Superstructure Optimization of Naphtha Processing System with Environmental Considerations

by

Mohd Ros Asmawi bin Muhammad 8600

Dissertation submitted in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) (Chemical Engineering)

JAN 2010

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Superstructure Optimization of Naphtha Processing System with Environmental Considerations

by

Mohd Ros Asmawi Bin Muhammad 8600

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirements for the BACHELOR ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by,

-s. word

(Mr. Khor Cheng Seong)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK JAN 2010

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(MOHD ROS ASMAWI BIN MUHAMMAD)

ABSTRACT

The objective of this research project is to develop an optimization-based mathematical model in the form of a mixed-integer linear program (MILP) for determining the optimal configuration of a petroleum refinery. The scope for this project is to formulate the superstructure representation model for a refinery focusing on the subsystem of naphtha hydroprocessing in order to select the most economical and cost efficient process route. The alternatives for all streams are evaluated and the optimal configuration is proposed based on market demand by incorporating logical constraints and mass balance using the GAMS modeling language platform. Based on the information and knowledge about the physics of the problem of naphtha processing unit, we represent all these possible processing alternatives on a superstructure. **Carbon dioxide** emission factors have also been considered in which relevant data is obtained using the carbon weighting tonne (CWT) method. Computational studies are conducted on a representative numerical example to illustrate the proposed modeling approach.

ACKNOWLEDGEMENT

بِسُمِ ٱللَّهِ ٱلرَّحْمَنِ ٱلرَّحِيمِ In the name of Allah, The Beneficent, The Merciful.

First and foremost I would like to express appreciation and gratefulness to Allah, for His blessing and giving the golden opportunity to complete this Final Year Project.

I also would like to express my sincere gratitude to Mr. Khor Cheng Seong for this valuable guidance, constructive comments and support as my supervisors. The encouragement throughout these 2 semesters has been very important for the successful completion of my Final Year Project.

Last but not least, the appreciation goes to my parents and mates, for their constant supports and ideas of this project.

TABLE OF CONTENT

CERTIFICAT	FION O	F APP	ROV	AL	•	•	•	•	•	i
CERTIFICAT	TION O	F ORI	GINA	TLITY	•	•	•	•	•	ii
ABSTRACT	•	•	•	•	•	•	•	•	•	iii
ACKNOWLE	DGEM	ENT	•	•	•	•	•	•	•	vi
CHAPTER	1: IN	TRO	DUC	rion.	•••••				**********	1
	1.1 Bac	kgrour	nd Stud	ly					*****	1
	1.2 Pro	blem S	tateme	ent						4
	1.3 Ob	jective	and Sc	ope of S	Study				•••••	5
CHAPTER	2: LI	TER/	TUR	RE RE	VIEW	******			*******	7
	2.1 Pet	roleum	Refine	ery Opti	mizatio	n: An	Overvi	iew	*****	7
	2.2 Sup	oerstruc	ture R	epresen	tation o	f Desi	ign Alte	ernative	*****	11
	2.3 Env	vironme	ental C	oncern:	Global	Warr	ning		•••••	12
	2.4 Env	vironmo	ental P	erforma	nce As	sessm	ent for	Risk		
	Eva	aluation	of Flo	w sheet	s		• • • • • • • • • •	• • • • • • • • • •		14
	2.5 Ty	pe of P	ollutar	ts Emit	ted from	n Eacl	n Unit i	n Super	structure	16
	2.6 En	nission	Factor	for EFF	RAT M	ethod.			•••••	20
	2.7 Ob	jective	Functi	ion	•••••••	•••••				23
	2.8 GA	AMS M	lodelin	g	•••••••	•••••	***	• • • • • • • • • •		24
CHAPTER	3: MI	ETHO	DOL	OGY/	PROJ	ЕСТ	' WOF	RK		25
	3.1 Pro	cedure	Identi	fication.	•••••					25
	3.2 Sup	erstruc	ture R	epresent	tation o	f Alte	rnatives	5		27
	3.3 Ma	themati	ical Mo	odel For	mulatic	on	• • • • • • • • • •	•••••	••••	30
	3.4 CO	2 Emiss	sion Fa	ctor Cal	culatio	n		• • • • • • • • • • •	•••••	32
	3.5 Co	nstraint	s	•••••			•••••		••••	33
	3.6 GA	MS Mo	odeling	g				• • • • • • • • • • • •		39

`

CHAPTER 4: COMPUTATIONAL EXPERIENCE AND	
NUMERICAL RESULT	40
4.1 Introduction	40
4.2 Model Data	41
4.3 Remarks on Computational Experience	45
CHAPTER 5: CONCLUSION AND RECOMMENDATION 5.1 Conclusion.	[46
5.2 Recommendations	47
REFERENCES	
LIST OF TABLE	

Table 2.5.1: Summary of Emissions, Effluents, Residuals and Waste Streams for
Topping/Separation Processes16
Table 2.5.2: Summary of Emissions, Effluents, Residuals and Waste Streams for
Thermal and Catalytic Cracking Processes17
Table 2.5.3: Summary of Emissions, Effluents, Residuals and Waste Streams for
Combination/Rearrangement Processes
Table 2.5.4: Summary of Emissions, Effluents, Residuals, By-Products and Waste
Streams for Treatment
Process
Table 2.5.5: Summary of Emissions, Effluents, Residuals, By-Products and Waste
Streams for Specialty Products
Manufacture19
Table 2.6.1: Air Emission Factor for Petroleum Process
Table 2.6.2: Basis Throughput and CWT Factor for CWT Process Unit
Table 3.2: Legend for STN Superstructure Representation in Figure 3.2
Table 3.5.2: Market Demand for Product
Table 4.1: Model and Computational Statistic in Model Formulation40

Table 4.2.1: Assumption Data for Model Formulation	41
Table 4.2.2: Computational Result Model with Selection of Material Stream	42

LIST OF FIGURES

Figure 3.1: Major steps in the mathematical programming approach to	
Synthesis and design problems	26
Figure 3.2: Superstructure Representation for Naphtha Processing Unit from AI)U29
Figure 3.6: GAMS Modeling	39
Figure 4.2.1: Selected Process Route for the naphtha Produced from ADU	43

LIST OF APPENDIX

Appendix A: Objective Function (DESCRIPTION)	50
Appendix B: Emission Factors for Petroleum Refineries	51
Appendix C: Downstream capital cost index	
Appendix D: The Instrument Record of Global Average Temperature	53
Appendix E: Schematic of an example integrated petroleum refinery	54
Appendix F: GAMS Modeling Result	55

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Crude oil is the main source of energy for the world. Apart from being used as a fuel, it is also essential feedstock for petrochemical industries [5]. All these factors demand an increase in petroleum capacity. However, designing a refinery topology that adheres to environmental regulations, operational constraints and economical needs is not an easy task.

Optimization will almost always be required at some stage in a process design. Process synthesis problems are typically difficult discrete optimization problems. Process synthesis or conceptual process design is concerned with the identification of the best flow sheet structure to perform a given task. The approach that have been reported in the literature to address these problems is the algorithmic approach, which utilizes optimization or mathematical programming, based on the construction of a superstructure that seeks to represent all feasible process flow sheets (Grossmann, 2002). Algorithmic methods that to a great extent can address some of the limitations of the heuristics- and physical-insights-based approach to process synthesis [10].

The complexity associated with synthesis problems in general and petroleum refinery design in particular, necessitates the development and implementation of a systematic and automated approach to efficiently and rigorously consider the elaborate interactions and trade-offs among the design variables. In this regard, powerful formal optimization strategies potentially offer promising tools to undertake the task. The proposed optimization-based modelling approach in this project can potentially serve as a preliminary screening tool to determine the optimal topology of a refinery with environmental constraint that meets a fixed market demand of refinery products given certain types of crude oils to be processed.

The three major components of the project are as follows:

- Superstructure representation of the alternative processing routes for an oil refinery that accounts for the complexity of the actual industrial-scale problem as much as possible;
- Development of an optimization-based model of the above problem in the form of a mixed-integer program with environmental considerations.
- 3) Solution of the optimization model to obtain the desired optimal refinery topology.

The petroleum refinery flow sheet is divided to 4 main pool processing [12]:

1.1.1 Processing Pool 1: Alternatives for Atmospheric Reduced Crude (ARC)

The crude oil from the storage tank is heated in a furnace and then charged to an atmospheric crude distillation unit (ADU), which is a mainstay feature of an oil refining scheme as the primary fractionation function of the crude oil according to different boiling point ranges. ADU separates the crudes into butanes and lighter wet gases, unstabilized light naphtha, heavy naphtha, kerosene, atmospheric gas oil, and atmospheric topped or reduced crude (ARC). In older refineries especially those that typically handle low sulfur crudes, the topped crude is sent to the vacuum distillation unit (VDU) for separation into vacuum gas oil (VGO) and vacuum reduced crude (VRC) bottoms. However, modern refineries with high technology capable of processing crudes

with high sulfur content typically employ an atmospheric residuum desulfurization unit (ARDS) for sulfur removal from the crude oil.

Therefore, two design alternatives exist for ARC from ADU:

- 1) It is sent to the ARDS for sulfur removal to produce VRC that is then sent to the VDU.
- It is sent directly to the VDU to produce VGO and VRC, with the VGO subsequently hydrotreated for sulfur removal in a unit denoted as GOHDT (which stands for gas oil hydrotreater).

