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ABSTRACT 

This is the Final Dissertation for Electrical & Electronics Engineering Bachelor 

Degree Final Year Project (FYP). The title for this FYP is “Development of Stack 

Based Central Processing Unit for a FORTH Computer Using FPGA”. This project is 

based on the design by a previous FYP student, Aaron Tang Shen Lee with his title, 

“Development of a Stack-Based Centre Processing Unit (CPU) using TTL Logic”. 

Using the same stack architecture and FORTH programming language, this CPU is 

to be implemented using FPGAs instead of fully TTL. Besides, this project will make 

reference to the FORTH computer, Mark 1 built by Andrew Holme, just as the 

previous project did. This Final Dissertation will contain the progress on the 

implementation of the stack-based CPU into FPGA. The achievements and obstacles 

arise while completing this project will be recorded in this report. 
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CHAPTER 1 

INTRODUCTION 

1.1    Background of Study 

Computer architecture is the selecting, interfacing and interconnection between 

hardware and software of a system. It is generally consisting of the Centre 

Processing Unit (CPU), the I/O part and Memory [1]. Figure 1 shows the 

interconnection between the major parts of computer architecture. 

 

 

Figure 1 :  Key parts of digital computer architecture (figure from [1] page 44) 

 

A CPU design and architecture distinguish one from another. This project 

explores a different type of CPU architecture from the widely used register-based 

CPU designs – the stack-based CPU. Stack-based CPU is not as popular as registry-

based CPU in primary data handling for the reason many find stack a little complex 

to handle. However, stacks have advantages of their own. 

Programming language especially assembly level language are majority 

processor based. Hence syntax of one assembly language maybe specific to a 

particular CPU designs.  



 

 

 
2 

The stack-based CPU that this project explores has architecture oriented for 

implementing a stack-oriented, reflective programming language – FORTH 

language. FORTH is a structured stack-based programming environment and the 

language itself is type check free. Hence it is said to be reflective where one can 

expand the language itself.  

On top of that, this project is based on a FYP project by Aaron Tang, which 

studied the same FORTH Computer architecture, Mark 1 by Andrew Holme but 

implemented using fully TTL chips – the Mark 1 Clone. The objective of this project 

is to study the feasibility of implementing the Mark 1 Clone using FPGA. At the end 

of this project, a hybrid version of Mark 1 using FPGA and TTL is developed for 

FORTH Computer– Mark 1 FPGA. 

 

1.2    Problem Statement 

FORTH language or stacked-based computer system is an alternative type of 

computer architecture. It has advantages of its own. However, there are engineers 

who are not familiar with the advantages, design and implementation of such 

computer architecture. It is a bigger challenge to implement a stack-based computer 

using FPGA. 

 

1.3    Objective  

It is envisaged that the following is expected to be achieved. 

• Implementation of FORTH computer in FPGA form 

• Study the feasibility of CPU design using FPGA and its interaction with 

TTL device. 
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1.4    Outline of Report 

This report will consist of the following chapters. 

Chapter 2 Literature Review And Theory contains the literature review of 

computer system architecture, stack based machines and also FORTH language. It 

provides an overview of the mentioned topics. 

In Chapter 3 Methodology, an outline of the method used to implement this 

project will be discussed. The list of tools used in completing this project will also be 

described as well as providing some description on the work completed during the 

duration of this project. 

As for Chapter 4 Results And Discussion, the achievement of this project will 

be reported and discussed. The obstacles and challenges faced throughout the 

duration of this project will also be discussed. 

Lastly Chapter 5 Conclusion And Recommendation will provide some 

recommendation for future improvement and development and also a recap of this 

project. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

2.1    Computer System Architecture 

The architecture of computer system can be divided into a few operation 

structures. These operation structures rely on one another to perform a required 

computational task. This sub-chapter will discuss each the typical structure of a 

computer system. 

2.1.1    Data Path 

Data path is the part of a computer system which manipulates and control the 

data flow in the system according to the instruction’s definition. A simple computer 

will have a simple linear data path which is controlled by the control path for 

execution of an instruction set for the path. However, a more complicated computer 

will have multiple data path branch out and perhaps interconnect with each other to 

perform an operation or instruction. [1] 

 

 

Figure 2 :  Example of data path (figure from [1], page 246) 
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Figure 2 show an example of data path, which is the instruction execution unit 

of the MicroMIPS architecture [1]. A simple single-cycle data path is basically 

consisting of a program counter, instruction files, register files, ALU and data cache 

or memory. The data cache forms the data buses of the data path while the remaining 

components form the functional units of the data path. [1] 

2.1.2    Control Path 

The control path is responsible for controlling the data flow according to given 

instruction. Control of data flow is needed so that the system execution could flow 

from a completed instruction to the next instruction sequence. Control path does not 

have memory. It forms the control signals as a function according to certain bit from 

the instruction code. [1] 

The control signals can be executed easily for single-cycle implementation. 

However, most of the time the system instructions will requires a certain resource to 

be used for more than once. Such instructions required a more complex execution 

and implementation called multi-cycle implementation. [1] 

2.1.3    Instruction Set Architecture (ISA) 

Instructions are words of the machine language used by a machine. Instruction 

sets are the language and word vocabulary. Instruction set architecture is the 

vocabulary of words together with parts of the machine which functions to provide 

guidance to both data path and control path to perform a task. [1] 

Understanding of ISA is important for a computer system engineer and 

programmer to produce fast, compact and correct program for a machine. [1] This is 

because the operation of data path and control path of a given system architecture 

rely on a given instruction.  

Some example of instructions used in basic operation includes arithmetic, logic 

instruction, data instruction and control flow instruction. These instructions are in a 
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specific set of operational codes (opcodes) which means machine language, the 

native commands implementation by the computer design. [2] 

However, ISA is distinguished from the term micro-architecture which simply 

means the data path and control path of a CPU design. Reason being a different CPU 

design may share a common instruction set. Example could be taken from the Intel 

Pentium and AMD Athlon. Both of the CPU architecture is different but sharing the 

same ISA, which is the x86 32-bit instruction set. [2] 

 

2.2    FORTH 

FORTH is a structured, stack-based computer language and programming 

environment. [3] It can be implemented on a virtual machine like Java VM. It is 

normally implemented using indirect threaded code, which is a form of programming 

code. This makes a compiled FORTH extremely compact. FORTH has a compiler 

and command-line interpreter besides supporting structured programming. Besides 

having compiler that is free to use (for example Fig-FORTH), FORTH is simple, 

elegant and compact. [4] 

FORTH is a procedural, stack-oriented and reflective programming language 

without type check. It features both interactive execution of command and the ability 

to compile sequences of commands for later execution. Earlier versions of FORTH 

compile threaded codes but later versions compiler generate optimized machine 

code. [3]  

FORTH language is said to be a reflective programming language because of 

the ability to extend the language as a whole. Reason being the core language of 

FORTH has virtually no syntax. As you extend the language, you are actually 

defining your own syntax. [4] 

As FORTH is a stack-oriented program language, most data or parameters 

passing are done completely on the stack. Therefore, there is no need to define a lot 

of variables. However, it is recommended to comment the stack effect of every 
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FORTH word, because in FORTH, you are actually naming the actions and not the 

data itself. [4] 

FORTH is originally developed for small embedded control miniature 

computers. FORTH is implemented on many major processors manufactured. [5] 

However, FORTH lack the support from large industry for it is unique and the 

acceptance of it has to be done from basic fundamental. Hence, it is not as popular as 

other programming language such as C, C++ as well as other similar level languages. 

[6] Nevertheless, it is still being used in some embedded system especially in space 

application and also boot loader such as Open Firmware. [3] 

 

2.3    Stack Machine 

Stack-based hardware supports Last in First out (LIFO) stacks is being used on 

computer since the late 1950s. Stack is originally designed to increase the execution 

efficiency of high level languages such as ALGOL. However, this approach has not 

gain popularity and in favor of designers and hence is being used only as secondary 

data handling structure in most computers. Many designers prefer to use register-

based machine for their primary data handling due to the reason some finds stack 

rather dismay compared to registers. [7] 

Emergence of VLSI processors brings forward the question on conventional 

methods of computer designs. CISC and RISC instruction sets evolves to incorporate 

the advancement of VLSI processors. With this, stack machines are being considered 

as an alternative design style. VLSI allows new stack computers to attain impressive 

combination of speed, flexibility and simplicity with their features. [7] 

With VLSI, stack machines could offer lower processor complexity than CISC 

machines and lower overall system complexity than either RISC or CISC machines. 

