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ABSTRACT

In the current modernized globalization era, crude oil prices have reached a

record high of USD 147 per barrel according to the NYMEX exchange on June

2008. It is forecast to spiral upwards (withthe current graph trend) to a muchhigher

price level. The current situation of fluctuating high petroleum crude oil prices is

affecting the markets and industries worldwide by the uncertainty and volatility of

the petroleum industry. As oil refining is the downstream of the petroleum industry,

it is increasingly important for refineries to operate at an optimal level in the

presence of volatility of crude oil prices. Downstream refineries must assess the

potential impact that may affect itsoptimal profit margin byconsidering the costs of

purchasing the raw material of crude oils and prices of saleable intermediates and

products as well as production yields. With optimization, refinery will be able to

operate at optimal condition.

In this work, we have attempted to solve model formulation concerning the

petroleum refinery planning under uncertainty. We use stochastic programming

optimization incorporating the weighted sum method as well as the epsilon

constraint method to solve the model formulation of the petroleum refinery planning

under uncertainty.

The objective of this research project is to formulate a deterministic model

followed by a two stage stochastic programming model with recourse problem for a

petroleum refinery planning. The two stage stochastic risk model is then

reformulated using MeanAbsolute Deviation as the risk measure. After formulating

the stochastic model using Mean Absolute Deviation, the problem is then

investigated using the Pareto front solution of efficient frontier of the resulting

multiobjective optimization problem by using the Weighted Sum Method as well as

the e-constraint method in order to obtain the Pareto Optimal Curve which generates

a wide selection of optimization solutions for our problem. The implementation of

the multiobjective optimization problem is then automated to report the model

solution by capturing the solution values using the GAMS looping system. Notethat

some of the major parameters used throughout the formulated stochastic



programming model include prices of the raw material crude oil and saleable

products, market demands forproducts, andproduction yields.

The main contribution on this work in die first part is to conduct a further

study/research on the implementation of themodel formulation in Khor et al. (2008)

where the model formulated by Khoret al. (2008) uses variance as the risk measure.

The results obtain in the previous paper will be compared with the method in this

paper that incorporates Mean Absolute Deviation as the risk measure. To further

study the model formulated, the solution obtain is further enhanced using the

Weighted Sum Method as well as theEpsilon constraint method to obtain thePareto

Optimal Curve generation. Hence, most of the exposition on the model formulation

and solution algorithms are taken directly from the original paper so as to provide

the readers with the most accurate information possible.
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ABBREVIATIONS AND NOMENCLATURE

Indices

i for the set ofmaterials or products

j for the set ofprocesses

t for the set oftime periods

Sets

/ set ofmaterials or products

J set ofprocesses

T set of time periods

Parameters

dlf demand for product / in time period t

dh dv lower and upper bounds on the demand of product i during period t,

respectively

„l u lowerand upper boundson the availability of crude oil duringperiod

t, respectively

renin rfinax minimum and maximum required amount of inventory for material /'

at the end ofeach time period

b^ stoichiometric coefficient for material i in processj

yijt unit sales price ofproduct type i intime period /

Xt unit purchase price of crude oil in time period t

yif valueofthe final inventory ofmaterial / in time period t

Xll



X value of the starting inventory of material / in time period t (may be
"»V

taken as the material purchaseprice for a two-period model)

ay variable-size cost coefficient for the investment cost of capacity

expansion ofprocess/ in time period /

j3y, fixed-cost charge for the investment cost of capacity expansion of

process/ in time period t

rh o, cost per man-hourofregular and overtime labour in time period/

Variables

xJit production capacity of process/ (/ = 1, 2,..., M) during timeperiod /

je^_i production capacity of processj (j ~ 1,2, ..., M) during time period

t~\

yjj vector of binary variables denoting capacity expansion alternatives of

process/ in period t (1 if there is an expansion, 0 if otherwise)

CEjj vector of capacity expansion of process/ in time period t

Sij amount of (commercial) product /' (/ - 1, 2,..., JV) sold in timeperiod

Lijt amount of lostdemand for product / in timeperiod t

Pt amount ofcrude oil purchased in time period /

rs rf initial and final amount of inventory ofmaterial / in time period /

Hitt amount of product type / to be subcontracted or outsourced in time

period t

Rt, Ot regularand overtime workingor production hours in time period/

Superscripts

oL lower bound

ou upper bound

xm



Nomenclature and Notations for the Numerical Example (as depicted in Figure

5.1)
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Figure5.1: Simplified representation of a petroleum refinery production from crude
oil (Khor etal. 2008)

x\ mass flow rate (in ton/day) of crude oil stream

xi mass flow rate (in ton/day) ofgasoline in combined streams ofx\\ and *i6

xj mass flow rate (in ton/day) ofnaphtha stream after a splitter

JC4 mass flow rate (in ton/day) ofjet fuel stream

x5 mass flow rate (in ton/day) of heating oil stream

X6 mass flow rate (in ton/day) of fuel oil stream

x7 mass flow rate (in ton/day) of naphtha stream exiting the primary

distillation unit (PDU)

x8 mass flow rate (in ton/day) ofgas oil stream

x9 mass flow rate (in ton/day) ofcracker feed stream

jcio mass flow rate (in ton/day) ofresiduum stream

jtn mass flow rate (in ton/day) of gasoline stream after splitting of naphtha

stream exiting the PDU

x\2 mass flow rate (in ton/day) ofgas oil stream after a splitter
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X13 mass flow rate (in ton/day) of gas oil stream entering the fuel oil

blending facility

X14 mass flow rate (in ton/day) ofcracker feed stream after a splitter
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oil blending facility
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xis mass flow rate (in ton/day) of heating oil stream after splitting of

cracker output
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND STUDY

Petroleum or crude oil is a naturally occurring, flammable liquid found in

rock formations in the Earth consisting of a complex mixture of hydrocarbons of

various molecular weights plus other organic compounds. The composition

hydrocarbon in crude oilmixture is highly variable andranges from as much as 97%

by weight in the lighter oils to as little as 50% in the heavier oils and bitumen. The

hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic

hydrocarbons. Thecomposition ofweights is shown below:-

Tabte 1,1;Table ofComposition ofCrudeOil by WeightPercentage

Element Percent Range

Carbon 83 to 87%

Hydrogen 10 to 14%

Nitrogen 0.1 to 2%

Oxygen 0.1 to 1.5%

Sulfur 0.5 to 6%

Metals Less than 1000 ppm

Petroleum is the raw material for many chemical products, including

pharmaceuticals, solvents, fertilizers, pesticides and plastics. The industry is divided

into the major components: upstream and downstream. Petroleum is vital to many

industries thus is critical concern to many nations. The world currently consumes

energy at a rateof 200million barrels of oil perday, with 87percent supplied byoil,

gas and coal. Topping the oil consumers largely consists of developed nations; in

fact 24% of the oil consumed in 2004 went to the United States alone. The graph

below shows World Energy consumption (in Quadrillion Btu):-
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Figure 1.1: World Marketed Energy Useby Energy Type, 1980 - 2030

*Source: History: Energy Information Administration (EIA), International Energy

Annual 2003 (May-July 2005), website www.eia.doe.gov/iea/. Projections: EIA,

Systemfor the Analysis ofGlobal Energy Markets (2006)

The price of crude oil has reached a record high of USD147.27 according to

the NYMEX Exchange which occurred on 11* July 2008. At high fluctuation rate of

crude oil price, it is essential to have refinery optimization to maximize profit from

oil sales. Theprice comparison between years is tabulated into a graph as below:-
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>
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Figure 1.2: Oil Prices from 1994 to March 2008 (NYMEX Light Sweet/WTI)

♦Source: http://octane.nmt.edu/gotech/Marketplace/Prices.aspx
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1.2 OPTIMIZATION

Optimization is part of life. In our day to day lives we make decisions that we

believe can maximize or minimize our set of objectives. This is known as

optimization. However, as the system becomes more complicated involving more

and more decisions and becoming constrained by various factors, it is difficult to

take optimal decisions. Further, many times die stakes are high and there are

multiple stake holders to be satisfied (Urmila Diwekar, 2003).

Optimization is the use of specific methods to determine the most cost

effective and efficient solution to a problem or design for a process. This technique

is one ofthe majorquantitative tools in industrial decisionmaking.A wide varietyof

problems in the design, construction, operation and analysis of chemical plants can

be resolved by optimization (Edgar et. al, 2001). A typical engineering design

problem is always involved with the objective function of maximizing profit and/or

minimizing cost. Therefore, mathematical optimization theory provides a better

alternative for decision making in these situations provided one can represent the

decisions and the system mathematically (Urmila Diwekar, 2003).

For optimization of the crude oil refinery, we are using the Stochastic

Programming which focuses on the Weighted Sum Method as well as the Epsilon

Constraint method. Both methods will be explained in the Literature Review of the

introduction section.

18



1.3 PROBLEM STATEMENT

In view of the current situation, crude oil prices have fluctuated to a record

high of USD 147 per barrel according to the NYMEX Exchange. The midterm

production planning problem for petroleum refineries would be on how to determine

maximum-profit optimal midterm refinery planning. For our problem statement, we

are given the available process units and their capacities as well as the crude oil and

refinery products. What is the amount of materials processed at each time, in each

unit, in each stream under uncertainties in:

• Prices ofcrude oil + saleable products

=> (objective coefficients)

• Market demand for products

=> RHS coefficients of constraints

• Product/Production yields ofcrude oil in Crude Distillation Unit (CDU)

=> LHS coefficients of constraints

In determining the problem statements, our objective is to determine the

amount of materials that are processed in each process units by considering the

following uncertain parameters:-

a) Market demands for products. Examples are the productions amounts of

the desired products.

b) Prices ofcrude oil and the saleable products.

c) Product (or production) yields ofcrude oil from chemical reactions in the

primary crude distillation unit

It is now more important than ever for petroleum refineries to operate at an

optimal level in the present dynamic global economy. This situation calls for a more

robust planning of the refinery operations to be undertaken by considering possible

uncertainties in the major parameters that primarily include prices of the raw

material crude oil and saleable products, market demands for products, and

production yields.
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1.4 RESEARCH OBJECTIVES

The main objectives of research are as below:-

1. To formulate a deterministic optimization model for petroleum refinery planning;

2. To transform the deterministic model into a two-stage stochastic programming

with fixed recourse formulation that accounts for uncertainty in the objective

function coefficients of prices, the right-hand side constraint coefficients of

product demands, and the left-hand side constraint coefficients of yields by

implementinga suitable scenario generation approach.

3. To formulate two stage stochastic programming model with recourse using

Mean-Absolute Deviation as risk measure.

4. To solve the stochastic programming model using the modeling language

GAMS;

5. To automate the procedure for reporting the model solution by capturing the

solution values using the GAMS looping system;

6. To investigate the Pareto front solution of efficient frontier (consisting of

efficient or non-dominated points) of the resulting multiobjective optimization

problemby using an automated recursive statement (suchas loop) in GAMS.

7. To investigate further the multiobjective optimization problem by incorporating

the Weighted Sum Method (WS method) as well as the e-constraint method.

Both methods are reformulated into the optimization model. Both optimization

models will be compared with the original model as formulated by Khor et al.

(2008) to know whether the new method produces a more evenly distributed

Pareto Optimal Curve.
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2.2 INTRODUCTION TO STOCHASTIC PROGRAMMING

Process optimization is a manufacturing process to optimize some specified

set of parameters without violating some constraint. The most common goals of

process optimization are minimizing cost, maximizing profit and/or maximizing

efficiency. Therefore, the main goal of optimizing a process is to maximize one or

more ofthe process specifications, while keeping all others within their constraints.

