
CERTIFICATION OF APPROVAL

Reconstruction of Digital Document Images from Scribbled Sketches

by

Mohd Ridhwan bin Abu Hassan

Approved bi

A dissertation submitted to the

Business Information SystemsProgramme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

Bachelor ofTechnology (Hons)

Business Information Systems

(JALE BIN AHMAD)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own, except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources ofperson.

RIDHWAN BIN ABU HASSAN)

ABSTRACT

The presence of artifacts and defects in digital images compromise their

homogeneity. This problem however can be unraveled by having the defective

regions to be recognized manually, removed and filled. Comes image inpainting, this

predicament is no longer an intricate task. Still, the need for human intervention in

identifying defective regions curtails its autonomy and robusity. Thus, the author

intends to discuss some fundamental ideas behind image inpainting, removal and an

ingenious way of filling those blank holes dubbed "texture synthesis". This report

concisely reviews the concept of image inpainting, right from the semi-automatic

removal of defective regions by simulating Photoshop's Magic Wand tool using

color segmentation and filling-in the blank holes as the results of removing non

textual objects with a plausible result to the human eye. This project focuses on

reconstructing digital images with textual components. To achieve this, the author

implements software prototyping in constructing the software program to realize the

objectives using MATLAB and C++. Finally, the authorconducted various analyses

on the accuracy and performance ofthe software program.

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor, Jale bin Ahmad, for the making the past few

months one of the best periods of my life. For each effort I put into my work, I think

he put two. I arrived at my senior year quite without a clue, and rather worried of

what kind of research I would indulge into. Fortunately, it was difficult to stray too

far afield when strivingto follow his examples and exemplary advices. His dexterity

in our mutual research interest makes things even easier. He was a better supervisor

than I imagined possible.

I owed a bunch of thanks to fellow friends, Sarhanah, Hawa, Khushairy and

Zaimal, for listening to my gibberish babbling, and even pretending to enjoy them,

while I am under pressure from piles of works and endless datelines. My gratitude

also conveysto fellow supervisees and former coursemates for attending tirelesslyto

my ceaseless curiosities on work matters.

I would never forget the fact that my family had provided tremendous

supports while I am a student, andfor that,my hefty gratitude.

I am also indebted to the faculty members of Computer and Information

Sciences department of Universiti Teknologi PETRONAS and the executives as well,

who never neglect helping me with my trouble on my final year project matters. For

that, I owed my many thanks.

As an ending note, my thanks impart to those I have not mentioned here but

whose assistance during all this while had helped me a lot and thus, very much

appreciated.

TABLE OF CONTENTS

ABSTRACT 3

LIST OF FIGURES 6

LIST OF TABLES 7

INTRODUCTION 8

1.1 Background of Study..... 8

1.2 Problem Statement 8

1.3 Objectives 8

1.4 Scope of Study 9

LITERATURE REVIEW 10

2.1 Defect Detection 10

2.2 Image Segmentation 10

2.3 Color Segmentation 11

2.4 Image Inpainting 12

2.4.1 Exemplar-based Image Inpainting 13

METHODOLOGY 15

3.1 Software Prototyping 15

3.2 Equipment and Tools 16

3.3 Proposed Graphical User Interface (GUI) for the prototype 17

3.4 Project Planning 17

RESULTS AND DISCUSSIONS 19

4.1 Project Feasibility 19

4.2 Project Deliverables 19

4.3 Measurement of Performance and Accuracy 21

4.4 Software Testing 24

CONCLUSIONS 27

BIBLIOGRAPHY 28

MATLAB CODE #1: RECONSTRUCTION FUNCTION 29

MATLAB CODE #2: GUI 32

C++ CODE #1: EXEMPLARS SEARCH 35

GANTT CHART 37

LIST OF FIGURES

Figure 1A sample intended result. The Image is capturedfrom a handwrittenpaper
acquiredfrom a conventional digital scanner, (a): Image with defective region,
marked in red ink. (b): Defective regionremoved and inpainted, 9
Figure2 Structure propagation byexemplar-based texture synthesis. (An excerpt
from (Criminisi, 2003); 14
Figure 3 Algorithmfor regionfilling. (An excerptfrom (Criminisi, 2003)) 14
Figure 4 The software prototyping methodology 16
Figure 5 Layout ofthe proposedprototype GUIthatwill be implemented in MATLAB.

17

Figure 6 The software program GUIshown with the input image with defects on the
leftpanel This software program can bedistributed into various platforms without
havingto have MATLAB installed. 20
Figure 7 The output ofthe reconstruction programfrom command line in MATLAB
environment. This can only be achieved withMATLAB installedon theplatform.... 21
Figure 8 The sample test image with defects 23
Figure 9 The comparison between original image andreconstructed image to
determine thepercentage ofaccuracy 24

LIST OF TABLES

Table 1 Resultfromanalysis ofreconstruction performance over various test
samples 22
Table 2 The transcript ofthe sample test image 24
Table3 Test Casefor Black Boxtesting 25

CHAPTER 1

INTRODUCTION

1.1 Background of Study

According to (Shen, 2003) and (Inpainting - Wikipedia, the free encyclopedia,

2009), "Image Inpainting" is the artistic synonym for Image Interpolation, known to

artists working for archiving in museums, and by definition is the process of

reconstructing lost or deteriorated parts of images and videos. First coined by the

authors in (Bertalmio, 2001), the authors revolutionized the classical methods of

image inpainting by proposing inpainting method based on Partial Differential

Equations. However, these classical methods rely on users to define and recognized

the defective areas to be removed and inpainted.

1.2 Problem Statement

The author realizes a significant problem on which image inpainting may come into

use. Given a paper with blocks of handwritten text and diagrams and arbitrary

sketches and smudges are inflicted by ink on top of those. The texts and diagrams

will be rendered difficult to read as they are occluded by the defects. This scenario

can be analogized by an exam paper ready to be marked by a teacher, which she is

unfortunately unable to do so when her daughter of 2-years-old practices her flair to

abstract drawings on that exam paper using conventional ball-point pen. The author

aims to propose a framework for detecting and removing the defects and inpainting

the empty regions. With this, the teacher will be able to continue marking the exam

papers. This project will greatly improve the readability of digital images with

textual components that have been spoilt by defects.

