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ABSTRACT

Analogy ofthe mechanical andtransport properties on disperse composites is a literature

research in identifying experimental data reported for mechanical and various transport

properties in composite materials. The main objective is to explore the possibility to arrive at a

common model for both effective thermal conductivity and shear modulus in terms of the

properties of individual phases and the volume fraction. Poor utilization of one researcher's

results in one field by other researchers is the problem that has been faced in developing

approaches in prediction of the properties of disperse media. This study is concerned with

particulate filled matrices constitute from a three and two dimensional composites. A large

BHts&er of theoretical modelsand data gathered that had been proposed by earlier researcher are

been studied and included in the literature review. Those models being identified in order to

applythem to these experimental data and see how they compare. In the result part, the desired

models, Eshelby and Halpin-Tsai winch chosen to be predictive model will be discussed in

farther The assumptions and explanation for other models also included in discussion part
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CHAPTER 1

INTRODUCTION

1.6 INTRODUCTION

1.1 Background Studies

Imagine our life without composites. Every single day will be a total mess

because all the staffs we are dealing with are composites. The world will turn upside

down. Starting from ourmobile phonewhich contains composite printedcircuitboards to

under the bonnet of the car, composites are everywhere. If they arenot there yet, wecan

bepetty sure they arecoming. Composites can be defined in a broad way. According to

deflation for Wikipedia website, composite materials (or composites for short) are

engineered materials made from two or more constituent materials with significantly

different physical or chemical properties and which remain separate and distinct on a

macroscopic level within the finished structure [1]. Most composite materials are made

freas two (2) materials: a reinforcement material called fibre and a basematerial, called

matrixmaterial. At least one portionofeach typeis required.

Figure 1.1: Engineering wood is a common composite material

Composite materials are usually formed in three different types: (1) fibrous

composites, which consist of fibres of one material in a matrix material of another; (2)

particulate composites, which are composed of macro sizeparticles of one material on a

matrix of another; and (3) laminated composites, which are made of layers of different

materials, including composites of the first twotypes [2, 3].



This project is all about finding the relationship between the effective shear

modulus (mechanical property) and thermal conductivity (transport property) in

composite materials as both these phenomena are governed by the same set ofequations.
T&e maia idea of this project is to be able to come up with a model which has a good
agreement between the model and experimental values for elastic modulus and thermal

conductivity. Elastic modulus and thermal conductivity have been chosen because

available studies onthesaid fields. Studies show that Hashin - Shtrikman upper bound is
thei&verted - Maxwell limit and both these theories arerelated by theshear modulus and

thermal conductivity. A much simpHfied version can be proposed by analyzmg both

elastic modulus and thermal conductivity. The finding will be studied closely to define

the*common elastic andthermal features thatexist in composites.

After conducting a literature review onthe findings, thenext stage is to develop a

better and improved model for both elastic and thermal properties for composite

materials. This model will be developed based on the experimental data analysis and

literature review data. Once the model is developed, the model will be applied to the

experimental data and see how they compare. A better prediction to the shear modulus

and thermal conductivity canbe developed based on the degree of analogy exist between

these two models. This prediction cannot exits the Hashin- Shtrikman and Maxwell

1.2 Problem Statement

1.2.1 Problem Identification

This project concerns with predicting the properties ofcomposite materials, given

the properties of the constituent materials and the volume fraction. The differential

equations for several transport phenomena are alike with those governing mechanical

load, stress and deformation. This has resulted in predictive equations being developed
fox each setofproperties. However there are few problems which lead topoor prediction
ofthe properties ofdisperses media.



• Poor utilization of other researcher's result

Poor utilization of one researcher's results in one field by other researchers has been

issue in developing approaches in prediction ofthe properties of disperse media. It is

either that the researcher is not aware about the existence of the other theories or the

developer does not fully explore other researchers' work. Lots of effort and time has

been expended in identifying the existence of theories and formula. For example

Maxwell's 1873 result for magnetic permittivity has been rediscovered by Hashin

and Shtrikman in 1962.

• Insufficient theoretical models in predicting behaviour of all material and

under all conditions.

The problem of analytical prediction of effective properties of composites material

is important from both practical and theoretical points of view, They can be

determined by experimental data gathered on samples, or by prediction from the

theoretical models. A large number of theoretical models proposed and presented

by s&rlier researcher. However, no model is applicable to all materials and under all

coaMons, accounting for all effects that modify the effective moduh of

composites.

-1.-&2 Significance of the project

Regarding the above problem statements, we realize that developing the existing

theories and formulas is a time consuming and at the same time, it shows that researchers

are not fully explore this field before developing any models. Thus, this project is a

literature research in identifying experimental data reported and theoretical models for

thermal conductivity and shear modulus in composite materials. This project aims to

come up with a better model to get a good agreement between the model and

experimental values from literature research. Developing a project that meets the

requirement ofthe analytical studies about the elastic moduh and thermal conductivity on

disperse composites will lead to a better correlations and predictions.



1.3 Objective

• Establish analogy between the mechanical and transport properties

Hie main objective ofmis project is to study analytically and establish the analogy

hetweeo the mechanical properties and their counterparts ofthe same tensorial order

among the various transport properties. This is because both these properties are

governed by the same set of equation which is Laplace equation.

• Study applicability of Maxwell and Hashin Shtrikman limits for thermal

conductivity and shear modulus, respectively in composites material

In this study, the applicability of the limits for the direct and phase - inverted

composite materials as predicted by Maxwell theory is studied. Comparisons

between Hashin - Shtrikman bounds for mechanical properties and Maxwell's

predictions for thermal conductivity are being analyzed for a better correlations and

divination. The Maxwell and Hashin-Shtrikman bounds are the lines that cannot be

exceeded by the proposed model.

• Study and analyze theoretical models proposed by other researchers.

Apart from Hashin-Shtrikman and Maxwell limits, other models such as those of

'sel^consistent scheme', 'generalized self-consistent scheme' and 'method of cell'

methods will also be taken into consideration in order to come out with a better

prediction for shear modulus and thermal conductivity ofcomposite materials.

• Develop a model for both effective thermal conductivity and shear modulus

The other objective ofthis project is to explore the possibility to arrive at a consmon

model for both effective thermal conductivity and shear modulus in terms of the

properties of individual phases and the volume fraction. The existing practical and

theoretical models will be analyzed and those models which can superimpose with

one another will be chosen as better model.



1.4 Scope of Studies

* Particle - filled matrices constitute form a three dimensional (3-D) composites.

* Fibre-reinforced matrices constitute form a two dimensional (2-D) composites

* Macroscopically homogeneous, microscopically heterogeneous, and continuous

composites.

* The models taken into consideration for shear modulus are:

> Isostress model

> Isostrain model

> Haskin - Shtrikman upper and lower bounds.

» The models taken into account for thermal conductivity' are:

> Isotherms model (parallel)

> Constant heat flux model (series)

> Maxwell and 'Maxwell Inverted5 models.

