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ABSTRACT 

The main objective of this project is to determine adequate network configuration for 

a specific practical power network system. Power network adequacy is a measure of 

its ability to supply the aggregate electric power and energy requirements of the 

customers within component ratings and voltage limits, taking into account planned 

and unplanned outages of system components. Improper network configuration 

results in weakness in a power transmission or distribution networks and limits 

flexibility in network operation. Using load flow analysis, power network adequacy 

can be evaluated in terms of adequate power network configuration. By utilizing the 

most adequate network configuration, it will be more economical at the same time 

maintaining the stability of the entire network system. 
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CHAPTER I 

INTRODUCTION 

1.0 BACKGROUND OF STUDY 

In power engineering, the conditions are rapidly changing with ongoing deregulation 

of the industry. Mutually supportive transmission systems are now being viewed as 

super highways for movement of power. This raises concerns about supply adequacy 

and transmission reliability. Since 1950s, the demand for electric energy has been 

growing due to the transformation and innovation in the field of power system 

engineering. The advent of the semiconductor device has seen widespread and often 

novel application, notably in system protection, power conversion, system control, 

and system operation. Initially there was an apparently cautious step from appearance 

of technology to its application; due to the caution was nothing more than a 

manifestation of the time scales involved. The load flow problem was first solved 

using the simplest teclmiques, soon to be replaced by more sophisticated methods. 

The search for better teclmiques began almost as soon as computer applications 

become available. Today, with the help of high speed computers, the ability to take 

on modern system planning teclmiques would provide distribution, transmission and 

generation utilities with a means of determining the necessity for system expansion as 

well as reinforcement 
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1.1 PROBLEM STATEMENT 

Improper network configuration results in weakness in a power transmission or 

distribution networks and limits flexibility in network operation. Permissible 

loadability with satisfactory voltage gets limited when the network has inherent 

weaknesses .. 

1.2 OBJECTIVES AND SCOPE OF STUDY 

The objective of this project is to evaluate power network adequacy using PV curve 

nose point. The scopes of study are as follows: 

1.2.1 Learning how to carry out Load Flow study in a practical power system 

using a package 

The power flow study (also known as load-flow study) is an important tool involving 

numerical analysis applied to a power system. It usually uses simplified notation such 

as a one-line diagram and per-unit system, and focuses on various forms of AC power 

(ie: reactive, real, and apparent) rather than voltage and current. The primary concern 

is to match consumer loads with capacity to supply energy in an economical and 

reliable manner. 

1.2.2 Determination of adequate network configuration 

Power network adequacy is a measure of the ability of the power system to supply the 

adequate electric power and energy requirements of the customers within component 

ratings and voltage limits, taking into account planned and unplanned outages of 

system components. Adequacy measures the capability of the power system to supply 
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the load in all the steady states in which the power system may exist considering 

standard conditions. 

1.2.3 Practice project management skills 

The final year project is also a chance to practice project management skills. This is 

important and crucial as it determines the success or failure of a certain project. 

Essential aspects such as time management, communication skills, and others are 

indeed needed. 
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CHAPTER2 

LITERATURE REVIEWffHEORY 

2.1 LITERATURE REVIEW 

The maintenance of voltages on the network busses at their respective rated values is 

a prime requisite. The voltage occurring mainly depends on the network condition. 

The network condition is overseen by the exchange of generation over-excitation, 

under-excitation limits, network configuration, presence of shunt compensation, 

transformers tap settings and exchange of loading. The diagram below shows the 

aspects of security of electricity supply [1]. 

( 

' '· 
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(Reliability) 

···~··· 

' - '" ''"'-, 

) 

~ ... 
Short-Term 
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. .> 

Long-Term 
(Adequacy) 

\ •........ ··~:.:.:::._·· ) 

, .. . .. .. . .L .... , > ~--~~-~-----~::--:~--,::cc=• , 
:, Access to fuels ; •• System Adequacy ·. .· Market Adequacy 
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.. ,. ,., .. , 

<.. ) <.. . ~ .. ,,, ) '-· ~- '' ,. 

/ '-...... 

Operational 
Security 

' •.. .. ...x'. ..... ..., ' .. ~ .. ·····-~······ 
' Generation Adequacy 
\.. 

Network Adequacy 

Figure 1 :Aspects of Security of Electricity Supply 

In addition to a power flow study itself, sometimes called the base case, many 

software implementations perform other types of analysis, such as fault analysis and 

economic analysis. In particular, some programs use linear programming to find the 
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optimal power flow, the conditions which give the lowest cost per kW generated. 

Advanced algorithms and computational capabilities are required when the issue of 

stability of the grid is coupled with adequacy and with the impact of dispersed power 

generation and storage [2). 

The electricity system is a critical infrastructure. Its continued and reliable 

functioning is essential to the nations' economy and citizens' way of life [3]. The 

interconnection of the networks comprising the critical infrastructure is an ongoing 

evolutionary process. Demand for electricity (load requirements on the system) 

fluctuates continuously, based on factors such as time of day, season, and the 

characteristics of the territory served by the system [ 4]. 

"From an economic point of view, security and adequacy are quite 
distinct in the sense that the former is a public good while the latter 
can potentially be treated as a private good." 

-Oren (June 2003) 

The significance of this project helps in determining network limitations during 

design planning and operational planning studies. 

2.2 THEORY 

2.2.1 Steady-State Stability and Load-Flow Jacobilln 

Standard Load Flow 

Standard load-flow has been the traditional mechanism for computing a proposed 

steady-state operating point. For this paper, we define standard load-flow as the 

following algorithm: 
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(a) SpecifY bus voltage magnitudes numbered 1 tom. 

(b) SpecifY bus voltage angle number 1 (slack bus). 

(c) SpecifY net injected real power Pi at buses numbered 2 tom. 

(d) SpecifY load powers PLi and QLi at all buses numbered 1 to n. 

The standard load-flow has many variations including the addition of other devices 

such as tap changing under load (TCUL) transformers, switching var sources and 

HVDC converters. It can also include inequality constraints on quantities such as Qb 

and be revised to distribute the slack power between all generators. We would like to 

make one important point about load-flow. Load-flow is normally used to evaluate 

separation at a specific load level (specified by a given set of powers) [5]. 

For a specified load and generation schedule, the solution is independent of the actual 

load model. That is, it is certainly possible to evaluate the voltage at a constant 

impedance load for a specific case where that impedance load consumes a specific 

amount of power. Thus the use of 'Iconstant power" in load-flow analysis does not 

require or even imply that the load is truly a constant power device. It merely gives 

the voltage at the buses when the loads (any type) consume a specific amount of 

power. 

The load characteristic is important when the analyst wants to study the system in 

response to a change such as contingency analysis or dynamic analysis. For these 

purposes, standard load-flow usually provides the "initial conditions". 

Angle Reference 

In any rotational system, the reference for angles is arbitrary. The dynamic system 

can be reduced by introducing the new relative angles. The full system remains 

exactly the same. During a transient, the angle still changes from its initial condition, 

so that each original can be easily recovered if needed. The angle remains at zero for 
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all time. Amid simulation, the differential equation normally replaced by the 

algebraic equation. Notice that e is normally arbitrarily selected as zero for the load 

flow analysis. This means that the initial value is normally not zero. 

Instability and Maximum Loadability 

When studying a proposed load or interchange level, a load-flow solution is required 

before steady-state stability can be analyzed. If a load-flow solution cannot be found, 

then it is normally assumed that the proposed loading exceeded the "maximum power 

transfer" capability of the system. 

This maximum power transfer point is normally assumed to coincide with a zero 

determinant for the standard load-flow Jacobian. Using this as a criteria, any load 

level which produces a zero determinant for the standard load-flow Jacobian is an 

upper bound and hence an optimistic value of the maximum loadability. 

This upper bound has been analyzed in the past, and is regaining interest as voltage 

collapse is associated with it. It is also important to note that non-convergence of 

load-flows is also a matter of solution technique. Cases have been cited where Gauss­

Seidel routines converge when Newton-Raphson routines do not. 

If a standard load-flow solution and associated dynamic system equilibrium point are 

found the stability of the point must be determined. In order to do this, the algebraic 

equation Jacobian must be nonsingular. Assuming these algebraic equation Jacobians 

are nonsingular for a given case, steady-state stability must be evaluated from the 

eigenvalues of the system dynamic state Jacobian. 

A system is at a critical point when the real part of one of its eigen values is zero. If a 

real eigen value is zero then the determinant is zero. In the general case, the zero 

eigen value due to the angle reference can easily be removed by using a dynamic 

model reduced Clearly many cases can be found where an equilibrium point can be 
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critically unstable (at least one eigen value has a zero real part) and the load-flow 

Jacobian is nonsingular. 

A dynamic equilibrium point exists and has a system dynamic state Jacobian which is 

singular if and only if the load-flow Jacobian is singular. 

2.2.2 Steady-state Analysis Method 

PVCurves 

• Load and generation in selected areas are increased in a predetermined 

manner to find the distance to voltage instability. 

• Full power flow solution is performed at each load level to obtain bus 

voltages. 

• Voltage stability limit is reached when power flow solution failed to converge. 

v 

• • 

/ -
_ .. Contg y · Pre-Contingency 

Contg X · · 

P,, p 

Figure 2 :PV curve 
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• PV plots show : 

)- Variation (sensitivity) of bus voltages (or other variables) with load. 

)- Distance to instability 

o P m- P 0 : Pre-cont margin 

o P em- Po : Post-cont margin 

)- Voltage/power at which instability occurs ("nose" ofPV curve). 

• Full power flow solution ensures all system non-linearities are represented as 

the system is stressed. 

• Stressing the system by load/generation increase is the most relevant measure 

for assessing the voltage stability of the system. 

• Computed VS margins are in physical terms (e.g. MW load increase). 

• Implementation requires various generation dispatch options to meet the 

increasing load. 

• Concern is that the failure of power flow to converge may be the result of 

numerical and algorithmic problems rather than the actual instability being 

reached. 

• It is also cautioned that voltage stability may involve complex dynamics from 

generators, voltage controls, and loads. The PV curve concept captures only 

some steady-state aspects of voltage stability. 

• Experience has shown that the Fast Decoupled method can solve the power 

flow very close to the instability point (by gradually decreasing the step size). 