The maincomponents of optimization underuncertainty (Figure2.1)are as below:-

Stochastic Linear

Programming (SLP)

Stochastic

Programming

Programming
with Recourse

Probabilistic

Programming

0PTIM1ZAT10N

UNDER UNCERTAINTY

Fuzzy
Mathematical Programming

Stochastic

Dynamic Programming

Flexible

Programming
Possibilistic

Programming

Stochastic Non-Linear

Ptogrammuig(SNLP)
Stochastic Integer

Programming (SO1)
Robust Stochastic

Programming (RSP)

Figure 2.1: Established optimization techniques under uncertainty

Stochastic programming is an optimization method based on the probability

theory. Stochastic programming is a framework for modeling optimization problems

that involve uncertainty whereas deterministic optimization problems are formulated

with known parameters). Uncertainty is usually characterized by a probability

distribution on the parameters. Stochastic programming takes advantage of the fact

that probability distributions governing the data are known or can be estimated. The

goal of stochastic programming is to find the most feasible possible data that

maximizes the expectation of function ofthe decisions and the random variables.

In constructing a mathematical model of a decision making situation, we

should use approaches to reflect the randomness or the ambiguity involving

parameters in a situation (Sakawa et al. 2001). Stochastic programming is a typical

approach for such decision making problems involving uncertainty. What makes

stochastic programming good is because it allows the decision maker to analyze

multiple scenarios of an uncertain future, each with an associated probability of

occurrence. Optimization maximizes net profit while minimizing various expected

22



costs. What makes stochastic programming good is because it allows the decision

maker to analyze multiple scenarios of an uncertain future, each with an associated

probability of occurrence (Khor et al. 2008). Optimization maximizes net profit

while minimizing various expected costs.

2.3 TWO-STAGE STOCHASTIC PROGRAMMING WITH RECOURSE

SUBPROBLEM

The most widely applied and studied stochastic programming models are

two-stage linear programs. In this section, the decision maker takes some action in

the first stage, after which a random event occurs affecting the outcome of the first

stage decision. A recourse decision can then be made in the second stage that

compensates for any bad effects that might have been experience as a result of the

first-stage decision. The optimal policy from such a model is a single first-stage

policy and a collection of recourse decision defining which second-stage action

should be taken in response to each random outcome.

Recourse models result when some of the decisions must be fixed before

information relevant to the uncertainties is available, while some of them can be

delayed until afterward. Stochastic programming with recourse is often used to

model uncertainty, giving rise to large-scale mathematical programsthat require the

use of decomposition methods and approximation schemes for their solution. The

term 'recourse' refers to the opportunity to adapt a solution to the specific outcome

observed (Higle, 2005). Recourse problems are always presented as problems in

which there are two or more decision stages.

It is highly evident that in production system, demand forecasts are often

critical to the planning process. When demand is assumed to be known with

certainty, an optimal deterministic production plan can be obtained easily. However,

in reality demand is rarely known with absolute certainty. Thus, the two-stage

production planning process is usedto model problem that ariseswithuncertainty.
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A Two-Stage Stochastic Programming with recourse subproblem can be expressed

as below:-

min crx+J%[e(*,5(©))]
s.t.toAx = b (1)

xeX>0

Q(x,Z>(&)) =minimize gT((o)y((a)
subject to Wy(Gi) = h(<o) - T(m)x (2)

y(<a) > 0

With the notation:

xeR" : Vector offirst-stage decision variables, size (n x 1)

C : First-stage column vector ofcost coefficient, sizes (n x 1)

A : First-stage coefficient matrix, size (m x n)

b : Corresponding right-hand side vectors, size (wxl)

to e Q : Random events or scenario

£(©) : Random vector

q((a) : Secondstage vectorofrecourse cost coefficientvectors size

(Jfcxl)

h(<d) : Second stage right-hand sidevectors, size (/ x 1)

T(co) : Matrix that ties the two stages together, size (/ x k)

W((d) : Random recourse coefficient matrix, size (/ x k)

y((a) : Vector of second-stage decision variables, size (kx. 1)

From the Two-Stage Stochastic Programming above, Equation (1) is known

as the first stage, where x is referredto as the "here-and-now" decision. Note that x

does not response to m. Meanwhile, y represents the second stage variable with a

"wait and see" approach, y is determined only after observations regarding o have

been obtained.
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2.3.1 Two-Stage Stochastic Programming with Simple Recourse Subproblem

Simple recourse problems feature a very special form of the recourse matrix

when the constraint coefficients in the second stage model, W, form an identity

matrix. Deviations from a target value are penalized by a linear penalty. A simple

recourse problem arises in manysituations. Forexample, when 'target values' can be

identified, and a primary concern involves minimizing deviations from these target

values (although these might be weighted deviations), a simple recourse problems

result.

23.2 Two-Stage Stochastic Programming with Fixed Recourse Subproblem

A fixed recourse problem is one in which the constraint matrix in the

recourse subproblem is not subject to uncertainty (i.e., it is fixed). Meaning to say,

fixed recourse model arises when the constraint coefficients matrix W (co) in the

second-stage problem is not subject to uncertainty, that is, it is fixed and hence is

denoted simply as the matrix W. For a Fixed Recourse Subproblem, Equation (2)

coefficient W((o) is fixed, which means the valueof Wis determined and not subject

to uncertainty.

2.3.3 Two-Stage Stochastic Programming with Complete Recourse Subproblem

A two-stage stochastic programming with complete recourse subproblem is

said to have complete recourse if the recourse cost for every possible uncertainty

remains finite (has a value), independent of the nature of the first-stage decisions

(Khor et al. 2008). If a problem has complete recourse, the recourse function is

necessarily finite. To ensure completerecourse in any problem, penalty functions (of

costs) for deviations from constraint satisfaction ofprescribed limits are used.
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CHAPTER 3

METHODOLOGY

3.1 METHODOLOGY (GANTT CHART)

3.1.1 Semester 1 (July 2008)

Ml

1 Topic Selection

jM! ~r* 4 ^ 0 r -^"., "in it"' ti I* "ii

2 Submission of Proposal

3 Literature Review

4
Preliminary Report
Submission

5
Stochastic Model Formulation
with MAD

6
Submission of Progress
Report

7
Computational Studies with
GAMS

8 Seminar I

9
Submission of Interim Report

and Final Oral Presentation
Nex t Semester; model reform ula tion &<iom pui aticmal studies usuna :

Weighted Sum Method

e-constraint Method

3.1.2 Semester 2 (January 2009)

1

la'k

Discussion with lecturer

JJ « » ' 4 s * -1
" III 11 ri: i- it

2 Project work commence

3 Progress Report Submission

4
Weighted Sum Method Model
Formulation & GAMS

5
Epsiloa Constraint Method
Model Formulation & GAMS

6 Progress Report II Submission

7 Pre-EDX

8 £DX •
9 Submission ofFinal Report I
10

Final Oral Presentation (Week
18 & 19)

11
Submission ofHardbound

(Week 20)
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3.2 METHODOLOGY (FLOW CHART)

Figure 34; Methodology flow chart for the model formulation prpblem
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CHAPTER 4

MODEL FORMULATION

Stochastic Programming Optimization; one of its heaviest users has been the

petroleum refining industry. Refining operations are routinely planned by formal

optimization, often on a daily or even hourly basis. Our goal in optimization model

is to identify an optimal solution which is the most feasible choice satisfying all

constrains (Rardin, 1998).

4.1 STOCHASTIC MODEL FORMULATION FOR DEVIATION OF

RECOURSE PENALTY USING MEAN ABSOLUTE DEVIATION (MAD)

The mean-absolute deviation (MAD) is the average absolute deviation from

the mean. The mean-absolute deviation (MAD) is defined as:

where n is the sample size, jc, are the values of the samples, x is the mean, and/ is

the absolute fiequency. The use ofMean Absolute Deviation serves to overcomethe

computational difficulties and therefore enables large scale problems to be solved

faster and more efficiently. Below shows the penalty functions for Mean Absolute

Deviation when we maximize and minimize the objective function to obtain the

penalty and return values:-

Penalty Penalty

• Return • Return

Mean-Absolute Deviation (MAD) Mean-Absolute Deviation (MAD)

Figure 4.1: Penaltyfunctions for MeanAbsoluteDeviation
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As presented by Khor et al. (2008), Risk Model III model formulation using Mean

Absolute Deviation for deviation ofrecourse penalty is given by

maxz =E(z0)-QlV(z0)-E,-Q3W, (3)

Where,

E(z0) = ExpectedProfit

§xV{zQ) = Deviation of Profit

Es = Expected Recourse Penalty

93WS = Deviation of Recourse Penalty

9,,92 = Component weights ofthe objective function or risk

Based on Equation (3), the term Ws corresponds to the Mean Absolute Deviation

(MAD) of the expected penalty costs due to violations of constraints for maximum

demands and yield. The MAD ofthe expected penalty costs is formulated as below:

^=2>s|i-^l=I>s
seS seS

5,-£pA
JeS

^,=Za
seS iei iel s'eS'

defined and Ws must then satisfy the following conditions:

Ws>~Y,Ps
seS

ws>Yps
s<zS iel

(4zl+c~z-s)

+{q!yts+<i7y^)

+{qtyt+qJyJ,s)

ZZ/v
iel s'eS"

-ZZa
js/ s'eS'

and the non-negativity constraints for Ws:

W>0

29
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Meanwhile, based on Equation (3) the term Es corresponds to the expected recourse

penalty for the second-stage costs due to yield uncertainty. The expected recourse

penalty, Esfor the second-stage costs is given by:

E^demand =Z Z A^Zl +C- ZU )
iel seS

Kyidd =ZZ Z pM7,kyt,k,s +a7ky7,kJ
ie/ seSkeK

Therefore;

&S ~ ^s,demmd +Es,yield

£,=ZZ^
iel seS

(« +ci zi,s)+Z tei^+a7,kyuk,s)
keK

=£2>A. (?)
iel seS

Where; g, =«z£ +eT^)+ Z ttWi.« +*i>T^)

Thus, the Stochastic Model formulation using Mean-Absolute Deviation (MAD) for

deviation of recourse penalty is formulated as Equation (3) by substituting Es and Ws

with Equation (4) and (7) respectively.
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4.2 INTRODUCTION TO WEIGHTED SUM METHOD FORMULATION

The weighted sum method is used to approximate the non-dominated set

through the identification of extreme points along the non-dominated surface. The

idea of the weighting methods (Gass and Saaty, 1955; and Zadeh, 1963) is to

associate each objective function with a weighting coefficient and minimize the

weighted sum of the objectives. In this way, the multi-objective optimization

problem is transformed into a seriesofsingleobjectiveoptimization problems.

The weights of each constraint should be a valuegreater than zero to satisfy

the optimal solution of the weighted problem is a non-dominated solution. As long

as the values of the weights are greater than zero, the multiobjective optimization

will produce solutions between these two points. For our model formulation we

incorporate the risk model as presented by Khor et al. (2008). The risk model is

reformulated using Mean Absolute Deviation incorporating 0i and O2 values which

represent the weights ofdie components of the objective function or risk factor.

As represented in equation (6), the MAD(r0) is weighted by the operational

risk factor , which is varied over the entire range of (0, co) to generate a set of

feasible decisions that have maximum return for a given level of risk. This feasible

decisions set is equivalent to the "efficient frontier" portfolios introduced by

Markowitz (1952; 1959) for financial investment applications. The parameter 02 can

be seen as reflecting the decision maker's attitude towards variability; in other

words, it signifies die risk attitude of the decision maker.
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4.3 STOCHASTIC PROGRAMMING MODEL FORMULATION OF

REFINERY PLANNING PROBLEM USING MEAN-ABSOLUTE

DEVIATION AS THE RISK MEASURE

We propose to extend the model formulation of Risk Model III as presented

in Khor et al. (2008) to incorporate the LI risk of mean-absolute deviation as a

measure of deviation from the expected profit. Thus, the objective function of the

model is reformulated replacing V(zg) with MAD(z0) in equation (3) which is

represented as below:

MAD(x) =E

max z=£[zo]-0lMAD(zo)-£s-02MADs (8)

Where:

Gi, 626 (0, 1] are weights of the components of the objective function or risk

factor

ZVy"£ Zv,
y=i ..H J

4.3.1 Model reformulation using MAD(zo) as risk measure for deviation from

deterministic profit

MAD(z0HZ^h>-£W| <9>
seS

where:

Profit zo =J]
I>,A, +I?,X, -ZU-IK'l -HcjjXjj -Y.KH»
isl ie/ ie/ ie/ jeJ ie/

Bfo>=Z
t&T

teT

'Y5>°*Su+B,4-23>«4, -XhA -Yf^u -BA
iel seS isl iel seS iel jsJ iel

(10)

(11)

Substituting (10) and (11) into (9), and (9) into (8), we have the complete

Stochastic model which the deviation for profit term is expressed in Mean Absolute

Deviation. Refer to Chapter 4: Numerical Example part for further Mean Absolute

Deviation MAD(zo) formulation discussion.
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4.4 STOCHASTIC PROGRAMMING MODEL FORMULATION OF

PETROLEUM REFINERY PLANNING PROBLEM

For simplicity of Stochastic Programming model formulation, we assume

that no alternative source ofproduction hence if there is a shortfall in production, the

demand is actually lost. Therefore, we need to anticipate the production of the

refinery at the beginning of planning that is production variable x is fixed (meaning

all unmet demand is considered lost).

