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ABSTRACT

This final report explains about the extended research done on basic concept of the

selected topic, which is Study on Neural Network Predictive Controller: Impact of

Network's Architecture and Plant-model mismatch. The objective of the project is to

study the effect ofdifferent network's architecture by manipulating the transfer fiinction,

number ofneurons, weight and biases on NN-based Predictive Controller's performance.

And to study the impact of parameters used in CSTR on the performance of the based

model in Plant-Model Mismatch. In literature review section, NN-based Predictive

Controller will be further discussed. The successful outcomes of this project can be

applied in the industries inorderto help reducing the uncertainty or inaccuracy inprocess

control.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Model Predictive Controller, MPC technologies have been widely used in the

industries. MPC can be used in either linear or nonlinear system based on the limitation

of the controller. NMPC is normally used in highly and moderately nonlinear process. It

is also used when the process requires higher product quality specification, increasing

productivity demands and the process need to operate system closerto the boundary of

operating region. Thus, MPC with NN based is developed, which is NN Predictive

Controller and this model are used as a based model in this study. The performance of

this model will be monitored by manipulating the transfer function, number of neurons,

weight and biases. And the impact ofparameters used in CSTR will be studied so that it

can be controlled and optimized.

1.2 PROBLEM STATEMENT

Strong nonlinear dynamic behavior is becoming one of the major problems in

polymer industry and chemical process. The usage of Nonlinear Model Predictive

Controller (LMPC) is not widely used to enhance the performance.

1.3 SIGNIFICANT OF THE PROJECT

Upon completion of the research and simulation, the final simulation will

determine the best architecturefor NN PredictiveController. The implementation ofbest

architecture for NN Predictive Controller will optimize the model and reduce the non-

linearity ofthe process and optimize the product produced.



1.4 OBJECTIVES AND SCOPE OF STUDY

The objective of the project is to study the effect of different architecture on NN

Predictive Controller's performance. And to perform robustness analysis on developed

NN Predictive Controller for Plant-Model mismatch. The scope of study is to applied

different transfer functions and number ofneurons on NN Predictive Controller.



CHAPTER 2

LITERATURE REVIEW

2.1 MODEL PREDICTIVE CONTROLLER, MPC

In general, the purpose of MPC is to overcome the uncertainty/inaccuracy and

unmeasured disturbance that can cause the plant output to behave differently. Figure 1

shows the structure oftypical MPC system.

Take process measurements I

Process model =

Current & future _
• Control actions Futuce process
• Disturbances ^^^

Objectives

Consiliums

Solve above optimization problem
0

Best current and future control actions

5
Implement best current control action

Figure 1: The MPC scheme [1]

1

MPC is based on iterative, finite horizon optimization ofplant model. The current

measurement is taken as initial state for each sampling time, k and explicit model will



predict the firture behavior of the process (see Figure 2). At each control intervals,

(u(fy=(k+j\k)) the MPC algorithm determined the solution of optimization problem by
computing the sequence of optimal future manipulated variable adjustment per a fixed

number of control horizon, M. Beyond the control horizon (M+k-1% no action will be

taken since the manipulated variables is assumed to be constant. Even a lot control move

isoptimally calculated, only the first input intheoptimal sequence will be implemented.

At the next sampling, theentire sequence isrepeated again and the optimization problem
will be reformulated and solved using new measurement. And prediction horizon and

control horizon will move orrecede ahead by one step astime moves ahead by one step. [2]
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Control Horizon
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Figure 2: Principle of MPC.

2.2 NONLINEAR MODEL PREDICTIVE CONTROLLER, NMPC

The first steps taken for NMPC to estimate the system states from the output

measurement is by obtaining measurementsofthe system state. The measurement is then

compute and optimal signals by minimizing a given cost fimction over a certain

prediction horizon in the future using a model of the system. The first partof the optimal

input signal is implemented until new measurement is available.



There are three types ofmodel approaches for NMPC which are:

• Fundamental Model

• Black Box Model

• Discrete Time Model

The first approach is fundamental model which is important when it operates in

wide range but it is difficult and time consuming process. It has the advantages over the

black box model on extrapolation ability and probability to multiple facilities. The black

box model can be described as relatively easy and economically attractive alternative in

many situations. It can be developed directly from perturbed plant data. The most

appropriate model is discrete time model because plant data is available at discrete time

instant.

There is various type of controller model used in industry for nonlinear system.

The examples of model of controller used are Gaussian Process Model [3], Wiener-

Laguerre Model [4], Hammerstein and Wiener Model [5], Nonlinear State Space Model

[6], Partial Least Squares (PLS) models \7\ Neural Networks Model [8], Stochastic

Closed Loop Model [9], Neuro Fuzzy Hammerstein [10] and Radial Basis Function

Network (RBFN) [11]. And this report is focused on Neural Network based model.