2.2.3 Operational Problem 

A power outage may result from either of two failures: load increases beyond the 

capability of the transmission lines or a component failure, which leads to an 

undesirable operating point. 

If a system's load were to continue to increase, it is possible for the system to enter an 

overload situation and "voltage collapse". We will consider this point to be the nose 

of the PV curve. 

A power outage may also begin from a loss of a single component such as with a 
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downed transmission line or transformer failure. 1bis may result in an immediate loss 

ofload and a "blackout". 

Another problem that arises with power systems are low voltages. Low system 

voltages can be a consequence of both overloads and component failures. With 

respect to overloads, low system voltages can be illustrated with fixed PV curves and 

abnormally high loads. Regarding a component loss, the operating PV curve changes 

when the failure occur to a curve which supports a reduced maximum power transfer 

and, as a result, causes a reduction in system voltage. The term for this low voltage 

situation is a "brownout" 

A voltage problem resulting from a transmission line failure may be corrected by 

adding shunt capacitance to the power system, which in effect is a change in j1 and 

load power factor to PV equation. 
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CHAPTER3 

METHODOLOGY 

The methodology(s) of this project are as below: 

• Carry out base case load flow of a given power system network. 

• Change in network configuration and monitoring of change in system's stability 

when stressing the system by increased of load for each of power load flow 

analysis. 

• Network configuration implies numbers of lines connected between the buses and 

the presence or otherwise of shunt compensation, shunt load at the buses and 

transformer tap settings. 

3.1 PROCEDURE 

A few methods are utilized to achieve the objectives of the project. This includes all 

the stages of development. They are as follows: 

• Preliminary research and literature review 

• Problem analysis and data gathering 

• Tools and equipment identification 

• Testing and experimentation 

• Implementation and deployment 

II 



3.2 TOOLS REQUIRED 

• PSAT (Power System Analysis Toolbox) 

o It is a MA TLAB toolbox for static and dynamic analysis and control of 

electric power system. 

o It includes power flow, continuation power flow, optimal power flow, small 

signal stability analysis and time domain simulation. 

o Its core is the power flow routine, which also takes care of state variable 

initialization. 

Mainly, the project is started by identifying project specification. Preliminary 

research and literature review is carried out to understand the theory and gain more 

knowledge in the field covered. 

The problem of this project is analyzed so that data needed in this project can be 

identified and gathered. This is a crucial stage since the data needed in the simulation 

stage need to be exact and sufficient enough to run the process. Meanwhile, the PSAT 

is being studied so that we can familiarize with the tools involved in this project. Test 

case is then being tested and experimented so that we can expect the outcome of this 

project when we implement it on a real system network. 

A real system network is then applied to the tools. The system is analyzed thoroughly 

to meet the project's specification. The system is then tested and experimented until 

we get the best output, to comply with the project's objectives, that is to evaluate 

power network adequacy of a real system. 

As a clearer view of procedure identification of the project, a graphical logic 

flowchart and brief descriptions of each phase is stated in the diagram. 
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Figure 3 :Logic flowchart for the project 
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CHAPTER4 

RESULTS AND DISCUSSION 

4.1 POWER SYSTEM ANALYSIS TOOLBOX (PSAT) SOFTWARE 

PSAT (Power System Analysis Toolbox) is a MATLAB Toolbox for static and 

dynamic analysis and control of electric power systems. PSAT includes power flow, 

continuation power flow, optimal power flow, small signal stability analysis and time 

domain simulation. All operations can be assessed by means of graphical user 

interfaces (GUis) and a SIMULINK-based library provides a user friendly tool for 

network design. 

PSAT core is the power flow routine, which also takes care of state variable 

initialization. Once the power flow has been solved, further static and/or dynamic 

analysis can be performed. These routines are: 

• Continuation power flow 

• Optimal power flow 

• Small signal stability analysis 

• Time domain simulations 

• Phasor measurement unit (PMU) placement 

Besides mathematical routines and models, PSAT includes a variety of utilities, as 

follows: 

1. One-line network diagram editor (Simulink library) 

2. GUis for settings system and routine parameters 



3. User defined model construction and installation 

4. Gill for plotting results 

5. Filters for converting data to and from other formats 

6. Command logs. 

Finally, PSAT includes bridges to GAMS and UWPFLOW programs, which highly 

extend PSAT ability of performing optimization and continuation power flow 

analysis. Refer to Appendix A for Test Data and Results. 

After some discussion with my supervisor, I decided to use the network system of the 

New Doha International Airport (NDIA), instead of a substation network and new 

apartment network. This is because the network of NDIA covers wider range, 

therefore suits my project's objective. 

The data of the network system need to be constructed into Simulink. This is because 

in order to evaluate the system's adequacy, the Simulink has to be done to be 

processed by PSAT. The Simulink is being done part by part as the data in the each 

component in the Simulink is being input. 

The entire network system is consists mainly two parts, which is Main Substation 

North and Main Substation South. I will analyse this two system separately as they 

are two system which has different incoming source. 

4.2 RESULTS ON MAIN SUBSTATION NORTH 

In this analysis of power flow, I will determine the adequacy of network configuration 

for Bus which has been reserve for future demand. This analysis is important because 

the initial configuration of the network for future demand will be evaluated to make 
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sure the system is stable even though load demand has been increased. Therefore I 

will examine the adequacy of the particular Bus by decreasing the cable size as well 

as transmission lines to determine whether the system will maintain stable with the 

increased of load demand in vaious network configuration. 

For Base Case Load Flow analysis, I will first determine the Bus which has been 

reserved for future demand. Then I will carry out Load Flow analysis of the network. 

After obtaining the result, the load demand of that particular Bus is increased by I 0% 

and load flow analysis is being carried out again. The process is repeated 10 times to 

get the ultimate value of the PV Curve (Nose Point). 

The cable size of this particular Bus is then being decreased and load flow analysis is 

carried out again. The process similar to Base Case Load Flow analysis is repeated to 

get the new ultimate value of nose point for new PV Curve. 

Number of transmission line is then decreased so that new power flow analysis can be 

carried out. The process to obtain new PV Curve is repeated so that I will be able to 

compare the three results obtained from three different network configurations. 

More details of the analysis, results and discussion will be shown in their respective 

sub topic later. 

The next page shows the power system network of Main Substation North. 
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Figure 4 : Main Substation North 
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The table below shows the Load Bus Number and Load Destination as well as Load 

Demand. 

Load Bus Load Demand 
Load Destination 

Number (k:VA) 

1 Free Trade Zone 2609 

Commercial Area Access Road Lighting 

2 Fuel Receiving Station 3011 

Hotel 

PW & FW Distribution Pump Station 

Service Area Lighting 

3 Satellite Fire Station 1823 

Midfield Tunnel West 

Radar Transmitter Station 

Business Park 

Retail Mall 
4 7130 

Employee Parking 

Commercial Reserve 

Cargo Terminal WH-2 
5 2024 

Lighting Transformer 

6 Cargo Terminal WH-1 1866 

Facility Maintenance 

Catering Facility 

Receiver Station 
7 3709 

Fuel Farm 

GSE Maintenance Facility 

lR 



Lighting Transformer 

8 Administration Facility 2158 

Employee Canteen 

Cargo Agents Building 

9 Air Control Tower 1540 

Airline Operations 

Midfield Tunnel East Vent Structure 

GA Maintenance Hangar 
10 2183 

GA Terminal 

Lighting Transformer 

Meteorological Complex 

North Retention Pond Storm Water Pipe Station 

11 East Runway Power System North 2130 

West Runway Power System North 

Fire Training Facility 

12 Aircraft Maintenance Hangar #2 2355 

Aircraft Maintenance Hangar # 1 
13 2766 

Aircraft Maintenance Workshop 

EMIRI Hangar 

14 Check Point Building 1711 

Radar 

Midfield Area PW & FW Pump Station 

15 Solid Waste Handling Facility 3426 

Incinerator 

Table 1 : Load Demand for Main Substation North 
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4.2.1 Analysis on the Result of Base Case Load Flow (2x(3/C 300111111) 

In the Base Case Load Flow analysis of Main Substation North, it is known that Bus 4 

is reserved for future utilisation which has load demand of 7130 kVA. Bus 4 has two 

transmission lines and each transmission line uses 3/C 300mnl cable. The table 

below shows the electrical data of the cable. 

Cable Size Current Rating A.C. Resistance Star Reactance Star Capacitance 

3/C300mm" 540A 0.0798ohmlkm 0.0858ohmlkm 0.53 

Table 2 : Electrical Data of 3/C 300mm2 Cable 

From the result (refer to Appendix A), voltage magnitude of Bus 4 is set to 1 p.u. and 

Pload of 0.2086. After obtaining the result, the load demand is then increased by 10% 

and load flow analysis is being carried out again. The process is repeated 1 0 times to 

get the ultimate value of the Nose Point. The result is then plotted in PV Curve. 
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The table below shows the result of Base Case Load Flow Analysis. 

Load Demand (kVA) P load (p.u.) V (p.u.) 

7130 0.2086 1 

7843 0.2295 0.9998 

8627 0.2524 0.9976 

9490 0.2776 0.9945 

10439 0.3054 0.9909 

11483 0.336 0.9857 

12631 0.3695 0.9791 

13894 0.4065 0.9725 

15284 0.4472 0.9649 

16812 0.4919 0.9555 

Table 3 :Result ofV and Pload of Base Case Load Flow Analysis 
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From the table above, PV Curve for Base Case Load Flow analysis in plotted. 
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0.9~ ~~:::::~~~---.......:::===== 
; 0.98 +---------'--=:-,.,k~c-----­
si 0.97 +-----------"".."'"-..._-­
; 0.96 +-~~~~~~~~~_::-:,..---.~ 

0.95 +-------~-----
0.94 +-------------
0.93 +--.-,--,---.---~-~~~~--------, 

r;:,'bro ~'=> fo~ (1.-..ro ~ ri}>ro 9':> ~'=> (l.'l- <>.>"o., 
l:l'Y l:l'Y I:)'Y I:)'Y l:)f !:)· !:)~ l:)'fl !:).;: l:)'f-

p load (p.u.) 

I • 2x(3/C 300mm2) I 

Figure 5 : PV Curve of Base Case Load Flow Analysis. 

