SOLAR COOLING SYSTEM IN CAR

By

WAN NORAKMAL BT WAN MOHAMAD

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

> Universiti Teknologi Petronas Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

© Copyright 2006 by Wan Norakmal bt Wan Mohamad, 2006

CERTIFICATION OF APPROVAL

SOLAR COOLING SYSTEM IN CAR

by

Wan Norakmal bt Wan Mohamad

A project dissertation submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

Approved:

Dr Taj Mohamad Baloch, Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

Dr Taj Mohammad Baloch

Electrical & Electronic Engineering Universiti Teknologi PETRONAS 31750 Tronoh Perak Darul Ridzuan, MALAYSIA

Senior Lecturer

TRONOH, PERAK

June 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

102 lunder

Wan Norakmal bt Wan Mohamad

ABSTRACT

The purpose of this project is to design cooling system by implementing thermoelectric cooler (Peltier) to be applied in a car. This report consists of 3 major chapters which are Introduction, Literature review and Methodology. In average, people park their car at open parking space which exposed directly to sun. This situation will yield an uncomfortable situation and damage certain device in a car. Also, the readily available air conditioning system nowadays uses fuel which is frequently exposed to price hike. These lead to high maintenance cost of the car itself. These problems can be solved by developing a reliable Cooling System. As Malaysia adapts a sunny climate, it is very convenient to utilize Solar Power for Cooling System in Car. The main objective of the project is to design a system which implements a thermoelectric cooler, and eventually to construct prototype of Cooling System in a car. In order to accomplish that, many studies on Solar Cell, Thermal Cooling System, Thermoelectric Cooler and Battery Storage is done. To ensure the smoothness of this project. Methods, tools and software that are going to be used are determined in Methodology. Due to time constrain, the project will be implemented by stages where by stage 1(first semester) is Literature review, research, data gathering and calculations and stage 2 (second semester) is Design ,testing , prototype, installation and analysis.

ACKNOWLEDGEMENTS

I would like to thank Allah S.W.T. for giving me the opportunity to do this final year project and because of his mercies, I am successfully completed the project. Also, I would like to express my appreciation to University Technology of PETRONAS for providing the facilities and technical expertise to implement the project.

My appreciation is extended to my supervisor, Dr Taj Mohamad Baloch for the numerous hour of spending his time to assist in my project. His suggestions for this project are very valuable. Also, I would like to thank Dr Balbir Singh and Ms Siti Hawa bt Hj Tahir for their assistance during the development of the project. Without their contributions this volume may not have come to fruition.

Special thanks go to my family and friends for their endless moral support during the development of the project. There are others to thank; namely those with whom I did not have the pleasure of interacting personally, but whose contribution are extremely valuable, nevertheless.

TABLE OF CONTENTS

LIST OF TABLES	********		viii
LIST OF FIGURES		*****	ix
LIST OF ABBREVIATIONS			x

CHAPTER 1: INTRIDUCTION

1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Objective and Scope of Study	2

CHAPTER 2 LITERATURE REVIEW AND THEORY

2.1 Photovoltaic	4
2.2 Solar Radiation in Malaysia	6
2.3 Thermoelectric Module(Peltier)	8
2.4 Cooling Load	9
2.5 Cooling System: Air to Air System	11
2.6 Heat Transfer	. 12

CHAPTER 3 METHODOLOGY	14	4
-----------------------	----	---

CHAPTER 4 ANALYSIS AND RESULT

4.1 Operation of the Cooling System	17
4.2 Solar Radiation	
4.3 Photovoltaic System	
4.4 Cooling Load Calculation	
4.5 Analysis on Peltier	27
4.6 Temperature Controller Circuit	
4.7 Temperature Display Circuit	
4.8 Construction of Prototype	

CHAPTER 5 DISCUSSION
CHAPTER 6 CONCLUSION AND RECOMMENDATION
REFERENCES
APPENDICES40
APPENDIX A – Gantt Chart
APPENDIX B – 1. Table of Peak Solar Heat Gain through Ordinary Glass
2. Table of Shading Coefficient for Glass
APPENDIX C - Datasheet of Photovoltaic Panel
APPENDIX D - Hourly Global Radiation Data
APPENDIX E – Datasheet:-
1.LM358
2.LM308
3.LM335
4.ICL7107

LIST OF TABLES

Table 1 Summary on Result	19
Table 2 Specifications of PV	20
Table 3 The Voltage and Current consumption when Heatsink and Fan are	used 28

LIST OF FIGURES

Figure1 Diagram of Photovoltaic Panel	5
Figure 2 Photovoltaic cells, Modules, Panels and Array	5
Figure 3 Photovoltaic System Components	6
Figure 4 Mean Solar Radiation in Malaysia	7
Figure 5 Schematic of Thermoelectric Cooler (Peltier)	8
Figure 6 Heat Flow Diagram	10
Figure 7 Air to Air System	11
Figure 8 Heat Transfer from surrounding into the Car	12
Figure 9 Flow Chart of Methodology	15
Figure 10 Designated Cooling System	16
Figure 11 Photovoltaic System	20
Figure 12 Schematic of Battery Charger	21
Figure 13 Interior Measurement of PERODUA KANCIL	23
Figure 14 Peltier Module	27
Figure 15 Schematic of Temperature Controller	29
Figure 16 Schematic of Temperature Sensor	30
Figure 17 Schematic of Temperature Display	30
Figure 18 The case for Peltier Module	33
Figure 19 3 Peltier Modules sandwiched between heat sink and fan	33
Figure 20 Peltier Modules in the case	34
Figure 21 Peltier Module placed under the seat(back of the car)	34
Figure 22 The blowing and sucking fan are placed in front of the car	34
Figure 23 Prototype (car) which cooling system is modeled	35

LIST OF ABBREVIATIONS

Symbol	Meaning	Units
Α	Area	m ²
CLTD	Cooling Load Temperature Difference	
DC	Direct Current	
EWB	Engineering Work Bench	
ft	feet	ft
GLF	Glass Load Factor	K
I _{max}	Maximum Current	Α
К	Kelvin	К
kW	Kilowatt	kW
MJm ⁻²	Mean Joule per meter square	MJm ⁻²
°C	Degree Celsius	°C
Р	Power	W
PV	Photovoltaic	
Q	Cooling Load	
SC	Shading Coefficient	
SHGF	Solar Heat Gain Factor	
TEC	Thermoelectric Cooler	
U	Heat Transfer Coefficient	W/m ² K
v	Voltage	v
Ω	Ohm	Ω

CHAPTER 1 INTRODUCTION

Associated with the Electrical and Electronics Engineering technological development, the world is now moving towards nanotechnology applications. Such application leads to research in thermoelectric one of which can be used as cooler in the car compartment, where the thermoelectric will be solar powered .The project innovation is to design a Cooling System utilizing thermoelectric cooler to be implemented in a car.

1.1 Background of Study

The sun is a source of practically unlimited energy, most of which is wasted but nevertheless provides with millions kilowatt of power to be utilized by human being. Nowadays, solar power has become one of the energy for human life. The use of solar power is also very clean and environmental friendly and only requires little maintenance as it has no rotational part. Photovoltaic panel is the example of the sun energy which produces electricity directly from the sun. Thermoelectric coolers are solid state heat pumps used in applications where temperature stabilization, temperature cycling, or cooling below ambient are required. There are many products which use thermoelectric coolers, including CCD cameras (charge coupled device), laser diodes, microprocessors, blood analyzers and portable picnic coolers. Thermoelectrics modules are based on the Peltier Effect, discovered in 1834, by which DC current applied across two dissimilar materials causes a temperature differential.

1.2 Problem Statement

With the rapid growth of Malaysia's economy, car becomes a necessity rather than a symbol of luxury. With Malaysia's climate, car owners have to live with overheated compartments if they park their car under the sun. The problem with overheating is that it can damage several equipments in the car. Even if the car is running, the air condition system in the car uses fuel as the main energy drive. The price hike of fuel is a burden to the car owner because apart of the air condition system, the engine of the car also depends on the fuel as the main energy drive. Both of these problems lead to waste of money and high maintenance of the car itself.

1.3 Objective and Scope of Study

The objectives of this project are:

- a) To study and design a cooling system that utilize the Solar Energy
- b) To study the implementation of Thermoelectric Module in the Cooling System
- c) To construct a prototype of cooling system in a car

The scopes of study of the project are

- a) The solar cell operation and its system
- b) Analysis on thermal cooling system on real application
- c) Cooling Load Analysis
- d) Thermoelectric Cooler (TEC)
- e) Battery Storage
- f) Circuit design and assemblage
- g) Prototype design and construction

.

CHAPTER 2 LITERATURE REVIEW AND THEORY

The cooling system will consists of PV, battery as power and storage, battery charger to prevent overcharging , a temperature controller including temperature sensor for temperature difference measurement, thermoelectric cooler (TEC), and temperature display to provide monitoring. The PV panel will collect the solar energy and convert it to electrical energy – the direct current (DC). The DC current will straight away energize the cooling system in the car. Whilst energizing the circuit, the PV will also charge the battery and stores the excess energy in the battery. The electrical energy in the battery is used to energize the controlling unit if the PV power produced is not sufficient.

2.1 Photovoltaic

Photovoltaics (PV) are semiconductor devices that convert sunlight into direct current (DC) electricity. Groups of PV cells are electrically configured into modules and arrays, which can be used to charge batteries, operate motors, and to power any number of electrical loads.

A typical silicon PV cell is composed of a thin wafer consisting of an ultra-thin layer of phosphorus-doped (N-type) silicon on top of a thicker layer of boron-doped (P-type) silicon. An electrical field is created near the top surface of the cell where these two materials are in contact, called the P-N junction. When sunlight strikes the surface of a PV cell, this electrical field provides momentum and direction to light-stimulated electrons,

resulting in a flow of current when the solar cell is connected to an electrical load.(refer to Figure 1).[1]

Figure 1: Diagram of Photovoltaic Cell [1]

Photovoltaic cells are connected electrically in series or parallel circuits to produce higher voltages, currents and power levels. Photovoltaic modules consist of PV cell circuits sealed in an environmentally protective laminate, and are the fundamental building block of PV systems. Photovoltaic panels include one or more PV modules assembled as a pre-wired, field-installable unit. A photovoltaic array is the complete power-generating unit, consisting of any number of PV modules and panels.

Figure 2: Photovoltaic cells, modules, panels and arrays [1]

PV systems are like any other electrical power generating systems but the equipment used is different than that used for conventional electromechanical generating systems. However, the principles of operation and interfacing with other electrical systems remain the same. Although a PV array produces power when exposed to sunlight, a number of other components are required to properly conduct, control, convert, distribute, and store the energy produced by the array.

Depending on the functional and operational requirements of the system, the specific components required, a DC-AC power inverter, battery bank, system and battery controller, auxiliary energy sources and sometimes the specified electrical load (appliances). In addition, an assortment of balance of system (BOS) hardware, including wiring, overcurrent, surge protection and disconnect devices, and other power processing equipment. Figure 3 show a basic diagram of a photovoltaic system and the relationship of individual components.

Figure 3: Photovoltaic System Components.[1]

2.2 Solar Radiation in Malaysia

Solar radiation originates from the sun, which can be taken as a sphere of intensely hot gaseous matter. Solar radiation is the electromagnetic radiation emitted by the sun, where most of the radiation is in the broadband solar radiation wavelength region of 280 nm to 4000 nm.[2]

In general, the second decade of March 2006 shows that the country recorded normal solar radiation. Meanwhile, central Pahang and western Sarawak recorded much above normal of solar radiation. In terms of solar radiation amount as shown in Figure 5, most parts of the Peninsular Malaysia and Sabah recorded solar radiation amount of 20-24MJm⁻², whereas other parts of the country recorded the amount of 16-18 MJm⁻². South Perak, northwest Pahang, and most parts of Selangor, Negeri Sembilan, Malacca and Sarawak had lower solar radiation between 16.5 and 19 MJm⁻² per day. On the other hand, most parts of Kedah, Perlis, Penang, Terengganu and northeast Pahang had higher solar radiation between 24 and 24.6MJm⁻²per day. [3]

Figure 4: Mean Daily Solar Radiation (MJm⁻²⁾[3]

2.3 Thermoelectric Module

Figure 5: Schematic of Thermoelectric Cooler [4]

Thermoelectric modules or as known as Peltier modules (from now on will be refer as Peltier) are solid-state heat pumps that operate on the Peltier effect (The phenomenon whereby the passage of an electrical current through a junction consisting of two dissimilar metals result in a cooling effect). A thermoelectric module consists of an array of p- and n-type semiconductor elements heavily doped with electrical carriers. The array of elements is soldered so that it is electrically connected in series and thermally connected in parallel. This array is then affixed to two ceramic substrates, one on each side of the elements As electrons flow through one pair of n- and p- type elements (often referred to as a "couple") within the thermoelectric module: Electrons can travel freely in the copper conductors but not so freely in the semiconductor. As the electrons leave the copper and enter the hot-side of the p-type, they must fill a "hole" in order to move through the p-type. When the electrons fill a hole, they drop down to a lower energy level and release heat in the process.

the electrons move from the p-type into the copper conductor on the cold side, the electrons are bumped back to a higher energy level and absorb heat in the process.

Next, the electrons move freely through the copper until they reach the cold side of the ntype semiconductor. When the electrons move into the n-type, they must bump up an energy level in order to move through the semiconductor. Heat is absorbed when this occurs. Finally, when the electrons leave the hot-side of the n-type, they can move freely in the copper. They drop down to a lower energy level and release heat in the process.[4]

In summary, heat is always absorbed at the cold side of the n- and p- type elements. The electrical charge carriers (holes in the p-type; electrons in the n-type) always travel from the cold side to the hot side, and heat is always released at the hot side of thermoelectric element. The heat pumping capacity of a module is proportional to the current and is dependent on the element geometry, number of couples, and material properties.

2.4 Cooling Load

The air inside a car receives heat from number of sources from surrounding. If the temperature and humidity are to be maintained at a comfortable level, this heat must be removed. The amount of heat that must be removed is called Cooling Load. The Cooling Load is defined as the rate at which energy must be removed from a space to maintain the temperature and humidity at the design values. In this context, the energy means the Quantity of Heat that need to be removed in the car in order to maintain the temperature inside the car per designed value.

The amount of heat that must be removed (cooling load) is not always equal to the amount of heat received at given time. This difference is a result of the heat storage and time lag effects. Of the total amount of heat entering the car at instant, only a portion of it heats the car air immediately .The other part heats the car mass – the roof, walls, floors, and furnishings. This is the heat storage effect. Only at a later time does the stored heat portion contribute to heating the car air. This is the time lag effect, as shown in figure below. [5]

Figure 6: Heat flow diagram showing Heat Gain, Heat Storage and Cooling Load [5]

Figure 7: Conceptual Design of Cooling System

In this project, the cooling system that will be used is AA. Generally the basis of this cooling system is, air in an enclosure is cooled and the heat is dispersed to the surrounding air.

Figure 7 is a typical thermoelectric system designed to cool air in an enclosure .Here the challenge is to 'gather' heat from the inside of the box, pump it to a heat exchanger on the outside of the box, and release the collected heat into the ambient air. Usually, this is done by employing two heat sink/fan combinations in conjunction with one or more Peltier device.

The smaller of the heat sinks is used on the inside of the enclosure; cooled to a temperature below that of the air in the box, the sink picks up heat as the air circulates between the fins. In the simplest case, the Peltier device is mounted between this 'cold side' sink and a larger sink on the 'hot side' of the system. As direct current passes through the thermoelectric device, it actively pumps heat from the cold side sink to the one on the hot side. The fan on the hot side then circulates ambient air between the sink's fins to absorb some of the collected heat. Note that the heat dissipated on the hot side not only includes what is pumped from the box, but also the heat produced within the Peltier device itself (V x I). [4]

2.6: Heat Transfer

Figure 8: Heat transfer from surrounding into the car

Heat load inside the car is of a passive heat load, which is parasitic in nature and may consist of radiation, convection and conduction. The radiation from the sun heats the air of the atmosphere .Heat gained by conduction or radiation from the sun is moved about the planet by convection. Convection is heat transfer by the movement of mass from one place to another. It can take place only in liquids and gases. Radiation is the only way heat is transferred that can move through the relative emptiness of space. All other forms of heat transfer require motion of molecules like air or water to move heat.

The heat transfer in the car is initialized by Radiation from the sun. Then, the heat is transferred through conduction from the metal part (chassis) to the interior of the car, namely insulator at the roof, insulator at the door, seat and dashboard of the car. The heat transferred to the interior is then transferred through convection to the car compartment. Over certain period, the heat will accumulate and temperature inside the car will rise.