These good performances are achieved without complicated compilers or cache 

control hardware. The first successful application is in the area of real-time 

embedded control environment, where they outperformed other system design. [7] 
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Stack machine uses lower raw resources but produce superior performance for 

a given price in most of the programming environment. It shows great performance 

while executing logic programming language such as Prolog, functional 

programming language such as Miranda and Scheme, and artificial intelligence 

research language such as OPS-5 and Lisp. [7] 

2.3.1    What is Stack? 

Stack is also known as LIFO stacks or “push down” stacks. It is conceptually 

the simplest way to save information in a temporary storage location for common 

computer operations such as mathematical expression evaluation and recursive 

subroutine callings. [7] 

LIFO can best be described using cafeteria tray example. Consider a spring-

loaded tray dispenser. Assuming each try has number on it and is being loaded in 

from the top one after another. Each of the loaded tray will rest on the already loaded 

trays with the spring is being compressed to make room for more trays. Figure 3 

illustrates the loading of tray with number 42, 23, 2 and 9, with 42 loaded first and 9 

loaded last. [7] 

 

 

Figure 3 :  Example of LIFO stacks operation (from Philip Koorman, section 1.2 [7],) 
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As illustrated in Figure 3, the ‘Last In’ tray is number as 9 and the ‘First Out’ 

tray is also tray numbered 9. The next tray that will be removed after 9 will be 2 and 

so on. However, if more trays were to be added at this point, they had to be removed 

from the stack before the very first tray, tray 42 could be removed. Any pushes and 

pops on the top will retain tray 42 in illustration on the bottom. The stack would only 

be empty again after the tray 42 is being popped from the top of the stack. [7] 

2.3.2    Advantages of Stack-Based Machine 

Stack machines are more efficient in running certain type of program than 

register-based machines, in particular modularized program. Stack machines are also 

simpler than other machine besides providing good computational power with little 

hardware. Real time embedded control application favor the use of stack machines. 

This is because it requires a combination of small size, high processing speed and 

excellent support for interrupt handling that can only be achieved with stack 

machines. [7] Following are some highlight of stack machines from the point of view 

of someone who had made a living with stack machines. [8] 

• Stack processors do not need to pipeline ALU and operands because operands 

are immediately available in the top of stack buffer registers.  

• Only about 16 deep on-chip stack buffers are needed and spilling can be done 

by stack overflow interrupts hence reduce cost for interrupt-driven overflow. 

• Context switching for interrupts needs only zero time, whereby no registers is 

needed to be saved. ISR values are placed on the top of the stack and are 

being clean off when done. 

• Program size makes a lot of difference in embedded control. Stack computer 

small program size can be achieved with compact opcodes, reuse of short 

code segment and implicit argument passing without subroutines. 

 

2.3.3    Important of Stack-Based Machine 

Theoretically, stacks are important because they are the most basic and natural 

tool that can be used in processing a well structured code. LIFO stacks machine are 

required to compile computer languages and maybe the translation of natural 
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languages. A computer with support for stack structure will probably execute 

application requiring stacks more efficiently than other machine. [7] 

Compilers for stack machines are easier to be written simply because they have 

fewer exceptional cases to complicate a compiler. This made some people says that 

programming stack machines is easier than conventional machine and stack machine 

program run more reliably than other programs. However, running compiler require 

certain percentage of machine resources. Therefore, building a machine with 

efficient compiler is important. [7] 

 

2.4    Stack-Based Machine and FORTH 

As mentioned, FORTH is a structured, imperative, stack-based programming 

language, which runs on a stack-based computer. LIFO stacks, which is also known 

as “push down” stacks is the key element for a stack machine and also FORTH. 

Combining the advantages of FORTH programming language and the stack-based 

machines, a high performance embedded system could be developed and perhaps 

achieve low cost with different type of CPU construction technology. 

 

2.5    Chapter Summary 

This chapter provides a review on computer system architecture, stack 

machines and FORTH language. We could generally divide a computer system into 

three (3) major components, namely data path, control path and instruction set 

architecture. A stack based machine uses LIFO stack for data handling. FORTH 

language on the other hand, is a structured, stack-based computer programming 

language, which required a stack machine for implementation. 
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CHAPTER 3 

METHODOLOGY 

3.1    Procedure Identification 

 

Figure 4 :  Flow Chart of Project 
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The objective of this project is to implement Mark 1 Clone, a fully TTL 

version FORTH computer using FPGA and study the interfacing capability of FPGA 

and TTL. Hence, a modular approach is used in this project. 

Implementation is done one module at a time as outlined by the flow chart in 

Figure 4. Proper study of module design is done before design is made with Verilog 

code. Verilog code is then downloaded into the FPGA and tested for compatibility 

with TTL modules before another module is designed in Verilog. Module which 

could not be fitted into the FPGA will be implemented using TTL, especially module 

involves memory chips. 

 

3.2    Tools 

The main tool in this project would be the FPGA chip that the CPU will be 

build into. Altera University Program 2 (UP2) board and other electronics 

components and sockets are among some essential tools. Verilog HDL programming 

language will be the main programming language used to program the FPGAs. 

3.2.1    Hardware 

Computer with connection cable to the FPGA chip used is the hardware 

involved at the implementation stage. Altera UP2 board that houses the FPGA chip 

will be the hardware required. The MAX7000 CPLD and FLEX10K FPGA on the 

UP2 board will be used for this project. 

Euro-cards and IDC connectors are among the electronic components that are 

needed for interfacing and connecting the UP2 board to external components, 

especially to the existing TTL CPU. 

Besides, instrumentation tools such as oscilloscope, logic analyzer and digital 

multi-meter are also used to aid analysis procedure. The tools eases troubleshooting 

procedure in this project.  
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3.2.2    Software 

The software that will be used for current stage of implementation would be 

Altera ModelSim and also Altera Quartus II for HLD simulation, compilation and 

also programming the compiled codes into the FPGA. 

 

3.3    Work Completed 

There are nine (9) modules build on euro cards that forms the Mark 1 Clone 

FORTH CPU. Table 1 show the modules that forms the Mark 1 Clone CPU which 

will be attempted to be implemented using FPGA. 

 

Table 1 :  Modules in Mark 1 Clone 

1.  Instruction Decoder 

2.  Diode ROM 

3.  Instruction Pointer Index 

4.  Address Pointer Index 

5.  ALU 

6.  Stacks 

7.  Memory 

8.  Microcode Sequencer and Power ON reset 

9.  I/O  

 

Several steps are taken to examine the influential factors that could affect the 

success of implementation. After ensuring all these factors were taken care of, the 

implementation of TTL modules in FPGA forms started with the sequence of listing 



 

 

 
14 

as of above. The success of first module implementation will serves to guide the 

implementation of the remaining modules. 

3.3.1    Testing of UP2 Board 

The first step of implementation of the FORTH Computer System in Verilog 

form is to perform hardware check, testing and verification for error. Therefore, the 

first task upon recipient of the UP2 board is to write a test program to be run on the 

UP2 board. This is to ensure that the board is functional before the actual program is 

loaded into it. The test program code is attached on Appendix IV  . Result on testing 

of the UP2 board will be discussed in the next section, Chapter 4.1   . 

3.3.2    The Power Supply 

Besides this, there is a need to build a power supply for the existing stack-CPU 

built by the previous FYP student. Two different power supplies are being built for 

the Mark 1 Clone. One of the power supplies was modification of a variable 12VDC 

power supply and another is from the desktop computer ATX power box. However, 

only the ATX power box is capable of supplying sufficient current for the operation 

of Mark 1 Clone. Detail of design is discussed in Chapter 4.2   . 

3.3.3    The Expansion Card 

An expansion card is made using a Euro card to interface the Mark 1 Clone 

with UP2 board for design verification on the Verilog codes functionality. In 

addition, this board also functions to allow the FPGA connect to the existing TTL 

modules during the implementation. 

In order to make the expansion board flexible and universally connectable, 

more work had been done in adding inter-changeable connectors on the board. This 

allows the assigned FPGA I/O pins to be connected to any of the pins on the Mark 1 

Euro card backbone. Sub-section “Expansion card” under Appendix V  contains the 

photo of expansion card mentioned. 
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Besides, an expansion card Version 2 also being built on later stage to 

accommodate more I/O pins from the UP2 board. Reason being one (1) expansion 

port from UP2 FLEX10K FPGA provides only forty-two (42) programmable I/O 

pins. Hence, to allow connection from the FPGA to sixty-two (62) I/O pins of the 

Mark 1 Clone back panel, two (2) expansion ports is needed. 

3.3.4    TTL Module in HDL Design 

The next task after hardware examination would be designing the Mark 1 

modules in Verilog form for implementing in the FPGA. The sequence of 

implementation would be according to the sequence of Table 1. The modules are 

being redesign and coded into Verilog HDL according to sequence. The Verilog 

designs of the modules are attached in Appendix III  . A top module is used in to 

combine the individual modules before interfacing to the TTL modules during the 

testing of multiple modules. 

3.3.5    Interfacing and Replacing TTL Module with FPGA 

After simulating and verifying the designed module using Altera ModelSim 

and Altera Quartus II software, the respective TTL module is ready to be replaced. 

Interfacing is done using the expansion card that is tested with error free.  

