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ABSTRACT

This final report explains about the extended research done on basic concept of the
selected topic, which is Study on Neural Network Predictive Controller: Impact of
Network™s Architecture and Plant-model mismatch. The objective of the project is to
study the effect of different network’s architecture by manipulating the transfer function,
number of neurons, weight and biases on NN-based Predictive Controller’s performance.
And to study the impact of parameters used in CSTR on the performance of the based
model in Plant-Model Mismatch. In literature review section, NN-based Predictive
Controller will be further discussed. The successful outcomes of this project can be
applied in the industries in order to help reducing the uncertainty or inaccuracy in process

control.
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CHAPTER 1
INTRODUCTION

1.1  BACKGROUND OF STUDY

Model Predictive Controller, MPC technologies have been widely used in the
industries. MPC can be used in either linear or nonlinear system based on the limitation
of the controller. NMPC is normally used in highly and moderately nonlinear process. It
is also used when the process requires higher product quality specification, increasing
productivity demands and the process need to operate system closer to the boundary of
operating region. Thus, MPC with NN based is developed, which is NN Predictive
Controller and this model are used as a based model in this study. The performance of
this model will be monitored by manipulating the transfer function, number of neurons,
weight and biases. And the impact of parameters used in CSTR will be studied so that it
can be controlled and optimized.

1.2 PROBLEM STATEMENT

Strong nonlinear dynamic behavior is becoming one of the major problems in
polymer industry and chemical process. The usage of Nonlinear Model Predictive
Controller (LMPC) is not widely used to enhance the performance.

1.3  SIGNIFICANT OF THE PROJECT

Upon completion of the research and simulation, the final simulation wiil
determine the best architecture for NN Predictive Controller. The implementation of best
architecture for NN Predictive Controller will optimize the model and reduce the non-
linearity of the process and optimize the product produced.



1.4  OBJECTIVES AND SCOPE OF STUDY

The objective of the project is to study the effect of different architecture on NN
Predictive Controller’s performance. And to perform robustness analysis on developed
NN Predictive Controller for Plant-Model mismatch. The scope of study is to applied
different transfer functions and number of neurons on NN Predictive Controller.



CHAPTER 2
LITERATURE REVIEW

2.1 MODEL PREDICTIVE CONTROLLER, MPC

In general, the purpose of MPC is to overcome the uncertainty/inaccuracy and
unmeasured disturbance that can cause the plant output to behave differently. Figure 1
shows the structure of typical MPC system.

l Take process measurenents I

Process model=

Objecrives

- Commolaciions ~  TUfEprocess 4
o Distarbances . - .. Ouipms Constraints

Sotve above optimizanon problem

Best current and future control actions

Inplemens best cirrent control action

Figure 1: The MPC scheme {1]

MPC is based on iterative, finite horizon optimization of plant model. The current

measurement is taken as initial state for each sampling time, k and explicit model will



predict the future behavior of the process (see Figure 2). At each control intervals,
(u(k)=(k+j|p)) the MPC algorithm determined the solution of optimization problem by
computing the sequence of optimal fiture manipulated variable adjustment per a fixed
number of control horizon, M. Beyond the control horizon (M+k-1), no action will be
taken since the manipulated variables is assumed to be constant. Even a lot control move
is optimally caiculated, only the first input in the optimal sequence will be implemented.
At the next sampling, the entire sequence is repeated again and the optimization problem
will be reformulated and solved using new measurement. And prediction horizon and

control horizon will move or recede ahead by one step as time moves ahead by one step. [2]
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Figure 2: Principle of MPC.

22  NONLINEAR MODEL PREDICTIVE CONTROLLER, NMPC

The first steps taken for NMPC to estimate the system states from the output
measurement is by obtaining measurements of the system state. The measurement is then

compute and optimal signals by minimizing a given cost fiunction over a certain
prediction horizon in the fiture using a model of the system. The first part of the optimal

input signal is implemented until new measurement is available.