2.3 LINEAR MODEL PREDICTIVE CONTROLLER, NMPC

LMPC approaches are used in the majority of application with feedback

mechanism of the MPC compensating for prediction errors due to structural mismatch

between the model and the plant. The successful application of NMPC can be seen in

petroleum refinery, petrochemical, chemical sectors, power plants, pulp and paper and

food processing industries and also automobile and aerospace areas.

The Finite Impulse Response (FIR) [12], Multiplex MPC (MMPC) [13] and

Dynamic Matrix Control (DMC) [14] are type of models used for linear system in the

industry.
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2.4 NEURAL NETWORK (NN)

NN are massively processor controllers which consist of nonlinear computer

algorithm that learn feedback and have the ability to learn patterns through training

experiences. Because of this feature, it is often well suited for modeling complex and

non-linear processes such as CSTR process [15]. NN works by training, validation and

testing the data to predict the output of the process. The training of a NN involves

estimating the unknown parameters; this procedure generally utilized normal operating

data which is often to be large data set, taken in the operating region where the model is

intended to be used [16]. To train a network, an input vector is applied to the network and

the output of the network is calculated and compared to the corresponding target vector

with the difference (error) being fed back through the network to change the weights so

that the error is minimized. After the parameters are trained, another large set ofdata can

be used to validate that the model is adequate.

The general arrangement of NN is in the form of layer. It is normally consist of

input layer, hidden layer and output layer. The number ofhidden layer is optimized to get

accurate prediction from NN. For this case study, the numbers ofhidden layers are fixed

at two layers to reduce complication.

2.4.1 NEURONS IN NEURAL NETWORKS

Neural networks are made up ofmany artificial neurons. The neuron continuously

receives signals from these inputs and then sum up the inputs at each layer. Neurons are

sometimes referred as nodes. A network can have several layers. Each layer has a weight

matrix W, a bias vector b, and an output vector a [17]. And each layer has its own number

of neurons. It is common for different layers to have different numbers of neurons. This

is one of the most critical parameter affecting the accuracy of prediction in neural

network. One can keep on reducing the training error by increasing number ofneurons.
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In this project, two layers of network are used and the number of neurons at the

first layer is varies from 2 to 10 neurons. The performance ofeach number ofneurons is

recorded. It is to be noted that often the increase and decrease in performance may not be

monotonic with the number ofhidden neurons [18].

Inputs Layer 1

r

Layer 2

">

/
a

fe
W

f
a2

b
V

*

•

•

*

*

/
a2

fc
V

J
Figure 3: General Architecture ofNeural Network

As illustrated inFigure 3, the outputs ofeach layer are the inputsofthe following

layer. The neuron has a bias b, which is summed with the weighted inputs to formthe net

input n. This sum, w, is the argument of the transfer function,/[17]. In orderto improve

the prediction, weightwill be adjusted accordingly. Therefore, weight can be positive or

negative.

2.4.2 ACTIVATION FUNCTION IN NEURAL NETWORKS

Activation function is also known as transfer fimction. It is one ofthe criterions to

characterize the neural network system. Transfer function is an algebraic expression for

dynamic relation betweenthe selected inputand output ofthe process model. It is defined

so as to be independent of the initial conditions andof the particular choice of forcing
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functions [16]. The equation of the activation fimction can be described as in equation (1)

[20].

a=f(wp + b)Q) ...(1)

The output of a neuron, a will depends on the product of weight, w and its input

value, p. The product of this two will be added with the bias, b in order to obtain the

overall input for the neurons. The overall input will be multiplied with the transfer

function,/which will determine the output ofa neuron.

Among the typical activation function used are:

i. Hyperbolic tangent sigmoid

Figure 4: Graph of tansig transfer function [17].

ii. Log-sigmoid

Figure 5: Graph of logsig transfer function [17].
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iii. Linear

Figure 6: Graph of purelin transfer function [17].

2.4.3 NEURAL NETWORK PREDICTIVE CONTROLLER

NN predictive controller uses NN model of nonlinear plant (CSTR) to predict

future plant performance. The controller then calculates the control input that will

optimize plant performance over a specified fiiture time horizon. The first step in model

predictive control is to determine the neural networkplant model(system identification).

Next, the plant model is used by the controller to predict fiiture performance. This

application is used in Simulink. The performance of plant is optimized using controller

by calculating the control input. This controller objective is to control the concentration

ofthe CSTR according to it set points.

