
MuStServ: A Lightweight Multimedia Streaming Server 

By 

Ahmad Suhaily Sulaiman 

Dissertation submitted in partial fulfillment of 

the requirements for the 

Bachelor oflnformation Technology (Hons) 

(Information and Communication Technology) 

JAN 2006 

Universiti Teknologi PETRONAS 

Bandar Seri Iskandar 

31750 Tronoh 

Perak Darul Ridzuan 

~ 

"'" 5\<>S". ":>'6(.. 

') '& '<• ~""-''::j 'I-<..<.>.,..""'\"'\:I::J C '\<--\.LU>~~~"';; o~;. \ 
r) ~-,..\ \1<, -- '\~ <, 



CERTIFICATION OF APPROVAL 

MuStServ: A Lightweight Multimedia Streaming Server 

By 

Ahmad Suhaily Sulaiman 

Dissertation Submitted to the Information Technology Programme 

Universiti Teknologi PETRONAS 

Approved By, 

In partial fulfillment of the requirements for the 

Bachelor oflnformation Technology (Hons) 

(Information and Communication Technology) 



UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

Jan, 2006 

CERTIFICATION OF ORIGINALITY 

This is to certifY that I am responsible for the work submitted in the project, that the 

originality work is my own expect as specified in the references and acknowledgements 

and that the originality work contain herein have not been undertaken or done by 

unspecified sources or persons . 

.......... ~ .. : ........ . 
(Ahmad Suhaily Sulaiman) 



ABSTRACT 

Media streaming is no longer a new term, more so after broadband internet connection 

became more of a necessity than luxury in most homes. The objective of this project is 

to come up with a streaming solution for multimedia files that utilizes as little system 

resources as possible and is not platform-dependent. To tackle this project, I followed a 

series of steps; namely research, designing the system architecture, develop the system, 

and test it. Python, JAVA, and PERL were analyzed to determine which programming 

language is the most suitable to be used. Those steps were then succeeded by choosing 

what transfer mode to be employed. As a result of the analysis, Python was decided the 

most suitable programming language to be used because it is easy to learn and fast to 

develop. HTTP streaming was the transfer mode of choice simply because it is easier to 

implement compared to UDP. Tests showed that MuStServ consumes significantly 

lower memory compared to Apache, the most widely used and easiest way to implement 

HTTP streamer. Thus, it can safely be concluded that this project has achieved its goal. 

The usage of efficient programming language, good architecture and also sheer 

simplicity in its design are the secrets why MuStServ is so lightweight. 



Table of Contents 

ABSTRACT ...................................................................................................................... ! 
List of Tables .................................................................................................................... 3 
List ofFigures ................................................................................................................... 3 
List of Abbreviations ....................................................................................................... 3 
1 INTRODUCTION ......................................................................................................... 4 

1.1 Background ............................................................................................................. 4 
1.2 Problem Statement ................................................................................................. 5 
1.3 Objectives and Scope of Study .............................................................................. 6 

2 LITERATURE REVIEW AND I OR THEORY ........................................................ 7 
2.1 HTTP Streaming .................................................................................................... 7 
2.2 Server Load Balancing .......................................................................................... 9 

2.2.1 Why is load balancing of servers needed? .................................................... 9 
2.2.2 About load balancing mechanism- IP Spraying .......................................... 9 
2.2.3 Types of load balancing ................................................................................ ! 0 
2.2.4 Methods of load balancing ........................................................................... !! 

3 METHODOLOGIES .................................................................................................. 13 
3.1 Research ................................................................................................................ 13 
3.2 Design .................................................................................................................... 15 
3.3 Develop .................................................................................................................. 15 
3.4 Testing ................................................................................................................... 15 

4 RESULTS AND DISCUSSION ................................................................................. 16 
4.1 Java versus Python ............................................................................................... l6 
4.2 Perl versus Python ............................................................................................... 18 
4.3 Python Advantages .............................................................................................. 20 
4.4 Apache versus MuStServ ..................................................................................... 22 
4.5 MuStServ's System Architecture ........................................................................ 27 

4.5.1 Home Use Configuration .............................................................................. 28 
4.5.2 Large Scale Implementation ........................................................................ 30 

4.6 MuStServ's Simplified Flowcharts ..................................................................... 31 
5 CONCLUSIONS ......................................................................................................... 32 
6 REFERENCES ............................................................................................................ 33 

2 



List of Tables 

Table 4.1 JAVA vs. Python at First Glance ..................................................................... 16 
Table 4.2 Verbosity of Java vs. Conciseness of Python .................................................. 18 

List of Figures 

Figure 3.1 VideoLAN Media Player User Interface ........................................................ 14 
Figure 3.2 Netlimiter User Interface ................................................................................ 14 
Figure 4.1 Static Typing ................................................................................................... !? 
Figure 4.2 Dynamic Typing ............................................................................................. 18 
Figure 4.3 Sample Perl Code ........................................................................................... 19 
Figure 4.4 Sample Python Code ...................................................................................... 20 
Figure 4.5 Market Share for Top Servers across All Domains August 1995- May 2006 
.......................................................................................................................................... 23 
Figure 4.6 Apache's CPU and Memory Usage with No Client (Idle) ............................. 24 
Figure 4.7 MuStServ's CPU and Memory Usage with No Client (Idle) ......................... 25 
Figure 4.8 MuStServ's Resource Usage with 10 Clients Watching DVD Quality Movies 
.......................................................................................................................................... 26 
Figure 4.9 MuStServ in Simple Home Network Configuration ...................................... 28 
Figure 4.10 MuStServ in Big Scale Network Configuration ........................................... 30 
Figure 4.11 Flowchart for Webserver Module ................................................................. 31 
Figure 4.12 Flowchart for Streamer Module .................................................................... 31 

List of Abbreviations 

1. MP3 - MPEG Layer 3 audio file format 

2. FTP- File Transfer Protocol 

3. HTTP- Hyper Text Transfer Protocol 

4. DNS- Domain Name Server 

5. VLC - VideoLAN Media Player 

6. CPU - Central Processing Unit 

7. OS - Operating System 

8. UDP- User Datagram Protocol 

9. MBONE- Multicast Backbone 

3 



1 INTRODUCTION 

1.1 Background 

There are two main ways to deliver multimedia files over the Internet: downloads or 

streaming media. In downloads, an audio file is stored on the user's computer. 

