Petroleum Refinery Planning Under Uncertainty:
A Multiobjective Optimization Approach with

Economic and Operational Risk Management

by

Van Fu Shen

Dissertation submitted in partial fulfillment of
the requirements for the
Bachelor of Engineering (Hons)

(Chemical Engineering)

JANUARY 2009

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan



CERTIFICATION OF APPROVAL

Petroleum Refinery Planning Under Uncertainty:
A Multiobjective Optimization Approach with Economic
and Operational Risk Management

by

Van Fu Shen

A project dissertation submitted to the
Chemical Engineering Programme
Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(CHEMICAL ENGINEERING)

Approved by,

0. XEDR
I, |

(MR. KHOR CHENG SEONG)

UNIVERSITI TEKNOLOGI PETRONAS
TRONQOH, PERAK

January 2009

ii



CERTIFICATION OF ORIGINALITY

This is to certify that [ am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

it



ACKNOWLEDGEMENTS

Throughout the whole period conducting my Final Year Research Project,
many had provided ample amount of guidance, assistances, advice and support.
Therefore, T would tike to take this opportunity to thank everyone whom had given
their support and help throughout the whole period of completing this project.

First and foremost, I would like acknowledge the endless help and support
received from my supervisor, Mr. Khor Cheng Seong throughout the whole period of
completing this final year project. His guidance and constructive ideas has really
been the main source of motivation and has driven me in completing this project

successfully.
Secondly, I would also like to express my gratitude to ali the jecturers and
technicians in the Chemical Engineering Department who helped directly and

indirectly in completing this project.

Finally, I would like to thank all my fellow colleagues for their assistance

and ideas in completion of this project.

iv



ABSTRACT

In the current modernized globalization era, crude oil prices have reached a
record high of USD 147 per barrel according to the NYMEX exchange on June
2008. It is forecast to spiral upwards (with the current graph trend) to a much higher
price level. The current situation of fluctuating high petroleum crude oil prices is
affecting the markets and industries worldwide by the uncertainty and volatility of
the petroleum industry. As oil refining is the downstream of the petroleum industry,
it is increasingly important for refineries to operate at an optimal level in the
presence of volatility of crude oil prices. Downstream refineries must assess the
potential impact that may affect its optimal profit margin by considering the costs of
purchasing the raw material of crude oils and prices of saleable intermediates and
products as well as production yields. With optimization, refinery will be able to

operate at optimal condition.

In this work, we have attempted to solve model formulation concerning the
petroleum refinery planning under uncertainty. We use stochastic programming
optimization incorporating the weighted sum method as well as the epsilon
constraint method to solve the model formulation of the petroleum refinery planning

under uncertainty.

The objective of this research project is to formulate a deterministic model
followed by a two stage stochastic programming model with recourse problem for a
petroleum refinery planning. The two stage stochastic risk model is then
reformulated using Mean Absolute Deviation as the risk measure. After formulating
the stochastic model using Mean Absolute Deviation, the problem is then
investigated using the Pareto front solution of efficient frontier of the resulting
multiobjective optimization problem by using the Weighted Sum Method as well as
the e-constraint method in order to obtain the Pareto Optimal Curve which generates
a wide selection of optimization solutions for our problem. The implementation of
the multiobjective optimization problem is then automated to report the model
solution by capturing the solution values using the GAMS looping system. Note that
some of the major parameters used throughout the formulated stochastic



programming model include prices of the raw material crude oil and saleable

products, market demands for products, and production yields.

The main contribution on this work in the first part is to conduct a further
study/research on the implementation of the model formulation in Khor et al. (2008)
where the model formulated by Khor et al. (2008) uses variance as the risk measure.
The results obtain in the previous paper will be compared with the method in this
paper that incorporates Mean Absolute Deviation as the risk measure. To further
study the model formulated, the solution obtain is further enhanced using the
Weighted Sum Method as well as the Epsilon constraint method to obtain the Pareto
Optimal Curve generation. Hence, most of the exposition on the model formulation
and solution algorithms are taken directly from the original paper so as to provide

the readers with the most accurate information possible.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND STUDY

Petroleum or crude oil is a naturally occurring, flammable liquid found in
rock formations in the Earth consisting of a complex mixture of hydrocarbons of
various molecular weights plus other organic compounds. The composition
hydrocarbon in crude oil mixture is highly variable and ranges from as much as 97%
by weight in the lighter oils to as little as 50% in the heavier oils and bitumen. The
hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic

hydrocarbons. The composition of weights is shown below:-

Table 1.1; Table of Composition of Crude Qil by Weight Percentage

Element ~ Percent Range
Carbon T $31087%

Hydrogen 10 to 14%
Nitrogen 0.1t02%
Oxygen 0.1to 1.5%
Sulfur 0.5 to 6%
Metals Less than 1000 ppm

Petroleum is the raw material for many chemical products, including
pharmaceuticals, solvents, fertilizers, pesticides and plastics. The industry is divided
into the major components: upstream and downstream. Petroleum is vital to many
industries thus is critical concern to many nations. The world currently consumes
energy at a rate of 200 million barrels of oil per day, with 87 percent supplied by oil,
gas and coal. Topping the oil consumers largely consists of developed nations; in
fact 24% of the oil consumed in 2004 went to the United States alone. The graph
below shows World Energy consumption (in Quadrillion Btu):-
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Figure 1.1: World Marketed Energy Use by Energy Type, 1980 — 2030
*Source: History: Energy Information Administration (EIA), International Energy
Annual 2003 (May-July 2005), website www.eia.doe.gov/iea/. Projections: ElA,
System for the Analysis of Global Energy Markets (2006)

The price of crude oil has reached a record high of USD147.27 according to
the NYMEX Exchange which occurred on 1 1™ July 2008. At high fluctuation rate of
crude oil price, it is essential to have refinery optimization to maximize profit from

oil sales, The price comparison between years is tabulated into a graph as below:-

Oil Prices, 1994-March 2008
{(NYMEX Light Sweet/WTI)
120 - 5
|
100 ; %
i
80 s

Dollars per Barrel
=)
(=]
=
=
&

40 ,*V}u
y ™y
20 ’-&i-\‘ﬁ;\"nh' L‘ JA'P ﬁ? Wﬂw
: A
Ly
0 i
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weli b Rt atans mnt esk sate b A ez igTe e asp

Figure 1.2: Oil Prices from 1994 to March 2008 (NYMEX Light Sweet/WTI)
*Source: http://octane.nmt.edu/gotech/Marketplace/Prices.aspx
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1.2 OPTIMIZATION

Optimization is part of life. In our day to day lives we make decisions that we
believe can maximize or minimize our set of objectives. This is known as
optimization. However, as the system becomes more complicated involving more
and more decisions and becoming constrained by various factors, it is difficult to
take optimal decisions. Further, many times the stakes are high and there are
multiple stake holders to be satisfied (Urmila Diwekar, 2003).

Optimization is the use of specific methods to determine the most cost
effective and efficient solution to a problem or design for a process. This technique
is one of the major quantitative tools in industrial decision making. A wide variety of
problems in the design, construction, operation and analysis of chemical plants can
be resolved by optimization (Edgar et. al., 2001). A typical engineering design
problem is always involved with the objective function of maximizing profit and/or
minimizing cost. Therefore, mathematical optimization theory provides a better
alternative for decision making in these situations provided one can represent the

decisions and the system mathematically (Urmila Diwekar, 2003).

For optimization of the crude oil refinery, we are using the Stochastic
Programming which focuses on the Weighted Sum Method as well as the Epsilon
Constraint method. Both methods will be explained in the Literature Review of the

introduction section.
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1.3 PROBLEM STATEMENT

In view of the current situation, crude oil prices have fluctuated to a record
high of USD 147 per barrel according to the NYMEX Exchange. The midterm
production planning problem for petroleum refineries would be on how to determine
maximum-profit optimal midterm refinery planning. For our problem statement, we
are given the available process units and their capacities as well as the crude oil and
refinery products. What is the amount of materials processed at each time, in each
vnit, in each stream under uncertainties in:

& Prices of crude oil + saleable products
=> (objective coefficients)
s Market demand for products
=> RHS coefficients of constraints
e Product/Production yields of crude oil in Crude Distillation Unit (CDU)

—> LHS coefficients of constraints

In determining the problem statements, our objective is to determine the
amount of materials that are processed in each process units by considering the
following uncertain parameters:- _

a) Market demands for products. Examples are the productions amounts of

the desired products.

b) Prices of crude oil and the saleable products.

¢) Product (or production) yields of crude oil from chemical reactions in the

primary crude distillation unit.

It is now more important than ever for petroleum refineries to operate at an
optimal level in the present dynamic global economy. This situation calls for a more
robust planning of the refinery operations to be undertaken by considering possible
uncertainties in the major parameters that primarily include prices of the raw
material crude oil and saleable products, market demands for products, and

production yields.

19



1.4 RESEARCH OBJECTIVES

The main objectives of research are as below:-

1.
2.

To formulate a deterministic optimization model! for petroleum refinery planning;
To transform the deterministic model into a two-stage stochastic programming
with fixed recourse formulation that accounts for uncertainty in the objective
function coefficients of prices, the right-hand side constraint coefficients of
product demands, and the lefi-hand side constraint coefficients of yields by
implementing a suitable scenario generation approach.

To formulate two stage stochastic programming model with recourse using
Mean-Absolute Deviation as risk measure.

To solve the stochastic programming model using the modeling language
GAMS;

To automate the procedure for reporting the model solution by capturing the
solution values using the GAMS looping system;

To investigate the Pareto front solution of efficient frontier (consisting of
efficient or non-dominated points) of the resulting muitiobjective optimization
problem by using an automated recursive statement (such as loop) in GAMS.

To investigate further the multiobjective optimization problem by incorporating
the Weighted Sum Method (WS method) as well as the s-constraint method.
Both methods are reformulated into the optimization model. Both optimization
models will be compared with the original model as formulated by Khor et al.
(2008) to know whether the new method produces a more evenly distributed

Pareto Optimal Curve.

20
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2.2 INTRODUCTION TO STOCHASTIC PROGRAMMING

Process optimization is a manufacturing process to optimize some specified
set of parameters without violating some constraint. The most common goals of
process optimization are minimizing cost, maximizing profit and/or maximizing
efficiency. Therefore, the main goal of optimizing a process is to maximize one or
more of the process specifications, while keeping all others within their constraints.

The main components of optimization under uncertainty (Figure 2.1) are as below:-

GPTIMIZATION
TINDER UNCERTAINTY
I | |
Stochastic Fuzry Stochastic
Programming Mathematical Programming Dynamic Programming
Programming Probabilistic Flexible Possibilistic
with Recourse Programming Frogramming Programming

I
I | I |

Stochastic Lincar | ( Stochastic Non-Lincar | [  Stochastic Integer Robust Stachestie
Programming {SLP) | | Programming (SNLP) | | Progmmming (SIP} | | Programming (RSF)

Figure 2.1: Established optimization techniques under uncertainty

Stochastic programming is an optimization method based on the probability
theory. Stochastic programming is a framework for modeling optimization problems
that involve uncertainty whereas deterministic optimization problems are formulated
with known parameters). Uncertainty is usually characterized by a probability
distribution on the parameters. Stochastic programming takes advantage of the fact
that probability distributions governing the data are known or can be estimated. The
goal of stochastic programming is to find the most feasible possible data that

maximizes the expectation of function of the decisions and the random variables.

In constructing a mathematical model of a decision making situation, we
should use approaches to reflect the randomness or the ambiguity involving
parameters in a situation (Sakawa et al. 2001). Stochastic programming is a typical
approach for such decision making problems involving uncertainty. What makes
stochastic programming good is because it allows the decision maker to analyze
multiple scenarios of an uncertain future, each with an associated probability of

occurrence. Optimization maximizes net profit while minimizing various expected
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costs. What makes stochastic programming good is because it allows the decision
maker to analyze multiple scenarios of an uncertain future, each with an associated
probability of occurrence (Khor et al. 2008). Optimization maximizes net profit

while minimizing various expected costs.

2.3 TWO-STAGE STOCHASTIC PROGRAMMING WITH RECOURSE
SUBPROBLEM

The most widely applied and studied stochastic programming models are
two-stage linear programs. In this section, the decision maker takes some action in
the first stage, after which a random event occurs affecting the outcome of the first
stage decision. A recourse decision can then be made in the second stage that
compensates for any bad effects that might have been experience as a result of the
first-stage decision. The optimal policy from such a model is a single first-stage
policy and a collection of recourse decision defining which second-stage action

should be taken in response to each random outcome.