The first stageofmodel predictive control is to train a neuralnetworkto represent

the fiiture of the plant. The prediction error between the plant output and the neural

networkoutput is used as the neural network training signal. The process is represented

by the following figure:

14
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Figure 7: System identification

The neural network plant model uses previous inputs and previous plant outputs

to predict fiiture values ofthe plant output.

Figure 8: General structure ofNN Back-Propagation.

Basically, NN predictive controller is added into CSTR model developed in

Simulink. The model used in NN model is state-space model where it simplifies the

complicated mathematical expression used in the process. The following block diagram

illustrates the model predictive control process. The controller consists of the neural

network plant model and the optimization block.
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CHAPTER 4

RESULT AND DISCUSSION

4.1 CSTR GENERAL MODEL

The CSTR model is developed to control the concentrations within the CSTR at

the desired level. CSTR process consists of a constant volume reactor. The diagram of

this process is shown in Figure 12.

wl / >Vo

C*i \ A Cb2

h

\
o<>

1 n0 ^

c*

Figure 10: Schematic diagramof a CSTR [17].

The objective of the CSTR is to control the product concentration by controlling

the flow of wj. To simplify the process, the flow rate w2 is kept constant at 0.1m /s. In

order to model the CSTR, it required a dynamic model. Thisdynamic model is:

dh(t)

dt
= wl(t) + w2(t)-0.2^1h(t)

dCb{f)

dt

-.(2)

(0 kfib(t)

Where h(t) is the liquid level, Cb(t) is the product concentration at the output of the
process, wi(t) is the flow rate of the diluted feed Cm and kl and k2 are the constant
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associated with rate of consumption. The level of the tank h(t) is not controlled for this

experiment [19]. The values used forthisexperiment are set as follow:

Table 1: Values used for CSTR modeling

Variable Value

Cm 24.9mol/L

Cb2 O.lmol/L

kl 1

k2 1

W2(t) O.lL/min

4.2 BASED MODEL

Based model is the model of CSTR with NN MPC which has been modified in

order to follow the project requirements.

The CSTR model simulation objective is to control the measured process

concentration by manipulating the flow rate ofconcentrated feed, Cm. This CSTR model

is developed using block diagram in MATLAB Simulink based on the CSTR dynamic

modelequation. The CSTR model is the typicalmodel used for simulation.

' Fte Edit View Simuls!i<m Format Tools Help

Di^ea

,Ready

-f\£} _| • ji2o jtomd _zl iJSesOH^r » © m

* "I
I ' PnMud

CenoMitmtien

Figure 11: CSTR model in MATLAB Simulink [19].
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Below is the figure of based model used in this project which consists ofCSTR

model and NN MPC. The project objective is to optimize thecontroller inorder to obtain

the best performance that can control the nonlinearity of CSTR. The based model

structure is shown in Figure 14.

JB pr'aslcsb"
file Edit View &mdatfon Format Tools Help

\ 0!g£HS|^^S!4^1H^^I • a J120 [tfa^ 31 m m © # a! ft
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Ransom R4f*tano*

01
Clock

Concarnation

Plant

{Continuous Stirrftd Tank Reactor)

[Mural HetivSAFradietive Control of a Corrtinous Stirred Tank Reaacr

;Ready _ _ ^ .__ _..__ !»>*„ I L -.-,

Figure 12:CSTR with NN Predictive Controller in Simulink [19].
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Figure 13: Based model structure [19].
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4.3 DIFFERENT NETWORK'S ARCHITECTURE

In order to achieve different architecture, the transfer junctions and number of

neurons is manipulated. At first, the transfer function is changed to obtain new weight

and biases before it is applied on NN-based Predictive Controller, and new data is

generated and trained. The performance of each transfer function is recorded. All the

results obtained are discussed below:

4.3.1 RESULT FOR DIFFERENT ACTIVATION FUNCTIONS

The activation functions used in this project are log-sigmoid (L), tangent-sigmoid

(T) and purelin (P). Since the networks consist of 2 layers, the activation fimction must

be arranged in pair. So, there are nine combination of activation fimction used in this

project. All performance of the nine combinations will be discussed below. On each

simulation, new data set will be generated and trained before it is applied into the

controller. From the result obtained, it can be concluded that, the NN-based Predictive

controller can only perform using combination of activation fimction of T and P (see

Figure 18).

i. Log-sigmoid and Log-sigmoid

23

XYPlot
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22.5 / i T—r^—
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Figure 14: Performance ofLL activation function.