CHAPTER 3 METHODOLOGY

This project will be implemented in duration of 2 semesters. The project will be implemented by stages as listed below:

First semester: Literature review / research / data gathering / calculations

Second semester: Design / testing / prototype / installation / analysis

3.1 Literature review and research

Literature review and research will be done by seeking information through books, internet and journals. The stage provides important and useful knowledge for design stage.

3.2 Data Gathering

All the relevant information obtained from research for this project are gathered and revised.

3.3 Sizing and Calculation

The determination of component sizes, number of component used and amount of parameter of supply and load will be calculated during this stage.

14

3.4 Design

The design software (EWB) will be used to ensure the efficiency and accuracy of the design.

3.5 Testing, Prototype and Installation

This is the stage where prototype will be developed. The testing is done to ensure the devices function well. After that, prototype will be developed and installed.

Figure 9: Flow Chart of Methodology

Figure 10: Designated Cooling System in a Car

4.1 Operation of the Cooling System

The above figure shows the placement of the main components of the Cooling System. The Cooling System is equipped with Temperature Controller Circuit, which function is to turn ON the Cooling System whenever the temperature inside the car reaches up to 26°C and above. The cooling system will turned OFF whenever the temperature inside the car at 26°C.

Battery Charger Circuit has been included in the Cooling System to prevent overcharge to the Battery from Photovoltaic Panel. Whenever, the battery reaches 11v (undercharge) the circuit will disconnect the load from the battery and the load will directly connected to the Photovoltaic Panel. At the same time, the Photovoltaic Panel will charge the battery until it reaches 12.5v (overcharge). After the battery reaches 12.5v, it will disconnect from the Photovoltaic Panel (stop charging) and the load will reconnect to the battery.

Observation on the efficiency of the Cooling System is done by providing the Temperature Display Circuit (thermometer) into the system. The circuit will monitor, sample and display the temperature using Seven Segment Display. The increment and decrement of the temperature (before and after the cooling system is turned ON) inside the car can be observed

17

4.2 Solar Radiation

The purpose of this analysis is to ensure the solar radiation in Malaysia is sufficient to be use as energy .This analysis is very important because the cooling system designed is to be solar powered. For the analysis, data of Global radiation in Ipoh (refer to appendix d) and datasheet of 80watt PV panel from SHARP (refer to appendix c) is used. The data provided (global radiation) is daily hourly global solar radiation, in MJ/m².

The relationship between energy and solar radiation is given below:

 $1000 \text{w/m}^2 \approx 3.6 \text{ MJ/m}^2$ [6] $1 \text{w/m}^2 \approx (3.6/1000) \text{ MJ/m}^2$

The information to calculate the efficiency of the PV is provided in the datasheet (refer to appendix c)

Efficiency, $\eta = P_{max} / [(1000) \text{ w/m2 } x (h x \text{ w})]$

where;

 P_{max} = Maximum power produced by PV panel (w)

 $\begin{array}{c} h = height of PV panel \\ w = width of PV panel \end{array}$ h x w (area of PV)

 η = 123 / 1058.538 = 12.39 %

Assume the efficiency is constant,

$$\eta = P_{out} / P_{in}$$

$$P_{out} = P_{in} \times \eta$$

The table and figures below show the result of the analysis. The total solar radiation produced per day is 22.33 MJ/m² (taken on 4th March 2005) which is enough to use as energy At 1200 hour, the solar radiation produced is maximum i.e 116.2937w. Thus, the power produced by the panel is also maximum at 1200 hour. At 700 hour, the solar radiation produced is minimum i.e 36.11111111 wand the power produced is 4.407635w. During this time, the solar energy is not sufficient to drive the cooling system. To overcome the problem, the cooling system is provided with battery storage as backup to the system.

Time	MJ/m2	W/m2	Pout	1200
7	0.13	36.11111111	4.407635	
8	0.73	202.7777778	24.75056	
9	1.85	513.8888889	62.72403	
10	2.41	669.444444	81.71076	
11	2.59	719.4444444	87.81364	
12	3.43	952.777778	116.2937	
13	3.21	891.6666667	108.8347	- Terno .7 0. 9 10 11 12 13 14 15 16 13 SelarThan
14	2.74	761.1111111	92.89938	Press/Endsreite/2/
15	2.3	638.8888889	77.98123	
16	1.57	436.1111111	53.23066	
17	1.09	302.7777778	36.95632	
18	0.28	77.7777778	9.493367	
TOTAL	22.33		<u> </u>	Tiese 7 8 9 10 11 12 13 14 15 16

Table	1: Summary	on the resul	t
-------	------------	--------------	---

on in tech on 4th

19

4.3 Photovoltaic System

Figure 11: Photovoltaic System

A photovoltaic system consists of 3 major subsystems – photovoltaic, battery charger and storage battery.

4.3.1 Photovoltaic

The specifications of PV to be use in the system are as following: -

Table 2 : Specification of PV

Maximum Voltage (v)	Maximum Current (A)
17.3	4.63

The cooling system needs at least 27v for operation. Thus, photovoltaic system must include a Boost Converter to increase the voltage supply. Note that the Boost Converter will not be covered extensively by the author, as it is not in the scope of the study for this project.

4.3.2 Battery Storage

Battery that will be used is Rechargeable Sealed Lead Acid type which suitable for the storage for Photovoltaic [6]. The PV panel usually connected diode to prevent the PV discharging through battery system. The battery will produce a reverse flow of current to the solar panel when used as stand alone especially at night. This flow will drain power from batteries and damage it . Thus, diode is used to stop the reverse current. This protection is included in the Battery Charger Circuit.

4.3.3 Battery Charger Circuit [7]

Figure 12: Schematic of Battery Charger

This circuit is intended for charging lead-acid batteries with a solar panel. The customary diode that prevents the battery from discharging through the solar panel has been replaced by a FET-comparator combination. The charger will stop charging once a pre-set voltage (temperature compensated) has been reached, and recommence charging when the voltage has dropped off sufficiently. The load is disconnected when the battery voltage drops below 11V and reconnected when it gets back to 12.5V [7].

4.4 Cooling Load Calculation

The Cooling Load is defined as the rate at which energy must be removed from a space to maintain the temperature and humidity at the design values. In this context, the energy means the Quantity of Heat that need to be removed in the car in order to maintain the temperature inside the car per designed value. The analysis need to be done to the system so it can be applied to the real application. The main objectives of this analysis are to calculate the capacity of heat to be removed and power that needed by a car to energize the cooling system.

The method used to calculate the heat load is acquired through the 2001 American Society of Heating, Refrigerating, and Air-Conditioning Engineers(ASHRAE) fundamentals Handbook. Some assumptions were made during calculation, when selecting the coefficient values to be used. As there are no specific procedures for calculating the heat load in a vehicle, coefficient used are mostly set for the worse circumstance. The author will use the specifications of 850EX PERODUA Kancil as case study.

Figure 13: The Interior measurement of PERODUA Kancil

 $Q = U x A x CLTD_c$ [6]

Where;

Q = Cooling Load for roof, BTU/hr

U = overall heat transfer coefficient, $BTU/hr-ft^2-F$

A = area of roof, ft^2

CLTD_{c=} corrected cooling load temperature difference, F

 $Q = 0.213 \times 11.91 \times 84.9 = 215.38 \text{ btu/hr} = 63.11 \text{w}$

Door

Front Door

$$Q = U x A x CLTD_c$$

= 0.213 x 6.376 x 85.5 x 2
= 234.24 btu/hr = 68.04w

.

Back Door

$$= U x A x CLTD_{c}$$

= 0.213 x 5.4 x 85.5 x 2
= 196.68 btu/hr = 57.63w

Q = SHGF x A x CLF [6]

Where;

Q = Solar radiation cooling load for glass

SHGF = maximum solar heat gain factor, $Btu/hr-ft^2$

 $A = area, ft^2$

CLF = Cooling Load Factor for Glass

The maximum solar heat gain factor (SHGF) is the maximum solar heat gain through single clear glass taken in June, facing west at 1400 solar time. [6]

 $Q1 = 210 \times 5.2 \times 0.53 = 578.76 \text{ btu/hr} = 169.58 \text{w}$

 $Q2 = 210 \times 8.92 \times 0.53 = 992.79$ btu/hr = 290.89 w x 2 = 581.78 w

 $Q3 = 210 \times 3.35 \times 0.53 = 372.86$ btu/hr = 109.25w x 2 = 218.5w

 $Q4 = 210 \times 3.44 \times 0.53 = 765.74 \text{ btu/hr} = 224.36 \text{ w} \times 2 = 448.73 \text{ w}$

Total Cooling Load =
$$63.11w + 68.04w + 57.63w + 169.58w + 581.78w + 218.5w + 448.73w$$

= 1607.37w

The Cooling System will start to cool down the car when the temperature inside the car reaches 26° c. From a study, the maximum temperature recorded in the car while parked in sunlight is 48° C.

$$\triangle_{\mathrm{T}=(48-26)=22^{\circ}\mathrm{C}}$$

 $\Delta T = 1$ - <u>heat load</u> x maximum temperature difference

P_{max}

 $22 = 1 - 1607.37/P_{max} \times 68^{\circ}C$

Thus, Maximum Cooling Power, $P_{max} = 2376.1122$ watt

Figure 14: Peltier Modules

Specification

Voltage(max): 15.4v Current(max): 4.5A Power(max): 40w

Several tests have been conducted to ensure the Peltier Modules will operate efficiently. The first test was done to observe and recognize the side that will produced heat, while the other side will be cold.

The second test was conducted to determine the minimum and maximum voltage the Peltier Modules can withstand. It is found out that the Peltier starts to react at 1.0v .As the voltage increases, the hot side will get hotter and the cold side gets cooler. However, at 6.0v both sides start to get warm. As a result, the amount of voltage that it can receive to operate successfully was 5.5v. Nevertheless, the voltage supply can be increased by using heat sink and fan .The table below shows the Voltage and Current Consumption when the Peltier modules is embedded with fan and heat sink. It is found out that; the Peltier device can withstand a maximum of 15.0v voltage when fan and heat sink are used.

4.4.1 Test Result

Min voltage - 1.0 v (start to function) Max voltage - 6.0 v (both side getting hot)

Table 3 : The Voltage and Current Consumption when Heat Sink and Fan are used

Voltage (v)	Current(A)
1.0	0.120
2.0	0.240
3.0	0.410
4.0	0.600
5.0	0.730
6.0	0.820
7.0	1.180
8.0	1.350
9.0	1.500
10.0	1.670
11.0	1.800
12.0	2.050
13.0	2.270
14.0	2.380
15.0	2.570

4.6 Temperature Controller Circuit

Figure 15: Temperature Controller Schematic

In the circuit, Thermistor is used as the Temperature sensor. Thermistor is a semiconductor device that has a negative coefficient of resistance with temperature - i.e., as the temperature raises the resistance gets less. The value of $R_{setpoint}$ is found out through experiment as follows: The circuit is constructed, and calibrated (set Thermistor temperature at 25°C). At this point, the value of the $R_{setpoint}$ is 10k Ω [6].

Heat is applied at the Thermistor and the value of $R_{setpoint}$ is continuously changed until the value of $R_{setpoint}$ which will trigger the comparator output to produced high output at 26 °C is found. Through the analysis, it is found out that the $R_{setpoint}$ is equal to 8.2k Ω to trigger the output (high) at 26 °C.

4.7 Temperature Display Circuit

Figure 16: Temperature Sensor Schematic

Figure 17: Temperature Display Schematic

The above circuit is used to monitor the temperature inside the car. The circuit design includes precision centigrade temperature sensor and a digital to analog converter to display the temperature with seven segment displayers. Thermistor and LM335 have been used for temperature sensing. The ICL7107 analog to digital converter which directly drives Seven Segment Display is also used.

The temperature sensing circuit gives 10mv output voltage per centigrade. This becomes the input voltage to the converter .The operation of the temperature display circuit is described in two stages. During the first stage where for a given period the input voltage, and the output of the integrator at the end of this period, there is a voltage which is directly proportional to the input voltage. At the end of the preset period the integrator is fed with an internal reference voltage and the output of the circuit is gradually reduced until it reaches the level of the zero reference voltage. This second phase is known as the negative slope period and its duration depends on the output of the integrator in the first period. As the duration of the first operation is fixed and the length of the second phase is variable it is possible to compare the two and this way the input voltage is in fact compared to the internal reference voltage and the result is coded and is send to the display.[7]

4.8 Construction of Prototype

The construction of the prototype will focus mainly on the temperature controller circuit and the temperature display circuit. The author did not concentrate on the power supply part because of the cost constrain to purchase the PV. Also, the author cannot demonstrate the function of the battery charger since the PV is not available. Thus, for the prototype the supply of the cooling system will be provided by the DC power supply.

4.8.1 Peltier module

Figure 18: The case for Peltier Module

Figure 19: 3 Peltier Module are sandwiched between heat sink and fan

Figure 20: Peltier Module in the case

Figure 21: The Peltier module is placed under the passenger seat (back of the car)

Figure 22: The blowing fan and sucking fan are placed in front part of the car

4.8.2 Fan

Figure 23: Prototype (car) which cooling system is modeled

35

CHAPTER 5 DISCUSSION

From the Cooling Load Analysis. It can be concluded that to regulate the temperature in side the car at 26 °C, the maximum cooling load needed is approximately 2. 4kw. Car is a fixed size, the same volume of air enters the room must also exit the room. Theoretically Qi = Qa (refer to Figure 10). But, the value of Qp must be taken into consideration when sizing the outside fan and heat sink because not only they have to reject the heat inside the car, but also the heat produced by the Peltier device itself. Thus, Qa becomes Qi + Qp.

Based on the value of power obtain in the Cooling Load Analysis. The specifications needed for Peltier Module is determined. The author decided that the temperature inside the car to be maintained is 26° C. The value of the temperature and coefficient for this analysis are chosen based on the value to design Air Conditioning System in Malaysia provided by the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). The Peltier module specifications is Max delta = 68° C and Max power = 40watt. The author had done a thorough research on cost and performance of Peltier module provided by the various vendors. It is decided to purchase the Peltier Module of specifications Max delta temperature = 68° C and Max power = 40watt provided by Pacific Supercool Ltd. Hence, the cooling system will need at least 60 Peltier modules to regulate the temperature inside the car at 26° C.

This is definitely not the cost effective design. Thus, to overcome this problem the author added an additional fan at the front part of the car (refer to figure 22).2 fans are added which are blowing fan and sucking fan. Blowing fan is used to blow the air into the car and the other fan will suck the hot air out. This operation is used as ventilation and provided additional cooling in the car. The fans will activate simultaneously as Peltier modules .By providing the additional fans, the cooling load in the car is reduced.

When the temperature inside the car reaches 26°C. The 4 fans and Peltier embedded in the Cooling system are supposed to turn ON. But, only Peltier and 3 fan able to turn ON. One fan cannot be turned ON, this scenario happened because of Peltier draws a high current which result in large voltage drop. From the analysis, the 12v supply used to turn ON the Peltier module and 4 fans dropped to 8.0v and the current draws by the Peltier is 1.94 A. The voltage is insufficient to turn ON all the fans. To overcome the problem, the author uses 3 Peltier instead of 1. The 3 Peltier is connected serially. By using this connection, the large voltage drop is reduced. The 12v supply dropped to 5.6v and the serially connected Peltier draws 0.80A. The voltage is now sufficient to turn ON all the fan and Peltier.

37

CHAPTER 6 CONCLUSION AND RECOMMENDATION

As for conclusions, the project is successfully done within the timeframe. The cooling system has been designed and a working prototype is also constructed.

Overall, based upon studies, experiments and model constructed, this project successfully shows that thermoelectric technology provides various cooling approach, but limited for small scale application. It is not favorable for large scale due to high current drainage and high power consumption with limited solar power, where power usage is considered expensive.

It is recommended that the project is enhanced by providing a tracking method for the PV so that the usage of the PV can be optimized. Also, advance research is recommended to be done to overcome the high current drainage of the Peltier module so that the application of the module can be enhanced and widen.