From the curve above, when Pload is increased, V magnitude is decreased. Besides, 

losses on real power and reactive power also increased. 

4.2.2 Analysis on the Result after Cable Size is Decreased (2x(3/C 150,/) 

The cable size of this Bus 4 is then being decreased and load flow analysis is carried 

out again. In this analysis, the cable size of 3/C 150rnrn2 is used to further testify the 

adequacy of this network system. The process similar to Base Case Load Flow 

analysis is repeated to get the new ultimate value of nose point for new PV Curve. 

The electrical data of the cable 3/C 150rnrn2 is shown in the table below. 

Cable Size Current Rating A.C. Resistance Star Reactance Star Capacitance 

3/C lSOrnrn' 380A 0.159ohrnlkrn 0.0943ohrnlkrn 0.40 

Table 4 : Electrical Data of 3/C 150rnrn2 Cable 
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From the result, Bus 4 has the voltage magnitude of I p.u. and Pload of 0.2086. After 

obtaining the result, the load demand is then increased by I 0% and load flow analysis 

is being carried out again. The process is repeated I 0 times to get the ultimate value 

of the new Nose Point. The result is then plotted in PV Curve. 

The table below shows the result after the cable size is Changed to 3/C 150mm2
• 

Load Demand (kVA) P load (p.u.) V (p.u.) 

7130 0.2086 1 

7843 0.2295 0.9985 

8627 0.2524 0.9947 

9490 0.2776 0.9885 

10439 0.3054 0.9793 

11483 0.336 0.9698 

12631 0.3695 0.9578 

13894 0.4065 0.9441 

15284 0.4472 0.9282 

16812 0.4919 0.9106 

Table 5 : Result of V and Pload After the Cable Size is Changed to 3/C 
150mm2 
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Figure 6 : PV Curve After Cable Size is Changed to 3/C 150mm2 

After the cable size is decreased to 3/C 150mm2
, at the same time maintaining the 

number of transmission lines, it is clearly shown that it has a smaller PV Curve. This 

means that the network system using 3/C 150mm2 cable is more adequate. 

4.2.3 Analysis on the Result after Number of Transmission Line is Decreased 

(lx(3/C 150~) 

Number of transmission line is then decreased so that new power flow analysis can be 

carried out. Through the network system shown, Bus 4 initially has two transmission 

line. This time around, load demand for Bus 4 is served by using only one 

transmission line, with 3/C 150mm2 cable. The process similar to the previous 

conditions is carried out to obtain new PV Curve. 
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The table below shows the result after the number of transmission line is decreased. 

Load Demand (kVA) P load (p.u.) V (p.u.) 

7130 0.2086 1 

7843 0.2295 0.9972 

8627 0.2524 0.9927 

9490 0.2776 0.9857 

10439 0.3054 0.9752 

11483 0.336 0.9652 

12631 0.3695 0.9517 

13894 0.4065 0.9368 

15284 0.4472 0.9172 

16812 0.4919 0.8952 

Table 6 : Result of V and Pload After the Number of Transmission Line is 
Decreased 
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The PV Curve below shows that after number of transmission line is decreased. 
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Figure 7 :PV Curve After Number of Transmission Line is Decreased 

From the graph, the graph curves in even earlier. This means that with this 

configuration, the system has the most adequate network. 

4.2.4 Comparison of Results of Three Conditions 

The three PV Curve obtained from the power flow analysis which has been carried 

out on Main Substation North network system is shown in the graph below. 
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Figure 8 :Comparison of Results of Three Conditions 

From the graph shown above, it is very clear that the third case load flow analysis 

result has the most adequate network configuration. Bus 4 which is reserved for 

future demand for Main Substation North initially is served through two transmission 

line using 3/C 300mm2 cable each. 

If the cable size is changed to 3/C 150mm2
, the results shows that the network system 

has a smaller PV curve. Tiris means that the network is more adequate. When the 

transmission is decreased to ouly one transmission line using 3/C 150mm2 cable, the 

results are even better as it curves in earlier and has even smaller PV curve. Tiris 

shows that the network system only needs one transmission line with 3/C 150mm2 

cable to achieve its adequacy. 
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4.3 RESULTS ON MAIN SUBSTATION SOUTH 

For the Main Substation North, I will first determine the Bus which is reserved for 

future demand. Base Case Load Flow analysis is carried out for the entire network 

system. After obtaining the result, the load demand is increased by 10% and load flow 

analysis is being carried out. The process is repeated 10 times to get the ultimate 

value of the PV Curve (Nose Point). 

The cable size for the Bus which is reserved for future demand is then being 

decreased and load flow analysis is carried out again. The process similar to Base 

Case Load Flow analysis is repeated to get the new ultimate value of nose point for 

new PV Curve. 

Number of transmission line for the particular Bus is then decreased so that new 

power flow analysis can be carried out. The process to obtain new PV Curve is 

repeated so that I will be able to compare the three results obtained from three 

different conditious. 

More details of the analysis, results and discussion will be shown in their respective 

sub topic later. 

The next page shows the power system network of Main Substation South 
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Figure 9 : Main Substation South 



The table below shows the Load Bus Number and Load Destination as well as Load 

Demand for the Main Substation South. 

Load Bus Load Demand 
Load Destination 

Number (kVA) 

South-West Pond Storm Water Pump Station 300HP 
1 2000 

Terminal Area Access Road Lighting 

2 Waste Water Treatment Plant 2799 

3 Passenger Terminal Concourse B 6476 

Public Mosque 

Security Fence 

Triturator 

Airsite Access c/p & Access Road Lighting 
4 2064 

Access Road Lighting 

Car Rental & Parking Lot 

West Runway Power South 

Remote Aircraft Cargo & Transfer Area West 

Central Utility Plant Auxiliaries 

5 Central Utility Plant Chillers 1 & 2 7030 

Central Utility Plant Chillers 3 & 4 

Main Fire Station 
6 3828 

Remote Aircraft Cargo Transfer Area East (UD) 

Emiri Site Improvement Term Access 

Emirt Terminal VIP Pavilion 
7 2714 

Emiri Gate 

East Runway Power South 
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South-East Stormwater Pump & Sea Rescue Station 

Passenger Terminal Concourse D 
8 22598 

Passenger Terminal Concourse E 

Table 7 :Load Demand for Main Substation South 

4.3.1 Analysis on the Result of Base Case Load Flow (3x(3/C 300mni) 

In the Base Case Load Flow analysis of Main Substation South, it is shown that Bus 8 

is reserved for future demand, whch is 22598 kVA. Bus 8 has three transmission lines 

and each transmission line uses 15kV 3/C 300mrrl cable. The table below shows the 

electrical data of the cable. 

Cable Size Current Rating A. C. Resistance Star Reactance Star Capacitance 

3/C300mm' 540A 0.0798ohmlkm 0.0858ohm/km 0.53 

Table 8 : Electrical Data of3/C 300mm2 Cable 

From the result (refer to Appendix B), Bus 8 has the voltage magnitude of I p.u. and 

Pload of 0.2099. After obtaining the result of Base Case Load Flow Analysis, the load 

demand is then increased by 10% and load flow analysis is being carried out again. 

The process is repeated 10 times so that I can get the ultimate value of the Nose Point. 

The result is then plotted in PV Curve. 
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The table below shows the result after load demand is increased by I 0%. The steps 

are repeated so that PV curve can be obtained. 

Load Demand (kVA) P load (p.u.) V (p.u.) 

22598 0.2099 1 

24858 0.2310 0.9996 

27344 0.2540 0.9983 

30078 0.2794 0.9964 

33086 0.3073 0.9931 

36394 0.3380 0.9892 

40034 0.3719 0.9847 

44037 0.4090 0.9789 

48441 0.4499 0.9718 

53285 0.4949 0.9636 

Table 9 :Result ofV and Pload of Base Case Load Flow Analysis 

From the table above, PV Curve for Base Case Load Flow analysis can be plotted. 
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Figure 10 :PV Curve of Base Case Load Flow Analysis 
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From the table above, when Pload is increased, V magnitude is decreased. Besides, 

losses on real power and reactive power also increased. 

4.3.2 Analysis on the Result After Cable Size is Decreased (3x(3/C 150mnC) 

Next, the cable size for Bus 8 is the decreased from 3/C 300mm2 to 3/C 150mm2
, at 

the same time maintaining the number of transmission lines. The load flow analysis is 

then being carried out again. This is to further testify the adequacy of the network 

system. The process similar to Base Case Load Flow analysis is repeated to get the 

new ultimate value of nose point for new PV Curve. The electrical data of the cable 

3/C 150mm2 is shown in the table below. 

Cable Size Current Rating A.C. Resistance Star Reactance Star Capacitance 

3/C 150mm" 380A 0.159ohm/km 0.0943ohmlkm 0.40 

Table 10 :Electrical Data of3/C 150mm2 Cable 

From the result obtained, Bus 8 has the voltage magnitude of 1 p.u. and Pload of 

0.2099. After obtaining the result, the load demand of Bus 8 is then increased by 10% 

and load flow analysis is being carried out again. The process is to be repeated 1 0 

times to get the ultimate value of the new Nose Point. The result is then plotted in PV 

Curve. 
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The table below shows the result after the cable size is Changed to 3/C 150mm2
• 

Load Demand (k.VA) P load (p.u.) v (p.u.) 

22598 0.2099 1 

24858 0.2310 0.9991 

27344 0.2540 0.9952 

30078 0.2794 0.9889 

33086 0.3073 0.9808 

36394 0.3380 0.9707 

40034 0.3719 0.9576 

44037 0.4090 0.9427 

48441 0.4499 0.9255 

53285 0.4949 0.9066 

Table 11 :Result of V and Pload After the Cable Size is Changed to 3/C 
150mm2 
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Figure 11 :PV Curve After Cable Size is Changed to 3/C 150mm2 

After the cable size is decreased to 3/C 150mm2
, it is clearly shown that the graph 

curves in earlier and has a smaller PV Curve. lbis means that the network system is 

now more adequate than the base case condition. 

