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ABSTRACT

Analogy of the mechanical and transport properties on disperse composites is a literature
properties in composite materials. The main objective is to explore the possibility to arrive at a
cotfimon model for both effective thermal conductivity and shear modulus in terms of the
properties of individual phases and the volume fraction. Poor utilization of one researcher’s
results in one field by other researchers is the problem that has been faced in developing
approaches in prediction of the properties of disperse media. This study is concerned with
particulate filled matrices constitute from a three and two dimensional composites. A large
number of theoretical models and data gathered that had been proposed by earlier researcher are
been studied and included in the literature review. Those models being identified in order to
apply them to these experimental data and see how they compare. In the result part, the desired
models, Eshelby and Halpin-Tsai which chosen to be predictive model will be discussed in
further. The assumptions and explanation for other models also included in discussion part.
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CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION
1.1 Background Studies

' Imagine our life without composites. Every single day will be a total mess
because all the staffs we are dealing with are composites. The world will turn upside
down. Starting from our mobile phone which contains composite printed circuit boards to
under the bonnet of the car, composites are everywhere. If they are not there yet, we can
be pretiy sure they are coming. Composites can be defined in a broad way. According to
definition for Wikipedia website, composite materials {or composites for short) are
enginecred materials made from two or more constituent materials with significantly
different physical or chemical properties and which remain separate and distinct on a
macroscopic level within the finished structure [1]. Most composite materials are made
from two (2) materials: a reinforcement material called fibre and a base material, called

matrix material. At least one portion of each type is required.

Figure 1.1: Engineering wood is a common composite material

Composite materials are usually formed in three different types: (1) fibrous
composites, which consist of fibres of one material in a matrix material of another; (2)
particulate composites, which are composed of macro size particles of one material on a
matrix of another; and (3) laminated composites, which are made of layers of different

materials, including composites of the first two types [2, 3].



This project is all about finding the relationship between the effective shear
modulus (mechanical property) and thermal conductivity (transport property) in
composite materials as both these phenomena are governed by the same set of equations.
The main idea of this project is to be able to come up with a model which has a good
agreement between the model and experimental values for elastic modulus and thermal
conductivity. Elastic modulus and thermal conductivity have been chosen because
available studies on the said fields. Studies show that Hashin — Shtrikman upper bound is
thednverted — Maxwell limit and both these theories arc related by the shear modulus and
thermal conductivity. A much simplified version can be proposed by analyzing both
elastic modulus and thermal conductivity. The finding will be studied closely to define

the-common elastic and thermal features that exist in composites.

After conducting a literature review on the findings, the next stage is to develop a
better and improved model for both elastic and thermal properties for composite
materials. This model will be developed based on the experimental data analysis and
literature review data. Once the model is déveldped, the model will be applied to the
experimental data and see how they compare. A better prediction to the shear modulus
and thermal conductivity can be developed based on the degree of analogy exist between
these two models. This prediction cannot exits the Hashin- Shtrikman and Maxwell

1.2 Problem Statement
1.2.1 Problem Identification

This project concerns with predicting the properties of composite materials, given
the properties of the constituent materials and the volume fraction. The differential
equations for several transport phenofnena are alike with those govérning mechanical
load, stress and deformation. This has resulted in predictive equations being developed
for each set of properties. However there are few problems which lead to poor prediction
of the properties of disperses media.



» Poor utilization of other researcher’s result

Poor utilization of one researcher’s results in one field by other researchers has been
isstie in developing approaches in prediction of the properties of disperse media. It is
gither that the researcher is not aware about the existence of the other theories or the
developer does not fully explore other researchers’ work. Lots of effort and time has
been expended in identifying the existence of theories and formula. For example
Maxwell’s 1873 result for magnetic permittivity has been rediscovered by Hashin
and Shirikman in 1962

» Insufficient theoretical models in predicting behaviour of all material and
under all conditions.
The problem of analytical prediction of effective properties of composites material
is important from both practical and theoretical points of view. They can be
determined by experimental data gathered on samples, or by prediction from the
theoretical models. A large number of theoretical models proposed and presented
by sarlier researcher. However, no model is applicable to all materials and under all
comditions, accounting for all effects that modify the effective moduli of

composites.

1.2.2 Significance of the project

Reparding the above problem statements, we realize that developing the existing
theories and formulas is a time consuming and at the same time, it shows that researchers
are not fully explore this field before developing any models. Thus, this project is a
literature research in identifying experimental data reported and theoretical models for
ﬂmrmai céndﬁctivity and shear modulus in composite materials. This project aims to
comie up with a better model to get a good agreement between the model and
experimental values from literature research. Developing a project that meets the
requirement of the analytical studies about the elastic moduli and thermal conductivity on
disperse composites will lead to a better correlations and predictions.



1.3 Objective
e« Lstablish analogy between the mechanical and fransport properties
The main objective of this project is to study analytically and establish the analogy
‘between the mechanical properties and their counterparts of the same tensorial order
among the various transport properties. This is because both these properties are

governed by the same set of equation which is Laplace equation.

« Study applicability of Maxwell and Hashin Shtrikman limits for thermal

conductivity and shear modulus, respectively in composites material
In this study, the applicability of the limits for the direct and phase — inverted
composite materials as predicted by Maxwell theory is studied. Comparisons
between Hashin — Shirikman bounds for mechanical properties and Maxwell’s
predictions for thermal conductivity are being analyzed for a better correlations and
divination. The Maxwell and Hashin-Shtrikman bounds are the lines that cannot be
exceeded by the proposed model.

» Study and analyze theoretical models proposed by other researchers.

Apart from Hashin-Shtrikman and Maxwell limits, other models such as those of
*selfsconsistent scheme’, “generalized self-consistent scheme’ and ‘method of cell’
methods will also be taken into consideration in order to come out with a better

prediction for shear modulus and thermal conductivity of composite materials.

s Dovelop a model for both effective thermal conductivity and shear modiiliis

The pther objective of this project is to explore the possibility to arrive at a common
model for both effective thermal conductivity and shear modulus in terms of the
properties of individual phases and the volume fraction. The existing practical and
theoretical models will be analyzed and those models which can superimpose with
one.another will be chosen as better model.



1.4 Scope of Studies
» Particle — filled matrices constitute form a three dimensional (3-D) composites.
+» Fibre-reinforced matrices constitute form a two dimensional (2-D) composites
= Macroscopically homogeneous, microscopically heterogeneous, and continuous
composites.
» The models taken into consideration for shear modulus are:
» Isostress model
» 1sostrain model
» Haskin — Shirikman upper and lower bounds.
» The models taken into account for thermal conductivity are:
# Isotherms model (paraliel)
» Constant heat flux model (series)
» Maxwell and ‘Maxwell Inverted’ models.

1.5 Relevancy of Project
This project requires a through study of the literature on the relationship between
mechanical ﬁroperties and various transport properties in disperse composites. Available
stuhes on mechanical and thermal behaviour of composite materials will be gathered and
stiadies in through to obtain better information. These experimental reported data then
will be compared to find the similarities and finally this will lead to development of
predictive model. This model will be a better correlation for elastic modulus and thermal

conductivity in composite materials which have been a long standing problem.