There are three types of model approaches for NMPC which are:
¢ Fundamental Model
e Black Box Model

s Discrete Time Model

The first approach is fundamental model which is important when it operates in
wide range but it is difficult and time consuming process. It has the advantages over the
black box model on extrapolation ability and probability to multiple facilities. The black
box model can be described as relatively easy and economically attractive alternative in
many situations. It can be developed directly from perturbed plant data. The most
appropriate model is discrete time model because plant data is available at discrete time
instant.

There is various type of controller model used in industry for nonlinear system.
The examples of model of controller used are Gaussian Process Model [3], Wiener-
Laguerre Model [4], Hammerstein and Wiener Model [5), Nonlinear State Space Model
[6], Partial Least Squares (PLS) models [7), Neural Networks Model [8], Stochastic
Closed Loop Model 9], Neuro Fuzzy Hammerstein [10] and Radial Basis Function
Network (RBFN) [11]. And this report is focused on Neural Network based model.

2.3 LINEAR MODEL PREDICTIVE CONTROLLER, NMPC

LMPC approaches are used in the majority of application with feedback
mechanism of the MPC compensating for prediction errors due to structural mismatch
between the model and the plant. The successful application of NMPC can be seen in
petroleum refinery, petrochemical, chemical sectors, power plants, pulp and paper and
food processing industries and also automobile and aerospace areas.

The Finite Impuise Response (FIR) [12], Multiplex MPC (MMPC) {13} and
Dynamic Matrix Control (DMC) [14] are type of models used for linear system in the
industry.
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2.4 NEURAL NETWORK (NN)

NN are massively processor controllers which consist of nonlinear computer
algorithm that learn feedback and have the ability to learn patterns through training
experiences. Because of this feature, it is often well suited for modeling complex and
non-linear processes such as CSTR process [15]. NN works by training, validation and
testing the data to predict the output of the process. The training of a NN involves
estimating the unknown parameters; this procedure generally utilized normal operating
data which is often to be large data set, taken in the operating region where the model is
intended to be used [16}. To train a network, an input vector is applied to the network and
the output of the network is calculated and compared to the corresponding target vector
with the difference (error) being fed back through the network to change the weights so-
that the error is minimized. After the parameters are trained, another large set of data can
be used to validate that the model is adequate.

The general arrangement of NN is in the form of layer. It is normally consist of
input layer, hidden layer and output layer. The number of hidden layer is optimjzed to get
accurate prediction from NN. For this case study, the numbers of hidden layers are fixed
at two layers to reduce complication.

2.4.1 NEURONS IN NEURAL NETWORKS

Neural networks are made up of many artificial neurons. The neuron continucusly
receives signals from these inputs and then sum up the inputs at each layer. Neurons are
sometimes referred as nodes. A network can have several layers. Each layer has a weight
matrix W, a bias vector b, and an output vector a [17]. And each layer has its own number
of neurons. It is common for different layers to have different numbers of neurons. This
is one of the most critical parameter affecting the accuracy of prediction in neural

network. One can keep on reducing the training error by increasing number of neurons.
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In this project, two layers of network are used and the number of neurons at the
first layer is varies from 2 to 10 neurons. The performance of each number of neurons is
recorded. It is to be noted that often the increase and decrease in performance may not be

monotonic with the number of hidden neurons [18].

Inputs Layer 1 Layer 2
r N7 N 4 N

’wl_.l” X nzi ﬂ - a
: ! >
P,
2 X
mn, fz | 2
bzz H :
3} ¥
L/ a
LA »
b
1
. J

Figure 3: General Architecture of Neurat Network

As illustrated in Figure 3, the outputs of each layer are the inputs of the following
layer. The neuron has a bias b, which is summed with the weighted inputs to form the net
input 7. This sum, n, is the argument of the transfer function, £ {17]. In order to improve
the prediction, weight will be adjusted accordingly. Therefore, weight can be positive or

negative.