1.5 Relevancy of Project

This project requires a through study of the literature on the relationship between

mechanical properties and various transport properties in disperse composites. Available

studies on mechanical and thennal behaviour of composite materials will be gathered and

studies in through to obtain better information. These experimental reported data then

will be compared to find the similarities and finally this will lead to development of

predictive model. This model will be a better correlation for elastic modulus and thermal

conductivity in composite materials which have been a long standing problem.

1.6 Feasibility of project

This project is a literature research in identifying experimental data reported for

thennal conductivity and shear modulus. At the same time, models in literature also being

identified in order to apply them to these experimental data and see how they compare.

Thus, this project aims to come up with a better model to get a good agreement between

the model and experimental values from literature research.



CHAPTER 2

LITERATURE REVIEW

2,0 LITERATURE REVIEW

2.1 Composite Material

Structural materials can be separated into four basic categories: metals, polymers,

ceramics, and composites. Composites consist of two or more separate materials

combined in a structural unit, are naturally made from various combinations of the other

three materials. In the early days of modern man-made composite materials, the

constituents were typically macroscopic [4, 5]. As macroscopic molecules are large, it is

useM to consider the behaviour of molecule and to discuss the size of the molecule to

qualify it as a macromolecule [6], The advanced composites technology over the past few

decades had steadily decreased the size of the constituent materials, particularly the

reinforcement materials. Now the ongoing research more concerned with the

micrsstructure ofthe composites.

Generally composite materials are microscopically heterogeneous and very

anisotropic (properties in composite change as they move from matrix to fiber and as they

change the direction along which they are measured). The physical properties of

composite materials are generally not isotropic (independent on direction of applied

force) in nature, but rather are typically orthotropic (different, depending on the direction

of the applied force or load). For instance, the stiffness of a composite panel will often

depend upon the direction of the applied forces and/or moments [7].

2.1,1 Fibres

The assembly of reinforcement material in forming a composite material take the

following forms:

* Unidirectional: unidirectional tows, yarns, or tapes. Laminated composites are

the one-dimensional system.

• Bidimensional: woven or nonwoven fabrics (Felts or mats). Fiber-reinforced

composites form a two dimensional composites.



• Tridimensional: fabrics (sometimes calledmultidimensional fabrics) with fibers

oriented along many directions (>2); Particle-filled matrices constitute the three-

dimensional type of system [8].

Thesorinalized specific stifmess and strength are reduced even further when the loading

is in a direction other than along the fibres. Nevertheless, actual experience has shown

that significant weight savings are possible in primary engineering structures through the

use ofadvanced composites.

2.1.2 Matrix Materials

Polymers, metals, and ceramics are all used as matrix materials in contmous fiber

composites. Polymeric matrix materials can be further subdivided into thermoplastics and

thermosets- The most common metals used as matrix materials are aluminium, titanium,

and copper. Reasons for choosing a metal as the matrix material include higher use

temperature range, higher transverse strength, toughness (as contrasted with the brittle

behaviour of polymers and ceramics), and high thermal conductivity (cooper). Tne main

reasons for choosing ceramics as the matrix include a very high use temperature range

(>2000°C, 3600°F), high elastic modulus, and low density. The major disadvantage to

ceramic matrix materials is their brittleness, which makes them susceptible to flaws.

Oarhon, silicon carbide, and silicon nitride are ceramics that have been used as matrix

materials.

2.1.3 Composite Properties

Composites are used broadly because they have desirable properties that cannot

be achieved by any of the constituent materials acting alone. The most common example

is the fibrous composite consisting of reinforcing fibers embedded in a binder or matrix

material. Composite materials may be selected to give remarkable combinations of

stifmess, strength, weight, high-temperature performance, corrosion resistance, hardness,

or conductivity. Fibers alone cannot support longitudinal compressive loads and their

transverse mechanical properties are generally not as good as the equivalent longitudinal

properties. Thus fibers need to be held together in a structural unit with a binder or matrix

material and to provide a better stiffness. In composites, fibers are the load-carrying



members, and the matrix material which keeps the fibers together, acts as a load-transfer

medium between fibers. It also protects fibers from being exposed to the environment [7].

Most fiber - reinforced composites provide improved strength, fatigue resistance,

Young's modulus, and strength-to-weight ratio by incorporating strong, stiff, but brittle

fibers into a softer, more ductile matrix. The matrix material transmits the force to the

fibers, which carry most the applied force, provides protection for the fiber surface and

minimizes dififiision of species such as oxygen or moisture that can degrade the

mechanical properties of fibers [7]. The reason why fiber - reinforced composites are

much stronger and suffer than the same material in bulk form is that the fine fibers

contain fewer defects than does the bulk material.

This study concerned with three dimensional composites which is more complex

than the one and two dimensional composites. In many instances, particulate reinforced

composites can be thought as a feasible alternative. They are usually isotropic since the

particles are added randomly. They can be used as either dual or multi-phase materials

with the same advantage as monolithic materials in that they are easily processed to near

net shape. At the same time, they have an improved stiffness, strength and fracture

toughness that is characteristics of continuous fiber reinforced composites materials.

Particles utilized for reinforcing have improved properties: they are capable ofincreasing

the modulus and decreasing the permeability and the ductility. Particle used for

reinforcing include ceramics and glasses such as fine mineral particles, metal particles

such as aluminium, and amorphous materials, including polymers and carbon black [7].

Apart from particulate composites and fibre composites, flake composites are also

widely used. Flake composites consist of flat reinforcements of matrices. Typical flake

materials are glass, mica, aluminium, and silver. These types of composites provide

advantages such as high out-of-plane flexural modulus, higher strength, and low cost.

However, flakes cannot be oriented easily and only a limited number of materials are

available for use. Figure 2.1 shows types of composites based on reinforcement shape

while figure 2.2 shows the typical phases of3-D composite material [8}.
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2.2 Effective Properties

Continuous fibre composite generally is orthotropic [27] with nine independent

elastic constants. However, for a unidirectional composite which exhibits isotropic

properties in a plane transverse to fibres (same properties in all direction in the X2-X3

plane), the effective response is transversely isotropic. In this case there are only five

independent elastic constants. Layers of unidirectional composites with a large number of

fibres through the layer thickness generally are considered to be transversely isotropic.

When fee full tensor notation is used for the stresses, Oij, and the strains, Eij, the average

or effective constitutive equations for a transversely isotropic material have the form
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(2.1)

where the five elasticcoefficients C^, C*22, C\2, C23, and C*66 are the effective stiffness

coefficients of the equivalent homogenous material. They can be expressed in terms of

the effective engineering properties. The goal of micromechanics, as far as elastic

response is concerned, is to determine the effective (or average) stifmess, C*, in terms of

the fibre and matrix properties, the fibre volume fraction, and the arrangement of fibres in

the matrix.

