required by the TTL

Mark 1 Clone and not being used in this project.

18

The second is the computer power supply unit, an ATX power box. This power

box could provide DC power of 12V and 5V. A simple circuit is made to switch the

ATX box ON and OFF while tapping the 5VDC supply for the Mark 1 Clone. Mark

1 Clone is tested working properly with the ATX power box and hence it shall

remain the power supply for this project.

4.3 Design and Simulation

Each module design in Verilog code went through two level of simulation. The

code is firstly designed and compiled using Altera ModelSim software to simulate

and verify the functionality of the code. After the code is verified to be functioning

correctly, it is transferred to Altera Quartus II software for simulation, download

configuration and timing analysis.

4.3.1 Instruction Decoder Module

The function of Instruction Decoder module is to decode the microcode of the

system to various control signals. The Verilog code of Instruction Decoder is

compiled in ModelSim and functional simulation is performed on it to study and

verify the codes functionality before being transfer to Quartus II for implementation

into the UP2 board.

First attempt of simulation fails as some of the signal used in the design shows

error. After several corrections, the code shows that the Instruction Decoder written

is working well and all output signals are responding to changes in input. Figure 5

shows the successful result from functional simulation on the written code using

ModelSim.

This functional simulation waveform is cross-checked with the schematics

diagram of the Instruction Decoder. This is done by checking the output signal in

accordance to some sets of input signals. After cross-checking, the output waveform

does show that the Verilog version of the Instruction Decoder performs the necessary

19

decoding as per the TTL version. This simulation waveform serves as the base of

comparison for the timing simulation from Quartus II later for performance check.

Figure 5 : Functional simulation waveforms for Instruction Decoder module

However, when the code is being simulated in Quartus II on timing simulation,

the clock signal did not produce the expected result. The code written is verified that

it could not be implemented in real world. Attached code on Appendix III shows the

modified code without clock signals, which the final code that works.

Further investigation confirmed that FPGA is not capable of deriving clock

signals for a digital system. Hence, the original clock design using TTL will be used

to provide the clock signal for the system. More discussion can be found in Chapter

4.4.1 and “Clock Signal Derivation” section under Appendix VI

Figure 6 shows the timing simulation result using Quartus II. Verification on

timing simulation result shows that the written code could function on the chosen

20

FLEX10K FPGA chip. After assigning each I/O pin, the program is downloaded to

the chip and tested with a test unit designed for the instruction decoder module.

Figure 6 : Timing simulation waveform for Instruction Decoder module

After satisfied with the code verification on the FLEX10K FPGA, the FPGA is

then connected to the expansion card, which had been wired the designated I/O pins

of FPGA to the correct Mark 1 signal buses. The Verilog version of Instruction

Decoder is then put into full test.

21

4.3.2 Diode ROM Module

The Diode ROM module basically functions to decode the function selection

signals for ALU. Hence, the design of the module is similar to a decoder. This made

this module an easier one to be designed.

After designing the module in code, the code is simulated using ModelSim.

Figure 7 shows the functional simulation waveform for Diode ROM module. The

simulation result is satisfying and hence the code is loaded into Quartus II for next

step of implementation.

Figure 7 : Functional simulation waveform for Diode ROM module

In Quartus II timing simulation is carried out on the codes. Besides, it also

tested for implementation feasibility with the place and route function of Quartus II.

Figure 8 shows the timing simulation waveform for Diode ROM module.

22

Both simulation waveforms suggest that the module is functioning. Waveform

patterns are compared with the module design for further verification and

confirmation.

After completing the test and verification, the code is downloaded into the

FPGA chip and put into full test.

Figure 8 : Timing simulation waveform for Diode ROM module

4.3.3 Index Pointer Module

Both Instruction Pointer Index and Address Pointer Index are of the same

design. The difference between them is on some of the input pins, namely u210, SRC

23

and flag signals. They function to index and point the address location of current

instruction execution for both memory addresses and instructions location.

The Index module is designed with such flexibility, where by the different

input pins connection is made general. This could ensure that the module can be used

for both modules without the need to modify the code but just a little change with the

connection assignment.

As this module involves INOUT ports, functional simulation could not be done

using ModelSim without separating the INOUT ports to individual input port and

output port. Hence, the simulation result for this module could not accurately shows

that the module designed is working perfectly.

However, the codes are downloaded into the FPGA after successful

compilation and simulation in Quartus II. The codes is then put into full test after the

expansion card is wired correctly for replacing the respective module, be it

Instruction Pointer Index or Address Pointer Index.

4.4 Interfacing Troubleshoot and Discussion

Troubleshooting on interfacing is done during the implementation of the first

module, the Instruction Decoder module. The unsuccessful implementation prompted

the need to re-examine some of the factors that could and may affect the

implementation results.

As the Mark 1 Clone did not respond when the FPGA version of Instruction

Decoder is implemented, investigation was carried out:

• Short circuit test on the expansion card, as the possibility of occurrence

is very high with the number of micro wires soldered on it

• Voltage drop on the system and each module to verify the system is

running normal

• Signal waveform check using oscillator to check for faulty output

24

Before the mentioned troubleshooting steps are taken, the system clock has to

be taken care off first. This is necessary to ensure that the correct clock signal is

supplied to the system.

4.4.1 System Clock Derivation

System clock affects the performance of the entire system. Hence it is needed

to ensure that the system is receiving the required clock waves. As clock signals

could not be derived from FPGA, the system clock is tapped from the original TTL

version of Instruction Decoder. Minor rewiring is done to use the clock signal from

the TTL module. This is only needed when testing the Instruction Decoder module.

4.4.2 Short Circuit Test

Short circuit test is being carried out on full-scale on the expansion card. Each

pins and wire are tested with all adjacent pins. All points with possibility to short

circuit are tested. After rectifying short circuit points on the card, it could be

concluded that the system is not affected by short circuit and signal sending on the

wrong bus.

4.4.3 Voltage Drop Test

Voltage drop on each module of the TTL version system is measured to assist

troubleshooting. Table 2 shows the figure of measurement on voltage drop for

investigation.

25

Table 2 : Voltage drop measurement

Module Voltage Drop (V)**

Instruction Decoder 0.04

Memory 0.03

Index M@W/A 0.08

Index M@IP/PC 0.08

I/O 0.03

Stacks 0.05

ALU 0.06

Diode ROM 0.00

**Note: approximation of ±0.01V applies

A total of 0.37V drop is measure on the TTL system with a supply of 5.00V.

The measured voltage from VCC to GND reads 4.57V. This voltage level is just

sufficient for the operation of TTL as their minimum operating voltage is 4.5V.