24.2 ACTIVATION FUNCTION IN NEURAIL NETWORKS

Activation function is also known as transfer function. It is one of the criterions to
characterize the neural network system. Transfer function is an algebraic expression for
dynamic relation between the selected input and output of the process model. It is defined

so as to be independent of the initial conditions and of the particular choice of forcing
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functions [16]. The equation of the activation function can be described as in equation (1)
[20].
a= f(wp+b)3) (D

The output of a neuron, a will depends on the product of weight, w and its input
value, p. The product of this two wili be added with the bias, b in order to obtain the
overall input for the neurons. The overall input will be muitiplied with the transfer

function, f which will determine the output of a neuron.

Among the typical activation function used are:
i. Hyperbolic tangent sigmoid

a = tansigin)

Figure 4: Graph of tansig transfer function [17].

ii. Log-sigmoid

a = logsigin)

Figure 5: Graph of logsig transfer function [17].
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ili. Linear

......... T/ ‘ n 74

a = purclin(n)

Figure 6: Graph of purelin transfer function [17].

24.3 NEURAL NETWORK PREDICTIVE CONTROLLER

NN predictive controller uses NN model of nonlinear plant (CSTR) to predict
future plant performance. The controller then calculates the control input that will
optimize plant performance over a specified future time horizon. The first step in model
predictive control is to determine the neural network plant model (system identification).
Next, the plant model is used by the controller to predict future performance. This
application is used in Simulink. The performance of plant is optimized using controller
by calculating the control input. This controller objective is to control the concentration
of the CSTR according to it set points.

The first stage of model predictive control is to train a neural network to represent
the future of the plant. The prediction error between the plant output and the neural
network output is used as the neural network training signal. The process is represented
by the following figure:

14
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Figure 7: System identification

The neural network plant model uses previous inputs and previous plant outputs
to predict future values of the piant output.

Figure 8: General structare of NN Back-Propagation.

Basically, NN predictive controller is added into CSTR model developed in
Simulink. The model used in NN model is state-space model where it simpilifies the
complicated mathematical expression used in the process. The following block diagram
illustrates the model predictive control process. The controlier consists of the neural
network plant model and the optimization block.
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CHAPTER 4
RESULT AND DISCUSSION

41 CSTR GENERAL MODEL

The CSTR model is developed to control the concentrations within the CSTR at

the desired level. CSTR process consists of a constant volume reactor. The diagram of
this process is shown in Figure 12.

H']

T i

Figure 10: Schematic diagram of a CSTR [17}

I \'fo
Cy

The objective of the CSTR is to control the product concentration by controiling
the flow of w,. To simplify the process, the flow rate w; is kept constant at 0.1m’/s. In
order to model the CSTR, it required a dynamic model. This dynamic model is:

f%(fl = w(£) + w,(£) — 0.2,/ h(?)

(2
GO _F - O F _cmnt®__ kGO
ol SRR el S Nl T

Where h(t) is the liquid level, Cy(®) is the product concentration at the output of the
process, wi(?) is the flow rate of the diluted feed Cpz and kI and k2 are the constant

18



associated with rate of consumption. The level of the tank /() is not controlled for this

experiment [19]. The values used for this experiment are set as follow:

Table 1: Values used for CSTR modeling

Variable Value
Chr 24.9mol/L
Ch 0.1mol/L
ki 1
k2 1

Wa(1) 0.1L/min

42  BASED MODEL

Based model is the model of CSTR with NN MPC which has been modified in

order to follow the project requirements.

The CSTR model simulation objective is to control the measured process
concentration by manipulating the flow rate of concentrated feed, Cs;. This CSTR model
is developed using block diagram in MATLAB Simulink based on the CSTR dynamic
model equation. The CSTR model is the typical model used for simulation.