2.3 Equivalent Homogeneity

All materials are heterogeneous [27] when evaluated on a sufficiently small scale.

However, if the scale of interest is large enough, most materials exhibit statistical

homogeneity. For a fibrous composite, the statistical homogeneity can be denied in terms

of a characteristic dimension of the inhomogeneity. Let consider the fibre spacing, X, as

the characteristic dimension (Figure 2.3). Then there exists a length scale 5 (sum of

several X) » X, over which the properties can be averaged in a meaningful way. If 5 is

small compared with the characteristic dimensions of the structure, the material can be

10



idealized as being effectively homogeneous, and the problem can be analyzed using

average or effective material properties.

We define a representative volume element (RVE) as a volume of material that

exhibits statistically homogeneous material properties. A representative volume element

and two nonrepresentative volume elements are shown in figure below. To be

representative, the volume element must include a sufficient number of fibres and

surrounding matrix to adequately represent the interaction between the phases.

CMously, a region of all fibre or all matrixes is not representative of the effective

properties ofthe composite.

Figure 2.3: Representative volume element (RVE)

2.4 Analogy between Mechanical and Transport Properties

Analogies exist between mechanical and transport properties and this can be

proven by Laplace equation. Laplace's equation is a partial differential equation named

after Pierre-Simon Laplace who first studied its properties. The solutions of Laplace's

equation are important in many fields of science, notably the fields of electromagnetism,

astronomy, and fluid dynamics, because they describe the behavior of electric,

gravitational, and fluid potentials. The general theory of solutions to Laplace's equation is

known as potential theory. There are seven transport properties those analogies. Below is

the table summarizes those properties:

11



Table 2.1: Analogy oftransport properties

Properties Analogous flow quantity

1.Electrical conductivity Electric current

2. Thermal conductivity Heat flux

3.Magnetic permittivity Magnetic flux

4.Qastic moduli Deflection

5. Dielectric constant Microwaves

6: Refractive index Light

7.I3afIusion coefficient Species (e.g., Absorption or drying)

All these phenomena governed by Laplace equation.Laplaceequation are given below:

32P d2P tfP
, . , . ,=0

Sc2 dy1 &2

where P, the Potential, is the dependent variable; P = P (x,y,z)

(2.2)

The solution from Laplace equation can be presented in a simple form such as:

L OAm's Law - for electricity

2. Hooke's Law - for strain

3. Fourier's Law - for heat flow

Beta? are the governing equation for Ohm's, Hooke's and Fourier Law:

Ohm's Law: Apphes to electrical circuits; it states that the current through a conductor

between two points is directly proportional to the potential difference or voltage across

the two points, and inversely proportional to the resistance between them.

Ohm's Law (electrical conductivity)

voltage

current
= electrical resistance

(2.3)

12



Taking its reciprocal,

current

voltage
= electrical conductance

(2.4)

Hooke's Law: An approximation that states that the extension of a spring is in direct

proportion with the load added to it as long as this load does not exceed the elastic limit.

Materials for which Hooke's law is a useful approximation are known as linear-elastic or

"Hookean" materials.

Hooke's Law {mechanicalproperties)

stress

strain
= elastic modulus

(2-5)

Fourier's Law: The time rate of heat transfer through a material is proportional to the

negative gradient in the temperature and to the area at right angles, to that gradient,

through which the heat is flowing. We can state this law in two equivalent forms: the

integral form, in which we look at the amount ofenergy flowing into or out ofa body as a

whole, and the differential form, in which we look at the flows or fluxes of energy

locally.

Fomier's Law {thermal conductivity)

heat flux

temp, gradient
= thermal conductivity

AHthe three laws above can be briefly described as:

Table 2.2: Property of Ohm's, Hooke's and Fourier's Law

(2.6)

Effect Cause Property = Effect / Cause

Current Voltage Electrical conductivity

Heat flux Temperature gradient Thermal conductivity

Strain Stress Compliance - Elastic modulus"*

13



Since shear stress and thennal conductivity have the same tensorial order and governed

by same set of equation, it is shown that analogies exist between these two properties.

2.5 Mechanical Properties

In this study, one of the mechanical properties, i.e., elastic modulus will be

analyzed. There are three types of moduli categorized under elastic moduli which are

tensile modulus, compressive modulus, and shear modulus.

2.5.1 Elements of mechanical behaviour of composites

This study is concerned with the analysis of both the micromechanical and the

macrornechanical behaviour of fiber-reinforced composite materials. As shown in figure

2.2, micromechamcs are concerned with the mechanical behaviour of constituent

materials (fiber and matrix materials), the interaction of these constituents, and the

resulting behaviour of the basic composite (a single lamina in a laminate).

Macfomechanics is concerned with the gross mechanical behaviour of composite

materials and structures (in this case, lamina, laminate, and structure), without regard for

the constituent materials or their interactions.

As will seen later in this study, this macromechanical behaviour may be

characterized by average stresses and strains and averaged, or "effective", mechanical

properties in an equivalent homogeneous materials. As for micromechanical behaviour, it

focuses on the relationships between the effective composite properties and the effective

constituent properties.

The relationships between forces and deformations (or between stresses and

strains) are complex in anisotropic composites than in isotropic materials, and this can

lead to unexpected behaviour. For example, in an isotropic material, a normal stress

(extensions and/or contractions), and a shear stress induces only shear strains

(distortions). In an anisotropic composite, a normal stress may include both normal

strams and shear strains, and a shear stress may induce both shear strains and normal

strains. A temperature change in an anisotropic material may cause nonuniform

expansion or contraction plus distortion. These so-called "coupling" effects have

14



important implications not only for the analytical mechanics of composites, but for the

experimental characterization ofcomposites' behaviour as well [9],

Micromechanics

Matrix (binder)

3minforei ng
fibers

Macro mechanics

Structure

Figure 2.4: Micromechanics and macromechanics of composites.

2.5.2 Strength of Composite

The stiffness and strength of fibrous composites come from fibers which are

stiffer and stronger. The basic mechanism of load transfer between the matrix and a fiber

can be explained by considering a cylindrical bar of single fiber in a matrix material

(Figtse 2.2).When an applied load P on the matrix is tensile, shear stress develops on the

outer surface of the fiber, and its magnitude decreases from a high value at the end ofthe

fiber to zero at a distance from the end. The tensile stress in the fiber cross section has the

opposite trend, starting from zero value at the end of the fiber to its maximum at a

distance from the end. The two stresses together balance the applied load, P, on the

matrix. The pure tensile state continues along the rest of the fiber.

When a compressive load is applied on the matrix, the stresses in the region of

characteristic length are reversed in sign; in the compressive region, i.e., rest of the fiber

len^, the fiber tends to buckle,much like a wire subjected to compressive load. At this

stage^ the matrix provides a lateral support to reduce the tendency of the fiber to buckle.