1.1.2 Processing Pool 2: Alternatives for Naphtha Exiting Hydrotreater (HDT)/Hydrodesulfurizer (HDS)

For the full-range naphtha leaving ADU that has been treated for sulfur removal via the hydrotreater (NHDT) or hydrodesulfurizer (HDS), the following alternatives are available:

- 1) Its subcomponent of the light straight-run naphtha (LSRN) stream from the top of the distillation column is sent to a gasoline blending pool (BLND).
- 2) It is utilized as a feedstock for the catalytic reformer (CREF) and/or the isomerization unit (ISO).
- 3) It is directly sold (SOLD)

1.1.3 Processing Pool 3: Alternatives for Vacuum Gas Oil (VGO) Processing

The VGO stream is fed to either the fluidized catalytic cracker (FCC) or the hydrocracker (HCR) following hydrotreatment in GOHDT. Both FCC and HCR convert heavy gas oils into lighter products that are subsequently utilized as blendstocks for gasoline and diesel fuels. Hence, in general practice, both units do not coexist in a single site especially for relatively low-to-medium crude oil throughput unless the economies

of scale as dictated by a high throughput justifies the routing of the hydrotreated VGO to be split into two streams, one for FCC and the other for HCR. Nevertheless, in principle, both units can coexist, with HCR usually favored over FCC and is thus relatively more common, particularly in large-scale refineries that typically handles high crude oil throughput.

1.1.4 Processing Pool 4: Alternatives for Vacuum Residue or Vacuum Reduced Crude (VRC) Processing and Upgrading

Depending on the crude oil type and the related process economics, VRC is further processed for production of transportation fuels (i.e., gasoline, kerosene, and diesel), typically via one of the following intermediary process units: visbreaker (VIS), solvent deasphalter (SDA), or mild hydrocracker (M-HCR).

1.2 Problem Statement

The complexity associated with synthesis problems in general and petroleum refinery design in particular, necessitates the development and implementation of a systematic and automated approach to efficiently and rigorously consider the elaborate interactions and trade-offs among the design variables. In this regard, powerful formal optimization strategies potentially offer promising tools to undertake the task. The proposed optimization-based modelling approach in this project can potentially serve as a preliminary screening tool to determine the optimal topology of a refinery with environmental constraint that meets a fixed market demand of refinery products given certain types of crude oils to be processed.

It is a highly complex task to model optimal petroleum refineries topology that satisfies multiple economics, operations, and environmental constraints.

The questions that are interested to answer in this research concern the optimal design of the topology or configuration of a refinery with environmental considerations that addresses the following aspects:

4

- The selection of the process units (tasks) and material streams (states) in terms of the types of the units as well as the number of the units and streams.
- 2) The sequence of the interconnections among the units and the streams.
- 3) The levels of production as given by the stream flow rates.

1.3 Objective and Scope of Study

The main objective of this research project is to develop a mathematical optimization model to determine the optimal configuration of a petroleum refinery. In order to achieve the main objectives, the following sub-objectives are formed:

- To develop a superstructure representation for a refinery network topology with a suitable level of detail and abstraction by incorporating environmental features;
- 2. To construct an optimization model based on the superstructure representation that includes: (a) mass balances (linear), (b) energy balances, and (c) logical constraints enforcing the design specifications and the interconnectivity relationships among the units and the streams for the selection of the alternative routes;
- **3.** To solve the mixed-integer linear programming (MILP) optimization model using the modelling language GAMS as the interface between the model and optimization solver.

CHAPTER 2

LITERATURE REVIEW

2.1 Petroleum Refinery Optimization: An Overview

The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry [13]. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations, and they terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes [5]. A refinery's processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. It contents 3 main part of process flow which are separation, conversion and treating process.

Optimization from practical level is defined as a system or process to find the best possible find the best possible solution to this process with respect to a certain objective and subject to within certain constraints (material and energy balances, equilibrium relationships, minimum approach temperature, T_{min}, design equations for reactor, thermodynamic limitations on the problem) [9]. From mathematical definition of optimization it is defined as a space of alternatives that are specified through constraints in a mathematical model, select decision variables to optimize an objective function. For FYP II, the main concern of the project is being narrowed to the subsystem of naphtha hydroprocessing. Below are the main units of the naphtha processing and brief description on the every unit:

2.1.1 Fluidized-bed Catalytic Cracking (FCC)

The FCC process uses a catalyst in the form of very fine particles that act as a fluid when aerated with a vapor. Fresh feed is preheated in a process heater and introduced into the bottom of a vertical transfer line or riser with hot regenerated catalyst. The hot catalyst vaporizes the feed, bringing both to the desired reaction temperature, 470 to 525°C (880 to 980°F) The high activity of modern catalysts causes most of the cracking reactions to take place in the riser as the catalyst and oil mixture flows upward into the reactor. The hydrocarbon vapors are separated from the catalyst particles by cyclones in the reactor. The reaction products are sent to a fractionators for separation [13].

The spent catalyst falls to the bottom of the reactor and is steam stripped as it exits the reactor bottom to remove absorbed hydrocarbons. The spent catalyst is then conveyed to a regenerator. In the regenerator, coke deposited on the catalyst as a result of the cracking reactions is burned off in a controlled combustion process with preheated air. Regenerator temperature is usually 590 to 675°C (1100 to 1250°F). The catalyst is then recycled to be mixed with fresh hydrocarbon feed.

2.1.2 Thermal Cracking

Thermal cracking processes include visbreaking and coking, which break heavy oil molecules by exposing them to high temperatures. For visbreaking, topped crude or vacuum residuals are heated and thermally cracked (455 to 480°C, 3.5 to 17.6 kg/cm2 [850 to 900°F, 50 to 250 pounds per square inch gauge (psig)]) in the visbreaker furnace to reduce the viscosity, or pour point, of the charge. The cracked products are quenched with gas oil and flashed into a fractionator. The vapor overhead from the fractionator is separated into light distillate products. A heavy distillate recovered from the fractionator liquid can be used as either a fuel oil blending component or catalytic cracking feed [13].

Coking is a thermal cracking process used to convert low value residual fuel oil to higher value gas oil and petroleum coke. Vacuum residuals and thermal tars are cracked in the coking process at high temperature and low pressure. Products are petroleum coke, gas oils, and lighter petroleum stocks. Delayed coking is the most widely used process today, but fluid coking is expected to become an important process in the future. In the delayed coking process, heated charge stock is fed into the bottom of a fractionator, where light ends are stripped from the feed.

The stripped feed is then combined with recycle products from the coke drum and rapidly heated in the coking heater to a temperature of 480 to 590°C (900 to 1100°F). Steam injection is used to control the residence time in the heater. The vapor-liquid feed leaves the heater, passing to a coke drum where, with controlled residence time, pressure (1.8 to 2.1 kg/cm2 [25 to 30 psig]), and temperature (400°C [750°F]), it is cracked to form coke and vapors. Vapors from the drum return to the fractionator, where the thermal cracking products are recovered.

2.1.3 Naphtha Hydrotreating

Hydrotreating, often referred to hydroprocessing, is used to remove impurities (e.g., sulfur, nitrogen, oxygen, halides, and trace metals) from petroleum fractions. When the process is employed specifically for sulfur removal, it is usually called hydrodesulphurization. Hydrotreating further "upgrades" heavy feeds by converting olefins and diolefins to paraffins, which reduces gum formation in fuels. Hydroprocessing also cracks heavier products to lighter, more saleable products. The severity of the hydrotreating process determines the final result. Mild hydrotreating, for example, is employed to remove sulfur and saturate olefins. More severe hydrotreating saturates aromatic rings and removes nitrogen and additional sulfur [14].

2.1.4 Hydrocracking

Hydrocracker is designed to produce high quality distillate products. It converts vacuum gas oil (MVGO and HVGO) to premium diesel, heavy diesel, kerosene and naphtha. Hydrocracking is a catalytic cracking process assisted by the presence of an elevated partial pressure of hydrogen gas. Similar to the hydrotreater, the function of hydrogen is the purification of the hydrocracbon stream from sulfur and nitrogen heteroatoms.

The products of this process are saturated hydrocarbons; depending on the reaction conditions (temperature, pressure, and catalyst activity) these products range from ethane, LPG to heavier hydrocarbons comprising mostly of isoparaffins. Hydrocracking is normally facilitated by a bifunctional catalyst that is capable of rearranging and breaking hydrocarbon chains as well as adding hydrogen to aromatics and olefins to produce naphthenes and alkanes. Major products from hydrocracking are jet fuel and diesel, while also high octane rating gasoline fractions and LPG are produced. All these products have a very low content of sulfur and other contaminants.

2.1.5 Sulfur Recovery Plant

Sulfur recovery plants are used in petroleum refineries to convert the hydrogen sulfide (H2S) separated from refinery gas streams into the more disposable byproduct, elemental sulfur [13]. The **Claus process** is the most significant gas desulfurizing process, recovering elemental sulfur from gaseous hydrogen sulfide. First patented in 1883 by the scientist *Carl Friedrich Claus*, the Claus process has become the industry standard. The multi-step Claus process recovers sulfur from the gaseous hydrogen sulfide found in raw natural gas and from the by-product gases containing hydrogen sulfide derived from refining crude oil and other industrial processes.

2.2 Superstructure Representation of Design Alternative

A general flow sheet contains 3 main elements which are state, task and equipment. State refers to the physical, chemical properties and also composition of a stream in the process. This can represent by quantitative information such as mass flow, temperature, pressure and composition. Task is defined as physical and chemical transformation that can occur between two sates or simply process. Equipments are physical devices that execute a given task. The two fundamental superstructure representations are State-task Network (STN) and State-Equipment Network (SEN) [9].

State-Task Network (STN) representations require state and task to be defined while the equipment assignment is unknown. State-Equipment Network (SEN) requires state and equipment to be defined while the task to the equipment is to be defined. In this project, State-task Network (STN) is used because of:

- Most straight forward representation from which are clear optimization model can best be formulated to establish a systematic approach for determining the optimum configuration of a refinery.
- 2. Can handles the assignment of equipment implicitly and then reduce the combinatorial complexity of the mathematical model.

In this project, mathematical modeling is done by mixed integer linear programming (MILP). MILP is a commonly occurring type of optimization problem involves both integer and continuous variables. These are very useful to many engineering applications especially the various requirements of process design optimization. It is simply to optimize the continuous variable for the various integer variable combinations (i.e., optimize continuous variable for each set of values of possible integers values then compare and select the best values) [11].