38

REFERENCE

- 1. www.fsec.ucf.edu/pvt
- Balbir Singh, M.S.(2004). 'A Study of An Optimum Parabolic Trough Design For Possible Power Generation in Malaysia'. PhD Thesis, Universiti Sains Malaysia.
- 3. www.kjc.gov.my/english /publication/10ab-1.htm
- 4. www.tetech.com/assys/plate.html
- 5. Edward G.Pita.(2002) 'Air Conditioning Principles and Systems, An Energy Approach', New Jersey, Prentice Hall
- 6. H P Grag and J Prakash,(1997) 'Solar Energy,Fundamentals and Applications',Delhi,Tata McGraw Hill
- 7. www.electronics-lab.com
- 8. Thermistor datasheet
- Intersil Datasheet for LM335(issued November 2000), ICL7107(issued December 2005),LM 358(issued October 2005),,LM 308A(issued December 1994)
- Mohamad Faizul B Mohamad Aziz, (2005), 'Final Year Project Report, Vehicle Compartments Environmental Control Systems Using Solar Powered Thermoelectrics', Universiti Teknologi Petronas.
- Nadya Jaalam, (2004) 'Final Year Project Report, Solar Cooling System', Universiti Teknologi Petronas.

APPENDICES

APPENDIX A – Gantt Chart

APPENDIX B - 1. Table of Peak Solar Heat Gain through Ordinary Glass

2. Table of Shading Coefficient for Glass

APPENDIX C - Datasheet of Photovoltaic Panel

APPENDIX D - Hourly Global Radiation Data

APPENDIX E – Datasheet:-

1.LM358 2.LM308 3.LM335 4.ICL7107

APPENDIX A GANTT CHART

41

Gantt chart for Final Year Project I, Semester July 2005

No	Detail/week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Problem Definition						a tao na								
2	Research and Analysis														
3	Logbook (weekly report)			x	x	X	x	X	X	X	X	x			
4	Submission of Progress Report 1	. : .	· . · ·		X										
5	Design Calculation & Research														
6	Submission of Progress Report 2								X			1			
7	Material gathering, Circuit design							* . *							
8	Submission of Draft Report							- 11 A.	a di Serie Serie				X		
9	Submission of Interim Report													x	
10	Oral Presentation														X

Gantt chart for Final Year Project II, Semester June 2006

No	Detail/week	1	.2	.3	4	5	6	7	8	9	10	11	12	13	14
1	Resource Gathering														
2	Experiment and Analysis														
3	Logbook (weekly report)			Χ	X	X	² •• X . ::	X .	. X	X	X.	X			
4	Submission of Progress Report 1				X				· .						
5	Circuit assemblage and prototype construction				iende Age De seinen	and and a second se					1985 ANNA A CHUMANA				
6	Submission of Progress Report 2				· · · ·	н на 19			X						
7	Submission of Final Draft												X		
8	Submission of Technical Report							· · · ·						X	
9	Oral Presentation			1 1											x
10	Final report (hard cover)														x

Process

APPENDIX B

1.TABLE OF PEAK SOLAR HEAT GAIN THROUGH ORDINARY GLASS

2. TABLE OF SHADING COEFFICIENTS FOR GLASS

42

'or Malaysia 3°- 4° latitude, use 0° latitude values

	TABL	5	PEAK	SOLAI	R HEA B	T GA	IN TH (sq ft)	RU O	RDINA	RY G	LASS*	
NORTH LAT.	MONIH	EXFOSULL NOATH LABIUDE								MONTH	SOUTH	
0°	Jana July & May Aug & April Sapr & March Oct & Fab Nav & Jan Dac	59 18 25 10 10 10 10	156 153 161 118 78 57 43	147 152 163 167 163 152 152 152	41 51 79 114 141 151 156	14 14 14 14 14 14 54 67 52	42 52 79 111 141 151 156	147 152 163 167 163 152 152 147	153 153 141 114 77 57 42	235 235 245 255 245 245 235 235 235	Oec New L Jen Oci E Feb Segt I Merch Aug L Ageit July L May June	0°
10°	June July & May Aug & April Sapi & March Oct & Fab Nav & Jan Dac	40 30 13 10 10 9 9	153 141 130 103 66 37 21	135 158 163 164 135 143 137	55 65 94 127 147 151 161	14 14 14 21 73 104 129	55 65 91 127 149 101 143	155 133 143 154 115 143 137	153 146 130 103 66 37 73	243 247 750 197 199 199 199 199	Dec Neve L Jan Oci E Feb Sept L Maech Aug L Apoll July L May Sune	10°

Table 5: Peak Solar Heat Gain through Ordinary Glass

TABLE 6.7 SHADING COEFFICIENTS FOR GLASS WITHOUT OR WITH INTERIOR SHADING DEVICES

			Venetian	Wi Blinds	th interior	Shading Roller Sh	ados
	Nominal	harthái a cuir			Opa	que	Translucent
Type of Glazing	(Each light)	Shading	Medium	Light	Oark	Light	Light
Single glass							
Clear	V4	0.94	0.74	0.67	0.81	0.39	0.44
Heat absorbing	V4	0.69	0.57	0.53	0.45	0.30	0.36
Double glass							н. Н
Clear	14	0.81	0.62	0.58	0.71	0.35	0.40
Heat absorbing	- 14	0.55	0,39	0.36	0.40	0.22	0.30

Note: Venetian blinds are assumed set at a 45° position. Adapted with permission from the 1993 ASHRAE Handbook-Fundamentals.

Table 6: Shading Coefficients for Glass

APPENDIX C DATASHEET OF SOLAR PANEL

80 WATT

POWERFUL PERFORMANCE. SHARP RELIABILITY.

POLY-CRYSTALLINE SILICON PHOTOVOLTAIC MODULE WITH 80W MAXIMUM POWER

Sharp's NE-80EJEA photovoltaic modules offer industry-leading performance, durability, and reliability for a variety of electrical power requirements. Using breakthrough technology perfected by Sharp's 45 years of research and development, these modules incorporate an advanced surface texturing process to increase light absorption and improve efficiency. Common applications include cabins, solar power stations, pumps, beacons, and lighting equipment. Designed to withstand rigorous weather conditions, a junction box is also provided for easy electrical connections in the field, making Sharp's NE-80EJEA modules the perfect combination of advanced technology and reliability.

Solder-coated grid results in high fill factor performance under low light conditions. Sharp multi-purpose modules offer industry-leading performance for a variety of applications.

FEATURES

2 High-power medialo (800/) 45 125mm square poly stysellin Silicon solar sells with 12 40 module conversion efficiency

•Shargs advanced surface texturing process increases light absorption and efficie while providing a more subdiage front and hock.

By pass allocks minimize the recurs choic subset by shade

-Waterwhite, tempered glass, EVA similate plus altimititi drametorestended outdout u

hinden on opensy eleme competent in the rate

Nominal 12200 Comparing bassery charging application

o li le traincreache Mars and

- Share modules are memfored in ISO shot certified facilities - 25 year limited versions/ - enpower empty

MULTI-PURPOSE MODULE

Design and specifications are subject to change without notice.

RM 1596.00

In the absence of confirmation by product manuals, Sharp takes no responsibility for any defects that may occur in equipment using any Sharp devices. Contact Sharp to obtain the latest product manuals before using any Sharp device.

SHARP

Sharp Electronics Corporation • 5901 Bolsa Avenue, Huntington Beach, CA 92647 Tel:1-800-SOLAR-06 • E-mail: sharpsolar@sharpusa.com • www.sharpusa.com/solar

Cover photo: Solar installation by Hudson Valley Clean Energy, Rhinebeck NY

SSD-80-805

©2005 Sharp Electronics Corporation

Printed in the USA

APPENDIX D HOURLY GLOBAL RADIATION DATA

Records of Hourly Global Radiation Simulated Data for Aug 2005

Station:IPOH Lat : 4° 34' N Long :101° 06' E Ht. Above M.S.L. : 40.1 m Unit:**MJm⁻²**

des		an a		i An statistical statistical			Time	in Hours	and and a second se		Station .			1	Daily Total
uay	6	7	8	9	10	<u>11</u>	12	13	14	15	16	17	18	19	MJm ²
1	0.00	0.21	0.87	1.63	2.33	2.90	3.00	3.18	2.80	2.15	1.03	0.59	0.18	0.00	20.87
2	0.00	0.19	0.67	1.62	2.02	2.14	2.94	2.17	2.26	2.28	2.13	0.79	0.07	0.00	19.28
3	0.00	0.03	0.46	1.00	1.08	0.92	1.31	1.53	1.36	1.62	0.92	0.51	0.10	0.00	10.84
4	0.00	0.13	0.73	1.85	2.41	2.59	3.43	3.21	2.74	2.30	1.57	1.09	0.28	0.00	22.33 🔊
5	0.00	0.13	0.81	1.58	0.91	1.63	1.99	2.20	2.12	1.13	0.79	0.47	0.27	0.00	14.03
6	0.00	0.15	0.64	1.34	1.38	1.65	1.93	1.75	2.14	1.79	1.11	0.64	0.18	0.00	14.70
7	0.00	0.13	0.43	0.73	1.35	1.69	2.30	1.83	2.07	1.71	1.29	0.56	0.18	0.00	14.27
8	0.00	0.13	0.62	1.02	1.35	2.08	2.01	2.17	2.01	1.80	1.26	1.05	0.16	0.00	15.66
9	0.00	0.16	0.60	1.03	1.99	2.19	3.00	2.54	1.18	1.09	0.16	0.12	0.11	0.00	14.17
10	0.00	0.06	0:69	1.32	2.18	2.74	3.10	3.08	2.91	1.16	0.21	0.03	0.03	0.00	17.51
11	0.00	0.17	0.71	1.06	1.93	2.77	3.04	3.19	2.92	1.15	0.96	0.36	0.03	0.00	18.29
12	0.00	0.15	0.69	1.30	2.28	2.79	3.10	2.85	0.85	0.54	0.08	0.03	0.00	0.00	14.66
13	0.00	0.32	1.16	1.74	2.41	2.81	1.15	1.77	0.30	0.10	0.05	0.13	0.11	0.00	12.05
14	0.00	0.16	0.90	1.55	2,35	2.93	3.38	2.54	0.91	2.24	0.77	0.03	0.00	0.00	17.76
15	0.00	0.07	0.60	1.08	1.58	2.99	2.29	2.55	0.95	0.29	0.39	0.18	0.02	0.00	12.99
16	0.00	0.12	0.50	1.19	2.37	3.11	3.60	2.39	1.10	0.50	0.13	0.16	0.14	0.00	15.31
17	0.00	0.33	0.97	0.77	2.17	3.14	2.04	2.43	1:38	2.31	1.03	0.28	0.05	0.00	16.90
18	0.00	0.18	0.71	1.20	2.17	2.22	2.54	2.89	2.60	1.86	1.42	0.58	0.18	0.00	18.55
19	0.00	0.30	0.97	1.64	2.50	3.04	2.49	2.17	2.20	2.08	1.14	0.61	0.21	0.00	19.35
20	0.00	0.16	0.67	1.11	2.04	2.32	2.56	3.50	2.75	2.56	1.84	1.09	0.27	0.00	20.87
21	0.00	0.08	0.44	1.21	2.27	2.70	3.34	3.25	2.90	2.57	0.48	0.58	0.31	0.00	20.13
22	0.00	0.17	0.94	1.67	2.45	2.94	3.26	3.29	3.11	0.85	0.07	0.05	0.11	0.00	18.91
	0.00	0.05	0.51	0.60	0.42	0.38	1.01	0.88	0.34	0.26	0.21	0.11	0.03	0.00	4.80
24	0.00	0.27	1.08	1.88	2.67	2.82	3.15	3.43	2.09	0.53	0.46	0.36	0.20	0.00	18.94
25	0.00	0.14	0.77	.1.71	2.35	3.04	2.91	2.93	2.28	1.94	0.90	0.53	0.11	0.00	19.61
26	0.00	0.15	0.57	0.81	2.39	2.62	2.95	3.25	2.74	1.57	0.41	0.35	0.09	0.00	17.90
27	0.00	0.11	0.67	1.64	2.43	2.81	2.76	3.29	0.21	0.22	0.25	0.10	0.04	0.00	14.53
28	0.00	0.19	0.88	1.79	2.55	3.09	2.78	2.27	2.18	1.80	0.73	0.49	0.13	0.00	18.88
29	0.00	0.16	0.69	1.58	2.16	1.53	2.68	1 14	0.36	0.67	0.81	0.48	0.15	0.00	12.41
30	0.00	0,13	0.65	1.64	2.49	1.76	1.77	2.28	0.75	0.36	0.55	0.38	0.10	0.00	12.86
31	0.00	0.17	0.62	0.87	1.89	2.78	3.37	2.57	2.11	1.37	0.29	0.53	0.32	0.00	16.89
Monthly Total	0.00	4.90	22.22	41.16	62.87	75.12	81,18	78.52	56.62	42.80	23.44	13.26	4.16	0.00	506.25
Monthly Mean	0.00	0.16	0.72	1.33	2.03	2.42	2.62	2.53	1.83	1.38	0.76	0.43	0.13	0.00	16.33

1 Fit 1:	Sinusoidal Fit					y= a-	+(b*cos(cx+d))		
a − b = c = d =	1.2888 0.4994 0.2681						Standard Error: 0.09 Correlation Coefficient:	9 0.996	
2 Fit 2 :	Polynomial Fit						+hv1~v ² +dv ³ +ov ⁴ +fv ⁵ +ov ⁶ ;		
a =	-18.548	d =	0.73536	h=	Ö	у-а	DATER TOA TER TIR TOAT	אןד אוי אור	, NA 114
b = c =	15.725	e = f≕	-0.0555		0		Standard Error: 0.07	5	•
		g=	########	k=	ō	a forfar a forfar a second	Correlation Coefficient:	0.998	

APPENDIX E DATASHEET:-1.LM358 2.LM308 3.LM335 4.ICL7107

ICL7106, ICL7107, ICL7107S

Data Sheet

December 1, 2005

FN3082.8

¹/₂ Digit, LCD/LED Display, A/D Converters

intercil

he Intersil ICL7106 and ICL7107 are high performance, low ower, 3¹/₂ digit A/D converters. Included are seven egment decoders, display drivers, a reference, and a clock. he ICL7106 is designed to interface with a liquid crystal lisplay (LCD) and includes a multiplexed backplane drive; ne ICL7107 will directly drive an instrument size light mitting diode (LED) display.

he ICL7106 and ICL7107 bring together a combination of igh accuracy, versatility, and true economy. It features autoero to less than 10 μ V, zero drift of less than 1 μ V/^OC, input ias current of 10pA (Max), and rollover error of less than ne count. (True differential inputs and reference are useful in II systems, but give the designer an uncommon advantage then measuring load cells, strain gauges and other bridge then measuring load cells, strain gauges and other bridge then measuring load cells, estrain gauges and other bridge then true designer an uncommon advantage and other bridge the true economy of single power upply operation (ICL7106), enables a high performance and meter to be built with the addition of only 10 passive omponents and a display.

Features

- · Guaranteed Zero Reading for 0V Input on All Scales
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference, Direct Display Drive
 LCD ICL7106, LED ICL7107
- Low Noise Less Than 15μV_{P-P}
- On Chip Clock and Reference
- Low Power Dissipation Typically Less Than 10mW
- No Additional Active Circuits Required
 - Enhanced Display Stability
- Pb-Free Plus Anneal Available (RoHS Compliant)

PART NO.	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
CL7106CPL	ICL7106CPL	0 to 70	40 Ld PDIP	E40.6
CL7106CPLZ (Note 2)	ICL7106CPLZ	0 to 70	40 Ld PDIP(Pb-free) (Note 3)	E40.6
CL7106CM44	ICL7106CM44	0 to 70	44 Ld MQFP	Q44.10x10
CL7106CM44Z (Note 2)	ICL7106CM44Z	0 to 70	44 Ld MQFP (Pb-free)	Q44.10x10
CL7106CM44ZT (Note 2)	ICL7106CM44Z	0 to 70	44 Ld MQFP Tape and Reel (Pb-free)	Q44.10x10
CL7107CPL	ICL7107CPL	0 to 70	40 Ld PDIP	E40.6
CL7107CPLZ (Note 2)	ICL7107CPLZ	0 to 70	40 Ld PDIP(Pb-free) (Note 3)	E40.6
CL7107RCPL	ICL7107RCPL	0 to 70	40 Ld PDIP (Note 1)	E40.6
CL7107RCPLZ (Note 2)	ICL7107RCPLZ	0 to 70	40 Ld PDIP (Pb-free) (Notes 1, 3)	E40.6
CL7107SCPL	ICL7107SCPL	0 to 70	40 Ld PDIP (Notes 1, 3)	E40.6
CL7107SCPLZ (Note 2)	ICL7107SCPLZ	0 to 70	40 Ld PDIP (Pb-free) (Notes 1, 3)	E40.6
CL7107CM44	ICL7107CM44	0 to 70	44 Ld MQFP	Q44.10x10
CL7107CM44T	ICL7107CM44	0 to 70	44 Ld MQFP Tape and Reel	Q44.10x10
CL7107CM44Z (Note 2)	ICL7107CM44Z	0 to 70	44 Ld MQFP (Pb-free)	Q44.10x10
CL7107CM44ZT (Note 2)	ICL7107CM44Z	0 to 70	44 Ld MQFP Tape and Reel (Pb-free)	Q44.10x10

Drdering Information

OTES:

1. "R" indicates device with reversed leads for mounting to PC board underside. "S" indicates enhanced stability.

 Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matter tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

3. Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

1

CAUTION. These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 Lopyright Intersil Americas Inc. 2002, 2004, 2005. All Rights Reserved All other trademarks mentioned are the property of their respective owners.

ICL7106, ICL7107, ICL7107S

intersil

2

Absolute Maximum Ratings

upply Voltage
ICL7106, V+ to V
ICL7107, V+ to GND6V
ICL7107, V- to GND
nalog Input Voltage (Either Input) (Note 1) V+ to V-
teference Input Voltage (Either Input) V+ to V-
lock Input
ICL7106 TEST to V+.
ICL7107 GND to V+

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (^o C/W)
PDIP Package	- 50
MQFP Package	75
Maximum Junction Temperature	
Maximum Storage Temperature Range	5 ⁰ C to 150 ⁰ C
Maximum Lead Temperature (Soldering 10s)	
(MQFP - Lead Tips Only)	

NOTE: Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

)perating Conditions

AUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the evice at these or any other conditions above those indicated in the operational sections of this specification is not implied. 01001 0.00

IOTES:

1. Input voltages may exceed the supply voltages provided the input current is limited to ±100μA.)

2. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

:lectrical Specifications (Note 3)		· · ·	········		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE		· .	· · ·	<u>ار میں اور اور اور اور اور اور اور اور اور اور</u>	
Zero Input Reading	V _{IN} = 0.0V, Full Scale = 200mV	-000.0	±000.0	+000.0	Digital Reading
Stability (Last Digit) (ICL7106S, ICL7107S Only)	Fixed Input Voltage (Note 6)	-000.0	±000.0	+000.0	Digital Reading
Ratiometric Reading	V _{IN} = V _{REF} , V _{REF} = 100mV	999	999/10 00	1000	Digital Reading
Rollover Error	-V _{IN} = +V _{IN} ≆ 200mV Difference in Reading for Equal Positive and Negative Inputs Near Full Scale	-	±0.2	±1	Counts
_inearity	Full Scale = 200mV or Full Scale = 2V Maximum Deviation from Best Straight Line Fit (Note 5)	-	±0.2	±1	Counts
Common Mode Rejection Ratio	V _{CM} = 1V, V _{IN} = 0V, Full Scale = 200mV (Note 5)	-	50	-	μV/V
Voise	V _{IN} = 0V, Full Scale = 200mV (Peak-To-Peak Value Not Exceeded 95% of Time)	÷	15	-	μV
.eakage Current Input	V _{IN} = 0 (Note 5)		1	10	pА
Zero Reading Drift	V _{IN} = 0, 0 ^o C To 70 ^o C (Note 5)	-	0.2	1	μV/ºC
Scale Factor Temperature Coefficient	V _{IN} = 199mV, 0°C To 70°C, (Ext. Ref. 0ppm/×°C) (Note 5)		1	5	ppm/ ^o C
End Power Supply Character V+ Supply Current	V _{IN} = 0 (Does Not Include LED Current for ICL7107)	: =	1.0	1.8	mA
End Power Supply Character V- Supply Current	ICL7107 Only	-	0.6	1.8	mA
COMMON Pin Analog Common Voltage	25kΩ Between Common and Positive Supply (With Respect to + Supply)	2.4	3.0	3.2	V
Femperature Coefficient of Analog Common	25kΩ Between Common and Positive Supply (With Respect to + Supply)	-	80		ppm/ ^o C
JISPLAY DRIVER ICL7106 ONLY		<u></u>	J	· · · · · · · · · · · · · · · · · · ·	
Peak-To-Peak Segment Drive Voltage Peak-To-Peak Backplane Drive Voltage	V+ = to V- = 9V (Note 4)	4	5.5	6	v

V = 5.49VI = 0.001 ImA

-. R =2

Ī

im

intersil 3

FN3082.8

ICL7106, ICL7107, ICL7107S

Electrical Spe	cifications (Note 3) (C	ontinued)			· · ·	1 • • •		
Р	ARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
DISPLAY DRIVE	R ICL7107 ONLY	· · ·		1		······································		• • •
Segment Sinking	Current	V+ = 5V, Se	gment Voltage = 3V					
	Except Pins AB4 and POL				5	8	_	Am
	Pin AB4 Only	· · ·			10	16	. –	mA
	Pin POL Only				4	~ 7	-	mA

IOTES:

3. Unless otherwise noted, specifications apply to both the ICL7106 and ICL7107 at TA = 25°C, fCLOCK = 48kHz. ICL7106 is tested in the circuit of Figure 1. ICL7107 is tested in the circuit of Figure 2.

4. Back plane drive is in phase with segment drive for "off" segment, 180 degrees out of phase for "on" segment. Frequency is 20 times conversion rate. Average DC component is less than 50mV. 116 P.F

5. Not tested, guaranteed by design.

6. Sample Tested.

Typical Applications and Test Circuits

FIGURE 1. ICL7106 TEST CIRCUIT AND TYPICAL APPLICATION WITH LQD DISPLAY COMPONENTS SELECTED FOR 200mV FULL SCALE 30

- what is test?

FIGURE 2. ICL7107 TEST CIRCUIT AND TYPICAL APPLICATION WITH LED DISPLAY COMPONENTS SELECTED FOR 200mV FULL SCALE

intersil 4

FN3082.8

ICL7106, ICL7107, ICL7107S

Design Information Summary Sheet

OSCILLATOR FREQUENCY

OSCILLATOR PERIOD

tosc = RC/0.45

INTEGRATION CLOCK FREQUENCY

fclock = fosc/4

INTEGRATION PERIOD

 $t_{INT} = 1000 \times (4/f_{OSC})$

60/50Hz REJECTION CRITERION

t_{INT}/t_{60Hz} or t_{INT}/t_{60Hz} = Integer

OPTIMUM INTEGRATION CURRENT

l_{INT} = 4μΑ΄

FULL SCALE ANALOG INPUT VOLTAGE

VINFS (Typ) = 200mV or 2V

INTEGRATE RESISTOR

 $R_{INT} = \frac{INFS}{I_{INT}}$

INTEGRATE CAPACITOR $C_{INT} = \frac{(t_{INT})(l_{INT})}{V_{INT}}$

INTEGRATOR OUTPUT VOLTAGE SWING

 $V_{INT} = \frac{(t_{iNT})(I_{INT})}{C_{INT}}$

VINT MAXIMUM SWING:

 $(V- + 0.5V) < V_{INT} < (V+ - 0.5V), V_{INT} (Typ) = 2V$

- DISPLAY COUNT COUNT = $1000 \times \frac{V_{IN}}{V_{REF}}$
- CONVERSION CYCLE
 t_{CYC} = t_{CL0CK} x 4000
 t_{CYC} = t_{OSC} x 16,000
 when f_{OSC} = 48kHz; t_{CYC} = 333ms
- COMMON MODE INPUT VOLTAGE

 $(V- + 1V) < V_{IN} < (V+ - 0.5V)$

- AUTO-ZERO CAPACITOR $0.01\mu F < C_{AZ} < 1\mu F$
- **REFERENCE CAPACITOR** 0.1µF < C_{REF} < 1µF
- Vcom Biased between Vi and V-.
- V_{COM} ≅ V+ 2.8V Regulation lost when V+ to V- < ≅6.8V If V_{COM} is externally pulled down to (V+ to V-)/2, the V_{COM} circuit will turn off.
- ICL7106 POWER SUPPLY: SINGLE 9V V+ - V- = 9V Digital supply is generated internally $V_{GND} \cong V+ - 4.5V$
- ICL7106 DISPLAY: LCD
 Type: Direct drive with digital logic supply amplitude.
- ICL7107 POWER SUPPLY: DUAL ±5.0V

V+ = +5V to GND V- = -5V to GND Digital Logic and LED driver supply V+ to GND

ICL7107 DISPLAY: LED
 Type: Non-Multiplexed Common Anode

Typical Integrator Amplifier Output Waveform (INT Pin)

intersil

5

Detailed Description

Analog Section

igure 3 shows the Analog Section for the ICL7106 and CL7107. Each measurement cycle is divided into three hases. They are (1) auto-zero (A-Z), (2) signal integrate INT) and (3) de-integrate (DE).

\uto-Zero Phase

Juring auto-zero three things happen. First, input high and low ire disconnected from the pins and internally shorted to analog 2OMMON. Second, the reference capacitor is charged to the eference voltage. Third, a feedback loop is closed around the ystem to charge the auto-zero capacitor C_{AZ} to compensate or offset voltages in the buffer amplifier, integrator, and omparator. Since the comparator is included in the loop, the A-: accuracy is limited only by the noise of the system. In any ase, the offset referred to the input is less than $10\mu V$.

Signal Integrate Phase

Juring signal integrate, the auto-zero loop is opened, the nternal short is removed, and the internal input high and low re connected to the external pins. The converter then ntegrates the differential voltage between IN HI and IN LO for a xed time. This differential voltage can be within a wide ommon mode range: up to 1V from either supply. If, on the ther hand, the input signal has no return with respect to the onverter power supply, IN LO can be tied to analog COMMON b establish the correct common mode voltage. At the end of his phase, the polarity of the integrated signal is determined.

)e-Integrate Phase

The final phase is de-integrate, or reference integrate. Input ow is internally connected to analog COMMON and input ligh is connected across the previously charged reference apacitor. Circuitry within the chip ensures that the capacitor vill be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is:

DISPLAY COUNT =
$$1000 \left(\frac{V_{IN}}{V_{REF}} \right)$$
.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5V below the positive supply to 1V above the negative supply. In this range, the system has a CMRR of 86dB typical. However, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full scale negative differential input voltage. The negative input signal drives the integrator positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2V full scale swing with little loss of accuracy. The integrator output can swing to within 0.3V of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over error. However, by selecting the reference capacitor such that it is large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count worst case. (See Component Value Selection.)

6 intersil

ICL7106, ICL7107, ICL7107S

alog COMMON

pin is included primarily to set the common mode age for battery operation (ICL7106) or for any system re the input signals are floating with respect to the power oly. The COMMON pin sets a voltage that is roximately 2.8V more negative than the positive supply. is selected to give a minimum end-of-life battery voltage pout 6V. However, analog COMMON has some of the outes of a reference voltage. When the total supply age is large enough to cause the zener to regulate (>7V), COMMON voltage will have a low voltage coefficient 01%/V), low output impedance (\cong 15 Ω), and a perature coefficient typically less than 80ppm/×^oC.

limitations of the on chip reference should also be gnized, however. With the ICL7107, the internal heating h results from the LED drivers can cause some adation in performance. Due to their higher thermal tance, plastic parts are poorer in this respect than mic. The combination of reference Temperature fficient (TC), internal chip dissipation, and package nal resistance can increase noise near full scale from / to $80\mu V_{P,P}$. Also the linearity in going from a high pation count such as 1000 (20 segments on) to a low pation count such as 1111(8 segments on) can suffer by unt or more, Devices with a positive TC reference may ire several counts to pull out of an over-range condition. is because over-range is a low dissipation mode, with the + least significant digits blanked. Similarly, units with a itive TC may cycle between over-range and a non-overe count as the die alternately heats and cools. All these lems are of course eliminated if an external reference is ١.

ICL7106, with its negligible dissipation, suffers from of these problems. In either case, an external reference easily be added, as shown in Figure 4.

og COMMON is also used as the input low return during -zero and de-integrate. If IN LO is different from analog IMON, a common mode voltage exists in the system is taken care of by the excellent CMRR of the converter. ever, in some applications IN LO will be set at a fixed vn voltage (power supply common for instance). In this cation, analog COMMON should be tied to the same , thus removing the common mode voltage from the erter. The same holds true for the reference voltage. If ence can be conveniently tied to analog COMMON, it Id be since this removes the common mode voltage the reference system.

in the IC, analog COMMON is tied to an N-Channel FET can sink approximately 30mA of current to hold the ge 2.8V below the positive supply (when a load is trying III the common line positive). However, there is only to f source current, so COMMON may easily be tied to a in negative voltage thus overriding the internal reference.

TEST

The TEST pin serves two functions. On the ICL7106 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1mA load should be applied.

FIGURE 5. SIMPLE INVERTER FOR FIXED DECIMAL POINT

The second function is a "lamp test". When TEST is pulled high (to V+) all segments will be turned on and the display should read "1888". The TEST pin will sink about 15mA under these conditions.

CAUTION: In the lamp test mode, the segments have a constant DC voltage (no square-wave). This may burn the LCD display if maintained for extended periods.

JRE 6. EXCLUSIVE 'OR' GATE FOR DECIMAL POINT DRIVE

ital Section

res 7 and 8 show the digital section for the ICL7106 and '107, respectively. In the ICL7106, an internal digital nd is generated from a 6V Zener diode and a large nannel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800. For three readings/sec., this is a 60Hz square wave with a nominal amplitude of 5V. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.

Figure 8 is the Digital Section of the ICL7107. It is identical to the ICL7106 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2mA to 8mA, typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16mA.

In both devices, the polarity indication is "on" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

-8

ICL7106, ICL7107, ICL7107S

tem Timing

re 9 shows the clocking arrangement used in the 106 and ICL7107. Two basic clocking arrangements be used:

Figure 9A. An external oscillator connected to pin 40. Figure 9B. An R-C oscillator using all three pins. oscillator frequency is divided by four before it clocks the ide counters. It is then further divided to form the three ert-cycle phases. These are signal integrate (1000 its), reference de-integrate (0 to 2000 counts) and -zero (1000 to 3000 counts). For signals less than full s, auto-zero gets the unused portion of reference itegrate. This makes a complete measure cycle of 4,000 its (16,000 clock pulses) independent of input voltage.

hree readings/second, an oscillator frequency of 48kHz d be used.

chieve maximum rejection of 60Hz pickup, the signal irate cycle should be a multiple of 60Hz. Oscillator iencies of 240kHz, 120kHz, 80kHz, 60kHz, 48kHz, 1z, $33^{1}/_{3}$ kHz, etc. should be selected. For 50Hz ition, Oscillator frequencies of 200kHz, 100kHz, $_{3}$ kHz, 50kHz, 40kHz, etc. would be suitable. Note that 1z (2.5 readings/second) will reject both 50Hz and 60Hz + 400Hz and 440Hz).

g

FIGURE 9. CLOCK CIRCUITS

intersil

mponent Value Selection

grating Resistor

the buffer amplifier and the integrator have a class A sut stage with 100μA of quiescent current. They can bly 4μA of drive current with negligible nonlinearity. The grating resistor should be large enough to remain in this linear region over the input voltage range, but small ugh that undue leakage requirements are not placed on ^PC board. For 2V full scale, 470kΩ is near optimum and larly a 47kΩ for a 200mV scale.

grating Capacitor

integrating capacitor should be selected to give the imum voltage swing that ensures tolerance buildup will saturate the integrator swing (approximately. 0.3V from er supply). In the ICL7106 or the ICL7107, when the og COMMON is used as a reference, a nominal +2V fulle integrator swing is fine.(For the ICL7107 with +5V blies and analog COMMON tied to supply ground, a V to +4V swing is nominal. For three readings/second Hz clock) nominal values for C_{INT} are 0.22µF and µF, respectively. Of course, if different oscillator Jencies are used, these values should be changed in rse proportion to maintain the same output swing.

idditional requirement of the integrating capacitor is that ist have a low dielectric absorption to prevent roll-over 's. While other types of capacitors are adequate for this ication, polypropylene capacitors give undetectable 's at reasonable cost.

o-Zero Capacitor

size of the auto-zero capacitor has some influence on noise of the system. For 200mV full scale where noise is important, a 0.47μ F capacitor is recommended. On the cale, a 0.047μ F capacitor increases the speed of very from overload and is adequate for noise on this 3.

erence Capacitor

I μ F capacitor gives good results in most applications. ever, where a large common mode voltage exists (i.e., REF LO pin is not at analog COMMON) and a 200mV \Rightarrow is used, a larger value is required to prevent roll-over . Generally 1 μ F will hold the roll-over error to 0.5 count is instance.

illator Components

ill ranges of frequency a $100k\Omega$ resistor is recommended the capacitor is selected from the equation:

).45 RC For 48kHz Clock (3 Readings/sec), 100pF.