The current consumed by the TTL Mark 1 Clone is 1.10A, which is rather

high. This explains the reason for the overload of the 12VDC converted power

supply. The added voltage regulator could not regulate current above 1.0A for

5VDC.

Studying the pattern of voltage readings with and without interfacing card as

well as the FPGA module, short circuit within the system is not likely the reason for

the system not being able to run.

However, this serves to aid the observation for reducing power consumption of

the system with the use of FPGA. Power consumption of a system is a crucial part of

design as technology is moving towards low power and efficient system.

26

4.4.4 Signal Waveform Test

It is hypothesized that the timing waveform and signal level of signals from

TTL to FPGA and FPGA to TTL leads to the investigation to test the signal

waveforms. This test is done with the aim to verify that there is no signal timing

issue between FPGA and TTL.

The signal waveforms are observed using oscilloscope and the signal pattern is

observed using Logic Analyzer. However, as there are no consistent signal

waveforms, the test could not be properly verified and concluded.

On the other hand, observation on the critical path and propagation delay

shows that there are sufficient setup times for the signal. The worse case propagation

delay for FPGA would be around 40ns (nano-seconds) while the clock period is 1us

(micro-seconds). Hence signal violation is not likely to happen.

More observation will be made from time to time to examine the signal

waveforms between FPGA and TTL for future studies.

4.4.5 Other Test

In addition, a test circuit to investigate the correctness of the module function is

build to cross-check FPGA version with the TTL version. This test circuit is built

based on the functionality of the Instruction Decoder module.

Test result from the circuit shows that the FPGA version functions just as the

TTL version. Both of the versions decode incoming signals correctly and identically.

This study shows that FPGA can be designed to performs and function just as TTL

does. Besides, this test could verify the functionality of FPGA module design on

independent basis.

27

4.5 Implementation Results and Discussions

Various problem faced when the modules are implemented using FPGA. As

the interfacing method had been tested feasible with no errors, troubleshoot to

overcome failure of implementation lies on the module design as well as pin

assignment and connection.

4.5.1 Instruction Decoder Module

Appendix VI records some also findings on design notes and application

using Verilog HDL and also FPGA. However, the studies are based on Altera

product architecture and software. Slight different may appears with product from

other company such as Xilinx etc.

After several isolate and test studies and implementing the clock derivation

section using TTL, the design module is finally working properly. Some fine tuning

and repeated testing is done with the design to ensure that the system is not operating

on intermittent state.

The success of implementing this module marks another steps of possibility

and feasibility in implementing TTL design using FPGA.

4.5.2 Diode ROM Module

The Diode ROM design and structure is less complex compared to the other

modules. Hence, the module was successfully interfaced with TTLs without much

complication.

4.5.3 Index Pointer Module

Index Pointer module is mainly form by counters. Hence the counter design is

the key success of implementing this module using FPGA. Besides, this module also

involves INOUT ports. The finding on design using INOUT ports is recorded in

Appendix VI under section “INOUT Port Implementation in Verilog HDL”.

28

Several intermittent issues arise during the implementation and testing stage

but it was taken care of using proper buffers design. Codes in Appendix III records

the final working design of the FPGA version of this module.

4.6 Design Limitation

There are several limitations in implementing some modules of Mark 1 Clone

using FPGA. This section discusses the difficulties faced.

4.6.1 Memory Capacity

Memory is the data storage location for a system. Three (3) of Mark 1 Clone

design is memory based, namely Stack, Memory and Microcode Sequencer.

Stack module forms the stack data memory of Mark 1 Clone hence requires a

large number of RAM space. Memory module contains the boot data for Mark 1

Clone and serves as the primary data storage of the system hence requires a great

capacity of RAM and ROM. Microcode Sequence stores the microcode of the system

in ROM.

Table 3 shows the memory capacity requirement of each of the mentioned

modules.

Table 3 : Memory requirement of Mark 1 Clone modules

Module Memory Chip Required

Stack 2 x 2KB RAM (6116)

Memory 3 x 8KB RAM (6264)

1 x 8KB ROM (2764)

Microcode Sequencer 1 x 8KB ROM (2764)

29

The FPGA used in this project, FLEX10K is having only a memory capacity of

18,432-bits, which is insufficient for each of the modules. The total memory required

by the three mentioned modules is close to 44-kilo-bytes or 44 x 8-kilo-bits.

Hence, Stack module, Memory module and Microcode Sequencer module are

not implemented fully using FPGA. Instead, TTL chips are used to implement them.

4.6.2 Complexity of Customization

ALU module performs the execution of arithmetic and logical operation of an

instruction. This module could not be implemented using FPGA successfully for he

complexity of the module design to be customized using FPGA. Hence, this module

is being implemented using TTL chips.

The I/O module functions to provide interfacing between Mark 1 Clone with

Personal Desktop Computer through serial communication. Windows Operating

System in Personal Desktop Computer communication with Mark 1 Clone serially

using the application ‘Hyper Terminal’. Serial interfacing using FPGA is another

field of application. Hence this module is implemented using TTL chips for this

project.

4.7 Chapter Summary

This chapter discusses the troubleshooting and FPGA modules implementation

results in detailed. In summary, there are several modules of Mark 1 Clone could not

be implemented using FPGA, due to memory and complexity limitation. However,

there are also modules of Mark 1 Clone that is implemented successfully using

FPGA. Troubleshooting methodology and approach is essential in determining the

fault and errors in a design.

30

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Recommendation for Future Studies

In this project, there are some portions of Mark 1 Clone design that could not

be implemented using FPGA successfully. More study on Verilog code design

techniques and real-time feasible design strategy could help resolve complex design

required by Mark 1 Clone.

Besides, in-depth understanding of CPU design modules and functionality

could help compact and simplify current FPGA designs. Reduced complexity would

reduce the number of logical elements required and hence power consumed.

However, on the mean time, the FORTH Computer developed from this project

shall remain as a hybrid of FPGA form and TTL form. A new board is used to reduce

the size of CPU design with the elimination of back panel.

5.2 Conclusion

The objective of this project is to study the feasibility of implementing a stack-

based CPU using FPGA. FORTH Computer is the stack machine that this project

explores. The FORTH Computer is based on Mark 1 design.

There are nine (9) modules in the CPU design. Four (4) modules had been

successfully implemented using FPGA, namely the Instruction Decoder, Diode ROM

and Index (address index and instruction pointer index) module.