During the replacing process, the respective TTL module will be removed from 

back panel and the Verilog design of the respective module will be downloaded into 

the FPGA. After connecting the FPGA to the back panel using the expansion card, 

the Mark 1 Clone is power up to verify if the system is being replaced correctly. 

However, the success of implementation was not as expected every time the 

design is being implemented. Several analyses and troubleshooting are done in the 

process of implementation. Chapter 4.4   and 4.5   records the analysis and discussion 

of the troubleshooting result. 
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3.4    Chapter Summary 

This chapter discusses the methodology used to implement this project. A flow 

chart (Figure 4) is used to illustrate the process of implementation. Besides, the 

achievement of this project is recorded under Chapter 3.3    “Work Completed”. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1    Test Result of the UP2 Board 

Several versions of Verilog code is designed and programmed to test the UP2 

board. The Verilog codes used to test the board is attached in Appendix IV  . 

Two UP2 board were used but only one was tested working properly with the 

test code on the MAX7000 CPLD chip. The FLEX10K FPGA chip did not respond 

properly to the test. However, when the FLEX10K chip is revisited, it responded to a 

test code which uses input driven by the MAX7000 chip.  

After carrying out more testing with the FLEX10K FPGA, using test codes 

attached, it is concluded that the FPGA chip is functional. Further test shows that the 

on-board oscillator is accessible but there are problem deriving clock signals from 

FPGA. This will be further discussed in Chapter 4.3.1   , 4.5.1   and Appendix VI  .  

Besides, under Appendix V  “Testing stage” contains pictures taken during 

testing of the FPGA with various test code attached in Appendix IV  . 

 

4.2    Design of the Power Supply 

Two different power supplies were utilized for Mark 1 Clone.  

The first is a DC power supply that could supply power varying from 10VDC 

to 15VDC. Therefore, a voltage regulator circuit is made to limit the supply current 

to 5VDC. However, it is not able to supply sufficient power required by the TTL 

Mark 1 Clone and not being used in this project. 
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The second is the computer power supply unit, an ATX power box. This power 

box could provide DC power of 12V and 5V. A simple circuit is made to switch the 

ATX box ON and OFF while tapping the 5VDC supply for the Mark 1 Clone. Mark 

1 Clone is tested working properly with the ATX power box and hence it shall 

remain the power supply for this project. 

 

4.3    Design and Simulation 

Each module design in Verilog code went through two level of simulation. The 

code is firstly designed and compiled using Altera ModelSim software to simulate 

and verify the functionality of the code. After the code is verified to be functioning 

correctly, it is transferred to Altera Quartus II software for simulation, download 

configuration and timing analysis.  

4.3.1    Instruction Decoder Module 

The function of Instruction Decoder module is to decode the microcode of the 

system to various control signals. The Verilog code of Instruction Decoder is 

compiled in ModelSim and functional simulation is performed on it to study and 

verify the codes functionality before being transfer to Quartus II for implementation 

into the UP2 board. 

First attempt of simulation fails as some of the signal used in the design shows 

error. After several corrections, the code shows that the Instruction Decoder written 

is working well and all output signals are responding to changes in input. Figure 5 

shows the successful result from functional simulation on the written code using 

ModelSim. 

This functional simulation waveform is cross-checked with the schematics 

diagram of the Instruction Decoder. This is done by checking the output signal in 

accordance to some sets of input signals. After cross-checking, the output waveform 

does show that the Verilog version of the Instruction Decoder performs the necessary 
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decoding as per the TTL version. This simulation waveform serves as the base of 

comparison for the timing simulation from Quartus II later for performance check. 

 

 

Figure 5 :  Functional simulation waveforms for Instruction Decoder module 

 

However, when the code is being simulated in Quartus II on timing simulation, 

the clock signal did not produce the expected result. The code written is verified that 

it could not be implemented in real world. Attached code on Appendix III   shows the 

modified code without clock signals, which the final code that works. 

Further investigation confirmed that FPGA is not capable of deriving clock 

signals for a digital system. Hence, the original clock design using TTL will be used 

to provide the clock signal for the system. More discussion can be found in Chapter 

4.4.1    and “Clock Signal Derivation” section under Appendix VI   

Figure 6 shows the timing simulation result using Quartus II. Verification on 

timing simulation result shows that the written code could function on the chosen 
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FLEX10K FPGA chip. After assigning each I/O pin, the program is downloaded to 

the chip and tested with a test unit designed for the instruction decoder module. 

 

 

Figure 6 :  Timing simulation waveform for Instruction Decoder module 

 

After satisfied with the code verification on the FLEX10K FPGA, the FPGA is 

then connected to the expansion card, which had been wired the designated I/O pins 

of FPGA to the correct Mark 1 signal buses. The Verilog version of Instruction 

Decoder is then put into full test. 
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4.3.2    Diode ROM Module 

The Diode ROM module basically functions to decode the function selection 

signals for ALU. Hence, the design of the module is similar to a decoder. This made 

this module an easier one to be designed. 

After designing the module in code, the code is simulated using ModelSim. 

Figure 7 shows the functional simulation waveform for Diode ROM module. The 

simulation result is satisfying and hence the code is loaded into Quartus II for next 

step of implementation. 

 

 

Figure 7 :  Functional simulation waveform for Diode ROM module 

 

In Quartus II timing simulation is carried out on the codes. Besides, it also 

tested for implementation feasibility with the place and route function of Quartus II. 

Figure 8 shows the timing simulation waveform for Diode ROM module.  
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Both simulation waveforms suggest that the module is functioning. Waveform 

patterns are compared with the module design for further verification and 

confirmation. 

After completing the test and verification, the code is downloaded into the 

FPGA chip and put into full test. 

 

 

Figure 8 :  Timing simulation waveform for Diode ROM module 

 

4.3.3    Index Pointer Module 

Both Instruction Pointer Index and Address Pointer Index are of the same 

design. The difference between them is on some of the input pins, namely u210, SRC 
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and flag signals. They function to index and point the address location of current 

instruction execution for both memory addresses and instructions location. 

The Index module is designed with such flexibility, where by the different 

input pins connection is made general. This could ensure that the module can be used 

for both modules without the need to modify the code but just a little change with the 

connection assignment. 

As this module involves INOUT ports, functional simulation could not be done 

using ModelSim without separating the INOUT ports to individual input port and 

output port. Hence, the simulation result for this module could not accurately shows 

that the module designed is working perfectly. 

However, the codes are downloaded into the FPGA after successful 

compilation and simulation in Quartus II. The codes is then put into full test after the 

expansion card is wired correctly for replacing the respective module, be it 

Instruction Pointer Index or Address Pointer Index. 

 

4.4    Interfacing Troubleshoot and Discussion 

Troubleshooting on interfacing is done during the implementation of the first 

module, the Instruction Decoder module. The unsuccessful implementation prompted 

the need to re-examine some of the factors that could and may affect the 

implementation results. 

As the Mark 1 Clone did not respond when the FPGA version of Instruction 

Decoder is implemented, investigation was carried out: 

• Short circuit test on the expansion card, as the possibility of occurrence 

is very high with the number of micro wires soldered on it 

• Voltage drop on the system and each module to verify the system is 

running normal 

• Signal waveform check using oscillator to check for faulty output 
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Before the mentioned troubleshooting steps are taken, the system clock has to 

be taken care off first. This is necessary to ensure that the correct clock signal is 

supplied to the system. 

4.4.1    System Clock Derivation 

System clock affects the performance of the entire system. Hence it is needed 

to ensure that the system is receiving the required clock waves. As clock signals 

could not be derived from FPGA, the system clock is tapped from the original TTL 

version of Instruction Decoder. Minor rewiring is done to use the clock signal from 

the TTL module. This is only needed when testing the Instruction Decoder module. 

4.4.2    Short Circuit Test 

Short circuit test is being carried out on full-scale on the expansion card. Each 

pins and wire are tested with all adjacent pins. All points with possibility to short 

circuit are tested. After rectifying short circuit points on the card, it could be 

concluded that the system is not affected by short circuit and signal sending on the 

wrong bus. 

4.4.3    Voltage Drop Test 

Voltage drop on each module of the TTL version system is measured to assist 

troubleshooting. Table 2 shows the figure of measurement on voltage drop for 

investigation. 
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Table 2 :   Voltage drop measurement 

Module Voltage Drop (V)** 

Instruction Decoder 0.04 

Memory 0.03 

Index M@W/A 0.08 

Index M@IP/PC 0.08 

I/O 0.03 

Stacks 0.05 

ALU 0.06 

Diode ROM 0.00 

**Note:  approximation of ±0.01V applies 

 

A total of 0.37V drop is measure on the TTL system with a supply of 5.00V. 

The measured voltage from VCC to GND reads 4.57V. This voltage level is just 

sufficient for the operation of TTL as their minimum operating voltage is 4.5V. 

The current consumed by the TTL Mark 1 Clone is 1.10A, which is rather 

high. This explains the reason for the overload of the 12VDC converted power 

supply. The added voltage regulator could not regulate current above 1.0A for 

5VDC. 