Compressed formats like MP3 are the most popular form of audio downloads, however 

take note that any type of audio file can be hosted through a Web or FTP site. Streaming 

audio is not stored, but only played on demand. It is a continuous broadcast that works 

through three software packages: the encoder, the server and the player. The encoder 

converts audio content into a streaming format, the server (repeater) makes it available 

over the Internet and the player retrieves the content. There are two types of well-known 

streaming media content; namely live feed, and on-demand stream. For a live broadcast, 

the encoder and streamer work together in real-time. An audio feed runs to the sound 

card of a computer running the encoder software at the broadcast location and the stream 

is uploaded to the repeater server. Since that requires a large amount of computing 

resources, the repeater must be a dedicated server. On-demand stream on the other hand 

normally doesn't need on-the-fly re-encoding. The client simply sends a request to the 

server, which in turn will prepare the content to be delivered. When everything is ready, 

a signal is then sent to let the client know that the content is ready to be pulled from the 

server. 

The use of multimedia elements such as audio and video in a network environment has 

become something common to the users. Various formats of those files are being shared 

and streamed over the net almost every second. Up until now, there has been a lot of 

effort being put to organize a mean for a controllable environment for multimedia 

content streaming. This enables user to control and play audio and video files without 

having to download the whole file as this process allows data to be played incrementally, 

as the data fragments are received by the user, rather than waiting until the entire clip 

has been downloaded before playing it. 

4 



Audio and video files are being played in a continuous stream over the Internet. 

Streaming web files requires the use of plug-ins, which automatically decompress the 

files and play them in real time. Users can begin playing the file before the file's data has 

been completely transmitted. One way of streaming these files is to put them on a web 

server and let the client access and play the files in real-time. The client machine will 

save these files in the buffer and then run it from there. Normally, setting up a streaming 

server requires you to setup separate servers for source and the actual streamer. All of 

these servers require quite an amount of resources in terms of memory and CPU time. 

In meeting this demand, I have decided to propose to develop a hybrid web-based 

application to serve these files and let clients have full control of what they want to 

listen or watch. It allows clients to access their multimedia collection from any 

networked computer. It will stream their files via HTTP to any media player that 

supports playing off a remote connection (e.g. VLC, Winamp, FreeAmp, Sonique, 

XMMS). The small resource requirement of this program will enable even the most out­

dated PCs to become a very powerful streaming server. 

1.2 Problem Statement 

As discussed above, setting up an audio streaming server includes setting up a source 

server-cum-encoder, and a streamer (repeater). Re-encoding audio files on-the-fly is by 

no means an easy task. This process utilizes very high memory and CPU time, which is 

why a dedicated server is normally needed for this task. The previous statement is also 

true for the streamer. However, it is not a norm for home users to have a spare Sun® 

Fire E25K™ Server lying around the house that can be used as their media server for the 

whole household. More often than not, these spare machines (if they are lucky enough to 

have one) are low-specs computers with maybe a Pentium III™ or a Pentium l[TM 

processor and 128MB of RAM or less. 

Many of the readily-available streaming solutions today are Operating Systems­

dependent. Take Unreal Media Servers for example, they only run on Microsoft 

Windows® Operating System. The same goes to Peerfish. 

5 



By running a streaming server on Windows is compounding the problem of resources 

requirement because the OS itself is quite resource-hungry. For instance, it is rather 

unacceptable to run a Windows 2000 OS on a Pentium II™ machine with only 64MB of 

RAM, let alone running a streaming server on top of it. In contrast to that, if the OS used 

is either Linux or BSD, this should not be a problem. Not only these UNIX-descendents 

are generally considered to be more stable and secure, but if installed without GUI will 

obviously use much less resources than Microsoft Windows, which makes it a perfect 

platform to run a streaming server on a home network. 

1.3 Objectives and Scope of Study 

The objective of this project is to provide an elegant and flexible yet simple and 

extremely lightweight media streaming solution to cater for the needs of home users and 

commercial clients alike. For a home user, a lightweight streaming server means they 

can put their otherwise obsolete old computers to good use, rather than letting it collect 

dust in the store-room. As for businesses, this means they can support more clients with 

the same hardware they already have, which may very likely be translated to more 

profit. 

However, given that only a limited amount of time is available to research and develop 

this project, more focus and effort will be put into making sure the server-side and 

connections modules work flawlessly. It is essential to ensure these modules are stable 

enough and as lightweight as possible to stand up to daily use and abuse. Basic security 

features will be included along with basic web interface for clients. 

6 



2 LITERATURE REVIEW AND I OR THEORY 

Efficient multimedia delivery over public networks is a challenge for modem 

technology. Insufficient bandwidth, network latency, paranoid firewall restrictions and 

many more obstacles make it very difficult to transfer streaming content to end users, 

especially in real-time. Existing Media servers, such as Microsoft and Real Networks 

ones, only partially cover growing demand for streaming quality [1]. Sure, the usage of 

Multicasting would most probably overcome the insufficient bandwidth limitation and 

look very appealing at first, but two interesting points should be taken into 

consideration. First, for a home user bandwidth limitation is not a problem. Nowadays 

most wired home networks have 1 OOMbps bandwidth ready to be exploited. For wireless 

networks, they have at least llMbps, which in reality is actually already abundant. 