The success implementation of said modules using FPGA shows that TTL

design can be implemented using FPGA. However, the key of success lies on the

design strategy and also signal interfacing. The success of interfacing TTLs with

31

FPGA design serves an advantage in this project as some parts of CPU especially

memory are easier and more feasible to be implemented using TTL.

Besides, the design of I/O Ports in FPGA will have impact on the overall

system functionality. Buffers shall be placed at the OUTPUT port of FPGA when

ever applicable to provide protection for FPGA on sink current. Multiplexing signals

design on the INOUT port of FPGA is also critical as data signals going in and out of

the FPGA will have great impact on the system performance and stability.

In a nut shell, a hybrid CPU system using FPGA and TTL is a feasible design

approach. This is proven by the success interfacing of FPGA modules with TTL

modules in this project.

32

REFERENCES

[1] B. Parhami, Computer Architecture - from microprocessors to supercomputers.
New York, USA: OXFORD University Press, 2005.

[2] Wikipedia. Instruction Set.
http://en.wikipedia.org/wiki/Instruction_set

[3] Wikipedia. Forth (programming language).
http://en.wikipedia.org/wiki/Forth_(programming_language)

[4] A. Holme. What is FORTH?.
http://www.holmea.demon.co.uk/FORTH.htm

[5] J. Philip J. Koopman. A Brief Introcution to Forth.
http://www.ece.cmu.edu/~koopman/forth/hopl.html

[6] Introduction to the Forth Programming Language.
http://www.angelfire.com/in/zydenbos/WhatisForth.html

[7] J. Philip J. Koopman, Stack Computer: the new wave, World Wide Web ed.
USA: Ellis Horwood, 1989.

[8] J. Philip J. Koopman. Why Stack Machines.
http://www.ece.cmu.edu/~koopman/forth/whystack.html

[9] A. Holme. Mark 1 FORTH Computer.
http://www.holmea.demon.co.uk/Mk1/Architecture.htm

[10] S. L. Aaron Tang, "Development of a Stack-Based Central Processing Unit
(CPU) Using TTL Logic," Dissertation, December 2006.

[11] L. Brodie, Starting FORTH. Prentice Hall, 1981.

[12] The Forth Programming Language - Why YOU should learn it.
http://www.hcsw.org/reading/forth.txt

http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://www.holmea.demon.co.uk/FORTH.htm
http://www.ece.cmu.edu/~koopman/forth/hopl.html
http://www.angelfire.com/in/zydenbos/WhatisForth.html
http://www.ece.cmu.edu/~koopman/forth/whystack.html
http://www.holmea.demon.co.uk/Mk1/Architecture.htm
http://www.hcsw.org/reading/forth.txt

33

APPENDICES

34

Appendix I Mark 1 FPGA Specification

(The content of this appendix made reference to [9], [10])

Specification

Technology Hybrid of FPGA and TTL

Clock 1 MHz

Data Bus 8-Bit

Address Bus 16-Bit

Software fig-FORTH

System Overview

Figure: Mark 1 Computer Architecture [9]

35

Table: Description of Mark 1 Computer Components

Module Width
(bits)

Description Comments

ALU 8
Arithmetic and
logic unit

The ALU data path is a bottleneck. It takes
four clock cycles to load the inputs, set the
ALU function, and read the result. This is the
least satisfactory aspect of the whole design.

OP 8 Operand register
OP is loaded into the uppermost 8 bits of
µPC. The lower 4 bits are reset to zero. µPC 12

Microcode
program counter

W 16
FORTH
Working register The 16-bit index registers, IP and W, support

increment, decrement, and can address
memory. IP 16

FORTH
Instruction
Pointer

PSP 8
FORTH
Parameter stack
pointer

The stack pointers, RSP and PSP, are 8-bit
up/down counters feeding the A1-A9 address
inputs of the stack RAMs. The least
significant address input (A0) selects the
upper or lower byte. Logically, the stacks are
16-bits wide by 256 words deep. The
FORTH word length is 16 bits.

RSP 8
FORTH Return
stack pointer

Stack
RAM

16
Dedicated stack
RAM

0 8
Force 00H on
data bus

µ-Instruction Format

Mark 1 is a micro-programmed machine with ‘vertical’ encoded microcode. The

microcode instruction (µ) is only 8-bit wide. This is in contrast with normally used

‘horizontal’ encoded microcode which is wider in bit width and less encoding. Hence,

it makes Mark 1 resembles a RISC processor. Following table shows the encoding of

Mark 1 µ-instruction.

36

Table: Mark 1 8-bit µ-instruction (µ) encoding

 µ7 µ6 µ5 µ4 µ3 µ2 µ1 µ0

Move LSB 0 0 Source Destination

Move MSB 0 1 Source Destination

Decrement 1 0 0 0 0 0 Register

Disable IRQ 1 0 0 0 0 1 x x

Increment 1 0 0 0 1 0 Register

Enable IRQ 1 0 0 0 1 1 x x

Jump Direct (zero page) 1 0 0 1 Address

Set ALU function 1 0 1 0 Function

Jump Indirect (µPC←OP*16) 1 0 1 1 x x x x

Conditional skip 1 1 Test Distance

The source and destination fields of the move instructions are coded as follows:

 Destination Source

000 W W

001 IP IP

010 TOS TOS

011 R R

100 Memory[W] Memory[W]

101 OP Memory[IP]

110 ALU input A Zero

111 ALU input B ALU output
TOS = Top of parameter stack; R = Top of return stack

37

FPGA I/O Pins and Back Pane Connection

Pin connection from 2 ports of FPGA (Expansion Port B and C) I/O pins to back

panel.

Figure: Pin relation between FPGA and Back Panel

38

Appendix II Mark 1 Design Schematics

Instruction Decoder Module (reference made to [10])

Diode ROM Module (reference made to [10]

39

Index Module (reference made to [10])

ALU Module (reference made to [10])

40

Stacks Module (reference made to [10])

Memory Module (reference made to [10])

41

Microcode Sequencer Module (reference made to [10])

I/O Connection Module (reference made to [10])

42

Power ON Reset Module (reference made to [10])

43

Appendix III Mark 1 FPGA Module Design in Verilog Codes

/* TOP MODULE MARK 1 */
// merge of Index and Diode ROM

// Mark 1 module
module Mark1 (data, addr, clk1, u, u210, SRC, uX, M);
 input [3:0] u; //u signal input (7~0)
 input clk1; //clock 1
 input [1:0] uX; //u1010xxxx,u1000xxxx
 input [1:0] u210; //u210=001, u210=000
 input [1:0] SRC; //SRC=001, SPC=000
 input [3:0] M; //flags HI, LO, M@PC, M@W
 inout [7:0] data; //data signals
 output [15:0] addr; //address signals