1.6 Feasibility of project
This project is a literature research in identifying experimental data reported for
thermal conductivity and shear modulus. At the same time, models in literature also being
identified in order to apply them to these experimental data and see how they compare.
Thus, this project aims to come up with a better model to get a good agreement between
the model and experimental values from literature research.



CHAPTER 2
LITERATURE REVIEW

2D LITERATURE REVIEW
2.1 Composite Material

Structural materials can be separated into four basic categories: metals, polytners,
ceramics, and composites. Composites consist of two or more separate materials
combined in a structural unit, are naturally made from various combinations of the other
three materials. In the early days of modern man-made composite raterials, the
constituents were typically macroscopic [4, 5]. As macroscopic molecules are large, it is
usefid] to consider the behaviour of molecule and to discuss the size of the molecule to
qualify it as a macromolecule [6]. The advanced composites technology over the past few
decades had steadily decreased the size of the constituent materials, particularly the
reinsforcement materials. Now the ongoing research more concemed with the

mictostructure of the composiies.

Generally composite materials are microscopically heterogeneous and very
anisotropic (properties in composite change as they move from matrix to fiber and as they
change the direction along which they are measured). The physical properties of
composite materials are generally not isotropic (independent on direction of applied
force) in nature, but rather are typically orthotropic (different, depending on the direction
of the applied force or load). For instance, the stiffhess of a composite pahel will often

depend upon the direction of the applied forces and/or moments {7].

2.1.1 Fibres
The assembly of reinforcement material in forming a composite material take the
following forms:
» Unidirectional: unidirectional tows, yamns, or tapes. Laminated composites are
the one-dimensional system.
» Bidimensional: woven or nonwoven fabrics (Felts or mats). Fiber-reinforced

-composites form a two dimensional composites.



e Tridimensional: fabrics (sometimes called muitidimensional fabrics) with fibers
oriented along many directions (>2); Particle-filled matrices constitute the three-
dimensional type of system [8].

The normalized specific stiffness and strength are reduced even further when the loading
is in a direction other than along the fibres. Nevertheless, actual experience has shown
that significant weight savings are possible in primary engineering structures through the
use of advanced composites.

2.1.2 Matrix Materials

Polymers, metals, and ceramics are all used as matrix materials in continous fiber
comiposites. Polymeric matrix materials can be further subdivided into thermoplastics and
thermosets. The most common metals used as matrix materials are aluminium, titanium,
and copper. Reasons for choosing a metal as the matrix material include higher use
temperature range, higher transverse sirength, toughness (as conujastedr with the brittle
behaviour of polymers and ceramics), and high thermal conductivity (cooper). The main
reasons for choosing ceramics as the matrix include a very high use temperaturs range
(>2000°C, 3600°F), high elastic modulus, and low density. The major disadvantage to
ceramic matrix materials is their brittleness, which makes them susceptible to flaws.
Carhon, silicon carbide, and silicon nitride are ceramics that have been used as matrix

tterials,

2.1.3 Composite Properties

Composites are used broadly because they have desirable properties that cannot
be achieved by any of the constituent materials acting alone. The most common exditiple
is the fibrous composite consisting of reinforcing fibers embedded in a binder or matrix
material. Composite materials may be selected to give remarkable combination‘s. of
stiffness, strength, weight, high—temperature performance, corrosion resistance, hardness,
or conductivity. Fibers alone cannot support longitudinal compressive foads and their
transverse mechanical properties are generally not as good as the equivalent longitudinal
propérties. Thus fibers need to be held together in a structural unit with a binder or matrix

material and to provide a better stiffness. In composites, fibers are the load-carrying



members, and the matrix material which keeps the fibers together, acts as a load-transfer

medium between fibers. It also protects fibers from being exposed to the environment {7].

Most fiber — reinforced composiies provide improved strength, fatigue resistance,
Young’s modulus, and strength-to-weight ratio by incorporating strong, stiff, but brittle
fibers into a softer, more ductile matrix. The matrix material transmits the force to the
fibers, which carry most the applied force, provides protection for the fiber surface and
minimizes diffusion of species sach as oxygen or 'moismré that can degrade the
mechanical properties of fibers [7]. The reason why fiber — reinforced composites are
much stronger and stiffer than the same material in bulk form is that the fine fibers
contain fewer defects than does the bulk material.

This study concerned with three dimensional composites which is more complex
than the one and two dimensional compqsites. In many instances, particulate reinforced
composites can be thought as a feasible altemative. They are usually isotropic since the
particles are added randomly. They can be used as either dual or multi-phase materials
with the same advantage as monolithic materials in that they are easily processed to near
net shape. At the same time, they have an improved stiffness, strength and fracture
toughness that is characteristics of continuous fiber reinforced composites materials.
Particles utilized for reinforcing have improved properties: they are capable of increasing
the modulus and decreasing the permeability and the ductility. Particle used for
remforcing include ceramics and glasses such as fine mineral particles, metal particles

suchas aluminium, and amorphous materials, including polymers and carbon black {7].

Apart from particulate composites and fibre composites, flake composites are also
widely used. Flake composites consist of flat reinforcements of matrices. Typical flake
materials are glass, mica, aluminium, and silver. These types of composites provide
advantages such as high out-of-plane flexural modulus, higher strength, and low cost.
However, flakes cannot be oriented easily and only a limited number of materials are
-available for use. Figure 2.1 shows types of composites based on reinforcement shape

while figure 2.2 shows the typical phases of 3-D composite material [8].



Fiber Composites

Figure 2.1: Types of composites based on reinforcement shape

" Disperse phase
(Fiber)

Continuous
phase {(Matrix)

Figure 2.2: Phases of 3-D Composite Material



2.2 Effective Properties

Continuous fibre composite generally is orthotropic [27] with nine independent
elastic constants. However, for a unidirectional composite which exhibits isotropic
propeshies in a plane transverse to fibres (same properties in all direction in the x-x3
plane), the effective response is transversely isotropic. In this case there are only five
independent elastic constants. Layers of unidirectional composites with a large number of
fibres through the layer thickness generally are considered to be transversely isottopic.
‘When the full tensor notation is used for the stresses, oy, and the strains, &ij, the average

or effective constitutive equations for a transversely isotropic material have the form

'ris"u ] _C;l C;:z C;z 0 0 0 [ &\ )

Ty C12 sz C23 0 0 0 Eqg

fi@ e Ga G 0 0 0], - 2.1)
[Caa 0 0 0 Cn ;CB 0 0 ||2&4 -
[92] o o o o C, o |[*

102 ! 0 0 0 0 0 C;G_ 2512,

where the five elastic coefficients C;,, C,, C,, C;, and C;, are the effective stiffness

coefficients of the equivalent homogenous material. They can be expressed in terms of
the effective engineering properties. The goal of micromechanics, as far as elastic
Tesponse is concemed, is to determine the effective (or average) stiffness, CH , in terms of

the fibre and matrix properties, the fibre volume fraction, and the arrangement of fibres in
the martrix. '

2.3 Equivalent Homogeneity

All materials are heterogeneous [27] when evaluated on a sufficiently small scale.
However, if the scale of interest is large enough, most materials exhibit statistical
hemgeneity.f‘nr a fibrous composite, the statistical homogeneity can be denied in terms
of a characteristic dimension of the inhomogeneity. Let consider the fibre spacing, A, as
the ¢haracteristic dimension (Figure 2.3). Then there exists a length Scale o (sum of
several L) >> A, over which the properties can be averaged in a meaningful way. If § is
small compared with the characteristic dimensions of the structure, the material can be

10



idealized as being effectively homogeneous, and the problem can be analyzed using
average or effective material properties.