Reference Voltage

The analog input required to generate full scale output (2000 counts) is: VIN = 2VREF. Thus, for the 200mV and 2V scale, VREF should equal 100mV and 1V, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.662V. Instead of dividing the input down to 200mV, the designer should use the input voltage directly and select V_{RFF} = 0.341V. Suitable values for integrating resistor and capacitor would be 120kΩ and 0.22µF. This makes the system slightly quieter and also avoids a divider network on the input. The ICL7107 with ±5V supplies can accept input signals up to ±4V. Another advantage of this system occurs when a digital reading of zero is desired for $V_{IN} \neq 0$. Temperature and weighing systems with a variable fare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

ICL7107 Power Supplies

The ICL7107 is designed to work from ±5V supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive IC. Figure 10 shows this application. See ICL7660 data sheet for an alternative.

In fact, in selected applications no negative supply is required. The conditions to use a single +5V supply are:

- 1. The input signal can be referenced to the center of the common mode range of the converter.
- 2. The signal is less than ±1.5V.
- 3. An external reference is used.

FIGURE 10. GENERATING NEGATIVE SUPPLY FROM +5V

pical Applications

ICL7106 and ICL7107 may be used in a wide variety of igurations. The circuits which follow show some of the sibilities, and serve to illustrate the exceptional versatility use A/D converters.

following application notes contain very useful mation on understanding and applying this part and are lable from Intersil Corporation.

Application Notes

NOTE #	DESCRIPTION
AN016	"Selecting A/D Converters"
AN017	"The Integrating A/D Converter"
AN018	"Do's and Don'ts of Applying A/D Converters"
AN023	"Low Cost Digital Panel Meter Designs"
AN032	"Understanding the Auto-Zero and Common Mode Performance of the ICL7136/7/9 Family"
AN046	"Building a Battery-Operated Auto Ranging DVM with the ICL7106"
AN052	"Tips for Using Single Chip 3 ¹ / ₂ Digit A/D Converters"
AN9609	"Overcoming Common Mode Range Issues When Using Intersil Integrating Converters"

vical Applications

s shown are for 200mV full scale, 3 readings/sec., floating ly voltage (9V battery).

GURE 11. ICL7106 USING THE INTERNAL REFERENCE

Values shown are for 200mV full scale, 3 readings/sec. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON).

FIGURE 12. ICL7107 USING THE INTERNAL REFERENCE

11 **intersil**

ح_ ح

Germ
ICL7106, ICL7107, ICL7107S

) is tied to supply COMMON establishing the correct common mode ge. If COMMON is not shorted to GND, the input voltage may float respect to the power supply and COMMON acts as a pre-regulator re reference. If COMMON is shorted to GND, the input is single d (referred to supply GND) and the pre-regulator is overridden.

12

Since low TC zeners have breakdown voltages ~ 6.8V, diode must be placed across the total supply (10V). As in the case of Figure 12, IN LO may be tied to either COMMON or GND.

An external reference must be used in this application, since the voltage between V+ and V- is insufficient for correct operation of the internal reference.

FIGURE 16. ICL7107 OPERATED FROM SINGLE +5V

FN3082.8

intersil

ICL7106, ICL7107, ICL7107S

Dical Applications (Continued)

resistor values within the bridge are determined by the desired itivity.

13

OVERRANGE SIGNALS FROM ICL7107 OUTPUT

EN3082.8

intersil

pical Applications (Continued)

FIGURE 21. AC TO DC CONVERTER WITH ICL7106

FIGURE 22. DISPLAY BUFFERING FOR INCREASED DRIVE CURRENT

14 intersil

FN3082.8

al-In-Line Plastic Packages (PDIP)

'ES:

Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.

Dimensioning and tolerancing per ANSI Y14.5M-1982.

Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.

Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.

D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). E and $\boxed{e_A}$ are measured with the leads constrained to be perpendicular to datum $\boxed{-C-}$.

 \mathbf{e}_B and \mathbf{e}_C are measured at the lead tips with the leads unconstrained. \mathbf{e}_C must be zero or greater.

B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).

N is the maximum number of terminal positions.

Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

		IC FACKAGE
40 LEAD DU	JAL-IN-LINE PLAST	IC PACKAGE
E40.0 (JE	DEC MS-011-AC IS	SUE B)

MIN - 0.015 0.125	MAX 0.250	MIN	MAX 6.35	NOTES
- 0.015 0.125	0.250		6.35	4
0.015				1
0.125		0.39		- 4
	0.195	3.18	4.95	-
0.014	0.022	0.356	0.558	·
0.030	0.070	0.77	1.77	8
0.008	0.015	0.204	0.381	-
1.980	2.095	50.3	53,2	5
0.005	-	0.13	-	5
0.600	0.625	15.24	15.87	6
0.485	0.580	12.32	14.73	5
0.100	BSC	2.54	BSC	-
0.600	BSC	15.24	BSC	6
-	0.700	-	17.78	- 7
0.115	0.200	2.93	5.08	4
4	0	4	D	9
	0.125 0.014 0.030 0.008 1.980 0.005 0.600 0.485 0.100 0.600 - 0.115 4	0.125 0.195 0.014 0.022 0.030 0.070 0.008 0.015 1.980 2.095 0.005 - 0.600 0.625 0.485 0.580 0.100 BSC 0.600 BSC - 0.700 0.115 0.200 40	0.125 0.195 3.18 0.014 0.022 0.356 0.030 0.070 0.77 0.008 0.015 0.204 1.980 2.095 50.3 0.005 - 0.13 0.600 0.625 15.24 0.485 0.580 12.32 0.100 BSC 15.24 0.600 BSC 15.24 0.600 BSC 15.24 0.600 BSC 15.24 0.600 BSC 15.24 0.100 SC 15.24 0.600 BSC 15.24 0.600 BSC 15.24 0.100 SC 2.54 0.600 BSC 15.24 - 0.700 - 0.115 0.200 2.93 40 4 4	0.125 0.195 3.18 4.95 0.014 0.022 0.356 0.558 0.030 0.070 0.77 1.77 0.008 0.015 0.204 0.381 1.980 2.095 50.3 53.2 0.005 - 0.13 - 0.600 0.625 15.24 15.87 0.485 0.580 12.32 14.73 0.100 BSC 2.54 BSC 0.600 BSC 15.24 BSC 0.600 BSC 15.24 BSC 0.100 BSC 15.24 BSC 0.600 BSC 15.24 BSC 0.115 0.200 2.93 5.08 40 40 40 40

Rev. 0 12/93

tric Plastic Quad Flatpack Packages (MQFP)

Q44.10x10 (JEDEC MS-022AB ISSUE B) 44 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE

· ·	INC	HES	MILLI	METERS	-
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A		0.096	-	2.45	-
A1	0.004	0.010	0.10	0.25	-
A2	0.077	0.083	1.95	2.10	-
b	0.012	0.018	0.30	0.45	6
b1	0.012	0.016	0.30	0.40	-
D	0.515	0.524	13.08	13.32	3
D1	0.389	0.399	9.88	10.12	4, 5
E	0.516	0.523	13.10	13.30	3
E1	0.390	0.398	9.90	10.10	4, 5
L	0.029	0.040	0.73	1.03	-
N	4	4		44	7
és. :	0.032	BSC	0.80	BSC	-

NOTES:

1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

- 2. All dimensions and tolerances per ANSI Y14.5M-1982.
- 3. Dimensions D and E to be determined at seating plane -C-
- 4. Dimensions D1 and E1 to be determined at datum plane
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm (0.010 inch) per side.
- Dimension b does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total.
- 7. "N" is the number of terminal positions.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

It products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and I. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result ts use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

16 intersil

FN3082.8

Rev. 2 4/99

National Semiconductor	October 2005
_M158/LM258/LM358/LM2904	
Low Power Dual Operational	Amplifiers
General Description	Advantages
The LM158 series consists of two independent, high gain, nternetly frequency compensated opprational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply ournerk drain is independent of the magnitude of the power supply voltage. Applications areas include transducer amplifiers, do gain	Two Internally compensated op amps Eliminates need for dual supplies Alows direct sensing near GND and V _{our} also goes to GND Compatible with all forms of logic Power drain suitable for battery operation Containing
blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply	Available In 8-Bump micro SMD chip sized package, (control builded)
systems. For example, the LM158 series can be directly pperaled off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.	(See AN-112) Internally frequency compensated for unity gain Earge dc voltage gain: 100 dB Wide bandwidth (unity gain): 1 MHz (temporature compensated) Wide compensated
The LM358 and LM2904 are available in a chip sized pack- age (8-Bump micro SMD) using National's micro SMD pack- age technology.	
Unique Characteristics	 Very low supply current drain (500 µA)—essentially independent of supply voltage
In the linear mode the input common-mode voltage In the linear mode the input common-mode voltage range includes ground, even though operated from only a single power supply voltage, The unity gain cross frequency is temperature compensated. The input blas current is also temperature compensated.	Low input offset voltage: 2 mV Input common-mode voltage range includes ground Differential input voltage range equal to the power supply voltage Large output voltage swing
Voltage Controlled Oscillator (VCO)	
	O ENTRUT2
	ograzia

© 2005 National Semiconductor Corporation DS007787

www.national.com

LM15&/LM25&/LM35&/LM2904

if Military/Aerospec please contact the N	e specified devices are required, ational Semiconductor Sales Office/										
			LM1 LM158	58/LM2	58/LM	358 1358	A		L	M2904	•
Supply Voltage, V*				32	v		~			26V :	
Differential loput Volt	979			32	v					2617	÷.,
Input Voltano	ego			0.31/14	• • • • • • • •				0.0	207	÷.
Power Dissipation (N				-0.04 (0	JTDEF				-0,0	V (U +2)	5¥ ·
Fower Dissipation (N											
Molded Dip	· ·			630 I					8	SO MINY	
Metal Can				500 0							
Small Outline Pao	age (M)			5307	TIVY				5	an na	1.11
micro SMD				4350	nvv j				1.1	• •	
Output Short-Circuit	0 GND										
(One Amplifier) (No	ote 2)										• •
V* ≤ 15V and T _A =	25°C			Contin	uous				Co	ntinuou	3
Input Current (V _{IN} <	-0.3V) (Note 3)			50 n	nA				5	Am 0	
Operating Temperatu	re Range										
LM358				0'C to	+70'C				-40'0) to +85	С
LM258			-	25 C to	+85°C	;					
LM158	press and the second		~	55°C to	+125°(2					· .
Storage Temperature	Range		-	65'C to	+150*(2-		· -	-65°C	to +15	0'C
Lead Temperature, D	1P										
(Soldering, 10 seco	ands)			260	с				2	260.C	
Lead Temperature, M	letal Can										
(Soldering, 10 seco	unds)			300	с					300°C	
Soldering Information	······										
Dual-In-Line Packe	nə										
Soldering (10 ce	onde)			260	'n					060'0	
Smell Outline Pack	200			200	u				4	000	
Vana Obern (60	age			015	~						
vapor Priasa (ou	seconds)			215					2	215 C	
immered (15 seco	inde)	~		220	C .			÷.	2	20°C	
See AN-450 "Suna	ce Mounting Methods and Their Effect of	n Proc	IUCT H	eneointy	r" tat bi	iner i	nethode	ol so	idenn	a	
Surrace mount dev	C95.								1		·- ·
ESU Ioleranca (Note	10)			. 250	Y					250V	
Electrical Ch	aracteristics										
Perameter	Conditions	r	L M15	BA	1	M35	RΔ	LM	1587	18258	Unite
		Min	Tvn	Max	Min	Tyn	Uar	Min	Tun	May	
Input Offset Voltage	(Note 5) T. = 25'C	+	.1	2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. 9.	4077	2	5	in)/
Input Blas Current	1		20	50	·	45	109	·	46	160	
inportoites Current	V _{CM} = 0V, (Note 6)		20	00		-+	TOB≁		45	100	nA
input Offset Current	$I_{(N(+)} - I_{(N(-))} V_{CM} = 0V, T_A = 25^{\circ}C$		2	10		5	30		3	- 30	ΠA
Input Common-Mode	V* = 30V, (Note 7)	0	• ••	V*-1.5	0		V*~1.5	0		V+-1:5	· • V •
Voltage Range	(LM2904, V" = 26V), T _A = 25°C										
Supply Current	Over Full Temperature Range	<u> </u>						··· ··	••••••		
	Rr = ∞ on All Op Amps										
	V1 = 30V (LM2904 V1 = 26V)	Í	1	2		1			1.	2	må

0.5 1.2

2

0.5 1.2

Distributors for availability and specifications.

Absolute Maximum Ratings (Note 9)

1 2 mА 0.5 1.2 mA

www.nafionai.com

V* = 5V

Electrical Cha V* = +5.0V, unless off	aracteristics rervise stated	·							AGC LW
Parameter	Conditions		LM358			LM2904	۱. I	Units	
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		Min	Тур	Max	Min	Тур	Max		Ng
Input Offset Voltage	(Note 5) , T _A = 25°C		2	7		2	.7	mV	12
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-3)}$, $T_A = 25$ °C, $V_{CM} = 0V$, (Note 6)		45	250		45	250	πA	M35B
Input Offset Current	$t_{IN(+)} - I_{IN(-)}$, $V_{CM} = 0V$, $T_A = 25^{\circ}C$		5	50		5	50	nA	
Input Common Mode	V* = 30V. (Note 7)	Ö	1	V*-1.5	0		V+-1.5	v	129
Voltage Range	(LM2904, V* = 26V), T _A = 25'C		· ·						\$
Supply Current	Over Full Temperature Range	1				· · · .			1.
· · ·	R, ⇒ ∞ on All Op Amps						•		
	V* = 30V (LM2904 V* = 26V)		1	2	÷	1	2	mA	· ·
4	V* = 5V		0.5	12	1.1	0.5	1.2	mA	

Electrical Characteristics V* = +5.0V, (Note 4), unless otherwise stated

Poramate		Conditions		LM158	A		LM358	Α	LM	158/1.1	A258	Units
Farance.	1 	Concisions	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	
Large Signal Vol	lage	V* = 15V, T _A = 25°C,										
Gain		R _L ≥ 2 kΩ; (For V _O ≃ 1V	.50	100		25	100		50 °	100		· V/mV
1 A A		to 11V)						- ÷ *	1	÷		
Common-Mode:		T _A = 25 C.	1 70	0.5		00						
Rejection Ratio		V _{CM} = 9V to V ⁺ -1.5V	1 "	. 65	,	00	85		10	. 00		08
Power Supply		V* = 5V to 30V-]			· · · ·	 	12.444	
Rejection Ratio		(LM2904, V* = 5V	65	100		65	100		65.	100	÷ .	dB
er en		to 26V), T _A = 25°C						1.1	1.1	· · ·		· .
Amplilier-to-Ampl	ltier	f = 1 kHz to 20 kHz, T _A = 25 °C	T	100			100			100		
Coupling		(Input Referred), (Note 8)		-120		ŀ	-120			-120		ae
Output Current	Source	$V_{IN}^* = 1V$,										
		$V_{IN} = 0V$	1	. 40		0	10		20	10	1.14	
1.1.1		V* = 15V.	20	40		20	40		.20	40		, JINA
		V _O = 2V, T _A = 25°C								1.1		
	Sink	$V_{\rm fN}^{-} = 1V, V_{\rm fN}^{+} = 0V$										· ·
		V* = 15V, T _A = 25°C,	10	20		- 10	20		10	20	· · `	' mA
		$V_{O} = 2V$							1.11	1.1		
		V _{IN} = 1V	1									
		V _{IN} * = OV	1	~ ~		40	70		40			
		T _A = 25°C, V _O = 200 mV.	112	50		12	59		12	50.		μΑ
		V* = 15V										
Short Circuit to 0	around	T _A = 25'C, (Note 2),		40	~~~							
		V* = 15V		40		ĺ	40	. 60	Í	40		- ma
Input Offset Volta	ige	(Note 5)			4 ·	·		5			7	ın∀
Input Offset Value	ige	$R_{S} = 0\Omega$		7	10		÷	ñ		7		aree
Drift	· · · ·			· *	10		1	20		. · *		μνιυ
Input Offset Cum	ent	I _{IN(+)} = 1 _{IN(-)}	1		30			75			1000	nA
Input Offset Curr	ent	$R_3 = 0\Omega$		10	200		10	200		10		-1/0
Drift				10	200		10	300		19		pw C
Input Bias Currer	nt	IIN(+) OF IIN(-)		40	100		40	200	1.1	40	300	nA
Input Common M	loda	V* = 30 V, (Note 7)	10		W+ 9	0		V+ 4			V+ n	
Voltage Range		(LM2904. V* = 26V)	l° ·		v -2	° .		¥ :+2	. •		× -2	. v