Secondly, without utilizing the likes of MBONE, UDP packets can not be routed 

through public data networks. 

By definition, HTTP Streaming is a slightly more advanced method compared to HTTP 

downloading by embedding the file in a web page using special HTML code [2]. 

Delivering video files this way is known as HTTP streaming or HTTP delivery. HTTP 

means Hyper Text Transfer Protocol, and is the same protocol used to deliver web 

pages. For this reason it is easy to set up and use on almost any webserver, without 

requiring additional software or special hosting plans. The sheer simplicity and ease of 

implementation for this transfer mode along with very low cost incurred makes it very 

desirable to be chosen as the transfer mode for this project. 

2.1 HTTP Streaming 

This is the simplest and cheapest way to stream video from a website. Small to medium­

sized websites are more likely to use this method than the more expensive streaming 

servers. 

7 



For this method you don't need any special type of website or host- just a host server 

which recognizes common video file types (most standard hosting accounts do this). 

You also need to know how to upload files and how to create hyperlinks. 

There are some limitations to bear in mind regarding HTTP streaming: 

* HTTP streaming is a good option for websites with modest traffic, i.e. less than 

about a dozen people viewing at the same time. For heavier traffic a more serious 

streaming solution should be considered. 

* You can't stream live video, since the HTTP method only works with complete files 

stored on the server. 

* You can't automatically detect the end user's connection speed using HTTP. If you 

want to create different versions for different speeds, you need to create a separate file 

for each speed. 

* HTTP streaming is not as efficient as other methods and will incur a heavier server 

load. 

These things won't bother most website producers - it's normally only when you get 

into heavy traffic that you should be worried about them. [2] 

8 



2.2 Server Load Balancing 

Load balancing improves network performance by distributing traffic efficiently so that 

individual servers are not overwhelmed by sudden fluctuations in activity. 

2.2.1 Why is load balancing of servers needed? 

If there is only one web server responding to all the incoming HTTP requests for 

a website, the capacity of the web server may not be able to handle high volumes 

of incoming traffic once the website becomes popular. The website's pages will 

load slowly as some of the users will have to wait until the web server is free to 

process their requests. The increase in traffic and connections to your website 

can lead to a point where upgrading the server hardware will no longer be cost 

effective. 

In order to achieve web server scalability, more servers need to be added to 

distribute the load among the group of servers, which is also known as a server 

cluster, The load distribution among these servers is known as load balancing. 

Load balancing applies to all types of servers (application server, database 

server), however, we will be devoting this section for load balancing of web 

servers (HTTP server) only. 

2.2.2 About load balancing mechanism- IP Spraying 

When multiple web servers are present in a server group, the HTTP traffic needs 

to be evenly distributed among the servers. In the process, these servers must 

appear as one web server to the web client, for example an internet browser. The 

load balancing mechanism used for spreading HTTP requests is known as IP 

Spraying. The equipment used for IP spraying is also called the 'load dispatcher' 

or 'network dispatcher' or simply, the 'load balancer'. In this case, the IP sprayer 

intercepts each HTTP request, and redirects them to a server in the server cluster. 

Depending on the type of sprayer involved, the architecture can provide 

scalability, load balancing and failover requirements. 

9 



2.2.3 Types ofload balancing 

Load balancing of servers by an IP sprayer can be implemented in different 

ways. These methods of load balancing can be set up in the load balancer based 

on available load balancing types. There are various algorithms used to distribute 

the load among the available servers. 

Random Allocation 

In a random allocation, the HTTP requests are assigned to any server picked 

randomly among the group of servers. In such a case, one of the servers may be 

assigned many more requests to process, while the other servers are sitting idle. 

However, on average, each server gets its share of the load due to the random 

selection. 

Pros: Simple to implement. 

Cons: Can lead to overloading of one server while under-utilization of others. 

Round-Robin Allocation 

In a round-robin algorithm, the IP sprayer assigns the requests to a list of the 

servers on a rotating basis. The first request is allocated to a server picked 

randomly from the group, so that if more than one IP sprayer is involved, not all 

the first requests go to the same server. For the subsequent requests, the IP 

sprayer follows the circular order to redirect the request. Once a server is 

assigned a request, the server is moved to the end of the list. This keeps the 

servers equally assigned. 

Pros: Better than random allocation because the requests are equally divided 

among the available servers in an orderly fashion. 

Cons: Round robin algorithm is not enough for load balancing based on 

processing overhead required and if the server specifications are not identical to 

each other in the server group. 

10 



Weighted Round-Robin Allocation 

Weighted Round-Robin is an advanced version of the round-robin that eliminates 

the deficiencies of the plain round robin algorithm. In case of a weighted round­

robin, one can assign a weight to each server in the group so that if one server is 

capable of handling twice as much load as the other, the powerful server gets a 

weight of2. In such cases, the IP sprayer will assign two requests to the powerful 

server for each request assigned to the weaker one. 

Pros: Takes care of the capacity of the servers in the group. 

Cons: Does not consider the advanced load balancing requirements such as 

processing times for each individual request. 

The configuration of a load balancing software or hardware should be decided on the 

particular requirement. For example, if the website wants to load balance servers for 

static HTML pages or light database driven dynamic web pages, round robin will be 

sufficient. However, if some of the requests take longer than the others to process, then 

advanced load balancing algorithms are used. The load balancer should be able to 

provide intelligent monitoring to distribute the load, directing them to the servers that 

are capable of handling them better than the others in the cluster of server. 