In second-stage stochastic programming, we take into account the recourse

problemwhich takes into account penalty of surplus or shortfeU. The representation

ofstochastic programming surplus/shortfall is as follow:-

i^4profit>i>^^
max profit =£[^)]-e1MAD(z0)-£s-e2MADJ

=2 I PsCm -6, lxfMAD{zQ)- S I Ps ^^^H^i^'^

(12)

-$2MADS

where 7+ 7t v+ vT - second stage recourse decision/variables (amount

Z/,5'Z/,S,-j;/',5,^/>

underproduced or overproduced)

2nd stage recourse cost (penalties for producing

surplus or shortfall

Therefore from the deterministic equation stated previously, we formulate the

risk model for the petroleum refinery planning. The expectation operator or mean of

a discrete random variable for a discrete non-uniform distribution is given by:

£[*„] =2>/(*) (")
x

where in our problem formulation,x refers to the objective function of scenario s and

J{x) represents the probability ofscenario s.
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The L\ risk of the absolute deviation function is given as follows (Konno and

Koshizuka, 2005; Konno and Yamazaki, 1991):

MAD(x) = £
n n

I** -E HRJ*J
7=1 _>1 J

(14)

With the notation;

R : Unit price or unit cost ofmaterial (either raw material of crude oil or

the refinery products)

xj : Amount of money invested in an asset j refers to the production

flowrate ofmaterials in refinery

Therefore, the mean-absolute deviation (MAD) function of equation (14) can be

formulated as below:-

MAD(x) = £

— -.-

t*J*J -E t*J*J
>«1 J=l J.

MAD(zo) =4|zQ]J-£[zQ]|]

= E Z0,s ~ZjPsZQ,i
seS

=Za z0,s ~ 2j PsZ0,s
seS seS

MAD(z0) =Z^
seS

2LiC',sX<>s ' ' ', 'PsCi.sXi.t
iel ielseS
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4.5 FORMULATION OF THE PARETO FRONT SOLUTION OF

EFFICIENT FRONTIER FOR THE EXPECTED RECOURSE TERM

4.5.1 Definition ofPareto Front Solution

Many optimization models are formulated with single multiobjective

function, a criterion to be maximized or minimized. When such multiobjective is

required, we emphasize on efficient solutions known as the Pareto Front solution

formulation.

In this section, we develop the concept of efficient point and the efficient

frontier also known as Pareto Optima which help to characterize the "best" feasible

solutions in multiobjective models.

a) Efficient Point

A feasible solution to a multiobjective optimization models is an efficient point

if no other feasible solution scores at least as well in all objective functions and

strictly better in one. (Rardin 1998)

b) Efficient Frontier

The efficient frontier of a multiobjective optimization model is the collection of

efficient points for the model. (Rardin 1998)

4.5.2 Adaptive weighted sum method for bi-objective optimization

In this section, we are to develop the bi-objective adaptive weighted sum

method, which determines uniformly-spaced Pareto optimal solutions. However the

method could solve only problems with two objective functions. In the first stage, a

weighted sum method is performed on the formulated model solution. Subsequently,

the adaptive weighted sum method is applied where each Pareto solution is then

refinedby imposingadditional constraintsthat will producea well-distributed Pareto

front for effective visualization and find solutions in non-convex regions (Kim and

Week 2005).
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(c)

Weightcttaum method AWS: Initial Step

J,

True

Pareio from

1si region for
refinement

point

AWS: Constraint

Imposition

J,

•A

2nd region for
refinement

(bj Ji
4> AWS: Refinement

(d)
J:

Figure 4.2: (a) Weighted summetiiod, (b) Initial stepof adaptive weighted sum,

(c) Adaptive weighted sum constraintimposition, (d) Pareto front refinement

(Kim and Week, 2005)

To compareboth weighted sum methodfor convexPareto front are as below:-

V •h '

FcasibEc

"•i
region *VRr,

(a) Jt (b) i

Figure 43: Adaptive weighted summethod for convex Paretofront:

(a) Solutions with weighted sum method only,

(b) Additional refinement with adaptiveweightedsum method

(Kim and Week, 2005)
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The adaptive weighted sum method can effectively solve multiobjective

optimization problems whose Pareto fronthas:

i) convex regions with non-uniform curvature

ii) non-convex regionsofnon-dominated solutions

iii) non-convex regions of dominated solutions

In summary, the adaptive weighted sum method produces evenly distributed

solutions, finds Pareto optimal solutions in non-convex regions, and neglects non-

Pareto optimal solutions in non-convex regions.

4.5.3 Literature Review on Adaptive weighted sum method (Pareto Front

generation): Procedures

To formulate the adaptive weighted sum method to produce graphs of Figure

2 and Figure 3, we need to perform certain procedures to formulate the adaptive

weighted summethod. The procedures follow stepby stepwhich are as below:-

Stepl

• Determine the objectivefunctions whichare Ji (expected profit) and J2 (MAD)

Jx :=-8.0*1 + 18.5*2 +8.0*3 + '2.5jc4 +14.5*5 + 6.0*6 -1.5x,4

J2 =MAD(20) =J>S 5X^--£p.5Xa

=(0.35)

(-8.8*, +20.35x2 +8.8X3 +13.75*4 +15.95*5 +6.6*6 -1.65x,4)
(0.35)(-8.8*, +20.35*2 +8.8*3 +13.75*4 +15.95*, +6.6*6 -1.65*,,)
+(0.45)(-8.0*! +18.5*2 +8.0*3 +12.5*4 +14.5*5 +6.0*6 -1.5*,4)
+(0.20)(-7.2*l +16.65*2 +7.2*3 +11.25*4 +13.05*5 +5.4*6 -1.35*,4)J

Scenario 1

(-8.0*, +18.5*2 +8.0*3 +12.5*4 +14.5*s +6.0*6 -1.5*,4)
(0.35)(-8.8*! +20.35*2 +8.8*3 +13.75*4 +15.95*5 +6.6*6 -1.65*,4)
+(0.45)(-8.0*, +18.5*2 +8-0*, +12.5*4 +14.5*5 +6.0*6 -1.5*j4)
+(0.20)(-7.2*, +16.65*2+72*3 +11.25*4 +13.05*5 +5.4*6 -1.35*,4)

+(0.45)

+(0.20)

Scenario 2

(-7.2*, +16.65*2 +7.2*3 +11.25*4 +13.05*5 +5.4*6 -1.35*,4)
(0.35)(-8.8*, +20.35*2 +8.8*3 +13.75*4 +15.95*5 +6.6*6 -1.65*,4)
+(0.45)(-8.0*. +18.5*2 +8.0*3 +12.5*4 +14.5*5 +6.0*6 -1.5^)
+(0.20)(-7.2*, +16.65*2 +72x, +11.25*4 +13.05*, +5.4*, -1.35*,4)
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Step 2

• Number ofdivisions riinitiai= 10

• Uniform step size of the weighting factor X is determined by the number of

divisions:

&K = = —
Initial *0

-0.1

(the greater the number ofdivisions, the smaller the step size, hence, more solutions

on the Pareto front are obtained)

Step 3

• to compute lengths of the segments betweenall neighboring solutions

• Fix prescribed distance e = 0.01. If the distance among solutions is less than a

prescribed distance (e), then all solutions exceptone are deleted.

Step 4

• To determine number offurther refinements in each ofthe regions

nt = round

C = constant ofthe algorithm

StepS

If n, < 1, no further refinement is required.

If«i>l,gotoStep6.

Step 6

• To determine the offset distances from the two end points ofeach segment

• A piecewise linearized secant line is made by connecting the end points PI and

P2 similar as diagram on Figure 4

• The user selects theoffset distance along thepiecewise linearize Pareto front, 5y
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Newly obtained
solutions

./..' (ci ./..

Figure 4.4: Determining the offset distances, 8j and 82 basedon 5.

(Kim and Week, 2005)

'py-py^
tan0 = -

#-%
where

p,=(^f)

P* and P? are the*(Jl) and y(J2) positions of the end points PI and P2 respectively

Thus,

Sj = 8ycos© and 82 = 8ysinO

2 J

Step 7

• Impose additional inequality constraints and conduct sub-optimization with the

weighted sum method in each feasible region

mm
XA^L+(1^yJ2(x)

sfifi(x) sf20(x)

Subject to; ./,(*) < if -81

J2(x)<Pj-&2

• Sj and 82 are offset distanceobtainedin Step 6

• sf\ o(x) m& sf2to(x)are scaling factors

• X is the uniform step size determines is obtained from Step 4

Step 8

• Compute the length ofthe segments between all the neighboring solutions

• Delete overlapping solutions

• Ifall segments length are less than 8^ terminate the optimization procedure

• If segment length greater than 8y, goback to Step 4 and iterate
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4.5.4 e-constraint method for bi-objective optimization

In this section, we are to developthe s-constraintmethod, which extendsand

fills in the gaps between adjacent points along the Pareto surface using a gradient-

based local optimizer (such as GAMS/CONOPT3). e-constraint method converts all

but one of the objectives into inequality constraints and solving for all possible

values of the inequality constraints. Eachset of values represent a subproblem that if

solved to global optimality, yields a point in the Pareto optimal set. The number of

subproblems that one must solve to identify the complete Pareto-optimal surface

grows exponentially with the number of objective functions (Siirola et. al., 2004;

Miettinen, 1999).

However, it is important to note that the e-constraint method can neither

guarantee feasibility nor efficiency (that is, it can be complex and time consuming)

and both conditions need to be verified once the complete set of solutionshas been

obtained. The major advantage of e-constraint method approach developed and

employed does not require the a priori articulation of preferences by the decision

maker. Instead, the aim is to generate the full set of trade-offsolutions and not to

present only one single alternative. From the set of alternatives, the decision maker

can then further investigate interesting trade-offs and ultimately select a particular

supply chain design and capacity planning strategy that best satisfies his or her

willingness to compromise (Hugoand Pistikopoulos, 2005).

As mentioned by Rangavajhala Et. Al, 2008, an approach called Generate

First and Choose Later (GFCL) can be used to generate die Pareto curve. This

approach GFCL generally involves generating a large number of Pareto solutions

first, followed by choosing themost attractive of them. By generating a large pool of

solutions, the researcher can decide on well-informed decision which proves a better

optimization solution. However, generating a largenumber of potential solutions can

be computationally expensive.
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CHAPTERS

COMPUTATIONAL EXPERIMENTS AND

NUMERICAL RESULTS

5.1 NUMERICAL EXAMPLE

For numerical example, the implementation of the proposed stochastic model

formulations on the petroleum refinery planning linear programming model will be

demonstrated. Theoriginal single-objective linear programming model is first solved

deterministically and is then reformulated with addition ofthe stochastic dimension.