When a fiber is broken, the load carried by the fiber is transferred through shear stress to

the neighbouring two fibers, elevating the fiber axial stress level [2, 3]
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Figure 2.5: Load transfer andstress distribution in a single fiber embedded in a matrix

material and subjected to an axial load.

2.5.3 Modulus ofElasticity

Micromechanical analyses are based on the mechanicsof material approach or the

elasticity theory. In mechanics of material approach, simplifying assumptions make it

unnecessary to specify the details on the stress and strain distributions. The fiberpacking

geome&y is normally subjective. Elasticity theory grips the solution of actual stresses

and strains at the micromechanical level. Fiber packing geometry is also taken into

consideration at this stage. It also involves numerical solutions because of the complex

geometries and boundary conditions [10-12]. The figure below is considered for a

detaned discussion on elastic moduli.
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Figure 2,6: RVE and simple stress states used in elementary mechanics of materials

models.

Shear Modulus (Fig.l(c))

The effective in - plane shear modulus is defined as

Tcl2
where aci2 - average composite shear stress in the 12 plane

yci2— 2 Eci2, average engineering shear strain in the 12 plane

Geometric compatibility of the shear deformation, along with the assumption of equal

shea" stresses in fibers and matrix, leads to another inverse rule:
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I^Sf+Vffi 0.8)
G12 Gfi2 Gm

where Gn2 ^ shear modulus of fiber in the 12 plane

Gm - shear modulus ofmatrix

Practically, this equation is not very accurate because the shear stresses are not equal as

assumed.

The equation of elasticity must be satisfied at every point in the model regardless

of any simplifying assumptions about the stress and strain distribution. Fiber-packing

geometry is generally specified in this approach. Numerical solutions of the governing

elasticity equation are often necessary for complex structural geometries [12],

Adams and Doner [14, 15] state that the reinforcement effect for both effective

in-plane shear modulus (Gn) and transverse modulus (E2) only become significant for

fiber volume fractions about 50% but the combinations of high fiber stiffness and high

fiber volume fractions increase G12 and E2. However, these combinations also generate

very high stress concentration factors at the fiber/matrix interfaces.

2*6Transport Properties

Heat energy can be transmitted through solids via electric carriers (electrons or

holes), lattice waves (phonons), electromagnetic waves, spin waves, or other excitations.

In metal, electrical carriers carry the majority of the heat, while in insulators lattice waves

-ate'Use principal heat transporters. The thermal conductivities of solids vary dramatically

boihiftmagnitude and temperature dependencefrom one material to another [4].

Composites are usually subjected to changing environmental conditions during both

initial fabrication and final use. For matrix - dominated properties, increased temperature

causes a gradual softening of the polymer matrix material up to a point However for

fiber-remfbrced composites, the fibers are not affected as muchby temperature condition,

the swelling or contraction of the matrix is resisted by the fibers and residual stresses

develop in the composite [5].
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2.6.1 Theory ofThermal Conductivity

Let consider a crystal with N0 unit cells, each of volume Q. Let also identify a

phonon with its wave vector q, polarization index s, frequency a (qs), and group velocity

4*49)- *heheat current Q can be expressed by including contributions from phonons in all

possible modes [28]

T3m quantify 1%, assumes its equilibrium value n*qs characterized by the crystal
temperature T. in the presence of a temperature gradient across the crystal it can be

express

%»-=»% + £%,, (2.10)

whsee Snqs indicates deviation from the equilibrium value. Clearly, then, the heat current

is governed by 5nqS! so that Eq. (2.9) can be expressed as

^Ya H,M^^cM (2.11)

The deviation quantity Sn^ which is significantly controlled by crystal anhaimonicity,

particularly at high temperatures, is in general unknown. Microstructure theories of

lattice thermal conductivity attempt to addressthe quantity 5nqs.

2.6.2 Importance ofThermal Conductivity

A solid's thermal conductivity is one of its most fundamental and important

physical parameters. Its manipulation and control have impacted an enormous variety of

technical applications, including thermal management of mechanical, electrical,

chemical, and nuclear system. Lattice thermal conductivity is the heat conduction via

vibrations of the lattice ions in a solid. Lattice thermal conductivity of solids near

ambient temperature can span an enormously wide range. "High" thermal conductivity of

0.03 Wcm^K"1 would, for this class ofsolids, have a "high" thermal conductivity. On the

other hand, such a value of thermal conductivity for an inorganic crystalline

semiconductor (the thermoelectric material PbTe, for example) would be considered very

"low". Frequently in the literature a value of thermal conductivity in excess of lWcm-1K"

1has been chosen, rather arbitrarily, as the lower limit for a high-thermal-conductivity

solid Because the main driver in the search for nigh-thermal-conductivity solids is for
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thermal management of electronics systems, a more suitable metric may be how the

thermal conductivity compares to traditional materials used in these types of applications.

By far most widely used material for thermal management in high-volume applications is

crystalline alumina, with a thermal conductivity on the order of O.SWcm^K"1. Thus the

lower limit set to be "high" thermal conductivity at O.SWcm^K"1. Even with this more

relaxed criterion, the family of high-tliermal-conductivity electrical insulators is still

rafter small.

2.6.3 Coefficient of Thermal Expansion (CTE)

Rosen [15] observed that for composites having high fiber volume fraction, the

predicted longitudinal coefficient of thermal expansion (CTE) is almost zero.

Measurement of such materials confirmed that longitudinal CTE is so small as to

fluctuate between positive and negative values due to small changes in temperature or

fiber volume fraction. Over the range of practical fiber volume fractions transverse CTE

is much greater than longitudinal CTE, At the same time, at low fiber volume fractions

transverse CTE can be greater than longitudinal CTE of matrix. The figure below shows

the variations of longitudinal CTE (ai) and transverse CTE (02) with fiber volume

fraction for typical graphite/epoxy composite [1].
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Figure 2.7: Variation of predicted longitudinal and transverse coefficients of thermal

expansion with fiber volume fraction for typical unidirectional graphite/epoxy composite.
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CHAPTERS

METHODOLOGY

M METHODOLOGY

3.1 Technique ofAnalysis

Figure below shows the summary of methodology that will be implemented in

order to complete the project It involves project activities which move from one

phase to another.

Planning &
Feasibility

Graph
digitization

Selection ofmodel

for comparison

Literature

Review

Model

development

Figure 3.1: Summary ofMethodology
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3.1.1 Planning & Feasibility

This project concerned with the literature studies on analogy of mechanical and

transport properties in composite materials. Information on the mechanical behaviour and

thermal conductivity ofcomposite will be studied thoroughly at this stage. The objectives

and scope of study of the project were identified and the further activities were planned

based on these information. Then the limitations to the proposed model were identified

and this will guide to an enhanced union and divination.

3.1.2 Literature Review

Since this study is a literature research, the development of predictive model

predominantly depends on the existing earlier theories. Abundant of information on die

existing theories are needed in order to come out with a better prediction of proposed

model. All the information mostly gathered form books written by early researchers and

journals and articles found in Information Resource Centre (IRC) about the composite

materials as well as discussion with lecturers. All the data from various sources will be

gathered in order to be analyzed later.