2.3 Environmental Concern

2.3.1 Global Warming

Global Warming is defined as the increase of the average temperature on Earth. As the Earth is getting hotter, disasters like hurricanes, droughts and floods are getting more frequent. Global warming is the term extensively used to portray a potentially dramatic increase in the annual average global surface temperature of the Earth. Estimates of how big that temperature increase will be range from 1.5 °C to 4 °C (Houghton *et al.*, 1996). The vivid temperature increased and the profound alterations towards the climate change are believed to be caused by CO_2 emission and other greenhouse gases in Earth's atmosphere.

Drake (2000) says that "These greenhouse gases act to trap outgoing thermal radiation which then warms the earth" (p.1). With the onset of the industrial revolution in the 1700s, increasing use has been made of fossil fuels which release large amount of CO_2 when burnt (Weyant and Yanisagawa, 1998). The industrial and domestic energy demands of our modern society mean that approximately 7 gigatonnes (Gt) of carbon dioxide being released every year (Houghton et al., 1996). When it comes to the upstream activities, over 13 TSCF of net hydrocarbon gas remained undeveloped due to the high CO_2 contents ranging from 28% to 87% [7].

At present, all CO_2 from producing fields and excess CO_2 from gas plants in Malaysia are being vented out to the atmosphere. Effective and optimal disposal of CO_2 is required if the high CO_2 gas fields are to be developed.

2.4 Environmental Performance Assessment for Risk Evaluation of Flow sheets

2.4.1 Life cycle analysis (LCA) by Allen and Shonnard (2002) [1]

To incorporate environmental considerations in the proposed modeling framework, the life cycle analysis (LCA) approach is utilize proposed by Allen and Shonnard (2002) that uses certain performance assessment metrics for the environmental risk evaluation of process flowsheets. The methodology aims to rank the available design alternatives through performing their relative environmental risk assessment by integrating the following aspects into the design:

- a) Emissions estimation
- b) Environmental fate and transport calculations
- c) Environmental impact data and indicators.

In this work, the refinery air emissions is represent with a set of relative environmental risk indices that measure the potential of global warming (GWP), stratospheric ozone depletion (ODP), acid rain deposition/acidification (ARP), and smog formation (SFP). To estimate the index for a particular impact category, the contributions of each chemical released from a process weighted by their emission rate is being sum up, yielding:

$$I_{\{GWP,ODP,ARP,SFP\}\in DPRI} = \sum_{i \in I} (Dimensionless Potential Risk Index DPRI)_i \times m_i$$

 $I_{\{GWP,ODP,ARP,SFP\}\in DPRI} = \sum_{i \in I} (Dimensionless Potential Risk Index DPRI)_i \times m_i$ $= I_{DPRI,i}^* \times m_i$

But in our case especially for global warming,

$$I_{\text{GWP}} = \sum_{i \in I} \text{GWP}_i \times (\text{emission factor} \times f_i)$$

= $(\text{GWP}_{\text{CO}_2} \times m_{\text{CO}_2}) + (\text{GWP}_{\text{CO}} \times m_{\text{CO}}) + (\text{GWP}_{\text{SOx}} \times m_{\text{SOx}}) + (\text{GWP}_{\text{NOx}} \times m_{\text{NOx}})$

In which the emission rate m_i is given by the multiplication of the emission factor and mass flowrate. The greenhouse chemicals or pollutants *i* considered in this work are CO₂, CO, SO_x, and NO_x. To illustrate an example, the sum for the product of the GWP and the mass emission rate of a pollutant over all pollutants considered, results in I_{GW} for the entire process, which in other words, is the sum of the emissions-weighted GWPs for each pollutant. It provides the equivalent process emissions of greenhouse chemicals in the form of the benchmark compound CO₂. The summation of the indices, as given by the following expression, is appended to the objective function for minimization:

$$I_{\text{PC}} = \sum_{i \in I} \sum_{p \in P} \left(I_{\text{GWP},i} + I_{\text{ODP},i} + I_{\text{ARP},i} + I_{\text{SFP},i} \right)$$

2.5 Type Of Pollutants Emitted from Each Unit In Superstructure. [13]

During the refining of crude oil into various petroleum products, petroleum refineries use and generate an enormous amount of chemicals, some of which are present in air emissions, wastewater, or solid wastes. Emissions are also created through the combustion of fuels and as by-products of chemical reactions occurring when petroleum fractions are upgraded. Process heaters and boilers are a large source of air emissions. In addition to CO, SOx, and NOx, some processes create considerable amounts of particulates and other emissions from catalyst regeneration or decoking processes. Volatile chemicals and hydrocarbons are also released from equipment leaks, storage tanks, and wastewaters.

2.5.1 Separation/Topping Process

	and the second			
Process	Largest Sources	Largest Sources of	Waste, Residuals,	
	of Air Emissions	Process Wastewater	or By-Products	
Crude Oil	Heater stack gas (CO,	Hot salty process	Crude oil/desalter	
Desalting	SOx, NOx, hydrocarbons	water (hydrogen sulfide,	sludge (iron rust, clay,	
	and particulates)	ammonia, phenol, suspended	and, water, emuisified oil	
		solids, dissolved solids).	sand wax, heavy metals)	
		Water flow = 2.1 gal/bbl of oil		
Crude Distillation	Heater stack gas	Oily sour water from	Little or no residual,	
(atmospheric and	(CO, SOX, NOX,	the fractionators (hydrogen	wastes or by-products	
vacuum)	ydrocarbons and particulates	sulfide, ammonia, suspended		
	and steam injector	solids, chlorides,		
	emissions (hydrocarbons)	mercaptans, phenol).		
		Water flow = 26.0 gal/bbl oil		

 Table 2.5.1: Summary of Emissions, Effluents, Residuals and

 Waste Streams for Topping/Separation Processes

2.5.2 Thermal and Catalytic Cracking Processes

	Largest Sources	Largest Sources of	Waste, Residuals,
Process	of Air Emissions	Process Wastewater	or By-Products
Visbreaking	Fugitive emissions from	Sour wastewater from the	Little or no residuals,
	process vents	fractionator (hydrogen	waste or by-products
		sulfide, ammonia, phenol,	generated
		suspended solids, dissolved	
		solids). Water flow = 2.0	
		gal/bbl feed	
Coking	Heater stack gas (CO, SOx,	Coke-laden water from	Coke dust (carbon
	NOx, hydrocarbons and	decoking operations in	particles and
	particulates)	delayed cokers (hydrogen	hydrocarbons) may not
	Particulate emissions from	sulfide, ammonia,	be a waste; coke fines
	decoking can also be	suspended solids) [Fluid	may be a produc
	considerabl	coking produces little or no	
		effluents].	
		Water flow = 1.0 gal/bbl	
		feed	
Fluid Catalytic	Catalyst regeneration and	Sour wastewater from the	Spent catalysts (metals
Cracking	CO boilers (hydrocarbons,	fractionator/gas	from crude oil and
	CO, NOx, SOx and	concentration units and	hydrocarbons), spent
	particulates	steam strippers (high levels	catalyst fines from
		of oil, suspended solids,	electrostatic
		phenols, cyanides, H2S,	precipitators (aluminum
		NH3).).	silicate and metals).
		Water Flow = 15 gal/bbl	
		feed	
Catalytic	Heater stack gas (CO, SOx,	Sour wastewater from the	Spent catalysts (metals
Hydrocracking	NOx, hydrocarbons and	fractionator and hydrogen	from crude oil, and
	particulates)	separator (suspended solids,	hydrocarbons).
		H2S).	
		Water Flow = 2 gal/bbl feed	

Table 2.5.2: Summary of Emissions, Effluents, Residuals and Waste Streams forThermal and Catalytic Cracking Processes

2.5.3 **Combination/Rearrangement Process**

Table 2.5.3: Summary of Emissions	, Effluents	, Residuals and	Waste Streams f	or
Cambination/D	aarrangan	ant Process		

	Largest Sources	Largest Sources of	Waste, Residuals,
Process	of Air Emissions	Process Wastewater	or By=Products
Alkylation	Process vents, fugitive	Wastewater from water-	Neutralized alkylation
	emissions	wash of reactor	sludge (sulfuric acid,
		hydrocarbon products	hydrocarbons
		(suspended solids,	
		dissolved solids, hydrogen	
		sulfide), spent sulfuric acid	
		Water flow = ~2.6 gal/bbl	
		feed	
		Spent Sulfuric Acid = 13-	
		30 lbs/bbl alkylate	
Catalytic	Heater stack gas (CO,	Process wastewater (high	Spent catalyst and
Reforming	SOx, NOx),	levels of oil, suspended	hydrogen gas
- - -	hydrocarbons and	solids, low hydrogen	Hydrogen Gas
	particulates), fugitive	sulfide)	production:
	emissions, and catalyst	Water flow = 6.0 gal/bbl	1100 - 1700 scf/bbl:
	regeneration	feed	
Isomerization	(CO, SOx, NOx,	Sour water (low hydrogen	Calcium chloride
	hydrocarbons and	sulfide, ammonia), chloride	sludge from
	particulates), HCl	salts, and caustic wash	neutralized HCl gas
	(possible in fuel gas),	water	
	vents and fugitive		
	emissions (hydrocarbons		
Ethers	Boiler stack gas (CO,	Pretreatment wash-water	Spent catalysts
Manufacture	SOx, NOx, hydrocarbons	(nitrogen contaminants);	
	and particulates)	cooling and alcohol wash	
		water are recycled	