We define a representative volume element (RVE) as a volume of material that
exhibits statistically homogeneous naterial properties. A representative volume element
and two nonrepresentative volume elements are shown in figure below. To be
representative, the volume element must include a sufficient number of fibres and
surrounding matrix to adequately represent the interaction between the phases.
Obvionsly, a region of all fibre or all matrixes is not representative of the effective

properties of the composite.
A
I
_— l; 000 ! -
RVE ' Not
o0 | (‘;: o
) i @ RVE |
L B B N ! ]
e _ee
N N N | & _ @6
i J
I

Figure 2.3: Representative volume element (RVE)

2.4 Analogy between Mechanical and Transport Properties

Analogies exist between mechanical and transport properties and this can be
provén by Laplace equation. Laplace's equation is a partial differential equation named
afier Pierre-Simon Laplace who first studied its properties. The solutions of Laplace's
equation are important in many fields of science, notably the fields of electromagnetism,
astronomy, and fluid dynamics, because they describe the behavior of electric,
gravitational, and fluid potentials. The general theory of solutions to Laplace's equation is
knmas potential thémy. There are éeven transport properties those analogies. Below is

the table summarizes those properties:

11



Table 2.1: Analogy of transport properties

Properties Analogous flow quantity
1 Electrical conductivity Electric current T
2. Thermal conductivity Heat flux
33&5@1&0 permittivity - | Magnetic flux )
4 Blastic modufi Deflection
. Dielectric constant Microwaves
6. Refractive index Light
7 Diffusion coefficient Species (e.g., Absorption or dtying)

All these phenomena governed by Laplace equation. Laplace equation are given below:

62P+62P+62P_0
& & &

where P, the Potential, is the dependent variable; P =P (x,y.z)

22

The solution from Laplace equation can be presented in a simple form such as:
1. Ohm's Law — for clectricity
2. Hooke’s Law — for strain

3. Fourier's Law - for heat flow

Below are the governing equation for Ohm’s, Hooke’s and Fourter Law:
Ohm’s Law: Applies to electrical circuits; it states that the current through a conductor
between two points is directly proportional to the potential difference or voltage across

the two points, and inversely proportional to the resistance between them.,

Ohm’s Law (electrical conductivity)

Yoltage (2.3)

Lurrent

= electrical resistance

12



Taking its reciprocal,

2.4
current = ¢electrical conductance @4
Ivoltage

Hooke’s Law:. An approximation that states that the extension of a spring is in direct
proportion with the load added to it as long as this load does not exceed the elastic limit.
Materials for which Hooke's law is a useful approximation are known as linear-elastic or
"Hookean" materials.

Hooke’s Law (mechanical properties)

stre?v,s = elastic modulus (2.5)
straih

Fourier’s Law: The time rate of heat transfer through a material is proportional to the
negative gradient in the temperature and to the area at right angles, to that gradient,
threugh which the heat is flowing. We can state this law in two equivalent forms: the
intepral form, in which we look af the amount of energy flowing into or out of abody as a
whole, and the differential form, in which we look at the flows or fluxes of energy

locally.

Fourier’s Law (thermal conductivity)

™ heat flux o @6)
———————— = thermal conductivity
temp, gradient

All the three laws above can be briefly described as:
Table 2.2: Property of Ohm’s, Hooke’s and Fourier’s Law

Effect Cause Property = Effect / Cause
Current Voltage Electrical conductivity
Heat flux Temperature gradient Thermal conductivity“_'
"~ Strain Stress Compliance = Elastic modulus ©

13




Since shear stress and thermal conductivity have the same tensorial order and governed

by same set of equation, it is shown that analogies exist between these two properties.

2.5 Mechanical Properties
In this study, one of the mechanical properties, i.e., elastic modulus will be
analyzed. There are three types of moduli categorized under elastic moduli which are

tensile modulus, compressive modulus, and shear modulus.

2.5.1 Elements of mechanical behaviour of composites

This study is concerned with the analysis of both the micromechanical and the
macromechanical behaviour of fiber-reinforced composite materials. As shown in fgure
22, micromechanics are concerned with the mechanical behaviour of constitent
materials (fiber and matrix materials), the interaction of these constituents, and the
resulting behaviour of the basic composite (a single lamina in a laminate).
Macromechanics is concerned with the gross mechanical behaviour of composite
‘materials and structures {in this case, lamina, laminate, and structure), without regard for
the ¢onstituent materials or their interactions.

As will seen [fater in this study, this macromechanical behaviour may be
characterized by average stresses and strains and averaged, or “cffecﬁve”, mechanical
properties in an equivalent homogenecus materials. As for micromechanical behaviour, it
focuses on the relationships between the effective composite properties and the effective

constituent properties.

The relationships between forces and deformations (or between siresses and
straints) are complex in anisotropic composites than in isotropic materials, and this can
lead to unexpected behaviour. For example, in an isotropic material, a normal stress
(extensions and/or contractions), and a shear stress induces only shear strains
{distortions). In an anisofropic composite, 2 normal stress may include both normal
strains and shear strains, and a shear stress may induce both shear strains and normal
strains. A temperature change in an anisotropic material may cause nongniform

expansion or contraction plus distortion. These so-called “coupling” effects have

14



important implications not only for the analytical mechanics of composites, but for the

experimental characterization of composites’ behaviour as well [9].

Macromechanics

Micromechanics
Matrix (binder)

Lamina
g

--_ﬁ.emforcing
- fibers

Figure 2.4. Micromechanics and macromechanics of composites.

2.5.2 Sirength of Composite

The stiffness and strength of fibrous composites come from fibers which are
stiffer and stronger. The basic mechanism of load transfer between the matrix and a fiber
can be explained by considering a cylindrical bar of single fiber in a matrix material
{Fipwre 2.2). When an applied load P on the matrix is tensile, shear stress develops on the
outér surface of the fiber, and its magnitude decreases from a high value at the end of the
fiber to zero at a distance from the end. The tensile stress in the fiber cross section has the
opposite trend, starting from zero value at the end of the fiber to its maximum at a
distance from the end. The two stresses together balance the applied load, P, on the
mattix. The pure tensile state continues along the rest of the fiber.