4.3.3 Analysis on the Result After Number of Transmission Line is Decreased 

(2x(3/C 150nrnf) 

The number of transmission line is then decreased so that new power flow analysis 

can be carried out. Through the network system shown, Bus 8 initially has three 

transmission lines serving its load demand. lbis time around, load demand for Bus 8 

is served by using only two transmission lines, with decreased cable size of 3/C 

150mm2 cable. The process similar to the previous conditions is carried out to obtain 

new PV Curve. 
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The table below shows the result after the number of transmission line is decreased. 

Load Demand (kVA) P load (p.u.) V (p.u.) 

22598 0.2099 I 

24858 0.2310 0.9982 

27344 0.2540 0.9933 

30078 0.2794 0.9868 

33086 0.3073 0.9755 

36394 0.3380 0.9611 

40034 0.3719 0.9433 

44037 0.4090 0.9225 

48441 0.4499 0.8974 

53285 0.4949 0.8699 

Table 12 :Result ofV and Pload After the Number of Transmission Line is 
Decreased 

The PV Curve below shows the result after number of transmission line is decreased 

from three transmission lines to two transmission lines only. 

PVCurve 

1.05 

1T+-~~~~--------------

7 0.95 +---------------=--~-----j ,----c--:---:--~----:c-1 
.S ~ [-~2x(3/C 150mm2)1 
> o.9 "-. ,

1

, 

0.85 +---------------1 
j 

0.8 +-----.----,-.----.--,--,--...,---,---,-----, 

g,OJ ~" ~ OJ"' ~":J ,s, ,...OJ r;:,OJ g,OJ _.,.OJ 
~ <;;)'); <;;)'Y .V .§1 <;;)"!' 4 <;;)~ ~ '*r 
~ ~ ~ <;;)· ~ ~ 

P load (p.u.) 

Figure 12 : PV Curve After Number of Transmission Line is Decreased 
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4.3.4 Comparison of Results of Three Conditions 

The three PV Curve obtained from the power flow analysis which has been carried 

out on Main Substation South network system is shown in the graph below. 
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Figure 13 :Comparison of Results of Three Conditions 

From the graph shown above, it is clear that the third condition load flow analysis 

result has the most adequate network configuration. Bus 8 which is reserved for 

future demand is initially served through three transmission lines using 3/C 300mm2 

cable each. By using third network configuration, the network system is able to 

operate within the normal operating parameters. This shows that it only need two 

transmission lines with 3/C 150mm2 cable to achieve adequacy. Thus with the new 

configuration, the network system achieve its adequacy, thus results in ability to 

maintain the stability of the entire network. 

When the cable size is changed to 3/C 150mm2
, the results shows that it has smaller 

curve. This means that it is more adequate than the base case condition. When the 

transmission is decreased to only two transmission line using 3/C 150mm2 cable 
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serving the load demand, the results shows that it has even smaller PV curve, thus it is 

most adequate. 

This proves that by decreasing the cable size as well as transmission line, adequacy of 

the network system can be achieved. Determination of network adequacy evaluation 

is crucial in a particular system to ensure the system maintain its stability even with 

increased of load demand. 

4.4 DISCUSSION 

4.4.1 Power Flow 

The power flow problem is formulated as the solution of a nonlinear set of equations 

in the form: 

P = 0 = f(x; y) (4.1) 

0 = g(x; y) 

where y (y € R2
"), n being the number of buses in the network, are the algebraic 

variables, i.e. voltage amplitudes V and phase 6 at the network buses, x(x € Rm) are 

the state variables, g (g € R2
") are the algebraic equations for the active and the 

reactive power balances at each bus I and f(f€ Rm) are the differential equations. 

Differential equations are included in ( 4.1) since PSAT initializes the state variables 

of some dynamic components (e.g. induction motors and load tap changers) during 

power flow computations. Other state variables and control parameters are initialized 

after solving the power flow solution (e.g. synchronous machines and regulators). 
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4.4.2 Bus 

The network topology is defined by \bus" components, whose data format is depicted 

in Table 1 Bus nwnbers, which can be in any order, and voltage ratings Vb are 

mandatory. Voltage magnitudes VO and phases eo can be optionally set if the power 

flow solution is known or if a custom initial guess is needed. If voltages are not 

specified, a at start is used (\/ = 1 at all buses except for the PV and slack generator 

buses, and e = 0). Once the power flow has been solved, voltage values can be saved 

in the data file using the File/Save/Append Voltages menu in the main window. Data 

associated with area and region nwnbers are optional, and will be used in future 

version of the program. Bus components are defined in the structure Bus, as follows: 

4.4.3 Power Flow Results 

Column Variable Description Unit 

1 - Busnwnber int 

2 Vb Voltage base kV 

3 vo Voltage amplitude initial guess p.u. 

4 eo Voltage phase initial guess p.u. 

5 Ai Areanwnber int 

6 Ri Region nwnber int 

Table 13 : Bus Data Format (Bus.con) 

1. con: bus data. 

2. n: total nwnber of buses. 

3. int: bus indexes. 

4. Pg: active power injected in the network by generators. 

5. Qg: reactive power injected in the network by generators. 

6. Pl: active power absorbed from the network by loads. 

7. Ql: reactive power absorbed from the network by loads. 
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8. island: indexes of islanded buses. 

The fields Pg, Qg, PI and Ql are a byproduct of the power flow solution. In the fields 

PI and Ql shunt power consumptions are not included, since the shunt admittances are 

included in the admittance matrix. The field island depends on breaker interventions: 

if a bus is disconnected from the grid after one or more breaker interventions, the 

resulting island is properly handled by the time domain simulation routine. 

PSAT is component oriented, i.e. standard components can be connected to any bus 

in any number and type. Only exceptions are slack generators (SW), PV generators 

(PV) and PQ loads (PQ), which have to be unique for each bus. 

4.4.4 Line Flow Results 

Transmission lines are defined in the structure Line, which is used also for 

transformers (see Section 10.3). The user can define data in absolute values or in p.u. 

In the latter case, the length ' of the line has to be ' = 0. If ' 6= 0, it is assumed that 

parameters are expressed in unit per km. Table 10.2 depicts the data format of 

transmission lines. lmax, Pmax and Smax define the limits for currents, active power 

flows and apparent power flows (S = pP2 + Q2). 

PSAT interprets the component as a line, ifkT 6= 0, the component is considered a 

transformer. When kT 6= 0, the line length, I is neglected, even if I, 6= 0. The fixed 

tap ratio a and the fixed phase shift ratio ell are optional parameters. 
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Column Variable Description Unit 

1 k From Bus int 

2 m To Bus int 

3 Sn Power rating MVA 

4 Vn Voltage rating kV 

5 fu Frequency rating Hz 

6 1 Line length km 

7 - not used -

8 r Resistance p.u. (lkm) 

9 X Reactance p.u. (Hikm) 

10 b Susceptance p.u. (Fikm) 

11 - not used -

12 - not used -

13 Imax Current limit p.u. 

14 Pmax Active power limit p.u. 

15 Smax Apparent power limit p.u. 

Table 14 :Line Data Format (Line.con) 
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Column Variable Description Unit 

I K From Bus int 

2 M To Bus lnt 

3 Sn Power Rating MVA 

4 Vn Voltage Rating kV 

5 Fn Frequency Rating Hz 

6 R Resistance p.u. 

7 X Reactance p.u. 

8 B Susceptance p.u. 

Table 15 :Alternative Line Data Format (Lines.con) 

42 



CHAPTERS 

CONCLUSION 

From the analysis, we can conclude that in order to evaluate the adequacy of a 

particular network system, we need to stress the system by increasing the 

load/generation and monitoring the characteristics of the PV curve. 

When the cable size is decreased, the results show that it has smaller curve. This 

means that it is more adequate than the base case condition. When the transmission 

lines which serve the load demand is decreased, the results shows that it has even 

smaller PV curve, thus achieve its system's adequacy. Determination of network 

adequacy evaluation is crucial in a network system to ensure the system maintain its 

stability even with the increased of load demand 

Through this project, I have learnt that the needs of knowledge in advanced 

algorithms and computational capabilities are required when the issue of stability of 

the grid is coupled with adequacy and with the impact of dispersed power generation 

and storage. With the help of today's high speed computers and advanced software, 

the ability to take on modern system planning techniques would provide distribution, 

transmission and generation utilities with a means of determining the necessity for 

system expansion as well as reinforcement. 

Hence, the deliverables of this project has been obtained, which is to carry out load 

flow study in a practical power system using a package. At last, determination of 

appropriate network configuration for New Doha International Airport has been able 

to carry out. 
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APPENDIX A 
POWER FLOW REPORT OF MAIN SUBSTATION NORTH 



POWER FLOW REPORT 

NETWORK STATISTICS 

Buses: 61 

Lines: 20 

Transformers: 61 

Loads: 42 

SOLUTION STATISTICS 

Number oflterations: 6 

Maximum P mismatch [p.u.] 0 

Maximum Q mismatch [p.u.] 0 

Power rate [MV A] 100 

POWER FLOW RESULTS 

Bus v phase Pgen Qgen P1oad Q1oad 

[p.u.] [rad] [p.u.] [p.u.] [p.u.] [p.u.] 