1.3 Objectives

This research aims to:

1. Provide a semi-automatic detection ofdefective regions in still images.

2. Fill empty holes ofremoved regions by synthesizing neighboring textures.

3. Develop a prototype, for which image acquisition, region removal and

inpainting can be done in one place.

inB«W"ffl»Bty«HWwmw wu Miuwnu|iu|if^,»HW» WWW»;ijBWMWi^tf^a»ww'*t^

a

*&>

*^4 ***„.&*< _. , , f

> v^ «...f ***^~r

• *•* -* A

^ .»/,>'

Figure 1 ^ sample intended result. The Image is capturedfrom a handwritten paper
acquired from a conventional digital scanner, (a): Image with defective region,
marked in red ink. (b): Defective region removedand inpainted.

1.4 Scope of Study

This research bases its roots under the premise that incomplete images can be filled

by taking a texture sample of neighboring regions and propagates through the

missing regions. This research intends to provide partial automation to the whole

process by performing color segmentation and will be focusing on images with

textual components. Color segmentation will distinguish the defective regions and

non-defective regions. The implementation of the system will include two (2) parts:

command-line execution and GUI. However, command-line execution will be given

priority to completion. The focus of this research will be to correctly identify and

remove the defective regions from still single image with minimum human

interventions and inpaint those removed regions in a way that looks "reasonable" to

the human eye.

CHAPTER 2

LITERATURE REVIEW

2.1 Defect Detection

Defects, in a nutshell, are any foreign entities on the image which will destroy the

homogeneity of the image (Ye Q, 2003). Examples of defects on an image includes

ink spray, scratches, dust, varying illumination and geometric distortion, most of

which may be procured from normal image acquisition through scanners or cameras.

The defects detection, ink in particular, relies on the property of the ink (e.g., ink

color, shape and decadence of gradient). Defects are hard to be modeled explicitly

due to its arbitrary natureand the effectsof occlusionwith the underlying objects.

Due to this vexing fact, most defects detection algorithm rely on users to

manually identify them, although there have been increasing literature on automatic

defects identification, such as those of (Jyotirmoy Banarjee, 2009), which

implements probabilistic context model and learned relationship using Markov

Random Field.

2.2 Image Segmentation

Image segmentation is the process of dividing an image into non-overlapping,

connected image areas called, regions, on the basis of criteria governing similarity

and homogeneity. Similarly, color image segmentation describes the process of

extracting from the image domain one or more connected regions satisfying

uniformity. Linda Shapiro of Washington University defined a good image

segmentation as "having regions ofan image that are uniform and homogeneous with

respect to some characteristic such as gray tone or texture. Region interiors should be

simple and without many small holes. Adjacent regions of segmentation should have

significantly different values with respect to the characteristic on which they are

uniform. Boundaries of each segment should be simple, not ragged, and must be

spatially accurate.

There are many segmentation methods. One of them is Amplitude

Segmentation which is based on the fact that some images can be categorized based

10

on their luminance. Many images can be characterized as containing some object of

interest of reasonably uniform brightness placed against a background of differing

brightness. Typical examples include handwritten images in black over white

background. It is a trivial task to set a mid-gray thresholdto segment the object from

the background. However, practical problems occur when the image is subject to

noise and when both the object and background are in some broad range of gray

scales and when the background is not uniform. Understanding that sketches on an

handwritten image may come in different color, the author proposes color-based

segmentation.

2.3 Color Segmentation

Color-based segmentationmethods merge pixels and regions together based on their

color similarity. Adjacent pixels Pj and Pj are merged into the same region if the

color distance Dy between the pixels is smaller than the pixel grouping threshold

D(Tp). The parameter Tpis a percentage of the number of pixels within the

neighborhood of Pf and Pj. D(Tp) is a color distance, such that Tp is the amount of

adjacent pairs of pixels in the neighborhood having color distances smaller than or

equal to D(Tp). Empirical studies by (Libo Fu, 2005) shows that D(Tp) of 80%

consistently produces good initial segmentation. The color distance is defined by the

Euclidean distance between two pixels, Pt and Pj, as

Dij = Mr-Jr)2* (iG-JG)2+ Hb-Jb)2]

These regions are then joined into bigger cluster where they are likely to

belong to the same object if theirDtj of thetwo regions are smaller or equal to D(Tp)

and the two regions are geographically close. Later, bigger clusters are formed by

joining clusters which have Dtj similar or equal to D(Tp). Foreachmerging of pixels

intobigger clusters, the D(Tp) are relaxed, that is setting it to a higher value, to allow

more pixels to be grouped together.

The author of (Swee-Seong Wong, 2000), proposed non-color-based

grouping to further improve the initial color segmentation described below:

11

1. Hole Filtering

Removal of small regions that are insignificant compared to its neighboring

regions. A region Rt is insignificant if its area St is smaller than or equal to
i

14(i4j)* where At is the total size of its neighboring regions. A hole is

removed by absorbing it into the adjacent region that shares the longest

boundary.

2. Compact Grouping

Combining adjacent clusters to form more compact clusters. The

compactness Mt of cluster Ct is defined as the ratio of the square of the

cluster's perimeter and its area. The smaller Mt is the more compact Q will

be.

2.4 Image Inpainting

According to (Criminisi, 2003), inpainting is the process of reconstructing lost or

deteriorated parts of images and videos. This technique can be used in falsifying

digital image or video data. For example, person A removed a region in image X

where Person B, someone person A hated so much, which is standing next to person

C, person A's best friend. Person A then used inpainting technique to reconstruct

image X as ifperson B is not in it in the first place. In the case ofa valuable painting,

this task would be carried out by a skilled image restoration artist. In the digital

world, inpainting refers to the application of sophisticated algorithms to recover lost

or corrupted parts of image or video data.

Mathematically, given U which denote a complete image domain and a

subset /? of Q, which is a result of certain factors such as object occlusion or packet

loss in data transmission, the goal of image inpainting is to recover the original ideal

image co on the entire domain Q, based on thepartial observation, n0 \a\p.

The authors of (Criminisi, 2003) categorized image inpainting into three

general ways of solving them:

1. Statistical-based Method

Extraction of input image statistics via compact parametric statistical models,

and to synthesize a new texture, an output image with purely noise will be

iteratively pertubated until its statistics match the estimated statistics of the

12

input texture. This method is only applicable to texture synthesis, not to

image inpainting in general.

2. Partial Differential Equation (PDE)-based Method

Introduced by (Bertalmio, 2001), this method smoothly propagates

information from the boundary of source region towards the interior of the

target region (empty region), simulated by solving PDE which is typically

non-linear and of higher-order. It replicates the way professionals restore

valuable drawings. This method is only suitable for empty holes which are

small, thin, and elongated. Bigger regions to be inpainted resulted in over-

smoothing and blurring artifacts.