Studying the pattern of voltage readings with and without interfacing card as 

well as the FPGA module, short circuit within the system is not likely the reason for 

the system not being able to run. 

However, this serves to aid the observation for reducing power consumption of 

the system with the use of FPGA. Power consumption of a system is a crucial part of 

design as technology is moving towards low power and efficient system. 
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4.4.4    Signal Waveform Test 

It is hypothesized that the timing waveform and signal level of signals from 

TTL to FPGA and FPGA to TTL leads to the investigation to test the signal 

waveforms. This test is done with the aim to verify that there is no signal timing 

issue between FPGA and TTL.  

The signal waveforms are observed using oscilloscope and the signal pattern is 

observed using Logic Analyzer. However, as there are no consistent signal 

waveforms, the test could not be properly verified and concluded.  

On the other hand, observation on the critical path and propagation delay 

shows that there are sufficient setup times for the signal. The worse case propagation 

delay for FPGA would be around 40ns (nano-seconds) while the clock period is 1us 

(micro-seconds). Hence signal violation is not likely to happen. 

More observation will be made from time to time to examine the signal 

waveforms between FPGA and TTL for future studies. 

4.4.5    Other Test 

In addition, a test circuit to investigate the correctness of the module function is 

build to cross-check FPGA version with the TTL version. This test circuit is built 

based on the functionality of the Instruction Decoder module.  

Test result from the circuit shows that the FPGA version functions just as the 

TTL version. Both of the versions decode incoming signals correctly and identically. 

This study shows that FPGA can be designed to performs and function just as TTL 

does. Besides, this test could verify the functionality of FPGA module design on 

independent basis. 
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4.5    Implementation Results and Discussions  

Various problem faced when the modules are implemented using FPGA. As 

the interfacing method had been tested feasible with no errors, troubleshoot to 

overcome failure of implementation lies on the module design as well as pin 

assignment and connection. 

4.5.1    Instruction Decoder Module 

Appendix VI   records some also findings on design notes and application 

using Verilog HDL and also FPGA. However, the studies are based on Altera 

product architecture and software. Slight different may appears with product from 

other company such as Xilinx etc. 

After several isolate and test studies and implementing the clock derivation 

section using TTL, the design module is finally working properly. Some fine tuning 

and repeated testing is done with the design to ensure that the system is not operating 

on intermittent state.  

The success of implementing this module marks another steps of possibility 

and feasibility in implementing TTL design using FPGA.  

4.5.2    Diode ROM Module 

The Diode ROM design and structure is less complex compared to the other 

modules. Hence, the module was successfully interfaced with TTLs without much 

complication. 

4.5.3    Index Pointer Module 

Index Pointer module is mainly form by counters. Hence the counter design is 

the key success of implementing this module using FPGA. Besides, this module also 

involves INOUT ports. The finding on design using INOUT ports is recorded in 

Appendix VI   under section “INOUT Port Implementation in Verilog HDL”. 
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Several intermittent issues arise during the implementation and testing stage 

but it was taken care of using proper buffers design. Codes in Appendix III  records 

the final working design of the FPGA version of this module. 

 

4.6    Design Limitation 

There are several limitations in implementing some modules of Mark 1 Clone 

using FPGA. This section discusses the difficulties faced. 

4.6.1    Memory Capacity 

Memory is the data storage location for a system. Three (3) of Mark 1 Clone 

design is memory based, namely Stack, Memory and Microcode Sequencer.  

Stack module forms the stack data memory of Mark 1 Clone hence requires a 

large number of RAM space. Memory module contains the boot data for Mark 1 

Clone and serves as the primary data storage of the system hence requires a great 

capacity of RAM and ROM. Microcode Sequence stores the microcode of the system 

in ROM. 

Table 3 shows the memory capacity requirement of each of the mentioned 

modules. 

Table 3 :   Memory requirement of Mark 1 Clone modules 

Module Memory Chip Required 

Stack 2 x 2KB RAM  (6116) 

Memory 3 x 8KB RAM  (6264) 

1 x 8KB ROM (2764) 

Microcode Sequencer 1 x 8KB ROM (2764) 
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The FPGA used in this project, FLEX10K is having only a memory capacity of 

18,432-bits, which is insufficient for each of the modules. The total memory required 

by the three mentioned modules is close to 44-kilo-bytes or 44 x 8-kilo-bits. 

Hence, Stack module, Memory module and Microcode Sequencer module are 

not implemented fully using FPGA. Instead, TTL chips are used to implement them. 

4.6.2    Complexity of Customization 

ALU module performs the execution of arithmetic and logical operation of an 

instruction. This module could not be implemented using FPGA successfully for he 

complexity of the module design to be customized using FPGA. Hence, this module 

is being implemented using TTL chips. 

The I/O module functions to provide interfacing between Mark 1 Clone with 

Personal Desktop Computer through serial communication. Windows Operating 

System in Personal Desktop Computer communication with Mark 1 Clone serially 

using the application ‘Hyper Terminal’. Serial interfacing using FPGA is another 

field of application. Hence this module is implemented using TTL chips for this 

project. 

4.7    Chapter Summary  

This chapter discusses the troubleshooting and FPGA modules implementation 

results in detailed. In summary, there are several modules of Mark 1 Clone could not 

be implemented using FPGA, due to memory and complexity limitation. However, 

there are also modules of Mark 1 Clone that is implemented successfully using 

FPGA. Troubleshooting methodology and approach is essential in determining the 

fault and errors in a design. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1    Recommendation for Future Studies 

In this project, there are some portions of Mark 1 Clone design that could not 

be implemented using FPGA successfully. More study on Verilog code design 

techniques and real-time feasible design strategy could help resolve complex design 

required by Mark 1 Clone.  

Besides, in-depth understanding of CPU design modules and functionality 

could help compact and simplify current FPGA designs. Reduced complexity would 

reduce the number of logical elements required and hence power consumed. 

However, on the mean time, the FORTH Computer developed from this project 

shall remain as a hybrid of FPGA form and TTL form. A new board is used to reduce 

the size of CPU design with the elimination of back panel. 

 

5.2    Conclusion 

The objective of this project is to study the feasibility of implementing a stack-

based CPU using FPGA. FORTH Computer is the stack machine that this project 

explores. The FORTH Computer is based on Mark 1 design.  

There are nine (9) modules in the CPU design. Four (4) modules had been 

successfully implemented using FPGA, namely the Instruction Decoder, Diode ROM 

and Index (address index and instruction pointer index) module.  

The success implementation of said modules using FPGA shows that TTL 

design can be implemented using FPGA. However, the key of success lies on the 

design strategy and also signal interfacing. The success of interfacing TTLs with 
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FPGA design serves an advantage in this project as some parts of CPU especially 

memory are easier and more feasible to be implemented using TTL.  

Besides, the design of I/O Ports in FPGA will have impact on the overall 

system functionality. Buffers shall be placed at the OUTPUT port of FPGA when 

ever applicable to provide protection for FPGA on sink current. Multiplexing signals 

design on the INOUT port of FPGA is also critical as data signals going in and out of 

the FPGA will have great impact on the system performance and stability. 

In a nut shell, a hybrid CPU system using FPGA and TTL is a feasible design 

approach. This is proven by the success interfacing of FPGA modules with TTL 

modules in this project. 
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Appendix I   Mark 1 FPGA Specification 

(The content of this appendix made reference to [9], [10]) 

Specification 

Technology Hybrid of FPGA and TTL 

Clock 1 MHz 

Data Bus 8-Bit 

Address Bus 16-Bit 

Software fig-FORTH 

 

System Overview 

 

Figure: Mark 1 Computer Architecture [9] 
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Table: Description of Mark 1 Computer Components 

Module Width 
(bits) 

Description Comments 

ALU 8 
Arithmetic and 
logic unit 

The ALU data path is a bottleneck. It takes 
four clock cycles to load the inputs, set the 
ALU function, and read the result. This is the 
least satisfactory aspect of the whole design. 

OP 8 Operand register 
OP is loaded into the uppermost 8 bits of 
µPC. The lower 4 bits are reset to zero. µPC 12 

Microcode 
program counter 

W 16 
FORTH 
Working register The 16-bit index registers, IP and W, support 

increment, decrement, and can address 
memory. IP 16 

FORTH 
Instruction 
Pointer 

PSP 8 
FORTH 
Parameter stack 
pointer 

The stack pointers, RSP and PSP, are 8-bit 
up/down counters feeding the A1-A9 address 
inputs of the stack RAMs. The least 
significant address input (A0) selects the 
upper or lower byte. Logically, the stacks are 
16-bits wide by 256 words deep. The 
FORTH word length is 16 bits. 