Recourse models result when some of the decisions must be fixed before
information relevant to the uncertainties is available, while some of them can be
delayed until afterward. Stochastic programming with recourse is often used to
model uncertainty, giving rise to large-scale mathematical programs that require the
use of decomposition methods and approximation schemes for their solution. The
term ‘recourse’ refers to the opportunity to adapt a solution to the specific outcome
observed (Higle, 2005). Recourse problems are always presented as problems in

which there are two or more decision stages.

It is highly evident that in production system, demand forecasts are often
critical to the planning process. When demand is assumed to be kmown with
certainty, an optimal deterministic production plan can be obtained easily. However,
in reality demand is rarely known with absolute certainty. Thus, the two-stage
production planning process is used to model problem that arises with uncertainty.

23



A Two-Stage Stochastic Programming with recourse subproblem can be expressed

as below:-

min ¢ x+ E; [Q(_x, §(<D))]

st.to Ax=5b (1)
xeX20

Q(x,E(w)) = minimize ¢ (©)y(®)

With the notation:
xeR”
C
A
b

e
E(o)
g(®)

h(®)
T(w)
W (@)
o)

subject to Wy(o) = hl(w) —T(w)x )
Hw)20

: Vector of first-stage decision variables, size (n x 1)

: First-stage column vector of cost coefficient, sizes (n x 1)
: First-stage coefficient matrix, size (m x n)

: Corresponding right-hand side vectors, size (m x 1)

: Random events or scenario

: Random vector

: Second stage vector of recourse cost coefficient vectors size

(kx1)

: Second stage right-hand side vectors, size (7 x 1)
: Matrix that ties the two stages together, size (/ x &)
: Random recourse coefficient matrix, size (/ x k)

: Vector of second-stage decision variables, size (kx 1)

From the Two-Stage Stochastic Programming above, Equation (1) is known

as the first stage, where x is referred to as the “here-and-now” decision. Note that x

does not response to . Meanwhile, y represents the second stage variable with a

“wait and see” approach. y is determined only after observations regarding have

been obtained.
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2.3.1 Two-Stage Stochastic Programming with Simple Recourse Subproblem

Simple recourse problems feature a very special form of the recourse matrix
when the constraint coefficients in the second stage model, W, form an identity
matrix, Deviations from a target value are penalized by a linear penalty. A simpie
recourse problem arises in many situations. For example, when ‘target values’ can be
identified, and a primary concern involves minimizing deviations from these target
values (although these might be weighted deviations), a simple recourse problems

result.

2.3.2 Two-Stage Stochastic Programming with Fixed Recourse Subproblem

A fixed recourse problem is one in which the constraint matrix in the
recourse subproblem is not subject to uncertainty (i.e., it is fixed). Meaning to say,
fixed recourse model arises when the constraint coefficients matrix W (w) in the
second-stage problem is not subject to uncertainty, that is, it is fixed and hence is
denoted simply as the matrix W. For a Fixed Recourse Subproblem, Equation (2)
coefficient () is fixed, which means the value of W is determined and not subject

to uncertainty.

2.3.3 Two-Stage Stochastic Programming with Complete Recourse Subproblem

A two-stage stochastic programming with complete recourse subproblem is
said to have complete recourse if the recourse cost for every possible uncertainty
remains finite (has a value), independent of the nature of the first-stage decisions
(Khor et al. 2008). If a problem has complete recourse, the recourse function is
necessarily finite. To ensure complete recourse in any problem, penalty functions (of

costs) for deviations from constraint satisfaction of prescribed limits are used.

25




CHAPTER 3
METHODOLOGY

3.1 METHODOLOGY (GANTT CHART)
3.1.1 Semester 1 (July 2008)

Ik

Topic Selection

Submission of Proposal

3 | Literature Review

Prefiminary Report
Submission
Stochastic Model Formulation
with MAD

Submission of Progress
Report

Compuiational Studies with
GAMS

8 | Seminar 1

Submission of Interim Report
and Final Oral Presentation " _ ]
Next Semester: model reformulation & computational studies using:

* Weighted Sum Method
+ g~constraint Method

3.1.2 Semester 2 (January 2009)

1 { Discussion with lecturer

2 | Project work commence

3 | Progress Report Submission

Weighted Sum Method Model
Formulation & GAMS

Epsilon Constraint Method
Modei Formulation & GAMS

6 | Progress Report I1 Submission

7 | Pre-EDX

8 |EDX

9 | Submission of Final Report

Final Oral Presentation (Week

19 118 & 19)

Submission of Hardbound

1 {Week 20)
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3.2 METHODOLOGY (FLOW CHART)

Figure 3.1: Methodology flow chart for the model formulation problem
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CHAPTER 4
MODEL FORMULATION

Stochastic Programming Optimization; one of its heaviest users has been the
petroleum refining industry. Refining operations are routinely planned by formal
optimization, often on a daily or even hourly basis. Our goal in optimization model
is to identify an optimal solution which is the most feasible choice satisfying all

constrains (Rardin, 1998).

4.1 STOCHASTIC MODEL FORMULATION FOR DEVIATION OF
RECOURSE PENALTY USING MEAN ABSOLUTE DEVIATION (MAD)

The mean-absolute deviation (MAD) is the average absolute deviation from
the mean. The mean-absolute deviation (MAD) is defined as:

1 n
MAD =% £ 5 -5

i=l

where n is the sample size, x; are the values of the samples, ¥ is the mean, and £ is
the absolute frequency. The use of Mean Absolute Deviation serves to overcome the
computational difficulties and therefore enables large scale problems to be solved
faster and more efficiently. Below shows the penaity functions for Mean Absolute

Deviation when we maximize and minimize the objective function to obtain the

penalty and return values:-
Penalty Penalty
& A
» Return » Return
r v
Mean-Absolute Deviation {(MAD) Mean-Absolute Deviation (MAD)

Figure 4.1: Penalty functions for Mean Absolute Deviation
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As presented by Khor et al. (2008), Risk Model III model formulation using Mean

Absolute Deviation for deviation of recourse penalty is given by

maxz = E(z) -9V (z)-E, -0,/ &)
Where,

E(z;) = Expected Profit

8,V (z,) = Deviation of Profit

E = Expected Recourse Penalty

5

0,W. = Deviation of Recourse Penalty

8,,0, = Component weights of the objective function or risk

Based on Equation (3), the term W; corresponds to the Mean Absolute Deviation
(MAD) of the expected penalty costs due to violations of constraints for maximum
demands and yield. The MAD of the expected penalty costs is formulated as below:

W; =Zps l&bs _Es'I:Zps Eis _Zps'g.s’
seS seS |

s'es

+, + -
(c- z, +¢ zi_s)

+, + - -
i Zis (C; Ziy+G z_a‘,_s’)

=W, =P % -X 2P @
= e (vl +ary)| @i s G Ve + 4 Vinr )
defined and W; must then satisfy the following conditions:
5 (c,+ Zr, +6 7, ) 5 (c:r Ziy+€ 2y )
Wez-),p; - o &)
- ; +(q,."y,.j, + q,.“y,;) tel s%:s-'pj +Y (Q’:y:k,sf +4; y:,k,s-')
keK
¢z +¢6z), (Cf Zog+ef Z:—,,e')
.22, p: Z( vt N ©

e +(q,.’r Vi gy 3) prio S ) (‘1:r Vikw +47 J’;fk,s')
kek

and the non-negativity constraints for W;:

W=
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Meanwhile, based on Equation (3) the term E; corresponds to the expected recourse
penalty for the second-stage costs due to yield uncertainty. The expected recourse
penalty, E; for the second-stage costs is given by:

Es,demand = Z Z P, (C:-z:s + ci_zf_,s )

ief seS

Es, yield = Z Z Z: Ds (q:ky :,-k,s + qr'_,kyJ:k,s)
iel 5eSkek

Therefore;
E =E

5. demand

+ K

5, yield

E,=Y Y p [(e,*z:, +672 )+ D G ies +q.-jky,:k,s)]= Y pE M

iel s&8 keX iel seS

Where; &s = (sz::s 'i'C,-_Zf_’s) + Z (q:kka,s +q;;ky:'—,k,_s)
kek

Thus, the Stochastic Model formulation using Mean-Absolute Deviation (MAD) for
deviation of recourse penalty is formulated as Equation (3) by substituting F, and W,
with Equation (4) and (7) respectively.
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4.2 INTRODUCTION TO WEIGHTED SUM METHOD FORMULATION

The weighted sum method is used to approximate the non-dominated set
through the identification of extreme points along the non-dominated surface. The
idea of the weighting methods (Gass and Saaty, 1955; and Zadeh, 1963) is to
associate each objective function with a weighting coefficient and minimize the
weighted sum of the objectives. In this way, the multi-objective optimization

problem is transformed into a series of single objective optimization problems.

The weights of each constraint shouid be a value greater than zero to satisfy
the optimal solution of the weighted problem is a non-dominated solution. As  long
as the values of the weights are greater than zero, the multiobjective optimization
will produce solutions between these two points. For our model formulation we
incorporate the risk model as presented by Khor et al. (2008). The risk model is
reformulated using Mean Absclute Deviation incor_porating 0, and 0, values which

represent the weights of the components of the objective function or risk factor.

As represented in equation (6), the MAD(zy) is weighted by the operational
risk factor , which is varied over the entire range of (0, o) to generate a set of
feasible decisions that have maximum return for a given level of risk. This feasible
decisions set is equivalent to the “efficient frontier” portfolios introduced by
Markowitz (1952; 1959) for financial investment applications. The parameter 9; can
be seen as reflecting the decision maker’s attitude towards variability; in other

words, it signifies the risk attitude of the decision maker.
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43 STOCHASTIC PROGRAMMING MODEL FORMULATION OF
REFINERY PLANNING PROBLEM USING MEAN-ABSOLUTE
DEVIATION AS THE RISK MEASURE

We propose to extend the model formulation of Risk Model III as presented
in Khor et al. (2008) to incorporate the L1 risk of mean-absolute deviation as a

measure of deviation from the expected profit. Thus, the objective function of the

model is reformulated replacing V(zy) with MAD(zy in equation (3) which is
represented as below:

n
Ryx, ~E[ZRJIjH
=1 J=i

max z = E[z,]-8,MAD(z,) - E, —6,MAD, ®)

MAD(x)= El

7

Where:
0y, Bye (0, 1} are weights of the components of the objective function or risk

factor

4.3.1 Model reformulation using MAD(zy) as risk measure for deviation from

deterministic profit

MAD(z)) =Y. p, |z, - £[z] ©)

ses

where:

§ Y;,:Sf,r +2 ¥idd :'f,: - Zluﬂ,r - Z ii,,f,f; - Z Cj.tij - Z h,.,,HU
Profit z0 = i iel il iel jed iel (10)
; -2 (u.j,,CE” + ﬁj,tyf,r)'('?Rt +0,0,)

jeJ

2.2 paisiS +§’.7u[rft =22 pcinsib, —Ziufi ‘“ZC,-,:X;,; “";}bﬂu
[ iel jef i

iel seS el sel

E(zy= (3

wel’| — (“j,ra?fx +B;,;J{,~;)—(?;R +00)
jeJ
Substituting (10) and (11) into (9), and (9) into (8), we have the complete
Stochastic model which the deviation for profit term is expressed in Mean Absolute
Deviation. Refer to Chapter 4: Numerical Example part for further Mean Absolute

Deviation MAD{(z,) formulation discussion.
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44 STOCHASTIC PROGRAMMING MODEL FORMULATION OF
PETROLEUM REFINERY PLANNING PROBLEM

For simplicity of Stochastic Programming model formulation, we assume
that no alternative source of production hence if there is a shortfall in production, the
demand is actually lost. Therefore, we need to anticipate the production of the
refinery at the beginning of planning that is production variable x is fixed (meaning

all unmet demand is considered lost).