Bus01 1.06 0 4.6203 -0.28197 0 0 

Bus02 1.045 -0.13568 0.7 0.4486 0.1038 0.1778 

Bus03 1.01 -0.33212 0 0.39736 1.1188 0.066 

Bus04 0.95943 -0.26441 0 0 0.1086 0.056 

Bus05 1.0029 -0.22695 0 0 0.0064 0.0224 

Bus06 1.07 -0.36956 0 0.34433 0.0568 0.105 

Bus07 1.036 -0.33938 0 0 0 0 

Bus08 1.09 -0.33938 0 0.13402 0 0 

Bus09 1.0129 -0.37908 0 0 0.0313 0.0324 

Bus 10 1.0122 -0.38446 0 0 0.026 0.0812 

Bus 11 1.0357 -0.37984 0 0 0.049 0.0252 

Bus 12 1.0462 -0.39059 0 0 0.0854 0.0224 

Bus 13 1.0366 -0.39147 0 0 0.0189 0.0812 

Bus 14 0.99695 -0.41056 0 0 0.0086 0.17 

Bus 15 1.022 -0.3797 0 0 0.1067 0.0533 



Bus 16 1.041 0 0 0.28397 0 0 

Bus 17 1.025 -0.13767 0 0.2463 0.1054 0.0796 

Bus 18 1.012 -0.33422 0 0.19556 0.1207 0.064 

Bus 19 0.99872 -0.26631 0 0 0.0712 0.053 

Bus20 1.0019 -0.22825 0 0 0.1041 0.0246 

Bus21 0.95 -0.37156 0 0.24623 0.158 0.007 

Bus22 1.034 -0.34138 0 0 0 0 

Bus23 0.98943 -0.43456 0 0 0.1033 0.185 

Bus24 1.09 -0.33947 0 0.03512 0 0 

Bus25 1.0119 -0.37858 0 0 0.0512 0.1344 

Bus26 1.0132 -0.38356 0 0 0.0224 0.0792 

Bus27 1.0343 -0.38124 0 0 0.047 0.0263 

Bus28 1.0462 -0.39059 0 0 0.0854 0.0224 

Bus29 1.0347 -0.39037 0 0 0.0801 0.0823 

Bus30 0.99875 -0.40876 0 0 0.02104 0.0718 

Bus31 1.0223 -0.3794 0 0 0.107 0.0536 

Bus32 1.0412 0 0 0.08417 0 0 

Bus33 1.0252 -0.13747 0 0.2465 0.03056 0.0798 

Bus34 1.0123 -0.33412 0 0.09576 0.0209 0.0642 

Bus35 0.99892 -0.26611 0 0 0.06714 0.0532 

Bus36 1.002 -0.22815 0 0 0.02042 0.0247 

Bus37 1.0521 -0.37126 0 0.24653 0.01621 0.0091 

Bus38 1.0343 -0.34108 0 0 0 0 

Bus39 1.062 0 0 0 0 0 

Bus40 1.0454 -0.13528 0 0.0488 0.0842 0.0782 

Bus41 1.012 -0.33012 0 0.09756 0.319 0.168 

Bus42 0.99784 -0.26439 0 0 0.0596 0.0562 

Bus43 1.0028 -0.22693 0 0 0.0766 0.0226 

Bus44 1.071 -0.36856 0 0.14533 0.0578 0.046 

Bus45 1.037 -0.33838 0 0 0 0 

Bus46 1.092 -0.33738 0 0.23602 0 0 

Bus47 1.0139 -0.37808 0 0 0.114 0.0334 

Bus48 1.0124 -0.38426 0 0 0.0562 0.0814 

Bus49 1.0119 -0.37808 0 0 0.114 0.0334 

Bus 50 1.0132 -0.38346 0 0 0.027 0.0822 

Bus 51 1.0367 -0.37884 0 0 0.05 0.0262 



Bus 52 1.0472 -0.38959 0 0 0.0864 0.0234 

Bus 53 1.0376 -0.39047 0 0 0.19 0.0822 

Bus 54 0.99795 -0.40956 0 0 0.0096 0.071 

Bus 55 1.023 -0.3787 0 0 0.0077 0.0543 

Bus 56 1.042 0 0 0.18397 0 0 

Bus 57 1.026 -0.13667 0 0.1463 0.0064 0.0806 

Bus 58 1.013 -0.33322 0 0.29556 0.1217 0.065 

Bus 59 0.99972 -0.26531 0 

Bus60 1.1029 -0.22725 0 

Bus61 0.951 -0.37056 0 

GLOBALS~YREPORT 

TOTAL GENERATION 

REAL POWER [p.u.] 5.3203 

0 

0 

0 

REACTIVE POWER [p.u.] 4.07602 

TOTAL LOAD 

REAL POWER [p.u.] 4.3087 

REACTIVE POWER [p.u.] 3.1993 

TOTAL SHUNT 

REAL POWER [p.u.] 0 

REACTIVE POWER (lND) [p.u.] 0 

REACTIVE POWER (CAP) [p.u.] 0 

TOTAL LOSSES 

REAL POWER [p.u.] 1.0116 

REACTIVE POWER [p.u.] 0.8769 

0.0722 0.054 

0.1051 0.0256 

0.059 0.0108 



APPENDIXB 
POWER FLOW REPORT OF MAIN SUBSTATION SOUTH 



NETWORK STATISTICS 

Buses: 39 

Lines: 13 

Transformers: 49 

Loads: 28 

SOLUTION STATISTICS 

Number of Iterations: 4 

Maximum P mismatch [p.u.] 0 

Maximum Q mismatch [p.u.] 0 

Powerrate[MVA] 100 

POWER FLOW RESULTS 

Bus v phase P gen Qgen P1oad Q1oad 

[p.u.] [rad] [p.u.] [p.u.] [p.u.] [p.u.] 

Bus01 1.062 0 4.7193 -0.27227 0 0 

Bus02 1.0443 -0.13578 0.55 0.9474 0.4041 0.1781 

Bus03 1.011 -0.33312 0 0.49836 1.1198 0.267 

Bus04 0.99832 -0.26321 0 0 0.07671 0.0554 

Bus05 1.0019 -0.22675 0 0 0.02053 0.1229 

Bus06 1.068 -0.36846 0 0 0.02579 0.1061 

Bus07 1.043 -0.33858 0 0 0 0 

Bus OS 0.962 -0.34238 0 0 0.2099 0.1134 

Bus09 1.0209 -0.38708 0 0 0.0521 0.1404 

Bus 10 1.0122 -0.38536 0 0 0.0271 0.0815 

Bus 11 1.0427 -0.37284 0 0 0.0953 0.1322 

Bus 12 1.0523 -0.38459 0 0 0.0934 0.0285 

Bus 13 1.0436 -0.38447 0 0 0.096 0.0883 

Bus 14 0.9989 -0.40855 0 0 0.1104 0.172 

Bus 15 1.023 -0.3789 0 0 0.0978 0.0547 

Bus 16 0.9914 0 0 0 0 0 

Bus 17 0.987 -0.1357 0 0 0.1075 0.1815 

Bus 18 1.025 -0.33312 0 0 0.0217 0.165 

Bus 19 0.9997 -0.26531 0 0 0.03732 0.155 

Bus20 1.0029 -0.22635 0 0 0.0661 0.1266 



Bus21 0.987 -0.36956 0 

Bus22 1.0341 -0.34148 0 

Bus23 0.97953 -0.43446 0 

Bus24 0.992 -0.33757 0 

Bus25 1.0108 -0.37958 0 

Bus26 1.0142 -0.38266 0 

Bus27 1.0354 -0.38014 0 

Bus28 1.0472 -0.38959 0 

Bus29 1.0452 -0.28927 0 

Bus30 0.99675 -0.31076 0 

Bus31 1.0123 -0.2694 0 

Bus32 1.0522 0 0 

Bus33 0.9992 -0.14347 0 

Bus34 1.0223 -0.32412 0 

Bus35 0.9989 -0.26613 0 

Bus36 1.012 -0.22715 0 

Bus37 1.0611 -0.36226 0 

Bus38 1.0453 -0.33008 0 

Bus39 1.0613 0 0 

GLOBAL SUMMARY REPORT 

TOTAL GENERATION 

REAL POWER [p.u.] 5.2693 

0 

0 

0 

0.2498 

0 

0 

0 

0 

0 

0 

0 

0.27317 

0.9405 

0.60576 

0 

0 

0.45553 

0 

0.27954 

REACTIVE POWER [p.u.] 3.9778 

TOTAL LOAD 

REAL POWER [p.u.] 4.15585 

REACTIVE POWER [p.u.] 3.08812 

TOTAL SHUNT 

REAL POWER [p.u.] 0 

REACTIVE POWER (IND) [p.u.] 0 

REACTIVE POWER (CAP) [p.u.] 0 

TOTAL LOSSES 

REAL POWER [p.u.] 1.11345 

REACTIVE POWER [p.u.] 0.88968. 

0.2239 0.109 

0 0 

0.03087 0.0851 

0 0 

0.0311 0.0334 

0.0325 0.0802 

O.o38 0.1272 

0.0364 0.1234 

0.0314 0.0924 

0.0284 0.0698 

0.0417 0.0636 

0 0 

0.0366 0.0738 

0.0309 0.0742 

0.0324 0.0534 

0.0352 0.0257 

0.0211 0.0181 

0 0 

0 0 



APPENDIXC 
ELECTRICAL DATA OF CABLES 



<"LECTRICAL OAT A iAT 50 HZ) .. 
NOMINAL A.C.RESISTANCE 
CONDUCTOR OF CONDUCTOR 
AREA AT9U'C 

mm2 ohmiKm 
----'-;, 0.927 

35 0.668 
50 0.494 

70 0.342 
95 0.247 

120 0.196 

150 0.159 
185 0.128 
240 0.0986 

300 0.0798 
400 0.0641 

CURRENT MATINGS {CONTINUOUS) 

( 
NOMINAL DIRECT 
CONDUCTOR IN 
AREA GROUND 

mm2 """ 25 140 
35 170 
50 210 

70 255 
95 300 

120 340 

150 360 
185 430 
240 490 

300 540 
400 600 

STAR 
REACTANCE 

ohm/Km 

012£ 
0.117 
0.112 

0.106 
0.100 
0.0969 

0 0043 
0.09\4 
0.0882 

0.0858 
0.0832 

1N 
SINGLEWAY 

DUCTS 

""' 125 
150 
180 

215 
255 
290 

330 
370 
425 

470 
530 

STAR 
CAPACITANCE 

~o..t<"Km 

022 
0.2<1 
027 

O:lll 
0.34 
0.37 

0.40 
043 
0.48 

0.53 
0.59 

IN 
AIR 

•mp 

"' 175 
220 

270 
33D 
375 

430 
490 
570 

650 
740 

6350/11 ooov i 
J!I~§E: CORE__! 