з

www.national.com

Ontriula		Candillan		L	LM158A LI			LM358A		LM158/LM258			Units
1-0.001680			13° .	Min	Тур	Max	Min	Typ	Max	Min	Тур	Max	
Large Signal Vol	lage	V ⁺ = +15V											
Gain		(Vo = 1V to 11V)		25	1		15			25			V/mV
		R_ ≥2 kΩ		1									l l
Output.	V _{OH}	V* = +30V	$R_L = 2 k\Omega$	26			26			26			V .
Voltage	1.1	(LM2904, V* = 26V)	$R_L = 10 k\Omega$	27	28		27	28		27	26		v
Swing	V _{DL}	$V^* = 5V$, $R_L = 10 \text{ k}\Omega$			5	20		5	20		5	20	∙mV
Output Current	Source	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V$ $V^{+} = 15V, V_{O} = 2V$	·	10	20		10	20		10	20		mA
	Sink	$V_{iN}^{-} = +1V, V_{iN}^{-} = 0V$	Ι,	10	15		5	8		5	8	·	mA

Electrical Characteristics V* = +5.0V, (Note 4), unless otherwise stated

www.national.com

	Clauditiana		1,11358			LM2904	1	Units
	Contactions	Min	Тур	Max	Min	Тур	Max	1
• •	V ⁺ = 15V, T _A = 25°C,		•			-		
	$R_{L} \ge 2 k\Omega$, (For $V_{O} = 1V$. 25	100		25	100		V/mV
1.1	to 11V)	1						· .
	T _A = 25°C,					·		
	V _{CM} = 0V to V-1.5V	55	. 85		50	70		αÐ
	V+ = 5V to 30V							
	(LM2904, V* = 5V	65	100		50	100		dB
	to 26V), T _A = 25°C							· · .
	f = 1 kHz to 20 kHz, TA = 25 C							· · · ·
	(Input Referred), (Note 8)		-120			-120		dB
Source	V _{IN} ⁺ = 1V,	1						
· · ·	$V_{in}^{-} \approx 0V$	1.1					· · · .	1.11
	V* = 15V.	20	40		20	40		mA
	$V_{c} = 2V, T_{a} = 25^{\circ}C$						· .	
Sink	$V_{m}^{-} = 1V, V_{m}^{-} = 0V$	<u>.</u>						
	V* = 15V, T ₄ = 25°C,	10	20		10	20	· .	mA.
	$V_{0} = 2V$							
	V _m = 1V.							
• •	$V_{m}^{+} = 0V$							1
	$T_{*} = 25^{\circ}C_{*}V_{m} = 200 \text{ mV}$	12	50		12	50		μĄ
	V ⁺ = 15V					1		· .
d	T. = 25°C. (Note 2)							
	V ⁺ = 15V	1 .	40	60		40	60	mA
<u></u>	(Note 5)			9	<u></u>		10	mV
	$B_{e} = 0\Omega$	+ ·						
			7		•	7		÷µV/.C
	Initas' - Initas	-		150		45	200	пА
·	$R_{o} = 0\Omega$							
			. 10			10		pA/ C
•••	IIN(+) OF IIN(-)		40	500		40	500	nA
	V* = 30 V, (Note 7)	1	· · · · ·					
	(I M2904 V1 = 26V)	10.		A -5	0		A+ ∸5	v
	Sources	$\begin{tabular}{ c c c c } \hline Conditions & V^{+} = 15V, T_{A} = 25^{+}C, \\ \hline H_{L} \ge 2 kQ_{L} (For V_{O} = 1V) \\ \hline to 11V) & T_{A} = 25^{+}C, \\ \hline V_{CM} = 0V to 7V^{-} 1.5V & V^{-} 1.5V \\ \hline V^{-} = 5V to 30V & (LM2904, V^{+} = 5V) \\ \hline to 26V), T_{A} = 25^{+}C & (I + 1H^{+} to 20 KH_{L}, T_{A} = 25^{+}C & (I + 1H^{+} to 20 KH_{L}, T_{A} = 25^{+}C & (I + 1H^{+} to 20 KH_{L}, T_{A} = 25^{+}C & V_{N}^{-} = 0V, \\ \hline V_{N}^{-} = 0V, & V_{N}^{-} = 1V, \\ \hline V_{N}^{-} = 1V, & V_{N}^{+} = 0V & V^{+} = 15V, T_{A} = 25^{+}C & V_{N}^{-} = 1V, \\ \hline V_{N}^{-} = 1V, & V_{N}^{-} = 0V & V^{+} = 15V, T_{A} = 25^{+}C, \\ \hline V_{N}^{-} = 1V, & V_{N}^{-} = 0V & V^{+} = 15V & V_{N}^{-} = 1V, \\ \hline V_{N}^{-} = 1V, & V_{N}^{-} = 2V & V_{N}^{-} = 1V, \\ \hline V_{N}^{-} = 0V & V^{-} = 15V & V^{-} & 15V & V^{-} = 15V & V^{-} & 15V & V^{-} = 15V & V^{+} = 15V & V^{+} = 15V & V^{+} = 15V & V^{+} = 15V & (Note 5) & R_{B} = 0\Omega & U^{-} & U_{N}(k) & V^{-} = 1N(k_{1}) & R_{B} = 0\Omega & U^{-} & U_{N}(k) & U^{-} = 0V & V^{+} & U^{-} = 30 V, (Note 7) & (Mode 7) & (Mode 7) & U^{+} = 30 V, (Note 7) & U^{+} &$	$\begin{tabular}{ c c c c c } \hline Canditions & Min \\ \hline V_{-} = 15V, \ T_{A} = 25^{\circ}C, \\ \hline H_{L} \ge 2 \ k\Omega, \ (For \ V_{O} = 1V) & 25 \\ \hline b \ 11V], & T_{A} = 25^{\circ}C, & 0 \\ \hline V_{CM} = 0V \ to \ V_{-} - 1.5V & 85 \\ \hline V_{CM} = 0V \ to \ V_{-} - 1.5V & 65 \\ \hline to \ 26V), \ T_{A} = 25^{\circ}C & 0 \\ \hline (Input \ Referred), \ (Note \ 8) & 0 \\ \hline Source \ V_{N}^{+} = 1V, & V_{A}^{+} = 25^{\circ}C & 0 \\ \hline (Input \ Referred), \ (Note \ 8) & 0 \\ \hline Source \ V_{N}^{+} = 1V, & V_{N}^{+} = 0V, & V_{-}^{+} = 15V, & 00 \\ \hline V_{0} = 2V, \ T_{A} = 25^{\circ}C & 10 \\ \hline V_{0} = 2V, \ T_{A} = 25^{\circ}C, & 10 \\ \hline V_{0} = 2V, \ T_{A} = 25^{\circ}C, & 0 \\ \hline V_{m}^{+} = 1V, & V_{m}^{+} = 0V \\ \hline V_{m}^{+} = 1V, & V_{m}^{+} = 0V \\ \hline V_{m}^{+} = 1SV, & V_{m}^{+} = 25^{\circ}C, & 10 \\ \hline V_{0} = 2V, \ T_{A} = 25^{\circ}C, \ V_{0} = 200 \ mV, & V^{+} = 15V \\ \hline d \ T_{A} = 25^{\circ}C, \ (Note \ 2), & V^{+} = 15V \\ \hline d \ T_{A} = 25^{\circ}C, \ (Note \ 2), & V^{+} = 15V \\ \hline (Note \ 5), & R_{B} = 0\Omega \\ \hline I_{IN(A)} - I_{IN(-)} \\ \hline R_{g} = 0\Omega \\ \hline I_{IN(A)} - I_{IN(-)} \\ \hline V_{m}^{+} = 30 \ V, \ (Note \ 7), & V^{+} = 30 \ V, \ (Note \ 7) \\ (M \ 2004 \ V^{+} = 28V), & 0 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Conditions & Min Typ \\ \hline V^+ = 15V, T_A = 25^+C, \\ \hline H_L \ge 2 k\Omega_2 (For V_0 = 1V & 25 & 100 \\ to 11V) & T_A = 25^+C, \\ \hline V_{CM} = 0^+V t0^{-1}-5V & 65 & 85 \\ \hline V_{CM} = 0^+V t0^{-1}-5V & 65 & 100 \\ to 26V), T_A = 25^+C & 65 & 100 \\ to 26V), T_A = 25^+C & 65 & 100 \\ to 26V), T_A = 25^+C & 65 & 100 \\ \hline I = 1 kHz to 20 kHz, T_A = 25^+C & -120 \\ \hline I = 1 kHz to 20 kHz, T_A = 25^+C & -120 \\ \hline V_{N}^+ = 1V, \\ V_{N}^- = 0V, \\ V_{N}^- = 0V, \\ V_{N}^- = 1V, V_{R1}^+ = 0V \\ V_{0} = 2V, T_A = 25^+C & -10 & 20 \\ \hline V_{N}^+ = 1V, V_{R1}^+ = 0V \\ V_{N}^+ = 1V, V_{R1}^+ = 0V \\ V_{N}^+ = 1V, V_{R1}^- = 0V \\ V_{N}^+ = 1V, V_{R1}^- = 0V \\ V_{N}^+ = 1V, \\ V_{N}^+ = 0V & 12 & 50 \\ \hline T_A = 25^+C, (Note 2), & 40 \\ \hline V_{N}^+ = 15V & 40 \\ \hline T_A = 25^+C, (Note 2), & 40 \\ \hline V_{N}^+ = 1N_{(-)} & -1 \\ \hline R_B = 0\Omega & 7 \\ \hline I_{In(4)}^+ I_{IN(-)} & -1 \\ \hline R_B = 0\Omega & 10 \\ \hline I_{In(4)}^+ Or I_{IN(-)} & -1 \\ \hline O & (Mote 7) \\ \hline O & (Mote 7) & 0 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Conditions & I_MI356 & Min Typ Max \\ \hline V^+ = 15V, T_A = 25^+C, \\ \hline H_L \ge 2 kQ_L (For V_0 = 1V & 25 & 100 \\ to 11V) & T_A = 25^+C, \\ \hline V_{CM} = 0^+V t0^{-1}-5V & 65 & 85 \\ \hline V_{CM} = 0^+V t0^{-1}-5V & 65 & 100 \\ \hline t0 269V, T_A = 25^+C & 65 & 100 \\ \hline t0 269V, T_A = 25^+C & -120 \\ \hline f = 1 kHz to 20 kHz, T_A = 25^+C & -120 \\ \hline Sources V_{AT}^+ = 1V, \\ \hline V_{AT}^- = 0V, \\ \hline V_{AT}^- = 1V, \\ \hline V_{AT}^- = 0V & 12 \\ \hline Sources V_{AT}^- = 5^+C & -120 \\ \hline \hline T_A = 25^+C, (Note 2), \\ \hline V_{AT}^- = 1V, \\ \hline V_{AT}^- = 1V, \\ \hline V_{AT}^- = 1V, \\ \hline V_{AT}^- = 0V & 12 \\ \hline T_A = 25^+C, (Note 2), \\ \hline V_{AT}^- = 15V & 40 \\ \hline \hline T_A = 25^+C, (Note 2), \\ \hline (Note 5), \\ \hline = 3 \\ \hline R_B = 0\Omega & 7 \\ \hline \hline 10 \\ \hline I_{In(e_1}^- I_{IN(c_1)} & 160 \\ \hline R_B = 0\Omega & 10 \\ \hline \hline V_{T}^+ = 30 V, (Note 7) \\ \hline 0 & V^+ = 30 V, (Note 7) \\ \hline 0 & V^+ = 2V \\ \hline \end{tabular}$	$ \begin{array}{ c c c c c c } \hline Conditions & \hline I.M356 & \hline Min & Typ & Max & Min \\ \hline V_{-} = 15V, T_A = 25^{\circ}C, & \hline \\ R_L \ge 2 k \Omega_L (For V_G = 1V & 25 & 100 & 25 \\ \hline v_{CM} = 0^{\circ}V to \ 9^{\circ}-1.5V & 85 & 85 & 50 \\ \hline V_{CM} = 0^{\circ}V to \ 9^{\circ}-1.5V & 65 & 100 & 50 \\ \hline V_{-} = 5V to \ 30V & (LM2904, V^{+} = 5V & 65 & 100 & 50 \\ \hline V_{-} = 5V to \ 30V & (LM2904, V^{+} = 5V & 65 & 100 & 50 \\ \hline V_{-} = 5V to \ 20V V, T_A = 25^{\circ}C & -120 & \hline \\ f = 1 \ LH2 to \ 20 \ KH2, T_A = 25^{\circ}C & -120 & \hline \\ Source V_{A_{+}}^{*} = 1V, & V_{A_{+}}^{*} = 0V & V_{A_{+}}^{*} = 0V \\ V_{-} = 5V, T_A = 25^{\circ}C & 10 & 20 & 10 \\ \hline V_{-} = 2V, T_A = 25^{\circ}C & -120 & \hline \\ Sink V_{B_{+}} = 1V, V_{B_{+}}^{*} = 0V & V_{A_{+}}^{*} = 1V, \\ V_{A_{+}}^{*} = 1V, V_{B_{+}}^{*} = 0V & 12 & 50 & 12 \\ \hline V_{A_{+}}^{*} = 1V, & V_{A_{+}}^{*} = 0V & 12 & 50 & 12 \\ \hline V_{A_{+}}^{*} = 5^{\circ}C, (Note \ 2), & V_{-}^{*} = 5^{\circ}V & 0 & \hline \\ d & T_A = 25^{\circ}C, (Note \ 2), & 40 & 60 & \hline \\ \hline T_A = 25^{\circ}C, (Note \ 2), & 40 & 60 & \hline \\ \hline R_{B_{+}} = 0\Omega & 7 & \hline \\ \hline H_{10(4_{+}} - 1_{1N(-)} & 150 & \hline \\ R_{B_{+}} = 0\Omega & 10 & \hline \\ \hline H_{10(4_{+}}^{*} Ot \ H_{10(-)} & 10 & \hline \\ \hline H_{10(4_{+}}^{*} Ot \ H_{10(-)} & 0 & V^{-2} & 0 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c c c } \hline Conditions & LM358 & LM2904 \\ \hline Min & Typ & Max & Min & Typ & Mex \\ \hline V^{+} = 15V, T_{A} = 25^{+}C, \\ H_{L} \geq 2 k\Omega_{2} (F0^{+}V_{O} = 1V & 25 & 100 & 25 & 100 \\ \hline to 11V) & & & & & & \\ \hline T_{A} = 25^{+}C, & & & & & & \\ \hline V_{CM} = 0^{+}V to 30^{+}V & & & & & & \\ \hline V_{CM} = 0^{+}V to 30^{+}V & & & & & \\ \hline V_{CM} = 0^{+}V to 30^{+}V & & & & & \\ \hline V_{CM} = 5V to 30^{+}V & & & & & \\ \hline V_{CM} = 5V to 30^{+}V & & & & & \\ \hline V_{CM} = 5V to 30^{+}V & & & & \\ \hline V_{CM} = 0^{+}V to 7^{+}.5V & & & & & & \\ \hline V_{CM} = 0^{+}V to 7^{+}.5V & & & & & & \\ \hline V_{CM} = 0^{+}V to 30^{+}V & & & & \\ \hline V_{CM} = 0^{+}V to 30^{+}V & & & & \\ \hline V_{CM} = 0^{+}V to 30^{+}V & & & & \\ \hline V_{CM} = 1^{+}V, V_{CM} + 25^{+}C & & & & & \\ \hline Source & V_{M}^{+} = 1^{+}V, V_{R1}^{+} = 0^{+}V & & & \\ \hline V_{M}^{+} = 1^{+}V, V_{R1}^{+} = 0^{+}V & & & \\ \hline V_{M}^{+} = 1^{+}V, V_{R1}^{+} = 0^{+}V & & & \\ \hline V_{M}^{+} = 1^{+}V, V_{R1}^{+} = 0^{+}V & & & \\ \hline V_{M}^{+} = 1^{+}V, V_{R1}^{+} = 0^{+}V & & & \\ \hline V_{M}^{+} = 1^{+}V, V_{R1}^{+} = 0^{+}V & & & \\ \hline V_{M}^{+} = 1^{+}V, V_{R1}^{+} = 0^{+}V & & & \\ \hline U & T_{A} = 25^{+}C, (Note 2), & & & & \\ \hline V_{M}^{+} = 5^{+}V & & & & & \\ \hline d & T_{A} = 25^{+}C, (Note 2), & & & & & \\ \hline T_{A} = 25^{+}C, (Note 2), & & & & & & \\ \hline V_{M}^{+} = 1^{+}V & & & & & \\ \hline d & T_{A} = 25^{+}C, (Note 2), & & & & & & \\ \hline R_{B} = 0\Omega & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & \\ \hline H_{10}(h_{C1}) & & & & & & & \\ \hline \end{array}$