21



ii. Log-sigmoid and Purelin
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Figure 15: Performance ofLP activation function.

iii. Log-sigmoid and Tan-sigmoid
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Figure 16: Performance of LT activation function.
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iv. Tan-sigmoid and Tan-sigmoid
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Figure 17: Performance ofTT activation function.

v. Tan-sigmoid and Purelin
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Figure 18: Performance of TP activation function.
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vi. Tan-sigmoid and Log-sigmoid

Figure 19: PerformanceofTL activation function.

vii. Purelin and Purelin
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Figure20: Performanceof PP activation function.
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viii. Purelin and Tan-sigmoid
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Figure 21: Performance ofPT activation function.

ix. Purelin and Log-sigmoid
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Figure 22: Performance of PL activation function.
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4.3.2 RESULT FOR DIFFERENT NUMBER OF NEURONS

For different architecture in number ofneurons, each activation fimction is tested

using 2, 4, 6, 8 and 10 neurons with fixed layer of2. The performance of this different

architecture did not show well due to some problem occurred within the based model

itself.

Below shows the best performance of best combination of activation function

which is tan-sigmoid and purelin for 2, 4,6, 8 and 10 neurons. Other results are shown in

Appendix 2. From the simulation, for combination of activation function Tan-sigmoid

and Purelin, it performs really well with 6 numbersofneurons. Result is shown in Figure

25.

i. 2 neurons
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Figure 23: Performance ofTP for 2 neurons.
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ii. 4 neurons
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Figure 24: Performance ofTP for 4neurons.

iii. 6 neurons
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Figure 25: Performance ofTP for 6neurons.
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iv. 8 neurons

v. 10 neurons
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Figure 26: Performance ofTP for 8neurons.

XYPIot

Figure 27: Performance ofTP for lOneurons.
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4.4 ROBUSTNESS ANALYSIS

Robustness analysis is done to determine the range ofparameters used in CSTRat

which the NN-based Predictive Controller is capable in maintaining the performance.

This analysis is done by manipulating the concentration of both inlets, Cm and Cb2

respectively.

At first, the concentration of Cbi is varies by increasing and decreasing the value

of Cbi until the performance of the model shows inaccuracy. After running the

simulation, it is observed that Cbi can vary from 24.4mol/L up to 25.9moI/L in order to

maintain the performance ofthe model. At concentration of25.9mol/L, it shows the best

performance.

23

XYPIot

-22.5 / -

/ \ /~x

\
\

22
I

.!2

$ 21.5 I \ /
\ '/ \

> \ / \

21 i \ \
\

20.5
-Wv

'

0 20 40 60 80 100 120

XAxis

29

Figure 28:
Performance at

CM is
24.4mol/L
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Figure 29:
Performance at

CM of
25.9mol/L

When the value ofCbi is less than 24.4mol/L or greater that 25.9mol/L, the graph

shows inaccuracy in its performance. As shown in Figure 30, the prediction which is

indicated by the blue line is way betow the actual value. Thus at this point, the model is

not capable in maintain the model performance.
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Figure 30:
Performance at

Cbi less than
24.4mol/L
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Figure 31:
Performance at

Cbi greater
than 25.9mol/L

For the next robustness analysis, the concentration of Cb2 is varies increasingly

and decreasingiy in order to obtain the range at which the model can accurately predict

and maintain its performance. From the simulation, it is observed that the best

performances of this model are between Omol/L to lOmol/L. But the optimum point of

for the systemto operates is when Cb2 at 0.1 and lOmol/L.
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Figure 32:
Performance at

Cb2of0.1mol/L
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Figure 33:
Performance at

0>2 of 1Omol/L

When the value of Cb2 is less than Omol/L or greater than lOmol/L, the actual

value cannot bepredicted properly. The graph will deteriorate from the actual value.
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Figure 34:
Performance at Cb2

less than Omol/L



CHAPTER 5

CONCLUSION

NMPC is an optimal control based method whichis one ofthe techniques that can

be used to stabilize processes in the presence of nonlinearity and uncertainty. The

performance study for the impact of different architecture on NN-based Predictive

Controller has shown that the model gives it best performance for 2 layers with the

combination of activation function of Tan-sigmoid and Purelin. And this model with

these activation functions performs very well with 6 numbers of neurons. In robustness

analysis, the NN-based Predictive Controller is able to cater the changes in Cbi from

24.4mol/L upto 25.9mol/L inorder to maintain theperformance ofthemodel. While for

Cb2» the concentration must be in the range between Omol/L to 1Omol/L for the model

gives good prediction. If these parameters are exceeding the limits, it will reduce the

model performance.
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APPENDICES

APPENDIX 1: NARXNN Coding

clear;clc;close all;

% Extract data from M-file

A ~ xlsreadf 'data_file_name');

% Determine size of XY matrix

[row,col] = size (A) ;