COPPER CONDUCTORS 
ARMOURED CABLE 

Current ratings Sfe based Clllhe 
!o!Jowing condilions: 

a) Ground lamperature 15"C 

b) G<"O\JI"ld !her mal 
resistivity 

c) Depth ot laying 

C:) Ambient air 
lemperature 

1.2"C rrNol 

0.8m 

25"C 

e) All cables menn::liy independent 

26 



( 

' - - I (.;\)N::>IBliC!RlNAI DAIA]N\JMINAI) 

ii19000/33000V !NOMINAL -1· "''"''' lCIII '""·'""" l"""uun 1 tWcfl\1' I c;,;u 

THREE CORE CONUUC1Df1 UNt'E A WIA!'.: TAPE ('II.M·1£:H:R .J. Wi:ilOHr 
l ,'\Rr.F\ ! 4lit.'(lUCI DI'\MET['l I THlCKNf;,$ t '-." --·- . ····------ l' ----- -- -~---- --- I I I >WA l Sl"A I tM·~, l ~;TA 

L nun2 mn w.m rnm mm 
1 

m_._'" .. 11_K __ ;}_.,zy_._·-'-".' ... 1fK ___ o_• __ OOm ___ _ COPPER CONDUCTORS ----- ---- - - - --~-- --------- --· .. --

1 
i{l I t•'0:' I 315 I ():, I 13-,':.i'''l! \l-,1 t-<0 

ARMOURED CABLE ~5 1 ;:: 1 ) 3\5 I 05 ! 8Bf.· ~::'-, ! i;~J I :•~C . ;:-;• l -~"~ 315 ! JS :.\}:, I -:;.: ~· 1 :'::.\·.) i ::;:.:, 

~- ~ . "' '"

5 

'" !! ::: :~: I ;:~ I ::~ '&i .s.~;; :; 15 
2«\l 892 '"' 
300 94::: 400 

' j 
.. .. I 

Current ratings are based on lhe 
following conditions: 

a) Grouod le.~.perature 

tt) Ground lhefmal 
resislivity 

c) Deptnoflaying 

O) Ambient ai• 
temperature 

lS"C 

1 2"C miN 

08m 

25"C 

e) AI! cables thermalty independent 

For variations in these conditions. 
please refer to page nos. 55 to 57. 

35 

ELECTRICAL OATA(ATSOHZJ 

NOMINAL A.C. RESISTANCE 
CONDUCTOR OF CONDUCTOR 
AREA AT90'C 

mm2 ohmlkm 

70 0.342 
95 0.247 

120 0.196 

150 0.159 
>85 0.128 

'"' 0Jl978 

300 0.0788 

CURRENT RATINGS (CONTINUOUS) 

NOMINAL DIRECT 
CONDUCTOR IN 
AREA GROUND 

mm2 ""' 70 255 
95 295 

120 335 

>SO 375 
•as 420 

'"' "" 300 530 

STAR STAR 
REACTANCE CAPACITANCE 

00m1<m ,Jikm 

0.135 0.16 
0.127 0.18 
0.122 0.19 

0.118 02> 
0114 0.22 
0.109 0.24 

0.105 026 

IN IN 
SINGLEWAY AIR 

DUCTS 

""' ""' 225 ! 275 
260 330 
300 380 

335 430 
380 490 
430 570 

"" 
I 

650 I 



Impedance table 

• 
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APPENDIXD 
POWER SYSTEM ANALYSIS TOOLBOX 



SUB:MITTED TO THE IEEE TRANSACTIONS ON POWER SYSTEMS 

~n Open Source Power System Analysis Toolbox 
F. Milano, Member, IEEE 

~trtJct-This paper describes the Power System Analysis 
ox (PSAT), an open source Matlab and GNU/Octave-

software package for analysis and design of small to 
nn size electric power systems. PSAT includes power flow, 
mation power flow, optimal power flow, small signal stability 
sis and time domain simulation as well as several static and 
nic models, including non-conventional loads, synchronous 
synchronous machines, regulators and FACTS. PSAT is also 
ded with a complete set of use .... friendly graphical interfaces 
Simulink-based editor of one-line network diagrams. Basic 

res, algorithms and a variety of case studies are presented 
is paper to illustrate the capabilities of the presented tool 
ts suitability for educational and research purposes. 

rex Terms- power flow, continuation power flow, optimal 
r flow, small signal stability analysis, time domain simula­
Matlab, GNU/Octave. 

!. INTRODUCTION 

>FTWARE packages for power system analysis can be 
'asically divided into two classes of tools: commercial 
'ares and educational/research-aimed softwares. Commer­
;oftware packages available on the market (e.g. PSS/E, 
Stag, Simpow, and CYME) follows an "all-in-ane" phi­
hy and are typically well-tested and computationally 
ent. Despite their completeness, these softwares can result 
1ersome for educational and research purposes. Even more 
rtant, commercial softwares are '"closed", i.e. do not 
' changing the source code or adding new algorithms. 
esearch porposes, the ftexibility and the ability of easy 
typing are often more crucial aspects than computational 
ency. On the other hand, there is a variety of open source 
reb tools, which are typically aimed to a specific aspect of 
r system analysis. An example is UWPFLOW [I] which 
des an extremely robust algorithm for continuation power 
analysis. However, extending and/or modifying this kind 
ientific tools also requires keen programming skills, in 
ion to a good knowledge of a low level language (C in 
ase of UWPFLOW) and of the structure of the program. 
the last decade, several high level scientific languages, 
as Matlab, Mathematica and Modelica, have become 
and more popular for both research and educational 

>ses. Any of these languages can lead to good results 
e field of power system analysis (see for example [2]); 
:ver Matlab proved to be the best user choice. Key features 
latlab are the matrix-oriented programming, excellent 
ng capabilities and a graphical environment (Simulink) 
h highly simplifies control scheme design. For these 
ns, several Matlab-based commercial, research and ed­
onal power system tools have been proposed, such as 

•mined to the IEEE Transaction on Power Sy.'item\ November 2004. 
1ilano i-. with the Dept. of Electrical Engineering, University of Castilla­
mcba, Ciudad Real, 13071, Spain (e-mail: fmilano@ind-cr.uclro.es). 

TABLE! 

MATLAB-BASED PACKAGES FOR POWER SYSTEM ANALYSIS 

Package I PF I CPF I OPF I SSA I TD I EMT I GUI I GNE 

EST ,f ,f ,f ,f 
MatEMTP ,f ,f .( ,f 

MatPower ,f .( 

PAT ,f .( ,f 

PSAT ,f ,f ,f ,f ,f ,f ,f 

PST ,f ,f .( ,f 

SPS ,f .( ,f ,f ,f .( 

VST ,f ,f ,f ,f ,f 

Power System Toolbox (PST) [3], MatPower [4], Toolbox 
(VST) [5], MatEMTP [6], SimPowerSystems (SPS) [7], Power 
Analysis Toolbox (PAn [8], and the Educational Simulation 
Tool (EST) [9]. Among these, only MatPower and VST are 
open source and freely dowuloadable. 

This paper describes a new Matlab-based power system 
analysis tool (PSAJ') which is freely distributed on line [!0]. 
PSAT includes power ftow, continuation power ftow, optimal 
power flow, small signal stability analysis and time domain 
simulation. The toolbox is also provided with a complete 
graphical interface and a Simulink-based one-line network 
editor. Table I depicts a rough comparison of the currently 
available Matlab-based tools for power system analysis and 
PSAT. The features illustrated in the table are the power 
flow (PF), the continuation power flow and/or voltage stability 
analysis (CPF-VS), the optimal power flow (OPF), the small 
signal stability analysis (SSA) and the time domain simulation 
(TD) along with "aesthetic" features such as the graphical user 
interface (GUI) and the graphical network editor (GNE). 

An important but often missed issue is that the Matlab en­
vironment is a commercial and "closed .. product, thus Matlab 
kernel and libraries cannot be modified nor freely distributed. 
To allow exchanging ideas and effectively improving scientific 
research, both the toolbox and the platform on which the 
toolbox runs should be free [11]. At this aim, PSAT can run 
on GNU/Octave [12], which is a free Matlab clone. 

The paper is organized as follows. Section II illustrates the 
main PSAT features while Section III describes the models 
and the algorithms for power system analysis implemented 
in PSAT. Section IV presents a variety of case studies based 
on the IEEE 14-bus test system. Finally Section V presents 
conclusions and future work directions. 

II. PSAT FEATURES 

A. Outlines 

PSAJ' has been thought to be portable and open source. At 
this aim, PSAT has been developed using Matlab, which rnns 
on the commonest operating systems, such as Unix, Linux, 
Wmdows and Mac OS X. Nevertheless, PSAT would not be 



letely open source if it run only on Matlab, which is 
'prietary software. At this aim PSAT can run also on 
test GNU/Octave releases [12], which is basically a free 
tb clone. In the knowledge of the author, PSAT is actually 
rst free software project in the field of power system 
sis. PSAT is also the first power system software which 
on GNU/Octave platforms. 
' synoptic scheme of PSAT is depicted in Fig. I. Observe 
'SAT kernel is the power flow algorithm, which also takes 
)f the state variable initialization. Once the power flow 
1een solved, the user can perform further static and/or 
nic analyses. These are: 

Continuation Power Flow (CPF); 
Optimal Power Flow (OPF); 
Small signal stability analysis; 
Tune domain simulations. 

AT deeply exploits Matlab vectorized computations and 
~ matrix functions in order to optimize performances. 
ermore PSAT is provided with the most complete set of 
ithms for static and dynamic analyses among currently 
tble Matlab-based power system softwares (see Table 1). 
'also contains interfaces to UWPFLOW [I] and GAMS 
Nhich highly extend PSAT ability to solve CPF and OPF 
ems, respectively. These interfaces are not discussed here, 
'Y are beyond the main purpose of this paper. 
order to perform accurate and complete power system 
ses, PSAT supports a variety of static and dynamic 
Is, as follows: 

ver Flow Data: Bus bars, transmission lines and trans­
rrers, slack buses, PV generators, constant power loads, 
shunt admittances. 
rket Data: Power supply bids and limits, generator 
'er reserves, and power demand bids and limits. 
'tches: Transmission line faults and breakers. 
asurements: Bus frequency measurements. 
<ds: Voltage dependent loads, frequency dependent loads, 

(polynomial) loads, thermostatically controlled loads, 
exponential recovery loads [14]. 
chines: Synchronous machines (dynamic order from 2 to 
nd induction motors (dynamic order from 1 to 5). 
1trols: Turbine GoVernors, AVRs, PSSs, Over-excitation 
ters, and secondary voltage regulation. 
~ulating Transfonners: Under load tap changers and 
:;e shifting transformers. 
~TS: SVCs, TCSCs, SSSCs, UPFCs. 
ld Turbines: Wind models, constant speed wind turbine 
1 squirrel cage induction motor, variable speed wind 
,ine with doubly fed induction generator, and variable 
~ wind turbine with direct drive synchronous generator. 
ter Models: Synchronous machine dynamic shaft, sub­
:;hronous resonance model, solid oxide fuel cell, and sub­
smission area equivalents. 

sides mathematical algorithms and models, PSAT in­
·s a variety of additional tools, as follows: 

User-friendly graphical user interfaces; 
Simulink library for one-line network diagrams; 
Data file conversion to and from other formats; 

2 
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Fig. I. Synoptic scheme of PSAT. 