Combination/Rearrangement Processes

2.5.4 Treatment Process

	Largest Sources	Largest Sources of	Waste, Residuals,
Process	of Air Emissions	Process Wastewater	or By Products
Catalytic	Heater stack gas (CO,	Sour wastewater from the	Spent catalyst fines
Hydrotreating	SOx, NOx, hydrocarbons	fractionator and hydrogen	(aluminum silicate and
	and particulates)	separator (suspended solids,	metals)
		H2S, NH3, phenols)	
		Water Flow = 1 gal/bbl feed	
Sweetening/	Vents and fugitive	Little or no wastewater	Spent caustic solution,
Merox Process	emission	generated	residual oil-disulfide
			mixture
Sulfur Removal/	Process tail gas (NOx,	Process wastewater	Hazardous air emissions
Claus Process	SOx, hydrogen sulfide),	(hydrogen sulfide,	- hydrogen sulfide,
	fugitive emissions	ammonia)	carbonyl sulfide (COS)
			and carbon disulfide
			(CS2); fugitive solvent
			emissions may be toxic
			(e.g., diethanolamine)

Table 2.5.4: Summary of Emissions, Effluents, Residuals, By-Products andWaste Streams for Specialty Products Manufacture

2.5.5 Specialty Product Manufacture Process

Table 2.5.5: Summary of Emissions, Effluents, Residuals, By-Products andWaste Streams for Specialty Products Manufacture

	Largest Sources	Largest Sources of	Waste, Residuals,
Process	of Air Emissions	Process Wastewater	or By=Products
Lubricating Oil	Heater stack gas (CO,	Steam stripping	Little or no residuals,
Manufacture	NOx, SOx,	wastewater (oil and	wastes or by-products
(deasphalting,	hydrocarbons,	solvents), solvent recovery	Fugitive solvent
solvent	particulates), fugitive	wastewater (oil and	emissions may be
extraction,	propane, and fugitive	propane	toxic
dewaxing	solvents)		

2.6 Emission Factor for EFRAT Method

2.6.1 Process Unit emission factor

An emission factor can be defined as the average emission rate of a given pollutant for a given source, relative to the intensity of a specific activity. Emission factors are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data [14].

Table 2-8, Air Emission Factors for Petroleum Refining Processes (Ibs/1000 barrels of fresh feed)									
Process	SOx	NOx	со	Hydrocarbons	Aldehydes	Ammonia	Particulates		
Fluid Catalytic Cracking Units									
- Uncontrolled	493	71	13.700	220	: 19	54	242		
 Electrostatic Precipator and CO Boiler 	493	. 71	Neg	Neg	Neg	Neg	45		
Moving Bed Catalytic Crackers	60	5	3,800	87	12	6	17		
Fluid Cokers						•	-		
- Uncontrolled	ND	ND	ND	ŅD	ND	ND	523		
 Electrostatic Precipator and CO Boiler 	ND	ND	Neg	Neg	Neg	Neg	6.8		
Vacuum Distillation Column Condensers									
- Uncomfolied	Neg	Neg	Neg	50	Neg	Neg	Neg		
 Controlled (vented to heater or incinerator) 	Neg	Neg	Neg		Neg	Neg	Neg		
Claus Plant and Tail Gas									
Treatment									
 SCOT Absorber and Incinerator 	5.66	Neg	Neg	Neg	Neg	Neg	Neg		
 Incinerator Exhaust Stack (2 Catalytic Stages) 	85.P	Neg	Neg	Neg	Neg	Neg	Neg		
Blowdown Systems									
- Uncontrolled	Neg	Neg	Neg	560	' Neg '	Neg	Neg		
 Vapor Recovery System and Flaring 	26.9	18.9	Neg	0.8	Neg	Neg	Neg		

Table 2.6.1: Air Emission Factor for Petroleum Process

2.6.2 Emission Factor based on CWT method

The sector organizations CONCAWE and European have investigated and further developed the Solomon CWB approach, which resulted in the Solomon "CO2 weighted tonne" (CWT) approach. This approach is owned by CONCAWE who is free to promote it and apply it within Europe. When using the CWT approach, the single "product" of the refinery is the CWT. To develop the factors, Solomon used an extensive database on some 200 worldwide refineries which have for many years, supplied energy consumption data, as well as consulted process licensors. The present set of values has been in use since 2006. It is important to note that the CWT factors are only used as weighing factors between individual units within the refinery [15].

The actual benchmarking (i.e. measuring difference in performance) is done when comparing the actual emissions to total CWT of the refinery. Since the CWT factors serve as weighting factors for different process units, changing a factor would only change the relative impact of that process unit. Lowering CWT factors as such would thus not automatically result in a steeper benchmark curve and/or a higher level of free allocation to refineries [15].

Each of the generic process unit was assigned an emission factor relative to crude distillation, which is denoted as the CWT factor (see Table 2.6.2). The CWT factor of the crude distillation unit is taken as 1, and factors of other units are representative of their CO2 emission intensity at an average level of energy efficiency, for the same standard fuel type for each process units for combustion, and for average process emissions of the process unit [15].

Since we tend to have some problem regarding the emission factor before this, so by applying this approach this problem is being solved. As a result of that, the CWT value has been used as the emission factor throughout the modeling section.

CWT process unit	Basis for throughput ¹	CWT factor ²
Atmospheric Crude Distillation	F	1.00
Vacuum Distillation	F	0.85
Visbreaker	F	1.40
Delayed Coker	F	2.20
Fluid Coker	F	7.60
Flexicoker	F	16.60
Fluid Catalytic Cracking	F	5.50
Other Catalytic Cracking	F	4.10
Thermat Cracking	F	2.70
Distillate/Gas oil hydrocracker	F	2.85
Residual Hydrocracker	F	3.75
Naphtha Hydrotreater	F	1.10
Kerosene/Diesel Hydrotreater	F	0.90
Residual Hydrotreater	F	1.55
VGO Hydrotreater	F	0.90
Reformer (inc. AROMAX)	F	4.95
Solvent Deasphalter	F	2.45
Alky/Poly/Dimersol	Р	7.25
C4 Isom	R	3.25
C5/C6 isom	R	2.85
Coke Calciner	Р	12.75
Hydrogen production, gas feed	P	296.00
Hydrogen production, liquid feed	P	348.00
Special fractionation for purchased NGL	F	1.00
Propylene	F	3.45
Asphalt	Р	2.10
Polymer Modified Asphalt	Р	0.55
Sulphur	Р	18.60
Oxygenates	P	5.60

Table 2.6.2: Basis for throughput and CWT factors for CWT process units

2.7 **Objective Function**

The goal of this research project is to determine the flow sheet of the optimal refinery network topology with the minimum annualized cost and environmental impacts. Capital cost is defined as the investment required to construct the plant and serve to identify and better characterized the project. Operating cost is the annual cost required to operate the plant. This consists of variable cost and fixed cost. Fixed cost is immobile and means that the money, once spent, cannot be quickly converted in to cash or other asset [11].

The objective function involves a combination of the following:

- 1. Minimizing the cost components that consist of the capital investment cost for equipment (CC_i) , installation cost (IC_i) , raw material cost (RMC_i) , and operating $cost (OC_i)$ associated with utility consumption (electricity, cooling water, and steam);
- 2. Maximizing revenues from the sales of the refined products (S_i) ; and
- 3. Minimizing environmental risk in our case is CO₂ emission rate cost. Thus, the objective function is expressed as:

 $\min z = \sum_{i \in I} (CC_i + IC_i + RMC_i + OC_i - S_i) + \sum_{i \in I} \sum_{p \in P} CO_2 EmissionRate \times CO_2Cost$ economic-based costs environmental risk indices

2.8 GAMS Modeling

The General Algebraic Modeling System (GAMS) is specifically designed for modeling linear, nonlinear and mixed integer optimization problems. The system is especially useful with large, complex problems. GAM is available for use on personal computers, workstations, mainframes and supercomputers. GAMS allow the user to concentrate on the modeling problem by making the setup simple. The system takes care of the time-consuming details of the specific machine and system software implementation. GAMS is especially useful for handling large, complex, one-of-a-kind problems which may require many revisions to establish an accurate model. The system models problems in a highly compact and natural way. The user can change the formulation quickly and easily, can change from one solver to another, and can even convert from linear to nonlinear with little trouble [2].

Using GAMS, data are entered only once in familiar list and table form. Models are described in concise algebraic statements which are easy for both humans and machines to read. Whole sets of closely related constraints are entered in one statement. GAMS automatically generate each constraint equation, and let the user make exceptions in cases where generality is not desired. Statements in models can be reused without having to change the algebra when other instances of the same or related problems arise. The location and type of errors are pinpointed before a solution is attempted [2].

GAMS handles dynamic models involving time sequences, lags and leads and treatment of temporal endpoints. GAMS is flexible and powerful. Models are fully portable from one computer platform to another when GAMS is loaded to each platform. GAMS facilitates sensitivity analysis. The user can easily program a model to solve for different values of an element and then generate an output report listing the solution characteristics for each case. [2]

CHAPTER 3

METHODOLOGY/PLANNED PROJECT WORK

3.1 Procedure Identification

In order to determine the optimal topology or configuration of a petroleum refinery superstructure representation, the optimal operating conditions for the process unit and the optimal flow rates of the material streams; a tradeoff between some factors need to be considered intensely. These factors are process operability, raw material utilization and energy management [9].

In this work, the mathematical model programming approach is utilized to determine the optimal design routes of design alternatives of refinery processing. In general, the mathematical programming approach to process synthesis and design activities and problems consists of the following four major steps (Grossmann, 1990; Floudas, 1995, pp. 233.234; Novak et al., 1996) as in Figure 3.1 with the following descriptions:

- 1. Development of the superstructure to represent the space of topological alternatives of the naphtha flow to petrochemical plant configuration;
- 2. Establishment of the general solution strategy to determine the optimal topology from the superstructure representation of candidates;
- **3.** Formulation or modeling of the postulated superstructure in a mathematical form that involves discrete and continuous variables for the selection of the configuration and operating levels, respectively; and
- 4. Solution of the corresponding mathematical form, i.e., the optimization model from which the optimal topology is determined.