2.2.4 Methods of load balancing 

There are various ways in which load balancing can be achieved. The deciding 

factors for choosing one over the other depends on the requirement, available 

features, complexity of implementation, and cost. For example, using hardware 

load balancing equipment is very costly compared to the software version. 

II 



Round Robin DNS Load Balancing 

The in-built round-robin feature of BIND of a DNS server can be used to load 

balance multiple web servers. It is one of the early adopted load balancing 

techniques to cycle through the IP addresses corresponding to a group of servers 

in a cluster. 

Pros: Very simple, inexpensive and easy to implement. 

Cons: The DNS server does not have any knowledge of the server availability 

and will continue to point to an unavailable server. It can only differentiate by IP 

address, but not by server port. The IP address can also be cached by other 

nameservers and requests may not be sent to the load balancing DNS server. 

Hardware Load Balancing 

Hardware load balancers can route TCP/IP packets to various servers in a cluster. 

These types of load balancers are often found to provide a robust topology with 

high availability, but come with a much higher cost. 

Pros: Uses circuit level network gateway to route traffic. 

Cons: Higher costs compared to software versions. 

Software Load Balancing 

Most commonly used load balancers are software based, and often comes as an 

integrated component of expensive web server and application server software 

packages. 

Pros: Cheaper than hardware load balancers. More configurable based on 

requirements. Can incorporate intelligent routing based on multiple input 

parameters. 

Cons: Need to provide additional hardware to isolate the load balancer. 

12 



3 METHODOLOGIES 

To tackle this project, I followed a series of steps; namely research, designing the system 

architecture, develop the system, and test it. 

3.1 Research 

At this stage, I started with identifying the programming language to be used. Since one 

of the objectives of this project is to provide a cross-platform streaming solution, so 

obviously a programming language that is supported on multiple platforms must be 

used. For this, three candidates have been chosen; Java, Perl, and Python. All three 

programming languages were studied in detail and compared side by side. 

The aforementioned step was then followed by analyzing which protocol is suitable to 

be used for the media transfer. For this step, Videolan Media Player and Netlimiter were 

used extensively to test the performance of each protocol. However, the most important 

trait that I was looking for was ease of implementation. This is so because my focus is to 

efficiently deliver the media files using as little memory and processing power as 

possible. 

13 



L~~=-::-,, -··· •c . 

,c" Medik ffe:s:ource Locator 

.b)),ei'K l4c!P://@ 

] 

Figure 3, I VideoLAN Media Player User Interface 

il ~';·~~~~"-d 
I Download 

·1 ;, ~~: r ,., • 

512 Kbps 

1.536 Mbps 

h l±j.- ~~msmsgs.exe 
;, : 
i! It), Jllmonttor.exe 
rl ···-··· ......... . 
l1l£l @jwinworc!.exe ,, . 

ij&1' [lltleshget.exe 

11.~ 
h~ 
II · 

Figure 3.2 Netlimiter User Interface 

14 

CJ '" 
l'J 5k 

i.:J 5k 

r.J 5k 

~J 5k 



Next, a study of currently available products was done to get an idea of how they work 

and what techniques can be integrated into this project. Three well-known media 

streaming products were analyzed, namely Nullsoft Shoutcast, Icecast, and Unreal 

Media Server. By examining the internal workings of these software, I get to know the 

best architecture to be used in order to make MuStServ as flexible as possible. 

The final part I needed to find out is a media client that best suits MuStServ. Not all 

clients are the same. Some clients are more suited to high bandwidth media streaming, 

while others are tuned for lightweight-ness. Again, in choosing the best player, I had to 

look back at the objectives outlined earlier and made a choice based on these objectives. 

3.2 Design 

My design was based on the findings of the research phase, with the defining features of 

MuStServ well integrated into it. Characteristics like simple, scalable, and efficient are 

among the qualities that set MuStServ apart from any other multimedia streaming 

solutions. 

3.3 Develop 

In the development phase, small prototypes were constructed to validate the viability of 

MuStServ's design. Once validated, the entire system was hand-coded. Module by 

module, MuStServ started to materialize. As the modules were developed, constant 

testing was done to ensure each module is optimized for performance. This is important, 

since the ultimate goal of this project is to produce a system that utilizes as little memory 

and as low CPU usage as possible. 

3.4 Testing 

With all the modules ready, the system was then tested as a whole. Further configuration 

tweaking was done to achieve the objectives of this project. We shall all see in the 

Results and Discussion chapter how MuStServ fares to Apache, a very popular 

webserver daemon when put side by side. 

15 



4 RESULTS AND DISCUSSION 

4.1 Java versus Python 

a e . vs. vt on at T bl 41JAVA P h F' Gl IrSt ance 
JAVA PYTHON 

• Objects are better than functions • Objects are as useful as functions 

• Libraries should be written in as well as classes 

JAVA for portability • Strives to work well with libraries 

• Fast execution requires hand-coded written in different languages 

optimization • Fast execution requires good 

• Language controlled by one algorithm 

company behaving as a single • Language controlled by community 

entity 

Python and Java make for particularly interesting contrasts and combinations. Both are 

Object Oriented language, but however, as I researched more on both languages, I 

noticed one very prominent dissimilarity; Java's attitude has many absolutes: objects are 

better than functions, all differences between platforms should be abstracted away, 

libraries should always be written in Java for portability, fast execution requires hand­

coded optimization, and it is best that one company has absolute control over the 

language so it doesn't become fragmented. Python's attitude is quite different: functions 

are just as useful as classes, cross-platform compatibility is important but not all 

platforms are alike, bridging to libraries written in other languages is important, fast 

execution requires good algorithms, and the language should be controlled by culture 

rather than licensing. I think Python's advantages over Java are easy to understand once 

you see the difference in attitude. 