*2

*1

Crude Oil

1
l-H

P

g

*7
*n

Naphtha

Jet Fuel

*8

Gas Oil

*12

Eu
1 r*13

x9 X14

Cracker

Feed
"xl5

U

U

Residuum
FUEL OIL BLENDING

*16

>i*l8

X\9

Gasoline

*3

Naphtha

*4

Jet Fuel

*5

Heating Oir

*6

Fuel Oil

Figure 5.1: Simplified representation ofa petroleum refineryproduction from crude

oil (Khor etal. 2008)

Figure 5.1 is a simplified representation of a petroleum refinery that consist

mainly the primary distillation unit which processes crude oil (x/) and cracker feed

(xj4) to produce gasoline fo), naphtha (jcj), jet fuel (x4\ heating oil (xs) and fuel oil

(xtf). The complete scenario representation of the Price Uncertainty, Demand

uncertainty and YieldUncertainty are providedin Table 5.1, Table 5.2 and Table 5.3

which are shown below:-
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Table 54: Complete scenarioconditionfor refineryproduction (Price Uncertainty)

^"^-^ Scenario
ProdueT^\^ (s)
Typed) ^^<

Scenario 1 (S/tan) Scenario 2 ($/tan) Scenario 3($/tan)

Crude Oil (1) -8.8 -8.0 -7.2

Gasoline (2) 20.35 18.5 16.65

Naphtha (3) 8.8 8.0 7.2

Jet Fuel (4) 13.75 12.5 11.25

Heating Oil (5) 15.95 14.5 13.05

Fuel Oil (6) 6.6 6.0 5.4

Cracker Feed (14) -1.65 -1.5 -1.35

Table 5.2: Complete scenario conditionfor refineryproduction (Demand

Uncertainty)

"^>^, Scenario
ProducT^^^ (s)
Typed) ^\

Scenario 1 ($/tan) Scenario 2 ($/tan) Scenario 3($/tan)

Gasoline (2) 2835 2700 2565

Naphtha (3) 1155 1100 1045

Jet Fuel (4) 2415 2300 2185

Heating Oil (5) 1785 1700 1615

Fuel Oil (6) 9975 9500 9025

Table 53: Complete scenarioconditionfor refineryproduction (Yield Uncertainty)

^^^^ Scenario
Prodnct^^^ (s)
Typed) ^\

Scenario 1 (S/tan) Scenario 2 ($/tan) Scenario 3 ($/tan)

Naphtha(3) -0.1365 -0.13 -0.1235

Jet Fuel (4) -0.1575 -0.15 -0.1425

Gas Oil (8) -0.231 -0.22 -0.209

Cracker Feed (9) -0.21 -0.20 -Q.19

Residuum (10) -0.265 -0.30 -0.335

Probability (Ps) 0.35 0.45 0.20
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5.2 DETERMINISTIC MODEL FORMULATION OF PETROLEUM

REFINERY PLANNING PROBLEM

Deterministic model is a model where it is reasonable to assume all problem

data to be known withcertainty. Weemploy deterministic models because theyoften

produce valid enough results to be useful and because deterministic models are

almost always easier to analyze than are their stochastic counterparts. The

deterministic objective function of theLinear Programming model is given by(based

on Table 5.1 figures ofprice uncertainty):

maximize z = —8.0^ +18.5*2 +8.0x3 +12.5jc4 +14.5jc5 +6.0;t6 -1.5xH (16)

With the notation,

z : Profit

Xx : Crude Oil

x2 : Gasoline

x3 ; Naphtha

Theequation z left-hand-side coefficients represent the costor price of theassociated

materials. In which the negative coefficient denote the purchasing of feed and

operating costs while the positive coefficient are the sales prices of products.

Therefore, we can write the objective function (z) corresponding with price (c) and

production flowrate (x) as:

z=c^ =^(2c^a,/ ={l,2,3,4,5,6,14}6/^mc/,^{l,2,3}€,S (17)
seS iel

Where;

s —Scenario

i = Product Type

Hence, for the numerical example:

Objective function:

maximize z = -8.0^ + 18.5jc2 + 8.0x3 +12.5*4 +14.5x5 + 6.0jc6 - 1.5*t4

x4 Jet Fuel

X5 Heating Oil

X6 Fuel Oil

% Cracker Feed
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Based on equation (8) Chapter 4: Model Formulation, we try to formulate the risk

measure ofthe Mean Absolute Deviation constraint. The expectation of the objective

function value is given by the originalobjectivefunction itself:

"E(aX +bY) =aE[X] ±bE[Y]u
=>"E(aX) =aE[X]"

E[z0] =£(-8.0*i +18-5x2 +8.OX3 +12-5x4 +14.5x5 +6.0x6 -1.5^)
=E(-Z.Qx7) +E(l^.5x2) +E(S.Ox3) +E(\2.5xi) +E(l4.5x5)+E(6.0x6) +E(-l.5xu)
= -8.0jc1 +18.5x2+8.0x3 + 12.5x4 + 14.5x5+6.0x6-1.5^4

E[z0] - -8-Oxj +18.5x2 +8.0x3 +12.5x4 +14.5x5 +6.0x6 -1.5xI4

E[z0] =-8.0*! +18.5x2 +8.0^3 +12.5x4 +14.5% +6.0x6 - 1.5x14

MAD(z0) =(0.35)

(-8.8jCj +20.35x2 +8.8x3 +13.75x4 +15.95x5 +6.6x6 -1.65x14)
(0.35)(-8.8jq +20.35x2 +8.8x3 +13.75x4 +15.95x5 +6.6x6 -1.65x14)
+(0.45)(-8.0x1 +I8.5x2 +8.0x3 +12.5x4 +14.5x5 +6.0x6 -1.5x,4)
+(0.20)(-7.2x, +16.65x2+7.2x3+11.25x4+13.05x5+5^ -135X,,)

Scenario!

(-8.0a, +18.5x2 +8.0x3 +12.5x4 +14.5x5 +6.0x6 -1.5x„)
(0.35)(-8.8x1 +20.35x2 +8.8X3 +13-75x4 +15.95x5 +6.6x6 -1.65^)
+(0.45)(-8.0x1 +18.5x2+8.0x3+12.5x4 +14.5x5+6.0x6-1.5x14)
+(0.20)(-7.2x!+16.65x2+ 7.2x3+ 11.25x4+I3.05x5+5.4x6-1.35^)]

+(0.45)

+(0.20)

Scenario 2

(~7.2x, +16.65x2 +7.2x3 +11.25x4 +13.05x5 +5.4x6 -1.35x14)
(0.35)(-8.8Xj +20.35x2 +8.8X3 +13.75x4 +15.95x5 +6.6x6 -1.65x14)
+(0.45)(-8.0x1 +18.5x2 +8.0x3 +12.5x4 +14.5x5 +6.0x6 -I.5x\4)
+(0.20)(-7.2x! +16.65x2 +7.2X3 +11.25x4 +13.05x5 +5.4x6 -1.35x14)J

Scenario 3

From the numerical example stated above, the model formulation for mean absolute

deviation can be simplified to the equation as below:

MAD(z0) =5>.
seS

Zcm*/-£^2X*;
seS ieliel
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5.3.2 Formulation of Weighted Sum Graph; Expected Profit versus Profit and

Recourse Penalty Costs Risk

Graph of Expected Profit vs Profit & Recourse Penalty Costs Risk
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80000
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£
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X
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Figure 5.2: Graph ofExpected Profit versus Profit andRecourse Penalty Costs Risk

measured by Deviation ofProfitand Deviation ofRecoursePenalty
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5.33 Analysis ofResults for Weighted Sum Method

As for the numerical resultof Weighted Sum Method, the value of Oi and 02

denotes the weights ofthe components of the objective function or risk factor. 0t and

02 represents the importance of risk in the model as contributed by variation in

deviation profit and variation in deviation recourse penalty costs, respectively, in

comparison with the corresponding expected values of the model's objective. From

the results observed, reducing values of 0i implicates higher profit deviation. The

graph plotted shows a typical Pareto Optimal Curve where the profit decreases

periodically with increasing riskmeasure which is represented bydeviation of profit.

One of the reasons the reducing values of Oi and 02 leads to increasing

expected profit isthat both Oi and 02 values corresponds to a decrement in variation

a of the recourse penalty. With small values of o, it will fiirther strengthened the

model; which increases the value of our objective function Z2. This again

demonstrates that a proper selection of the operating rangeof 0i and 02 is crucial in

varying the tradeoffs between the desired degree of model robustness and solution

robustness, to ultimately obtain optimality between expected profit and expected

production feasibility. (Khoret al., 2008)

The values of Oi and 02 denotes the importance of risk in the model as

contributed by variation in profit and variation in recourse penalty costs,

respectively, in comparison with the corresponding expected values of the model's

objective. From graph of Figure 5.2, wecanseethattheobjective function increases

as the sigma value of profit and recourse penalty cost risk increases. Increasingly

smaller 0i and 02 corresponds to higher expected profit which implies less

uncertainty and risk to the model. A proper selection of 0i and 02 operating range

will translate the model formulation to a more robust model.
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5.4 STOCHASTIC PROGRAMMING MODEL FORMULATION OF

PETROLEUM REFINERY PROBLEM (EPSILON CONSTRAINT

METHOD)

5.4.1 Solution Strategy 2: Epsilon Constraint Method

We employ the procedure suggested by You and Grossmann (2008) for

applying the e-constraint method for multiobjective optimization problems. In this

model formulation section, it is shown from the equation that we have four objective

functions to obtain the objective function. The mean absolute deviation model

formulation is as below (as formulated previously):-

maxz =E[zQ]-QlMAD(zQ)-Es-Q2MADs

In order to obtain the Pareto curve using epsilon constraint method, we can

manually prescribe the constraints (Rangavajhala Et. Al, 2008). In other words, to

solve the model we reduce the formulation from four objective functions to a bi-

objective function. This will lead to a reduced problem dimensionality (from four

objectives to two objectives) and facilitates visualization. To generate the Pareto

curve using epsilon constraint method, we follow the steps as below:-

max E(zQ)

s.t. MADOtq)^

Es<^2
MADs<e3

other constraints

To enforce acceptable tolerance or limits in this profit maximization

program, upper bound values of si, 82, £3 are specified for each of the parameters

MAD(zo)» ESi and MADS, respectively within the range of the minimum value and

the maximum value for the respective parameter. The next steps will be to determine

the range for each of the parameters:-
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Stepl

max E(z0)

s.t. constraints

Consider objective function of maximizing E(z0) which is the expected profit, that in

turnyieldsthe largest Pareto-optimal deviation. So, in mis stepwe obtain the largest

value for MAD(z0) and the largest value for E(zo). So, in this step we obtain the

maximum value of MAD(zo), which we indicate as MAD(zo)max, and the maximum

value of the expected profit E(zo\ which we indicate as E(zo)msx. to represent die

maximum expectedprofit. Preliminarycomputational results on GAMS maximizing

E(zo) using epsilon-constraint method:

MADfc>W = 7140.000

£(zoW = 94 669.050

Step 2:

We consider the objective function of minimizing MAD(zo), in order to

obtain the lowest deviation from the expected profit, which in turn yields the lowest

Pareto-optimal profit (since the metric of MAD only penalizes downside deviation,

therefore, minimum upside deviation corresponds to minimum profit). This lowest

Pareto-optimal profit corresponds to the minimum value of the expected profit. So,

in this step we obtain the minimum value of MAD(zo), which we indicate as

MAD(zo)min, and the minimum value of the expected profitE(z0), whichwe indicate

as E(z0)min to represent the lowest expected profit. Preliminary computational results

on GAMS/CONOPT3 for minimizing MAD(z0)

MAD(z0)min= 5549.565

E(z0)min = -121800

max E(z0)

s.t. MAD(z0)<e1

Es^2
MAD,<e3

other constraints

50



To enforce acceptable tolerance or limits in this profit maximization

program, upper bound values of ei, 82, 83 are specified for each of the parameters

MAD(zo), E& and MAD^, respectively within the range of the minimum value and

the maximum value for the respective parameter. The next steps will be to determine

the range for each ofthe parameter.