Figure 3.1 Major steps in the mathematical programming approach to Synthesis and design problems

3.2 Superstructure Representation of Alternatives

Figure 1 shows a State–Task Network (STN)-based superstructure representation that is sufficiently rich to embed all feasible alternative topologies for a refinery. We begin with the development of a state–task network (STN)-based superstructure representation that is sufficiently rich to encompass all possible topology alternatives of a conventional oil refinery. Subsequently, a bi-objective mixed-integer linear program (MILP) of profit maximization and environmental impacts minimization is formulated according to the constructed superstructure. Then, based on a given set of fixed amounts of desired products, the model is solved to generate an optimal topology. The proposed optimization framework also incorporates principles from life cycle analysis (LCA) to account for potential environmental impacts [1]. As being state before, to facilitate development of the superstructure, a typical refinery network is considered to be decomposed into four processing pools:

- 1) Naphtha exiting the atmospheric distillation unit (ADU);
- 2) Reduced crude from the ADU and the vacuum distillation unit (VDU);
- 3) Vacuum gas oil from VDU;
- 4) Heavy oil processing and upgrading.

For this semester, the scope of the Final Year Project 2 (FYP 2) is to formulate and modify the superstructure representation for the Naphtha exiting the distillation unit, in order to develop the logical constraints and to calculate the mass balance. This also involves getting familiarized with the modeling software GAMS and already started the modeling dot that pool. Based on the information and knowledge about the physics of the problem of Naphtha processing unit, we represent all these possible processing alternatives on a superstructure, which is a diagram that contains multiple feasible flowsheets for naphtha processing. Below are the abbreviations of the unit in the superstructure and the description for them:

CR	Crude oil	HDT	Hydrotreater
ADU	Atmospheric distillation unit	LPG	Liquefied petroleum gas
LSRN	Light straight run naphtha	H2	Hydrogen
HSRN	Heavy straight run naphtha	ISQ	Isomerization unit
NAP	Naphtha	SRU	Sulfur recovery unit
MIX	Mixer	REF	Reformer
SPLT	Splitter	8	Sulfur
VIS	Visbreaker	FG	Fuel gas
СОК	Coker	BLND	Blending
FCC	Fluidized catalytic cracker	FGH	Fuel gas header
HCR	Hydrocracker	GSLN	Gasoline
PCHN	Purchased naphtha	ΤG	Tail gas

Table 3.2: Legend for the STN superstructure representation in Figure 3.2

Figure 3.2: State-task network (STN) superstructure representation for the naphtha produced from the ADU

3.3 Mathematical Model Formulation

The refinery air emissions are representing with a set of relative environmental risk indices that measure the potential of global warming (GWP [1]. To estimate the index for a particular impact category, the contributions of each chemical released from a process weighted by their emission rate is being sum up, yielding:

$$I_{\{GWP,ODP,ARP,SFP\}\in DPRI} = \sum_{i \in I} (Dimensionless Potential Risk Index DPRI)_i \times m_i$$
$$I_{\{GWP,ODP,ARP,SFP\}\in DPRI} = \sum_{i \in I} (Dimensionless Potential Risk Index DPRI)_i \times m_i$$
$$= I_{DPRLi}^* \times m_i$$

But in our case especially for global warming we interested in how much CO_2 emission is being emitted from the refinery. So the environmental indices is not being together in the equation but the concept how the CO_2 emission is being calculated is being described in the equation below:

$$CO_2 EmissionRate = \sum_{i \in I} (emission factor \times f_i)$$

In which the emission rate is given by the multiplication of the emission factor and mass flowrate from each unit in the superstructure. The greenhouse chemicals or pollutants *i* considered in this work are CO_2 . Then we relate the CO_2 emission rate with the economic term by multiply the CO_2 emission rate with the CO_2 emission cost and get the equation below:

$$CO_2 Emission_Cost = \sum_{i \in I} (CO_2 \text{ emission rate } \times CO_2 \text{ emission cost})$$
The objective function involves a combination of the following:

- 1. Minimizing the cost components that consist of the capital investment cost for equipment (CC_i), installation cost (IC_i), raw material cost (RMC_i), and operating cost (OC) associated with utility consumption (electricity, cooling water, and steam);
- 2. Maximizing revenues from the sales of the refined products (S_i) ; and
- 3. Minimizing the environmental risk cost. Thus, the objective function is expressed as:

 $\min z = \sum_{i \in I} (CC_i + IC_i + RMC_i + OC_i - S_i) + \sum_{i \in I} \sum_{p \in P} CO_2 EmissionRate \times CO_2Cost$ economic-based costs environmental risk indices

3.4 CO₂ Emission Calculation

The calculation is done based on Allan and Shonnard Method of LCA analysis. One assumption is made that is the CWT factor is taken as emission factor because of CWT factors are used as weighing factors between individual units within the refinery [15]. The actual benchmarking (i.e. measuring difference in performance) is done when comparing the actual emissions to total CWT of the refinery. Since the CWT factors serve as weighting factors for different process units, changing a factor would only change the relative impact of that process unit.

Example of Calculation

CO ₂ Emission Rate	=	Unit Capacity *Emission Factor
	=	<u>1 lbs</u> 1000bbl * <u>130000 bbl</u> * <u>365day</u> jear
		47,450 lbs/year
	=	21522.96 kg/year

CO ₂ Emission Cost	=	CO ₂ Emission Rate * CO2 Cost
	=	21522.96 kg/year *RM10/kg
	=	RM215, 230/year.

3.5 Constraints

3.5.1 Material Balances

3.5.1.1 Overall Material Balances around Mixing and Splitting units

• Material Balance in Splitter 1 (SPLT-1)

f('CR') = f('NAP1')+f('LSRN1')+f('HSRN1')

• Material Balance on Splitter 2 (SPLT-2)

 $f(H2') = f(H2_1')+f(H2_2')$

• Material Balance on Splitter 3 (SPLT-3)

f(LSRN4') = f(LSRN5')+f(LSRN6')

• Material Balance on Mixer 1 (MIX-1)

 $f(HSRN1')+f(VIS_1')+f(COK_1')+f(FCC_1')+f(HCR_1')+f(PCHN1_1') = f(HSRN2')$

• Material Balance on Mixer 2 (MIX-2)

f('NAP1')+f('VIS_2')+f('COK_2')+f('FCC_2')+f('HCR_2')+f('PCHN1_2') = f('NAP2')

• Material Balance on Mixer 3 (MIX-3)

f(LSRN1')+f(LSRN2')+f(LSRN3')+f(PCHN2') = f(LSRN4')

• Material Balance on Mixer 4 (MIX-4)

 $f('HSRN3')+f('HSRN4')+f('PCHN3_1')+f('HCR_3') = f('HSRN5')$

• Material Balance on Mixer 5 (MIX-5)

f ('NAP3')+f('NAP4')+f('PCHN3_2')+f('HCR_4') = f('NAP5')

3.5.1.2 Overall Material Balances around Process Unit

• Material Balance around Atmospheric Distillation Unit (ADU)

0.0555*f('CR') = f('LSRN1')

0.1533 * f('CR') = f('HSRN1')

0.2088 * f('CR') = f('NAP1')

0.4176*f('CR') = f('NAP1') + f('HSRN1') + f('LSRN1')

• Material Balance around Isomerization Unit (ISO)

0.01*f('LSRN5') = f('FG4')

0.99*f('LSRN5') = f('ISO')

• Material Balance around Sulfur Recovery Unit (SRU)

0.8478*(f('H2S1')+f('H2S2')) = f('S')

0.1522*(f('H2S1') + f('H2S2')) = f('TG')

• Material Balance around Catalytic Reforming Unit (REF)

0.0320*(f ('HSRN5') +f ('NAP5')) = f ('H2')

0.0370*(f('HSRN5') +f('NAP5')) = f('FG3')

0.0780*(f('HSRN5') +f('NAP5')) = f('LPG2')

0.8530*(f ('HSRN5') +f ('NAP5')) = f ('REF')

3.5.1.3 Material Balance for HDT operating Mode

Material Balance on HDT-1 mode

$$0.0109*(f('HSRN2') + f('H2_1')) = f('FG1')$$

$$0.0012*(f('HSRN2')+f('H2_1')) = f('H2S1')$$

0.0058*(f('HSRN2') + f('H2 1')) = f('LPG1')

 $0.9821*(f('HSRN2') + f('H2_1')) = f('LSRN2') + f('HSRN3') + f('NAP4')$

2.763*f ('LSRN2') =f ('HSRN3')

 $0.9821*(f('HSRN2') + f('H2_1')) = f('NAP4')$

Material Balance on HDT-2 mode
0.0109*(f ('NAP2') +f ('H2_2')) = f ('FG2')
0.0012*(f ('NAP2') +f ('H2_2')) = f ('H2S2')
0.0058*(f ('NAP2') +f ('H2_2')) = f ('LPG3')
0.2610*(f ('NAP2') +f ('H2_2')) = f ('LSRN3')
0.7211*(f ('NAP2') +f ('H2_2')) = f ('HSRN4')
0.9821*(f ('NAP2') +f ('H2_2')) = f ('NAP3')

3.5.2 Market Demand for Products

Product	Production Requirement (kg.hr)
Crude, CRs	≥10000000
Crude, CRs	≦5000000
Gasoline, GSLNs	≥7000000
Liquefied Petroleum Gas, LPG5s	≥1000000
Fuel Gas, FG5s	≥1000000
Petro Chemical Naphtha, PCHN3_1s	≤1000
Petro Chemical Naphtha, PCHN3_2s	≤1000
Fluid catalytic Cracking, FCC_1s	≤2000000
Fluid catalytic Cracking ,FCC_2s	≤2000000

Table 3.5.2: Market Demand for Products

3.5.3 Logical Constraint

3.5.3.1 Big-M Logical Constraint

The purpose of this constraint in the model is to make sure that when a process unit and operating modes is selected, the material streams is exist in the model solution. Sometimes, this constraint is called the 'switching constraint' representing the flow rates of material streams exist only if the corresponding binary variables, denoting the existence of a process unit that means take the value of one or vice versa. The general form of this constraint is given by this inequality [15]:

$$f_{j} \leq M_{j} y_{j}$$

In which M_j is derived upper bound (maximum or minimum value) on the value of f_j , the flow rate of component j in any feasible solution.