 //FLAG ASSIGNMENT
 wire MPC, MW, LO, HI;
 assign MW = M[0];
 assign MPC = M[1];
 assign LO = M[2];
 assign HI = M[3];

 //WIRE DECLARATION
 wire [7:0] d_in; //data in from INOUT
 wire [7:0] Dout_Index; //data out from index module
 wire [7:0] Dout_PC, Dout_W;
 wire [7:0] Dout_ROM; //data out from Diode ROM
 wire [7:0] d_out; //data out for INOUT

 /* DIODE ROM */
 //input: u[0],u[1],u[2],u[3],u1010xxxx
 //output: data[7:0]
 wire [2:0] U;
 assign U = {u[2],u[1],u[0]};
 diode D1 (Dout_ROM, U, u[3]);

 /* Index data input control */
 wire u210_sel;
 and B0 (u210_sel,u210[0],u210[1]);
 Buff8_244 B1 (d_in,data,u210_sel);

 /* Index Pointer (M@W / M@A) */
 //input: clk1, u[3], M@W, SRC=000, u210=000, LO, HI, u1000xxxx
 //inout: data[7:0]
 index M_W (addr, MW, d_in, Dout_W, clk1, SRC[0], LO, HI, u210[0], u[3], uX[0]);

 /* Index Pointer (M@IP / M@PC) */
 //input: clk1, u[3], M@IP, SRC=001, u210=001, LO, HI, u1000xxxx
 //inout: data[7:0]
 index M_PC (addr, MPC, d_in, Dout_PC, clk1, SRC[1], LO, HI, u210[1], u[3], uX[0]);

44

 /* DATA output control */
 wire Index_sel, En;
 and N1 (Index_sel,SRC[0],SRC[1]);
 //SRC control data output from Index modules
 assign Dout_Index = (~SRC[0])?Dout_W:Dout_PC;
 //uX[1] control data output from Diode ROM
 assign d_out = (~uX[1])?Dout_ROM:Dout_Index;
 and N2 (En,Index_sel,uX[1]);
 bufif0 (data[0],d_out[0],En);
 bufif0 (data[1],d_out[1],En);
 bufif0 (data[2],d_out[2],En);
 bufif0 (data[3],d_out[3],En);
 bufif0 (data[4],d_out[4],En);
 bufif0 (data[5],d_out[5],En);
 bufif0 (data[6],d_out[6],En);
 bufif0 (data[7],d_out[7],En);

endmodule

/* Components of Index Module */

module Buff8_244 (Outp, Inp, En);
 input [7:0] Inp;
 input En;
 output [7:0] Outp;

 bufif0 (Outp[0],Inp[0],En);
 bufif0 (Outp[1],Inp[1],En);
 bufif0 (Outp[2],Inp[2],En);
 bufif0 (Outp[3],Inp[3],En);
 bufif0 (Outp[4],Inp[4],En);
 bufif0 (Outp[5],Inp[5],En);
 bufif0 (Outp[6],Inp[6],En);
 bufif0 (Outp[7],Inp[7],En);

endmodule

module Count_169 (In, Out, clk, load, UD, ENT,
ENP, RCO);
 input [7:0] In;
 input clk,load,UD,ENT,ENP;
 output [7:0] Out;
 output RCO;
 reg [7:0] Out;
 reg RCO;

 always @ (posedge clk)
 begin
 if (~load)
 begin
 Out <= In;
 end
 else if (~ENT && ~ENP)
 begin
 if (UD)

 Out <= Out + 1;
 else
 Out <= Out - 1;
 end
 else
 begin
 Out <= Out;
 end
 end

 always @ (ENT,Out,UD)
 begin
 if (~ENT)
 begin
 if (UD)
 begin
 if (Out==8'b11111111)
 RCO = 0;
 else
 RCO = 1;
 end
 else
 begin
 if (Out==8'b00000000)
 RCO = 0;
 else
 RCO = 1;
 end
 end
 else
 begin
 RCO = 1;
 end
 end

endmodule

45

/*INDEX module*/
module index (Addr, MA, D_in, D_out, clk,

SRC, LO, HI, u210, u3, uX);
 input clk;
 input MA, SRC, LO, HI, u210, u3, uX;
 input [7:0] D_in;
 output [7:0] D_out;
 output [15:0] Addr;
 reg [7:0] D_out;

 //counter for lower address (u5, U6)
 wire [7:0] add1;
 wire load1, rco1;
 or U9c (load1, u210, LO);
 Count_169 U56 (D_in, add1, clk, load1, u3,

u210, uX, rco1);

 //counter for upper address (U7, U8)
 wire [7:0] add2;
 wire load2, rco2;
 or U9d (load2, u210, HI);
 Count_169 U78 (D_in, add2, clk, load2, u3,

rco1, uX, rco2);

 //address line buffer enable (U1, U2)
 wire [7:0] addr1, addr2;
 Buff8_244 U1 (addr1,add1,MA);
 Buff8_244 U2 (addr2,add2,MA);
 assign Addr = {addr2,addr1};

 always @ (LO, HI, add1, add2)
 begin
 if (~LO)
 D_out = add1;
 else if (~HI)
 D_out = add2;
 else
 D_out = 8'b0000_0000;
 end

endmodule

/* Diode ROM Module */
module diode (data, U, u3);
 input [2:0] U;
 input u3; //, u1010;
 output [7:0] data;
 reg [7:0] data;

 always @ (U, u3)
 begin
 if (~u3)
 begin
 case(U)
 4'b000: data<=8'b1110_1001;
 4'b001: data<=8'b0110_1001;
 4'b010: data<=8'b1010_0110;
 4'b011: data<=8'b0110_0110;
 4'b100: data<=8'b1110_1100;
 4'b101: data<=8'b0110_1100;
 default: data<=8'b1111_1111;
 endcase
 end
 else
 begin
 case(U)
 4'b000: data<=8'b1101_1111;
 4'b001: data<=8'b1111_1010;
 4'b010: data<=8'b1111_1011;
 4'b011: data<=8'b1111_1110;
 4'b100: data<=8'b1101_0000;
 4'b101: data<=8'b1111_0110;
 4'b110: data<=8'b1111_1001;
 default: data<=8'b1111_1111;
 endcase
 end
 end

endmodule

46

/* TOP MODULE MARK 1 */
// merge of Diode ROM and Instruction Decoder

module Mark1 (data, u, u210, SRC, flag, uX);
 input [7:0] u; //u signal input (7~0)
 output [3:0] uX; //u1011xxxx,u1010xxxx,u1001xxxx,u1000xxxx
 output [6:0] u210; //u210=011, u210=010, u210=001, u210=000
 //u210=111, u210=110, u210=101
 output [4:0] SRC; //SRC=011, SRC=010, SRC=001, SRC=000, SRC=111
 output [5:0] flag; //flags M@PC, MR, MA, MW, LO, HI
 inout [7:0] data; //data signals

 wire [7:0] d_out;