3.13 Selection ofmodel for comparison

The gathered data will be analyzed in through at this stage. The early existing

theories such Rule of Mixtures, Maxwell prediction for thermal conductivity and Hashin-

Shtrikman bounds for mechanical properties were analyzed at first place before moving

on with other theories. Other theories such as Effective Moduli method and Raghavan-

Martin model will be studied as project works continuous. The ideas and theories brought

forward by these researchers will be studied in through and evaluate the similarities

among those theories. This will lead to a much simpler prediction about the shear

modulus and thermal conductivity can be developed by analyzing the analogy of

mechanical and transport properties of disperse composite. This is the stage where the
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selected theories and practical data analyzedin thorough so that those models can be used

later in graph digitization.

3.1.4 Graph digitization

In this part, both selected practical and theoretical data will be exported to

*e" software to be digitized. The points from the graph will be extracted to excel

form and the exact points can be obtained. The same thing will be done for all selected

models. Once all the points been extracted from the graph, effective properties for

thermal conductivity and shear modulus will be evaluated. Those properties will be

cesipared with other points extracted from other graphs. The analogy between those

models will be figure out. Since both mechanical properties and thermal conductivity

governs by the same set of equation, it is possible to develop a better model using any

one ofthe property.

3.1.5 Model Development

At this stage, all the gathered data will be compared to each another in order to

find die similarities among the existing model. Graphs of effective shear or thermal

curves vs. volume fraction of disperse medium will be plotted. Then, the effective

thermal models will be superimposed with effective shear curves and see the degree of

analogy that exists between them. Those models which superimpose with one another

will be identified at first place. The main aim is to identify whether the effective thermal

models that predict effective shear models well and are also correct at the limit. The

proposed model will be developed based on the model which gives a good prediction.

The proposed model also cannot exceed the Maxwell and Hashin - Shtrikman bounds*
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3.2 Tool required

• _ a «

The software used in this project is "Engauge". This open source, digitizing

software converts an image file showing a graph or map, into numbers. The image file

can come from a scanner, digital camera or screenshot. The numbers can be read on the

screen, and written or copied to a spreadsheet The process starts with an image file

containing a graph or map. The final result is digitized data that can be used by other

tools such as Microsoft Excel and Gnumeric. Engauge (from en "make" and gauge "to

measure") verb meaning to convert an image file containing a graph or map, into

numbers. Below are some ofthe features of"Engauge" software:

• Automatic curve tracing of line plots

• Automatic point matching ofpoint plots

• Automatic axes matching

» Support for drag-and-drop and copy-and-paste makes data transfer fast and easy

• Tutorials with pictures explain strategies for common operations

• Preview windows give immediate feedback while modifying settings

• Export support for common software packages such as Microsoft Excel,

OpenOffice CALC, gnuplot, gnumeric, MATLAB and Mathematica

• Engauge is available for a wide variety ofplatforms (Linux, Mac OSX,

Windows)

• f&gauge Digitizer is completely open source and free courtesy of Sourceforge,

TrolltechandFFTW
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CHAPTER 4

RESULT AND DISCUSSION

4.0 RESULT AND DISCUSSION

4.1 Result

4.1.1 Two Dimensional Composite Materials
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Figure 4.1: Effective properties of two-dimensional composite materials

4.1.2 Three Dimensional Composite Materials
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Figure4.2: Effective properties of three-dimensional composite materials
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4.2 Discussion

4.2.1 Rule of Mixtures (Strength of Materials Approach)

This approach was developed by Voigt and Reuss. The strain field approach

introduced by Voigt states that strains is same over all composite and equal in each phase.

The stress dual approach invented by Reuss states that constant stresses over aU

composites and equal in each phase. This constant stress and strain only valid when

constituents are either in parallel or in series. In the theory of mechanical properties for

composites, there are two "rules ofmixing'* that act on a composite [18];

* Isostrain: Loading parallel to fibers: Isostrain is similar to springs in parallel as

in Figure 4.3

* Isostress: Loading perpendicular to fibers: Isostress is similar to springs in series

as shown in Figure 4.4

Figure 4.3: Isostrain condition - similar to springs in parallel.

Figure 4.4: Isostress condition - similar to springs in series.

As for particulate composites, the rule of mixtures always predicts the density of fiber

reinforced composites [19]:

-pC = £nPm + ffPf (4.1)

where the subscripts c*m, and f refer to composite, matrix, and fiber. Note that

fm-l-ff (4.2)
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This method does not consider fibre-packing geometry buy do consider representative

volume element (RVE). The bonding at interface is perfect, so no slip occurs between

fibre and matrix material. However the results obtained from this method are not accurate

and agreement with experimental results are generally poor.

4.2.1.1 Modulus of Elasticity

The rule of mixtures is used to predict the modulus of elasticity when the fibers

are continuous and unidirectional. Parallel to the fibers, the modulus of elasticity may be

as high as:

(4.3)Ecy/ —f m. E m+ f f . Ef

However, when the applied stress is very large, the matrix begins to deform and the

stress-strain curve is no longer linear (Figure 4.5). Since the matrix now contributes little

tolhe stiffness ofthe composite, the modulus can be approximated by:

Ec,,/ = ff.Ef (4.4)

When the load is applied perpendicular to the fibers, each component of the composite

acts independently ofthe other. The modulus ofthe composite is now:

1 ^ fn, , ff
E„ E„ E,

(4.5)

KEc = ffEf

fc^B=/iA + /j*f

Strain

Figure 4.5: The stress-strain curve for fibre-reinforced composite
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4.2.1.2 Thermal Conductivity

The rule of mixtures accurately predicts the thermal conductivity of fiber -

reinforced composites along the fiber direction if the fibers are continuous and

unidirectional:

Kc = fmKm + ffKf (4.6)

where K is the thermal conductivity. Thermal energy can be transferred through the

composite at a rate that is proportional to the volume fraction of the conductive material.

In a matrix containing metallic fibers, energy would be transferred through the fibres.

E G,

Pa

!

/"• /
Isostrain

•

>»
Iso

stress

model

0 Vol %Tungsten 10°

Figure 4.6: Sample data for Isostrain and Isostress for copper matrix tungsten

particle.

4.2.2 Hashin - Shtrikman Model

The analytical expressions proposed by Hashin and Shrikman [20], provide

bounds for the elastic constants of a heterogeneous material with a random isotropic

distribution of phases from the properties and volume fraction of each phase. They are

based on a variational principle which, combined with a hypothesis of isotropy, leads to a

calculation of the average strain in one of the phases. The lower bound is built with the

softer phase taken as the matrix and the upper bound corresponds to the harder phase

taken as the matrix. The spherical shape of the inclusion reflects the isotropic phase
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distribution. The HS bounds are easy to compute when the constitutive phases are

isotropic and have general validity. In the particular case of a composite made of

spherical inclusions isorropically distributed in a matrix, the lower and upper bounds

provide good estimation on effective properties of composites. HasMn-Shtrikman had

narrowed the range of the earlier, wider bounds given by the Isostrain and Isostress

models.
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lower bound

Figure 4.7: Hashin Shtrikman Upper and Lower bounds on the dimensionless effective

shear modulus versus volume fraction for a two phase composite composed ofparticulate

material.