Step 3

Finally, repeat Step 1 to Step 2 by changing the objective function from

MADfcO to Es and then MAD*. By repeating step 1 to step 2, we will obtain the

lower bound and upper bound of each objective functions of MAD(zo), E& MAD5.

Note: For epsilon constraint method, we reduce the objective function in GAMS

from four objective functions to two objective functions. One of the objective

function should be the Expected Profit meanwhile the other objective function will

be the constraint, either MAD(zo),Esor MAD5.

5.4.2 Epsilon Constraint Method Summary

The model formulation of Model III as presented in Khor et al. (2008) is

reformulated to introduce Mean Absolute Deviation MAD(zo) as the measure for

deviation of profit. The method proposed in this work is to further study Model in

proposed using the epsilon-constraint methodwhich fully utilize the Mean Absolute

Deviation MAD(z0) as the Deviation of Profit. This epsilon constraint method is to

eliminate the use of the weighting factors Oi and ©2 from the model formulation

presented in equation (11), in which 0j and 02 are weights of the components of the

multiple objective functions that acts alternatively as the risk factors of the problem

under investigation.

Based on the recent work by Guillen-Gosalbez and Grossmann (2008),

consider the solution of a set of single-objective-function problems for different

values ofthe parameter e:

max profit =F(zq)

s.t £(z0)<e

other model constraints
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In this formulation, the lower and upper limits (or bounds) that define the

interval within which the epsilon parameter must fall, i.e., 8 e [eL, su] can be

obtained by solving each objective separately:

The e-constraint formulation proposed by Guillen-Gosalbez and Grossmann

(2008) is similar to the formulation by You and Grossman (2008). Both formulation

practices the method to maximize profit E(zo) and minimizing MAD(zo) in order to

obtain the Pareto-optimal curve in which each of the Pareto efficient frontiers points

is determined by the values ofE(zo)and MAD(zo).

Using the epsilon-constraint method as proposed earlier in section 4.5.4, in

order to obtain the Pareto optimal curve, each component of the objective fimction is

correspondingly/appropriately minimized and maximized using the GAMS modeling

software. We minimize and maximize each objective function individually to obtain

the lower and upper bound of each objective function. The objective fimctions that

are minimized and maximized are listed as below:

a) Deviation ofProfit, MAD(zo)

b) Expected Recourse Penalty, Es

c) Deviation ofRecourse Penalty, MADS
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The minimum and maximum values ofeach parameter are as listed below:-

a) Deviation ofProfit, MAD(zo) (NOTE: Objective Function = OF)

Expected Profit, Ep
Expected Recourse

Penalty, £A

Maximize OF Upper

Bound on MAD(zo)
94669.050 7140.000

Minimize OF Lower

Bound on MAD(zo)
-121800.000 5549.565

1. Maximize MAD(z0) to obtain MADu(r0) = 7140.000, which corresponds to

Ehp = 94669.050

2, Minimize MAD(z0) to obtain MADh(z0) = 5549.565, which corresponds to

EPL[z0} =-121800

b) Expected Recourse Penalty, Es

Expected Profit, Ep
Expected Recourse

Penalty, Es

Maximize OF Upper

Bound on Es

94669.050 279420.000

Minimize OF Lower

Bound on Es

-121800.000 121920,000

1. Maximize Es to obtain £su= = 279420, which corresponds to Epv(z0)

94669.050

2. Minimize Es to obtain £f = = 121920, which corresponds to Eph(z9) =

121800
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c) Deviation ofRecourse Penalty, MAD.

Expected Profit, Ep
Deviation ofRecourse

Penalty, MAD,

Maximize OF Upper

Bound on M ADS

94669.050 150000.000

Minimize OF Lower

Bound on MADS

-121800.000 78337.380

1. Maximize MAD, to obtain MAE>y = 150000, which corresponds to Epu[z0] =

94669.050

2. Minimize MAD, to obtain mad^ = 78337.380, which corresponds to EpL[z0]

= -121800

Obtaining all this four objective fimction lower and upper bound, we then

combine all the lower and upper bound values ofeach objective fimction to construct

the Pareto optimal curve as drawn on Figure 5.3, Figure 5.4 and Figure 5.5. These

three graphs represent the expectedprofit of the model versus the constraints which

are the Deviation of Profit, Expected Recourse Penalty and finally Deviation of

Recourse Penalty.
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5.4.3 Results and DiscussionofEpsilon-Constraint Method Formulation

a) Part 1 - Varying MADfeh) valuewhile maintaining Ex and MADsvalues

Table 5,5; Values ofEp, Esand MAD, after varyingthe MAD(z0) value

Deviation of

Profit,

MAD(zo)

Expected

Recourse

Penalty, &

Deviation of

Recourse

Penalty,

MAD,

Expected

Profit, Ep

Objective

Function, Z2

5549.565 121917.44 78337.38 94669.05 94669.05

5000 131703.225 69100.994 85294.118 85294.118

4000 151311.068 52294.271 68235.294 68235.294

3000 151652.011 39507.86 51176.471 51176.471

2000 140057.491 26323.42 34117.647 34117.647

1000 122126.37 24162.932 17058.824 17058.824

4.64E-10 102884.535 11000.692 7.93E-09 7.93E-09

Note: WhenMAD(z0) value is less than 0, theformulation is infeasible.
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Figure5.3:Graphof ParetoCurve Optimal Solution for Ep versus MAD(z0)
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Part 1 Graph Interpretation

• The graph trend shows a linear relationship between the Expected Profit, Ep

and Deviation ofExpected Profit, MAD(zo)

• Expected Profit, Ep increases as Deviation of Expected Profit, MAD(z0)

increases

• This means that the Expected Profit, Ep increases when the Deviation of

Expected Profit, MAD(zo) increases

b) Part 2 - Varying Ex value while maintaining MADfzn) and MAD, values

Table 5.6: ValuesofEp, MAD(z0) and MAD* after varying the Esvalue

Deviation of

Profit,

MAD(zo)

Expected

Recourse

Penalty, Es

Deviation of

Recourse

Penalty,

MAD,

Expected

Profit, Ep

Objective

Function, Z2

5549:56 121917.44 78337.38 94669.05 94669.05

5258.058 120000 74502.5 89696.281 89696.281

4497.911 115000 64502.5 76729.074 76729.074

3737.765 110000 54502.5 63761.868 63761.868

2977.618 105000 44502.5 50794.661 50794.66

2217.471 100000 34502.5 37827.454 37827.45

1388.915 95000 24502.5 23693.248 23693.248

166.053 92643 19788.5 2832.671 2832.671

Note: When Esvalue is less than 92643, theformulation is infeasible.
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Graph of Ep Value vs. Es Value
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Figure 5.4: Graph of Pareto Curve OptimalSolution for Ep versusEs

125000

Part 2 Graph Interpretation

• The graph trend shows an increase of Expected Profit, Ep when we increase

our risk which is the ExpectedRecourse Penalty, Es

• This means that the Expected Profit, Ep increases when the Expected

Recourse Penalty, Es increases

• The rate of increase of Expected Profit, Ep reduces for Expected Recourse

Penalty, Es greater than 95,000

• The larger the Expected Recourse Penalty, Es the rate of increase of Expected

Profit, Ep reduces
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c) Part 3 - Varying MADS value while maintaining MAD(zo) and Es values

Table 5.7: Values ofEp, MAD(zo) and Es after varying the MADS value

Deviation of

Profit,

MADG&)

Expected

Recourse

Penalty, £s

Deviation of

Recourse

Penalty,

MADS

Expected

Profit, Ep

Objective

Function, Z2

5549.565 121917.44 78337.38 " 94669.05' 94669.05

5053.491 130654.384 70000 86206.609 86206.609

4458.491 142321.051 60000 76056.609 76056.609

3863.491 153987.718 50000 65906.609 65906.609

3268.491 167469.806 40000 55756.609 55756.609

2673.491 181019.379 30000 45606.609 45606.609

2078.491 192686.046 20000 35456.609 35456.609

1238.88 200983.329 10000 21133.843 21133.843

619.089 202649.995 5000 10560.927 10560.927

0.208 204316.179 4 -3.55 -3.55

Note: When MADS value is less than4, theformulation is infeasible
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Figure 5.5: Graph ofPareto Curve Optimal Solution for Ep versus MADS
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Part 3 Graph Interpretation

• The graph trend shows an increase of Expected Profit, Ep when we increase

our risk which is the Deviation ofRecourse Penalty, MADS

• This means that the Expected Profit, Ep increases when the Deviation of

Recourse Penalty, MADS increases

• The rate ofincrease ofExpected Profit,Ep reducesfor DeviationofRecourse

Penalty, MADS greater than 20,000

• The larger the Deviation of Recourse Penalty, MADS the rate of increase of

Expected Profit, Ep reduces

• Graph 2 andGraph 3 show similargraph trendrelationship

5.4.4 Analysis ofResults for Epsilon-Constraint Method

From the graph trends of all three graphs, we can see that all three graphs

objective fimction (Expected Profit Ep) increases with respect to the increasing

values of MAD(z0), Es and MADS respectively. The higher the risk of the model as

reflected by higher values of MAD(z0), E5 and MADS value, the lower the expected

profit Ep. From the graphs, all three graphs utilize the epsilon constraint method

approach for its multiobjective optimization problem. In this epsilon constraint

method, it extends the solution range of its optimization model as well as fills in the

gaps between the adjacent points along the Pareto optimal curve. The advantage of

this epsilon constraint method is that it is able to generate a full set of solutions and

not to the presentone single alternative solution only.
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5.5 SUMMARY OF NUMERICAL RESULTS

5.5.1 GAMS Numerical Results

Objective function: For max z = £(z0) - OjMAD(z0) -Es-02MADs

Table 5.8: SummaryofNumericalResults

5.5.2 Computational Statistics

Table 5.9: Summary of Computational Statistics
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Stochastic programming is an optimization method used in manufacturing

process to optimized specified set of parameters without violating some constrain.

Stochastic programming is good because it allows the decision maker to analyze

multiple scenarios of an uncertain future, maximizing net profit while minimizing

various expected costs.

The risk model is reformulated in the form of mean-absolute deviation

(MAD) where MAD is the average absolute deviation from the mean. A Risk Model

is a measure of operational risk provides the computational linear property.

Therefore, the problem for petroleum refinery planning under uncertainty with

multiobjective optimization approach and financial risk management is reformulated

as the equation below [refer to Equation (8)]:-

max z = £(zo)-0,MAD(zo)-£s-02MADs

Our objective of this study is to reformulate the equation above using

different methods to obtain the Pareto Optimal Curve. From the equation above, we

apply the two methods which are the weighted sum method and the e-constraint

method in order to obtain the Pareto front generation. The first method studied is

know as the weighted sum method, emphasizes on 0i and 02values which represents

the importance of risk in the model. From the results observed, reducing values of

Oi and 02implicates higher profit deviation and reduces uncertainty as well as risk to

the model. A proper selection of 9i and 02 operating range will translate the model

formulation to a more robust model.
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The second method studied is the e-constraint method which generally

extends and fills in the gaps between adjacent points along the Pareto front. The

epsilon-constraint method maximize profit E(zo) and minimizing MAD(zo), Esand

MADs in order to obtain the Pareto-optimal curve in which each of the Pareto

efficient frontiers points is determine by the values of E(zo) & MAD(zo), E(zo) & Es

and E(z0) & MAD*. The higher the risk as reflected by higher MAD(zo), Es and

MADs values, the lower the expected profit of E(zo). From the results obtained, the

major advantage of epsilon constraintmethod it is able to generate a wide range of

solutions from the MAD(zo),Es and MADS constraints. From the range of solutions

available, the researcher will select a planning strategy to choose the most attractive

solution range on well-informed decision which proves a better optimization

solution.

In conclusion, both weighted sum method and e-constraint method produces

a more evenly distributed Pareto Optimal Curve (model solutions), giving more

accuracy and precision to the solution produced. Stochastic programming is proven

to be very suitable for optimization models that involve uncertainties and risk.
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6.2 RECOMMENDATIONS FOR FUTURE WORK

Some recommendations for niture work can be conducted to further improve

the model formulated by this study. The recommendations are as following:-

• To develop a more systematic approach in determining the values of

0i and 02 which are the weights for the objective function or risk

measures of MAD(zo), EsaM MAD*.