But, in our case, the value for M_j is the maximum capacity of the process unit of f_j , is an outlet stream. For instance, the Big-M logical constraint for our model is consist of 2 main constraints:

M1 (I) upper bound or maximum capacity of process units =1000000

$$f_{COK_1} \le M_{COK_1} y_{COK_1}$$

So that if,

$$y_{COK_{1}} \equiv 0, f_{COK_{1}} = 0$$

 $y_{COK_{1}} = 1, f_{COK_{1}} = 1000000$

M2 (J) upper bound or maximum capacity of stream piping =1000000

$$f_{PCHN_1} \le M_{PCHN_1} y_{PCHN_1}$$

so that if,

$$y_{PCHN_1} = 0, f_{PCHN_1} = 0$$

 $y_{PCHN_1} = 1, f_{PCHN_1} = 1000000$

General Big-M Logical Constraints for Modeling Section:

$$f_{j} \leq M_{j}Z_{j}$$

$$y_{j} = 1: f_{j} \leq M_{j}$$
But $f_{j} \geq 0$
So, $0_{j} \leq f_{j} \leq M_{j}$

3.5.3.2 Design specifications

This constraint is about the selection of process units and process streams based on engineering knowledge, heuristics, and experience. This logical constraint enforces the design specification for the process alternatives of the processing of naphtha. For instance:

Selection process stream from ADU:

Integer Linear inequality Constraint: $Z_{(LSRN1s')} + Z_{(NAP1s')} \le 0$

Desired Binary Output:

Z ('LSBNIS')	Z (NAPIS)
1	0
0	1
0	0

This constraint tell us that, at most only one of 2 opearting modes of the naphtha processing unit can be selected among the two options of: (i) LSRN or (ii) NAP.

3.5.3.3 Structural Specifications

This constraint is about Interconnectivity between states (process unit) and tasks (process stream). This logical constraint enforces interconnectivity relationships of the state and task compromising the process unit and process streams in the superstructure. For instance:

Selection process stream from ADU:

Integer Linear inequality Constraint:

 $Y_{(HDT1u')} \leq Z_{(HSRN2s')} + Z_{(H2_1s')}$

 $Z_{(HSRN2s')} + Z_{(H2_1s')} \ge Y_{('HDT1u')}$

Desired Binary Output:

X (HDTIa)	Z (HSRN2s')	Z (112_18)
0	0	0
1	1	0
1	0	1
1	0	0
1	1	1

This constraint tells us that, the selection of the stream H2-1s or HSRN2s is only allowed if and only if HDT1 is selected.

3.6 GAMS Modeling

The General Algebraic Modeling System (GAMS) is specifically designed for modeling linear, nonlinear and mixed integer optimization problems. The system is especially useful with large, complex problems. GAMS are available for use on personal computers, workstations, mainframes and supercomputers [2].

The model is being working right now and for that MILP computational result cannot be placed here yet. Anyway below are screenshot of the model I been working of this following few weeks. Basically, the model that I been worked is focusing on one pool only which is the Naphtha Hydroprocessing (NHT) processing pool (pool 1).

genside: C: Occur	rents and SettingsVidministra	lar₩y Documents	\gamsdir\projdic\	gmsproj.gpr -	(G:\FYP. 210c109)	(28April09_FYPII)(Ahmed)(WIT	(_)=\x
File Edit Search W	Rodows Utilities Model Ubranes N	4		<u>Angelon</u>		<u> </u>	an in the second	A` ×
		1) 🎒 📴						- <u>K</u>
Branico_FyPUjjelamoc@v	VITH Z).gms Khalid_1 utinets(ReiDe	et Djarw2).gms				· · · ·		
CAPEN								ŝ
TOPETEXT								
, ~#68####44##0@1 *#####08######	ikaannoveneulinkuulekuulek Kauluudanvaluulekuule	KANAGANAQIAN MATEBAANKAAN	erroenaaroora Charterroenaar	(ABBX8764444) AB2054444746	ankaanuunkuuan ankentusaaven	xuunnonnuspaup Aechnonnuonnuv	TATATATATATATATATATATATATATATATATATATA	\$##4#### \$######4
FREE VARIABLE								2
COST								
Binary variabl	Les							
T(I) selec Z(J) selec	ction of process unit I ction of material stream	n J (which is	produced from	a certain p	rocess unit I	ſ		
POSITIVE VARIA	ADLES							
F(J) flow	onte of material stream	J						
- +g								
EQUATIONS								
063	objective function,							
avalli	availabicity of Gar	9 811			:			
ar(1,0)								
- MSWA, SWA, SMS, 5	SUA, SHS_1, SHS_2, SH6, SH7,	.SW8,SN9,SK10,	STFI 1.					
951, DS2, DS3,	, DS4, D35,D36,							
551.552. 553.	SS4, SS5, SS6, SS7, SS	, 359, 5910.						
\$\$11, \$512, SS	13, 2314, 2815, 2316,							
· *5317,3518,55:	15,							5
d have a state of					· · ·			· 2
1:1	Incent				en el primi el prime de la prime de la La prime de la p			
		States in the	NE.	- 1 1	Star 50.	17 500	C /7 No. 4 4	3

Figure 3.6: GAMS Modeling

CHAPTER 4

COMPUTATIONAL EXPERIENCE AND NUMERICAL RESULTS

4.1 INTRODUCTION

Computational experiments and numerical studies of the MILP model formulation for the flowsheet superstructure optimization problem developed in this work are coded and implemented using GAMS software. The numerical examples are then solved using branch-and-cut algorithms as executed in GAMS. The associated computational statistics are reported in the table below:

Type Of Model	Mixed-Integer Linear Program (MILP)
Solver	GAMS/Cplex 10
Block of Equations	228
Blocks of Variables	5
Single Equation2	339
Single Variables	161
Discrete Variable	80
Generation Time	0.015 s
Execution Time	0.015 s
MILP Solution (Objective Value)	3553770.7628 (17 iterations, 0 nodes)

Table 4.1: Model and Computational Statistic in Model Formulation

To determine whether the logical constraints for interconnectivity relationships could effectively account for the selection of the process units as well as for both the process units and the material streams, computational experiments using GAMS has been carried out to investigate both cases. The result then been analyzed in order to determine the most probable process route the process need to take for. The rule is based on Big-M Logical constraint which reflects that whenever there are flowrates in the stream, there stream should be taken into the process routes.

4.2 MODEL DATA

In this computational experiment, there are some data that we need to assumed for (since there are no exact data for them) for the cost minimization objective function:

Data	Details
Upper bound or maximum capacity of process units (j)	1000000 unit
upper bound or maximum capacity of stream piping (i)	1000000 unit
Capital Cost for Mixer	100 unit
Capital Cost for Splitter	100 unit
Crude Oil Cost (RM per bbl)	120
Crude Oil Amount (kg per bbl)	127.7
Purchased Naphtha Cost (RM per kg)	0.524
API Gravity of Crude Charge	30
Cost of CO2 Emissions	10 unit

Table 4.2.1: Assumption Data for Model Formulation

The process routes of the naphtha processing routes has been determined using the Big-M logical constraint which states that when a unit is selected, there must be associated inlet flows and also outlet flows by the way of material balances in order to obtain a consistent result.

The result for this is being reflected in the figure below:

Stream	Flowrate	Stream	Flowrate	Stream	Flowrate
	(kg/day)		(kg/d)		(kg/day)
BLNDs	0	HCR_3s	0.00E+00	NAP2s	0.00E+00
COK_1s	2.00E+06	HCR_4s	0.00E+00	NAP3s	0.00E+00
COK_2s	0	HSRN1s	0.00E+00	NAP4s	2.35E+07
CRs	0	HSRN2s	1.12E+07	NAP5s	2.35E407
FCCs	0	HSRN3s	0.00E+00	PCHN1s	0.00E+00
FCC_1s	2.00E+06	HSRN4s	0.00E+00	PCHIN1_1s	5.21E+06
FCC_2s	0	HSRN5s	0.00E+00	PCHN1_2s	0.00E+00
FG1s	1.30E+05	ISOs	0.00E+00	PCHN2s	0.00E+00
FG2s	0	LPG1s	69398.411	PCHN3s	0.00E+00
FG3s	8.70E+05	LPG2s	1.83E+06	PCHN3_1s	0.00E+00
FG4s	0	LPG3s	0.00E+00	PCHN3_2s	0.00E+00
FG5s	1.00E+06	LPG4s	1.90E+06	REFs	2.00E+07
GSLNs	2.00E+07	LPG5s	1.90E+06	Ss	12172.96
H2s	7.52E+05	LSRN1s	0.00E+00	SOLDs	2.20E+07
H2_1s	7.52E+05	LSRN2s	0.00E+00	TGs	2185.332
H2_2s	0.00E+00	LSRN3s	0.00E+00	VISs	0.00E+00
H2S1s	14358.292	LSRN4s	0.00E+00	VIS_1s	0
H2S2s	0.00E+00	LSRN5s	0.00E+00	VIS_2s	0.00E+00
HCR_1s	2,00E+06	LSRN6s	0.00E+00		
HCR_2s	0E+00	NAP1s	0.00E+00		

Table 4.2.2: Computational Results model with Selection of Material Streams

From the table above we can see that, through a careful modeling using logical constraint representing qualitative design knowledge on design and specification, and it is sufficient to model a process synthesis problem on refinery design by assigning binary variables for the selection of process unit. This means that we can find the best process route using this model by removing the entire process stream that does not have any flow rate in them. All the work done is reflected on the figure below:

Figure 4.2.1: Selected Process Route for the Naphtha Produced from the ADU

Figure 4.2.2: Optimal Flowsheet for the Processing Alternatives of Naphtha

4.3 REMARKS ON COMPUTATIONAL EXPERIENCE

It is been understood that when unit is selected, there must be associated inlets flow and also outlets flows by way of the material balances in order to obtain a consistent result. This can be accomplished by enforcing the big _M Logical Constraint. The process route that been was figures out to be the best process route for naphtha processing is been detailed in the paragraph below:

Based on the solved model and depending on the distillation column design as well as the refinery economics, the naphtha processing best configuration is to produce heavy straight run naphtha (HSRN–1). HSRN–1 is mixed with naphtha from the cracking of heavier fractions in MIX–1 that contains COK-1, FCC-1 and HCR-1 streams before being sent to HDT–1 to be desulfurized. HDT–1 produces hydrogen sulfide gas (H2S–1), liquefied petroleum gas (LPG–1), NAP–4), and fuel gas (FG–1). H2S–1 is sent to the sulfur recovery unit (SRU) where sulfur (S) is extracted and finally sold. All LPG (LPG–1, LPG–2) are sent to MIX–6 and subsequently to the LPG recovery unit (LPG), from which treated LPG (LPG–5) is sold. FG–1 goes to the fuel gas header (FGH) which supplies fuel gas (FG–5) to the entire refinery. In the case that NAP–4 is produced from HDT–1, whose output of NAP–5 is sent to the reformer. The products from the reformer are hydrogen gas (H2), fuel gas (FG–3), liquefied petroleum gas (LPG–2), and reformate (REFs). H2 is a feed to the HDTs while reformate is used as a gasoline blending component. FG–3 is sent to the FGH.