In second-stage stochastic programming, we take into account the recourse
problem which takes into account penalty of surplus or shortfail. The representation
of stochastic programming surplus/shortfall is as follow:-

m[E[Mﬁ}Mm[mﬂt}a{Rm}Wm[mﬂ
max profit = £ [20]'91MAD(20)" E; —6;,MAD; (12)
= 2 z: PsCixi 91 2 szAD(zo) Z ): Ps[( i ,,s+‘-‘: Z:,s]*{q, b ,s+f1¢ J’:,s]] 6 MAD,

where + - ,+ .- = second stage recourse decision/variables (amount
Z‘,S;Zl,ssyl’say;,s
underproduced or overproduced)
+ — + — nd . -
2 e Yig i 2™ stage recourse cost (penalties for producing
surplus or shortfall

Therefore from the deterministic equation stated previously, we formulate the
risk model for the petroleum refinery planning. The expectation operator or mean of

a discrete random variable for a discrete non-uniform distribution is given by:

E[z,]=Y 4 (x) (13)

where in our problem formulation, x refers to the objective function of scenario s and

x) represents the probability of scenario s.

33



The L; risk of the absolute deviation function is given as follows (Konno and
Koshizuka, 2005; Konno and Yamazaki, 1991}

n n
MAD(x)=E[Zijj-—E{ZijjH (14)
=1 j=l
With the notation;
R : Unit price or unit cost of material (either raw material of crude oil or

the refinery products)
. Amount of money invested in an asset j refers to the production

flowrate of materials in refinery

Therefore, the mean-absolute deviation (MAD) function of equation (14) can be
formulated as below:-

n

MAD(x) = E
MAD(zy) = £

=E

=3P,

se§

MAD(z,) =) p,

&8

iijj -E

=

ijj:|

o]

:IZQ,S ~E [ZQ ]ﬂ

J=1

|

zO,s - z psz(},s

eS8

Zps Z P20

$e8

|

Zci,sxi,s - z Z Py

iel iel se§

L

C; X

1,857,858

|

s
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4.5 FORMULATION OF THE PARETO FRONT SOLUTION OF
EFFICIENT FRONTIER FOR THE EXPECTED RECOURSE TERM

4.5.1 Definition of Pareto Front Solution

Many optimization models are formulated with single multiobjective
function, a critetion to be maximized or minimized. When such multiobjective is
required, we emphasize on efficient solutions known as the Pareto Front solution

formulation.

In this section, we develop the concept of efficient point and the efficient
frontier also known as Pareto Optima which help to characterize the “best” feasible

solutions in multiobjective models.

a) Efficient Point
A feasible solution to a multiobjective optimization models is an efficient point
if no other feasible solution scores at least as well in all objective functions and
strictly better in one. (Rardin 1998)

b) Efficient Frontier
The efficient frontier of a multiobjective optimization model is the collection of
efficient points for the model. (Rardin 1998)

4.5.2 Adaptive weighted sum method for bi-objective optimization

In this section, we are to develop the bi-objective adaptive weighted sum
method, which determines uniformly-spaced Pareto optimal solutions. However the
method could solve only problems with two objective functions. In the first stage, a
weighted sum method is performed on the formulated mode! solution. Subsequently,
the adaptive weighted sum method is applied where ¢ach Pareto solution is then
refined by imposing additional constraints that will produce a well-distributed Pareto
front for effective visualization and find solutions in non-convex regions (Kim and
Weck 2005).
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Weighted-sum method AWS: Inifial Step
'y 'y )
J, J, 1st region for
: True /\‘S refinernent
H )
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)
]
]
]
;
3 opta 2nd regrion for
pomt > relmement >
(a3 T ) J;
/ A 5, AWS: Constraint J & AWS: Refinement
i Imposition Z
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regian
Feasible
region
o
> -
(@ @ I

Figure 4.2: (2) Weighted sum method, (b) Initial step of adaptive weighted sum,
(c) Adaptive weighted sum constraint imposition, (d) Pareto front refinement
(Kim and Weck, 2005)

To compare both weighted sum method for convex Pareto front are as below:-

Fcas'ib[;c
P region 3,1'P,
>
1) ) 4

Figure 4.3: Adaptive weighted sum method for convex Pareto front:
(a} Solutions with weighted sum method only,
(b) Additional refinement with adaptive weighted sum method
(Kim and Weck, 2005)
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The adaptive weighted sum method can effectively solve multiobjective
optimization problems whose Pareto front has:
i) convex regions with non-uniform curvature
ii) non-convex regions of non-dominated solutions

iii) non-convex regions of dominated solutions

In summary, the adaptive weighted sum method produces evenly distributed
solutions, finds Pareto optimal solutions in non-convex regions, and neglects non-

Pareto optimal solutions in non-convex regions.

4.5.3 Literature Review on Adaptive weighted sum method (Pareto Front
generation): Procedures

To formulate the adaptive weighted sum method to produce graphs of Figure
2 and Figure 3, we need to perform certain procedures to formulate the adaptive
weighted sum method. The procedures follow step by step which are as below:-

Step 1
e Determine the objective functions which are J, (expected profit) and J; (MAD)
J, =-8.0x, +18.5x, + 8.0x; +12.5x, +14.5x; +6.0x5 —1.5x,

Jz = MAD(ZO) = z ps Zci,zxi - Z paici,sxi

se8 fef se§ ief

(—8.8x, +20.35x, +8.8x, +13.75x, +15.95x, +6.6x, ~1.65x,,)
_(039) (0.35)(-8.8x; +20.35x, +8.8x, +13.75x, +15.95x, +6.6x,—1.65x,,}
'] +(0.45)(~8.0x, +18.5x, +8.0x, +12.5x, +14.5x, + 6.0x, -1.5x,,)
+(0.20)(~7.2x, +16.65x, +7.2x, +11.25x, +13.05x; + 5.4x, —1.35x,)

Soemario 1
(-8.0x; +18.5x, +8.0x, +12.5x, +14.5x, +6.0x, —1.5x,,)
(0.35)(~8.8x, +20.35x, +8.8x, +13.75x, +15.95x, + 6.6x, —1.65x,,) |
~| +(0.45)(~8.0x, +18.5x, +8.0x, +12.5x, +14.5x, +6.0x, —1.5x,,)
+(0.20)(~7.2x, +16.65x, +7.2x, +11.25x, +13.05x, + 5.4x, ~1.35x,,) |

Scenatio 2

(=7.2x, +16.65x, +7.2x, +11.25x, +13.05x; +5.4x, —1.35x,,)
(0.35)(-8.8x, +20.35x, +8.8x, +13.75x, +15.95x, + 6.6x, —1.65%,,} |

—{ +(0.45)(~8.0x, +18.5x, +8.0x, +12.5x, +14.5x, + 6.0x, - 1.5x,,)
+(0.20)(-7.2x, +16.65x, + 7.2x, +11.25x, +13.05x, + 5.4x,—1.35x,,)

+(0.45)]

+(0.20

“emm”
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Step 2
e Number of divisions Niniim = 10

e Uniform step size of the weighting factor A is determined by the number of

divisions:
1 1
M = = ume——
Minitial 10
=0.1

(the greater the number of divisions, the smaller the step size, hence, more solutions

on the Pareto front are obtained)

Step 3
¢ to compute lengths of the segments between all neighboring solutions

» Fix prescribed distance & = 0.01. If the distance among solutions is less than a

prescribed distance (g), then all solutions except one are deleted.

Step 4

e To determine number of further refinements in each of the regions

« n= round[C—I"—J
\ I?:‘.’g

C = constant of the algorithm

Step 5
If n; < 1, no further refinement is required.

If n;> 1, go to Step 6.

Step 6

« To determine the offset distances from the two end points of each segment

» A piecewise linearized secant line is made by connecting the end points P1 and
P2 similar as diagram on Figure 4

« The user selects the offset distance along the piecewise linearize Pareto front, 8 5
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Figure 4.4: Determining the offset distances, 3, and 3, based on 3,

(Kim and Weck, 2005)

g = (A7)
I —— where
R-h P =(B.7)

P* and P’ are the x(J1) and y(J2) positions of the end points P1 and P2 respectively
&, =8, cos0 and 8, =8, sind

Step 7
« Impose additional inequality constraints and conduct sub-optimization with the

weighted sum method in each feasible region

min| A-2G), g S22
5f10(%) $fr0(%)

Subjectto; JS(x)< BT -§,

S(x) <P -3,
« J, and &, are offset distance obtained in Step 6
»  sfo(x) and sf, ((x) are scaling factors

e A is the uniform step size determines is obtained from Step 4

Step 8
Compute the length of the segments between all the neighboring solutions

Delete overlapping solutions

If all segments length are less than &, terminate the optimization procedure

If segment length greater than &, go back to Step 4 and iterate
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4.5.4 e-constraint method for bi-objective optimization

In this section, we are to develop the e-constraint method, which extends and
fills in the gaps between adjacent points along the Parcto surface using a gradient-
based local optimizer (such as GAMS/CONOPT3). e-constraint method converts all
but one of the objectives into inequality constraints and solving for all possible
values of the inequality constraints. Each set of values represent a subproblem that if
solved to global optimality, yields a point in the Pareto optimal set. The number of
subproblems that one must solve to identify the complete Pareto-optimal surface
grows exponentially with the number of objective functions (Siirola et. al., 2004;
Miettinen, 1999).

However, it is important to note that the e-constraint method can neither
guarantee feasibility nor efficiency (that is, it can be complex and time consuming)
and both conditions need to be verified once the complete set of solutions has been
obtained. The major advantage of e-constraint method approach developed and
employed does not require the a priori articulation of preferences by the decision
maker. Instead, the aim is to generate the full set of trade-off solutions and not to
present only one single alternative. From the set of alternatives, the decision maker
can then further investigate interesting trade-offs and ultimately select a particular
supply chain design and capacity planning strategy that best satisfies his or her

willingness to compromise (Hugo and Pistikopoulos, 2005).

As mentioned by Rangavajhala Et. Al, 2008, an approach called Generate
First and Choose Later (GFCL) can be used to generate the Pareto curve. This
approach GFCL generally involves generating a large number of Pareto solutions
first, followed by choosing the most attractive of them. By generating a large pool of
solutions, the researcher can decide on well-informed decision which proves a better
optimization solution. However, generating a large number of potential solutions can

be computationally expensive.
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CHAPTER 5
COMPUTATIONAL EXPERIMENTS AND
NUMERICAL RESULTS

5.1 NUMERICAL EXAMPLE

For numerical example, the implementation of the proposed stochastic model
formulations on the petroleum refinery planning linear programming model will be
demonstrated. The original single-objective linear programming model is first solved
deterministically and is then reformulated with addition of the stochastic dimension.

X2

Gasoline
A X A Xis
X7 ] X3 .
Naphtha ) Naphtha
[
% » ) X4 o
é Jet Euel ) JetFuel
=
x 3 > e s
=l ' o & N
— > E | GasOil Axz | Heating Oil
€rude Oil E s v
2|y 21 A
3 | Crackery, 3
2 Feed Q1 X7
~ hil Y X190
X0 X6
: : FUEL OIL BLENDING - e
Residuum Fuel il

Figure 5.1: Simplified representation of a petroleum refinery production from crude
oil (Khor et al. 2008)

Figure 5.1 is a simplified representation of a petroleum refinery that consist
mainly the primary distillation unit which processes crude oil (x;) and cracker feed
(x14) to produce gasoline (x2), naphtha (x3), jet fuel (x,), heating oil (xs) and fuel oil
(xs). The complete scenario representation of the Price Uncertainty, Demand
uncertainty and Yield Uncertainty are provided in Table 5.1, Table 5.2 and Table 5.3

which are shown below:-
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Table 5.1: Complete scenario condition for refinery production (Price Uncertainty)

Type ) . TS

Scenario |

| Scenaﬂﬂ 1(3“‘“‘) .