3. Exemplar-based Method

This method, of which is the most successful among the aforementioned

methods, fills unknown region by copying content from the observed part of

the image. It implements Markov Random Field as described in (Alexie A.

Efros, 1999).

2.4.1 Exemplar-based Image Inpainting

Exemplar-based Image Inpainting is based on (Criminisi, 2003). The method

the author chose to implement for this dissertation is described in the

aforementioned paper. The core of their algorithm is an isophote-driven

(linear structures) image sampling processes.

13

Figure 2: Structure propagation by exemplar-based texture synthe
sis, (a) Original image, with the Target region O, its contour Sil and the
source region * clearly marked, fb) We want to synthesize the area delinv
ited by the patch 4>p centred on the point p £ 6tl. ic) The most likely
candidate matches for $p liealong the boundary between thetwo textures
in the source region, c.g.9 *q/ and ^q«. (d) The best matching patch in
the candidates set lias been copied into the position occupied by * p? thus
achieving partial fi Iling ofQ. The target region Qhas, now, shrank and its
fronthas assumed a different shape. Seetext for details.

Figure 2Structure propagation by exemplar-based texture synthesis. (An excerpt
from (Criminisi, 2003)).

• Extract the manually selected initial fronton11.
• Repeatuntil done:

la. Identify the fill front ffi1. Iffi' = Si exit.

lb. Compute priorities P(p) V'p £ rffi'.
la. Find the patch #j> with tlte maximum priority,

U.t ^p fp = nrg nmxp€ffi(P(p)
2b. Find the exemplar 4"^ e *fhatminimlae*ii(*^,*^).

2c, Copy image data from *,q to $p.

3, Update C-(p) Vp |p e ^n.Q

Figure 3Algorithmfor regionfilling. (An excerptfrom (Criminisi, 2003)).

14

CHAPTER 3

METHODOLOGY

3.1 Software Prototyping

Before developing a system, a developer should have a methodology to structure,

plan, and to control the process of developing an information system. One type of

methodology may be perfect for a particular projects, while for others, may be a

disaster. Among the numerous types of methodologies available, the author chooses

software prototyping methodology. The main goal of using softwareprototyping is to

build a very robust prototype in a structured manner and constantly refine it.

According to (Software Prototyping, 2009), software prototyping is an

activity in software development for the creation of prototypes that represents the

incomplete, partially functional software program being developed. A prototype

typically simulates only a few aspects of the features of the eventual program, and

may be completely different from the eventual implementation.

The conventional purpose of a prototype is to allow users of the software to

evaluate developer's proposals for the design of the eventual product by actually

trying them out, rather than having to interpret and evaluate the design based on

descriptions. The benefits of software prototyping are as follows:

1. The software developer can obtain feedback from the users early in the

project development, thus allowing the client and developer to compare if the

software made matches the software specifications.

2. It allows the software developer to get some insight into the accuracy of the

initial project estimates and whether the deadlines and milestones proposed

can be successfully met.

15

Planning

HMMMMI Analysis

flHBflMHI Design

•••••implementation

FROTOTVPE BUILDING

System Prototype

r*V
Implementation

•
System

Prototyping Methodolog !»

Figure 4 27*e software prototypingmethodology

3.2 Equipment and Tools

The author makes use of the following tools for developing the system:

1. Matrix Laboratory (MATLAB)

a. Version 7.7 (R2008b)

b. Usage: as the backbone for the software implementation.

c. MATLAB is a numerical programming environment, which allows
high-performance matrix computation, data analysis and plotting, user
interface development, interfacing with other programming languages
and easy expansion with collection of MATLAB codes for specific
purpose programming called Toolboxes. For the purpose of this
project, the author used Image Processing toolbox.

2. Minimalist GNU for Windows (MingW) C++ Compiler
a. Version 3.4.5

b. Usage: to compile C++ code portion to search for best texture
exemplars

3. IAM-Online Handwritten Text Database

a. Usage: for measuring the accuracy of document reconstruction
containing handwritten text

b. Developed by the computer vision researchers at the University of

Bern, this database contains form ofhandwritten English text acquired

on a whiteboard.

4. Hewlett-Packard (HP) Deskjet All-in-One

a. Model F4280

b. Usage: for digitizing the handwritten document

16

3.3 Proposed Graphical User Interface (GUI) for the prototype

-•'•-' iReconst ruction of Digital Document Images from Scribbled Sketches - Mohd Ridhwan Abu H «. W

ronfir'uralipii

Giilmajc |] Image Fid name Lnnrrl j Starr i

OulpJr

1 1 F

1 w OB

; 0-6 08

07 07

06 0.6

0.5 0.5

1 04
1

0.4

' 03 0:3

02 D.2

01 01

"q 02 0.4 06 "o 02 04 0JS 03 1

Figure 5 Layoutoftheproposedprototype GUI thatwill be implemented in MATLAB.

Button GET IMAGE will procure the digitized input image from local storage. User

will perform manual identification of defective regions by single clicking on a

sample pixel ofdefective regions on the left panel before clicking the button START,

upon which the reconstruction process will begin. Button CANCEL will stop

ongoing reconstruction process. A context menu, available with right-clicking on the

right panel will allow the user to export the reconstructed output image into variety

of image formats or to the printer.

3.4 Project Planning

The author divided the planning for this project into two (2) phases.

1. The first part involves extensive research on image inpainting and defects

detection. The author makes use of available online library such as

IEEExplore, ACM Digital Library and indexing website such as Google

Scholar. The author also utilizes the available time to learn programming

using MATLAB. Throughout this phase, the author produces various

documentations representing his progress with this project.

2. The second part involves software program development. The author codes

the program mostly in MATLAB and some in C++. The GUI for the software

program is developed in MATLAB as well.

17

For references to project activities, key milestones and period allocated for each

tasks, refer to the appendix.

18

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Project Feasibility

Based on the feedback from 50 correspondents who gave their view on whether this

project will greatly solve their problem, should they encounter a particular situation

where, given a piece of paper (document) with handwriting overlaid by sketches

which render the document to be difficult to read, will the digitized piece of paper

(digital document images) help them solve thispredicament?

Feasibility of Document Reconstruction
Program

sYes

• No

:•: Somewhat

4.2 Project Deliverables

The software program is completed with some minor features exclusion from the

proposed GUI:

1. The context menu for reconstructed output image is not implemented.

However, the reconstructed output image will be stored in the same folder

where the input image with defects resides, with the standard format that is

PNG.