In the nutshell, the solved model has managed to provide the optimal solution (configuration) or process routes to the naphtha processing process and this model can be the basic model to find the best configuration for the refinery.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSIONS

Process synthesis or conceptual process design is concerned with the identification of the best flowsheet structure to perform a given task. The complexity associated with synthesis problems in general and petroleum refinery design in particular, necessitates the development and implementation of a systematic and automated approach to efficiently and rigorously consider the elaborate interactions and trade-offs among the design variables. In this regard, powerful formal optimization strategies potentially offer promising tools to undertake the task. This work presents a superstructure optimization approach for synthesizing an oil refinery topology using an aggregated model to facilitate the preliminary screening stage of design alternatives.

As a result of this research projects, a mathematical model optimization has been developed to determine optimal topology for petroleum refinery, more specifically the subsystem of naphtha processing unit. The result that been produced also provide the optimal solution which means the result is succeed to provide the refinery with the optimal configuration and also parameters for the naphtha processing subsystem.

5.2 RECOMENDATIONS

Optimization Model for the Entire Refinery Subsystem

The needs to be consider to be done at the other three subsystems which are:

- Processing Pool 1: Alternatives for Atmospheric Reduced Crude (ARC)
- Processing Pool 3: Alternatives for Vacuum Gas Oil (VGO) Processing
- Processing Pool 4: Alternatives for Vacuum Residue or Vacuum Reduced Crude (VRC) Processing and Upgrading

This is really important before the model can be used fully as the optimization model for the refinery topology in order to minimize cost and also minimize the CO2 Emission.

Clarification of Data for the Modeling

Some of the data like unit cost and also maximum flow rates of the unit have been assumed in the project. So for the future work, it is recommended for us to find the most exact data for the model in order to develop an established and accurate model for the optimization model.

REFERENCES

- Allen, D. T. and D. R. Shonnard (2002). Green Engineering: Environmentally Conscious Design of Chemical Processes. Upper Saddle River, New Jersey: Prentice Hall.
- Brooke, A., D. Kendrick, A. Meeraus, and R. Raman (1998). GAMS—A User's Guide [Textfile]. Retrieved January 17, 2006 from: http://www.gams.com/docs/gams/GAMSUsersGuide.pdf. Washington DC: GAMS Development Corporation.
- [3] Chemical Engineering. Marshall & Swift Equipment Cost Index (2007). Chemical Engineering [Online textfile]. Retrieved February 10, 2008 from: <u>http://www.che.com</u>.
- [4] Douglas, J. M. A hierarchical decision procedure for process synthesis. *AIChE Journal* 31 (1985), 3: 353–362.
- [5] Gary, J. H. and G. E. Handwerk (1994). Petroleum Refining: Technology and Economics. 3rd Ed. New York: Marcel Dekker.
- [6] Drake, F. (2000). "Global Warming," The Science of Climate Change, Oxford University Press.Inc New York.
- [7] Petroleum Resource Development, PETRONAS (2006): Acid Gas Management Roadmap Presentation Package. Exploitation of High CO₂ Field.
- [8] Weyant, J. and Yanisigawa, Y. (1998): Energy and industry. In Raynor, S. and Malone, E.L. (eds), *Human choice and climate change: volume 2 resources and technology*. Columbus: Batelle Press.

- [9] Ramkumar Karuppiah, Ignacio E. Grossmann (2006). Global optimization for the synthesis of integrated water systems in chemical process. *Computers and Chemical Engineering*, 30: 650-673.
- [10] Quesada and I.E. Grossman (1995). Global Optimization of Bilinear Process Networks with Multicomponent Flow. *Computer Chemical Engineering*, Volume 19 No.12, 1219-1242.
- [11] Smith Robin (2005). Chemical Process Design and Integration.
- [12] Manuscript LPET-2009-0075.R1, Petroleum science and Technology by James Speight 2009.
- [13] C. E. Burklin, et al., Revision Of Emission Factors For Petroleum Refining, EPA-450/3-77-030, U. S. Environmental Protection Agency, Research Triangle Park, NC, October 1977.
- [14] Energy and Environmental Profile of US Petroleum Refinery, Joan Pellegrino, Sabine Brueske, Tracy Carole, and Howard Andres of Energetics, 2007.
- [15] Methodology for the free allocation of emission allowances in the EU ETS post 2012, Ecofys, Fraunhofer Institute for Systems and Innovation Research Öko-Institu

APPENDIX A1: Objective Function (DESCRIPTION)

```
Minimize Cost, C =e=
*TCI(total capital investment)
+
*Electricity used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
*Fuel used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
+
*HP Steam used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
╋
*CW used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
+
*Electricity used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
+
*Fuel used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
+
*HP Steam used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
+
*CW used for ADU, VIS, COK, FCC, HCR, HDT1, HDT2, REF, ISO, SRU
+
PCHN cost
+
*Capital cost for mixers and splitters
╋
Piping cost for the selected stream
+
SUM (I, CO2 COST* CO2 (I) (environmental cost)
```

APPENDIX B

Emission Factors for Petroleum Refineries

	Total						EMISSION	
Process	Particulate	(as SO ₂)	Monoside	rarbons ^b	(as NO ₂)	Aldebydes	Ammonie	RATING
Boilers and process heaters								
Fuel oil			See Sec	tion 1.3 - 'Fae	1 Oil Combustion"			
Natural gas			See Secti	on 1.4 - "Natur	al Gas Combustion"			
Fluid catalytic cracking units (FCC) ^c								
Uncontrolled								
kg/10 ³ L fresh feed	D.695	1.413	39.2	0.630	0.204	0.054	0.155	В
	(0.267 to 0.976)	(0.286 to 1.505)			(0.107 to 0.416)			
lb/10 ³ bbi fresh feed	242	493	13,700	220	71.0	19	54	в
	(93 to 340)	(100 to 525)			(37.1 to 145.0)			
Electrostatic precipitator and CO boiler								
kg/10 ³ L fresh feed	0.128 ⁴	1.413	Neg	Neg	0.204 ^e	Neg	Neg	в
	(0.020 to 0.428)	(0.286 to 1.505)	_	-	(0.107 to 0.416)	-	-	
lb/10 ³ bbl fresh feed	45 ^d	493	Neg	Neg	71.0*	Neg	Neg	в
	(7 to 150)	(100 to 525)	-		(37.1 to 145.0)	•	-	
Moving-bed catalytic cracking units ⁴								
kg/10 ⁵ L fresh feed	0.049	0.171	10.8	0.250	0.014	0.034	0.017	в
lb/10 ² bb) fresh feed	17	50	3,800	87	5	12	6	в
Finid coking units ²								
Uncontrolled								
kg/10 ⁸ L fresh feed	1.50	ND	ND	ND	ND	ND	ND	c
lb/10 ³ bbl fresh feed	523	ND	ND	ND	ND	ND	ND	l c
Electrostatic precipitator and CO boiler								
kg/10 ³ L fresh feed	0.0196	ND	Neg	Neg	ND	Neg	Neg	с
lb'10 ³ bhì fresh feed	6.85	ND	Neg	Neg	ND	Neg	Neg	C L
						· · · · · · · · · · · · · · · · · · ·		
		Sulfur Oxides	Carbon	1 otal Hydro-	Nivrogen Owides			FACTOR
Process	Particulate	(as 50,)	Monoside	carbonsb	(as NO ₂)	Aldehydes	Ammonia	RATING
Delayed coking units	ND	ND	ND	ND	ND	ND	ND	NA
Compressor engines ²]	
Reciprocating engines								
kg/10 ² m ³ gas burned	Ner	2%	7.02	21.8	55,4	1.61	3.2	в
10/10 ² R ⁵ gas barned	Ner	25	0.43	1.4	3.4	0.1	0.2	
Gas tarbines								
kg/10° m° gas barned	Neg	25	1.94	9.28	4.7	ND	ND	В
10/10° d" gas burned	Neg	25	0.12	0.02	0,3	ND	ND	В
Blowdown systems ²								
Uncontrolled								
kg/10° L refinery feed	Neg	Neg	Neg	1,662	Neg	Neg	Neg	с
lb/10° bbl refinery feed	Neg	Neg	Neg	580	Neg	Neg	Neg	C
Vapor recovery system and flaring								
kg/10° L refinery feed	Neg	9,077	0.012	0.002	0.054	Neg	Neg	с
10/10 ⁵ bbi refinery feed	Ne <u>r</u>	26.9	4.3	0.8	18.9	Neg	Neg	C
Vacuum distillation column condensers ^m								
Uncontrolled								
kg/10 ³ L varmun feed	Neg	Neg	Neg	0.14 (0 to 0.37)	Neg	Neg	Neg	с
lb/10 ³ bbì vacuum feed	Neg	Neg	Neg	50 (0 to 150)	Neg	Neg	Neg	с
Conirolled (vented to hester or incinerator)	Neg	Neg	Neg	Neg	Neg	Neg	Neg	с

50

APPENDIX C:

Downstream capital cost index

Figure AC: Downstream capital cost index (Cambridge Energy Research Associates, 2007)

Figure 1.1 shows the rapid increasing downstream capital cost index from middle of year 2003 to year 2008. Automated approach that guarantees optimal refinery design is increasingly important due to increase in capital costs, higher energy costs, depleting energy sources. The rising consumption of fuel has led to a higher demand for petroleum products despite tight supplies, have witnessed the call for the construction of new grassroots petroleum refineries in countries notably the US (such as in the states of Arizona and Louisiana) and also in the Middle East countries. Consequently, consumer demand provided the incentive for the construction of new refineries.