TheUS bounds can be used as a rapid check to find out whether the elastic properties ofa

particulate composite are reasonable or not, provided that its microstructure is in

agreement with the HS hypothesis. The properties lay below lower bound-composite

might contain fair amount of defects while properties which lay above upper bound-

strttcture might be fibrous. The HS bounds are identical to the results of Maxwell which

will be discussed next. The lower bound corresponding to the classical Maxwell result

and the upper bound is equivalent again to the Maxwell result when the phases are

inverted. This result is frequently referred as 'inverted Maxwell', though there is no

difference between the two except for change ofsymbols.
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4.2.2.1 Effective Axial Shear Modulus

The effective axial shear modulus, G n, of a unidirectional fibrous composite is

obtained from the boundary displacements [27]

Ui = e°i2x2

u3-0 (4.7)

if ;this displacement field is applied to homogeneous, transversely isotropic circular

cylinderwithaxial shearmodulus G*]2, theresulting strains are

W

M*

o 4 0

4 o 0

0 0 0

e stresses are

0 2G*2 0

2g;2 o 0

0 0 0

(4.8)

(4.9)

Thus the equivalent homogeneous cylinder is in a state ofpure axial shear.

Solution of the concentric cylinder elasticity problem for the displacement boundary

conditions gives the final result

G^_Gf(l +Vf)+Gm(X-Vf)
G_ Gf(l-Ff) + Gm(l + Vf)

Frotn the above result, it is seen that the rule ofmixtures is not a good approximation for

the axial shear modulus. It is interesting to note that the effective shear modulus of the

composite is a function of only the fiber and matrix shear moduli and not any other

properties ofthe constituents.

(4.10)

4.2.3 Maxwell Prediction

Maxwell [21] solved for the effective conductivity, k eff, of dilute suspension of

conducting spheres in a conducting matrix. Maxwell used the idea of an effective

medium to calculate the effective conductivity, of a two phase composite consisting of

isotropic spheres embedded randomly in a homogeneous matrix. Maxwell considered a
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spherical particle in a large matrix and assumed that the concentration of the spherical

inclusion, c, in the matrix is nearly zero, (c->0). Thus,

keff-fii(a, c), i.e., kefr= (kd,kc,c) (4.11)

where kd = conductivity in dispersed area,

kc = conductivity in continuous area

and ka/kc = a

keA = K = (1+2PX1-Pc) in which &= (a - l)/(a + 2) (4.12)

c*^ 0 because of the vanishingly small concentration. The result may be approximated as

k = 1 + 3p for the effective property ofthe composite.

The true effective property ties between these bounds as seen in figure below. Its Value

depends on the individual property (elastic modulus/ thermal conductivity) of the

constituent phases and on the volume concentration ofthe disperse phases.
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Figure 4.8: Maxwell and Maxwell-inverted limits, parallel and series lines in thermal

conductivity.
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4.2.4 The Eshelby inclusion method

Eshelby [1, 2, and 26] starts his research by assuming that the elastic stifmess

matrices Cm and Ci of matrix and inclusions are both equal to C. As in fig 4.4, the

inclusion is cut from the medium and taken "outside", where it can transform subject to

no elastic constraint. Surface tractions are then applied to the inclusion, whereby it

undergoes anelastic strain -sTback to itsoriginal shape and size. Then it is returned to its

hole, where it fits exactly. At this stage, the stress in the inclusion is equal to -Ce and

the matrix is unstressed When the surface traction is finally removed by equal but

opposite surface tractions, the inclusion reaches equilibrium with the elastic matrix after

an additional elastic strain ec -et and displacement will be introduced in the matrix. This

is to describe the analysis of stress and strain generated in infinite homogeneous linear

elastic medium when inclusion undergoes transformation, which produces a

homogeneous inelastic strain throughout the inclusion. The transformation strain results

from differential thermoplastic deformation.

Eshelby method can provide a stress state solution in the case of heterogeneous

materials and so composite materials. For the temperature gradient, since in most cases,

thermal expansion coefficient of matrix is higher than fiber, a change in temperature

produces a change in the shape of the inclusion. In sum, the analysis of the equivalent

inclusion allows behaviour homogenization problem to be solved by substitution of a

problem with heterogeneity into a problem of a homogeneous medium submitted to a

localized free strain. Figure 4.9 shows the Eshelby's thought experiment.
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Figure4.9: Eshelby's thoughtexperiment, as illustrated by Brownand Ham

4.2.5 Semiempirical Model

This approach [1] involves the use of semiempirical equations which are adjusted

to match experimental results or elasticity results by the use if curve fitting parameters.

The equations are referred to as being "semiempirical" because, although they have terms

containing curve-fitting perimeters, they also have some basis in mechanics.

4.2.5.1 Halpin - Tsai Equation

This model [1, 26] is a mathematical model for the prediction of elasticity of

composite material based on the geometry and orientation of the filler and the elastic

properties of the filler and matrix. Themodel is based on the self-consistent field method

although often consider to be empirical. Homogenization method is used to obtain

numerical results ofthe plane strain bulk modulus and the transverse shear modulus.
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The appropriate equation for this method is,

Gi^Ggfl+gnfl (4.13)

(l-uf)

InwMcb, x\ = fGi/Gh,-n (4-14)

{Gf/Gm-^}

and the parameter £ is taken to have a value of around unity.

4.2.6 Elasticity Approach

This approach [1,26] considers equilibrium of forces, compatibility and Hooke's

law relationship in three dimensions. This model also called as composite cylinder

assemblage (CCA) models. This approach is about selecting a suitable RVE and

subjecting the RVE to uniformstressofdisplacement at the boundary. The equationmust

be satisfied at each point in the model and no simplifying assumptions are made

regarding the stressor straindistributions as in the mechanics of materials. Fibre packing

geometry is specified. Complete stress and strain distributions in RVE are generated and

calculation of stress concentration factors is possible. The governing equation for shear

modulus is given below.

G12 = GfGfVf+G^n+VnO (4.15)

Gf(l+vin) + GD1Vf

whese G12, Gm, and Gf are representing shear modulus of composite, matrix and fibre

respectively. vm and Vf representing volume fraction of matrix and fibre respectively.