 /* DIODE ROM */
 //input: u[0],u[1],u[2],u[3],u1010xxxx
 //output: data[7:0]
 wire [2:0] U;
 wire [7:0] Dout_ROM;
 assign U = {u[2],u[1],u[0]};
 diode D1 (Dout_ROM, U, u[3]);

 /* Instruction Decoder */
 //input: u[7:0]
 //output: data, uX[3:0], u210[6:0], SRC[4:0], M@PC, MR, M@A, MW, LO, HI
 wire D_en; //data enable for InsDec (SRC=110)
 decoders InDe (u, D_en, flag, uX, u210, SRC);

 // data signal selection
 wire En;
 assign d_out = (D_en)?Dout_ROM:8'b0000_0000;
 and N0 (En,D_en,uX[2]);
 bufif0 (data[0],d_out[0],En);
 bufif0 (data[1],d_out[1],En);
 bufif0 (data[2],d_out[2],En);
 bufif0 (data[3],d_out[3],En);
 bufif0 (data[4],d_out[4],En);
 bufif0 (data[5],d_out[5],En);
 bufif0 (data[6],d_out[6],En);
 bufif0 (data[7],d_out[7],En);

endmodule

/* Components of Instruction Decoder */

//demux 74138 (modified)
module Uxxxx (uOUT, EN, sel);
 input [2:0] sel; //input u6,u5,u4
 input EN; //input u7
 output [3:0] uOUT; //output u1011xxxx,

u1010xxxx, u1001xxxx, u1000xxxx
 reg [3:0] out; //as buffer for output

 always @ (sel)
 begin

 case (sel)
 3'b000: out = 4'b1110;
 3'b001: out = 4'b1101;
 3'b010: out = 4'b1011;
 3'b011: out = 4'b0111;
 3'b100: out = 4'b1111;
 3'b101: out = 4'b1111;
 3'b110: out = 4'b1111;
 3'b111: out = 4'b1111;
 default: out = 4'b1111;
 endcase
 end

47

 assign uOUT = (EN)?out:4'b1111;

endmodule

//demux 74155
module mux155 (outA, outB, enA, enB, add);
 input [1:0] enA,enB; //enable select (G,C)
 input [1:0] add; //select line (address)
 output [3:0] outA; //output A
 output [3:0] outB; //output B
 reg [3:0] out_a;
 reg [3:0] out_b;

 always @ (add, enA) //enabled with 01
 begin
 if (enA[0])
 begin
 case (add)
 2'b00: out_a = 4'b1110;
 2'b01: out_a = 4'b1101;
 2'b10: out_a = 4'b1011;
 2'b11: out_a = 4'b0111;
 default: out_a = 4'b1111;
 endcase
 end
 else
 begin

 out_a = 4'b1111;
 end
 end
 assign outA = (~enA[1])?out_a:4'b1111;

 always @ (add, enB) //enabled with 01
 begin
 if (~enB[0])
 begin
 case (add)
 2'b00: out_b = 4'b1110;
 2'b01: out_b = 4'b1101;
 2'b10: out_b = 4'b1011;
 2'b11: out_b = 4'b0111;
 default: out_b = 4'b1111;
 endcase
 end
 else
 begin
 out_b = 4'b1111;
 end
 end
 assign outB = (~enB[1])?out_b:4'b1111;

endmodule

/* Instruction Decoder module [without clock
signals] */
module decoders (uIN, En, flag, Ux, u210, SRC);
 input [7:0] uIN; //u signal input (7~0)
 output En;
 output [5:0] flag;
 //flag signals (M@PC, MR, M@A, MW, LO,

HI)
 output [3:0] Ux;
 //u1011xxxx, u1010xxxx, u1001xxxx,

u1000xxxx
 output [6:0] u210;
 //u210=011, u210=010, u210=001, u210=000
 //u210=111, u210=110, u210=101
 output [4:0] SRC;
 //SRC=011, SRC=010, SRC=001, SRC=000,

SRC=111

 //define supply for HI and LOW signals
 supply0 zero;
 supply1 one;

 //u=____xxxx decoder (U9 in schematic)
 wire [2:0] Ux_in;
 //input to uXXXX decoder
 wire [3:0] Ux_out;
 assign Ux_in = {uIN[6],uIN[5],uIN[4]};
 Uxxxx u9 (Ux_out, uIN[7], Ux_in);
 //output buffer for u=____xxxx decoder
 buf u9a (Ux[0],Ux_out[0]);

 buf u9b (Ux[1],Ux_out[1]);
 buf u9c (Ux[2],Ux_out[2]);
 buf u9d (Ux[3],Ux_out[3]);

 //u210 signal decoder (u10 in schematic)
 wire [3:0] outA, outB;
 wire [1:0] enAB;
 wire [1:0] add1;
 wire n_out;
 assign add1 = {uIN[1],uIN[0]};
 and u4c (n_out,Ux[0],uIN[7]);
 assign enAB = {n_out,uIN[2]};
 mux155 u10 (outA, outB, enAB, enAB, add1);
 //output buffer for u210 signal decoder
 buf u10a (u210[0],outA[1]);
 buf u10b (u210[1],outA[2]);
 buf u10c (u210[2],outA[3]);
 buf u10d (u210[3],outB[0]);
 buf u10e (u210[4],outB[1]);
 buf u10f (u210[5],outB[2]);
 buf u10g (u210[6],outB[3]);

 //SRC signal decoder (u11 in schematic)
 wire [3:0] outC, outD;
 wire [1:0] enCD;
 wire [1:0] add2;
 assign add2 = {uIN[4],uIN[3]};
 assign enCD = {uIN[7],uIN[5]};
 mux155 u11 (outC, outD, enCD, enCD, add2);
 //output buffer for SRC signal decoder

48

 buf u11a (SRC[0],outC[3]);
 buf u11b (SRC[1],outD[0]);
 buf u11c (SRC[2],outD[1]);
 buf u11d (SRC[3],outD[2]);
 buf u11e (SRC[4],outD[3]);