Java is a statically-typed language. In a statically typed language, every variable name is 

bound both to a type (at compile time, by means of a data declaration) and to an object. 

16 



The binding to an object is optional; if a name is not bound to an object, the name is said 

to be null. Once a variable name has been bound to a type (that is, declared) it can be 

bound (via an assignment statement) only to objects of that type; it cannot ever be bound 

to an object of a different type. An attempt to bind the name to an object of the wrong 

type will raise a type exception. In Java, all variable names (along with their types) must 

be explicitly declared. Attempting to assign an object of the wrong type to a variable 

name triggers a type exception. 

Java container objects (e.g. Vector and ArrayList) hold objects of the generic type 

Object, but cannot hold primitives such as int. To store an int in a Vector, you must first 

convert the int to an Integer. When you retrieve an object from a container, it doesn't 

remember its type, and must be explicitly cast to the desired type. 

NAME 

OBJECT TYPE 

Figure 4.1 Static Typing 

Python, on the other hand is a dynamically typed language. In a dynamically typed 

language, every variable name is (unless it is null) bound only to an object. Names are 

bound to objects at execution time by means of assignment statements, and it is possible 

to bind a name to objects of different types during the execution of the program. In 

Python, you never declare anything. An assignment statement binds a name to an object, 

and the object can be of any type. If a name is assigned to an object of one type, it may 

later be assigned to an object of a different type. 

17 



r 

Python container objects (e.g. lists and dictionaries) can hold objects of any type, 

including numbers and lists. When you retrieve an object from a container, it remembers 

its type, so no casting is required. 

NAME 

OBJECT 

I 
IS OF 

8 
Figure 4.2 Dynamic Typing 

Java is verbose, while Python is concise. Figure 4.3 shows a classic example of the 

"Hello, world" program written in both Java and Python. As we can see, it is clear that 

Java is unnecessarily verbose. It requires the use of too many words which makes a 

simple task a lot more complicated than it really is. For the same reason, Python codes 

are generally and almost always faster than Java codes [3]. 

Table 4.2 Verbosity of Java vs. Conciseness of Python 
····-~·- ··----------~-----~---·· 

java 
1 

Python 
_ .. ,.-

public class HelloWorld ! print "Hello, world!" 

I 
public static void main (.Stri.ng[] args) 
I 

System. out. println ("Hello, war ld! ") ; 

I 

................ -· __ j 

4.2 Perl versus Python 

Perl and Python are scripting languages. While being very useful, Perl's framework 

design is not as good as Python's. For example, one of the first things I discovered I 

didn't like was the syntax. lt's very complex and there are lots of operators and special 

syntaxes. This means that you get short, but complex code with many syntax errors that 

18 



will take some time to sort out. It also means that reading someone else's code is 

difficult. You can't easily understand someone else's scripts and adapt them to your own 

needs, nor can you easily take over the maintenance of someone else's program. 

#This function produces a Soundex value from a name or word 

sub soundex 
I 

local (@s, $£, $fc, $ ) @ ; 

push @s, '' unless @s,· jf handle no args as a single empty string 

foreach (@s) 

I 
tr/a-z/A-Z/; 
tr/A-Z//cd; 

if ($_ eq ' ') 

I 
$_ = $soundex_nocode; 

else 
I 

{$f)= /o{.)/; 
tr / AEH IOUWYBFPVCGJI~QSX Z DTLMNR/ 0 0 0 0 0 0 0 0111122 2 2 2 2 22 3 3 4 55 6/ ; 
{$fc) = /'{.)/; 

s/"$fc+//; 
tr///cs; 
tr/0//d; 
$ = $£ . $ . '000'; 
s/"(.{4}).*/$1/; 

wantarray ? @s shift @s; 

Figure 4.3 Sample Perl Code 

Python codes, on the other hand, are highly readable. It has a simple visual layout, uses 

English keywords frequently where other languages use punctuation, and has notably 

fewer syntactic constructions than many structured languages such as C, Perl, or Pascal. 

For instance, Python has only two structured loop forms: 

I. for item in iterator:, which loops over elements of a Jist or iterator 

2. while expression:, which loops as long as a boolean expression is true. 

It thus forgoes the more complex, C-style for (initialize; end condition; increment) 

syntax (common in many popular languages) And it does not have any of the common 

19 



alternative loop syntaxes such as do ... while, repeat until, etc. though of course 

equivalents can be expressed. Likewise, it has only if...elif...else for branching - no 

switch or labeled goto [4]. Syntactical significance of indentation also makes a lot of 

sense to help make Python codes more readable. 

#This function produces a Soundex value from a name or word 

de£ soundex (string): 
"""Returns the Sounde;< code of the string. Characters not A-Z skipped.""" 
string=lower(string) 

if not is_letter(string[O]): string=string(l:] 
last=no tbl[ord(string[OJ)-97] 
res =upPer(string[O]} # This is where the result will end up 

for char in string [ 1:] : 
if is_letter (char): 

new=no_tbl[ord(char)-97] 
if (new!="O" and new!=last}: 

res=res+new 
last=new 

if len (res) <4: 
return res+''0''*(4-len(res)) 

else: 
return res [: 4) 

Figure 4.4 Sample Python Code 

4.3 Python Advantages 

Python programs are far quicker to develop than other high-level languages. Because of 

the elegance and simplicity of the language, Python programs tend to be 3-5 times 

shorter than their equivalent in Java, and 5-10 times shorter than C++ equivalents [3]. In 

addition, being an interpreted language eliminates the lengthy edit-compile-debug cycle 

of other high-level languages. Since programmer costs are the most significant part of 

any programming project, this advantage alone provides a good reason to consider using 

Python. 

Python programs are easier to maintain. The simple, clean syntax not only allows the 

original developers to remember what they did, it also allows other developers to 

understand and change programs. This allows for much lower maintenance costs for 

Python programs. 