Fis Bat View Sruiston Format Tods Heip

DISES L= e P2 p 0 fE N ] HdiRuabes pEE®

w
at Haight

4 Ganstant?

Lencanttion

Cel

(Rmady ) {100% I i ladets 4

Figure 11: CSTR model in MATLAB Simulink [19].
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Below is the figure of based model used in this project which consists of CSTR

model and NN MPC. The project objective is to optimize the controller in order to obtain
the best performance that can control the nonlinearity of CSTR. The based model

structure is shown in Figure 14.
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43 DIFFERENT NETWORK’S ARCHITECTURE

1In order to achieve different architecture, the transfer functions and number of
neurons is manipulated. At first, the transfer function is changed to obtain new weight
and biases before it is applied on NN-based Predictive Controller, and new data is
generated and trained. The performance of each transfer function is recorded. All the
results obtained are discussed below:

4.3.1 RESULT FOR DIFFERENT ACTIVATION FUNCTIONS

The activation functions used in this project are log-sigmoid (L), tangent-sigmoid
(T) and purelin (P). Since the networks consist of 2 layers, the activation function must
be arranged in pair. So, there are nine combination of activation function used in this
project. All performance of the nine combinations will be discussed below. On each
simulation, new data set will be generated and trained before it is applied into the
controller. From the result obtained, it can be concluded that, the NN-based Predictive
controller can only perform using combination of activation function of T and P (see
Figure 18).

i. Log-sigmoid and Log-sigmoid

XY Plot
23 — JP—
| ]
25 ”r—u W‘H""\
22_/ S
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X 215} I
> I
21} i [
|
20.5} - 1
20 . ' ‘ : .
0 20 40 60 80 100 120
X Axis

Figure 14: Performance of LL activation function.
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ii. Log-sigmoid and Purelin

Y Axis

23
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Figure 15: Performance of LP activation function.

iii. Log-sigmoid and Tan-sigmoid

Y Axis
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Figure 16: Performance of LT activation function.
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iv.

V.

Tan-sigmoid and Tan-sigmoid

24
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Figure 17: Performance of TT activation function.
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Figure 18: Performance of TP activation function.
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vi. Tan-sigmoid and Log-sigmoid

23

Y Axis

15

14 y ‘
0 20 40
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Figure 19: Performance of TL activation function.

vii. Purelin and Purelin
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Figure 20: Performance of PP activation function.
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viii.  Purelin and Tan-sigmoid

XY Plot
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Figure 21: Performance of PT activation function.

ix.  Purelin and Log-sigmoid
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Figure 22: Performance of PL activation function.
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4.3.2

For different architecture in number of neurons, each activation function is tested
using 2, 4, 6, 8 and 10 neurons with fixed layer of 2. The performance of this different

architecture did not show well due to some problem occurred within the based model

itself.

Below shows the best performance of best combination of activation function
which is tan-sigmoid and purelin for 2, 4, 6, 8 and 10 neurons. Other results are shown in
Appendix 2. From the simulation, for combination of activation function Tan-sigmoid

and Purelin, it performs really well with 6 numbers of neurons. Result is shown in Figure

25.

i. 2 neurons

RESULT FOR DIFFERENT NUMBER OF NEURONS

20,51 |

20
0

120

Figure 23: Performance of TP for 2 neurons.
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it.

iit.

4 neurons
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Figuare 24: Performance of TP for 4neurons.
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Figure 25: Performance of TP for 6neurons.
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iv. 8 neurons
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V. 10 neurons

Figure 26: Performance of TP for 8neurons.
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Figure 27: Performance of TP for 10neurons.
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44 ROBUSTNESS ANALYSIS

Robustness analysis is done to determine the range of parameters used in CSTR at
which the NN-based Predictive Controller is capable in maintaining the performance.
This analysis is done by manipulating the concentration of both inlets, Cy1 and Cy

respectively.