When a compressive toad is applied on the matrix, the siresses in the region of
characteristic length are reversed in sign; in the compressive region, i.e., rest e_f the fiber
ength, the ﬁ.bser tends to buckle, much like a wire subjected to compreséive load. At this
stage, the matrix providés a lateral support to reduce the tendency of the fiber to buckle.
When a fiber is broken, the load carried by the fiber is transferred through shear stiess to
the neighbouring two fibers, elevating the fiber axial stress level [2, 3]

15
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Figure 2.5: Load transfer and stress distribution in a single fiber embedded in a matrix

material and subjected to an axial load.

2.5.3 Modulus of Elasticity

Micromechanical analyses are based on the mechanics of material approach or the
elasticity theory. In mechanics of material approach, simplifying assumptions make it
ufinecessary to specify the details on the stress and strain distributions. The fiber packing
geometry is normally subjective. Elasticity theory grips the solution of actual stresses
and strains at the micromechanical level. Fiber packing geomefry is also taken into
consideération at this stage. It also involves numerical solutions because of the complex
geomeifries and boundary conditions [10-12]. The figure below is considered for a
detailed discussion on elastic moduli.
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Figure 2.6: RVE and simple stress states used in elementary mechanics of materials
models.

Shear Modulus (Fig.1(c))
The effective in — plane shear modulus is defined as
Giz= Goz | Q.7)

Yeiz
where G2 = average composite shear stress in the 12 plane

Ye12= 2 12, average engineering shear strain in the 12 plane
Geometric compatibility of the shear deformation, along with the assumption of equal
shear stresses in fibers and matrix, leads to another inverse rule:
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1= vty 28
Gz Gnz Gm

where G2 = shear modulus of fiber in the 12 plane

(G, = shear modutus of matrix
Practically, this equation is not very accurate because the shear stresses are not equal as

assuimed.

The equation of elasticity must be satisfied at every point in the model regardless
of any simplifying assumptions about the stress and strain distribution. Fiber-packing
geometry is generally specified in this approach. Numerical solutions of the governing
clasticity equation are often necessary for complex structural geometries [12].

Adams and Doner [14, 15] state that the reinforcement effect for both effective
in-plane shear modulus (Gi2) and transverse modulus (E;) only become significant for
fiber volume fractions about 50% but the combinations of high fiber stiffness and high
fiber volume fractions increase Gy and E,. However, these combinations also generate

very high stress concentration factors at the fiber/matrix interfaces.

2:6 Transport Preperties
Heat energy can be transmitied throngh solids via electric carriers {electrons or
holes), lattice waves (phonons), electromagnetic waves, spin waves, or other excitations.
In metal, electrical carriers carry the majority of the heat, while in insulators lattice waves
ate the principal heat transporters. The thermal conductivities of solids vary dramatically
both in magnpitude and temperature dependence from one material to another {4].

Composites are usually subjected to changing environmental conditions during both
initial fabrication and final use. For matrix — dominated properties, increased temperature
catses a gradual softening of the polymer matrix material up to a point. However for
fiber-reinforced composites, the fibers are not affected as much by temperature condition,
thie swelling or contraction of the matrix is resisted by the fibers and residual stresses

develop in the composite [5].
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2.6.1 Theory of Thermal Conductivity
Let consider a crystal with N, unit cells, each of volume €. Let also identify a
phonon with its wave vector q, polarization index s, frequency w(qs), and group velocity

£s{q). the heat current Q can be expressed by including contributions from phonons in all

possible modes [28]
1
Q= e Zha(gs)n,c.q {2.9)

The guantity n,, assumes its equilibrium value n'y characterized by fhe crystal
temperature T. in the presence of a temperature gradient across the crystal it can be
express

Tlgs ™R g5 + Biigs, 2.10)
where 3n,; indicates deviation from the equilibrium value. Clearly, then, the heat current
is governed by 8ng so that Eq. (2.9) can be expressed as

Q= R,I—Q ¥ ho(gs)on,,c,(g) @.11)

The deviation quantity dn,, which is significantly controlled by crystal anharmonicity,
patticularly at high temperatures, is in general unknown. Microstructure theories of
lattice thermal conductivity attempt to address the quantity dngg.

2.6.2 Importance of Thermal Conductivity

A solid’s thermal conductivity is one of its most fundamental and important
physical parameters. Its manipulation and control have impacted an enormous variety of
technical applications, including thermal management of mechanical, electrical,
chemical, and nuclear system. Lattice thermal conductivity is the heat conduction via
vibrations of the lattice ions in a solid. Lattice thermal conductivity of solids near
ambient temperature can span an enormously wide range; “High” thermal conductivity of
0.03 Wem ™K would, for this class of solids, have a “high” thermal conductivity. On the
other hand, such a value of thermal conductivity for an inorganic crystalline
semiconductor (the thermoelectric material PbTe, for example) would be considered very
“Yow”. Frequently in the literature a value of thermal conductivity in excess of 1Wem 'K~
" has been chosen, rather arbitrarily, as the lower limit for a high-thermal-conductivity
solid. Because the main driver in the search for high-thermal-conductivity solids is for
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thermal management of electronics systems, a more suitable metric may be how the
thermal conductivity compares to traditional materials used in these types of applications.
By far most widely used material for thermat management in high-volume applications is
crystalline alumina, with a thermal conductivity on the order of 0.5Wem K. Thus the
lower limit set to be “high” thermal conductivity at 0.5Wcm ™K. Even with this more

relaxed criterion, the family of high-thermal-conductivity electrical insulators is still

2.6.3 Coefficient of Thermal Expansion (CTE)

Rosen [15] observed that for composites having high fiber volume fraction, the
predicted longitudinal coefficient of thermal expansion (CTE) is almost zZcro.
Measurement of such materials confirmed that longitadinal CTE is so small as to
fluctuate between positive and negative values due to small changes in temperature or
fiber volume fraction. Over the range of practical fiber volume fractions transverse CTE
is much greater than longitudinal CTE. At the same time, at low fiber volume fractions
transverse CTE can be greater than longitudinal CTE of mafrix. The figure below shows
the variations of longitudinal CTE (o) and transverse CTE (o) with fiber volume
fraction for typical graphite/epoxy composite [1].
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Figure 2.7: Variation of predicted longitudinal and transverse coefficients of thermal
expansion with fiber volume fraction for typical unidirectional graphite/epoxy composite.
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CHAPTER 3
METHODOLOGY
346 METHODOLOGY
3.1 Technique of Analysis
Figure below shows the summary of methodology that will be implemented in
order o complete the project. It involves project activities which move from one

phase to another.

' Planning & i
Feasibility

Selection of model
for comparison

Review

Literature ]

Model
development

Figure 3.1: Summary of Methodology
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3.1.1 Planning & Feasibility

This project concerned with the literature studies on analogy of mechanical and
transport properties in composite materials. Information on the mechanical behaviour and
thermal conductivity of composite will be studied thoroughly at this stage. The objectives
- and scope of study of the project were identified and the further activities were planned
based on these information. Then the limitations to the proposed model were identified
and this will guide to an enhanced union and divination.