RSP 8 
FORTH Return 
stack pointer 

Stack 
RAM 

16 
Dedicated stack 
RAM  

0 8 
Force 00H on 
data bus  

 

µ-Instruction Format 

Mark 1 is a micro-programmed machine with ‘vertical’ encoded microcode. The 

microcode instruction (µ) is only 8-bit wide. This is in contrast with normally used 

‘horizontal’ encoded microcode which is wider in bit width and less encoding. Hence, 

it makes Mark 1 resembles a RISC processor. Following table shows the encoding of 

Mark 1 µ-instruction. 



 

 

 
36 

Table: Mark 1 8-bit µ-instruction (µ) encoding 

 µ7 µ6 µ5 µ4 µ3 µ2 µ1 µ0 

Move LSB 0 0 Source Destination 

Move MSB 0 1 Source Destination 

Decrement 1 0 0 0 0 0 Register 

Disable IRQ 1 0 0 0 0 1 x x 

Increment 1 0 0 0 1 0 Register 

Enable IRQ 1 0 0 0 1 1 x x 

Jump Direct (zero page) 1 0 0 1 Address 

Set ALU function 1 0 1 0 Function 

Jump Indirect (µPC←OP*16) 1 0 1 1 x x x x 

Conditional skip 1 1 Test Distance 

 

The source and destination fields of the move instructions are coded as follows: 

 Destination Source 

000 W W 

001 IP IP 

010 TOS TOS 

011 R R 

100 Memory[W] Memory[W] 

101 OP Memory[IP] 

110 ALU input A Zero 

111 ALU input B ALU output 
TOS = Top of parameter stack; R = Top of return stack 

 

  



 

 

 
37 

FPGA I/O Pins and Back Pane Connection 

Pin connection from 2 ports of FPGA (Expansion Port B and C) I/O pins to back 

panel.  

 

Figure: Pin relation between FPGA and Back Panel 
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Appendix II   Mark 1 Design Schematics 

Instruction Decoder Module (reference made to [10]) 

 

Diode ROM Module (reference made to [10] 
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Index Module (reference made to [10]) 

 

ALU Module (reference made to [10]) 
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Stacks Module (reference made to [10]) 

 

Memory Module (reference made to [10]) 
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Microcode Sequencer Module (reference made to [10]) 

 

I/O Connection Module (reference made to [10])
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Power ON Reset Module (reference made to [10]) 
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Appendix III   Mark 1 FPGA Module Design in Verilog Codes 

 
/* TOP MODULE MARK 1 */ 
// merge of Index and Diode ROM 
 
// Mark 1 module 
module Mark1 (data, addr, clk1, u, u210, SRC, uX, M); 
    input [3:0] u;   //u signal input (7~0) 
    input clk1;   //clock 1 
    input [1:0] uX;   //u1010xxxx,u1000xxxx 
    input [1:0] u210;  //u210=001, u210=000 
    input [1:0] SRC;  //SRC=001, SPC=000 
    input [3:0] M;   //flags HI, LO, M@PC, M@W 
    inout [7:0] data;  //data signals 
    output [15:0] addr;  //address signals 
     
    //FLAG ASSIGNMENT 
    wire MPC, MW, LO, HI; 
    assign MW = M[0]; 
    assign MPC = M[1]; 
    assign LO = M[2]; 
    assign HI = M[3]; 
     
    //WIRE DECLARATION 
    wire [7:0] d_in;  //data in from INOUT 
    wire [7:0] Dout_Index;  //data out from index module 
    wire [7:0] Dout_PC, Dout_W; 
    wire [7:0] Dout_ROM;  //data out from Diode ROM 
    wire [7:0] d_out;  //data out for INOUT 
         
    /* DIODE ROM */ 
    //input: u[0],u[1],u[2],u[3],u1010xxxx 
    //output: data[7:0] 
    wire [2:0] U; 
    assign U = {u[2],u[1],u[0]}; 
    diode D1 (Dout_ROM, U, u[3]); 
     
    /* Index data input control */ 
    wire u210_sel; 
    and B0 (u210_sel,u210[0],u210[1]); 
    Buff8_244 B1 (d_in,data,u210_sel); 
     
    /* Index Pointer (M@W / M@A) */ 
    //input: clk1, u[3], M@W, SRC=000, u210=000, LO, HI, u1000xxxx 
    //inout: data[7:0] 
    index M_W (addr, MW, d_in, Dout_W, clk1, SRC[0], LO, HI, u210[0], u[3], uX[0]); 
     
    /* Index Pointer (M@IP / M@PC) */ 
    //input: clk1, u[3], M@IP, SRC=001, u210=001, LO, HI, u1000xxxx 
    //inout: data[7:0] 
    index M_PC (addr, MPC, d_in, Dout_PC, clk1, SRC[1], LO, HI, u210[1], u[3], uX[0]); 
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    /* DATA output control */ 
    wire Index_sel, En; 
    and N1 (Index_sel,SRC[0],SRC[1]); 
    //SRC control data output from Index modules 
    assign Dout_Index = (~SRC[0])?Dout_W:Dout_PC; 
    //uX[1] control data output from Diode ROM 
    assign d_out = (~uX[1])?Dout_ROM:Dout_Index; 
    and N2 (En,Index_sel,uX[1]);     
    bufif0 (data[0],d_out[0],En); 
    bufif0 (data[1],d_out[1],En); 
    bufif0 (data[2],d_out[2],En); 
    bufif0 (data[3],d_out[3],En); 
    bufif0 (data[4],d_out[4],En); 
    bufif0 (data[5],d_out[5],En); 
    bufif0 (data[6],d_out[6],En); 
    bufif0 (data[7],d_out[7],En); 
     
endmodule 
 
 
/* Components of Index Module */ 
 
module Buff8_244 (Outp, Inp, En); 
    input [7:0] Inp; 
    input En; 
    output [7:0] Outp; 
     
    bufif0 (Outp[0],Inp[0],En); 
    bufif0 (Outp[1],Inp[1],En); 
    bufif0 (Outp[2],Inp[2],En); 
    bufif0 (Outp[3],Inp[3],En); 
    bufif0 (Outp[4],Inp[4],En); 
    bufif0 (Outp[5],Inp[5],En); 
    bufif0 (Outp[6],Inp[6],En); 
    bufif0 (Outp[7],Inp[7],En); 
     
endmodule 
 
 
module Count_169 (In, Out, clk, load, UD, ENT, 
ENP, RCO); 
    input [7:0] In; 
    input clk,load,UD,ENT,ENP; 
    output [7:0] Out; 
    output RCO; 
    reg [7:0] Out; 
    reg RCO; 
     
    always @ (posedge clk) 
    begin 
        if (~load) 
           begin 
               Out <= In; 
           end 
        else if (~ENT && ~ENP) 
           begin 
               if (UD) 

               Out <= Out + 1; 
               else 
               Out <= Out - 1; 
           end 
        else 
           begin 
               Out <= Out; 
           end 
    end 
     
    always @ (ENT,Out,UD) 
    begin 
        if (~ENT) 
        begin 
            if (UD) 
            begin 
                if (Out==8'b11111111) 
                RCO = 0; 
                else 
                RCO = 1; 
            end 
            else 
            begin 
                if (Out==8'b00000000) 
                RCO = 0; 
                else 
                RCO = 1; 
            end 
        end 
        else 
        begin 
            RCO = 1; 
        end 
    end 
     
endmodule 
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/*INDEX module*/ 
module index (Addr, MA, D_in, D_out, clk, 

SRC, LO, HI, u210, u3, uX); 
    input clk; 
    input MA, SRC, LO, HI, u210, u3, uX; 
    input [7:0] D_in; 
    output [7:0] D_out; 
    output [15:0] Addr; 
    reg [7:0] D_out; 
     
    //counter for lower address (u5, U6) 
    wire [7:0] add1; 
    wire load1, rco1; 
    or U9c (load1, u210, LO); 
    Count_169 U56 (D_in, add1, clk, load1, u3, 

u210, uX, rco1); 
     
    //counter for upper address (U7, U8) 
    wire [7:0] add2; 
    wire load2, rco2; 
    or U9d (load2, u210, HI); 
    Count_169 U78 (D_in, add2, clk, load2, u3, 

rco1, uX, rco2); 
     
    //address line buffer enable (U1, U2) 
    wire [7:0] addr1, addr2; 
    Buff8_244 U1 (addr1,add1,MA); 
    Buff8_244 U2 (addr2,add2,MA); 
    assign Addr = {addr2,addr1}; 
 
    always @ (LO, HI, add1, add2) 
    begin 
        if (~LO)  
               D_out = add1; 
        else if (~HI)  
               D_out = add2; 
        else 
               D_out = 8'b0000_0000; 
    end 
     
endmodule   
 
 