 Somrio3 )

Crude Oil (1)

-8.8

-8.0

-7.2

Gasoline (2)

20.35

18.5

16.65

Naphtha (3)

8.8

8.0

7.2

Jet Fuel (4)

13.75

12.5

11.2§

Heating Oil (5)

15.95

14.5

13.05

Fuel Qil (6)

6.6

6.0

54

Cracker Feed (14)

-1.65

-1.5

-1.35

Table 5.2: Complete scenario condition for refinery production (Demand

Uncertainty)

T~~~ Scenario|

Type()

Scenario 1 ($/tan)

| Scenarm 2 (S/an)

' Secenario 3 (S/tan)

Gasoline (2)

2835

2700

2565

Naphtha (3)

1155

1100

1045

Jet Fuel (4)

2415

2300

2185

Heating QOil (5)

1785

1700

1613

Fuel Oil (6)

9975

9500

9025

Table 5.3: Complete scenario condition for refinery production (Yield Uncertainty)

" Seemarin]
" Seenario 1 ($/an) -

Product™~

e
 Type (i) N

Seenario 2 (SHtan)

' Scenario (San)

Naphtha (3)

~0.1365

-0.13

-0.1235

Jet Fuel (4)

-0.1575

-0.15

-0.1425

Gas Qil (8)

-0.231

-0.22

-0.209

Cracker Feed (9)

-0.21

-0.20

~0.19

Residuum (10)

~-0.265

-0.30

—-0.335

Probability (P,)

0.35

0.45

0.20
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5.2 DETERMINISTIC MODEL FORMULATION OF PETROLEUM
REFINERY PLANNING PROBLEM

Deterministic model is a model where it is reasonable to assume all problem
data to be known with certainty. We employ deterministic models because they often
produce valid enough results to be useful and because deterministic models are
almost always easier to analyze than are their stochastic counterparts. The
deterministic objective function of the Linear Programming model is given by (based
on Table 5.1 figures of price uncertainty):

maximize z = -8.0x, +18.5x, +8.0x; +12.5x, +14.5x; +6.0x, —1.5x,  (16)

¥

With the notation,

z : Profit x, :lJetFuel

% : Crude Oi] %; : Heating Qil
x, : Gasoline x; :Fuel Oil

¥, ; Naphtha %, :Cracker Feed

The equation z left-hand-side coefficients represent the cost or price of the associated
materials. In which the negative coefficient denote the purchasing of feed and
operating costs while the positive coefficient are the sales prices of products.
Therefore, we can write the objective function (z) corresponding with price (c) and

production flowrate (x) as:

z=c"x=. Qe x)i={1,2,3,4,5614}e I c Ls={L,2,3}eS  (17)

seS el
Where;
s = Scenario
i =Product Type

Hence, for the numerical example:
Objective function:
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Based on equation (8) Chapter 4: Model Formulation, we try to formulate the risk
measure of the Mean Absolute Deviation constraint. The expectation of the objective

function value is given by the original objective function itself:

"E(aX +bY)=aE[X]+bE[Y]"
="E(aX)=aBX]"
E[z,]= E(-8.0x, +18.5x, +8.0x; +12.5x, +14.5x; + 6.0x; —1.5x,,)

= E(-8.0x,) + E(18.5x,) + E(8.0x;) + E(12.5x, ) + E(14.5x;) + E(6.0x) + E(~1.5x,,)
=-8.0x, +18.5x, +8.0x; + 12.5x, +14.5x; + 6.0x, — 1.5x;,
E[z,]=~8.0x, +18.5x, +8.0x; +12.5x, +14.5x; + 6.0, —1.5x;,

E[z,]=-8.0x, +18.5x, +8.0x; +12.5x, +14.5x; + 6.0x5 —1.5x,,

(~8.8x, +20.35x, +8.8x, +13.75x, +15.95x, +6.6x, —1.65x,,)
(0.35)(~8.8x, +20.35x, +8.8x, +13.75x, +15.95x; +6.6x, —1.65x,,) |

—{ +(0.45)(~8.0x, +18.5x, +8.0x, +12.5x, +14.5x, +6.0x,— 1.5, )
+(0.20)(~7.2x, +16.65x, + 7.2x, +11.25x, +13.05x, +5.4x, —1.35x,,)

Seenario 1

(-8.0x, +18.5x, +8.0x, +12.5x, +14.5x, +6.0x, -1.5x,,)

(0.35)(~8.8x, +20.35x, +8.8x, +13.75x, +15.95x, + 6.6x, —1.65x,,)

| +(0.45)(~8.0x, +18.5x, +8.0x, +12.5x, +14.5x, +6.0x, —1.5x,,)

+(0.20)(-7.2x, +16.65x, +7.2x, +11.25x, +13.05x, +5.4x, -1.35x,,)

MAD(z,) = (0.35)

+(0.45)

Scensrio 2

(~7.2x, +16.65x, +7.2x, +11.25x, +13.05x, +5.4x, —1.35x,,)
(0.35)(~8.8x, +20.35x, +8.8x, +13.75x, +15.95x, +6.6%, —1.65x,,) |
~| +(0.45)(~8.0x, +18.5x, +8.0x, +12.5x, +14.5%, +6.0x, —1.5x%,, )
+(0.20)(~7.2x, +16.65x, +7.2x; +11.25x, +13.05x, + 5.4x, ~1.35x,,} |

Scenario 3

+(0.20)

From the numerical example stated above, the model formulation for mean absolute

deviation can be simplified to the equation as below:

MAD(z,) = Zps Zer',sxi "Z pszei,sxi

se§ iel se§ iel
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5.3.2 Formulation of Weighted Sum Graph; Expected Profit versus Profit and
Recourse Penalty Costs Risk

Graph of Expected Profit vs Profit & Recourse Penalty Costs Risk
100000 1—

80000 1-

60000.

C L [ Broiundor Uncaraity i Price,) /.
-+ jDemands, and Yields :

40000

Expected Profit ($/day)

20000 |-

0. - . s ; . LS = . g 3 — :
0.000 50.000 100.000 150.000 200.000 250.000 300.000 350.000
Profit and Recourse Penalty Costs Risks (Sigma Value)

Figure 5.2: Graph of Expected Profit versus Profit and Recourse Penalty Costs Risk

measured by Deviation of Profit and Deviation of Recourse Penalty
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5.3.3 Analysis of Results for Weighted Sum Method

As for the numerical result of Weighted Sum Method, the value of 0, and 6;
denotes the weights of the components of the objective function or risk factor. 8; and
8, represents the importance of risk in the model as contributed by variation in
deviation profit and variation in deviation recourse penalty costs, respectively, in
comparison with the corresponding expected values of the model’s objective. From
the results observed, reducing values of 0, implicates higher profit deviation. The
graph plotted shows a typical Pareto Optimal Curve where the profit decreases

periodically with increasing risk measure which is represented by deviation of profit.

One of the reasons the reducing values of 0; and 0, leads to increasing
expected profit is that both 0, and 6, values corresponds to a decrement in variation
o of the recourse penalty. With small values of o, it will further strengthened the
model; which increases the value of our objective function Z,. This again
demonstrates that a proper selection of the operating range of 8, and 0 is crucial in
varying the tradeoffs between the desired degree of model robustness and solution
robustness, to ultimately obtain optimality between expected profit and expected
production feasibility. (Khor et al., 2008)

The values of 0; and 8, denotes the importance of risk in the model as
contributed by wvariation in profit and variation in recourse penalty costs,
respectively, in comparison with the corresponding expected values of the model’s
objective. From graph of Figure 5.2, we can see that the objective function increases
as the sigma value of profit and recourse penalty cost risk increases. Increasingly
smaller 0, and 6, corresponds to higher expected profit which implies less
uncertainty and risk to the model. A proper selection of 0, and 0 operating range

will translate the model formulation to a more robust model.

48



5.4 STOCHASTIC PROGRAMMING MODEL FORMULATION OF
PETROLEUM REFINERY PROBLEM (EPSILON CONSTRAINT
METHOD)

5.4.1 Solution Strategy 2: Epsilon Constraint Method

We employ the procedure suggested by You and Grossmann (2008) for
applying the &-constraint method for multiobjective optimization problems. In this
model formulation section, it is shown from the equation that we have four objective
functions to obtain the objective function. The mean absolute deviation model

formulation is as below (as formulated previously):-
max z = E{z,]-6,MAD(z;) - £, —-0,MAD,

In order to obtain the Pareto curve using epsilon constraint methed, we can
manually prescribe the constraints (Rangavajhala Et. Al, 2008). In other words, to
solve the model we reduce the formulation from four objective functions to a bi-
objective function. This will lead to a reduced problem dimensionality (from four
objectives to two objectives) and facilitates visualization. To generate the Pareto

curve using epsilon constraint method, we follow the steps as below:-

max  E(z,)

st. MAD(z,)<¢g
E <e,
MAD, <&,
other constraints

To enforce acceptable tolerance or limits in this profit maximization
program, upper bound values of €, €, &; are specified for each of the parameters
MAD(z), E;, and MAD;, respectively within the range of the minimum value and
the maximum value for the respective parameter. The next steps will be to determine

the range for each of the parameters:-
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Step 1

max E(z,)

s.t. constraints
Consider objective function of maximizing E(zo) which is the expected profit, that in
turn yields the largest Pareto-optimal deviation. So, in this step we obtain the largest
value for MAD(zy) and the largest value for E(zp). So, in this step we obfain the
maximum value of MAD(zy), which we indicate as MAD(Zo)max, and the maximum
value of the expected profit F(zy), which we indicate as E(zo)max t0 represent the
maximum expected profit. Preliminary computational results on GAMS maximizing

E{zo) using epsilon-constraint method:

MAD(zp)max = 7140.000
E(z0)max = 94 669.050

Step 2:

We consider the objective function of minimizing MAD(zy), in order to
obtain the lowest deviation from the expected profit, which in turn yields the lowest
Pareto-optimal profit (since the metric of MAD only penalizes downside deviation,
therefore, minimum upside deviation corresponds to minimum profit). This lowest
Pareto-optimal profit corresponds to the minimum value of the expected profit. So,
in this step we obtain the minimum value of MAD(z), which we indicate as
MAD(Z)min» and the minimum value of the expected profit E(zp), which we indicate
as E(zo)min to represent the lowest expected profit. Preliminary computational results
on GAMS/CONOPT3 for minimizing MAD(z,)

MAD(zo)min= 5549.565
E(20)min =—121800
max E(z,)
st. MAD(z,)<g
E <e,
MAD, <&,
other constraints
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To enforce acceptable tolerance or limits in this profit maximization
program, upper bound values of ), €;, €3 are specified for each of the parameters
MAD(zp), E;, and MAD,, respectively within the range of the minimum value and
the maximum value for the respective parameter. The next steps will be to determine
the range for each of the parameter.

Step 3

Finally, repeat Step 1 to Step 2 by changing the objective function from
MAD(zp) to £, and then MAD,. By repeating step 1 to step 2, we will obtain the
lower bound and upper bound of each objective functions of MAD(zy), E;, MAD;.
Note: For epsilon constraint method, we reduce the objective function in GAMS
from four objective functions to two objective functions. One of the objective
function should be the Expected Profit meanwhile the other objective function will
be the constraint, either MAD(z;), E; or MAD;.

5.4.2 Epsilon Constraint Method Summary

The model formulation of Model III as presented in Khor et al. (2008) is
reformulated to introduce Mean Absolute Deviation MAD(z) as the measure for
deviation of profit. The method proposed in this work is to further study Model I
proposed using the epsilon-constraint method which fully utilize the Mean Absolute
Deviation MAD(z) as the Deviation of Profit. This epsilon constraint method is to
eliminate the use of the weighting factors 6, and €, from the miodel formulation
presented in equation (11), in which 6; and ©; are weights of the components of the
multiple objective functions that acts alternatively as the risk factors of the problem

under investigation.

Based on the recent work by Guillen-Gosalbez and Grossmann (2008),

consider the solution of a set of single-objective-function problems for different

values of the parameter :
max  profit=V(z,)
s.t. E (20) <g
other model constraints
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In this formulation, the lower and upper limits (or bounds) that define the
interval within which the epsilon parameter must fall, ie., € e [¢", "] can be

obtained by solving each objective separately:

The g-constraint formulation proposed by Guillen-Gosalbez and Grossmann
(2008) is similar to the formulation by You and Grossman (2008). Both formulation
practices the method to maximize profit E(z) and minimizing MAD(z,) in order to
obtain the Pareto-optimal curve in which each of the Pareto efficient frontiers points
is determined by the values of E(zp) and MAD({zy).