3.1.2 Literatare Review

Since this study is a literature research, the development of predictive model
predominantly depends on the existing earlier theories. Abundant of information on the
existing theories are needed in order to come out with a better prediction of proposed
model. All the information mostly gathered form books written by early researchers and
journals and articles found in Information Resource Centre (TRC) about the compaosite
materials as well as discussion with lecturers. All the data from various sources will be

gathered in order to be analyzed later.

3.1.3 Selection of model for comparison

The gathered data will be analyzed in through at this stage. The early existing
theories such Rule of Mixtures, Maxwell prediction for thermal conductivity and Hashin-
Shetikman bounds for mechanical properties were analyzed at first place before moving
on with other theories. Other theories such as Effective Moduli method and Raghavan-
Maitin model will be studied as project works continuous. The ideas and theories brought
forward by these researchers will be studied in through and evaluate the similarities
among those theories. This will lead to a much simpler prediction about the shear
modulus and thermal conductivity can be developed by analyzing the analogy of
mechanical and transport properties of disperse composite. This is the stage wheré the
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selected theories and practical data analyzed in thorough so that those models can be used

later in graph digitization.

3.1.4 Graph digitization

In this part, both selected practical and theoretical data will be exported to
“Engauge” software to be digitized. The points from the graph will be exiracted to excel
form and the exact points can be obtained. The same thing will be done for all selected
models. Once all the points been extracted from the graph, effective properties for
thermal conductivity and shear modulus will be evaluated. Those properties will be
compared with other points extracted from other graphs. The analogy between those
models will be figure out. Since both mechanical properties and thermal conductivity
goverhs by the same set of equation, it is possible to develop a better model using any
one-of the property.

3.1.5 Model Development

At this stage, all the gathered data will be compared to each another in order to
find the similarities among the existing model. Graphs of effective shear or thermal
curveés vs. volume fraction of disperse medium will be plotted. Then, the effective
thermal models will be superimposed with effective shear curves and see the degree of
analogy that exists between them. Those models which superimpose with one another
will be identified at first place. The main aim is to identify whether the effective thermal
models that predict effective shear models well and are also correct at the limit. The
proposed model will be developed based on the model which gives a good prediction.
The proposed model also cannot exceed the Maxwell and Hashin — Shtrikman bounds.
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3.2 Tool required

Engauge Digitizer - Digitizing software

The software used in this project is “Engauge”. This open source, digitizing
software converts an image file showing a graph or map, into numbers. The image file
can-come from a scanner, digital camera or screenshot. The numbers can be read on the
screen, and written or copied to a spreadsheet. The process starts with an fmage file
containing a graph or map. The final resuit is digitized data that can be used by other
tools such as Microsoft Excel and Gnumeric. Engauge (from en “make” and gauge “to
measure”) verb meaning to convert an image file containing a graph or map, into
numbess. Below are some of the features of “Engauge” software:

+ Automatic curve tracing of line plots

* Automatic point matching of point plots

+ Automatic axes matching

=+ Bupport for drag-and-drop and copy-and-paste makes data transfer fast and easy

» Tutorials with pictures explain strategies for common operations

» Preview windows give immediate feedback while modifying settings

+ Export support for common software packages such as Microsoft Excel,
OpenOffice CALC, gnuplot, gnumeric, MATLAB and Mathematica

» Engauge is available for a wide variety of platforms (Linux, Mac OSX,
Windows)

» Eagauge Digitizer is completely open source and free courtesy of Sourceforge,
Trofltech and FFTW
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CHAPTER 4

RESULT AND DISCUSSION

4.9 RESULT AND DISCUSSION
4.1 Result

4.1.1 Twe Dimensional Composite Materials
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Figure 4.1: Effective properties of two-dimensional composite materials
4.1.2 Three Dimensional Composite Materials
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Figure 4.2: Effective properties of three-dimensional composite materials
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4.2 Discussion

4.2.1 Rule of Mixtures (Strength of Materials Approach)

This approach was developed by Voigt and Reuss. The strain field approach
infroduced by Voigt states that strains is same over all composite and equal in ¢ach phase.
The stress dual approach invented by Rcuss states that constant stresses over all
composites and equal in each phase. This constant stress and strain only valid when
constituents are either in parallel or in series. In the theory of mechanical properties for
composites, there are two “rales of mixing” that act on a composite [18]:

» Isostrain: Loading parallel to fibers: Isostrain is similar to springs in parallel as

in Figure 4.3
+ [sostress: Loading perpendicular to fibers: Isostress is similar to springs in series
28 shown in Figure 4.4

J’t—‘r ;cye? T a 1.

)
ER R
Figure 4.3: Isostrain condition — similar to springs in parallel.

Ll

Figure 4.4: Isostress condition — similar to springs in series.
As for particulate composites, the rule of mixtures always predicts the density of fiber —

reinforced composites [19]:

Po=fupn + fpr {4.1)
where the subscripts ¢, m, and frefer to composite, matrix, and fiber. Note that
fa=1-1 {4.2)
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This method does not consider fibre-packing geometry buy do consider representative
. volume element (RVE). The bonding at interface is perfect, so no slip occurs between
fibre and matrix material. However the results obtained from this method are not accurate

and-apgreement with experimental results are generally poor.

4.2.1.1 Modulus of Elasticity

_The rule of mixtures is used to predict the modulus of elasticity when the fibers
arecontinuous and unidirectional. Parallel to the fibers, the modulus of elasticity may be
as’high as:
Ey=fn Enpt+fe Es (4.3
However, when the applied stress is very large, the matrix begins to deform and the
Stegss-strain curve is no fonger linear (Figure 4.5). Since the matrix now contributes little
tothe stiffhess of the composite, the modulus can be approximated by
Boy=1f¢. E¢ (4.4)
When the load is applied perpendicular to the fibers, each component of the composite
acts independently of the other. The modulas of the composite is now:

LI /1 (4.5)
E, E, &

c m

Stress

FEon = FusFn + F5Es

Y

Figure 4.5; The stress-strain curve for fibre-reinforced composite

Strain
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4.2.1.2 Thermal Conductivity _

The rule of mixtures accurately predicts the thermal conductivity of fiber —
reinforced composites along the fiber direction if the fibers are continuous and
uaidirectional:
Ko=fnKn+fK; (4.6)
where K is the thermal conductivity. Thermal energy can be transferred through the
composite at a rate that is proportional to the volume fraction of the conductive material.
In‘amatrix containing metallic fibers, energy would be transferred through the fibres.

, ®
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Pa _ ® o°
®
L
o ,
)
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) '/. I
A mode
0 — » Vol % Tungsten 100

Figure 4.6: Sample data for Isostrain and Isostress for copper matrix tungsten
particle.