4 · ·

Baalaana		Temperature Ra	nge		NO0 0
rackage	-55°C to 125°C	-25°C to 85°C	0°C to 70°C	-40'C to 85'C	NSC Drawing
SO-8			LM358AM LM358AMX LM358M	LM2904M LM2904MX	MOSA
B-Pin Molded DJP			LM358MX LM358AN	LM2904N	NOBE
I-Pin Ceramic DIP	LM158AJ/883(Note 11) LM158J/883(Note 11) LM158J LM158J LM158AJLQML(Note 12) LM158AJQMLV(Note 12)		Landours		ABOL
TO-5, 8-Pin Metal Can	LM158AH/883(Note 11) LM158H/863(Note 11) LM158H LM158H LM158H LM158HHLGML(Note 12) LM158AHLGMLV(Note 12)	LM258H	LM358H		HOBC
8-Bump micro SMD			LM3588P LM3588PX	LM2904IBP LM2904IBPX	BPADBAAB 0.65 mm Thick
8-Bump micro SMD			LM358TP LM358TPX	LM2904ITP LM2904ITPX	TPA08AAA 0.50 mm Thick

Note 11: LM159 is avalable per SMD #5962-8771001 LM156A is available per SMD #5962-8771002 Note 12: See STD Mi DWG 5662L87710 for Rediation Tolerant Devices

www.nebonal.com 10

mos.lanoiten

200

£

LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers

LV/C. pA/^C \sqrt{m} **VH/V** If Milltany/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Nationary for availability and specifications. Poteite Bin Crite ¥ ₩ ₹ ₹.¥ È È P 5 3-C10 + 150-C Continuous OrC to + 70°C 1,5 2,1 Мад LM308 18V 500 mW 10 mA 0.8 8 5 皇 260°C 3001C Typ 2.0 4 E 0 ণ্ব 300 0.3 2.0 2 2 55 ñ Min 5 Min Typ Max 0.7 2.0 0.05 0.2 9.6 5 0.4 41 N 3.0 2.0 0.5 LM108/LM208 + 20V 502 mW = 10 mA = 10 mA = 15 V Continuous 55°C to + 150°C =65°C to + 150°C LM108/LM208 260°C 215 C 300°C See AN-450. "Surgeon manufing Methods and Their Effect on Product Heliability" for other mathods of solidening surface mount devices. ESD Telenance (Note 6) 260°C 0.15 4 1 7 0 90E 0.5 3.0 8 +13 2 52 2 T_A = +.125°C V_S = ±15V, VOUT = °510V R_L ≥ 10 kn TA = 25°C. Vs = ±15V Vour = ±10V, AL ≥ 10 kn Output Voltage Swing Vs = ±15V, RL = 10 kΩ Electrical Characteristics (Note 4) Operating Temperature Range (LM109) (LM208) Störage Temperature Range Lead Temperature (Soldering, 10 sec) Condition Absolute Maximum Ratings Supply Voltage Powor Dissipation (Note 1) Differentiat Input Current (Note 2) Input Voltage (Note 3) Output Short Circuit Duration
$$\begin{split} T_A &= 25^{\circ}C\\ T_A &= 25^{\circ}C\\ T_A &= 25^{\circ}C\\ T_A &= 25^{\circ}C \end{split}$$
T_A = 25°C Soldering (10 seconds) Small Outline Package Vapor Phase (60 secon Infräred (15 seconds) DIP DIP H Package Lead Temp - 1 n seconds Soldering 10 seconds) Soldering Information Dual-In-Line Package Supply Current Large Signal Voltage Gain Large Signal Voltage Gain Average Tomperature Coefficient of Input Input Offset Voltage Input Offset Current Input Blas Current Average Temperature Coefficient of Input Input OfIsel Current input Öffset Voltage Parameter Input Blas Currein nput Resistance Supply Current Offset Voltage Offset Current