TABLE II 

FUNCTIONS AVAILABLE ON MATLAB AND GNU/OCTAVE PLATFORMS 

4) User defined model editor and installer; 
5) Command line usage. 

The following subsections will briefly describe these tools. 
Observe that, due to GNU/Octave limitations, not all algo­
rithms/tools are available on this platform (see Table II). 

B. Getting Started and Main Graphical User Inteiface 

PSAT is launched by typing at the Matlab prompt: 

>> psat 

which will create all structtlres required by the toolbox and 
open the main GUI (see Fig. 2). All procedures implemented in 
PSAT can be launched from this window by means of menus, 
buttons and/or short cuts. 

The main settings. such as the system base or the maximum 
number of iteration of Newton-Raphson methods, are shown 
in the main window. Other system parameters and specific 
algorithm settings have dedicated GUis (see Figs. 8 and ll). 
Observe that PSAT does not rely on GUis and makes use 
of global variables to store both setting parameters and data. 
This approach allows using PSAT from the command line as 
needed in many applications (see following Section 11-E). 



Main graphical user interface of PSAT. 

PSAT Simulink librnry. 

mulink Library 

A.T allows drawing electrical schemes by means of picto­
locks. Fig. 3 depicts the complete PSAT-Simulink library 
1lso Fig. 7 which illustrates the IEEE 14-bus test system). 
' PSAT computational engine is purely Matlab-based and 
imulink environment is used only as graphical tool. As a 
r of fact, Simulink models are read by PSAT to exploit 
>rk topology and extract component data. A byproduct of 
pproach is that PSAT can run on GNU/Octave, which is 
rrtly not providing a Simulink clone. 
·serve that some Simulink-based tools, such as PAT [8] 
:<:ST [9], use Simulink to simplify the design of new 
ol schemes. This is not possible in PSAT. Howeve~ PAT 
1ST do not allow representing the network topology, thus 
ing in a lower readability of the whole system. 

·ata Corwersion and User Defined Models 

ensure portability and promote contributions, PSAT is 
ded with a variety of tools, such as a set of Data Format 
ersion (DFC) functions and the capability of defining 
Defined Models (UDMs). 

3 

Fig. 4. GUI for data format conversion. 

Fig. 5. Gill for user defined models. 

The set of DFC functions allows converting data files to 
and from formats commonly in use in power system analysis. 
These include: IEEE, EPRI, PTI, PSAP, PSS/E, CYME, Mat­
Power and PST formats. On Matlab platforms, an easy-to-use 
GUI (see in Fig. 4) handles the DFC. 

The UDM tools allow extending the capabilities of PSAT 
and help end-users to quickly set up their own models. UDMs 
can be created by means of the GUI depicted in Fig. 5. Once 
the user has introduced the variables and defined the DAE of 
the new model in the UDM GUI, PSAT automatically com­
piles equations, computes symbolic expression of Jacobians 
matrices (by means of the Symbolic Toolbox) and writes a 
Matlab function of the new component. Then the user can 
save the model definition and/or install the model in PSAT. If 
the component is not needed any longer it can be uninstalled 
using the UDM installer as well. 

E. Command Line Usage 

GUis are useful for education purposes but can in some 
cases limit the development or the usage of a software. For 



eason PSAT is provided with a command line version. 
feature allows using PSAT in the following conditions: 

it is not possible or very slow to visualize the graphical 
ronment (e.g. Matlab is running on a remote server). 
one wants to write scripting of computations or include 
: to PSAT functions within user defined programs. 
PSAT runs on the GNU/Octave platform, which currently 
1er provides GUI tools nor a Simulink-like environment. 

III. MODELS AND ALGORITHMS 

twer System Model 

' standard power system model is basically a set of 
1ear differential algebraic equations, as follows: 

f(x, y,p) (I) 

0 g(x,y,p) 

: x are the state variables x E !Rn; y are the algebraic 
>les y E !Rm; pare the independent variables p E IR'; f 
e differential equations f : IRn X !Rm X IR',.... IRn; and g 
te algebraic equations g : IRm x IRm x JR£ ~ IRm. 
A.T uses (I) in all algorithms, namely power flow, CPF, 
small signal stability analysis and time domain simula­
as discussed in the following subsections from III-B to 
The algebraic equations g are obtained as the sum of all 
· and reactive power injections at buses: 

c, y, p) = [gP] = [gpm]- L [gP'] 'rimE M (2) 
9q 9qm C 9qc 

cE m 

l 9vm and 9qm are the power flows in transmission lines 
mrnonly defined in the literature [15], M is the set of 
1rk buses, Cm and [gJc, g;fc]T are the set and the power 
ions of components connected at bus m, respectively. 
A.T is component-oriented, i.e. any component is defined 
endently of the rest of the program as a set of nonlinear 
ential-algebraic equations, as follows: 

(3) 

Pc 9pc(Xc, Yc,Pc) 

Qc 9qc(Xc, Yc,Pc) 

: Xc are the component state variables, Yc the algebraic 
>les (i.e. V and () at the buses to which the component is 
:cted) and p, are independent variables. Then differential 
ions fin (I) are built concatenating f, of all components. 
"ations (3) along with Jacobians matrices are defined 
function which is used for both static and dynruuic 
ses. In addition to this function, a component is defined 
eans of a structure, which contains data. parameters and 
tterconnection to the grid. 
~ the sake of clarity, let us consider the following exam­
amely the exponential recovery load (ERL) [14]. The set 
ferential-algehraic equations are as follows: 

x,, -x,,jTp + Po(V/Vo) 0
"- Po(V/Vo) 0

' (4) 

x,, -x,,/TQ + Qo(V/Vo)~' - Qo(V/Vo)~' 
P, x,,jTp + Po(V/Vo) 0

' 

Q, x,,/TQ + Qo(V/Vo)~' 

4 

TABLE ill 
EXPONENTIAL RECOVERY LOAD DATA FORMAT (Erload. con) 

where most parameters are defined in Table III and Po, Qo 
and Vo are initial powers and voltages, respectively, as given 
by the power flow solution. Observe that a constant PQ load 
must be connected at the same bus as the ERL to determine 
the values of Po, Qo and Vo. 

Exponential recovery loads are defined in the structure 
Erload, whose fields are as follows: 

I) con: exponential recovery load data. 
2) bus: Indexes ofbuses to which the ERLs are connected. 
3) dat: Initial powers and voltages (Po, Qo and Vol-
4) n: Total number of ERLs. 
5) xp: Indexes of the state variable x,,. 
6) xq: Indexes of the state variable xc, . 

B. Power Flow 

PSAT included the standard Newton-Raphson method [15], 
the fast decoupled power flow (XB and BX variations [16]), 
and a power flow with a distributed slack bus model [17]. 
The latter is a novelty among Matlab-based power system 
softwares. The power flow problem is formulated as (I) with 
zero first time derivatives i::: 

0 = f(x,y) 

0 = g(x,y) 

(5) 

Differential equations are included in (5) although some dy­
namic components are initialized after power flow analysis. 
This is needed if the known input data of the component are 
not the input parameters of its dynamic model. For example 
the user does not generally know field voltages and mechanical 
torques of synchronous machines. However the user does 
know desired voltages and active powers injected into the 
network by generators. Thus one can solve the power flow 
first, using PV buses and then initialize synchronous machine 
state variables using the power flow solution. Nevertheless, 
other components can be included in the power flow as one 
typically knows the input parameters of the dynamic model. 
For example in the case of load tap changers, it is likely 
the user knows the regulator reference voltage rather than the 
transformer tap ratio. 

The distributed slack bus model is based on a generalized 
power center concept and consists in distributing losses among 
all generators [17]. This is obtained by rewriting active powers 
Pa of slack and PV generators as: 

Pa =(I+ kc'Y)Pc, (6) 



: Pa
0 

are the desired generator active powers, ka is 
lar variable which distributes power losses among all 
ators and "! are the participation factors of the generators 
! losses. Observe that ka is an unknown insofar as 
' are unknown. Assuming that (6) has been written for 
nerators, ka is balanced by the phase reference equation. 

mtinuation Power Flow 

' Continuation Power Flow (CPF) function included in 
· is a novelty among available Matlab-based packages 
)Wer system analysis. The CPF algorithm consists in a 
:tor step which computes a normalized tangent vector 
corrector step that can be obtained either by means of a 
parametrization or a perpendicular intersection [18]. The 
problem is defined based on (1), as follows: 

0 

0 

f(x, y, A) 

g(x,y,A) 

(7) 

: ,\ E IR is the loading parameter, which is used to 
>ase case generator and load powers, Pan• P£0 and Q Lo 

;lively, as follows: 

otimal Power Flow 

(A + -yka )Pa., 

A[hooQL.,] 

(8) 

' Optimal Power Flow (OPF) is defined as a nonlinear 
:ained optimization problem. The Interior Point Method 
1 with a Mehrotra's predictor-corrector method is used 
ve the OPF problem [19]. Notice that PSAT is the only 
b-based software which provides an !PM algorithm to 
the OPF-based market clearing problem. A variety of 

live functions are included in PSAT, as follows: 
Market Clearing Procedure: The "standard" OPF-based 
;t model is represented in PSAT as follows: 

Minimize(y.p) 

su~ject to 

F(p) 

g(y,p) = 0 

h.nin :S h(y) :S hmax 

.Pmin :-=; P :-=; Pmax 

(9) 

: g and y are defined as in (1), the control variables p 
oe power demand and supply bids PD and Ps, while 
e ~-+ IR and h : JR.= ~-+ IR.q are the objective function and 
,equality constraints, respectively. 
! goal is to maximize the social benefit; thus, the objec­
Lmction F is defined as: 

C s and CD are quadratic functions of supply and 
nd bids in $/MWh, respectively. 
' physical and security limits h included in PSAT are 
or to what is used in [20], and take into account transmis­
ine thermal limits, transmission line power flow limits, 
ator reactive power limits, and voltage "security" limits. 
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2) VSC-OPF Market Clearing Model: The following op­
timization problem is used for representing an OPF market 
clearing model with inclusion of voltage stability constraints, 
based on what was proposed in [21] and [22]: 

Minimize(y,p,y,.\) j(p, A) 
subject to g(y,p) = 0 

g(y,p,A) = 0 

A:?:A 
hmh> :S h(y) :S hmax 

hmin :S h(y) :S hmax 

Pmin :-=; P :-=; Pmax 

(II) 

In (11 ), a second set of power flow variables x E IRm and 
equations fj : IR.m x JR.£ x JR. ~-+ JRm, together with the constraints 
h(x) : IRm >-> IR", are introduced to represent the solution 
associated with a loading parameter .\., where ,\ represents an 
increase in generator and load powers, as follows: 

(1 +A+ ka)Pa 
(1 + A)PL 

(12) 

where Pa and PL are total generator and load powers for the 
current market condition. 