4.2.2 Hashin — Shtrikman Model

The analytical expressions proposed by Hashin and Shrikman [20], provide
bounds for the elastic constants of a heterogeneous material with a random isotropic
distribution of phases from the properties and volume fraction of each phase. They are
based on a variational principle which, combined with a hypothesis of isotropy, leads to a
calculation of the average strain in one of the phases. The lower bound is built with the
softer phase taken as the matrix and the upper bound corresponds to the harder phase
taken as the matrix. The spherical shape of the inclusion reflects the isotropic phase
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distribution. The HS bounds are easy to compute when the constitutive phases are
isotropic and have general validity. In the particular case of a composite made of
spherical inclusions isotropically distributed in a matrix, the lower and upper bounds
provide good estimation on effective properties of composites. Hashin-Shirikman had
narrowed the range of the earlier, wider bounds given by the Isostrain and Isostress
models.

avo L] L) Al L] hd L
—Isotrain and Isostress
Hashin Shtrikmean upper bound(HSU)
Hashin Shtvilavan lower bound(HSL)

3

@
o

. Hashin Shirikman upper
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___ Hashin Shtrikman
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]
o
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Figire 4.7: Hashin Shirikman Upper and Lower bounds on the dimensionless effective

0.0 .

shear modulus versus volume fraction for a two phase composite composed of particulate

material.

The HS bounds can be used as a rapid check to find out whether the elastic properties of a
particulate composite are reasonable or not, provided that its microstructure is in
agreement with the HS hypothesis. The properties lay below lower bound-composite
might contain fair amount of defects while properties which lay above upper bound-
stincture might be fibrous. The HS bounds are identical to the results of Maxwell which
will be discussed next. The lower bound corresponding to the classical Maxwell result
and the upper bound is equivalent again to the Maxwell result when the phases are
inverted. This resuit is frequently referred as ‘inverted Maxwell’, though there is no
difference between the two except for change of symbols.
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4.2.2.1 Effective Axial Shear Modulus
The effective axial shear modulus, G’ 12, of a unidirectional fibrous composite is
obtained from the boundary displacements [27]

B
W= X
_ .0
= £'12X
us=0 A7)

if this displacement field is applied to homogeneous, transversely isotropic circular
cylinder with axial shear modulus G 1, the resulting strains are

0 g, 0
0
. ig& 0 0

[513} —_ iz (4- 8)
0 0 0

And the stresses are
0 ZG;'2 0

foil=|2G;, 0 o0 42
0 0 0

Thus the equivalent homogeneous cylinder is in a state of pure axial shear,

Solition of the concentric cylinder elasticity problem for the displacement boundary

conditions gives the final result
G, _ G (1+V,)+G,(1-V,)
G G-V )+G,0+V,)

(4.10)

From the above result, it is seen that the rule of mixtures is not a good approximation for
the axial shear modulus. It is interesting to note that the effective shear modulus of the
composite is a fumction of only the fiber and matrix shear moduli and not any other

properties of the constituents.

4.2.3 Maxwell Prediction

Maxwell {21] solved for the effective conductivity, k ., of dilute suspension of
conducting sphéres in a conducting matrix. Maxwell used the idea of an effective
medivm to calculate the effective conductivity, of a two phase composite consisting of

isotropic spheres embedded randomly in a homogeneous matrix. Maxwell considered a
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spherical particle in a large matrix and assumed that the concentration of the spherical
inclusion, ¢, in the matrix is nearly zero, (c-=>0). Thus,

keit= £ (&, €), L., Keir= (K, ke, ©) @*11)

where kq = conductivity in dispersed area,
k. = conductivity in confinuous area

and kyk.=a

Keike = K = (1+2B)(1-fc) in which B= (o — 1)/(0 + 2) (4.12)
¢=> 0 because of the vanishingly small concentration. The result may be approximated as
k = 1+ 38 for the effective property of the composite.

The true effective property lies between these bounds as seen in figure below. Its value
depends on the individual property (elastic modulus/ thermal conductivity) of the

constituent phases and on the volume concentration of the disperse phases.

Parallel

31 4 Maxawvell inverted

21 4

16

¥

Thermat conductivity (W.m'*LK")‘.

Series

0% 20% 30% G0% 80% 100%
volume fraction

Figure 4.8; Maxwell and Maxwell-inverted limits, parallel and series lines in thermal

conductivity.
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4.2.4 The Eshelby inclusion method
Eshelby [1, 2, and 26] starts his research by assuming that the elastic stiffness
matrices Cy and G of matrix and inclusions are both equal to C. As in fig 4.4, the
inclusion is cut from the medium and taken “outside”, where it can tfransform subject to
no elastic constraint. Surface tractions are then applied to the inclusion, whereby it
' undergoes an elastic strain —¢” back to its original shape and size. Then it is returned to its
hole, where it fits exactly. At this stage, the stress in the inclusion is equal to —Ce" and
the mairix is unstressed. When the surface traction is finally removed by equél but
opposite surface tractions, the inclusion reaches equilibrium with the elastic matrix after
an additional elastic strain £ —¢* and displacement will be introduced in the matrix. This
is to describe the analysis of stress and strain generated in infinite homogeneous lincar
elasic medium when inclusion undergoes transformation, which produces a
homogeneous inelastic strain throughout the inclusion. The transformation stramn results

from differential thermoplastic deformation.

Eshelby method can provide a stress state solution in the case of heterogeneous
materials and so composite materials. For the temperature gradient, since in most Cases,
thermal expansion coefficient of matrix is higher than fiber, a change in temperature
produces a change in the shape of the inclusion. In sum, the analysis of the equivalent
inclusion allows behaviour homogenization problem to be solved by substitution of a
problem with heterogeneity into a problem of a homogeneous medium submitted to a

localized free strain. Figure 4.9 shows the Eshelby’s thought experiment.
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Figure 4.9: Eshelby’s thought experiment, as illustrated by Brown and Ham

4.2.5 Semiempirical Model

This approach [1] involves the use of semiempirical equations which are adjusted
to mnatch experimental results or elasticity results by the use if curve fitting parameters.
The equations are referred to as being “semiempirical” because, although they have terms

containing curve-fitting perimeters, they also have some basis in mechanics.

4.2.5.1 Halpin — Tsai Equation

This model [1, 26] is a mathematical model for the prediction of elasticity of
cotposite material based on the geometry and orientation of the filler and the elastic
properties of the filler and matrix. The model is based on the self-consistent field method
although often consider to be empirical. Homogenization method is used to obtain
numerical results of the plane strain butk modutus and the transverse shear modulus.
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The appropriate equation for this method is,

G =Gy (1 +&nf) (4.13)
(L-nf)
In'which, § = {GyGy — I} (4.14)
{Gt/Gm— &}

and the parameter & is taken to have a value of around unity.

4.2.6 Elasticity Approach

This approach [1,26] considers equilibrium of forces, compatibility and Hooke’s
law relationship in three dimensions. This model also called as composite cylinder
assemblage (CCA) models. This approach is about selecting a suitable RVE and
subjecting the RVE to uniform stress of displacement at the boundary. The equation must
be satisfied at each point in the model and no simplifying assumptions are made
regarding the stress or strain distributions as in the mechanics of materials. Fibre packing
geomeiry is specified. Complete stress and strain distributions in RVE are generated and
caleulation of stress concentration factors is possible. The governing equation for shear
modulus is given below.