2. The CANCEL button to stop the ongoing reconstruction process will not be

implemented. However, in future where the input image will bebigger in size

and resolution, or it will be in video format, which will render the

19

reconstruction process to be marginally longer, then only the CANCEL

button will be implemented.

a-to>K* LFbtetab-

O.S

0.8

fl.7

0.3

0.5

8.4

a.3

02 -

0.1 -

Cancel j j Start

-1 i I 1 !_

a a.i a.2 0.3 o.« 0.5 o.e o.? 0.9 1

Figure 6 The software program GUIshown with the input imagewith defectson the
leftpanel. This software program can be distributed into variousplatformswithout

having to have MATLAB installed.

The software program can also be executed through command line with the

following output upon successful reconstruction.

20

Baa &fk\% ^fois € *e;;a m
image

• 46*. -#i*-l-i -*.. !-;_£,

:.'„.,.,,^ ^-....-; -/<- -fU. --

, >^-^-i< ""T? / •F'fi^- .-'*'-".1""<

^7,., ../ ,^,^,.

: A". .j&?.... ,;_ wci.

350

400

450

300

350

400

450

FiR region

,'££.. ^ = w= .._ c'

:W -• "'• <• F.-- /e.

•/*:'.. ^

:/ ^: V'VfVr - - .(_. .-i"-.t

120,140 150180 200 220240/ 100 160 200

Inpamted image

300 A£* ~A*--t.*. .:./-:"

350
^a,^ .^^ .£_. ^.r_,

400
„*£*r, --*/£-_•/•;,•:

4j'-< •* ^/" /[..•x^i.-.i.
450

100 150 200

Figure 7 The output ofthe reconstruction programfrom command line in MATLAB
environment. This canonly be achieved with MATLAB installed on the platform.

4.3 Measurement of Performance and Accuracy

The authors performed analysis of the accuracy and performance of the software

program as described below:

1. Measurement of Performance

At the end stage of software development, the author noticed that for images

with higher resolution and dimension, the time taken to complete the

reconstruction process will be longer. The analysis done is described in the

following table.

21

Test Sample Image I.D. Time taken (seconds)

Sample A

Dimension: 480x540px
Resolution: 72 dpi
Bit Depth: 24

AOl-OOl.tiff 1.3

A01-002.tiff 1.5

A01-003.tiff 2.2

A01-004.tiff 1.1

A01-005.tiff 1.5

Sample B

Dimension: 560x800 px
Resolution: 80 dpi
Bit Depth: 24

BOl-OOl.tiff 3.5

B01-002.tiff 4.0

B01-003.tiff 4.1

B01-004.tiff 3.8

B01-005.tiff 4.1

Sample C

Dimension: 850x900 px
Resolution: 100 dpi
Bit Depth: 24

COl-OOl.tiff 4.5

C01-002.tiff 4.8

C01-003.tiff 4.7

C01-004.tiff 4.8

C01-005.tiff 4.8

Sample D

Dimension: 768x1024 px
Resolution: 120 dpi
Bit Depth: 24

DOl-OOl.tiff 5.9

D01-002.tiff 6.0

D01-003.tiff 6.5

D01-004.tiff 4.3

D01-005.tifT 4.8

Sample E

Dimension: 1200x1560 px
Resolution: 150 dpi
Bit Depth: 24

EOl-OOl.tiff 10.3

EOl-OOl.tiff 9.5

EOl-OOl.tiff 8.5

EOl-OOl.tiff 9.8

EOl-OOl.tiff 8.8

Table 1 Resultfrom analysis ofreconstruction performance over various test
samples

2. Measurement of Accuracy

Theauthor compares between the original transcript of handwritten document

with the transcript of reconstructed document. For a sample of 10 document

images, the average accuracy fluctuates between 70% to 80%.

22

Sentence Database A01-026

MR. IAIN MACLEOD,t1n> CiAtmM SnwiwUwy, '>«»>«<*'« ,1m> Caa«oHi U»iui^it tbnt
lliEit- Lav*: been secriii uegatiftluiiift wi Mw*li*rn IUkmI^w'* Imiw*!. Tl«:Kurtbcdrtt
fi-taxtatfa c««tft-m»w [» UhuIm* ti*» been boycotted by lb* two hum settlers' parties
- tbn Ua»M*d Jtodcwil Party mi t'hn Dominion Party- Bim nrpriiwMliiriw* «f Sir R*y
Wdeiutty, Prime Mtoi.tertrftheCentral Afriwu IWenrtwhwnwt *"Ch«i»»«i nt tbn
wwk-fr»t(fw lilik* »'»*4i Mr. Muctiwllwi-

Figure 8 The sample test image with defects

MR. IAIN MACLEOD, the Colonial Secretary, denied

in the Commons last night that there have been

secret negotiations on Northern Rhodesia's future

The Northern Rhodesia conference in London has

been boycotted by the two main settlers' parties •

23

the United Federal Party and the Dominion Party.

But representatives of £ir Roy Welensky, Prime

Minister of the Central African Federation, went

to Chequers at the week-•end for talks with

Mr. Macmillan.

Table 2 Thetranscriptofthe sample test image

The accuracy is determined by comparing letters-by-letters of the input image with

defects with the reconstructed image.

Original image

~«».m-Mt*.**ii-iM m.. wWHiwKwi-/*"*

Xbw J&jfrAlA <£%* oA*.fit?:JfitnGr.ie-'-JV

tAjfi *p VutXrufr.*!". sftStik &'•{& Jf*». #"<&*•/*

fM~*Aytii i.:-* / &.*&»,,Jf,..,ssvtyA •'.,.</.,
• V.r...Jl&'M-.<>-**'«*. *

1 i i I :&g*..i

Fill region

•. »» fat&/*/£«'.•Ky*

"" ~- 'e*fgmi

, *"*!
'— j'«((*»«

Atf ./tW/1

250 w*#4.
jlilil.jC.rif)-

300 tfifi**^

Inpainted iwage

JK^tS. •&/£<&«. Iff. «7*»A/*H-j«'i*^/ii*«^
fal.j£*:fjfi*tt/~^tf?&. -. lu,. Ml/*/'* If'. 'K*f*.

««/.ia.ft-?_y,/. -S-tA^*AnV<*-**>**£

afrt-AnfUn^v/fi't/ir.Jill&t.^-. y«'.*;=JT"-
fAjfi iiyi nw-ywi-u*: /»iiK t&ufff. jS*-1*! **•<=»*«»

fjf~,jr/n tf*f*t-je*s<«i -'..-// "«^ /J -'..-of.

i i . i rifraBi-..!

50

100

ISO

200

250

300

350

400

450

100 200 300

Original Image

400

50

100

150

200 .