Two objective functions are available: the maximization of 
the distance to the maximum loading condition: 

F=-A (13) 

and a multi-objective objective function: 

where w E (0, 1) is a factor which allows weighting the influ­
ence of the system security on the market clearing procedure. 

E. Small Signal Stability Analysis 

PSAT allows computing and plotting the eigenvalues and 
the participation factors of the system, once the power flow 
has been solved. The eigenvalues can be computed for the 
state matrix of the dynamic system, and for the power flow 
Jacobian matrix (QV sensitivity analysis) [23]. Unlike other 
softwares, such as PST and Simulink-based tools, eigenvalues 
are computed using analytical Jacobian matrices, thus ensuring 
high precision results. 

1) Dynamic Analysis: The Jacobian matrix Ac of a dy­
namic system is defined by linearizing (5), as follows: 

Fy l [Llxl = [Ac] [Llxl 
hFv Lly Lly 

(15) 

where Fx = 'il xf, Fy = 'il yj, Gx = 'il x9· and hFv = 'il y9· 
Then the state matrix As is obtained by eliminating Lly, and 
thus implicitly assuming that J LFV is non-singular (i.e. no 
singularity-induced bifurcations): 

(16) 

The computation of all eigenvalues can be a lengthy process 
if the dynamic order of the system is high. At this aim, PSAT 



TABLE IV 

IRMANCE OF PSAT SOLVERS FOR THE IEEE 14-BUS TEST SYSTEM 

Simulation Elapsed Time [ s] 

Power flow (Newton-Raphson method) 0.0345 
Continuation power flow 2.41 
Optimal power ftow 021 
Small signal stability analysis 0.16 
Tune domain simulation (~t 0.1 s) 22.0 

s computing a reduced number of eigenvalues based on 
~ matrix properties and eigenvalue relative values (e.g. 
;tor smallest magnitude, etc.). PSAT also computes parti­
on factors using right and left eigenvector matrices [15]. 
QV Sensitivity Analysis: The QV sensitivity analysis is 
uted on a reduced matrix, as it was proposed in [23]. 
s assume that the power flow Jacobian matrix J LFV is 
~d in four sub-matrices: 

[
Jpo 

hFv = Jqo 
Jpv] 
Jqv 

(17) 

the reduced matrix used for QV sensitivity analysis is 
od as follows: 

hFvr = Jqv- JqoJpJhv (18) 

' it is assumed that J PB is non-singular [23]. Observe 
oe power flow Jacobian matrix used in PSAT takes into 
[It all static and dynamic components, e.g. tap changers 
ls etc. 

ne Domain Simulation 

Integration Methods: Two integration methods are avail­
i.e. backward Euler and trapezoidal rule, which are 

dt A-stable algorithms and solve (I) together (simul­
us-implicit method, Sl). This method is nmnerically 
stable than the partitioned-explicit method, which solves 
entia! and algebraic equations separately [15]. Observe 
PSAT is currently the only Matlab-based tool which 
ments a SI method for the numerical integration of(!). 
Handling Disturbances: The commonest perturbations 
ansient stability analysis, i.e. faults and breaker opera­
are handled by means of embedded functions. Step per­

:ions can be obtained by changing parameter or variable 
s after completing the power flow. All other disturbances 
e defined through custom "perturbation" functions, which 
1clude and modify any global structure of the system. 

IV. CASE STUDIES 

is section illustrates some PSAT features for static and 
nic stability analysis by means of the IEEE 14-bus test 
n (authors interested in reproducing the outputs could 
ve the data from the PSAT web site [10]). All results 
been obtained on Matlab 7 running on a Intel Pentimn 
66 GHz. Table IV depicts simulation times for the 14-
est system. Results were double-checked by means of 
software packages, namely PST [3], UWPFLOW [1], 

}AMS [13]. 
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Fig. 6. GUI for power ftow reports. The results refer to the IEEE 14-bus 
test system. 

TABLE V 

PERFORMANCE OF PSAT POWER FLOW SOLVERS 

Network NR [<] XB [s] BX [s] 
IEEE 14-bus 0.0345 0.0151 0.0166 
IEEE 118-bus 0.0586 0.0197 0.0173 
IEEE 300-bus 0.1306 0.0447 0.0423 
1228-bus (Italian IN grid) 0.6546 0.1413 0.1798 

Figure 7 depicts the model of the IEEE 14-bus network 
built using the PSAT Simulink library. Once defined in the 
Simulink model, one can load the network in PSAT and solve 
the power flow. Power flow results can be displayed in a Gill 
(see Fig. 6) and exported to a file in several formats including 
Excel and I51£X. PSAT also allows displaying bus voltages 
and power flows within the Simulink model of the currently 
loaded system (e.g. see the bus voltage report in Fig. 7). 
Notice that PSAT uses vectorized computations and sparse 
matrix functions provided by Matlab, so that computation 
times increase slowly as the network size increase. Table V 
illustrates net power flow computation times for a variety of 
tests network, with different solvers, namely Newton-Raphson 
method (NR) and fast decoupled power flows (both XB and 
BX variations). Results were obtained using the command line 
version of PSAT (times are about 0.5 s slower if using GUis). 

CPF analysis is handled by a dedicated GUI, as illustrated 
in Fig. 8. Nose curves can be plotted using the GUI for 
plottiug simulation results, which is depicted in Fig. 9. Figure 
10 illustrates the nose curves (V, A,) obtained using the CPF 
algorithm implemented in PSAT. The curves refers to mere 
static equations, i.e. the differential equations of synchronous 
machines and controls are ignored doting the CPF analysis. 
Figure 10 depicts three different nose curves considering 
the base case network and line 2-4 and line 2-3 outages, 
respectively. Notice that contingencies are simulated by setting 
the status of breakers as "open" in the Simulink model. 

The GUI depicted in Fig. II allows adjusting parameters 
and preferences for OPF analysis. For the sake of comparison 
with the CPF analysis, Table VI depicts the maximum loading 
parameter A*, the base case power (BOP = I;, PL.) the 



,,.,_.," ~ 
··=~>'~ 

-t-t-+-:~_"::·.~o;;. ,~·:8:.~7:!, 

~ PV $ 

rrg.J~ '"·..:·:.:,......1....,..1-

PSAT-Simulink model of the IEEE 14-bus test system. 

GUI for continuation power flow settings. 

GUI for plotting CPF results. The plots illustrate voltages at buses 
and 14 for the IEEE 14-bus test system with no contingency. 
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~ 
~0.6 

~ 
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Fig. 10. Nose curves at bus 14 for different contingencies for the IEEE 
14-bus test system. 

Fig. 11. GUI for OPF settings. Observe that the weighting factor is set to 1 
in order to obtain the objective function (13). 

Maximum Loading Condition (M LC = (1 + J.*)BCP) and 
the Available Loading Capability (ALC = ).* BCP) for the 
base case and the lines 2-3 and 2-4 outages. The OPF problem 
used to compute the MLC is (11) and (13). Notice that, 
because of the definitions of generator and load powers Pa 
and PL given in (8) and (12), one has.\,=,\*+ 1. 

The test case presented in [24] is reproduced here to illus­
trate small signal stability analysis and time domain simulation 
available in PSAT. Firstly it has been used the IEEE 14-bus 
system with a 40% load increase with respect to the base case 
loading, and no PSS at bus 1. As illustrated by the time domain 
simulation depicted in Fig. 12, a Hopf bifurcation occurs 
for the line 2-4 outage resulting in undamped oscillations of 
generator angles. A similar analysis can be carried on the same 
system with a 40% load increase but considering the PSS of 
the generator connected at bus l. Figure 13 depicts the GUI 
for eigenvalue analysis and shows that the system is stable. 

TABLE VI 

MAXIMUM LOADING CONDITION OPF FOR THE IEEE 14-BUS NETWORK 

Contingency I BC P I >. • I M LC I ALC 
[MWl [p u.l [MWl [MWl 

None 259 0.7211 445.8 186.8 
Line 2-4 Outage 259 0.5427 399.5 148.6 
Line 2-3 Outage 259 0.2852 332.8 73.85 



" Timersl 
10 

Generator ~'Peed oscillations for lhe IEEE 14-bus test system due 
f bifurcation triggered by line outage at 40% overload. 

Gill for eigenvalue analysk The plot illustrates eigenvalues for the 
4-bus test system with PSS, for a line 24 outage at 40% overload. 

V. CONCLUSIONS 

s paper has presented a new open-source power sys­
malysis toolbox (PSAT) which runs on Matlab and 
'Octave. PSAT comes with a variety of procedures for 
and dynamic analysis, sevetal models of standard and 
tventional devices, a complete GUI, and a Simulink-

network editor. These features make PSAT suited 
oth educational and research putposes. As a matter 
:t, PSAT is currently used by several undergraduates, 
students and researchers, and has an active mailing list 

'/groups.yahoo.com/groups/psatforum) currently count­
ver 290 members. Among future projects, there are 
ling the CPF algorithm to dynamic bifurcation analysis 
ncluding new control schemes and renewable energy 
ator models. Any suggestion and/or bug report are very 
'me. 
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