/* Diode ROM Module */ 
module diode (data, U, u3); 
    input [2:0] U; 
    input u3; //, u1010; 
    output [7:0] data; 
    reg [7:0] data; 
     
    always @ (U, u3) 
    begin 
        if (~u3) 
            begin 
            case(U) 
                4'b000: data<=8'b1110_1001; 
                4'b001: data<=8'b0110_1001; 
                4'b010: data<=8'b1010_0110; 
                4'b011: data<=8'b0110_0110; 
                4'b100: data<=8'b1110_1100; 
                4'b101: data<=8'b0110_1100; 
                default: data<=8'b1111_1111; 
            endcase 
        end 
        else 
        begin 
            case(U) 
                4'b000: data<=8'b1101_1111; 
                4'b001: data<=8'b1111_1010; 
                4'b010: data<=8'b1111_1011; 
                4'b011: data<=8'b1111_1110; 
                4'b100: data<=8'b1101_0000; 
                4'b101: data<=8'b1111_0110; 
                4'b110: data<=8'b1111_1001; 
                default: data<=8'b1111_1111; 
            endcase 
        end 
    end 
     
endmodule 
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/* TOP MODULE MARK 1 */ 
// merge of Diode ROM and Instruction Decoder 
 
module Mark1 (data, u, u210, SRC, flag, uX); 
    input [7:0] u;   //u signal input (7~0) 
    output [3:0] uX;  //u1011xxxx,u1010xxxx,u1001xxxx,u1000xxxx 
    output [6:0] u210;  //u210=011, u210=010, u210=001, u210=000 
    //u210=111, u210=110, u210=101 
    output [4:0] SRC;  //SRC=011, SRC=010, SRC=001, SRC=000, SRC=111   
    output [5:0] flag;  //flags M@PC, MR, MA, MW, LO, HI 
    inout [7:0] data;  //data signals 
     
    wire [7:0] d_out; 
     
     
    /* DIODE ROM */ 
    //input: u[0],u[1],u[2],u[3],u1010xxxx 
    //output: data[7:0] 
    wire [2:0] U; 
    wire [7:0] Dout_ROM; 
    assign U = {u[2],u[1],u[0]}; 
    diode D1 (Dout_ROM, U, u[3]); 
     
     
    /* Instruction Decoder */ 
    //input: u[7:0] 
    //output: data, uX[3:0], u210[6:0], SRC[4:0], M@PC, MR, M@A, MW, LO, HI 
    wire D_en; //data enable for InsDec (SRC=110) 
    decoders InDe (u, D_en, flag, uX, u210, SRC); 
     
     
    // data signal selection 
    wire En; 
    assign d_out = (D_en)?Dout_ROM:8'b0000_0000; 
    and N0 (En,D_en,uX[2]);     
    bufif0 (data[0],d_out[0],En); 
    bufif0 (data[1],d_out[1],En); 
    bufif0 (data[2],d_out[2],En); 
    bufif0 (data[3],d_out[3],En); 
    bufif0 (data[4],d_out[4],En); 
    bufif0 (data[5],d_out[5],En); 
    bufif0 (data[6],d_out[6],En); 
    bufif0 (data[7],d_out[7],En); 
     
endmodule 
 
 
/* Components of Instruction Decoder */ 
 
//demux 74138 (modified) 
module Uxxxx (uOUT, EN, sel); 
    input [2:0] sel;   //input u6,u5,u4 
    input EN;          //input u7 
    output [3:0] uOUT;  //output u1011xxxx, 

u1010xxxx, u1001xxxx, u1000xxxx 
    reg [3:0] out;    //as buffer for output 
     
    always @ (sel) 
    begin 

        case (sel) 
            3'b000: out = 4'b1110; 
            3'b001: out = 4'b1101; 
            3'b010: out = 4'b1011; 
            3'b011: out = 4'b0111; 
            3'b100: out = 4'b1111; 
            3'b101: out = 4'b1111; 
            3'b110: out = 4'b1111; 
            3'b111: out = 4'b1111; 
            default: out = 4'b1111; 
        endcase 
    end 
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    assign uOUT = (EN)?out:4'b1111; 
     
endmodule 
 
//demux 74155 
module mux155 (outA, outB, enA, enB, add); 
    input [1:0] enA,enB;    //enable select (G,C) 
    input [1:0] add;    //select line (address) 
    output [3:0] outA;  //output A 
    output [3:0] outB;  //output B 
    reg [3:0] out_a; 
    reg [3:0] out_b; 
     
    always @ (add, enA)    //enabled with 01 
    begin 
        if (enA[0]) 
        begin 
            case (add) 
                2'b00: out_a = 4'b1110; 
                2'b01: out_a = 4'b1101; 
                2'b10: out_a = 4'b1011; 
                2'b11: out_a = 4'b0111; 
                default: out_a = 4'b1111; 
            endcase 
        end 
        else  
        begin 

           out_a = 4'b1111; 
        end 
    end 
    assign outA = (~enA[1])?out_a:4'b1111; 
     
    always @ (add, enB)    //enabled with 01 
    begin 
        if (~enB[0]) 
        begin 
            case (add) 
                2'b00: out_b = 4'b1110; 
                2'b01: out_b = 4'b1101; 
                2'b10: out_b = 4'b1011; 
                2'b11: out_b = 4'b0111; 
                default: out_b = 4'b1111; 
            endcase 
        end 
        else  
        begin 
           out_b = 4'b1111; 
        end 
    end 
    assign outB = (~enB[1])?out_b:4'b1111; 
     
endmodule 
 

 
 
/* Instruction Decoder module [without clock 
signals] */ 
module decoders (uIN, En, flag, Ux, u210, SRC); 
    input [7:0] uIN;       //u signal input (7~0) 
    output En; 
    output [5:0] flag;      
    //flag signals (M@PC, MR, M@A, MW, LO, 

HI) 
    output [3:0] Ux;        
    //u1011xxxx, u1010xxxx, u1001xxxx, 

u1000xxxx 
    output [6:0] u210;      
    //u210=011, u210=010, u210=001, u210=000 
    //u210=111, u210=110, u210=101 
    output [4:0] SRC;       
    //SRC=011, SRC=010, SRC=001, SRC=000, 

SRC=111 
     
    //define supply for HI and LOW signals 
    supply0 zero; 
    supply1 one; 
     
    //u=____xxxx decoder (U9 in schematic) 
    wire [2:0] Ux_in;       
    //input to uXXXX decoder 
    wire [3:0] Ux_out; 
    assign Ux_in = {uIN[6],uIN[5],uIN[4]}; 
    Uxxxx u9 (Ux_out, uIN[7], Ux_in); 
    //output buffer for u=____xxxx decoder 
    buf u9a (Ux[0],Ux_out[0]); 

    buf u9b (Ux[1],Ux_out[1]); 
    buf u9c (Ux[2],Ux_out[2]); 
    buf u9d (Ux[3],Ux_out[3]); 
     
    //u210 signal decoder (u10 in schematic) 
    wire [3:0] outA, outB; 
    wire [1:0] enAB; 
    wire [1:0] add1; 
    wire n_out; 
    assign add1 = {uIN[1],uIN[0]}; 
    and u4c (n_out,Ux[0],uIN[7]); 
    assign enAB = {n_out,uIN[2]}; 
    mux155 u10 (outA, outB, enAB, enAB, add1); 
    //output buffer for u210 signal decoder 
    buf u10a (u210[0],outA[1]); 
    buf u10b (u210[1],outA[2]); 
    buf u10c (u210[2],outA[3]); 
    buf u10d (u210[3],outB[0]); 
    buf u10e (u210[4],outB[1]); 
    buf u10f (u210[5],outB[2]); 
    buf u10g (u210[6],outB[3]); 
         
    //SRC signal decoder (u11 in schematic) 
    wire [3:0] outC, outD; 
    wire [1:0] enCD; 
    wire [1:0] add2; 
    assign add2 = {uIN[4],uIN[3]}; 
    assign enCD = {uIN[7],uIN[5]}; 
    mux155 u11 (outC, outD, enCD, enCD, add2); 
    //output buffer for SRC signal decoder 
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    buf u11a (SRC[0],outC[3]); 
    buf u11b (SRC[1],outD[0]); 
    buf u11c (SRC[2],outD[1]); 
    buf u11d (SRC[3],outD[2]); 
    buf u11e (SRC[4],outD[3]); 
     
    //flag signals (u7 in schematic) 
    wire Hi, Lo, MW, MA, MR, MPC;      
    //DECT_M@A = MW 
    wire uIn6; 
    or u3b (Lo, uIN[7], uIN[6]); 
    not u1e (uIn6, uIN[6]); 
    or u3c (Hi, uIN[7], uIn6); 
    or u3a (MW, uIN[7], outA[0]); 
    and u4a (MA, MW, outC[0]);         
    //outC[0] = SRC_M@A 
    and u4b (MR, outC[0], outC[1]);    
    //outC[1] = SRC_M@PC 
    assign MPC = outC[1]; 
    //output buffer for flag signals 
    buf u7a (flag[0],Hi); 
    buf u7b (flag[1],Lo); 
    buf u7c (flag[2],MW); 
    buf u7d (flag[3],MA); 
    buf u7e (flag[4],MR); 
    buf u7f (flag[5],MPC); 
     