350

400

450

100

••fa..

200 300

Fill region

400

50

100

150

200

250

300

350

400

450

100 200 300 400

Inpainted image
160 "C W*s$tfC£S &Z7,

'J
180

LA.*

200 220 240 260 130 200 220 240 260 200 220 240 260

Figure 9 The comparison between original image and reconstructed image to
determine thepercentage ofaccuracy

4.4 Software Testing

Software testing is an empirical investigation conducted to provide stakeholders

(users and developers) with the information about the quality of the product under

test, with respect to the context in which it is intended to operate. It also provides an

objective, independent view of the software to allow the business to appreciate and

understand the risks at implementation of the software. The author conduct two (2)

types of testing as described below:

24

1. Black box testing

Treats the software as a "black box", that is, without any knowledge of the

internal implementation. Black box testing has the advantage of an

unaffiliated opinion of the software program. The author provides

specification-based test cases for the users to follow through and provide

their feedback. Ten (10) external users participated in the software testmg

procedures with 100% PASSED result. Refer to TABLE 3 for the test case

used.

No. Test case Test Pre Expected Result

name procedure condition result

1 Input_OK Input image Digitized Input image PASSED

with defects digital with defects

through GUI document

image is
available

will be

displayed on
the left panel

2 ImageDefects The user Digitized Prompt an error PASSED

clicks the digital message.

START document Reconstruction

button image has process does
without first been not start,

identifying successfully pending user
the defective loaded identification of

regions defective

regions
3 StartOK The user The defective The GUI will PASSED

clicks regions have display a
START been "busy" text at
button after identified the bottom

identifying manually by panel. The
the defective the user using reconstruction

regions left-mouse

button

process will
begin.

4 ReconOK The user The The output PASSED

waits for reconstruction result will

reconstruction process display desired
process to started result with most

finish. Clicks successfully ifnotallofthe

on the prompt defects

message box removed and

when it reconstructed

appears accurately
making the
handwriting
readable

Table 3 Test Casefor Black Box testing

25

2. White box testing

White box testing is a test procedure where the tester has access to the

internal data structures and algorithms including the code that implement

these. It can also be used to evaluate the completeness of the test suite that

was created with black box testing methods. The authors conducted two (2)

types of white box testing described below, which both yielded PASS result:

a. Application Programming Interface (API) testing

Tested the program for its robustness, in terms of, its function

interfacing with C++

b. Fault Injection

Tested the program for its capability ofhandling faults to the test code

paths. Here, the author introduced an invalid input image and evaluate

how it handled this exception error.

26

CHAPTERS

CONCLUSIONS

The final outcome ofthe project is able to adhere to the objectives which are:

1. Provide a semi-automatic identification ofdefective regions in digital images

2. Fill empty holes of the removed regions by synthesizing neighboring regions

The software program is able to accomplish all the required specifications and is

robust after rigorous testing and further enhancement post-testing.

Although the exemplar-based inpainting yielded promising results with

reasonably good accuracy and performance, implementation on digital images with

handwriting exhibits some artifacts, which has been discussed in the previous section.

The same problem also occurs in the implementation by the authors of (Criminisi,

2003) and (Bertalmio, 2001). This area of research which receive good research

interest in the computer vision, image processing and machine learning research

community over trie past years, have a long way to go for the reconstruction to be

perfect.

The author proposes the following for future works:

1. Extend the functions and capabilities of the program to include other image

and video processing task. This will allow the software program to be

commercializable, as what the premier Adobe© Photoshop proved so far.

2. Create a plug-in for Adobe© Photoshop or GNU Image Processing (GIMP)

to extend their capability in image processing.

3. Implement a fully automatic defects detection using machine learning tools

such as graphical models, support vector machine and others.

27

BIBLIOGRAPHY

Alexie A. Efros, T. K. (1999). Texture Synthesis byNon-Parametric Sampling.
International Conference on Computer Vision. Greece: IEEE.

Bertalmio, M. (2001). Image Inpainting. Graphics andInteractive Techniques
(SIGGRAPH) (pp. 417-424). Los Angeles: ACM.

Constructive Research - Wikipedia, thefree encyclopedia, (n.d.). Retrieved April 25,
2009, from Wikipedia, the free encyclopedia:
http://en.wikipedia.org/wiki/ConstructiveResearch

Criminisi, A. (2003). ObjectRemoval by Exemplar-Based Inpainting. Computer
Vision andPattern Recognition (CVPR) (pp. 721-728). Madison: IEEE.

Inpainting - Wikipedia, thefree encyclopedia. (2009). Retrieved May 2,2009, from
Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/Inpainting

JulindaGllavata, B. F. (2005). Adaptive FuzzyText Segmentation in Images with
Complex BackgroundUsing Color and Texture. Computer Analysis ofImages and
Patterns. Versailles.

Jyotirmoy Banarjee, A. M. (2009). Contextual Restoration of SeverelyDegraded
Document Images. International Conference on Computer Vision and Pattern
Recognition. Miami: IEEE.

Libo Fu, W. F. (2005). A Robust Text SegmentationApproach in Complex
Background Based on Multiple Constraints. Pacific-Rim Conference on Multimedia.
Korea: IEEE.

Pratt, W. K. (2007). Digital ImageProcessing (4th Edition ed.). Wiley-Interscience.

Shen, J. (2003). Inpainting and the Fundamental Problem of Image Processing. SIAM
News, 36(5).

Software developmentprocess - Wikipedia, thefree encyclopedia. (n.d.). Retrieved
April 24, 2009, from Wikipedia, the free encyclopedia:
http://en.wikipedia.org/wiki/Software development process

Software Prototyping. (2009, August 11). Retrieved August 11, 2009, from
Wikipedia, the Free Encyclopedia:
http://en.wikipedia.org/wiki/Software_prototyping

Swee-Seong Wong, W. K. (2000). Color Segmentation and Figure-Ground
Segregation of Natural Images. International Conference onImage Processing.

Ye Q, G. W. (2003). A Robust Text Detection Algorithms in Images and Video
Frames. Pacific-Rim Conference on Multimedia. Singapore: IEEE.