Gi2 = GrGyve+ G (1 + ¥m) (4.15)

Ge(1+ )+ Gpve

where Giz, G, and Gy are representing shear modulus of composite, matrix and fibre

respectively. vy, and v representing volume fraction of matrix and fibre respectively.

4.2.6.1 Method of Cell
This approach [26] depends on the assunmption that the two phase composite has a
periodic structure in which the reinforcing material (e.g. fibres) is arranged in a periodic
manner thus forming a periodic array. This assumption allows the analysis of a single
representative element rather than the whole composite with its many fibres. The
equilibrium equations solved subjected to continuity of displacement and tractions at
interfaces between subcells and between neighbouring cells in an average basis. This
method produces lengthy equations but excellent agreement with experimental data on
graphite/epoxy. This approach yields to in-plane lamina properties and through-the-
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thickness properties such as Gos and v,3. Figure 4.10 shows the periodic array of fibre in
method of cell.

fivers

iy

Figure 4.10 (a) Composite with doubly periodic array of fibres. (b) Representative cell
with four subcells a, f=1, 2

4.2.7 Self-Consistent Method

This method [26] does not consider an inclusion or the REV as isolated
free-bodies. The purpose is to place these volumes in an infinite medium which is already
homopenized and the properties of which have to be found. At the beginning, the
properties of the composite are assumed so that the stress and strain fields in the REV can
be computed. When the REV is homogenized to represent the composite, the resulting
material properties in the REV must match those assumed previously for the composite.
This approach is good for low volume fractions of heterogeneities because it considers an
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infinite medium with a single REV, cannot take into consideration interactions between

the constituents [22]. Figure 4.11 shows the self-consistent scheme model.

SPHERICAL INCLUSION
ZZ1 EFFECTIVE MEDIUM

Figure 4.11: The self-consistent scheme model

4.2.7.1 The Mori - Tanaka Model

This method was introduced by Mori and Tanaka which lead to better description
on feal strain state in the matrix [25]. The main assumption of this model is that the strain
in fhe inclusion is uniform. It is an accurate method to predict the effective moduli of the
coated inclusion based composite materials. The average strain in a typical inclusion
(fiber) is related to the average strain in the matrix by a fourth — order tensor T where T is
defined to give the relation between the uniform strains in the inclusion embedded in an
allanatrix material subjected to an imposed uniform strain at infinity. The fiber strain
concentration factors are found to be '
As=TIV{T +(1-VpI]" (4.16)

where T = [SCqp (Cr— Cu) + 11" (4.17)

The result obtained from this model is similar with lower bound Haskin-Shtrikman model
for spheres, elongated inclusions with the same shape and anisotropic. However, the
expansions of this model differ from Haskin-Strikman bounds for the case of elongated
particles with different shapes and orientations becausc of the simplifications regarding

inclusion interaction in this model.
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4.2.8 The Generalized Self-Consistent Scheme

This procedure [26] also referred to as the three-phase model yields better results
than the self-consistent scheme. For a particulate composite with randomly distributed
spherical inclusion, this scheme consists in imbedding a composite sphere with an
inclusion core and surrounded by a shell of the matrix material in an infinite medium of
unknown effective properties. For the effective shear modulus, p* this model {26]
considered uniform strain field ¢ applied at infinity in the geometry of the generalized
self-consistent scheme. By imposing the interfacial conditions of perfect bonding, these
researchers obtained effective shear modulus is governed by a quadratic equation of the
form

A@* )y + 2Bt/ )+ C=0 (4.18)
where the coefficient A, B and C are complicated functions of the inclusion and matrix
elastic properties. Figure 4.12 shows the generalized self-consistent scheme model.

272 SPHERICAL INCLUSION
COOMATRIX
EFFECTIVE MEDIUM

Figure 4.12: The generalized self-consistent scheme model
The weak point of the generalized self-consistent method (GSCM) is that its
solution for the effective shear moduli involves determining the complicated
displacement and strain fields in constituents. Furthermore, the effective moduli
estimated by GSCM cannot be expressed in an explicit form.

4.2.9 Chamis Approach

This approach is based on “simplified micromechanics equations” (SME) which
are based on subregions method whereby divide square array of fibers into subregions for
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more detailed analysis if convert to a square fiber having the same area as the round fiber.
The longitudinal fiber shear modulus Gy, are not actually measure but are inferred by
substitution of measured composite properties and matrix properties in SME. Chamis’s
eqguation 1S

Gi2= G [(1-v9) "2 + (v0) "/ {1- (v9) "*(1-Gin/G2)}] (4.19)

4.2.10 Milton Approach
Given only the phase volume fractions, conductivities, bulk moduli and shear moduli,
denoted by @, and @, o1 and oz, ki and ko, and Gy and Gy, restrictive bounds on Ge, Ke,
and p. which include additional microstructural information on the transversely isotropic
fiber<reinforced material obtained by Milton {1981, 1982). Milton’s bounds on o, depend
not only upon three-point probability function but upon S,. this approach for disordered
composites has been virtually nonexistent because of the difficulty involved in
determining S3 and Sa, either experimentaily or theoretically. For transversely isotropic
fiber-reinforced material, Milton demonstrated that both integrals may be expressed in
terms of single intergrals {» which depends upon the three point probability function. The

simplified form for transverse conductivity is expressed as below:

0¥ <0. oy (4.20)
where o0 = <o>-ge, (62 — 1) (4.21)
<g> +o(
and o™ = <Vor-ge (Vs — /oY {4.22)
<1/> + (/o)L

For the fourth order bounds which depend on 61, 6,, @; and {; and upon multidimensional
intergral that involves fourth point probability function of S4. Utilizing phase-interchange
theorem for fiber-reinforced materials, Milton showed that the intergral invotving S can
be expressed in terms of @, and { only.

o= g (qr+e) (ait <o) — plilor-01)" (4.23)

(or+02) (G2 <6>) — Bli(ca-on)’
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and o.P = 61 (g1+3) (0x+ <o>) — 81( G201 ¥ (4.24)
(or+62) (o1+ <6>) — B1la(02-61)

For the case of o = 0.1, the Milton bounds provide similar improvement over Hashin

bounds, except that most of the improvement is in the lower bound. For the range of0.1<

a<10, the fourth order Milton bounds are sharp enough to give good estimate of 6./6 for

the entire range of volume fraction.

4.2.11 Predictive Model
The predictive model is a model which has less scafter between the practical and
theoretical data gathered. The standard deviation between the points should be less and
the experimental data should not deviate much from theoretical data. All the models
discussed earlier are within the range and do not exceed the parallel and series limit,
Hashin-Shtrikman and Maxwell lines. The theories lie behind all these models have been
discassed carlier.

4,2.11.1 Bidimensional Composite Materials

Based on the Figure 4.1, the Milton upper limit identical to Maxwell lower limit.
When volume fraction is smaller, Milton bounds provide similar improvement over
Hashin-Shirikman bounds, expect the most of the improvement is in the lower bound. It
is good enough to give a good estimate of thermal conductivity for entire range of
voluriie fractions. As noted above, bounds diverge as u is made large and Milton lower
bound on conductivity yield a good estimate, with maximum error occurring at maximum
volume fraction reported, ie, at volume fraction of 0.65 or equivalently at 30% of

closing-packing volume fraction.