• To develop a better approach; to implement "spider diagram" or

"radar charts" approach to display all four objectives graphically as

compared to the epsilon constraint method model formulation where

we can only display two objectives graphically. The idea here is to

optimize each objective and display in a cross the maximum (or

minimum) value for each objective. From this, we can see how far we

can stretch or contract each objective.

• To analyze and interpret the Pareto Optimal Curve graph in order to

obtain accurate and precise solutions that is able to satisfy the model

formulated.

• Formulate a proper loop system for the weighted sum method and

epsilon constraint method to store the formulated solutions into

Microsoft Excel environment.
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APPENDIX A

Weighted Sum Method GAMS Input File

$TITLE Approach 4: Risk Model III of Two-Stage Stochastic Programming with Fixed
Recourse for Minimization of the Expected Value and the Mean-fibsolute Deviation (MAD)
of the Variation in Recourse Penalty Costs

SETS

I types of materials / 1*20 /

S Scenarios / S1*S3 /

ID(I) types of materials subject to demand uncertainty / 2*6 /

IY(I) types of materials subject to demand uncertainty / 4,7,8,9,10 /

K production shortfall and surplus or yield decrement or increment / Kl, K2 /

ALIAS(S,SC)

PARAMETER

P(S) Probability of the realization of scenario

/
51 0.35,

52 0.45,

53 0.20

/

V(I> Variance of Price

/
1 0.352,

2 1.882375,

3 0.352,

4 0.859375,

5 1.156375,

6 0.198,

14 0.012375

/

Table PRICE(I,S) Table of Price Uncertainty
SI S2 S3

1 -8.8 -8.0 -7.2

2 20.35 18.5 16.65

3 8.8 8.0 7.2

4 13.75 12.5 11.25

5 15.95 14.5 13,05
6 6.6 ' 6.6 5.4
14 -1.65 -1.5 -1.35;

Table DEMAND(ID,S) Table of Demand Uncertainty
SI S2 S3

2 2835 2700 2565

3 1155 1100 1045

4 2415 2300 2185

5 1785 1700 1615

6 9975 9500 9025;

Table YIELD(IY,S) Table of Yield Uncertainty
SI S2 S3

4 -0.1575 -0.15 -0.1425

7 -0.1365 -0.13 -0.1235

8 -0.231 -0.22 -0.209

9 -0.21 -0.20 -0.19

10 -0.265 -0.30 -0.335;

Table PENALTY_DEMAND(ID,K) Table of Penalty Demand
Kl K2

2 25 20

3 17 13

4 5 4
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5 6 5

6 10 8;

Table PENALTY_YIELD(IY,K) Table of Penalty Yield
Kl K2

4 5 3

7 5 4

8 5 3

9 5 3

10 5 3;

VARIABLES

Z2 Maximize Profit for Z

Ecv

POSITIVE VARIABLES

Z(ID,S,K) stochastic variables on production shortfall and surplus (amount of
unsatisfied demand for product i due to underproduction or overproduction per
realization of scenario s)
Y(IY,S,K) stochastic variables on production shortfall and surplus (amount of
unsatisfied yield for product i due to underproduction or overproduction per
realization of scenario s)

X production flowrates of materials
MAD_z0, MADs, Es, Ep, DEVIATIONprofit, Tshortfall, Tsurplus

EQUATIONS

OBJ Objective function to maximiaze profit
Feedl Feed equation limitation for Crude Oil
Feedl4 Feed equation limitation for Cracker Feed
FY14__16 Fixed Yield of Cracker for X(14) and X(16)
FY14_17 Fixed Yield of Cracker for X(17) and X(17)
FY14_20 Fixed Yield of Cracker for X(20) and X(20)
FB2_11 Fixed Blend of Gasoline Blending for X(2) and X(ll)
FB2_16 Fixed Blend of Gasoline Blending for X(2) and X(16)
FB5_12 Fixed Blend of Heating Oil Blending for X(5) and X(12)
FB5_18 Fixed Blend of Heating Oil Blending for X(5) and X(18)
UB3 Unrestricted Balance for Naphtha
DBS Unrestricted Balance for Gas Oil

UB14 Unrestricted Balance for Cracker Feed

UB17 Unrestricted Balance for Cracked Oil

UB6 Unrestricted Balance for Fuel Oil

CONS1

CONS2

CONS3

CONS4

YIELDstoc(IY,S) uncertain or stochastic fixed yield of primary distillation unit
DEMANDstoc(ID,S) uncertain or stochastic fixed demand of primary distillation unit

OBJ.. Z2 =E= Ep - O.l*MAD_z0 - Es - 0.1*MADs;

C0NS1.. Ep =E= SUM{(1,5), P(S)*Price(I,S)*X(I));

C0NS2.. MAD_zO =E= SUM(SC, P(SC)*ABS(SDM(I, PRICE(I,SC)*X(I)) - SUM((I,S),
P(S)*PRICE(I,S)*X(I>)});

C0NS3.. Es =E= SUM(S, P(S)*(SUM((ID,K), PENALTY_DEMAND(ID,K)*Z(ID,S,K)) + SOM((IY,K),
PENALTY_YIELD(IY,K)*Y(IY,S,K))));

CONS4.. MADs =E= SUM(S, P(S)*ABS(SUM((ID, K), PENALTY_DEMAND(ID,K)*Z(ID,S,K)) +
SUM((IY,K), PENALTYJfIELD(IY,K)*Y(IY,S,K) )

SUM((ID,K), PENALTY_DEMAND{ID,K)*Z<ID,S,K)) + SUM((IY,K),
PENALTY_YIELD(IY,K)*Y(IY,S,K))));

♦♦LIMITATIONS OF PLANT CAPACITY

Feedl.. X('l') =L= 15000;

Feedl4.. X('14') =L= 2500;

***********************************************************************

*FIXED YIELDS FOR CRACKER (deterministic constraints)
*************************************************************************************

FY14JL6.. -0.40*X('14') +XE'16') =E= 0
FY14_17.. -0.55*X('14') + X('17') =E= 0
FY14 20.. -O.t^XCl**) + X('20') =E= 0
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FB2_U.. 0.5*X('2I) + X('ll') =E= 0;
FB2_16.. 0.5^X(*2') + X('16') =E= 0;
FB5_12.. 0.75*X('5') +X('12') =E=0;
FB5_18.. 0.25*X('5') + XC181) =£= 0;
UB3-. -X(*7') + X('3') + X('ll') =E= 0;

UB8-. -X('8') + X('12') + X('13') =E=0;

UB14.. -X('9') + X('14') + X('15') =E= 0;

UB17.. -XC17') + X('18') + X('19') =E= 0;

UB6.. -X('IO') - X('13') - X('15') - X('19') + X('6') =E= 0;

*************************************************************************************

♦♦CONSTRAINTS ON PRODUCTION DEMANDS
*************************************************************************************

DEMANDstoc(ID,S).. X(ID) + Z(ID,S,'Kl') - Z(ID,S,'K2') =E= DEMAND(ID,S);

*************************************************************************************

♦♦CONSTRAINTS ON PRODUCTION YIELD
*************************************************************************************

YIELDstoc(IY,S).. YIELD(IY/S)*X('l') + X(IY) + Y(IY,S,'K1') - Y(IY,S,'K2') =E= 0;

♦Initial

X.L('l')

X.L('2'j
X,L('3')
X.L('4*)

X.LC5*)

X.LC6M

X.L('T)

X.L('8')

X.L('9')

X.L('IO')

X.L('ll')

X.L('12')

X.L('13')

X.LC14')

X.L('15'>
X.L('16*)
X.LC17')

X.L{'18')

X.LC19')

X.L('20'j

values

= 12500

= 2000;

= 625;

= 1875;

= 1700;

= 6175;

= 1625;

= 2750;

= 2500;

= 3750

= 1000

= 1275

= 1475

- 2500

= 0;

= 1000

= 1375

= 425;

= 950;

= 125;

Z.L(ID,S,K) = 0;

Y.L(IY,S,K) = 0;

♦ Upper bounds of variables
X.UP('l') = 15000;

X.UPC2') = 2700;

X.UPC3') = 1100;

X.UP('4'j = 2300;
X.UP('5') = 1700;

X.UPC6') = 9500;

X.UPC7') = 1950;

X.UP('S') = 3300

X.UPC9') = 3000

X.UP('IO') = 3000

X.UP('ll') = 1350
X.UPC12') = 1275

X.UP('13') = 3300

X.UPC14') = 3000

X.DP('15') = 3000

X.UPC16') = 1200
X.UPC17') = 1650

X.UPC18') = 425;

X.UPC19') = 1650;

X.UPC20') = 150;

♦ Lower bounds of variables

X.LO('l') = 10;

MODEL REFINERY / all /;

SOLVE REFINERY USING DNLP MAXIMIZING Z2;
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APPENDIX B

Weighted Sum Method GAMS Output File

SOLVE SUMMARY

MODEL REFINERY

TYPE DNLP

SOLVER CONOPT

OBJECTIVE Z2

DIRECTION MAXIMIZE

FROM LINE 209

**♦* SOLVER STATUS

+*** MODEL STATUS

**** OBJECTIVE VALUE

1 NORMAL COMPLETION

2 LOCALLY OPTIMAL

-35637.0848

RESOURCE USAGE, LIMIT

ITERATION COUNT, LIMIT

EVALUATION ERRORS

0.109 1000.000

10 10000

0 0

C O N O P T 3 x86/MS Windows version 3.14S-017-061

Copyright (C) ARKI Consulting and Development A/S
Bagsvaerdvej 246 A
pK-2880 Bagsyaerd, Denmark

Using default options.

The model has 65 variables and 49 constraints

with 251 Jacobian elements, 37 of which are nonlinear.

The Hessian of the Lagrangian has 37 elements on the diagonal,
156 elements below the diagonal, and 37 nonlinear variables.

♦♦ Optimal solution. There are no superbasic variables.

CONOPT time Total

of which: Function evaluations

1st Derivative evaluations

Workspace
Estimate

Max used

0.38 Mbytes
0.38 Mbytes
0.10 Mbytes

0.109 seconds

0.000 = 0.0%

0.000 = 0.0%

LOWER LEVEL UPPER MARGINAL

EQD OBJ

EQU Feedl

EQU Feedl4

EQU FY14_16
EQU FY14_17
EQU FY14_20
EQU FB2_11
EQU FB2_16
EQU FB5_12
EQD FB5_18
EQU UB3

EQU UBS

EQU UB14
EQU UB17

EQU UB6

EQU CONSl

EQU CONS2

EQU CONS3
EQU CONS4

-INF

-INF

10 000 15000

2500

000

000

1.000

17.795

12.454

EPS

105.130

-17.795

31.660

-12.454

4.800

12.454

12.454

12.454

12.454

1.000

-0.100

-1.000

-0.100

OBJ Objective function to maximiaze profit
Feedl Feed equation limitation for Crude Oil
Feedl4 Feed equation limitation for Cracker Feed
FY14_16 Fixed Yield of Cracker for X(14) and X(16)
FY14_17 Fixed Yield of Cracker for X(17) and X(17)
FY14_20 Fixed Yield of Cracker for X(20) and X(20)
FB2_11 Fixed Blend of Gasoline Blending for X(2} and X(ll)
FB2_16 Fixed Blend of Gasoline Blending for X(2) and X(16)
FB5 12 Fixed Blend of Heating Oil Blending for X(5) and X(12)
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FB5_18 Fixed Blend of Heating Oil Blending for X(5) and X(18)
UB3 Unrestricted Balance for Naphtha
UB8 Unrestricted Balance for Gas Oil