28

APPENDIX A

MATLAB CODE #1: RECONSTRUCTION FUNCTION

1 Function [inpaintedlmg,origlmg,filllmg,C,D,fillMovie] =
2 inpaint7(imgFilename,fillFilename,fillColor)
3

4 warning off MATLAB:divideByZero
5

6 [img,filllmg,fillRegion] =
7 loadimgs(imgFilename,fillFilename,fillColor);
8

9 img = double(img);
10 origlmg = img;
11 ind = img2ind{img);
12 sz = [size{img,1) size(img,2)];
13 sourceRegion = ~fillRegion;
14

15 % Initialize isophote values
16 [Ix{:,:,3) Iy(:,:,3)] = gradient(img{:,:,3)
17 [Ix{:,:,2) Iy(:,:,2)] = gradient(img{:,:,2)
18 [Ix(:,:,1) ly(:,:,1)] = gradient(img{:,:,1)
19 Ix = sum(Ix,3)/(3*255); ly = sumfly,3)/(3*255);
20 temp = Ix; Ix = -ly; ly = temp; % Rotate gradient 90 degrees
21

22 % Initialize confidence and data terms

23 C = double(sourceRegion);
24 D = repmat(-.1,sz);
25 iter = 1;

26 % Visualization stuff

27 if nargout==6
28 fillMovie(1).cdata=uint8(img);
29 fillMovie(1).colormap=[];
30 origlmg(1,1,:) = fillColor;
31 iter = 2;

32 end

33

34 rand(•state',0);
35

36 %Loop until entire fill region has been covered
37 while any(fillRegion(;))
38 % Find contour & normalized gradients of fill region
39 fillRegionD = double(fillRegion);
40 dR = find(conv2(fillRegionD, [1,1,1;1,-8,1;1,1,1], 'same')>0),
41

42 [Nx,Ny] = gradient(double(-fillRegion));
43 N= [Nx(dR(:)J Ny(dR(:))];
44 N = normr(N);
45 N(~isfinite(N))=0; % handle NaN and Inf
46

47 % Compute confidences along the fill front
48 for k=dR'

49 Hp = getpatch(sz,k);
50 q = Hp(-(fillRegion(Hp)));
51 C(k) = sum(C(q))/numel(Hp);
52 end

53

54 % Compute patch priorities = confidence term * data term

29

55 D(dR) = abs(Ix(dR).*N(:,1)+Iy(dR).*N(:,2)) +0.001;
56 priorities = C(dR).* D(dR);
57

58 %Find patch with maximum priority, Hp
59 [unused,ndx] = max(priorities (:));
60 p = dR(ndx(l));
61 [Hp,rows, cols] = getpatch(s2,p);
62 toFill - fillRegion(Hp);
63

64 % Find exemplar that minimizes error, Hq
65 Hq ~ bestexemplar(img,img(rows,cols,:),toFill',sourceRegion);
66

67 % Update fill region
68 toFill = logical(toFill);
69 fillRegion(Hp(toFill)) = false;
70

71 % Propagate confidence & isophote values
72 C(Hp(toFill)) = C(p);
73 Ix(Hp(toFill)) = Ix(Hq{toFill));
74 Iy(Hp(toFill)) = ly(Hq(toFill));
75

76 % Copy image data from Hq to Hp
11 ind(Hp(toFill)) = ind(Hq(toFill));
78 img(rows,cols,:) = ind2img(ind{rows,cols),origlmg);
79

80 % Visualization stuff

81 if nargout==6
82 ind2 = ind;
83 ind2(logical(fillRegion)) = 1;
84 fillMovie(iter).cdata=uint8(ind2img(ind2,origlmg));
85 fillMovie(iter).colormap=[];
86 end

87 iter = iter+1;

88 end

89

90 inpaintedlmg=img;
91

92 function Hq = bestexemplar(img,Ip,toFill,sourceRegion)
93 m=size(Ip,1); mm=size(img,1); n=size(Ip,2); nn=size(img,2);
94 best = bestexemplarhelper(mm,nn,m,n,img,Ip,toFill,sourceRegion);
95 Hq = sub2ndx(best(l) :best (2) ,(best(3) -.best (4))•,mm);
96

97 function [Hp,rows,cols] = getpatch(sz,p)
98 % [x,y] = ind2sub(sz,p); % 2*w+l == the patch size
99 w=4; p=p-l; y=floor(p/sz{l))+l; p=rem(p,sz(1)); x=floor(p)+1;
100 rows = max(x-w,1):min(x+w,sz(1));
101 cols = (max(y-w,1):min(y+w,sz(2)))';
102 Hp = sub2ndx(rows,cols,sz(1));
103

104 function N = sub2ndx(rows,cols,nTotalRows)

105 X = rows(ones(length(cols),1),:);
106 Y = cols(:,ones(1,length(rows)));

107 N - X+(Y-l)*nTotalRows;

108

109 function irag2 = ind2img(ind,img)
110 for i=3:-l:l, temp=img(:,:,i); img2{:,:,i)=temp(ind); end;
111

112 function ind = img2ind(img)
113 s=size(img); ind=reshape{1:s(1)*s(2),s{l),s(2));
114

30

115 function [img,filllmg,fillRegion] ~
116 loadimgs{imgFilename,fillFilename,fillColor)
117 img = imread(imgFilename); filllmg = imread(fillFilename);
118 fillRegion = filllmg(:,:,l)==fillColor(1) & ...
119 filllmg(:,:,2)==fillColor(2) & filllmg(:,:,3)==fillColor(3);

31

APPENDIX B

MATLAB CODE #2: GUI

1 function varargout = gui(varargin)
2 * UNTITLEDl M-file for untitledl.fig
3 % UNTITLEDl, by itself, creates a new UNTITLEDl or raises the
4 existing singleton*.
5 % H - UNTITLEDl returns the handle to a new UNTITLEDl or the handle

6 to the existing singleton*,
7 % UNTITLEDl('CALLBACK',hObject,eventData,handles,...) calls the
8 local

9 % function named CALLBACK in UNTITLEDl.M with the given input
10 arguments.
11 * UNTITLEDl('Property','Value',.. .) creates a new UNTITLEDl or
12 raises the

13 % existing singleton*. Starting from the left, property value pairs
14 are

15 % applied to the GUI before untitledl__CpeningFcn gets called. An
16 % unrecognized property name or invalid value makes property
17 application
18 % stop. All inputs are passed to untitledl^OpeningFcn via varargin.
19 % *See GUI Options on GUIDE'S Tools menu. Choose "GUI allows only
20 one

21 * instance to run (singleton)".
22 %
23 * See also: GUIDE, GUIDATA, GUIHANDLES
24 % Edit the above text to modify the response to help untitledl
25 %Last Modified by GUIDE v2.5 13-Sep-2009 11:54:34
26 % Begin initialization code - DO NOT EDIT
27 gui_Singleton = 1;
28 gui_State = struct ('guiJName', mfilename, ...
29 'gui_Singleton', gui_Singleton, ...
30 'guijDpeningFcn', @gui_OpeningFcn, ...
31 'gui_OutputFcn', @gui_OutputFcn, ...
32 'gui_LayoutFcn', [] , ...
33 'gui_Callback', []);
34 if nargin && ischar(varargin{l})
35 guiJ5tate.gui_Callback = str2func(varargin{l});
36 end