    //data signals control (u8 in shcematic) 
    assign En = outC[2]; 
 
endmodule 
 

/* Diode ROM Module */ 
module diode (data, U, u3); 
    input [2:0] U; 
    input u3;     //, u1010; 
    output [7:0] data; 
    reg [7:0] data; 
     
    always @ (U, u3) 
    begin 
        if (~u3) 
            begin 
            case(U) 
                4'b000: data<=8'b1110_1001; 
                4'b001: data<=8'b0110_1001; 
                4'b010: data<=8'b1010_0110; 
                4'b011: data<=8'b0110_0110; 
                4'b100: data<=8'b1110_1100; 
                4'b101: data<=8'b0110_1100; 
                default: data<=8'b1111_1111; 
            endcase 
        end 
        else 
        begin 
            case(U) 
                4'b000: data<=8'b1101_1111; 
                4'b001: data<=8'b1111_1010; 
                4'b010: data<=8'b1111_1011; 
                4'b011: data<=8'b1111_1110; 
                4'b100: data<=8'b1101_0000; 
                4'b101: data<=8'b1111_0110; 
                4'b110: data<=8'b1111_1001; 
                default: data<=8'b1111_1111; 
            endcase 
        end 
    end 
     
endmodule 
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Appendix IV   Test Codes for UP2 Board 

 
//TEST MODULE FOR SENDING SIGNALS 

FROM FPGA TO TTL 
//[INPUT FROM FPGA IS PROCESSED BY 

74LS181 (ALU)] 
//[RESULT RETURN TO FPGA FOR DECODE 

TO 7-SEGMENT] 
 
module core_1 (inA, inB, outA, outB, inSel, 

outSel, BCD, LCD); 
    input [2:0] inA, inB; 
    input [3:0] BCD; 
    input [1:0] inSel; 
    output [2:0] outA, outB; 
    output [5:0] outSel; 
    output [7:0] LCD; 
    reg [5:0] outSel; 
    reg [7:0] LCD; 
     
    //on board DIP switch to ALU input 
    assign outA = inA; 
    assign outB = inB; 
     
    //ALU function select (active high in,out) 
    always @ (inSel) 
    begin 
        //active low 
        case (inSel) 
            2'b00: outSel <= 6'b100101; //add 
            2'b01: outSel <= 6'b011000; //sub 
            2'b10: outSel <= 6'b111011; //or 
            2'b11: outSel <= 6'b101111; //and 
            default: outSel <= 6'b111110; 
        endcase 
    end 
     
    //BCD for 7-segment display (ALU result) 
    always @ (BCD) 
    begin 
        //active low 
        case (BCD) 
            4'b0000: LCD = 8'b0000_0011; //0 
            4'b0001: LCD = 8'b1001_1111; //1 
            4'b0010: LCD = 8'b0010_0101; //2 
            4'b0011: LCD = 8'b0000_1101; //3 
            4'b0100: LCD = 8'b1001_1001; //4 
            4'b0101: LCD = 8'b0100_1001; //5 
            4'b0110: LCD = 8'b0100_0001; //6 
            4'b0111: LCD = 8'b0001_1111; //7 
            4'b1000: LCD = 8'b0000_0001; //8 
            4'b1001: LCD = 8'b0001_1001; //9 
            4'b1010: LCD = 8'b0001_0001; //A 

            4'b1011: LCD = 8'b1100_0001; //b 
            4'b1100: LCD = 8'b0110_0011; //C 
            4'b1101: LCD = 8'b1000_0101; //d 
            4'b1110: LCD = 8'b0110_0001; //E 
            4'b1111: LCD = 8'b0111_0001; //F 
            default: LCD = 8'b1111_1110; //. 
        endcase 
    end 
     
endmodule 
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//TEST MODULE FOR FPGA AND MEMORY 
CHIP (RAM) 

//[FPGA READ DATA FROM RAM AND 
DECODE TO 7-SEGMENT] 

//[FPGA WRITE DATA TO RAM AND 
CONTROL ADDRESS] 

 
`timescale 1us/1ps 
 
module core_2 (dip, data, addr, ctrl, LCD); 
    input [7:0] dip; 
    inout [3:0] data; 
    output [1:0] addr; 
    output [2:0] ctrl; 
    output [7:0] LCD; 
    reg [2:0] ctrl; 
    reg [7:0] LCD; 
     
    //write data 
    assign data = (dip[7:6]==2'b01) ? dip[3:0] : 

4'bz; 
     
    //sending location address 
    assign addr = dip[5:4]; 
     
    //read and write control 
    always @ (dip[7:6]) 
    begin 
        case (dip[7:6]) 
            2'b00: begin ctrl=3'b011; #5 ctrl=3'b001; 

end  //read 
            2'b01: begin ctrl=3'b011; #5 ctrl=3'b010; 

end  //write 
            default ctrl=3'b100; //disable 
        endcase 
    end 
     
    //decode for display 
    reg [3:0] BCD; 
    always @ (ctrl,data) 
    begin 
        BCD = (ctrl==3'b001)?data:BCD;  
         //load data to display at read mode 
    end 
    always @ (BCD) 
    begin 
        //active low 
        case (BCD) 
            4'b0000: LCD = 8'b0000_0011; //0 
            4'b0001: LCD = 8'b1001_1111; //1 
            4'b0010: LCD = 8'b0010_0101; //2 
            4'b0011: LCD = 8'b0000_1101; //3 
            4'b0100: LCD = 8'b1001_1001; //4 
            4'b0101: LCD = 8'b0100_1001; //5 
            4'b0110: LCD = 8'b0100_0001; //6 
            4'b0111: LCD = 8'b0001_1111; //7 
            4'b1000: LCD = 8'b0000_0001; //8 
            4'b1001: LCD = 8'b0001_1001; //9 
            4'b1010: LCD = 8'b0001_0001; //A 

            4'b1011: LCD = 8'b1100_0001; //b 
            4'b1100: LCD = 8'b0110_0011; //C 
            4'b1101: LCD = 8'b1000_0101; //d 
            4'b1110: LCD = 8'b0110_0001; //E 
            4'b1111: LCD = 8'b0111_0001; //F 
            default: LCD = 8'b1111_1110; //. 
        endcase 
    end 
     
endmodule 
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//TEST MODULE FOR FPGA FUNCTION 
WITH EXTERNAL CLOCK 

//[READ CLOCK SIGNAL FROM MARK1 
AND PERFORM COUNT] 

 
module core_3 (clk, rst, LCD); 
    input clk, rst; 
    output [7:0] LCD; 
    reg [7:0] LCD; 
    reg [3:0] BCD; 
     
    //clock down from 1MHz to 1Hz 
    //count up from 0 to F 
    reg [25:0] temp; 
    always @ (posedge clk) 
    begin 
        if (rst) 
        begin 
            temp = 0; 
            BCD = 4'b0; 
        end 
        else 
        begin 
            temp = temp + 1; 
            BCD = (temp == 1000000) ? BCD+1 : 

BCD; 
        end 
    end 
     
    //decode binary to 7-segment 
    always @ (BCD) 
    begin 
        //active low 
        case (BCD) 
            4'b0000: LCD = 8'b0000_0011; //0 
            4'b0001: LCD = 8'b1001_1111; //1 
            4'b0010: LCD = 8'b0010_0101; //2 
            4'b0011: LCD = 8'b0000_1101; //3 
            4'b0100: LCD = 8'b1001_1001; //4 
            4'b0101: LCD = 8'b0100_1001; //5 
            4'b0110: LCD = 8'b0100_0001; //6 
            4'b0111: LCD = 8'b0001_1111; //7 
            4'b1000: LCD = 8'b0000_0001; //8 
            4'b1001: LCD = 8'b0001_1001; //9 
            4'b1010: LCD = 8'b0001_0001; //A 
            4'b1011: LCD = 8'b1100_0001; //b 
            4'b1100: LCD = 8'b0110_0011; //C 
            4'b1101: LCD = 8'b1000_0101; //d 
            4'b1110: LCD = 8'b0110_0001; //E 
            4'b1111: LCD = 8'b0111_0001; //F 
            default: LCD = 8'b1111_1110; //. 
        endcase 
    end 
     
endmodule 

//TEST MODULE FOR QUADRATURE 
CLOCK SIGNAL 

//[DERIVE CLOCK FROM CRYSTAL] 
 
module core_4 (clk, rst, LCD, clk_1, clk_2); 
    input clk, rst; 
    output [7:0] LCD; 
    output clk_1, clk_2; 
    reg [7:0] LCD; 
    reg [3:0] BCD; 
     
    //clock down from 4MHz to 1Hz and count up  
    reg [21:0] temp; 
    reg [1:0] cnt; 
    wire clk_o; 
    always @ (posedge clk) 
    begin 
        if (rst) 
        begin 
            temp = 0; 
            BCD = 4'b0; 
            cnt = 0; 
        end 
        else 
        begin 
            temp = temp + 1; 
            BCD = (temp == 4000000) ? BCD+1 : 