At first, the concentration of Cy, is varies by increasing and decreasing the value
of Cy until the performance of the model shows inaccuracy. After running the
simulation, it is observed that Cbl can vary from 24.4moVL. up to 25.9mol/L in order to
maintain the performance of the model. At concentration of 25.9moVL, it shows the best

performance.

XY Plot

23

20.5

Figure 28:
20 ; . . , . Performance at
0 20 40 80 80 100 120 Cp is
X Axis 24.4mol/1.
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Y Axis

19.5}

19
1]

20

40 60 80 100 120
X Axis

Figure 29:
Performance at
Cm of
25.9mol/L

When the value of Cy, is less than 24.4moVl/L or greater that 25.9mol/L, the graph
shows inaccuracy in its performance. As shown in Figure 30, the prediction which is

indicated by the blue line is way below the actual value. Thus at this point, the model is

not capable in maintain the model performance.
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Figure 30:
Performance at
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Figure 31:

Performance at

Cp greater
than 25.9moVL

For the next robustness analysis, the concentration of Cy; is varies increasingly

and decreasingly in order to obtain the range at which the model can accurately predict

and maintain its performance. From the simulation, it is observed that the best
performances of this model are between OmoV/L. to 10mol/L. But the optimum point of

for the system to operates is when Cy at 0.1 and 10moV/L.
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Figure 32:
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When the valie of Cy is less than Omol/L or greater than 10mol/L, the actual
value cannot be predicted properly. The graph wiil deteriorate from the actual value.
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CHAPTER 5
CONCLUSION

NMPC is an optimal control based method which is one of the techniques that can
be used to stabilize processes in the presence of nonlinearity and uncertainty. The
performance study for the impact of different architecture on NN-based Predictive
Controller has shown that the model gives it best performance for 2 layers with the
combination of activation function of Tan-sigmoid and Purelin. And this model with
these activation functions performs very well with 6 numbers of neurons. In robustness
analysis, the NN-based Predictive Controller is able to cater the changes in Cy from
24.4mol/L up to 25.9mol/L in order to maintain the performance of the model. While for
Cyp, the concentration must be in the range between OmoVL to 10mol/L. for the model
gives good prediction. If these parameters are exceeding the limits, it will reduce the

model performance.
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APPENDICES
APPENDIX 1: NARX NN Coding

clear;clcrsclose all;
% Extract data from M-file
A = xlsread('data_file name'};

% Determine size of XY matrix
[row,col] = size(R) »

Allocating input and target columns for Training, Validation and Testing
 tr = A{1:1500,1)"';

tr = A(1:1500,2)';

v = A(1501:2400,1)"';

i A({1501:2400,2)"';

= A(2401:3001,1}';

= A(2401:3001,2}"';

= B(1:8000,1)";

B(1:8000,2)";

w

ot o
[{ o]
LU

a0 a0 13 rg ] g H R oo
o ot

o

il

F-H*'Ul

;

% Define input and cutput layer matrix
I= [0 1];
o= [1 21;

naming TF
= '‘purelin’'; t = 'tansig'; 1 = 'logsig';

Lo ]

oe

Setup network

net=newcf (minmax (F_tr), [37 20

1,{'legsig’, 'logsig’, 'logsig’}, 'trainrp’, "learngdm’, 'mse’};

naet = newnarx (FR,IH,0D, (81 S2...8N1],{TF1 TF2...TFN1},BTF,BLF, PF)
narx_net = newnarx (minmax(P_tr},I,0,[4 11,{p,t});

% narx net=newnarz (minmax (PF_tx),I, O, 2 2
11,4it,p,p}, ‘trainrg’, 'learngdm’', 'mse’);

g8 oo

narx_net.trainParam.show=5;
narx_net.trainParam.epochs=500;

narx_net.trainparam.goal=le-4;

% Train network with early stopping
rand{'seed', 5270000}
narx net = init(narx_net);