4.2.6.1 Method ofCell

Tnis approach [26] depends on the assumption that the two phase composite has a

periodic structure in which the reinforcing material (e.g. fibres) is arranged in a periodic

manner thus forming a periodic array. This assumption allows the analysis of a single

representative element rather titan the whole composite with its many fibres. The

equilibrium equations solved subjected to continuity of displacement and tractions at

interfaces between subcells and between neighbouring cells in an average oasis. This

method produces lengthy equations but excellent agreement with experimental data on

graphite/epoxy. This approach yields to in-plane lamina properties and through-the-
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thickness properties such as G23 and V23. Figure4.10 shows the periodic array of fibre in

method ofcell.
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Figure 4.10 (a) Composite with doubly periodic array of fibres, (b) Representative cell

with four subcells a, p= 1, 2

4.2.7 Self-Consistent Method

This method [26] does not consider an inclusion or the REV as isolated

fre&-bodies. The purpose is to place these volumes in an infinite medium whichis already

homogenized and the properties of which have to be found. At the beginning, the

properties of the composite are assumed so that the stress and strain fields in the REV can

be computed. When the REV is homogenized to represent the composite, the resulting

material properties in the REV must match those assumed previously for the composite.

This approach is good for low volume fractions ofheterogeneities because it considers an
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infinite medium with a single REV, cannot take into consideration interactions between

the constituents [22]. Figure4.11 shows the self-consistent scheme model.

mm SPHERICAL INCLUSION
eZZJ EFFECTIVE MEDIUM

Figure 4.11: The self-consistent scheme model

4.2.7.1 The Mori - Tanaka Model

Thismethod was introduced by Mori and Tanaka which lead to betterdescription

onreal strain state in thematrix [25]. The main assumption of thismodel is thatthestrain

m&» inclusionis unifornL It is an accurate method to predict the effective moduli of die

coated inclusion based composite materials. The average strain in a typical inclusion

(fiber) isrelated tothe average strain inthe matrix by a fourth - order tensor Twhere Tis
defined to give the relation between the uniform strains in the inclusion embedded inan

ail^Batrix material subjected to an imposed uniform strain at infinity. The fiber strain

concentration factors are found to be

Af - T[VfT +(1-Vf)!]"1 (4-16)

4,wine T = [SCV(Cf - Cffl) +1]i-i (4.17)

Theresult obtained from this model is similar withlowerboundHaskin-Shtrikman model

for spheres, elongated inclusions with the same shape and anisotropic. However, the
expansions of this model differ from Haskin-Strikman bounds for the case ofelongated
particles with different shapes and orientations because of the simplifications regarding

inclusion interaction in this model.
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4.2.8 The Generalized Self-Consistent Scheme

This procedure [26] also referred to as the three-phase model yields better results

than the self-consistent scheme. For a particulate composite with randomly distributed

spherical inclusion, this scheme consists in imbedding a composite sphere with an

inclusion core and surrounded by a shell of the matrix material in an infinite medium of

unknown effective properties. For the effective shear modulus, u* this model [26]

considered uniform strain field c applied at infinity in the geometry of the generalized

self-consistent scheme. By imposing the interracial conditions of perfect bonding, these

researchers obtained effective shear modulus is governed by a quadratic equation of the

form

A (u* / m)2 + 2B(u* / in)+ C= 0 (4. IS)

where tiie coefficient A, B and C are complicated functions of the inclusion and matrix

elastic properties. Figure 4.12 showsthe generalized self-consistent scheme model.
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Figure 4.12: The generalized self-consistent scheme model

The weak point of the generalized self-consistent method (GSCM) is that its

solution for the effective shear moduli involves determining the complicated

displacement and strain fields in constituents. Furthermore, the effective moduli

estimated by GSCM cannot be expressed in an explicit form.

4.2.9 Chamis Approach

This approach is based on "simplified micromechanics equations" (SME) which

ate based on subregions method whereby divide square array of fibers into subregions for
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more detailed analysis if convert to a square fiber having the same area astheround fiber.

The longitudinal fiber shear modulus Gn are not actually measure but are inferred by

substitution of measured composite properties and matrix properties in SME. Chamis's

equationis

On= Gm [(1-Vf) m+ (vf) ml {1- (vf) 1/2(1-Gm/Gf2)}] (4-19)

4.2.10 Milton Approach

Given only the phase volume fractions, conductivities, bulk moduli and shear moduli,
denoted by 01 and 02, 01 and a2, ki and k2, and Gi and G2, restrictive bounds on oe, ke,
and Ue which include additional nucrostructural information on thetransversely isotropic

fiber-reiitibrced material obtained by Milton (1981,1982). Milton's bounds on oedepend

not only upon three-point probability function butupon S4. this approach for disordered
composites has been virtually nonexistent because of the difficulty involved in
determining S3 and S4, either experimentally or theoretically. For transversely isotropic

fibeMemforced material, Milton demonstrated that both integrals may be expressed in

terms of single intergrals £2 which depends upon the three point probability function. The

simplified form for transverse conductivity is expressed asbelow:

where cu(3) =<o>-0i02 (<ft - qi^ (4.21)
<o> +o£

aadsj53)- <l/g>-eieb(l/g7-l/gif (4-22)

<l/o> + (l/o)C

Forthe fourth order bounds which depend on 01, o2, 02 and£2 andupon multidimensional

intergral that involves fourth point probability function of S4. Utilizing phase-interchange

theorem for fiber-reinforced materials, Milton showedthat the intergral involving S4 can

beexpressed in terms of 02 and £2 only.

Uu(4)* g2 (oi+oV> fai+ <a» - g?.Ci(qa-aif <4-23)
(ci+a2) (02+ <a>) - 02Ci((?2-<5i)2
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and ol(4) = m (a1+a^ (a?+ <o» - ehbfa-oit (4-24)
(<Tl+02) (0-1+ «5>) - 0\(J^2~G{f

For the case of a = 0.1, the Milton bounds provide similar improvement over Hashin

bounds, except mat most oftheimprovement is inthelower bound. For tiie range of0.1<

a<10, the fourth order Milton bounds are sharp enough to give good estimate of <sj<5\ for

the entire range ofvolume fraction.

4.2.11 Predictive Model

The predictive model is a model which has less scatter between the practical and
theoretical data gathered. The standard deviation between the points should be less and
the experimental data should not deviate much from theoretical data. All the models
discussed earlier are within the range and do not exceed the parallel and series limit,

Hashin-Shtrikman and Maxwell lines. The theories lie behind all these models have been

discussed earlier.

4.2.11.1 Bidimensional Composite Materials

Based on the Figure 4.1, the Milton upper limit identical to Maxwell lower limit.

When volume fraction is smaller, Milton bounds provide similar improvement over

Hashin-Shtrikman bounds, expect themost oftheimprovement is in the lower bound. It

is good enough to give a good estimate of thermal conductivity for entire range of
volume fractions. As noted above, bounds diverge as a is made large and Milton lower

bound onconductivity yield a good estimate, with maximum error occurring atmaximum

volume fraction reported, ie, at vohune fraction of 0.65 or equivalently at 80% of

closing-packing volume fraction.