37

38 if nargout
39 [varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
40 else

41 gui_mainfcn(gui__State, varargin{:});
42 end

43 % End initialization code - DO NOT EDIT

44 % Executes just before untitledl is made visible.
45

46 function gui_OpeningFcn(hObject, eventdata, handles, varargin)
47 % This function has no output args, see OutputFcn.
48 % hObject handle to figure
49 % eventdata reserved - to be defined in a future version of MATLAB
50 % handles structure with handles and user data (see GUIDATA)
51 % varargin command line arguments to untitledl (see VARARGIN)
52 % Choose default command line output for untitledl
53 handles.output = hObject;
54

55 % Update handles structure

32

56 guidata(hObject, handles);
57

58 * UIWAIT makes untitledl wait for user response (see UIRESUME)
59 %uiwait(handles.figurel) ;
60

61

62 % Outputs .from this function are returned to the command line.
63 function varargout = gui_OutputFcn (hObject, eventdata, handles)
64 % varargout cell array for returning output args (see VARARGOUT);
65 %hObject handle to figure
66 % eventdata reserved - to be defined in a future version of MATLAB
67 % handles structure with handles and user data (see GUIDATA)
68

69 % Get default command line output from handles structure
70 varargout{1} = handles.output;
71

72

73 % Executes on button press in axesl_pushbutton.
1A- function axesl_pushbutton_Callback(hObject, eventdata, handles)
75 %hObject handle to axesl_pushbutton (see GCBO)
76 % eventdata reserved - to be defined in a future version of MATLAB
11 % handles structure with handles and user data (see GUIDATA)
78 % gets input file(s) from user
79 [filename,pathname] = uigetfile(...
80 {'BMP (*.bmp)\ 'PNG (*.png)'; ...
81 **.*', 'All Files (*.*)'}, ...
82 'Select files', ...
83 'MultiSelect', 'on'); % select the input image to be
84 inpainted in axisl
85

86 if -ischar(filename)
87 errordlg('Error!','No file selected');
88 return

89 end

90

91 fullpathname = [pathname, '\' , filename];
92

93 I = imread{fullpathname);
94 set(handles.textl, 'String', fullpathname);
95 axes(handles.axesl);
96 imshow(I) ;
97

98 guidata(hObject, handles);
99

100 % Executes on button press in axes2_pushbutton.
101 function axes2_pushbutton_Callback(hObject, eventdata, handles)
102 %hObject handle to axes2^pushbutton (see GCBO)
103 % eventdata reserved - to he defined in a future version of MATLAB
104 % handles structure with handles and user data (see GUIDATA)
105

106 [il,i2,i3,c,d,mov] = inpaint7('aOl-007.tif','aOl-007.png',[0 255
107 0]);

108 axes(handles.axes2);
109 imshow(il);
110

111 guidata(hObject, handles);
112

113 function editl_Callback(hObject, eventdata, handles)
114 %hObject handle to editl (see GCBO)
115 % eventdata reserved - to be defined in a future version of MATLAB
116 %handles structure with handles and user data (see GUIDATA)

33

117

118 %Hints: get(hObject,'String') returns contents of editl as text
119 * str2double(get(hObject,'String')) returns contents of editl
120 as a double
121

122

123 % Executes during object creation, after setting all properties.
124 function editl^CreateFcn (hObject, eventdata, handles)
125 * hObject handle to editl (see GCBO)
126 %eventdata reserved - to be defined in a future version of MATLAB
127 %handles empty ~ handles not created until after all CreateFcns
128 called
129

130 %Hint: edit controls usually have a white background on Windows.
131 % See ISPC and COMPUTER.
132 if ispc && isequal(get(hObject,'BackgroundColor'),
133 get(0,'defaultUicontrolBackgroundColor'))
134 set{hObject,'BackgroundColor','white');
135 end

136

137

138 % Executes on selection change in popupmenul.
139 function popupmenul_Callback(hObject, eventdata, handles)
140 * hObject handle to popupmenul (see GCBO)
141 * eventdata reserved - to be defined in a future version of MATLAB
142 %handles structure with handles and user data (see GUIDATA)
143

144 %Hints: contents = get(hObject,'String') returns popupmenul
145 contents as cell array
146 * contents{get(hObject,'Value')} returns selected item from
147 popupmenul
148

149

150 % Executes during object creation, after setting all properties.
151 function popupmenul_CreateFcn(hObject, eventdata, handles)
152 %hObject handle to popupmenul (see GCBO)
153 % eventdata reserved - to be defined in a future version of MATLAB
154 * handles empty - handles not created until after all CreateFcns
155 called

156

157 %Hint: popupmenu controls usually have a white background on
158 Windows.

159 % See ISPC and COMPUTER.
160 if ispc && isequal(get(hObject,'BackgroundColor'),
161 get(0, 'defaultUicontrolBackgroundColor'))
162 set{hObject,'BackgroundColor','white'};

34

l

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

APPENDIX C

C++ CODE #1: EXEMPLARS SEARCH

#include "mex.h"

#include <limits.h>

void bestexemplarhelper(

const int mm,

const int nn,

const int m,

const int n,

const double *img,

const double *Ip,
const mxLogical *toFill,

const mxLogical *sourceRegion,

double *best)

{
register int i,j,ii,jj,ii2,jj2,M, N,I,J,ndx, ndx2,mn=:m*n,mmnn=mm*nn;
double patchErr=0.0,err=0.0,bestErr=1000000000.0;

/* foreach patch */
N=nn-n+1; M=mm-m+l;

for (j=l; j<=N; ++j

J=j+n-l;

for (i=l; i<=M; ++i

I=i+m-l;

/*** Calculate patch error ***/
/* foreach pixel in the current patch
for (jj=j,jj2=l; jj<=J; ++jj,++jj2) {
for (ii=i,ii2=l; ii<=I; ++ii,++ii2) {

ndx=ii-l+mm*(jj-1) ;
if (!sourceRegion[ndx])

goto skipPatch;

ndx2=ii2-l+m*(jJ2-1);
if (!toFill[ndx2]) {

err=img[ndx]

err=img[ndx+=mmnn]

err=img[ndx+=mmnn]

}

}

) (

{

Ip[ndx2];

Ip[ndx2+=mn];