%% Set up the validation and testing sets in a structure form
val.P=P_v; val.T=T_v;

test.P=P_te; test.T=T_te;

[net tr} = train(narx net,P tr,T tr,[],[],val,test);

% [net tr] = train{net,P_tr,T tr,[],{],[1,11);

Simulate network

&2

a = sim(net, P_te):;

% figure(l)

% [slope,intercept,R] = postreg(a,T te);

% Actual min max of the data set

T temin = 0.047362505; T_temax = 0.054611961;

% Unnormalized data set
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[rowl,coll] = size(T_te):

unnorm Tte = zeros{1,1:c0ll);

for j = l:coll;
unnorm Tte(j) = T_te(j)*(T_temax-T temin)+T_temin;
J = j+1;

end

unnorm _a = zeros{l,l:coll);

for j3 = l:coll;
unnorm_a (i) = a(ij) *(T_temax-T_temin)+T_temin;
33 = ji+l:

end

figure (6}

time = l:length(T_te);
plot (time,T te,'-',time,a,'d'},...

xlabel (' Time (min)'}, ylabel('Actual vs predicted Output'},...

legend('Actual’, "NN")
grid on:

% rmse calculation

[rowl,coll]l = size(T_te):;

error_col = zeros(l,l:coll);

for i = l:coll;
error_col{i) = {unnorm a(i) - unnorm Tte(i))"Z;
i = i+1;

end

sum error = sum(error col);

rmse = sqgrt(sum error/coll)

%%% CDC calculation

dl=zeros (1,coll-1};

ii=2;

for iii=l:icoll-1l
ai=unnorm Tte(:,ii) - unnorm Tte{:,ii-1):
bi=unnorm a{:,ii) - unnorm_a {:,ii-1}:

ci=ai*bi;
dl(:,ii-1)=ci;
ii=1ii+1;
iid=ididi+l;

end

Dtl=zeros{l,coll-1};
j33=1;
for jijj=1l:coll-1
if di(:,333)>0
Ptl(:,333)=1;

else
ptl{:,333)=0;
end
333=333+1:
3333=3333+1¢
end
[row2,col2] = size(Dtl);

CDC = (sum({Dtl))*(100/{col2})
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APPENDIX 2: Result of Different Network's Architecture (Different

number of neurons)

i. Log-sigmoid and Log-sigmoid

For 2 neurons:
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For 8 neurons:

Y Axis

XY Plot




ii. Log-sigmoid and Purelin

For 8 neurons:
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iii. Log-sigmoid and Tan-sigmoid

For Znuerons:
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For 8 neurons:

XY Flot
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iv.  Tan-sigmoid and Tan-sigmoid

For 2 neurons:

XY Plot
2
— o T—— .
25 ﬁ ? H\\
Sl —
2l |
2 i ! i
I 25 } ! |
> ! i
21 I i ‘
205 i [I— 1
[ S—| I B
2 o 40 8 80 00 120
X Ais
For 4 neurons:
XY Plot
23
25 ﬁ: T““\
\ _—
227 | ; | \
i i |
2 ! |
s ‘ | i %
>~ i !
21; 3 ‘ ‘ |
| ]
205} ; ! - 4
2, 20 40 60 80 10 120
X Axis
For 6 neurons:
XY Piot
24
235}
2} / ,\
25/ e T
/ i \ |
3 o2 i i
> i S —
215 ! i
21 L
205}
2, 20 40 60 80 100 120
X Axds

42

For 8 neurons:
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v.  Tan-sigmoid and Log-sigmoid

For 2 neurons:

XY Plot
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For 8 neurons:
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vi.  Purelin and Purelin

For 2 neurons:

XY Plot
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vii.  Purelin and Log-sigmoid
For 2 neurons:
XY Plot
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For 8 neurons:
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viii.  Purelin and Tan-sigmoid
For 2 neurons:
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For 8 neurons:
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