All the models give good approximation when the volume fraction is lower. As

for Hsomburgh and Pears model, the theoretical data when compared with experimental
data for two-dimensional composites gives excellent estimates of experimental data. This

further supportsclaims about utility of bounds.
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Whenthe theoretical value of Durand and Ungarmodelto exact simulation results

obtained using Boundary Element Method (BEM), it is seen to predict effective thermal
conductivity extremely accurately. This supports the assertion that bounds, which
incorporate nontrivial microstrucutral information on the medium, can be used to
accurately estimate effective properties, even when the phase properties are widely

different.

It can be seen that the Halpin-Tsai expression and Eshelby approach represents a

fairly good approximation to the axial shear modulus even at higher volume fraction.
Both the Halpin-Tsai and Eshelby theoretical value exhibits good agreement with
experimental data proposed by other researchers. This supports the validity and reliability
ofnacromechamcal approach for the prediction ofthe effective moduli ofbidiraensional
composites. This provides a critical check for the property ofamicromechanical model.
At the same time, Halpin-Tsai shear curve is not as low as the prediction of the equal
stress model. Thus both this approach gives fairly good estimation for effective properties

ofcomposite materials.

4.2.11.2 Tridimensional Composite Material

The further analysis on Maxwell and Rule of Mixtures was unable due to

insufficient model for three-dimensional model. All the models proposed by early

reseatchers lie within Hashin-Shtrikman bound expect for experimental points measured

by Richard (1975) (based on Figure 4.2). The points scatter outside Hashin-Shtrikman
bounds and this indicates this model exceeds the limit of Maxwell and Hashin-Shtrikman

limits.

It is seen that the method of cell is in a good agreement withthe generalized self-

consistent method. The agreement with the three phase model shown in the figure is

significant since it supports the validity prediction ofmethod of ceil. At the same time,
the effective moduli of three phase composite materials withrandomly oriented disperse

media predicted by method ofcells, can be compared with the Mori-Tanaka method. Itis
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noted that the Method of cell coincides with the corresponding lower bound of Mori-

Tanaka method.

Figure 4.2 also shows that the lower bound of Mori-Tanaka model identical to

Hashin-Shtrikman lower bound for spheres, elongated inclusions with the same shape and

anisotropic. However, the expansions of this model differ from Haskin-Strikman bounds

for the case of elongated particles with different shapes and orientations because of the

simpfificationsregarding inclusion interaction in this model.

The higher scatter of experimental points is due to the particle size. The diameter

of the fibers or particles used to develop composite materials is mostly not uniform.

Inclusions do not interact enoughto allow the establishment of thermally connectedpaths

(percolation) for composite phase, even if the average distance separating two

consecutive inclusions reduces as volume fraction increases. Examination of

microstructure of a high composite content shows that each bead surrounded by matrix

phase, in essence, a minimum thickness of this matrix phase limits significantly the

possibility of physical contact In fact, the process of fabrication ensures complete

coating of beads during mixing because a good adherence of powder to the beads is

obtained with organic additives.

Next is the shape of the particles or fibers impregnated in composite materials.

Even though all the fibers andparticles fabricated to be spherical or cylindrical in shape,

defects in the manufacturing process make ruin the shape of the particles. The

arrangement of the particles in the composite will not be in order when one or more of

the fibers' shape has changed

It is obvious that many other factors have an influence on the conductivity and

modulus of these models: the location, orientation, size distribution, and whether the

particles are in contact. There are other modifying factors for elasic moduli such as

interracial mismatch. The equivalent effect in the thennal problem would be the phonon
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mismatch between the phases. The formation of an oxide layer has also been found to

influence the effective value of the property.

In short, fiber volume fractions are usually much lower due to processing

limitations (e.g., the viscosity of the fiber/particles must be controlled for proper flow

during molding) and the random orientation of the fibers and particles. Since fiber-

packing geometry is never entirely repeatable from one piece to material to another, we

should not expect our micromechanics predictions to be exact. Therefore, the

experimental results always show a scatter and a deviation from identical models.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.0 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The ground rules of the analogy between various mechanical and transport

properties have been discussed in this report. It is shown that by virtue of the analogy,

models developed for onesetofproperties canbe used to obtain another setofproperties.

Properties of composites liebetween the Maxwell and Hashin-Shtrikman's bounds. Both

these lines are the limits that cannot be exceeded by the proposed model. Many models

havebeen developed as linearcombinations of thesemodelpairs. It can be seenthat there

are several micromechanics models that provide identical or similar predictions for the

effective elastic properties. In general, it may bestated thatthe Eshelby inclusion method

andHalpin-Tsai equation give better approximation in wide range of volume fraction in

most cases. The Reuss, Voigt, Mori-Tanaka bounds and generalized self-consistent

models providegoodresultsonlyin determining the rationale for limiting bounds.

Experimental results for the effective engineering properties of composites as a

function of fibre volume fraction are quite scarce due to the difficulties in measuring

theseproperties accurately. Theexperimental results are proposed by Durand and Ungar,

Hi&s&urgh and Pears and Tessier and Doyen can be seen in the result. When these

experimental results compared with theoretical data presented by Eshelby and Halpin-
Tsai the comparisons generally indicate that the experimental results are in line with

stated the theoretical data. Thus it can be concluded that Eshelby and Halpin-Tsai models

can give a better correlation between elastic moduli and thennal conductivity of

composites.
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However for three-dimensional composites, experimental data proposed by

Richard shows a huge scatter to Method of cell, Mori-Tanaka bounds and generalized

self-consistent scheme. Some of the points lie outside the limiting bounds. This is due to

deSaaiination of the composite materials. Chamis and Wong and Bollampklfy's

experimental data are in line with HS lower bound.

5.2 Recommendation

In most cases, the stiffness and conductivity of composite materials are mainly

influenced by the shape, location, orientation, size and size distribution and whether the

particles are in contact. In order to improve the properties of composite materials, it is

usefei to modify the fibre-packing geometries to triangular shape and shown in figure

below.

5.1: Representative area elements for idealized square and triangular fibre-packing

If the fibre spacing assumed to be s, and fibre diameter, d, do not change along the fibre

length, and then the area fractions must be equal to the volume fractions. The fibre

volume fraction for the square array is

Vf-s/4(d/s)2

Thus the maximum theoretical fibre volume fraction occurs when s=d. In this case,

Vrmax = H/4 = 0.785
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The triangular arrays shows that

Vf-31/2^3 (d/s)2

and when s=d, the maximum fibre volume fraction is

V&iax = Ji/2A/3= 0.907

The close packing of fibres required to produce these theoretical limits is generally not

achievable in practice, however. In most continuous fibre composites the fibres are

packed in a random fashion and the fibre volume fractions range from 0.5 to 0.8. Since

fibre-packing geometry is never entirely repeatable from one piece of material to another,

the tnicromechanical predictions are seen to give a window of uncertainty rather than

exact values.
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