20 



Python is an extremely versatile language. It can be used for the simplest scripting 

applications, as well as for the development of complex websites, and all the way up to 

the construction of complex distributed applications. This versatility allows 

organizations to reduce training and software tool costs. 

Python's object-oriented paradigm is the most powerful and easy to use of any 

commercial programming language. Like Smalltalk, Python has dynamic typing and 

binding, and everything in Python is an object. Object behavior can be adapted at run­

time. This allows Python programmers to easily use the full, flexible power of object­

orientation, as opposed to Java or C++. However, Python's syntax is more like other 

standard programming languages, so it is much easier for programmers to learn than 

Smalltalk. Again powerful simplicity allows for rapid development of more complex 

applications. 

Python is available on an incredibly wide range of hardware and software platforms. 

This includes the usual suspects: Sun, Intel, IBM, Microsoft Windows variants, 

Macintosh OS variants and all UNIX flavors. However, Python has also found its way 

into a wide range of less well-known platforms, including PDAs and set-top boxes. 

Python is probably the only language where one can truly say, write once and deploy 

everywhere. 

Python plays well with other languages. Python programs can be extended using C, 

C++, or Java, or can be embedded in programs written in these languages. Jython is an 

implementation of Python written in 100% Pure Java, which allows you to run Python 

on any Java platform. There is also a Python extension that supports Microsoft's .NET 

Framework™ Common Language Runtime (CLR). Hence Python code can be used with 

any web services variant o llered by competing vendors. Moreover, in those parts of 

applications where speed is of the essence, code can be written in the most efficient 

programming language available, while still retaining the rapid application development 

21 



advantages of Python. Finally, Python can be used as a wrapper for legacy applications 

written in other languages. 

Python plays well with programming standards. Many high-quality Python extensions 

are available which support almost all Internet standards, CORBA, COM, SOAP, XML, 

XML-RPC and so on. 

Python provides the option for integration with low-level AP!s for both the Windows 

and UNIX platforms, allowing applications to be highly platform compatible. Java, by 

contrast, only gives the option for developing to the lowest common denominator across 

platforms. C# only gives the option to be Microsoft compatible. 

4.4 Apache versus MuStServ 

Apache is a well known and widely used webserver. One of Apache's very nice features 

that relates to MuStServ is its ability to do HTTP Streaming of media files. HTTP 

Streaming allows clients to play the files before it has even finished downloading. While 

this is similar to what MuStServ hopes to achieve, it presents one problem. Apache 

handles the HTTP streams I ike any other file downloads. It allows the file to be 

transmitted as fast as the bandwidth would permit. This explains why a streaming 

solution with Apache webserver as its front-end should not be used in big scale 

implementation as the server's bandwidth usage will be maxed out with just a few 

clients connected. 

I have decided to make MuStServ handle this obstacle proactively. When a client 

requests for a file, MuStServ first analyses the file to determine its maximum bit-rate (if 

the file uses variable bit rate encoding). It then uses this value as the maximum speed a 

client can download the file ti·om the server. This effectively helps to manage the 

server's bandwidth usage and in effect, more clients can be supported. 

22 



80Z 

1,, 

y. 
\ 
'· 

' 

,x~~ 

u ox . . 
[J")IL!'..OI.D'-0 ~!'"-- r .... f"-..1'"--000CJif..'f((•O'>•J'·,CflO">O 00 0 .,-~,.......,..; ,.4)('-.J\'-.1 NN\~";r't•)\'"'!M"<t'<:t ~ Vlflll.")IDir!I.D'-.0 
.:fiO"' CtiO'IO"' a·,Cfl mcr·oO'l010'o0\0,mm cr·,mo oo o o oo o oo ooo ooooo ooo oo ooo 
mcr·,cr.cr-.0"1 O\OIOI.O"IO"or3\CTiet.a.aH:J> O'o0\0 oo oo oo o oo 000 000 oo o 00 ooo DC 
-"''>rl.,........t~ -!~ -'1'"1~ ~"'"'~....-lrl-' ...-!'""'~'"'~ NNr.·.J('\JNt-.J 1···lNN '"'JN¢··~NN"'~NI"lN NNf"·~NNNN 
'(W:> ,g ::S.'O.i):>-..0 :Y<I:J.ll:> .;0 :r-.D•' >..O .J;YC\0:::· ~ ::Col.~:> _n 3101! ">.0 :S.X\~:>.n :5'1'01!:> .0 :n.W:>.>;t 3'1DJJ'::- £ ::1\ 
3o~~3ow~3o~~3o~03o~~~o~~3ow~~o~~30W~3o~~~ow~ 
c:t':Zlt-:E<r ZU... E•"CZt....:E<.I: :ZLL~a:zu ... E:~IZU...~<r:ZW..E:d:'ZW.. ~Q:ZW...~a:Zlt... l!'::<rZLL.'!: 

-ott-.~,, 

Figure 4.5 Market Share for Top Servers across All Domains August 1995- May 2006 

Apache is not a bad webserver at alL According to Netcraft and as we can see in Figure 

4.5, Apache is in fact the most widely used webserver on the Internet [10]. It carries a 

long list of useful features which includes implementation of the latest protocols and 

extensible modules which means it can support PERL, PHP, SSL and many more via the 

use of mod _peri, mod _php, and mod _ssl respectively. While all these bells and whistles 

make Apache an excellent webserver, it also means Apache is not as lightweight as is 

needed to achieve the objectives of this project. 