Using the epsilon-constraint method as proposed earlier in section 4.5.4, in
order to obtain the Pareto optimal curve, each component of the objective function is
correspondingly/appropriately minimized and maximized using the GAMS modeling
software. We minimize and maximize each objective function individually to obtain
the lower and upper bound of each objective function. The objective functions that
are minimized and maximized are listed as below:

a) Deviation of Profit, MAD(z)
b) Expected Recourse Penalty, E;
¢) Deviation of Recourse Penalty, MAD,
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The minimum and maximum values of each parameter are as listed below:-

a) Deviation of Profit, MAD(zo) (NOTE: Objective Function = OF)

B Expected Recourse
- Expected Profit, Kp
T LT Penalty,Es
Vi OF Upper
94669.050 7140.000
Boand on MAD(z.,)
M_!giml_z@ OF Lower
—121800.000 5549.565
Bound-on M-AB{;o)

1. Maximize MAD(zy) to obtain MAD" (z,) = 7140.000, which corresponds to

E- = 94669.050

2. Minimize MAD(zo) to obtain M4D*(z,) = 5549.565, which corresponds to

Eptz,] =—-121800

b) Expected Recourse Penalty, Es

" Expected Recoarse
Expected Prof t, Ep : .
S _ Penalty,Es o
Maximize OF Upper 94669.050 279420.000
Bound on E,
Miuiinize OF Lower ~121800.000 121920.000
Bound on Eg

1. Maximize E; to obtain £’ =

94669.050

2. Minimize F; fo obtain E! =

121800
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= 279420, which corresponds to Ep¥(z,) =

= 121920, which corresponds to Ep'(z)) = —




c) Demtlon of Recourse Penalty, MADs

L ':_ Deviation of Recoum :
o Expected Proﬁt, Ep : .
: _ Penalty,
Maxlmze OF Upper | 94669 050 150000. 000
Bound on MAD,
- anmlze OF aner ' —-121800.000 78337.380
' Bound on MAD; -

1. Maximize MAD; to obtain MAD! = 150000, which corresponds to £p"[z,] =

94669.050

2. Minimize MAD; to obtain MAD! = 78337.380, which corresponds to £p"[z]

=-121800

Obtaining all this four objective function lower and upper bound, we then

combine all the lower and upper bound values of each objective function to construct

the Pareto optimal curve as drawn on Figure 5.3, Figure 5.4 and Figure 5.5. These

three graphs represent the expected profit of the model versus the constraints which

are the Deviation of Profit, Expected Recourse Penalty and finally Deviation of

Recourse Penalty.
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5.4.3 Results and Discussion of Epsilon-Constraint Method Formulation

a) Part 1 — Varying MAD(z;) value while maintaining . and MAD; values

Table 5.5; Values of Ep, E; and MAD; after varying the MAD(zo) value

“Deviationof | Expected | Deviationof | Expected | Objective
" Profi, | Recomrse | Recourse | Profit,Ep | Fanction, Z2
MAD(zs) Penalty, E, | Penalty, A o
_ - | MAD, I |
T 5549.565 12101744 | 7833738 94660.05 94669.05
5000 131703225 | 69100994 | 85294118 | 85294.118
4000 151311.068 | 52294271 68235204 | 68235.294
3000 151652.011 39507.86 51176.471 51176471
2000 140057.491 76323.42 34117.647 | 34117.647
1000 12212637 24162.932 17058.824 | 17058.824
4.64E-10 102884535 | 11000.692 7.93E-09 7.93E-09

Note: When MAD(z¢) value is less than 0, the formulation is infeasible.

Graph of Ep Value vs. MAD_z0 Value

Ep Value
2
]
[=}

1000

2000

3000

4000

MAD_z0 Value

5000 000

Figure 5.3: Graph of Pareto Curve Optimal Solution for Ep versus MAD{(z)
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Part 1 Graph Interpretation

e The graph trend shows a linear relationship between the Expected Profit, Ep

and Deviation of Expected Profit, MAID(zo)

. Expected Profit, Ep increases as Deviation of Expected Profit, MAD(z)

increases

e This means that the Expected Profit, Ep increases when the Deviation of
Expected Profit, MAD(z;) increases

b) Part 2 — Varying E; value while maintaining MAD(z,) and MAD values

Table 5.6: Values of Ep, MAD(zy) and MAD; afier varying the E; valae

Deviation of | Expected | Deviationof | Expected Objective -
B Pmﬁt__, : Racoﬁr—ﬁe : Recourse | Profit, Ep 'Funcﬁon,_zz- .
MADGy) | Penalty,E, | Pemalty, |
554956 121917.44 7833738 94669.05 . ""'946.69':03‘5‘
5258.058 120000 74502.5 89696.281 89696.281
4497911 115000 64502.5 76729.074 76729.074
3737.765 110000 54502.5 63761.868 63761.868
2977.618 105000 44502.5 50794.661 50794.66
2217471 100000 34502.5 37827.454 37827.45
1388.915 5000 24502.5 23693.248 23693.248
166.053 92643 19788.5 2832.671 2832.671

Note: When F, value is less than 92643, the formulation is infeasible.
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Ep Valua

Graph of Ep Value vs. Es Value

90000 95000 100000 105000 116000 115000 120000 125000
Es Value

Figure 5.4: Graph of Pareto Curve Optimal Solution for Ep versus E;

Part 2 Graph Interpretation

The graph trend shows an increase of Expected Profit, Ep when we increase
our risk which is the Expected Recourse Penaity, E;

This means that the Ex_pected Profit, Ep increases when the Expected
Recourse Penalty, E; increases

The rate of increase of Expected Profit, Ep reduces for Expected Recourse
Penalty, E, greater than 95,000

The larger the Expected Recourse Penalty, E, the rate of increase of Expected
Profit, Ep reduces
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¢) Part 3 — Varying MAD; value while maintaining MAD(z,) and E; values

Table 5.7: Values of Ep, MAD(zo) and E; afier varying the MAD; value

‘ Davlatlon of Expected Deviation of | Expected Ohjectlve

Profit, '_ ~ Recourse. 1 Recourse ‘__ ~ Profit,Ep | Funchon,zz
MAD(z«)l_ | Pemalty,E, | Pewawy, | |

SIS 3191744 | 7833738 | 04669.05 516605
5053491 | 130654384 70000 86206.609 | 86206.609
4358491 | 142321.051 60000 76056.600 | 76056.600
3863491 | 153987718 50000 65906.609 | 65906.609
3268491 | 167469.806 40000 55756.609 | 55756.609
3673.491 | 181019.379 30000 45606.600 | 45606.609
2078491 | 192686.046 30000 35456.600 | 35456.609
123888 | 200983329 10000 21133843 | 21133843
619.089 | 202649.995 5000 10560027 | 10560.927
0.208 304316179 3 3.55 355

Note: When MAD; value is less than 4, the formulation is infeasible

Graph of Ep Value vs. MADs Value

Ep Value

MADs Value

Figure 5.5: Graph of Pareto Curve Optimal Solution for Ep versus MAD;
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Part 3 Graph Interpretation

L 4

The graph trend shows an increase of Expected Profit, Ep when we increase
our risk which is the Deviation of Recourse Penalty, MAD,

This means that the Expected Profit, E_p increases when the Deviation of
Recourse Penalty, MAD; increases

The rate of increase of Expected Profit, Ep reduces for Deviation of Recourse
Penalty, MAD, greater thém 20,000

The larger the Deviation of Recourse Penalty, MAD; the rate of increase of
Expected Profit, Ep reduces

Graph 2 and Graph 3 show similar graph trend relationship

5.4.4 Analysis of Resalts for Epsilon-Constraint Method

From the graph trends of all three graphs, we can see that all three graphs

objective function (Expected Profit Ep) increases with respect to the increasing
values of MAD(zy), E; and MAD; respectively. The higher the risk of the model as
reflected by higher values of MAD(zo), E; and MAD; value, the lower the expected
profit E,. From the graphs, all three graphs utilize the epsilon constraint method

approach for its multiobjective optimization problem. In this epsilon constraint

method, it extends the solution range of its optimization model as well as fills in the

gaps between the adjacent points along the Pareto optimal curve. The advantage of

this epsilon constraint method is that it is able to generate a full set of solutions and

not to the present one single alternative solution only.
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5.5 SUMMARY OF NUMERICAL RESULTS
5.5.1 GAMS Numerical Results
Objective function: For max z = E(z,) -6,MAD(z,) - E, - 0,MAD,

Table 5.8: Summary of Numerical Results

5.5.2 Computational Statistics

Table 5.9: Summary of Computational Statistics
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Stochastic programming is an optimization method used in manufacturing
process to optimized specified set of parameters without violating some constrain.
Stochastic programming is good because it allows the decision maker to analyze
multiple scenarios of an uncertain future, maximizing net profit while minimizing

various expected costs.

The risk model is reformulated in the form of mean-absolute deviation
(MAD) where MAD is the average absolute deviation from the mean. A Risk Model
is a measure of operational risk provides the computational linear property.
Therefore, the problem for petroleum refinery planning under uncertainty with
multiobjective optimization approach and financial risk management is reformulated

as the equation below [refer to Equation (8)]:-

max z = E(z,) -0,MAD(z,) - E, —~0,MAD,

Our objective of this study is to reformulate the equation above using
different methods to obtain the Pareto Optimal Curve. From the equation above, we
apply the two methods which are the weighted sum method and the e-constraint
method in order to obtain the Pareto front generation. The first method studied is
know as the weighted sum method, emphasizes on 0; and 0; values which represents
the importance of risk in the model. From the results observed, reducing values of
6 and 0 implicates higher profit deviation and reduces uncertainty as well as risk to
the model. A proper selection of 6, and 0; operating range will translate the model

formulation to a more robust model.
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The second method studied is the e-constraint method which generally
extends and fills in the gaps between adjacent points along the Pareto front. The
epsilon-constraint method maximize profit E(zo) and minimizing MAD(zo), E; and
MAD; in order to obtain the Pareto-optimal curve in which each of the Pareto
efficient frontiers points is determine by the values of E(zp) & MAD(z)), E(z0) & E;
and E(zy) & MAD,. The higher the risk as reflected by higher MAD(z,), E; and
MAD; values, the lower the expected profit of E(zp) . From the results obtained, the
major advantage of epsilon constraint method it is able to generate a wide range of
solutions from the MAD(zo), E; and MAD; constraints. From the range of solutions
available, the researcher will select a planning strategy to choose the most attractive
solution range on well-informed decision which proves a better optimization

solution.

In conclusion, both weighted sum method and e-constraint method produces
a more evenly distributed Pareto Optimal Curve (model solutions), giving more
accuracy and precision to the solution produced. Stochastic programming is proven

to be very suitable for optimization models that involve uncertainties and risk.
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6.2 RECOMMENDATIONS FOR FUTURE WORK

Some recommendations for future work can be conducted to further improve

the model formulated by this study. The recommendations are as following:-

To develop a more systematic approach in determining the values of
0; and O, which are the weights for the objective function or risk
measures of MAD(z), E; and MAD,.

To develop a better approach; to implement “spider diagram” or
“radar charts” approach to display all four objectives graphically as
compared to the epstlon constraint method model formulation where
we can only display two objectives graphically. The idea here is to
optimize each objective and display in a cross the maximum (or
minimum) value for each objective. From this, we can see how far we
can stretch or contract each objective.

To analyze and interpret the Pareto Optimal Curve graph in order to
obtain accurate and precise solutions that is able to satisfy the model
formulated.