UB14 Unrestricted Balance for Cracker Feed

DB17 Unrestricted Balance for Cracked Oil

OB6 Unrestricted Balance for Fuel Oil

— EQU YIELDstoc uncertain or stochastic fixed yield of primary distillation
unit

LOWER LEVEL UPPER MARGINAL

4 .SI . . 1.260

4 .32 1.620

4 .S3 0.720

7 .SI 1.680

7 .82 2.160

7 .S3 0.960

8 .SI 1.260

8 .S2 1.620

8 .S3 0.720

9 .SI 1.260

9 .32 1.620

9 .S3 0.720

10.SI 1.260

10. S2 1.620

10. S3 0.720

EQU DEMANDstOC uncertain or stochastic fixed demand of primary distillatio
n unit

LOWER LEVEL UPPER MARGINAL

2.SI 2835.000 2835.000 2835.000 -8.750

2.S2 2700.000 2700.000 2700.000 -11.250

2.S3 2565.000 2565.000 2565.000 -5.000

3.SI 1155.000 1155.000 1155.000 -5.950

3^S2 1100.000 1100.000 1100.ooo -7.650

3.S3 1045.000 1045.000 1045.000 2.600

4.Si 2415.000 2415.000 2415.000 -1.750

4.S2 2300.000 2300.000 2300.000 -2.250

4.S3 2185.000 2185.000 2185.000 0.800

5.SI 1785.000 1785.000 1785.000 -2.100

5.S2 1700.000 1700.000 1700.000 -2.700

5.S3 1615.000 1615.000 1615.000 -1.200

6.SI 9975.000 9975.000 9975.000 -3.500

6.S2 9500.000 9500.000 9500.000 -4.500

6.S3 9025.000 9025.000 9025.000 1.600

VAR Z2

LOWER LEVEL UPPER MARGINAL

-INF -3.564E+4 +INF

Z2 Maximize Profit for Z

VAR Z stochastic variables on production shortfall and surplus (amount of
unsatisfied demand for product i due to underproduction or overprodu
ction per realization of scenario s)

LOWER LEVEL UPPER MARGINAL

2.S1.K1 2835.000 +INF ,

2.S1.K2 +INF -15.750

2.S2.K1 2700 000 +INF .

2.S2.K2 +INF -20.250

2.S3.K1 2565 000 +INF

2.S3.K2 +INF -9.000

3.S1.K1 55 000 +INF

3.S1.K2 +INF -10.500

3.S2.K1 +INF

3.S2.K2 +INF -13.500

3.S3.K1 +INF -6.000

3.S3.K2 55 000 +INF

4.S1.K1 115 000 +INF .

4.S1.K2 +INF -3.150

4.S2.K1 +INF .

4.S2.K2 +INF -4.050
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-1.800

-3.850

-4.950

-2.200

-6.300

-8.100

-3.600

4.S3.K1 +INF

4.S3.K2 115.000 +INF

5.S1.K1 1785.000 +INF

5.S1.K2 +INF

5.S2.Kl 1700.000 +INF

5.S2.K2 . +INF

5.S3.K1 1615.000 +INF

5.S3.K2 . +INF

6.S1.K1 675.000 +INF

6.S1.K2 +INF

6.S2.K1 200.000 +INF

6.S2.K2 . +INF

6.S3.K1 +INF

6.S3.K2 275.000 +INF

VAR Y stochastic variable s on

unsatisfied yield for product i due to underproduction or overproduc
tion per realization of scenario s)

LOWER LEVEL UPPER MARGINAL

4 .31.Kl +INF -3.360

4 .S1.K2 2298.425 -t-INF

4 .S2.K1 +INF -4.320

4 .S2.K2 2298.500 +INF

4 .S3.K1 . +INF -1.920

4 -S3.K2 2298.575 +INF

7 .S1.K1 -f-INF -3.780

7 .S1.K2 1098.635 +INF

7 .S2.K1 +INF -4.860

7 .S2.K2 1098.700 +INF

7 .S3.K1 +INF -2.160

7 .S3.K2 1098.765 +INF

8 .31.Kl . +INF -3.360

8 .S1.K2 3297.690 +INF

8 .S2.K1 . +INF -4.320

8 .S2.K2 3297.800 +INF

8 .S3.K1 +TNF -1.920

8 .S3.K2 3297.910 +INF .

9 .31.Kl +INF -3.360

9 .S1.K2 2997.900 +INF

9 .S2.K1 +INF -4.320

9 .S2.K2 2998.000 +INF .

9 .S3.K1 , +INF -1.920

9 .S3.K2 2998.100 +INF

10.S1.K1 +INF -3.360

10.S1.K2 2997.350 +INF

10.S2.K1 +INF -4.320

10.S2.K2 2997.000 +INF

10.S3.K1 +INF -1.920

10.S3.K2 2996.650 +INF

VAR X production flowrates of materials

LOWER LEVEL UPPER MARGINAL

1 10 000 10.000 15000.000 -4 315

2 2700.000

3 1100.000 1100.000 14 272

4 2300.000 2300.000 12 213

5 1700.000

6 9300.000 9500.000

7 1100.000 1950.000

8 3300.000 3300.000 8 854

9 3000.000 3000.000 8 854

10 3000.000 3000.000 8 854

11 1350.000 -109 930

12 1275.000 -44 114

13 3300.000 3300.000

14 3000.000

15 3000.000 3000.000

16 . 1200.000

17 . 1650.000

18 . 425.000

19 1650.000

20 150.000
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VAR MAD_zO
VAR MADs

VAR Es

VAR Ep

REPORT SUMMARY

EXECUTION TIME

LOWER LEVEL UPPER MARGINAL

5549.565 +INF

78337.380 +INF

1.2192E+5 +INF

94669.050 +INF

0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

0.000 SECONDS 2 Mb WIN226-149 Dec 19, 2007

USER: course license S060628:0842AL-WIN

Phd course about mathematical programming DC5953
License for teaching and research at degree granting institutions
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APPENDIX C

Epsilon Constraint Method GAMS Input File

$TITLE Approach 4: Risk Model III of Two-Stage Stochastic Programming with Fixed
Recourse for Minimization of the Expected Value and the Mean-Absolute Deviation (MAD)
of the Variation in Recourse Penalty Costs

SETS

I types of materials / 1*20 /

S Scenarios / S1*S3 /

ID(I) types of materials subject to demand uncertainty / 2*6 /

IY(IJ types of materials subject to demand uncertainty / 4,7,8,9,10 /

K production shortfall and surplus or yield decrement or increment / Kl, K2 /

ALIAS(S,SC)

PARAMETER

PCS) Probability of the realization of scenario

/
SI 0 .35,

S2 0 .45,

S3 0 .20

/

V(I) Variance of Price

/
1 0.352,

2 1.882375,

3 0.352,

4 0.859375,

5 1.156375,

6 0.198,

14 0.012375

/

Table PRICE{I,S) Table of Price Uncertainty
SI S2 S3

1 -8.8 -8.0 -7.2

2 20.35 18.5 16.65

3 8.8 8.0 7.2

4 13.75 12.5 11.25

5 15.95 14.5 13.05

6 6.6 6.0 5.4

14 -1.65 -1.5 -1.35;

Table DEMAND(ID,S) Table of Demand

SI S2 S3

2 2835 2700 2565

3 1155 1100 1045

4 2415 2300 2185

5 1785 1700 1615

6 9975 9500 9025;

Table YXELD(IY,S) Table of Yield Ui

SI S2 S3

4 -0.1575 -0.15 -0.1425

7 -0.1365 -0.13 -0.1235

8 -0.231 -0.22 -0.209

9 -0.21 -0.20 -0.19

10 -0.265 -0.30 -0.335;

Table PENALTY_DEMAND(ID,K) Table of Penalty Demand
Kl K2

2 25 20

3 17 13

4 5 4
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5 6 5

6 10 8;

Table PENALTY YIELD(IY,K)

Kl K2

4 5 3

7 5 4

8 5 3

9 5 3

10 5 3

VARIABLES

Z2 Maximize Profit for

Z3

Z4

Ecv

Table of Penalty Yield

POSITIVE VARIABLES

Z(ID,S,K) stochastic variables on production shortfall and surplus (amount of
unsatisfied demand for product i due to underproduction or overproduction per
realization of scenario s)

Y(IY,S,K) stochastic variables on production shortfall and surplus (amount of
unsatisfied yield for product i due to underproduction or overproduction per
realization of scenario s)

X production flowrates of materials
Ep, DEVIATIONprofit, Tshortfall, Tsurplus

PARAMETER MAD zO value, Es value, MADs value, Ep_value;

EQUATIONS

OBJ

Feedl

Feedl4

FY14 16

FY14_17
FY14 20

FB2 11

FB2 16

FB5 12

FB5_18
UB3

UBS

UB14

UB17

UB6

MAD zO

Es

MADs

Objective function to maximiaze profit
Feed equation limitation for Crude Oil
Feed equation limitation for Cracker Feed
Fixed Yield of Cracker for X(14) and X(16)

Fixed Yield of Cracker for X(17) and X(17)

Fixed Yield of Cracker for X(20) and X(20)

Fixed Blend of Gasoline Blending for X(2) and X(ll)
Fixed Blend of Gasoline Blending for X(2) and X(16)
Fixed Blend of Heating Oil Blending for X(5) and X(12)
Fixed Blend of Heating Oil Blending for X(5) and X(18)
Unrestricted Balance for Naphtha
Unrestricted Balance for Gas Oil

Unrestricted Balance for Cracker Feed

Unrestricted Balance for Cracked Oil

Unrestricted Balance for Fuel Oil

YIELDstoc(IY,S)

DEMANDstoc(ID,S)

uncertain or stochastic fixed yield of primary distillation unit
uncertain or stochastic fixed demand of primary distillation unit

♦♦LIMITATIONS OF PLANT CAPACITY

Feedl.. X('l*} =L= 15000;

Feedl4.. X('14') =L= 2500;

*************************************************************************************

♦FIXED YIELDS FOR CRACKER (deterministic constraints)
*************************************************************************************

FY14JL6.. -0.40*X('14<) + X('16') =E= 0;
FY14_17.. -0.55*X('14') + X{'17') =E= 0;
FY14_20.. -0.05*X('14') +X{'20') =E= 0;
FB2_11.. 0.5*X('2') + X('ll*) =E= 0;
FB2_16.. 0.54X(*2*) +X('16') =E= 0;
FB5_12.. 0.754X('5') + X('12'} =E= 0;
FB5_18.. 0.25*X('5') + X('18') =E= 0;
UB3.. -XC7') + X('3') + X('ll') =E= 0;

UB8.. ~X('8') + X('12') + X('13') =E= 0;
UB14.. -X('9') + XC14') + X('15') =E= 0;
UB17.. -X('17') + X('18') + X('19') =E= 0;
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UB6. . -X('IO') - X('13') - X('15') - X('19') + X('6') =£= 0;

*******+*********************************************♦***♦♦*♦♦♦♦********♦♦♦♦♦♦♦♦♦♦*♦*

♦♦CONSTRAINTS ON PRODUCTION DEMANDS
*************************************************************************************

DEMANDstoc(ID,S).. X(ID) + Z(ID,S,'K1') - Z(ID,S,'K2') =E= DEMAND(ID,S);

*************************************************************************************

♦♦CONSTRAINTS ON PRODUCTION YIELD
*************************************************************************************

YIELDstoc(IY,S).. YIELD(IY,S)*X('1') + X(IY) + Y(IY,S,'K1*) - Y(IY,S,'K2') =E= 0;

values

= 12500

= 2000;

- 625;

= 1875;

= 1700;

= 6175;

= 1625;

= 2750;

- 2500;

= 3750

= 1000

= 1275

= 1475

= 2500

= 0;

= 1000

= 1375

= 425

» 950

= 125

K) - 0

K) = 0

♦Initial

X.L('l')

X.LC2")

X.LC3')
X.L('4')

X.L('5')

X.L('6')

X.L('7')

X.LC8')

X.L('9')

X.L('IO')

X.L('ll')

X.LC12')

X.L(*13')

X.LC14')

X.LC15')

X.LC16')

X.LC17')