-

ž Vote 1: The

Absolute Maximum	ratings (Note 4)			ing tening	a a tanigo			
If Military/Aerospace specifi	ed devices are required,			C	ontinuo	un li (1	note 2)	nz
please contact the National St	miconductor Sales Office/	LM135, I	M135A	-55*0) to +150	rc i	50°C to 2	00°C
Distributors for availability at	a specifications	LM235,	.M235A	-40*0	to +125	510 1	25°C to 1	50°C
Reverse Current	15 mA 15	LM335,	M335A	-40*0	to +100	0°C 1	00°C to 1	25°C
Forward Current	10 MA	Lead Te	np. (Sold	ering, 1	0 second	78)		
TO AR Reckare	-60°C to +180°C	TO-92	Package	r:				260°C
TC-92 Package	-50°C to +150°C	TO-46	Package	r.				300°C
SO-8 Package	-65'C to +150'C	SO-8	Package:			8 8 B	: 2 ¹	300'0
		· vap Infra	red (15 s	(ou sec econds):):			215 C 220°C
Temperature Accur	acy (Note 1)			· .				
CM 133/LM233, CM 135/VLM233	Cenditions	1 1 10	TRAN M	7986			235	
1.9(\$) (with)	Conductoria	Min	Typ	Marx	Min	Tva	Max	-
Decetion Output Voltage	T- = 25°C - = 1 mA	2.97	2.88	2,99	2.95	2.98	3.01	
Incollipsed Temperature Error	T = 25'C = = 1 mA		0.5	1	2.00	1 1	3	
Incollibrated Temperature Error			13	27	1		5	1
Since in the Error with 25'C			0.3	1		0.5	1.15	+
alibration	MIN S C S MAX R - 1 Int	. I.	0.0	ľ		0.0		
Colibrated Error at Extended	To a True (Intermittent)		2			2		- 'C
	C MAX (manual)		. .					-
lon 1 ineesh	1. = 1 = 0		03	0.5		.03	+	tre
Temperature Accur	GCY (Note 1)	:. ':: 	LM3354	н 111 Малок М		LM33	· · ·	Units
Temperature Accur LM335, LM335A Parameter	Conditions	Min	LM3354		Min	LM33:		Units
Temperature Accur	Conditions	Min	LM3354	Max	Min	LM33:	Max	Units
Temperature Accur LM335, LM335A Parameter Operating Output Voltage	Conditions T _C = 25°C, I _R = 1 mA	Min 2.95	LM3354 Typ 2.98	Max 3.01	Min 2.92	LM33: Typ 2.96	Max 3.04	Units V
Temperature Accur LM335, LM35A Parameter Deprating Output Voltage Jncellforated Temperature Error	Conditions T _o = 25°C, I _R = 1 mA T _o = 25°C, I _R = 1 mA	Min 2.95	LM335/ Typ 2.98	Max 3.01 3	Min 2.92	LM333 Typ 2.98 2	Max 3.04 6	V C
Temperature Accus LM335, LM335A Parameter Departing Output Voltage Jncellbrated Temperature Error Jncellbrated Temperature Error	Conditions $T_c = 25^{\circ}C, I_R = 1 \text{ mA}$ $T_c = 25^{\circ}C, I_R = 1 \text{ mA}$ $T_c = 25^{\circ}C, I_R = 1 \text{ mA}$ $T_{MIN} \le T_c \le T_{MAX}, I_R = 1 \text{ mA}$	Min 2.95	LM3354 Typ 2.98 1 2	Max 3.01 3 5	Min 2.92	LM338 Typ 2.98 2 4	Max 3.04 6 9	Vinita V C C
Temperature Accur LM335, LM335A Parameter Deprating Output Voltage Jncatibrated Temperature Error Jncatibrated Temperature Error Temperature Error with 25°C Calibration	$\begin{array}{c} \textbf{Conditions} \\ \hline \textbf{C}_{c} = 25^{\circ}\text{C}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{c} = 25^{\circ}\text{C}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{c} = 25^{\circ}\text{C}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{c} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{c} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \text{ mA} \end{array}$	Min 2.95	LM3354 Typ 2.98 1 2 0.5	Mux 3.01 3 5	Min 2.92	LM33: Typ 2.98 2 4 1	Max 3.04 6 9 2	Vinits V C C C
Temperature Accur LM335, LM335A Parameter Derating Output Voltage Jocalibrated Temperature Error Jocalibrated Temperature Error Temperature Error with 25°C Calibration Calibration	$\begin{array}{c} \textbf{Conditions} \\ \hline \textbf{Conditions} \\ \hline \textbf{T}_{c} = 25^{\circ}\text{C}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{c} = 25^{\circ}\text{C}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{atilN} \leq \textbf{T}_{c} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{c} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{c} = \textbf{T}_{mAX} (\text{Intermittent}) \end{array}$	Min 2.95	LM3355 Typ 2.98 1 2 0.5	Max 3.01 3 5 1	Min 2.92	LM33: Typ 2.98 2 4 1	Max 3.04 6 9 2	V C V V C
Temperature Accur LM335, LM335A Parameter Operating Output Voltage Jncalibrated Temperature Error Temperature Error with 25°C Calibration Calibrated Error at Extended Temperatures	$\begin{array}{c} \textbf{Conditions} \\ \hline T_{C} = 25^{\circ}C, \ I_{R} = 1 \ \text{mA} \\ \hline T_{C} = 25^{\circ}C, \ I_{R} = 1 \ \text{mA} \\ \hline T_{C} = 25^{\circ}C, \ I_{R} = 1 \ \text{mA} \\ \hline T_{MIN} \leq T_{C} \leq T_{MAX}, \ I_{R} = 1 \ \text{mA} \\ \hline T_{MIN} \leq T_{C} \leq T_{MAX}, \ I_{R} = 1 \ \text{mA} \\ \hline T_{C} = T_{MAX} (Intermittent) \end{array}$	Min 2.95	LW3355 Typ 2.98 1 2 0.5	Max 3.01 3 5 1	Min 2.92	LM33: Typ 2.98 2 4 1 2	Max 3.04 6 9 2	Vinits V C C C C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Uncalibrated Temperature Error Juncelibrated Temperature Error Temperature Error with 25°C Calibration Calibrated Error at Extended Temperatures Non-Linearity	$\label{eq:conditions} \begin{array}{c} \hline \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ} C, \ \textbf{I}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = 25^{\circ} C, \ \textbf{I}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} \left(\textbf{Intermittent} \right) \\ \hline \textbf{I}_{R} = 1 \ \textbf{mA} \end{array}$	 Min 2.95	LW3355 Typ 2.98 1 2 0.5 2 0.3	Max 3.01 3 5 1 1.5	Min 2.92	LM33: Typ 2.98 2 4 1 2 0.3	Max 3.04 6 9 2 2	Vinits V C C C C C C C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Uncellbrated Temperature Error Incellbrated Temperature Error Temperature Error with 25°C Calibration Calibration Calibrated Error at Extended Temperatures Non-Linearity	$\label{eq:conditions} \begin{aligned} \hline \textbf{Conditions} \\ \hline \textbf{T}_{G} &= 25^{\circ}\text{C}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{C} &= 25^{\circ}\text{C}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{MIN} &\leq \textbf{T}_{G} &\leq \textbf{T}_{MAX}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{MIN} &\leq \textbf{T}_{C} &\leq \textbf{T}_{MAX}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{C} &= \textbf{T}_{MAX} \left(\text{Intermittent} \right) \\ \hline \textbf{I}_{R} &= 1 \ \text{mA} \end{aligned}$	<u>Min</u> 2.95	LIW3355J 7yp 2.98 ? 2 0.5 2 0.5 2 0.3	Max 3.01 3 5 1 1.5	Min 2.92	LM333 Typ 2.98 2 4 1 2 2 4 0.3	Max 3.04 6 9 2 1.5	Vaits V ·C ·C ·C ·C
Temperature Accur IM335, LM335A Parameter Depending Output Voltage Incelibrated Temperature Error Incelibrated Temperature Error Calibrated Error with 25°C Calibration Calibrated Error at Extended Temperatures Non-Linearity Electrical Characte	$\begin{array}{c} \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\text{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \end{array}$	Min. 2.95	LM3354 Typ 2.98 1 2 0.5 2 0.3	Max 3.01 3 5 1 1 3.5	Min 2.92	LM333 Typ 2.98 2 4 1 2 0.3	Max 3.04 6 9 2 1.5	Vaits V C C C C C C C C C C C C C C C C C C
Temperature Accur 1M335, LM335A Parameter Deprating Output Voltage Incalibrated Temperature Error Incalibrated Temperature Error Calibrated Temperature Error Calibrated Error with 25°C Calibration Calibrated Error at Extended Temperatures Non-Linearity Electrical Character	$\label{eq:conditions} \begin{split} \hline \textbf{Conditions} \\ \hline \textbf{T}_{C} &= 25^{\circ}\text{C}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{C} &= 25^{\circ}\text{C}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{MIN} &\leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{MIN} &\leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} &= 1 \ \text{mA} \\ \hline \textbf{T}_{C} &= \textbf{T}_{MAX} \ (\text{Intermittent}) \\ \hline \textbf{I}_{R} &= 1 \ \text{mA} \\ \end{split}$	LM132	LM335/ Typ 2.98 1 2 0.5 2 0.3	Max 3.01 3 5 1 1.5	Min 2.92	LM33: Typ 2.98 2 4 1 2 4 1 2 2 4 1 2	Max 3.04 6 9 2 1.5	Valts V ·C ·C ·C ·C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Jincatibrated Temperature Error Inclusted Temperature Error emperature Error with 25°C Calibrated Error at Extended femperatures Kon-Linearity Electrical Characte Parameter	$\begin{tabular}{ c c c c c } \hline Conditions & & \\ \hline & Conditions & \\ \hline T_{C} = 25^{\circ}C, \ I_{R} = 1 \ mA & \\ \hline T_{C} = 25^{\circ}C, \ I_{R} = 1 \ mA & \\ \hline T_{MIN} \leq T_{C} \leq T_{MAX}, \ I_{R} = 1 \ mA & \\ \hline T_{C} = T_{MAX} \ (Intermittent) & \\ \hline I_{R} = 1 \ mA & \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	LIN132	LW3355 Typ 2.98 1 2 0.5 2 0.3 LM235 A.M235	Max 3.01 3 5 1 3.5	Min 2.92	LM33: Typ 2.98 2 4 1 2 0.3 	Max 3.04 6 9 2 1.5	Units
Temperature Accur LM335, LM335A Parameter Sperating Output Voltage Jncallbrated Temperature Error Temperature Error with 25°C Calibration Calibrated Error at Extended Temperatures Kon-Linearity Electrical Characte Parameter	$\begin{tabular}{ c c c c c } \hline Conditions & $$T_{C}=25^{\circ}C, \ I_{R}=1\ mA$ \\ \hline T_{C}=25^{\circ}C, \ I_{R}=1\ mA$ \\ \hline T_{MIN}\leq T_{C}\leq T_{MAX}, \ I_{R}=1\ mA$ \\ \hline T_{MIN}\leq T_{C}\leq T_{MAX}, \ I_{R}=1\ mA$ \\ \hline T_{C}=T_{MAX}\ (Intermittent) & $$I_{R}=1\ mA$ \\ \hline I_{R}=1\ mA$ \\ \hline Conditions & $$$Conditions $$ \\ \hline \end{tabular}$	LM136 LM135A	LW3355 Typ 2.98 1 2 0.5 2 0.3 /LM235 /LM235 /yp N	Max 3.01 3 5 1 3.5	Min 2.92	LM333 Typ 2.98 2 4 1 1 2	Max 3.04 6 9 2 1.5 Max	Units V C C C C C C C C C C C C C C C C C C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Incalibrated Temperature Error Incelibrated Temperature Error Temperature Error with 25°C Calibration Calibrated Error at Extended Femperatures Non-Linearity Electrical Characta Parameter Depending Output Voltage	$\label{eq:action} \begin{array}{ c c c c } \hline \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} \left(\text{Intermittent} \right) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{ristics} (\text{Note 1}) \\ \hline \textbf{Conditions} \\ \hline \textbf{400} \ \mu \text{As} \textbf{I}_{R} \text{s} \text{s} \text{ mA} \\ \hline \end{array}$	LM13C	LM3355 2.98 3 2.9 0.5 2 0.3 0.3 VLM235 ALM235 ALM235 7 P N 5	Mmx 3.D1 3 5 1 1 1.5	Min 2.92	LM335 7yp 2.96 2 4 1 1 2 2 4 1 1 2 3 5 M335 M335A 7yp 3	Max 3.04 6 9 2 1.5 Max 14	Units V C C C C C C C C C C C C C C C C C C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Incelibrated Temperature Error Incelibrated Temperature Error Temperature Error with 25°C Calibration Salibrated Error at Extended Temperatures Non-Linearity Electrical Characte Parameter Depending Output Voltage Change with Current	$\label{eq:conditions} \begin{aligned} & \frac{Conditions}{T_C = 25^\circ C, \ I_R = 1 \ mA} \\ & T_C = 25^\circ C, \ I_R = 1 \ mA} \\ & T_A = 25^\circ C, \ I_R = 1 \ mA} \\ & T_{MIN} \leq T_C \leq T_{MAX}, \ I_R = 1 \ mA} \\ & T_MIN \leq T_C \leq T_{MAX}, \ I_R = 1 \ mA} \\ & T_C = T_{MAX} \ (Intermittent) \\ & I_R = 1 \ mA} \\ & T_C = T_{MAX} \ (Intermittent) \\ & I_R = 1 \ mA} \\ & Tristics \ (Note \ 1) \\ \hline & Conditions \\ & 400 \ \muAsI_R \leq mA \\ & At \ Constant \ Temperature \\ \end{array}$	LM136 LM135A Min T	LIM3355 2.98 1 2. 0.5 2 0.3 VLM235 A.M235/ yp N .5	Max 3.01 3 5 1 1.5 1.5	Min 2.92	LM335 Typ 2.98 2 4 1 1 2 0.3 M335 M335A Typ 3	Max 3.04 6 9 2 1.5 Max 14	Units V C C C C C C C C C C C C C C C C C C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Incelibrated Temperature Error Incelibrated Temperature Error Comperature Error with 25°C Calibration Calibrated Error at Extended Temperatures Non-Linearity Electrical Characte Parametar Operating Output Voltage Change with Current Opmantic Impedance	$\label{eq:conditions} \hline \begin{array}{c} \hline \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \ \textbf{I}_{R} = 1 \ \text{mA} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \ \textbf{I}_{R} = 1 \ \text{mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \ \text{mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \ \text{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} \ (\text{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \ \text{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} \ (\text{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \ \text{mA} \\ \hline \textbf{M} \ \textbf{M} \\ \hline \textbf{M} \ \textbf{M} \ \textbf{M} \ \textbf{M} \ \textbf{M} \ \textbf{M} \ \textbf{M} \\ \hline \textbf{M} \ \textbf{M} \$	LM136	LM335/ Typ 2.98 1 2 0.5 2 2 0.3 4LM235 ALM235 4LM235 5 5	Max 3.01 3 5 1 1.5	Min 2.92	LM335 Typ 2.98 2 4 1 2 0.3 M335 M335A Typ 3 0.6	Max 3.04 6 9 2 1.5 Max 14	Units V ·C ·C ·C ·C ·C ·C ·C ·C ·C ·C
Temperature Accur LM335, LM335A Parameter Denoting Output Voltage Jncellbrated Temperature Error Incellbrated Temperature Error Temperature Error at Extended Temperatures Van-Linearity Electrical Characte Parameter Operating Output Voltage Charge with Current Dynamic Impedance Duput Voltage Temperature	$\begin{array}{c c} \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \textbf{I}_{R} \cong 1 \text{ mA} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \textbf{I}_{R} \equiv 1 \text{ mA} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\text{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{rtstics} (\text{Note 1}) \\ \hline \textbf{Conditions} \\ \hline \textbf{400} \ \mu\text{AsI}_{R} \leq \text{mA} \\ \text{At Constant Temperature} \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \end{array}$	LM135A Nin 2 LM135A 1 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 5 4 5 4	LM3354 Typ 2.98 1 2 0.5 2 2 0.3 7 2 2 2 5 5 5 10	Max 3.01 3 5 1 1.5 5.5	1 2.92	LM338 Typ 2.98 2 4 1 2 2 4 1 2 2 0.3 0.3 5 M335 M335 M335 M335 M335 M335 M335	Max 3.04 6 9 2 1.5 Max 14	Units V C C C C C C C C C C C C C C C C C C
Temperature Accur LM335, LM335A Parameter Operating Output Voltage Incellibrated Temperature Error Incellibrated Temperature Error Temperature Error with 25°C Calibration Calibrated Error at Extended Ferneratures Von-Linearity Electrical Characta Parameter Operating Output Voltage Change with Current Oynamic Impedance Dutput Voltage Temperature Coefficient	$\begin{array}{c c} \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ}C, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = 25^{\circ}C, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} \left(\text{Intermittent} \right) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{ristics} \left(\text{Note 1} \right) \\ \hline \textbf{Conditions} \\ \hline \textbf{400 } \mu \text{AsI}_{R} \text{S} \text{mA} \\ \text{At Constant Temperature} \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \end{array}$	LM1355 LM1355 Min T C C +	LM3355 Typ 2.98 1 2 0.5 2 0.3 7 LM235 4 M2354 7 P N 5 5 10	Max 10	Min 2.92	LM332 Typ 2.98 2 4 1 1 2 2 3 0.3 0.3 0.3 0.3 0.3 0.6 410	Max 3.04 6 9 2 1.5 Max 14	Units V 'C 'C 'C 'C 'C 'C 'C 'C 'C 'C 'C 'C 'C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Incelibrated Temperature Error Incelibrated Temperature Error Temperature Error with 25°C Calibration Salibrated Error at Extended Temperatures Non-Linearity Electrical Characte Parameter Depending Output Voltage Change with Current Dynamic Impediance Dubpit Voltage Temperature Coefficient Time Constant	$\begin{array}{c} \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ}C, \ \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = 25^{\circ}C, \ \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \ \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{J}_{R} = 1 \ \textbf{mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{R} \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{R} \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{R} \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{R} \\ \hline \textbf{T}_{R} = \textbf{T}_{R} \\ \hline \textbf{T}_{$	LM136 LM135A Min T 2.95 LM135A Min T 2 4	LM3354 Typ 2.98 1 2 0.5 2 0.3 2 0.3 4 LM235 ALM235 ALM235 7 P N 5 5 10	Max 3.01 3 5 1 3.5 1 3.5 1 3.5	Min 2.92	LH333 Typ 2.96 2 4 4 1 1 2 2 4 3 2 3 3 3 3 3 3 3 8 0.6 5 80	Max 3.04 6 9 2 1.5 Max 14	Units V C C C C C C C C C C C C C C C C C C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Jocalibrated Temperature Error Incalibrated Temperature Error Temperature Error with 25°C Calibrated Error at Extended Temperatures Non-Linoarity Electrical Characte Parameter Depending Output Voltage Charge with Current Dynamic Impedance Duptut Voltage Temperature Coefficient Time Constant	$\begin{tabular}{ c c c c c } \hline & $Conditions$ \\ \hline $T_c = 25^{\circ}C, \ I_R = 1 \ mA$ \\ \hline $T_c = 25^{\circ}C, \ I_R = 1 \ mA$ \\ \hline $T_{MIN} \leq T_c \leq $T_{MAX}, \ I_R = 1 \ mA$ \\ \hline $T_{MIN} \leq $T_c \leq $T_{MAX}, \ I_R = 1 \ mA$ \\ \hline $T_c = T_{MAX} (Intermittent) \\ \hline $I_R = 1 \ mA$ \\ \hline $T_c = T_{mAX} (Intermittent) \\ \hline $I_R = 1 \ mA$ \\ \hline T Still Air \\ \hline $All Constant Temperature $I_R = 1 \ mA$ \\ \hline $Still Air$ \\ \hline $100 \ t/Min \ Air$ \\ \hline $100 \ t/Min \ Air$ \\ \hline \end{tabular}$	LM136	LM3355 Typ 2.98 1 2 0.5 0.5 0.3 7 MM235 ALM235/ yp N 5.5 10 10 0 0	Mex 3.01 3 5 1 1.5 1.5		LM332 Typ 2.96 2 4 1 1 2. M3356 M3356A Typ 3 0.6 410 10	Max 3.04 6 9 2 1.5 Max 14	Units V ·C ·C ·C ·C ·C ·C ·C ·C ·C ·C ·C ·C ·C
Temperature Accur LM335, LM335A Parameter Denating Output Voltage Jncalibrated Temperature Error Incalibrated Temperature Error Temperature Error with 25°C Calibration Calibrated Error at Extended Ferneratures Von-Linearity Electrical Characte Parameter Denating Output Voltage Change with Current Dynamic Impedance Doperature Coefficient Fine Constant	$\begin{array}{c c} \textbf{Conditions} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, I_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, I_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = 25^{\circ}\text{C}, I_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, I_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, I_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (Intermittent) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{tristics} (Note 1) \\ \hline \textbf{Conditions} \\ \hline \textbf{400 } \mu \text{AsI}_{R} \text{S} \text{mA} \\ \text{At Constant Temperature} \\ I_{R} = 1 \text{ mA} \\ \hline \textbf{Still Air} \\ 100 \text{ ft/Min Air} \\ \hline \textbf{Still OB} \\ \hline \textbf{OB} \end{array}$	LM135 LM135 Min 7 C t	LM3354 Typ 2.98 1 2 0.5 2 0.3 2 1.02354 .5 10 0 1 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Max 3.01 3 5 1 1.5	Min 2.92	LM332 Typ 2.96 2 4 1 1 2 2 4 2 3 3 0.3 3 3 0.6 4 10 1 1	Max 3.04 6 9 2 1.5 Max 14	Units V ·C ·C
Temperature Accur LM335, LM335A Parameter Depending Output Voltage Incalibrated Temperature Error Incalibrated Temperature Error Incellerated Error at Extended Femperature Error with 25°C Calibration Calibrated Error at Extended Femperatures Van-Linearity Electrical Characta Parametar Depending Output Voltage Change with Current Dynamic Impedance Dutput Voltage Temperature Depending Coefficient Fime Constant	$\begin{array}{c c} \textbf{Conditions} \\ \hline \textbf{T}_{G} = 25^{\circ}\text{C}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{G} = 25^{\circ}\text{C}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{G} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{MIN} \leq \textbf{T}_{C} \leq \textbf{T}_{MAX}, \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{C} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{G} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{G} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{G} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{G} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{T}_{G} = \textbf{T}_{MAX} (\textbf{Intermittent}) \\ \hline \textbf{I}_{R} = 1 \text{ mA} \\ \hline \textbf{Still Air} \\ \hline \textbf{Still Air} \\ \hline \textbf{100 } (\textbf{I/MIn Air} \\ \textbf{Stillred OR} \\ \hline \textbf{T}_{R} = \textbf{125^{\circ}C} \\ \hline \end{array}$	LM136 LM136	LM3354 Typ 2.98 1 2 0.5 2 0.5 2 0.3 2 0.3 0.3 0.3 0.3 0.5 5.5 10 10 10 11 2.2	Max 3.01 3 5 1 1.5 1.5		LM332 Typ 2.96 2 4 4 1 2 2 4 4 0.3 3 3 3 0.6 5 80 10 1 2 2 1 2 9 10 10 2 2 10 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	Max 3.04 6 9 2 1.5 Max 14	Units V C C C C C C C C C C C C C C C C C C

www.national.com

Electrical Characteristics (Note 1) (Continued)

Note 1: Accuracy measurements are made in a well-somed oil bath. For other conditions, soil heating must be considered

Note 2: Continuous operation at these temperatures for 10,000 hours for H package and 5,000 hours for Z package may de is its expectancy of the device Note 3:

Calibrated Error

ПТ

Thermal Resistance	TO-92	TO-46	SO-8
θ _{LA} (junction to ambient)	202°C/W	400°C/W	165°C/W
euc (junction to case)	170°C/W	N/A	N/A
Note 4: Refer to RET9135H for m	Rivy specificatio	fill.	

LM135/LM235/LM335, LM135A/LM235A/LM335A **Typical Performance Characteristics**

- '¥

THE Gal

1200

ALS VELOCITY (FEM)

Response Time

Thermal Resistance

Junction to Air

Noise Voltage

1-15 C ...

-1-1-

Thermal Time Constant

4

Typical Performance Characteristics (Continued)

Thermal Response in Stirred Oil Bath

Application Hints

CALIBRATING THE LM135

Included on the LM135 chip is an easy method of calibrating the device for higher accuracies. A pot connected across the LM135 with the sem tied to the adjustment terminel skows a 1-point calibration of the sensor that corrects for inaccuracy over the full temperature range.

This single point calibration works because the output of the LM135 is proportional to absolute temperature with the extrapolated output of sensor going to 6V output at 0°K (~273.15°C). Errors in output voltage versus temperature are only slope (or ecale factor) errors so a slope calibration at one temperature corrects at slit temperatures.

The output of the device (calibrated or uncalibrated) can be expressed as:

 $V_{OUT_T} = V_{OUT_T_0} \times \frac{T}{T_0}$

where T is the unknown temperature and T_o is a reference temperature, both expressed in degrees Kelvin. By calibrating the output to read concetly at one temperature the output at all temperatures is correct. Nominelly the output is calibrated at 10 mV/K.

Typical Applications

135/LM2

M335

LM135A/LM23

www.netional.com

To insure good sensing accuracy several preclamons must be taken. Like any temperature sensing device, self heating can reduce accuracy. The LM135 should be operated at the lowest current suitable for the application. Sufficient current, of ocurse, must be evalitable to drive both the sensor and the calibration pot eit the maximum operating temperature as well as any oxternal loads.

If the sensor is used in an ambient where the thermal resistance is constant, self heating errors can be calibrated out. This is possible if the device is run with a temperature stable current. Heating will then be proportional to zener voltage and therefore temperature. This makes the self heating error proportional to absolute temperature the same as scale factor errors.

WATERPROOFING SENSORS

Mettable inner core heat shrinkable tubing such as manufactured by Raychem can be used to make low-cost writerproof sensors. The LM336 is insertied into the tubing about ½² from the end and the tubing heated above the maiting point of the core. The unfilled ½⁴ end metts and provides a seel over the device.

Isolated Temperature Senso

400

For I_R = 0.5 mA, the trim pot must be deleted.

800

24

ß

www.national.com

5

LM135/LM235/LM335, LM135A/LM235A/LM335A

Adjust for 2.7315V at

terionel con

Typical Applications (continued)

9

6

 \mathcal{O} 0

1 de

www.national.com

1:24 - 1:00 - 2 K

DUTPUT-MIGH VICTOR OF

Calibrated Temperature Error: The and between operate ing output voltage and case temperature at 10 mV/K over a temperature range at a specified operating current with the 25°C error adjusted to zero.

LIFE SUPPORT POLICY

Sensor

Precision Temperature

LM135A/LM235A/LM335A

LM135/LM235/LM335,

www.national.com

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when property used in accordance with instructions for use provided in the fabeling, can be reasonably expected to result in a significant injury to the user.

A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

		THE TREAM AND AND AND A MADE AND A			
K	National Semiconductor Corporation	National Semiconductor	Nationa Asia Pa	al Semiconductor Initio Customer	National Semiconductor Japan Ltd.
v	American	Fax: +49 (0) 180-530 65 88	Report	HE Group	Ter: 61-3-5639-7560
1.1	Tel: 1-800-272-9959	Email: europe support@nso.com	Tel: 65-1	2544466	Fax: 81-3-5639-7607
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 69 9508 6208	Floc 86	2504466	
	Email: support@nec.com	English Tel: +44 (0) 870 24 0 2171	Email: a	B.BLOOCHED THE CAR	
999	w.national.com	Françaia Tel: +33 (0) 1 41 91 8790			
14	e might generative and states. An anna an an anna an an anna an an an an		· · · · · · · · · · · · · · · · · · ·		
		· · · _ · _ · _ · _ · _			

I the right at any line without police to chance said circuity and some iume iiii use of sity classify described, no circuit p