Formulate a proper loop system for the weighted sum method and
epsilon constraint method to store the formulated solutions into

Microsoft Excel environment.
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STITLE Approach 4:

Weighted Sum Method GAMS Input File

APPENDIX A

Risk Model III of fTwo-Stage Stochastic Programming with Fixed
Recourse for Minimization of the Expected Value and the Mean-Absolute Deviation (MAD)

of the Variation in Recourse Penalty Costs

types of materials

types of materials
types of materials

production shortfall and surplus or yield decrement or increment / K1, K2 /

/ S1*s3

/1*20 /
/

subject to demand uncertainty / 2*6 /

subject to demand uncertainty / 4,7,8,9,10 /

Probability of the realization of scenario

SETS

I

s Scenaries
ID{1)

IY{I)

K

;

ALIAS (8,SC)
PARAMETER

P(S}

/

51 0.35,

s2 0.45,

53 0.20

/

V{I) Variance of Price
/

1 0.352,

2 1.882375,
3 0.352,

4 0.859375,
5 1.156375,
6 0.198,

14 0.012375
/

Table BRICE(I,S)

O s

O O s G PO

4
7
8
9
1

4

0

Table of Price Uncertainty

51 52 53
-8.8 -8.0 ~-7.2
20.35 18.5 16.65
8.8 8.0 7.2
13.75 i2.5 11.25
15,95 14,5 13,05
6.6 6.0 5.4
-1.65% -1.5 -1.35;
Table DEMAND(ID,S) Table of Demand Uncertainty
31 82 33
2835 2700 2565
115% 1100 1045
2415 2300 2185
1785 1700 1615
9975 8500 9025;
Tahle ¥IELD(I¥,S) Table of Yield Uncertainty
st 82 53
-0.1575 -0.15% -0.1425
-0.1365 =0.13 -0.1235
-0.231 -0.22 -0.209
-0.21 -0.20 -0.19
-0.265 -0.30 -0.335;
Table PENALTY DEMAND{ID,K) Table of Penalty Demand
Kl K2
25 20
17 13
5 4
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5 6 5

6 10 8;

Table PENALTY YIELD(IY,K) Table of Penalty Yield
Kl K2

4 5 3

7 5 4

8 5 3

9 5 3

10 5 3;

VARIBBLES

2z Maximize Profit for Z

Ecv

H

POSITIVE VARIABLES

4{ID,8,K) stochastic wvariables on production shortfall and surplus ({(amount of
unsatisfied demand for product i due to underproduction or overpreduction per
realization of scenario s) )

T{IY,S,K) stochastic variables on production shortfall and surplus (amount of
unsatisfied yield for product i1 due to underproduction or overproduction per
realization of scenario s)

X production flowrates of materials

MAD z0, MADs, Es, Ep, DEVIATIONprofit, Tshortfall, Tsurplus

i

EQUATIONS

0BJ Objective function to maximiaze profit

Feedl Feed equation limitation for Crude Cil

Faedl4 Feed equation limitation for Cracker Feed

FYl4 16 Fixed Yield of Cracker for X(14) and X(16)

FYl4 17 Fixed Yield of Cracker for X(17) and X{1i7)

FY14 20 Fixed ¥Yield of Cracker for X(20) and X{(20)

FB2_11 Fixed Blend of Gasoline Blending for X(2) and X (11}
FB2_16 Fixed Blend of Gasoline Blending for X(2} and X(16)
FB5_12 Fixed Blend of Heating 0il Blending for X{5) and X (12}
FB5_18 Fixed Blend of Heating Oil Blending for X({5} and X(18)
UB3 Unrestricted Balance for Naphtha

0OB8 Unrestricted Balance for Gas 0il

UB14 Unrestricted Balance for Cracker Feed

UB17 Unrestricted Balance for Cracked 0Qil

uBo Unrestricted Balance for Fuel Oil

CONS1

CONS2

CONS3

CONS4

YIELDsteoc(IY,S) uncertain or stochastic fixed yield of primary distillation unit
DEMANDstoc {ID, 8) uncertain or stochastic fixed demand of primary distillation unit

r
OBJ. . Z2 =E= Ep - 0.1*MAD z0 - Es — 0.1*MADs;
CONS1.. Ep =E= SUM({{I,5), P({(5)*Price(I,S5)*X(I)};

CONS2.. MAD z0 =E= SUM{SC, P(SC)*ABS(SUM(I, PRICE(I,SC)*X{I)) - BUM((I,S),
P(S) *PRICE(I,S}*%{I))});

CONS3.. Es =E= SUM{S, P{S)*{SUM({ID,K), PENALTY DEMAND(ID,K)*Z{(ID,S,K)) + SUM{(IY,K),
PENALTY YIELD({IY,K)*Y{IY,8,K)})});

CONS4.. MADs =E= SUM(S, P(5)}*ABS{SUM({ID,K), PENALTY_DEMAND(ID,K)*Z(ID,S,K}) +
SUM{ (IY¥,K), PENALTY_ YIELD{IY,E)*¥{IY,S,K))

- 7 SUM((ID,E), PENALTY DEMAND(ID,K)*Z{ID,§,K)) + SOM{(IY,R),
PENALTY YIELD(IY,K}*¥(IY,S,K})});

**LEIMITATIONS OF PLANT CAPACITY
Feedl.. X{'1'} =I= 15000;
Feedl4.. X{'14") =L= 2500;

Fhhkhkhkkkkkhhkdhh bbbk ke d bbbk khhkddkdkhdk bk dd bk bk dhkhk kbbb drhrkdbdhhrdhhhdbdrkdRrd

*FIXED YIELDS FOR CRACKER (deterministic constraints)
dkddekhhhkdkhkrhkhkhkhkkhhkkhkhhkhkihkkhbhkhkdhhdhdkhbhribhhkhhhhdhdhrhrhhhhrikhhhdhhhbdrrhhbrbhrdhrhthdh

FY14 16.. -0.40*X('14%) + X('i6') =E= (;
FY14 17.. -D.B5*X('14'} + X('17') =E= 0;
FYld 20,. ~0,05%X('14%) + X(*20') =E= 0;
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FB2_11.. 0.5*X("2") + X('11') =E= 0;

FB2 16..  0.5%X('2') + X('16') =E= 0;

FBS_12..  0.75%X('5') + X('12') =E= 0;

FB5_189.. 0.25*X('5') + X('18') =E= 0;

OUB3.. =X{'7') + X('3") + X{'11l') =E= 0;

URg.. -X{"8B') + X{'12") + X{'13") =E= 0;

UBi4.. —X(79') + X('14') + X('15') =E= 0;

UB17.. -X('177) + X('18") + X('19') =E= 0;

UB6. . ~%('10") - %('13') - X('15') - E('19') + X('6'} =E= O;

Ihkhkhkkkhkkdhdrhhkhkddhhhhhhhkdhhhrhhh kb bk bk hhhhh kb kA AR AR A IR A IR AR AAR AR A A AT AR AT T hd s

**CONSTRAINTS CN PRODUCTION DEMANDS
P R L E L A e I T 2 T 2 T A T s s L L]

DEMANDstoc (1D, S)..

X{ID) + Z{iD,s,'Kl") - z(ID,S,'K2'} =E= DEMAND(ID,S};

Fhhkkhkhkkhkkbhkkkrhhhkhhhdhhhkhhkhhhkkhdkkhkhhhhrkhbhhhkhrbhrkhkdrdhhdrhhhdkhh bk ddhbhhrirkrhadd

**CONSTRAINTS ON PRODUCTION YIELD

dhk Ak h kA kAR kAR AR R AT A AR RARAA R AR I A AR AT h ARk hdhdh ko hrkkhhhhhhkhhdhkhkdrhhkhhkrhhhhhidh

YIELDstoc(IY,5).. YIELD{LY,S)*X('1') + X(I¥} + Y{(IY,S,'Kl") - Y{IY,S,'K2') =E= 0;

*Initial values
X.L{'1l*) = 12500;
X.L{'2') = 2000;
X.L{'3") = 625;
X.L{"4%) = i875;
X.L{'5") = L700;
¥.5('6') = 6175;
X.L{'7') = 1625;
X.5('8') = 2750;
X.L{'9%) = 2500;
X.L{'10'} = 3750;
A.L{'11"'} = 1000;
X.L{'12%) = 1275;
HX.L{'13"} = 1475;
¥.L({'14'}) = 2500;
X.L('15%) = 0;
X.L{'1l6e*} = 1000;
Z.L('17'} = 1375;
X L{'18") = 425;
X.L{'19') = 950;
L.L{'20") = 125;

Z.L{ID,S8,K) = 0;
=0

Y.L(IY,S5,K)

* Upper bounds of variables

X.UP{"1%} =
X.UB('2")
X.0P('3")
X.OP{'4")
X.UP('5")
X.UP{'6")
X.UP('7"}
X.UP('8%)
X.UP("'9")
X.UP('10")
X.UB('11")
X.UP('12")
X.0P('13")
X.UP('14")
X.UBP('15'})
X.UP('16")
X.UB('177)
X.UP("18")
X.OP(719')
X.UP('20")

LI T A | S I

e nnnt

]

15000;
2700;
1100;
2300;
1700;
95008;
1950;
3300;
3000;
3000;
13590;
1275;
3300;
3000;
3000;
1200;
1650;
425;
1650;
150;

* Lower bounds of variables

X.LO('1Y) =

10;

MODEL REFINERY / all /;
SOLVE REFINERY USING DNLP MAXIMIZING Z2;
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APPENDIX B
Weighted Sum Method GAMS Output File

SOLVE SUMMARY

MODEL  REFINERY OBJECTIVE Z2

TYPE DNLP DIRECTION MAXIMIZE

SOLVER CONQPT FROM LINE 209
kkxk QOLVER STATUS 1 NORMAL COMPLETION
**% %+ MODEL STATUS 2 LOCALLY OPTIMAL
*%i* QBJECTIVE VALUE ~-35637.0848
RESOURCE USAGE, LIMIT 0.109 1000.000
ITERATION COUNT, LIMIT 10 10000
EVALUATION ERRORS 0 0

CONODPT3 xB86/MS Windows version 3.145-017-061
Copyright (C)  RARRI Consulting and Development A/S
Bagsvaerdve] 246 A
DK-2880 Bagsvaerd, Denmark

Osing default options.
The model hag 85 variables and 49 constraints
with 251 Jacobian elements, 37 of which are nonlinear.
The Hessian of the Lagrangian has 37 elements on the diagonal,

156 elements below the diagonal, and 37 nonlinear variables.

*% Optimal sclution. There are no superbasic wvariables.

CONOPT time Total 0.109 seconds
of which: Function evaluations 0.000 = 0.0%
1st Derivative evaluations 0.000 = 0.0%
Workspace = 0.38 Mbytes
Estimate = 0.38 Mbytes
Max used = 0.10 Mbytes
LOWER LEVEL OUPPER MARGINAL
-—-—— EQU OBJ . . . 1.600
wmws EQU Feedl —INF 10.000 15000.000 .
-~-- EQU Feedld -INF . 2500.000 .
~--- EQU FYl4 16 . . . 17.795
-——- EQU FYl4_17 . . . 12.454
—-=- EQU FY14_20 ; . . EPS
---- EQU FB2 11 . . . 105.130
---- EQU FB2_1§ . . . -17.795
---— BQU FB3_12 . . . 31.660
--~-— EQU FB5_18 . . . -12.45%4
-~--— EQU UB3 . . . 4,800
--—— EQU UB8 . . . 12.454
--—— EQU UB14 . - . 12.454
-——— EQU UB17 . N . 12.454
—--—— EQU UB& . . . 12.454
-——— BQU CONS1 . . . 1.000
--—— EQU CONS2 . . . -0.100
-—-—— EQU CONS53 . . . ~31.000
mm—w EQU CONS4 . . B -0.100

0BJ OCbjective function to maximiaze profit

Feedl Feed equation limitation for Crude Oil

Feedl4 Feed equation limitation for Cracker Feed

FYl4_16 Fixed Yield of Cracker for X(14) and X(16)

FY14 17 FPFixed Yield of Cracker for X(17) and X(17)

FY14 20 Fixed Yield of Cracker for X(20} and X({20}

FBZ_11 Fixed Blend of Gasoline Blending for X (2} and X(11)
FBZ_16 Fixed Blend of Gascline Blending for X(2) and X(16)
FB5_12 Fixed Blend of Heating 0il Blending for X({(5) and X(12)
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¥B5_18 Fixed Blend of Heating 0il Blending for X(5) and X%{18)
UB3 Unrestricted Balance for Naphtha

UBB Unrestricted Balance for Gas 0il

UBl4 Unrestricted Balance for Cracker Feed

UB17? Unrestricted Balance for Cracked 0il

UB6 Unrestricted Balance for Fuel 0il

--—- EQU YIELDstoc uncertain or stochastic fixed yield of primary distillation

unit
LOWER LEVEL UPPER MARGINAL
4 .81 . . . 1.260
4 .82 . . . 1.620
4 .83 . . . 0.720
7 .81 . . . 1.680
7 .82 . - . 2.160
7T .83 . . . 0.960
§ .81 . . . 1.260
8 .82 . . . 1.620
8 .83 . . . 0.720
9 .81 . . . 1.260
8 .82 . . . 1.620
9 .83 . . . 0.720
10.81 . . . 1.260
10.82 R R . 1.620
10.83 . . . 0.720
---- EQU DEMANDstoc uncertain or stochastic fixed demand of primary distillatio
n unit
LOWER LEVEL UPPER MARGINAL
2.51 2835.000 2835.000 2835.000 ~8.750
2.52 2700.000 2700.000 2700.000 -11.250
2.83 2565.000 2565.000 2565.000 -5.000
3,81 1155.000 1155.000 1155.000  -5.950
3.82 1100.000 1100.000 1100.0060 ~7.650
3.83 1045.000 1045.000 1045.000 2.600
4.81 2415.000 2415.000 2415.000 -1.750
4.82 2300.000 2300.000 2300.000 -2.250
4,83 2185.000 2185.00¢ 2185.000 G.800
5.81 1785.000 1785.000 1785.000 -2.100
5.82 1700.000 1700.000 1700.000 -2.700
5.83 1615.000 1615.000 1615.000 -1.200
6.81 9975.000 9975.000 9975.000 -3.500
6.82 9500.000 9500.000 9500.000 -4.500
6.83 9025.000 2025.000 9025.800 1.600
LOWER LEVEL UPPER MARGINAT