By simply making use of Python's readily available BaseHTTPServer and SocketServer 

modules, MuStServ has managed to be lean and includes only features that are really 

essential for a streaming server. This was purposely done to help keep the CPU and 

memory usage as low as possible. As we can see in Figures 4.6 and 4. 7 below, 

MuStServ's CPU and memory usage is a lot lower than Apache's and thus has achieved 

its goaL 

23 



Apache spawns two instances at any one time. In this example, Apache uses 4192K + 

4984K = 9176K of RAM while MuStServ only uses 184K of RAM when idle. With ten 

clients connected, all watching DVD quality movies compressed using DivX codec, only 

2516K of RAM was used (refer Figure 4.8). Of course, this number may vary according 

to the codec and rip quality of the movie. It also depends on the browsing activity done 

at that time by the clients. 

r·;o;·ppjl~~t·i~~~ . p;~~~~~;s .. i.Pe~fu;~n~e lN~tw~rW~g :11-~u~ers .1 

J.~a.~~-r·.J,~; ljsediJ~ili~ _CPU. Mem1-.u2:1.::-2oe,~1 -~~~ l 
AGRsMr,·rsG.exe · Ahma·d·f;d~US oo _ 

>c)) 

m;l 

~~I 
aswUpdSv.exe 
ati2evxx.exe SYSTEM DO l;l36 K 
ati2evx~-- .e>~'" Ahmad Firdaus 00 t;:Z40 K 
atiptax~<.exe Ahmad Flrdilus 00 1,780 K 
csrss.ec:c~ SYST~M DO 2;.852 K 
·dfmon.exe Ahmad FirdaliS DO 1,3!5DK 
daemon.exe Ahmad F.irdauS· 00 ·1)512·K 
EasyPHP.I3Xe Ahmcid Fii'd<iui; 00 5,392 K 
explorer, >:-xe Ahm?~d fir.d.aus. DO 17·,.884 K 
--jus'ched.c>xe Ahmad FiFda·~.i's' 00 972K 

~I )~.'l~<;.cf':O"' "iV'iTF-~1 nn ::1.47/ K 

[£]~~ow proc8s~8S from aii.Li~Fs~· End-Process 

----~--- .. - .,..,.,_, _____ ,_ 

CPU Usag~.~ .. 2°(o·. 

Figure 4.6 Apache's CPU and Memory Usage with No Client (Idle) 

24 



f'ile Options View Help 

~~-~~~~-~e.Na~.~;· 
! 1 monitor,exe 

1 M~gPius.o;txe 
: ms:msgs.e;o:e 
i Net limiter, exe 
I notepad. e:<e 
j-NvMixerTra·/ .exe 

! ! nvsvc32.exe 
i nwtray.exe 
I I?Key Pro.exe 

L User-. Name.· 
·sYsTEM 
Tan Sri Chalie 
Tan Sri Chalie 
Tan Sri.Chalie 
Tan Sri Chafie 
Tan Sri' Ctialie 
SYSTEM 
Tan Sri .. Cheilie 
Tan5ri Chalie 

I~:}!A'?il I ~tgeri·.ex~ __ .... 
Sr1 Cftalle ou 184 K 

i rundll32,exe 
I rundll32.e;-ce 
j rundll3~.e:\e 

Services:.e~::e 

: Smc.exe 
I ;;mss.exe 
i spoolsv.exe 
I ~9~!.d_:ex6 

Tan Sri Chalie 
Tan Sri Chalie 
Tan-Sri-C::h.:ilie 
Tan Sri Ch.:ille 
SYSTEM 
SYSTEM 
SYSTEM 
SYSTEM 
SYSTEM 

Q~§.how pro-o~s:;:~~ .from.:[!llusers _ 

77 324 K 
00 21644 K 
00 524K 
00 608K 
02 li588,K 
03 81340:K 
00 40:K 
00 1,428-K 
00 ~}7~-~,~ 

Processes: 73 . CPU Usage: .100% 1: Commit·Char,g~: 679M:(-,1'24-S· A 

Figure 4.7 MuStScrv's CPU and Memory Usage with No Client (Idle) 

MuStServ's ability to run while utilizing as little system resources as possible relies 

heavily on its two main ingredients, which are BaseHTTPServer and SocketServer. 

BaseHTTPServer defines two classes for implementing HTTP servers (Web servers). 

Usually, this module isn't used directly, but is used as a basis for building functioning 

Web servers. The first class, HTTP Server, is a Socketserver. TCPServer subclass. It 

creates and listens at the HTTP socket, dispatching the requests to a handler. Code to 

create and run the server looks like this: 

def run(server_class=BaseHTTP.Server.HTTPServer, 
handler class=BaseHTTPServer.BaseHTTPRequestHandler): 

server~adctr8ss = (' ', 800~.!1 
httpd = server_class (serv,~r_address 1 handler_class) 
httpd.serve_forever() 

HTTPServer class builds on the TCPServer class by storing the server address as 

instance variables named server_ name and server _port. The server is accessible by the 

handler, typically through the handler's server instance variable. 

25 



The second class, known as BaseHTTPRequestHandler is used to handle the HTTP 

requests that arrive at the server. By itself, it cannot respond to any actual HTTP 

requests; it must be subclassed to handle each request method (e.g. GET or POST). 

BaseHTTPRequestHandler provides a number of class and instance variables, and 

methods for use by subclasses. 

The handler will parse the request and the headers, then call a method specific to the 

request type. The method name is constructed from the request. For example, for the 

request method "STREAM", the do_STREAM() method will be called with no 

arguments. All of the relevant information is stored in instance variables of the handler. 

Subclasses should not need to override or extend the _init_() method. 

Figure 4.8 MuStServ's Resource Usage with 10 Clients Watching DVD Quality Movies 

26 



The SocketServer module simplifies the task of writing network servers. There are four 

basic server classes: TCPServer uses the Internet TCP protocol, which provides for 

continuous streams of data between the client and server. UDPServer uses datagrams, 

which are discrete packets of information that may arrive out of order or be lost while in 

transit. The more infrequently used UnixStreamServer and UnixDatagramServer classes 

are similar, but use UNIX domain sockets; they're not available on non-Unix platforms. 