BCD; 
            cnt = cnt + 1; 
        end 
    end 
    assign clk_o = cnt[1]; 
    assign clk_1 = ~clk_o; 
    assign clk_2 = ~clk_1; 
     
    //decode binary to 7-segment 
    always @ (BCD) 
    begin 
        //active low 
        case (BCD) 
            4'b0000: LCD = 8'b0000_0011; //0 
            4'b0001: LCD = 8'b1001_1111; //1 
            4'b0010: LCD = 8'b0010_0101; //2 
            4'b0011: LCD = 8'b0000_1101; //3 
            4'b0100: LCD = 8'b1001_1001; //4 
            4'b0101: LCD = 8'b0100_1001; //5 
            4'b0110: LCD = 8'b0100_0001; //6 
            4'b0111: LCD = 8'b0001_1111; //7 
            4'b1000: LCD = 8'b0000_0001; //8 
            4'b1001: LCD = 8'b0001_1001; //9 
            4'b1010: LCD = 8'b0001_0001; //A 
            4'b1011: LCD = 8'b1100_0001; //b 
            4'b1100: LCD = 8'b0110_0011; //C 
            4'b1101: LCD = 8'b1000_0101; //d 
            4'b1110: LCD = 8'b0110_0001; //E 
            4'b1111: LCD = 8'b0111_0001; //F 
            default: LCD = 8'b1111_1110; //. 
        endcase 
endmodule 
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//TEST MODULE FOR INDEX COUNTER 
//[ MIMIC INDEX MODULE OF MARK 1 ] 
 
//counter (mimic 74LS169) 
module Counter (In, Out, clk, load, RCO); 
    input [3:0] In; 
    input clk,load; 
    output [3:0] Out; 
    output RCO; 
    reg [3:0] Out; 
    reg RCO; 
     
    always @ (posedge clk) 
    begin 
        if (~load) 
           begin 
               Out = In; 
           end 
        else 
           begin 
               Out = Out + 1; 
           end 
    end 
     
    always @ (Out) 
    begin 
        if (Out==4'b1111) 
           RCO = 0; 
        else 
           RCO = 1; 
    end 
     
endmodule 
 
 
//display module 
module disp (BCD, LCD); 
    input [3:0] BCD; 
    output [7:0] LCD; 
    reg [7:0] LCD; 
     
    always @ (BCD) 
    begin 
        //active low 
        case (BCD) 
            4'b0000: LCD = 8'b0000_0011; //0 
            4'b0001: LCD = 8'b1001_1111; //1 
            4'b0010: LCD = 8'b0010_0101; //2 
            4'b0011: LCD = 8'b0000_1101; //3 
            4'b0100: LCD = 8'b1001_1001; //4 
            4'b0101: LCD = 8'b0100_1001; //5 
            4'b0110: LCD = 8'b0100_0001; //6 
            4'b0111: LCD = 8'b0001_1111; //7 
            4'b1000: LCD = 8'b0000_0001; //8 
            4'b1001: LCD = 8'b0001_1001; //9 
            4'b1010: LCD = 8'b0001_0001; //A 
            4'b1011: LCD = 8'b1100_0001; //b 
            4'b1100: LCD = 8'b0110_0011; //C 
            4'b1101: LCD = 8'b1000_0101; //d 

            4'b1110: LCD = 8'b0110_0001; //E 
            4'b1111: LCD = 8'b0111_0001; //F 
            default: LCD = 8'b1111_1110; //. 
        endcase 
    end 
     
endmodule 
 
 
//main module 
module indexing (clk, rst, LCD1, LCD2); 
    input clk, rst; 
    output [7:0] LCD1, LCD2; 
     
    //clock down 1MHz to 1Hz 
    reg [19:0] temp; 
    reg clck; 
    always @ (posedge clk) 
    begin 
        if (~rst) 
        begin 
            temp = 0; 
            clck = 0; 
        end 
        else 
        begin 
            temp = temp + 1; 
            clck = (temp == 1000000)?~clck:clck; 
        end 
    end 
     
    //counter 
    wire [3:0] dat; 
    wire [3:0] c_out1, c_out2; 
    wire RCO1, RCO2; 
    assign dat = 4'b0; 
    Counter C1 (dat, c_out1, clck, rst, RCO1); 
    Counter C2 (dat, c_out2, RCO1, rst, RCO2);  
     
    //display output 
    disp D1 (c_out1, LCD1); 
    disp D2 (c_out2, LCD2); 
     
endmodule 
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Appendix V   Photo Collection of The Project 

This section provides a collection of photo taken throughout the project, for 

illustration and also record purposes.  

FLEX10K70 FPGA by Altera 

 
FLEX10K FPGA used, on UP2 board 

Power Supply 

 
12VDC Power Supply 
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ATX Power Supply 

Expansion card 

 
Front view of Expansion Card Version 1 - flexible connection wires 

 
Connection between Expansion Card and FPGA 



 

 

 
55 

Testing stage 

 

 

 

FPGA interface test with 74LS181 ALU chip 
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FPGA interfacing with 6116 2KB SRAM 
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FPGA performing count-up using clock signal from Mark 1 
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Appendix VI   Application Notes on FPGA Design 

This section records the experience encountered while carrying out this project 

with Altera FPGA device. The finding recorded could serve as reference for FPGA 

design and application in the future. 

Below is the list of discussion recorded in this section. 

1.  TTL Compatibility with FPGA 

2.  Clock Signal Derivation 

3.  INOUT Port Implementation in Verilog HDL 

4.  Use of Buffers for OUTPUT Port 

 

TTL Compatibility with FPGA 

Modern FPGA such as the FLEX10K from Altera or later models are TTL 

compatible. In the configuration program provided by Altera, there is an option to 

switch the I/O pins of FPGA to be TTL compatible at 5V level 3.3V level. 

Besides, testing of FPGA with simple TTL design also confirmed that FPGA 

and TTL signals are compatible. On the other hand, the success of implementing 

Mark 1 Clone with FPGA in this project clearly proves that both FPGA and TTL are 

compatible. 

However, attention shall be given to the propagation time and setup time for 

both TTL and FPGA signal when high speed application is required. Reason being it 

was observed from oscilloscope that the setup time for TTL signals is slightly longer 

than that of FPGA. This could affect the data signal especially for system involves 

memory access. 
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Clock Signal Derivation  

Several attempts had been made throughout this project to include the Mark 1 

Clone system clock derivation into the FPGA but fails. There are 2 clock system for 

the system namely ‘clock 1’ and ‘clock 2’. Both the clock signals are quadrature of 

each other. Hence, a JK flop-flip is used in the design to derive the required 

quadrature clock signal for the system.  

After a few trials, a quadrature clock signal of 1MHz could be output from 

FPGA I/O pin with clock edge identification and count-down from a 4MHz crystal 

oscillator. However, the other portion of FPGA program, namely the Instruction 

Decoder codes could not function correctly.  

This finding shows that FPGA is not suitable for deriving clock signal using 

frequency division, JK flip-flop or edge detection. The solution is to supply the clock 

signal for digital system using physical components such as TTL chips. 

 

INOUT Port Implementation in Verilog HDL 

INOUT port in Verilog HDL code is implemented using 2 tri-state buffers with 

a common enable. The tri-state buffers are enabled with the opposite signal level. 

Hence, the usage of INOUT port in Verilog design has to be accompanied by a signal 

that will determine the direction of data flow through the INOUT port. 

The design of INOUT port control has a critical impact towards the design of 

this project. Signal flow direction of a data bus is not much of concern in TTL design 

as it is protected by the input or output of TTL chips. However, the case is rather 

different in FPGA design. The wrong signal flow could put the FPGA system in 

intermittent stage. 

This issue is first encountered during the design for Index pointer module. The 

port label “Data” is an INOUT port. The success control of data flow through this 

port is the key of successfully in implementing the module using FPGA. 
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On the other hand, there is difficulty performing simulation for INOUT port. 

Error is encountered when functional simulation is performed on the design. The 

INOUT port had to be separated into individual INPUT and OUTPUT before the 

simulation in ModelSim could be carried out properly. As for timing simulation 

using Quartus II, there is no need to separate the port but high-impedance signal has 

to be supplied to the INOUT port while it is functioning as output. 

 

Use of Buffers for OUTPUT Port 

The use of tri-state buffers before a data signal is send to the OUTPUT port can 

help protect the FPGA I/O port and provide a stable signal to the system that is 

receiving the signal. 

This is particular when the OUTPUT port needs to provide high-impedance 

signals. The use of tri-state buffer for each OUTPUT pin that needs to provide high-

impedance signal could help the FPGA in providing a stable signal. 

This method should be used in place of equating the particular net or port with 

high impedance, “z” signal. The output from a port which is supplied with “z” signal 

is not as stable as the “z” signal is initiated by a tri-state buffer. 

This issue is encountered during the design of Instruction Decoder and Index 

module as both the module involves high-impedance signal output. 
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