———~ VAR Z2 —~INF ~3.564E+4 +INF

22 Maximize Profit for 2

--—— VAR 2 stochastic variables on production shortfall and surplus {(amount of
unsatisfied demand for product i due to underproduction cor overprodu
ction per realization of scemario s)

LOWER LEVEL UPPER MARGINAL

2.51.K1 . 2835.000 +INF .
2.51.K2 . . +INF =15,750
2.82.K1 . 2700.000 +INF .
2.582.R2 . . +INF -20.250
2.83.KL . 2565.000 +INF .
2.83.K2 . . +INF -9.000
3.81.K1 . 55.000 +INF .
3.81.K2 . N +INF -10.500
3.82.K1 . . +INF .
3.82.K2 . . +INF -13.500
3.83.K1 . . +INF -6.000
3.83.K2 . 55.000 +INF

4.31.K1 . 115.000 +INF .
4.351.%82 . . +INF -3.150
4,82.K1 . . +INF .
4,82.82 . . +1INF ~4.050
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4.83.K1 . . +IRF -1.800
4.83.K2 . 115.000 +IRF

5.81.K1 . 1785.000 +INF .
5.51.K2 . . +INF -3.850
5.82.K1 - 1700.000 +INF .
5.82.K2 . . +INF -4.950
5.83.K1 - 1615.000 +INF ;
5.53.K2 - . +INF -2.,200
6.81.K1 . 675.000 +INF .
6.81.K2 . . +INF -6.360
6.52.K1 . 200.000 +INF .
6.52.K2 . . +INF -8.100
6.53.K1 . . +INF -3.600
6.83.K2 . 275.000 +INF

——- VAR ¥ stochastic variables on production shortfall and surplus {amount of
unsatisfied yield for product i due to underproduction or overproduc
tion per realization of scenario s)

LOWER LEVEL UPPER MARGINAL
4 .81.K1 . . +INF -3.360
4 .51.K2 . 2298.425 +INF B
4 .82.K1 . . +INF -4.320
4 .82.K2 . 2298.500 +INF .
4 ,B3.K1 - . +INF ~1.920
4 .53.K2 - 2298.575 +INF .
7 .81.K1 B . +INF -3.780
7 .81.K2 . 1098.635 +INF .
7 .82.K1 - . +INF -4.860
7 .82.K2 . 1098.700 +INF .
7 .83.K1 . . +INF -2.160
T .83.K2 . 1098.765 +INF -
g .S1l.K1 . B +INF -~3.360
8 .8l.KZ . 3297.690 +INF -
8 .82.K1 . . +INF -4.320
8 .82.K2 . 3297.800 +INF .
8 .83.X1 . . +INF -1.9Z0
8 .583.%2 - 3297.910 +INF .
9 .51.¥1 . . +INF -3.360
9 .81.R2 - 2997.900 +INF .
9 .S2.K1 . . +INF -4,320
9 _82.R2 . 2998.000 +INF .
9 .83.Kl . . +INF -1.920
9 .53.K2 . 2998.100 +INF .
10.51.K1 . - +INF ~3.360
10.51.K2 . 2997.350 +INF .
10.52.K1 . . +INF -4,320
10.52.K2 - 2997.000 +INF .
10.83.K1 . . +INF ~1.920
10.83.K2 . 2996.650 +INF

«=--= VAR ¥ production flowrates of materials

LOWER LEVEL UPPER MARGINAL
1 10.000¢ 10.006 15000.000 ~4.315
2 . 27G0.000 -
3 1100.000 1:00.000 14.272
4 2300.000 23C0.00C 12.213
5 . . 1700.00C
6 - 9300.000 9500.00¢C
7 . 1100.000 1950.000 .
g - 3300.000 3300.000 8.854
9 - 3000.000 3000.000 8.854
10 . 3000.000 3000.000 8.854
11 . . 1350.000 -109.930
12 . . 1275.000 -44.114
13 . 3300.000 3300.000
14 . . 3000.000 .
15 - 3000.000 3000.000 -
16 . - 1200.000 .
17 . . 1650.000 .
18 - . 425.000
19 . . 1650.000 -
20 - . 150.000 .
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LOWER LEVEL UPPER MARGINAL

--—-— VAR MAD z{ . 5549,565 +INF
me—- VAR MADS . 78337.380 +INF
=== VAR Es . 1.2192E+5 +INF
-——— VAR Ep . 94669.050 +INF
*+%: REPORT SUMMARY : 0 NONOPT

0 INFERSIBLE
0 UNBOUNDED

0 ERRORS
EXECUTION TIME = 0.000 SECONDS 2 Mb WIN226-149 Dec 19, 2007
USER: course license 5060628 : 0842AL-WIN
Phd course about mathematical programming DC5953

License for teaching and research at degree granting institutions
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APPENDIX C
Epsilon Constraint Method GAMS Input File

$TITLE Approach 4: Risk Model I1T of Two—-Stage Stochastic Programming with Fixed
Recourse for Minimization of the Expected Value and the Mean-Absolute Deviation (MAD)
of the Variation in Recourse Penalty Costs

SETS

£ types of materiais / 1*20 /

8 Scenarios [/ 51*83 /

ID(I} types of materials subject to demand uncertainty / 2*6 /

IY(1} types of materials subject to demand uncertainty / 4,7,8,%,10 /

K production shortfall and surplus or yield decrement or increment / K1, K2 /

ALIAS (S, 8C)

PARAMETER

P(S5) Probability of the realization of scenario

/

81 0.35,

§2 0.45,

83 0.20

/

V(I) Variance of Price

/

3 0.352,

2 1.882375,

3 0.352,

4 0.859375,

5 1.156375,

6 0.198,

14 9.012375

/

Table PRICE{I,5) Table of Price Uncertainty
51 52 53

1 -8.8 -8.0 -7.2

2 20.35 18.5 16.65

3 8.8 8.0 7.2

[ 13.75 12.5 11.25

5 15.95 14.5 13.05

6 6.6 6.0 5.4

14 -1.65 =1.5 -1.35;

Table DEMAND{ID,3) Table of Demand Uncertainty
81 32 a3

2 2835 2700 2565

3 1155 1100 1045

4 2415 2300 2185

5 1785 1700 1615

6 9975 9500 ap25;

Table YIELD(IY,S) Table of ¥ield Uncertainty
51 52 53

4 -0.1575 -0.1% ~0.1425

7 ~0.1365 -0.13 ~0.1235

8 -0.231 -0.22 -0.209

9 -0.21 -0.20 -0.19

10 -0.265 -0.30 -6.335;

Table PENALTY DEMAND(ID,K) Table of Penalty Demand
Kl K2

2 25 20

3 17 13

4 5 4
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5 6 5
10 8;

Table PENALTY YIELD(IY,K) Table of Penalty Yield
K1 K2

4 5 3

7 5 4

8 5 3

] 5 3

10 5 3

VARIABLES

z22 Maximize Profit for 2

zZ3

z4

Ecy

POSITIVE VARIABLES

E(IB,8,%) stochastic wariables on production shortfall and surplus (amount of
unsatisfied demand for product i due to underproduction or overproduction per
realization of scenario s)

Y(1¥,S,K) stochastic variables on production shortfall and surplus (amount of
realization of scenario s)

X production flowrates of materials

Ep, DEVIATIONprofit, Tshortfall, Tsurplus

’

PARAMETER MAD_z0_value, Es_value, MADs_value, Ep_value;

EQUATIONS

CBJ Objective function to maximiaze profit

Feadl Feed equation limitatiom for Crude 0Oil

Feedl4 Feed equation limitation for Cracker Feed

FYlé 16 Fixed Yield of Cracker for X(14) and X{18)

FY14 17 Fixed Yield of Cracker for X(17) and X(17)

F¥id_ 20 Fixed ¥ield of €racker for X(20) and X{20)

FB2_11 Fixed Blend of Gasoline Blending for X{2) and X({(11)
FB2_16 Fixed Blend of Gasoline Blending for X(2) and X{16)
FB5_12 Fixed Blend of Heating Oil Blending for X(5) and X(12)
FB5_18 Fized Blend of Heating 0il Blending for X(5) and X(18)
UB3 Unrestricted Balance for Naphtha

UES8 Unrestricted Balance For Gas 0il

UB14 Onrestricted Balance for Cracker Feed

UBL17 Unrestricted Balance for Cracked Cil

GB6 Unrestricted Balance for Fuel 0il

MAD 20

Es

MADs

YIELDstoc({IY,3) uncertain or stochastic fixed yield of primary distillation unit

DEMANDstoc (ID, S) uncertain or stochastic fixed demand of primary distillation unit

H

**[,IMITATIONS COF PLANT CAPACITY
Feedl.. X(*1') =L= 15000;
Feedl4.. X{'14") =L~ 2500;

ThhhkhkhkhkhhkdhhkhkkhkhkdfthhkhkhhhhhkhkrhkhhhbbhhkdkhhbhhhhhArRhhkhkhrhhhdhrrhkhhrrhhkrbdhkdkbhrhhhhbdk

*FTXED YIELDS FOR CRACKER (deterministic constraints)
ks ddddkd kb ki hkh kb kh kb h kbbb hkhhd bkt hrodrhrhrdrdhdhbdthhhrhbikhhhkbhkhhkhbhkhhhhhidhhd

FYl4 16.. -0.40%%('14") + X('16') =BE= 0;
FY14 17.. -0.55*X('14') + X{'17") =E= 0;
FYl4_20.. -D.05*K('14') + X('20') =E= 0;

FB2 T1.. 0.5%X(*2"') + X('11%) =E= 0:
FB2_16.. 0.5%K('2") + X('16") =E= 0;
FB5_12.. 0.75%X(*5%) + ¥('12") =E= 0;
FB5_18.. 0.25%K('5%) + X('18") =E= 0;

UB3.. SK('7') 4 X('37) 4+ X('11') =E= 0;
UBS. . ~H(T8T) + K('12') 4 K(T13') =E= O;
UB14.. ~E('97 + H('14'} + X('15') =E= 0;
UB17.. ~X(T17') + X('18') + X{'19") =E= 0;
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UB6. . —X{*10") - X('13%'} - X('15'} - X('18'} + X('6%) =E= O;

dkhkdhk kA r kI hRr AR dkdrddddd btk ko ko dde e gk de ok ko ok Kk R kR ok e ok o e e de e ok ok ek g e de ok e e ke e e ke ke ek ko ek

**CONSTRAINTS ON PRODUCTION DEMANDS
N L 1 L A L Sy s R P Ry Y i A I E e S e S S SRS A

DEMANDstoc{ID,S).. X{(ID) + Z{ID,S,'Kl*') - Z(ID,S,'R2'} =E= DEMAND(ID, $):

khkkkkhkhkk kb hk kA bk RN EER ARk kA Ak d bk h kb kkddhhhhhhhdkd bbbk hrtrrddhrhhhdhdhkhhiddrdkiddiddd

**CONSTRAINTS ON PRODUCTION YIELD
T T T iR e Rt L e A e s e ]

YIFLDstoc (IY,S).. YIELD{(IY,S)}*X('1') + X{IY) + ¥(IY,S,'Kl') - ¥(IY,§,'K2') =E= 0;
*Initial values
X.L('l"} = 12500;
X.L('2"') = 2000;
X.L("3") = 625;
X.L('4') = 1B75;
X.L('5'} = 1700;
X.L{'6") = 6175;
X.L('7") = 1625;
£.L(*8") = 2750;
X.L('9") = 2500;
X.L('10') = 3750;
X.L('11') = 1000;
X.L(*12') = 1275;
X.L('13") = 1475;
X.L('14') = 2500;
X.L{*15") = 0;
X.L('16") = 1000;
X.L("17") = 1375;
X.L('18') = 425;
X.L('18") = 850;
X.L{'20'} = 125;
Z.L{ID,S,R) = 0;

Y.L(IY,8,K) = 0;

* Upper bounds of variables
X.UB('1l"} = 15000;

X.UB('2'} = 2700;

X, UB('3"') = 1100;

X.UB('4%) = 2300;

X.UB('5'} = 1700;

X.OP{'6'} = 9500;

X.OP{"77} = 1950;