All the models give good approximation when the volume fraction is lower. As
for Thomburgh and Pears mbdél; the theoretical data when compared with experimental
data for two-dimensional composites gives excellent estimates of experimental data. This

fiirther supports claims abont utility of bounds.
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When the theoretical value of Durand and Ungar model to exact simulation results
obtained using Boundary Element Method (BEM), it is seen to predict effective thermal
canductivity extremely accurately. This supports the assertion that bounds, which
incotporate nonirivial microstrucutral information on the medium, can be used to
accurately estimate effective properties, even when the phase properties are widely
different.

It can be seen that the Halpin-Tsai expression and Eshelby approach represents a
fairly good approximation to the axial shear modulus even at higher volume fraction.
Both the Halpin-Tsai and Eshelby theoretical value exhibits good agreement with
experimental data proposed by other researchers. This supports the validity and reliability
of micromechanical approach for the prediction of the effective moduli of bidimensional
composites. This provides a critical check for the property of a micromechanical model.
At the same time, Halpin-Tsai shear curve is not as low as the prediction of the equal
stress model. Thus both this approach gives fairly good estimation for effective properties

of composite materials.

4.2.11.2 Tridimensionat Compesite Material
The further analysis on Maxwell and Rule of Mixtures was unable due to
insufficient model for three-dimensional model. All the models proposed by early
researchers lie within Hashin-Shtrikman bound expect for experimental points measured
by Richard (1975) (based on Figure 4.2). The points scatter outside Hashin-Shtrikman
bounds and this indicates this model exceeds the limit of Maxwell and Hashin-Shtrikman

limits.

1t is seen that the method of cell is in a good agreement with the generalized self-
consistent method. The agreemerit with the three phase model shown in the figure is
significant since it supports the validity prediction of method of cell. At the same time,
the effective moduli of three phase composite materials with randomly oriented disperse
media predicted by method of cells, can be compared with the Mori-Tanaka method. It is
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noted that the Method of cell coincides with the corresponding lower bound of Mori-
Tanaka method.

Figure 4.2 also shows that the lower bound of Mori-Tanaka model identical to
Hashin-Shtrikman lower bound for spheres, elongated inclusions with the same shape and
anisotropic. However, the expansions of this model differ from Haskin-Strikman bounds
for the case of elongated particles with different shapes and orientations because of the
simphifications regarding inclusion interaction in this model.

The higher scatter of experimental points is due to the particle size. The diameter
of the fibers or particles used to develop composite materials is mostly not uniform.
Inclusions do not interact enough to allow the establishment of thermally connected paths
(percolation) for composite phase, even if the average distance scparating two
consecutive inclusions reduces as volume fraction increases. Examination of
microstructure of a high composite content shows that each bead surrounded by matrix
phase. in essence, a minimum thickness of this matrix phase limits significantly the
possibility of physical contact. In fact, the process of fabrication ensures complete
coating of beads during mixing because a good adherence of powder to the beads is

obtained with organic additives.

Next is the shape of the particles or fibers impregnated in composite materials.
Fiven though all the fibers and particles fabricated to be spherical or cylindrical in shape,
defects in the manufacturing process make ruin the shape of the particles. The
arrangement of the particles in the composite will not be in order when one or more of
the fibers” shape has changed.

It is obvious that many other factors have an influence on the conductivity and
modualus of these models: the location, orientation, size distribution, and whether the
particles are in contact. There are other modifying factors for elasic moduli such as

interfacial mismatch. The equivalent effect in the thermal problem would be the phonon
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mismatch between the phases. The formation of an oxide layer has also been found to

influence the effective value of the property.

In short, fiber volume fractions are usvally much lower due to processing
limitations (e.g., the viscosity of the fiber/particles must be controlled for proper flow
during molding) and the random orientation of the fibers and particles. Since fiber-
packing geometry is never entirely repeatable from one piece to material to another, we
should not expect our micromechanics predictions to be exact. Therefore, the

experimental results always show a scatter and a deviation from identical models.

42



CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.6 CONCLUSION AND RECOMMENDATION
3.1 Conclusion

The ground rules of the analogy between various mechanical and transport
properties have been discussed in this report. It is shown that by virtue of the analogy,
models developed for one set of properties can be nsed to obtain another set of properties.
Properties of composites lie between the Maxwell and Hashin-Shtrikman’s bounds. Both
these lines are the limits that cannot be exceeded by the proposed model. Many models
have been developed as linear combinations of these model pairs. It can be seen that there
are several micromechanics models that provide identical or similar predictions for the
effective elastic properties. In general, it may be stated that the Eshelby inclusion method
and Halpin-Tsai equation give better approximation in wide range of volume fraction in
most cases. The Reuss, Voigt, Mori-Tanaka bounds and generalized self-consistent

models provide good results only in determining the rationale for limiting bounds.

Experimental results for the effective engineering properties of composites as a
function of fibre volume fraction are quite scarce due to the difficulties in measuring
these properties accurately. The expérimental results are proposed by Durand and Ungar,
Thomburgh and Pears and Tessier and Doyen can be seen in the result. When these

experimental results compared with theoretical data presented by Eshelby and Halpin-
Tsai the comparisons generally indicate that the experimental results are in line with
stated the theoretical data. Thus it can be concluded that Eshelby and Halpin-Tsai models
can give a betier correlation between elastic moduli and thermal condactivity of

composites.
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However for three-dimensional composites, experimental data proposed by
Richard shows a huge scatter to Method of cell, Mori-Tanaka bounds and generalized
selfsconsistent scheme. Some of the points lie outside the limiting bounds. This is due to
delamingtion of the composite materials. Chamis and Wong and Bollamplally’s

experimental data are in line with HS lower bound.

5.2 Recommendation

In most cases, the stiffness and conductivity of composite materials are mainly
influenced by the shape, location, orientation, size and size distribution and whether the
patticles are in contact. In order to improve the properties of composite materials, it is
vsefol to modify the fibre-packing geometries to triangular shape and shown in figure

below.

Fiber

Figare 5.1: Representative arca elements for ideatized square and triangular fibre-packing
geomelies.

If the fibre spacing assumed to be s, and fibre diameter, d, do not change along the fibre
length, and then the area fractions must be equal to the volume fractions. The fibre
volume fraction for the square array 1is
Ve= /4 (d/sy’
Thus the maximum theoretical fibre volume fraction occurs when s=d. In this case,
Vimax = /4 = 0.785 |
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The triangular arrays shows that
V= a/243 (d/s)’

and when s=d, the maximum fibre volume faction is
Vimax = 1/2V3 = 0.907

The close packing of fibres required to produce these theoretical limits is generally not
achicvable in practice, however. In most continuous fibre composites the fibres are
packed in & random fashion and the fibre volume fractions range from 0.5 to 0.8. Since
fibre-packing geometry is never entirely repeatable from one piece of material to another,
the micromechanical predictions are seen to give a window of uncertainty rather than

exact values.
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