 //flag signals (u7 in schematic)
 wire Hi, Lo, MW, MA, MR, MPC;
 //DECT_M@A = MW
 wire uIn6;
 or u3b (Lo, uIN[7], uIN[6]);
 not u1e (uIn6, uIN[6]);
 or u3c (Hi, uIN[7], uIn6);
 or u3a (MW, uIN[7], outA[0]);
 and u4a (MA, MW, outC[0]);
 //outC[0] = SRC_M@A
 and u4b (MR, outC[0], outC[1]);
 //outC[1] = SRC_M@PC
 assign MPC = outC[1];
 //output buffer for flag signals
 buf u7a (flag[0],Hi);
 buf u7b (flag[1],Lo);
 buf u7c (flag[2],MW);
 buf u7d (flag[3],MA);
 buf u7e (flag[4],MR);
 buf u7f (flag[5],MPC);

 //data signals control (u8 in shcematic)
 assign En = outC[2];

endmodule

/* Diode ROM Module */
module diode (data, U, u3);
 input [2:0] U;
 input u3; //, u1010;
 output [7:0] data;
 reg [7:0] data;

 always @ (U, u3)
 begin
 if (~u3)
 begin
 case(U)
 4'b000: data<=8'b1110_1001;
 4'b001: data<=8'b0110_1001;
 4'b010: data<=8'b1010_0110;
 4'b011: data<=8'b0110_0110;
 4'b100: data<=8'b1110_1100;
 4'b101: data<=8'b0110_1100;
 default: data<=8'b1111_1111;
 endcase
 end
 else
 begin
 case(U)
 4'b000: data<=8'b1101_1111;
 4'b001: data<=8'b1111_1010;
 4'b010: data<=8'b1111_1011;
 4'b011: data<=8'b1111_1110;
 4'b100: data<=8'b1101_0000;
 4'b101: data<=8'b1111_0110;
 4'b110: data<=8'b1111_1001;
 default: data<=8'b1111_1111;
 endcase
 end
 end

endmodule

49

Appendix IV Test Codes for UP2 Board

//TEST MODULE FOR SENDING SIGNALS

FROM FPGA TO TTL
//[INPUT FROM FPGA IS PROCESSED BY

74LS181 (ALU)]
//[RESULT RETURN TO FPGA FOR DECODE

TO 7-SEGMENT]

module core_1 (inA, inB, outA, outB, inSel,

outSel, BCD, LCD);
 input [2:0] inA, inB;
 input [3:0] BCD;
 input [1:0] inSel;
 output [2:0] outA, outB;
 output [5:0] outSel;
 output [7:0] LCD;
 reg [5:0] outSel;
 reg [7:0] LCD;

 //on board DIP switch to ALU input
 assign outA = inA;
 assign outB = inB;

 //ALU function select (active high in,out)
 always @ (inSel)
 begin
 //active low
 case (inSel)
 2'b00: outSel <= 6'b100101; //add
 2'b01: outSel <= 6'b011000; //sub
 2'b10: outSel <= 6'b111011; //or
 2'b11: outSel <= 6'b101111; //and
 default: outSel <= 6'b111110;
 endcase
 end

 //BCD for 7-segment display (ALU result)
 always @ (BCD)
 begin
 //active low
 case (BCD)
 4'b0000: LCD = 8'b0000_0011; //0
 4'b0001: LCD = 8'b1001_1111; //1
 4'b0010: LCD = 8'b0010_0101; //2
 4'b0011: LCD = 8'b0000_1101; //3
 4'b0100: LCD = 8'b1001_1001; //4
 4'b0101: LCD = 8'b0100_1001; //5
 4'b0110: LCD = 8'b0100_0001; //6
 4'b0111: LCD = 8'b0001_1111; //7
 4'b1000: LCD = 8'b0000_0001; //8
 4'b1001: LCD = 8'b0001_1001; //9
 4'b1010: LCD = 8'b0001_0001; //A

 4'b1011: LCD = 8'b1100_0001; //b
 4'b1100: LCD = 8'b0110_0011; //C
 4'b1101: LCD = 8'b1000_0101; //d
 4'b1110: LCD = 8'b0110_0001; //E
 4'b1111: LCD = 8'b0111_0001; //F
 default: LCD = 8'b1111_1110; //.
 endcase
 end

endmodule

50

//TEST MODULE FOR FPGA AND MEMORY
CHIP (RAM)

//[FPGA READ DATA FROM RAM AND
DECODE TO 7-SEGMENT]

//[FPGA WRITE DATA TO RAM AND
CONTROL ADDRESS]

`timescale 1us/1ps

module core_2 (dip, data, addr, ctrl, LCD);
 input [7:0] dip;
 inout [3:0] data;
 output [1:0] addr;
 output [2:0] ctrl;
 output [7:0] LCD;
 reg [2:0] ctrl;
 reg [7:0] LCD;

 //write data
 assign data = (dip[7:6]==2'b01) ? dip[3:0] :

4'bz;

 //sending location address
 assign addr = dip[5:4];

 //read and write control
 always @ (dip[7:6])
 begin
 case (dip[7:6])
 2'b00: begin ctrl=3'b011; #5 ctrl=3'b001;

end //read
 2'b01: begin ctrl=3'b011; #5 ctrl=3'b010;

end //write
 default ctrl=3'b100; //disable
 endcase
 end

 //decode for display
 reg [3:0] BCD;
 always @ (ctrl,data)
 begin
 BCD = (ctrl==3'b001)?data:BCD;
 //load data to display at read mode
 end
 always @ (BCD)
 begin
 //active low
 case (BCD)
 4'b0000: LCD = 8'b0000_0011; //0
 4'b0001: LCD = 8'b1001_1111; //1
 4'b0010: LCD = 8'b0010_0101; //2
 4'b0011: LCD = 8'b0000_1101; //3
 4'b0100: LCD = 8'b1001_1001; //4
 4'b0101: LCD = 8'b0100_1001; //5
 4'b0110: LCD = 8'b0100_0001; //6
 4'b0111: LCD = 8'b0001_1111; //7
 4'b1000: LCD = 8'b0000_0001; //8
 4'b1001: LCD = 8'b0001_1001; //9
 4'b1010: LCD = 8'b0001_0001; //A