X.L('18')

X.L('19')
X.LC20*)

Z.L(ID,S,

Y.L(IY,S,

* Upper bounds of variables
X.UP('l') = 15000;

X.UPC2') = 2700

X.UP('3') = 1100

X.OP(M') » 2300
X.UP('5'} = 1700

X.UP{'6') - 9500

X.UPC7') = 1950

X.UP(*8') = 3300

X.UPC9') - 3000

X.UP('IO') = 3000

X.OP('ll') - 1350

X.UPC12') = 1275

X.UPC13') = 3300

X.UPi'14') = 3000
X.UPC15') - 3000

X.UP('16<) = 1200;

X.UPC17') = 1650;

X.UPC18') = 425;

X.UPC19') = 1650;

X.UPC20') = 150;

Ep.L = 0;

* Lower bounds of variables

X.LO('l') = 10;

OBJ.. Z2 =E= SUM(fI,S), P(S)^Price(I,S)*X(I));

MAD_z0.. SUM(SC, P(SC)*ABS(SUM(I, PRICE(I,SC)♦X(I)) - SUM((I,S),
P(S)*PRICE<IfS>*X(I)))) =L= 7140;

Es.. SUM(S, P(S)*(SUM((ID,K), PENALTY_DEMAND(ID,K)*Z(ID,SrK)) +SDM{(IY,K),
PENALTY_YIELD(IY,K)^Y(IY,S,K)))) =L= 279420;

MADs.. SUM(S, P(S)*AB3(SUM({ID,K), PENALTY_DEMAND(ID,K)*Z(ID,S,K)) + SUM((IY,K),
PENALTY_YIELD(1Y,K)*Y(IY,S,K))

- SUM((ID,K), PENALTY_DEMANB(iD,K)*Z(ID,S,K)) + SOM((IY,K),
PENALTY_YIELD(IY,K)4Y(IY,S,K)))) =L= 150000;

MODEL REFINERY / all /;
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SOLVE REFINERY USING DNLP MAXIMIZING Z2;

Ep^value = SUM((I,S), P(S)APrice(I,S)*X.L(I))f

MAD_zO_value = SUM(SC, P(SC)♦ABS(SUM(I, PRICE(I,SC)*X.L(I)) - SUM((I,S),
P(S)^PRICE(I,S)*X.L(I))));

Es_value = SUM(S, P(S)*(SUM((ID,K), PENALTY_DEMAND(ID,K)♦Z.L(ID,S,K)) + SUM((IY,K)
PENALTY_YIELD(IY,K)4Y.L(IY,S,K))));

MADs_value = SUM(S, P{S) *ABS <SUM( (ID,K> , PENALTY_DEMAND(ID,K)+Z.L(ID,3,K)) +
SUM((IY,K), PENALTY_YIELD(IY,K)^Y.L(IY,S,K))

- SUM{(ID,R), PENALTY_DEMAND(ID,K)*2.L(ID,S,K)) + SUM((IY,K),
PENALTY_YIELD(IY,K)4Y.L(IY,S,K))));

DISPLAY Ep_value, MAD_zO_value, Es_value, MADs_value;
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APPENDIX D

Epsilon Constraint Method GAMS Output File

SOLVE

MODEL REFINERY

TYPE DNLP

SOLVER CONOPT

SUMMARY

OBJECTIVE Z2

DIRECTION MAXIMIZE

FROM LINE 216

**** SOLVER STATUS

**** MODEL STATUS

**** OBJECTIVE VALUE

1 NORMAL COMPLETION

2 LOCALLY OPTIMAL

94669.0500

RESOURCE USAGE, LIMIT

ITERATION COUNT, LIMIT
EVALUATION ERRORS

0.048 1000.000

11 10000

0 0

C O N O P T 3 X86/MS Windows version 3.14S-017-061
Copyright (C) ARKI Consulting and Development A/S

Bagsvaerdvej 246 A
DK-2880 Bagsya^rd, Denmark

Using default options.

The model has 81 variables and 48 constraints
with 243 Jacobian elements, 37 of which are nonlinear.
The Hessian of the Lagrangian has 37 elements on the diagonal,
156 elements below the diagonal, and 37 nonlinear variables.

♦* Optimal solution. There are no superbasic variables.

CONOPT time Total 0.032 seconds

of which: Function evaluations 0.016 = 50.0%

1st Derivative evaluations 0.000 = 0.0%

Workspace 0 36 Mbytes

Estimate 0 36 Mbytes

Max used 0 10 Mbytes

LOWER LEVEL UPPER MARGINAL

EQU OBJ 1.000

EQU Feedl -INF 10 000 15000 000

EQU Feedl4 -INF 2500 ooo

EQU FY14 16 -37.555

EQU FY14 17 6.090

EQU FY14 20 EPS

EQU FB2 11 EPS

EQU FB2 16 37.555

EQU FB5 12 21.653

EQU FB5 18 -6.090

EQU UB3 EPS

EQU UBS EPS

EQU UB14 6.090

EQU OB17 6.090

EQU UB6 6.090

EQU MAD zO -INF 5549 565 7140 000

EQU ES -INF 1.2192E+5 2.7942E+5

EQU MADs - ENF 78337 380 1.500 3E+5

OBJ Objective function to maximiaze profit
Feedl Feed equation limitation for Crude Oil
Feedl4 Feed equation liiEiitation for Cracker Feed
FY14_16 Fixed Yield of Cracker for X(14) and X(16)
FY14_17 Fixed Yield of Cracker for X(17) and X(17)
FY14_20 Fixed Yield of Cracker for X(20) and X(20)
FB2_11 Fixed Blend of Gasoline Blending for X(2) and X(ll)
FB2_16 Fixed Blend of Gasoline Blending for X(2) and X(16)
FB5_12 Fixed Blend of Heating Oil Blending for X(5) and X(12)
FB5_18 Fixed Blend of Heating Oil Blending for X(5) and X(18)
UB3 Unrestricted Balance for Naphtha
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UB8 Unrestricted Balance for Gas Oil
UB14 Unrestricted Balance for Cracker Feed

UB17 Unrestricted Balance for Cracked Oil

UB6 Unrestricted Balance for Fuel Oil

— EQU YIELDstoc uncertain or stochastic fixed yield of primary distillation
unit

LOWER LEVEL UPPER MARGINAL

4 .SI . - . EPS

4 .32 EPS

4 .S3 EPS

7 .SI EPS

7 .32 EPS

7 .S3 EPS

8 .SI EPS

8 -S2 EPS

8 .S3 EPS

9 .SI EPS

9 .S2 EPS

9 .S3 EPS

10.SI EPS

10.S2 EPS

10.S3 EPS

EQU DEMANDstOC uncertain or stochastic fixed demand of primary distillatio
n unit

LOWER LEVEL UPPER MARGINAL

2 SI 2835.000 2835.000 2835.000 EPS

2 S2 2700.000 2700.000 2700.000 EPS

2 S3 2565.000 2565.000 2565.000 EPS

3 SI 1155.000 1155.000 1155.000 EPS

3 S2 1100.000 1100.000 1100.000 EPS

3 S3 1045.000 1045.000 1045.000 EPS

4 SI 2415.000 2415.000 2415.000 EPS

4 S2 2300.000 2300.000 2300.000 EPS

4 S3 2185.000 2185.000 2185.000 EPS

5 SI 1785.000 1785.000 1785.000 EPS

5 S2 1700.000 1700.000 1700.000 EPS

5 S3 1615.000 1615.000 1615.000 EPS

6 Si 9975.000 9975.000 9975.000 EPS

6 S2 9500.000 9500.000 9500.000 EPS

6 S3 9025.000 9025.000 9025.000 EPS

LOWER LEVEL UPPER

VAR Z2 -INF 94669.050 +INF

MARGINAL

Z2 Maximize Profit for Z

VAR Z stochastic variables on production shortfall and surplus (amount of
unsatisfied demand for product i due to underproduction or overprodu
ction per realization of scenario s)

LOWER LEVEL UPPER MARGINAL

2.S1.K1 2835.000 +INF

2.S1.K2 +INF EPS

2.S2.K1 2700.000 +INF .

2.S2.K2 +INF EPS

2.S3.K1 2565.000 +INF

2.S3.K2 . +INF EPS

3.S1.K1 55.000 +INF .

3.S1.K2 +INF EPS

3.S2.K1 +INF

3.S2.K2 +INF EPS

3.S3.K1 +INF EPS

3.S3.K2 55.000 -t-INF

4.S1.K1 115.000 +INF .

4.S1.K2 +INF EPS

4.S2.K1 +INF

4.S2.K2 . +INF EPS

4.33.Kl +INF EPS

4.S3.K2 115.000 +INF .
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5.S1.K1 1785.000 +INF

5.S1.K2 +INF EPS

5.S2.K1 1700.000 +INF .

5.S2.K2 +INF EPS

5.S3.K1 1615.000 +INF .

5.S3.K2 . +INF EPS

6.S1.K1 675.000 +INF .

6.S1.K2 +INF EPS

6.S2.K1 200.000 +INF

6. S2.K2 +INF EPS

6.S3.K1 +INF EPS

6.S3.K2 275.000 +INF

VAR Y stochastic variables on production shortfall and surplus (amount of
unsatisfied yield for product i due to underproduction or overproduc
tion per realization of scenario s)

LOWER LEVEL UPPER MARGINAL

4 .S1.K1 +INF EPS

4 .S1.K2 2298.425 +INF

4 .S2.K1 +INF EPS

4 .S2.K2 2298.500 +INF

4 .S3.K1 . +INF EPS

4 .S3.K2 2298.575 +INF .

7 .31.Kl . +INF EPS

7 .S1.K2 1098.635 +INF .

7 .32.K1 . +INF EPS

7 .S2.K2 1098.700 +INF

7 .S3.K1 +INF EPS

7 .S3.K2 1098.765 +INF .

8 .31.Kl +INF EPS

8 .S1.K2 3297.690 +INF .

8 .32.Kl . +INF EPS

8 .S2.K2 3297.800 +INF .

8 .S3.K1 +INF EPS

8 .S3.K2 3297.910 +INF .

9 .31.Kl +INF EPS

9 .S1.K2 2997.900 +INF

9 .S2.K1 +INF EPS

9 .S2.K2 2998.000 +INF

9 .33.Kl +INF EPS

9 .S3.K2 2998.100 +INF

10.S1.K1 +INF EPS

10.S1.K2 2997.350 +INF

10.S2.K1 . +INF EPS

10.S2.K2 2997.000 +INF

10.S3.K1 +INF EPS

10.S3.K2 2996.650 +INF

VAR X production flowrates of materials

LOWER LEVEL UPPER MARGINAL

1 10 000 10.000 15000.000 -8 120

2 2700.000

3 1100.000 1100.000 8 120

4 2300.000 2300.000 12 688

5 1700.000

6 9300.000 9500.000

7 1100.000 1950.000

8 3300.000 3300.000

9 3000.000 3000.000 6 090

10 3000.000 3000.000 6 090

11 + 1350.000

12 1275.000 -21 653

13 3300.000 3300.000 6 090

14 3000.000 -19 285

15 3000.000 3000.000

16 1200.000

17 1650.000

18 425.000

19 1650.000

20
•

150.000

**** REP 3RT SUMMARY : 0 NON DPT
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0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

GAMS Rev 149 x86/MS Windows 06/05/09 03:06:40 Page 6
Approach 4; Risk Model III of Two-Stage Stochastic Programming with Fixed Recourse
for Minimization of the Expected Value and the Mean-Absolute Deviation (MAD) of the
Variation in Recourse Penalty Costs

Execution

228 PARAMETER Ep_value
PARAMETER MAD_z0_value
PARAMETER Es_value
PARAMETER MADs value

94669.050

5549.565

121917.440

78337.380

EXECUTION TIME 0.032 SECONDS 3 Mb WIN226-149 Dec 19, 2007

USER: course license S060628:0842AL-WIN
Phd course about mathematical programming DC5953
License for teaching and research at degree granting institutions
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