Ip[ndx2+=mn];

patchErr += err*err;
patchErr += err*err;

patchErr += err*err;

}

/*** Update ***/
if (patchErr < bestErr) {

bestErr = patchErr;

best [01 = i; best[1] = I;

best[2] = j; best [3] = J;

}

/*** Reset ***/

skipPatch:

patchErr = 0.0;

}

}

}

/* best = bestexemplarhelper (mm,nn ,m, n , img, Ip, toFill, sourceRegion) ;
*/

35

54 void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray
55 *prhs[])
56 {

57 int mm,nn,m,n;
58 double *img,*Ip,*best;
59 mxLogical *toFill,*sourceRegion;
60

61 /* Extract the inputs */
62 mm = {int)mxGetScalar{prhs[0]
63 nn = (int)mxGetScalar(prhs[1]
64 m - (int)mxGetScalar(prhs[2]
65 n = (int)mxGetScalar(prhs[3]
66 img = mxGetPr(prhs[4]);
67 Ip = mxGetPr(prhs[5]) ;
68 toFill = mxGetLogicals(prhs[6]);
69 sourceRegion = mxGetLogicals(prhs[7]);
70

71 /* Setup the output */
72 plhs[0] = mxCreateDoubleMatrix(4,l,mxREAL);
73 best = mxGetPr(plhs[0]);
74 best[0]=best[l]=best[2]=best[3]=0.0;
75

76 /* Do the actual work */
11 bestexemplarhelper(mm,nn,m,n,img,Ip,toFill,sourceRegion,best

36

APPENDIX

GANTT CHART

(Refer to nextpage)

37

P
A

R
T

O
N

E

ID
T

a
sk

N
a

m
e

Pr
ef

lm
in

a
ry

R
es

ea
rc

h

Su
bm

H
Pr

el
im

in
ar

y
R

ep
or

t

R
es

ea
rc

h
:o

h
d

e
fe

c
t

d
et

ec
ti

b
h

S
em

in
ar

i

Su
bm

it
Pr

og
re

ss
R

ep
or

t

S
e
m

in
a
r

2

C
on

st
ru

ct
M

A
TL

A
B

co
de

sf
or

de
fe

ct
de

te
ct

io
n

an
d

te
xt

ur
e

sy
n

th
es

is

'S
ub

m
it

In
te

rim
'R

ep
or

t

O
ra

l:
P

re
se

n
ta

ti
o

n

P
A

R
T

T
W

O

ID 8 9 1
0

T
a

sk
N

a
m

e

C
on

tin
ua

tio
n

w
ith

so
ft

w
ar

e
de

ve
lo

pm
en

t

Su
bm

it
Pr

og
re

ss
R

ep
or

t1

c
o

n
ti

n
u

a
ti

o
n

w
it

h
so

ft
w

a
re

de
ve

lo
pm

en
t

.-'.
,•,'',

-•',

Su
bm

it
P

ro
gr

es
s

R
ep

or
t2

S
er

ii
ih

ar
S

P
re

-E
D

X
a

nd
.P

o
st

er
E

xh
ib

it
io

n

Fi
ni

sh
so

ft
w

ar
e

de
ve

lo
pm

.e
ht

Si
ib

m
jt

Pi
ss

er
ta

tio
n

(s
of

t-b
ou

nd
)

;p
ra

l:P
re

se
n^

*i
qh

:•-;
•-•.

_•;-
.

Su
bm

it
U

ln
ai

tz
ed

D
is

se
rt

at
io

n
(h

ar
d?

bbu
hdy

.-'-,
:.-,•

:•"-
":'•

•/••
;•

-;
:

-,'
.y-

'[-
/.:

';•/•

S
ta

rt

1
/1

9
/2

0
0

9

2
/1

8
/2

0
0

9

2
/2

0
/2

0
0

9

2
/2

3
/2

0
Q

9

3
/1

1
/2

0
0

9

3
/1

6
/2

0
0

9

4
/1

3
/2

0
0

9

5
/2

2
/2

0
0

9

5
/2

7
/2

0
0

9

S
ta

r
t

6
/3

0
/2

0
0

9

7
/2

2
/2

0
0

9

7
/2

2
/2

0
0

9

9
/2

4
/2

0
0

9

9
/2

5
/2

0
0

9

10
/7

/2
00

9;

1
0

/1
2

/2
0

0
9

1
0

/1
2

/2
0

0
9

1
0

/2
8

/2
0

0
9

1
1

/1
6

/2
0

0
9

F
in

is
h

2
/2

0
/2

0
0

9

2
/1

8
/2

0
0

9

4
/1

3
/2

0
0

9

2
/2

7
/2

0
0

9

3
/1

1
/2

0
0

9

3
/2

0
/2

0
0

9

6
/2

2
/2

0
0

9

5/
22

/2
00

9

5
/2

7
/2

0
0

9

F
in

is
h

7
/2

2
/2

0
0

9

.7
/2

2
7

2
0

0
9

1
0

/7
/2

0
0

9

9
/2

4
/2

0
0

9

9
/2

5
/2

0
0

9

10
/7

/2
00

9

t
m

z
r

•V:
2

0
0

9
.-••

-

2
0

0
9

:
"T

U
72

BT
2

0
0

9
T

n
/i

e
/;

:
2

0
0

9
;

D
u

ra
ti

o
n

5
w

0
w

:

7
.4

w
:

tw O
w

1
w

1
0

;2
W

O
w

•
.2

w
,

D
u

ra
ti

o
n

3
^

O
w

1
1

,2
w

1
2

w

:0
W

:2
w

;

:2
w

O
w

..
2

W

:2
w

;

F
e
b

2
0

0
9

M
a

r
2

0
0

9
A

pr
2

0
0

9
M

ay
2

0
0

9
J

u
n

2
0

0
9

1
/2

5
2

/1
2

/8
2

/1
5

2
/2

2
3

/1
3

/8
3

/1
5

3
/2

2
3

/2
9

4
/5

4
/1

2
4

/1
9

W
6

5
ft

5
/1

0
5

/1
7

5
/2

4
5

/3
1

6
7

7
6

/1
4

6
/2

1

J
u

l
2

0
0

9
A

ug
2

0
0

9
S

ep
2

0
0

9
O

ct
2

0
0

9
N

o
v

2
0

0
9

7
/5

7
/1

2
7

/1
9

7
/2

6
8

/2
8

/1
6

8
/2

3
8

/3
0

9
/6

9
/1

3
9

/2
0

9
/2

7
1

0
/4

1
1

/1
1

1
/8