 4'b1011: LCD = 8'b1100_0001; //b
 4'b1100: LCD = 8'b0110_0011; //C
 4'b1101: LCD = 8'b1000_0101; //d
 4'b1110: LCD = 8'b0110_0001; //E
 4'b1111: LCD = 8'b0111_0001; //F
 default: LCD = 8'b1111_1110; //.
 endcase
 end

endmodule

51

//TEST MODULE FOR FPGA FUNCTION
WITH EXTERNAL CLOCK

//[READ CLOCK SIGNAL FROM MARK1
AND PERFORM COUNT]

module core_3 (clk, rst, LCD);
 input clk, rst;
 output [7:0] LCD;
 reg [7:0] LCD;
 reg [3:0] BCD;

 //clock down from 1MHz to 1Hz
 //count up from 0 to F
 reg [25:0] temp;
 always @ (posedge clk)
 begin
 if (rst)
 begin
 temp = 0;
 BCD = 4'b0;
 end
 else
 begin
 temp = temp + 1;
 BCD = (temp == 1000000) ? BCD+1 :

BCD;
 end
 end

 //decode binary to 7-segment
 always @ (BCD)
 begin
 //active low
 case (BCD)
 4'b0000: LCD = 8'b0000_0011; //0
 4'b0001: LCD = 8'b1001_1111; //1
 4'b0010: LCD = 8'b0010_0101; //2
 4'b0011: LCD = 8'b0000_1101; //3
 4'b0100: LCD = 8'b1001_1001; //4
 4'b0101: LCD = 8'b0100_1001; //5
 4'b0110: LCD = 8'b0100_0001; //6
 4'b0111: LCD = 8'b0001_1111; //7
 4'b1000: LCD = 8'b0000_0001; //8
 4'b1001: LCD = 8'b0001_1001; //9
 4'b1010: LCD = 8'b0001_0001; //A
 4'b1011: LCD = 8'b1100_0001; //b
 4'b1100: LCD = 8'b0110_0011; //C
 4'b1101: LCD = 8'b1000_0101; //d
 4'b1110: LCD = 8'b0110_0001; //E
 4'b1111: LCD = 8'b0111_0001; //F
 default: LCD = 8'b1111_1110; //.
 endcase
 end

endmodule

//TEST MODULE FOR QUADRATURE
CLOCK SIGNAL

//[DERIVE CLOCK FROM CRYSTAL]

module core_4 (clk, rst, LCD, clk_1, clk_2);
 input clk, rst;
 output [7:0] LCD;
 output clk_1, clk_2;
 reg [7:0] LCD;
 reg [3:0] BCD;

 //clock down from 4MHz to 1Hz and count up
 reg [21:0] temp;
 reg [1:0] cnt;
 wire clk_o;
 always @ (posedge clk)
 begin
 if (rst)
 begin
 temp = 0;
 BCD = 4'b0;
 cnt = 0;
 end
 else
 begin
 temp = temp + 1;
 BCD = (temp == 4000000) ? BCD+1 :

BCD;
 cnt = cnt + 1;
 end
 end
 assign clk_o = cnt[1];
 assign clk_1 = ~clk_o;
 assign clk_2 = ~clk_1;

 //decode binary to 7-segment
 always @ (BCD)
 begin
 //active low
 case (BCD)
 4'b0000: LCD = 8'b0000_0011; //0
 4'b0001: LCD = 8'b1001_1111; //1
 4'b0010: LCD = 8'b0010_0101; //2
 4'b0011: LCD = 8'b0000_1101; //3
 4'b0100: LCD = 8'b1001_1001; //4
 4'b0101: LCD = 8'b0100_1001; //5
 4'b0110: LCD = 8'b0100_0001; //6
 4'b0111: LCD = 8'b0001_1111; //7
 4'b1000: LCD = 8'b0000_0001; //8
 4'b1001: LCD = 8'b0001_1001; //9
 4'b1010: LCD = 8'b0001_0001; //A
 4'b1011: LCD = 8'b1100_0001; //b
 4'b1100: LCD = 8'b0110_0011; //C
 4'b1101: LCD = 8'b1000_0101; //d
 4'b1110: LCD = 8'b0110_0001; //E
 4'b1111: LCD = 8'b0111_0001; //F
 default: LCD = 8'b1111_1110; //.
 endcase
endmodule

52

//TEST MODULE FOR INDEX COUNTER
//[MIMIC INDEX MODULE OF MARK 1]

//counter (mimic 74LS169)
module Counter (In, Out, clk, load, RCO);
 input [3:0] In;
 input clk,load;
 output [3:0] Out;
 output RCO;
 reg [3:0] Out;
 reg RCO;

 always @ (posedge clk)
 begin
 if (~load)
 begin
 Out = In;
 end
 else
 begin
 Out = Out + 1;
 end
 end

 always @ (Out)
 begin
 if (Out==4'b1111)
 RCO = 0;
 else
 RCO = 1;
 end

endmodule

//display module
module disp (BCD, LCD);
 input [3:0] BCD;
 output [7:0] LCD;
 reg [7:0] LCD;

 always @ (BCD)
 begin
 //active low
 case (BCD)
 4'b0000: LCD = 8'b0000_0011; //0
 4'b0001: LCD = 8'b1001_1111; //1
 4'b0010: LCD = 8'b0010_0101; //2
 4'b0011: LCD = 8'b0000_1101; //3
 4'b0100: LCD = 8'b1001_1001; //4
 4'b0101: LCD = 8'b0100_1001; //5
 4'b0110: LCD = 8'b0100_0001; //6
 4'b0111: LCD = 8'b0001_1111; //7
 4'b1000: LCD = 8'b0000_0001; //8
 4'b1001: LCD = 8'b0001_1001; //9
 4'b1010: LCD = 8'b0001_0001; //A
 4'b1011: LCD = 8'b1100_0001; //b
 4'b1100: LCD = 8'b0110_0011; //C
 4'b1101: LCD = 8'b1000_0101; //d

 4'b1110: LCD = 8'b0110_0001; //E
 4'b1111: LCD = 8'b0111_0001; //F
 default: LCD = 8'b1111_1110; //.
 endcase
 end

endmodule

//main module
module indexing (clk, rst, LCD1, LCD2);
 input clk, rst;
 output [7:0] LCD1, LCD2;

 //clock down 1MHz to 1Hz
 reg [19:0] temp;
 reg clck;
 always @ (posedge clk)
 begin
 if (~rst)
 begin
 temp = 0;
 clck = 0;
 end
 else
 begin
 temp = temp + 1;
 clck = (temp == 1000000)?~clck:clck;
 end
 end

 //counter
 wire [3:0] dat;
 wire [3:0] c_out1, c_out2;
 wire RCO1, RCO2;
 assign dat = 4'b0;
 Counter C1 (dat, c_out1, clck, rst, RCO1);
 Counter C2 (dat, c_out2, RCO1, rst, RCO2);

 //display output
 disp D1 (c_out1, LCD1);
 disp D2 (c_out2, LCD2);

endmodule

53

Appendix V Photo Collection of The Project

This section provides a collection of photo taken throughout the project, for

illustration and also record purposes.