X.UB{'8'} = 3300;

X.UR{'9"} = 3000;

X.OB('10*) = 3000;
X.DP('11") = 1350;
X.0P({'12') = 1275;
L.UP('33") = 3300;
X.UP{'14'} = 3000;
X.0P('15') = 3000;
X.UR(T16') = 1200;
X.UP('17') = 1650;
X.0P('18') = 425;

X.OP(*19') = 1650;
X.ORP('20') = 150;

Ep.L = §;

*+ Lower bounds of variables
X.LO{'1') = 10;

OBJ.. 22 =E= SUM{{I,S), B(S)*Price{I,S)*X(I));

MAD z0.. SUM(SC, P{SC)*ABS(SUM(I, PRICE(I,SC)*X(I}} - SUM((I,Ss),
P (S)*PRICE(I,8)*X({I}))) =L= 7140;

Es.. SUM(S, P(S}*(SUM((ID,K), PENALTY DEMAND(ID,K}*Z(ID,5,K}) + SUM{(IY,K),
PEMALTY YIELD(IY,K)*Y(IY,5,K)))) =L= 279420;

MADs. . SUM{S, P(S}*ABS(JUM({{Ib,K), PENALTY DEMAND(ID,K)*%(ID,%,K)} + SUM((I¥,K),
PENALTY YIELD(IY, K)*Y(IY,S,K})

-~ SUM({tD,K), PENALTY BEMAND(ID,K)*Z(ID,S,K)) + SOM{(IY.K),
PENALTY YIEED(IY,K)}*Y{IY,5,K)))) =L= 150000;

MODEL REFINERY / all /;

75



SOLVE REFINERY USING DWLP MAXIMIZING Z2;

Ep_value = SUM(({I, S}, P(S)*Price(I,S)y*X.L{I}};

MAD 20 _value = SUM(SC, P(SC)*ABS(SUM(I, PRICE(I,SC}*X.L(I}) - SUM{(I,5),
P(8)*PRICE(L,3)*X.L(I))});

Es_value = SUM{S, P(S)*(SUM({ID,K), PENALTY DEMAND(ID,K)*Z.L({ID,S,K)) + SUM{{IY,K),
PENALTY YIELD(IY,K}*Y.L(IY,5,K))});

MaDs value = SOM{S, P{9) *ABS (SOM( {ID, K}, PENALTY_DEHAND(ID,K)*Z.L(ID,S,K)) +
SUM((IY,K), PENALFY YIELD(IY,K)*Y.L{IY,3,K))

-~ SOM{(ID,K), PENSLTY_DEMAND(IB,K)*Z.L{EB,S,K}) + SUM{(IY.K),
PENALTY YIELD(IY,K)*Y.L{IY,S5,K)})};

DISPLAY Ep value, MAD z0_value, Es_value, MADs value;
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APPENDIX D
Epsilon Constraint Method GAMS Outpuat File

S50CLVE SUMMARY

MODETL REFINERY OBJECTIVE 22

TYPE DNLP DIRECTION MAXIMIZE

SOLVER CONOPT FROM LINE 216
kk&k SOLVER STATUS 1 NORMAL COMPLETION
***% MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 9466%.0500
RESCURCE USAGE, LIMIT 0.048 1000.000
ITERATION COUNT, LIMIT 11 10000
EVALUATION ERRORS ] 0

CONOPTSI3 %xB86/MS Windows version 3.148-017-061
Copyright (C) ARKI Consulting and Development A/S
Bagsvaerdve] 246 A
DE-2880 Bagsvaerd, Demmark

Using default options.
The model has 81 variables and 48 constraints
with 243 Jacobian elements, 37 of which are nonlinear.
The Hessian of the Lagrangian has 37 elements on the diagonal,

156 elements below the diagonal, and 37 nonlinear variables.

** optimal solution. There are no superbasic variables.

CONOPT time Total 0.032 seconds

of which: Function evaluations 0.016 = 50.0%

1st Derivative evaluations 0.000 = 0.0%

Workspace = 0.36 Mbytes

Estimate = 0.36 Mbytes

Max used - 0.10 Mbytes

LOWER LEVEL UPPER MARGINAL

---— EQU ORJ . . . 1.000
~---- EQU Feedl -INF 10.000 15000.000
--—- EQU Feedl4 -INF . 2500.000 .
--—— EQU FYl4_16 . . . -37.558
--— EQU FY14 17 . . . 6.090
~-=— EQU FY14 20 . . . EPS
--—- EQU FB2_11 . . . EPS
---- EQU FB2_16 . . . 37.585
--—— EQU ¥B5_12 . . . 21.653
---- EQU ¥B5_ 18 . . . ~6.090
=~ EQU UB3 . . . EPS
---- EQU UEB . . . EPS
-——- EQU UB14 . . . 6.090
—---- EQU OB17 . . . 6.090
———— EQU UBS . . . 6.090
--—— EQU MAD_z0 -INF  5549.565 7140.000
-——- EQU Es ~INF 1.2192E+5 2.,7942E+5
--—~ EQU MADS -INF 79337.380 1.5000E+S

OBJ Objective function to maximiaze profit

Feedl Feed equation limitation for Crude 0Oil

Feedld Feed equation limitation for Cracker Feed

FY1l4_16 Fixed Yield of Cracker for X{14) and X{16)

FYl4 17 Fired Yield of Cracker for X(17) and X{17)

FY14 20 Fixed Yield of Cracker for X(20) and X(20)

FB2_l1 Fixed Blend of Gasoline Blending for X{2) and X(11)
FB2_16 Fixed Blend of Gasoline Blending for X{2) and X(16)
PB5_12 Fized Blend of Heating 0il Blending for X(5) and X{12}
FB5_ 18 Fixed Blend of Heating 0il Blending for X({(5) and X(18)
UB3 Unrestricted Balance for Naphtha
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UBS Unrestricted Balance for Gas 0il

UBR14 Unrestricted Balance for Cracker Feed
UB17 Unrestricted Balance for Cracked 0Oil
UB6 Unrestricted Balance for Fuel Gil

-——— EQU YTELDstoc uncertain or stochastic fixed yield of primary distillation

unit
LOWER LEVEL UPPER MARGINAL
4 .81 . . . EPS
4 .82 . . . EPS
4 .83 . . . EPS
7 .81 . . . EPS
7 .82 . . . EPS
7 .83 . . . EBS
8 .81 . . . EEFS
8 .82 . . . EPS
8 .83 . - . EPS
9 .81 . . . EPS
9 .82 . . . EPS
9 .83 . . . EPS
10.51 . - . EPS
10.82 . . . EPS
10.83 - . . EPS
-——- EQU DEMANDstoc uncertain or stochastic fixed demand of primary distillatio
n unit
LOWER LEVEL UPFPER MORGINAY,
2.31 2835.000 2835.000 2835.000 EPS
2.82 2700.000 2700.000 2700.000 ERS
2.83 2565.000 2565.000 2565.000 ERS
3.81 1155.000 1155.000 1155.000 EPS
3.82 1100.000 11060.000 1100.000 EPS
3.53 1045.000 1045.000 1045.000 EPS
4.31 2415,000 2415.000 2415.000 EPS
4,82 2300,000 2300.000 2300.000 EPS
4.83 2185.000 2185.000 2185.000 EPS
5.81 1785.000 1785.000 1785.000 EPS
5.82 1700.000 1700.000 1700.0600 EPS
5.83 1615.000 1615.000 1615.400 EPS
6.51 9975,000 9975.000 9975.000 EPS
6.52 9500.000 9500.000 9500.000 EPS
6.83 9025.000 9025.000 9025.000 EPS
LOWER LEVEL UFPPER MARGINAL
——== VAR Z2 ~INF 94665.050 +INF

Z2 Maximize Profit for 2

--—- VAR Z stochastic variables on productien shertfall and surplus (amount of
unsatisfied demand for product i due to underproduction or overprodu
ction per realization of scenariec s)

LOWER LEVEL UPPER MARGINATL

2.51.K1 . 2835.000 +INF .
2.51.K2 . . +INF EPS
2.82.K1 . 2700.000 +INF .
2.82.K2 - . +INF EPS
2.83.K1 . 2565.6G00 +INF .
2.83.R2 - . +INF EPS
3.81.FK1 . 55.000 +INF .
3.81.K2 f . +INF EPS
3.82.K1 . - +INF .
3.82.K2 . - +INF EPS
3.83.K1 . . +INF EPS
3.83.R2 . 55.000 +INF

4.51.K1 . 115.000 +INF -
4.81.K2 . . +INF EPS
4.82.K1 . . +INF .
4.52.R2 . . +INF EPS
4.53.K1 . . +INF EPS
4.83.K2 . 115.000 +INF .
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5.51.K1 . 1785.0600 +INF .
5.81.K2 . +INF EPS

5.52.K1 . 170Q.000 +INF .
5.82.K2 . . +INF EPS
5.53.K1 . 1615.000 +INF .
5.83.K2 . . +INF EPS
6.81.K1 . &75.000 +INF .
6.51.K2 . . +INF EPS
6.52. K1 . 200.000 +INF .
6.82.K2 . . +INF EPS
6.83.K1 . . +INF EPS
6.53.K2 . 275.000 +INF .

--=— VAR Y stochastic variables on production shortfall and surplus (amount of
unsatisfied yield for product i due to underproduction or overproduc
tion per realization of acenario s)

LOWER LEVEL UPPER MARGINAL

4 .81.X1 . . +INF EPS
4 .81.K2 . 2298.425 +INF ;

4 .82.K1 . . +INF EPS
4 .82.K2 . 2298.500 +INF .

4 .83.K1 . . +INF EPS
4 _S3.K2 . 2298.575 +INF .

7 .81.EK1 . . +INF EPS
7 .81.R2 . 1098.635 +INF .

7 .82.K1 . . +INF EPS
7 .82.K2 . 1098.700 +INF .

7 .83.Kl . . +INF EPS
7T .83.K2 . 1098.765 +INF .

8 .81.K1 . . +INF EPS
B .81.K2 . 3297.690 +INF .

8 .8S2.K1L . . +INF EPS
g .S2.K2 . 3297.800 +INF .

8 .S3.K1 . . +INF EPS
8 .83.%K2 . 3297.910 +INF .

9 .81.K1 . . +INF EPS
9 .81.K2 . 2997.900 +INF .

9 ,82.K1 . . +INF EPS
9 .82.K2 . 2998.000 +INF .

9 ,83.K1 . . +INF EPS
9 .83.K2 . 2998.100 +INF .
10.81.K1 . . +INE ERS
10.8S1.R2 . 2997.350 +INF .
10.82. K1 . . +INF EP3
10.82.K2 . 29%7.000 +INF .
10.83.K1 . . +INF EPS
10.83.RK2 R 2996.650 +INF

-——— VAR X production flowrates of materials

LOWER LEVEL UPPER MARGINAT
1 10.000 10.9000 15000.000 -8.120
2 . 270€.000 .
3 1106.0060 1100.000 8.120
4 2300.000 2306.000 12.688
5 . 1700.0060
6 9300.000 9500.00C0 .
7 . 1100.000 1950.000 .
8 . 3300.000 3300.000 .
9 . 3000.000 3000.000 6.090
10 . 3000.000 3000.000 6.090
il . . 1350.000 .
12 . . 1275.000 -21.653
13 . 3300.000 3200.000 6.090
14 . . 3000.000 ~-19.285
15 . 3000.000 3000.Q00
16 . . 1290.000
17 . . 1650.000
18 . . 425.000
19 . . 1650.000 .
20 . . 150.000 .
**x%* REPORT SUMMARY : Q HONOPT
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0 INFEASIBLE
0 UNBOUNDED
0 ERRORS

GAMS Rev 149 x86/MS Windows 06/05/0% 03:06:40 Page 6
Apprcach 4: Risk Model III of Two-Stage Stochastic Programming with Fixed Recourse
for Minimization of the Expected Value and the Mean-Absolute Deviation (MAD) of the
Variation in Recourse Penalty Costs

Execution

- 228 PARAMETER Ep_value = 94669.050
PARAMETER MAD z0_value = 5549.565
PRRAMETER Es_value = 121817.440
PARAMETER MADs_value = 78337.380
EXECUTION TIME = 0.032 SECONDS 3 Mb WIN226-149 Dec 19, 2007
OSER: course license 5060628:0842AL-WIN
Phd course about mathematical programming DC5953

license for teaching and research at degree granting institutions
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