% Allocating input and target columns for Training, Validation and Testing
P_tr = A(1:1500,1)';
T_tr = A(l:1500,2)';
P_v - A(1501:2400,1) *;
T_v « A(1501:2400,2) ';
P_te - A(2401:3001,l)';
T_te = A(2401:3001,2)*;
% P_te = B(1:8000,1) ';
% T_te = B (1:8000,2)

% Define input and output layer matrix
1= [0 1];

0= [1 2];

% naming TF
p - 'purelin'; t - 'tansig'; 1 - 'logsig';

% Setup network
% net=newcf(minmax(P_tr), [37 20
Ij,{'logsig','logsig','logsig'},'trainrp','learngdm','mse');
% net = newnarx(PR,ID,OD,[Si S2...SN1],{TF1 TF2 ...TFN1} ,BTF,BLF, PF)
narx_net = newnarx (minmax(P_tr),1,0,[4 l],{p,t});
%narx_net=newnarx (minmax(P_tr),I, 0, [2 2
1],{t,p,p},'trainrp','learngdm','mse');

narx_net.trainParam.show=5;
narx_net.trainParam.epochs=500;
narx_net.trainparam.goal=le-4;

% Train network with early stopping

rand('seed1,5270000);
narx_net = init(narx_net);

%% Set up the validation and testing sets in a structure form
val.P=P_v; val.T=T_v;
test.P=P_te; test.T=T_te;
[net tr] = train(narx_net, P_tr,T_tr, [J,[], val, test) ;
% [net tr] = train (net, P_tr, T_tr, [],[], [j,[]) ;

% Simulate network

a = sim(net, P_te);

% figure(1)
% [slope,intercept,R] = postreg(a,T_te);

% Actual min max of the data set
T_temin = 0.047362505; T_temax = 0.054611961;

% Unnormalised data set
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[rowl,coll] = size(T_te);
unnorm_Tte = zeros(l,l:coll);
for j = l:coll;

unnormJTte (j) » T_te (j) * (T_temax-T_temin) +T_temin;
3 = j+l?

end

unnorm_a = zeros(1,l:coll);
for jj = l:coll;

unnorm_a(jj) = a(jj)*(T_temax-T_temin)+T_temin;
jj - jj+i;

end

figure(6)
time = l:length(T_te);
plot(time,T_te,'-',time,a, 'd'),. ..
xlabeK'Time (min)'), ylabel('Actual vs predicted Output'),
legend('Actual','NN')
grid on;

% rmse calculation

[rowl,coll] = size(T_te);
error_col = zeros(1,1:coll);
for i = l:coll;

error_col(i) = (unnorm_a{i) - unnormJTte(i))A2;
i = i+1;

end

sum_error = sum(error_col);
rmse = sqrt(sum_error/coll)

%%% CDC calculation

dl=zeros(l,coll-l);

ii=2 ;

for iii=l:coll-l
ai=unnorm_Tte(:,ii) - unnorm_Tte(:,ii-l);
bi=unnorm_a(:,ii) - unnorm_a(:,ii-l);
ci=ai*bi;

dl(:,ii-l)=ci;

ii=ii+l;

iii=iii+l;

end

Dtl=zeros(1,coll-1);

jjj=i;
for jjjj=l:coll-l

if dl(:,jjj)>0
Dtl(:,jjj)=l;

else

Dtl(:,jjj)=0;

end

jjjj=jjjj+l<*
end

[row2,col2] = size(Dtl);
CDC - (sum(Dtl))*(100/(col2)}
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APPENDIX2: Result ofDifferent Network's Architecture (Different
number ofneurons)

i. Log-sigmoid and Log-sigmoid
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ii. Log-sigmoid and Purelin

For 2 neurons:
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iii. Log-sigmoid and Tan-sigmoid

For 2nuerons:
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For 8 neurons:
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iv. Tan-sigmoid and Tan-sigmoid

For 2 neurons:
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For 8 neurons:
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v. Tan-sigmoid and Log-sigmoid

For 2 neurons:
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For 8 neurons:
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vi. Purelin and Purelin

For 2 neurons:

For 4 neurons:
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For 8 neurons:

XYPtot

23

22.5

22

i i

JWw^

•

3 21.5
>-

21

20.5

20
20 40 60 80 100 120

XAxis

For 10 neurons:

XYPtot

^_
j—-

20

15

n

3
>• 10

5

0
\ \

\M
3 20 40 60 80 100 120

XAxis



vii. Purelin and Log-sigmoid

For 2 neurons:
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viii. Purelin and Tan-sigmoid

For 2 neurons:
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For 8 neurons:
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