FLEX10K70 FPGA by Altera

FLEX10K FPGA used, on UP2 board

Power Supply

12VDC Power Supply

54

ATX Power Supply

Expansion card

Front view of Expansion Card Version 1 - flexible connection wires

Connection between Expansion Card and FPGA

55

Testing stage

FPGA interface test with 74LS181 ALU chip

56

FPGA interfacing with 6116 2KB SRAM

57

FPGA performing count-up using clock signal from Mark 1

58

Appendix VI Application Notes on FPGA Design

This section records the experience encountered while carrying out this project

with Altera FPGA device. The finding recorded could serve as reference for FPGA

design and application in the future.

Below is the list of discussion recorded in this section.

1. TTL Compatibility with FPGA

2. Clock Signal Derivation

3. INOUT Port Implementation in Verilog HDL

4. Use of Buffers for OUTPUT Port

TTL Compatibility with FPGA

Modern FPGA such as the FLEX10K from Altera or later models are TTL

compatible. In the configuration program provided by Altera, there is an option to

switch the I/O pins of FPGA to be TTL compatible at 5V level 3.3V level.

Besides, testing of FPGA with simple TTL design also confirmed that FPGA

and TTL signals are compatible. On the other hand, the success of implementing

Mark 1 Clone with FPGA in this project clearly proves that both FPGA and TTL are

compatible.

However, attention shall be given to the propagation time and setup time for

both TTL and FPGA signal when high speed application is required. Reason being it

was observed from oscilloscope that the setup time for TTL signals is slightly longer

than that of FPGA. This could affect the data signal especially for system involves

memory access.

59

Clock Signal Derivation

Several attempts had been made throughout this project to include the Mark 1

Clone system clock derivation into the FPGA but fails. There are 2 clock system for

the system namely ‘clock 1’ and ‘clock 2’. Both the clock signals are quadrature of

each other. Hence, a JK flop-flip is used in the design to derive the required

quadrature clock signal for the system.

After a few trials, a quadrature clock signal of 1MHz could be output from

FPGA I/O pin with clock edge identification and count-down from a 4MHz crystal

oscillator. However, the other portion of FPGA program, namely the Instruction

Decoder codes could not function correctly.

This finding shows that FPGA is not suitable for deriving clock signal using

frequency division, JK flip-flop or edge detection. The solution is to supply the clock

signal for digital system using physical components such as TTL chips.

INOUT Port Implementation in Verilog HDL

INOUT port in Verilog HDL code is implemented using 2 tri-state buffers with

a common enable. The tri-state buffers are enabled with the opposite signal level.

Hence, the usage of INOUT port in Verilog design has to be accompanied by a signal

that will determine the direction of data flow through the INOUT port.

The design of INOUT port control has a critical impact towards the design of

this project. Signal flow direction of a data bus is not much of concern in TTL design

as it is protected by the input or output of TTL chips. However, the case is rather

different in FPGA design. The wrong signal flow could put the FPGA system in

intermittent stage.

This issue is first encountered during the design for Index pointer module. The

port label “Data” is an INOUT port. The success control of data flow through this

port is the key of successfully in implementing the module using FPGA.

60

On the other hand, there is difficulty performing simulation for INOUT port.

Error is encountered when functional simulation is performed on the design. The

INOUT port had to be separated into individual INPUT and OUTPUT before the

simulation in ModelSim could be carried out properly. As for timing simulation

using Quartus II, there is no need to separate the port but high-impedance signal has

to be supplied to the INOUT port while it is functioning as output.

Use of Buffers for OUTPUT Port

The use of tri-state buffers before a data signal is send to the OUTPUT port can

help protect the FPGA I/O port and provide a stable signal to the system that is

receiving the signal.

This is particular when the OUTPUT port needs to provide high-impedance

signals. The use of tri-state buffer for each OUTPUT pin that needs to provide high-

impedance signal could help the FPGA in providing a stable signal.

This method should be used in place of equating the particular net or port with

high impedance, “z” signal. The output from a port which is supplied with “z” signal

is not as stable as the “z” signal is initiated by a tri-state buffer.

This issue is encountered during the design of Instruction Decoder and Index

module as both the module involves high-impedance signal output.

	CERTIFICATION OF ORIGINALITY
	ABSTRACT
	LIST OF FIGURE
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Background of Study
	Problem Statement
	Objective
	Outline of Report

	LITERATURE REVIEW AND THEORY
	Computer System Architecture
	Data Path
	Control Path
	Instruction Set Architecture (ISA)

	FORTH
	Stack Machine
	What is Stack?
	Advantages of Stack-Based Machine
	Important of Stack-Based Machine

	Stack-Based Machine and FORTH
	Chapter Summary

	METHODOLOGY
	Procedure Identification
	Tools
	Hardware
	Software

	Work Completed
	Testing of UP2 Board
	The Power Supply
	The Expansion Card
	TTL Module in HDL Design
	Interfacing and Replacing TTL Module with FPGA

	Chapter Summary

	RESULTS AND DISCUSSION
	Test Result of the UP2 Board
	Design of the Power Supply
	Design and Simulation
	Instruction Decoder Module
	Diode ROM Module
	Index Pointer Module

	Interfacing Troubleshoot and Discussion
	System Clock Derivation
	Short Circuit Test
	Voltage Drop Test
	Signal Waveform Test
	Other Test

	Implementation Results and Discussions
	Instruction Decoder Module
	Diode ROM Module
	Index Pointer Module

	Design Limitation
	Memory Capacity
	Complexity of Customization

	Chapter Summary

	CONCLUSION AND RECOMMENDATION
	Recommendation for Future Studies
	Conclusion

	REFERENCES
	APPENDICES
	Mark 1 FPGA Specification
	Specification
	System Overview
	µ-Instruction Format
	FPGA I/O Pins and Back Pane Connection

	Mark 1 Design Schematics
	Mark 1 FPGA Module Design in Verilog Codes
	Test Codes for UP2 Board
	Photo Collection of The Project
	FLEX10K70 FPGA by Altera
	Power Supply
	Expansion card
	Testing stage

	Application Notes on FPGA Design
	TTL Compatibility with FPGA
	Clock Signal Derivation
	INOUT Port Implementation in Verilog HDL
	Use of Buffers for OUTPUT Port