For the sake of portability across multiple platforms, the last two classes were not even 

considered to be used. 

These four classes process requests synchronously; each request must be completed 

before the next request can be started. This isn't suitable if each request takes a long time 

to complete, because it requires a lot of computation, or because it returns a lot of data 

which the client is slow to process. The solution is to create a separate process or thread 

to handle each request; the forkingMixln and ThreadingMixin mix-in classes can be 

used to support asynchronous behavior. 

4.5 MuStServ's System Architecture 

MuStServ was designed to be flexible and scalable. With slight change in network 

configuration, MuStServ can be optimized for either home use or big-scale commercial 

implementation with many users. Theoretically, the limit is the server's bandwidth. 

27 



4.5.1 Home Use Contlguration 

MuStServ 

LAN 

Client1 Client2 'Ciient3 

Figure 4.9 MuStServ in Simple Home Network Configuration 

In a simple network configuration used in most home network, MuStServ fits in 

perfectly. One PC could be used to host MuStServ and the media files. The 

clients then connect to the Local Area Network using a switch or hub and then 

request the media files directly from MuStServ. Obviously, if the computers in 

the household are to be connected wirelessly, then wireless access point(s) 

should be used appropriately. Theoretically, 802.llb's l!Mbps connection speed 

should be able to cater the bandwidth needed for normal home streaming usage. 

However, it is recommended that the machine hosting MuStServ to be connected 

to the wireless access point using wired connection so that the bottleneck will not 

be on the relatively slow llMbps connection between MuStServ and the access 

point. 

28 



For more advanced home users, a dedicated file server could be used to store all 

the media files. In this configuration, MuStServ will function as proxy to the file 

server. If the user decides to add more file servers later on, only minimal change 

need to be done in MuStServ's text-based configuration file. The clients will then 

not even be aware that the media files are hosted on different machines. 

For users who have a Mediacenter PC or Home Theater PC (HTPC) in their 

living room, storage size is a common problem that limits the amount of movies 

and TV series they can watch on their expensive home theater setup. MuStServ 

could very well solve this problem by serving as gateway to their large 

multimedia files collection stored on other machine(s) with bigger storage space. 

29 



4.5.2 Large Scale Implementation 

Internet 

/I" 
~ ~!'. "' 

Cltent1 Client] ClientS 

Figure 4.10 MuStServ in Big Scale Network Configuration 

For large scale implementation, the usage of load balancing technique is 

important. The load-balancing server determines new requests will be handled by 

which MuStServ server. This will effectively spread the load among available 

MuStServ servers and as a result, no one server will be overloaded. One of the 

load-balancing techniques that can be used for this purpose is by using the round­

robin dns. This can be clone by simply entering multiple IP in the A NAME entry 

ofthe DNS. 

MuStServ recognizes mapped network drives. With that said, the easiest way to 

implement the media servers is by simply using the readily available folder 

30 



sharing feature in Windows. However, if the media server is to be run on Linux, 

then the same objective can be achieved by using the Samba daemon which 

should be included by default in almost all distributions, including the most basic 

minimalist ones. 

4.6 MuStServ's Simplified Flowcharts 

Read Media File 

Open Stream 

Read Directory Listing 

Log Connection 

Figure 4.11 Flowchart for Webserver Module 
Figure 4.12 Flowchart for Streamer Module 

31 



5 CONCLUSIONS 

Based on the proofs in 4.4, 1 believe I can safely say that the objectives of this project 

have been achieved. The usage of efficient programming language, good architecture 

and also sheer simplicity in its design are the secrets why MuStServ is so lightweight. 

Python truly shined as a real Rapid Application Development programming language in 

this project. It is very flexible, and easy to learn. Simple design reduces room for 

mistakes and thus contributes to the system's stability, a trait that is a must for every 

daemon. 

As of now, MuStServ is far li·om perfect. There are a lot of enhancements that can be 

made to this project. For starters, a searching function would be a wonderful addition to 

this application. Users will then be able to quickly locate the files they want. This feature 

is especially helpful when a lot of files are being served by the server. Other 

recommendation would include prettier/more user friendly interface, better security 

feature as well as web-based configuration for administrators. 

32 



6 REFERENCES 

Reference style is based ol' American Psychological Association's (APA) Style of 

Citations. 

[I] Unreal Streaming Technologies Official Website. 20 Nov 2005 

< http://www.umediaserver.net/overview.html>. 

[2] Wavelength Media Website. 20 Nov 2005 

< http:/ /www.mediacoll ege. com/video/streaming/ overview .htm I> 

[3] Lefkowitz, Glyph (2000). A subjective analysis of two high-level, object-oriented 

languages: Comparing Python to Java 

[4] Wikipedia entry ofPython Programming Language. 28 Sept 2005 

< http://en. wikipedia, org/wiki/Python _programming_ language> 

[5] Lutz, Mark (1996). Progrumrning Python, CA: O'Reilly & Associates, Inc. 

[6] Holden, Steve (2002). Python Web Programming, Sams Publishing. 

[7] Beazley, D. M. and Rossum, G. V. (2001). Python Essential Reference, Sams 

Publishing. 

[8] Martelli, Alex. (2003). Pyrhon in a Nutshell, O'Reilly & Associates, Inc. 

[9] Dawson, Michael (2003). Python Programming for the Absolute Beginner, Thomson 

Course Technology. 

[10] Netcraft Web Server Survey Archives. 09 May 2006 
<http://www.netcraft.com/survey/> 

33 