APPENDIX D:

The instrumental record of global average temperatures

This image shows the instrumental record of global average temperatures as compiled by the NASA's Goddard Institute for Space Studies. The data set used follows the methodology outlined by Hansen, J. (2006) "Global temperature change".

APPENDIX E

Schematic of an example integrated petroleum refinery

APPENDIX F

GAMS Modeling Result

MODEL STATISTICS

BLOCKS OF EQUATIONS	228	SINGLE EQUATIONS	339
BLOCKS OF VARIABLES	5	SINGLE VARIABLES	161
NON ZERO ELEMENTS	947	DISCRETE VARIABLES	80

GENERATION TIME = 0.016 SECONDS 4 Mb WIN230-230 Feb 12, 2009

EXECUTION TIME = 0.016 SECONDS 4 Mb WIN230-230 Feb 12, 2009

SOLVE SUMMARY

MODEL nap	htha_opt_hvy O	BJECTIV	E C MINIMIZE
SOLVER CP	LEX FRO	M LINE	1856
**** SOLVE	R STATUS	1 NORN	AL COMPLETION
**** MODEL	STATUS	8 INTEC	JER SOLUTION
**** OBJECT	IVE VALUE	3553770).7628
RESOURCE ITERATION	USAGE, LIMIT COUNT, LIMIT	0.093 17	1000.000 10000
MIP Solution:	3553770.76275	7 (17 it	erations. 0 nodes)
Final Solve:	3553770.762757	(0 itera	ations)
Best possible: Absolute gap: Relative gap:	3553636.560460 134.202297 0.000038)	

.

LOWER LEVEL UPPER MARGINAL

EQU objfn	•		•	1.000
EQU mat_ball				
EQU mat_bal2			•	0.304
EQU mat bal3				
EQU mat bal4				
EQU mat bal5				
EQU mat bal6				
EQU mat bal7				EPS
EQU mat bal8				EPS
EQU mat bal9				EPS
EQU mat ball0				-7.639
EQU mat ball1				0.076
EQU mat ball2				0.681
EQU mat bal13				0.681
EQU mat bal14				
EQU mat bal15				
EQU mat bal16				
EQU mat bal17	÷	4		0.304
EQU mat_bal18		•		

objfn min total cost in (mil RM)

---- EQU MAT_BAL_MIXER

LOWER LEVEL UPPER MARGINAL

MIX1u.HSRN2s		•	•
MIX2u.NAP2s		•	
MIX3u.LSRN4s		•	
MIX4u.HSRN5s			
MIX5u.NAP5s		•	
MIX6u.LPG4s			EPS

LOWER LEVEL UPPER MARGINAL

EQU mat_bal20	-INF	2.000	DE+6 2.00	00E+6	-0.681
EQU mat bal21	-INF	•	2.0000E+	6.	
EQU mat bal22	-INF	2.000	DE+6 2.00	00E+6	-0.681
EQU mat bal23	-INF		2.0000E+	6.	
EQU mat bal24	-INF	÷	2.0000E+	6.	
EQU mat_bal25	-INF		2.0000E+	-6.	
EQU mat_bal26	•		0.6	81	
EQU mat_bal27	· .	•			
EQU prodreg3	7.0000E	+6 2.00	147E+7	+INF	•
EQU prodreg4	1.0000E	+6 1.90)26E+6	+INF	•
EQU prodreq5	1.0000E	+6 1.00	00E+6	+INF	7.639
EQU prodreq6	-INF		1000.000	•	
EQU prodreq7	-INF		1000.000		
EQU prodreg8	-INF	2.0000	E+6 2.000	00E+6	-0.681
EQU prodreg9	-INF	. 2	2.0000E+0	5.	
EQU yield1			•		
EQU yield2		•			
EQU yield4			7.334		
EQU yield5			-0.305	;	
EQU yield6	• •	•	-0.304	ŧ.	
EQU yield8		•	•		
EQU yield10	•				
EQU yield11	-	• •	•		
EQU yield12	•	• •			
EQU yield13	•	• •	•		
EQU yield14		• •			
EQU yield15	•		٠		
EQU yield16	•		7.63	9	
EQU yield17	•	• •	-		
EQU yield18	•		EPS		
EQU yield19	•		EPS		
EQU yield20	•	• •	0.68	I	
EQU yield21	•	• •	7.639	9	
EQU yield22	•	• •	EPS	I	
EQU yield23	,	• •	EPS	I.	
EQU yield24	•	• •			
EQU yield25	•	• •	-0.76	4	

---- EQU BIG_M_LOGICON1

ADUu .CRs	-INF -1.000E+8	
BLNDu .ISOs	-INF -1.000E+8	
BLNDu .REFs	-INF -7.995E+7	
FGHu .FG1s	-INF -9.987E+7	
FGHu .FG2s	-INF -1.000E+8	
FGHu .FG3s	-INF -9.913E+7	

FGHu .FG4s -	INF -1	.000E+8	•			
HDT1u .H2_1s	-INF	-9.925E	+7	•		
HDT1u .HSRN2s	-INF	-8.879E	+7			
HDT2u .H2_2s	-INF					
HDT2u .NAP2s	-INF	•		•		
ISOu .LSRN5s	-INF	-1.000E	+8	•		
LPGu .LPG4s	-INF	-9.810E	+7		•	
MIX1u.COK_1s	-INF	-9.800E	+7	•		
MIX1u .FCC_1s	-INF	-9.800E	+7		•	
MIX1u .HCR_1s	-INF	-9.800E	;+7			
MIX1u .HSRN1s	-INF	-1.000E	+8	•	•	
MIX1u .PCHN1_1s	-INF	-9.479E	+7	•		
MIX1u.VIS_1s	-INF	-1.000E	+8	•	•	
MIX2u .COK_2s	-INF	•	•	•		
MIX2u .FCC_2s	-INF	•	•	•		
MIX2u .HCR_2s	-INF		•	•		
MIX2u .NAP1s	-INF			•		
MIX2u .PCHN1_2s	-INF	•	•			
MIX2u .VIS_2s	-INF		•	•		
MIX3u .LSRN1s	-INF -	-1.000E+	-8	•	•	
MIX3u .LSRN2s	-INF ·	-1.000E+	-8	•	•	
MIX3u .LSRN3s	-INF ·	-1.000E+	-8	•	•	
MIX3u .PCHN2s	-INF	-1.000E+	+8		•	
MIX4u .HCR_3s	-INF					
MIX4u .HSRN3s	-INF		•			
MIX4u .HSRN4s	-INF		•			
MIX4u .PCHN3_1s	-INF		•			
MIX5u .HCR_4s	-ÎNF	-1.000E	+8			
MIX5u .NAP3s	-INF	-1.000E-	+8		•	
MIX5u .NAP4s	-INF	-7.650E-	+7			
MIX5u .PCHN3_2s	-INF	-1.000E+	+8		•	
MIX6u .LPG1s	-INF	-0.999E+	+8	•		
MIX6u .LPG2s	-INF	-9.817E	F7			
MIX6u .LPG3s	-INF	-1.000E+	+8	•	•	
REFu .HSRN5s	-INF -	-1.000E+	-8		•	
REFu .NAP5s	-INF -	-7.650E+	⊦ 7		•	
SPLT1u.LSRN4s	-INF	-1.000E+	+8	•	•	
SPLT2u.H2s	-INF	-9.925E+	⊦7			
SRUu .H2S1s	-INF	-1.000E+	-8	•		
SRUu .H2S2s	-INF	1.000E+	-8	•	•	
SOLDu .GSLNs	-INF ·	-7.995E+	-7		•	
SOLDu .LPG5s	-INF	-9.810E+	-7			
SOLDu .LSRN6s	-INF -	1.000E+	-8			
SOLDu .Ss	-INF -	1.000E+	-8	•	-	

---- EQU BIG_M_LOGICON2

-INF	•			
-INF	-9.800	E †7		
-INF				
-INF	-1.000	E+8		
-INF			•	
-INF	-9.8001	E+7	•	•
-INF				
-INF	-9.987	E+7		•
-INF			-7.6	39
-INF	-9.913E	3+ 7		
-INF	-1.000E	3+8		
-INF	-9.900E	3+7	•	
-INF	-7.9951	3+ 7	•	
	-INF -INF -INF -INF -INF -INF -INF -INF	-INF -INF -9.800 -INF -INF -1.000 -INF -INF -9.8001 -INF -INF -9.987 -INF -INF -9.913F -INF -1.000F -INF -1.000F -INF -9.9001 -INF -7.9951	-INF	-INF -9.800E+7 . -INF -9.800E+7 . -INF -1.000E+8 . -INF -1.000E+8 . -INF -9.800E+7 . -INF -9.987E+7 . -INF -9.913E+7 . -INF -1.000E+8 . -INF -9.900E+7 . -INF -7.995E+7 .

H2s	-INI	-9.925E	:+ 7		
H2_1s	-INF	-9.925E+	-7		
H2_2s	-INF	•			
H2S1s	-INF	-1.000E+	-8		
H2S2s	-INF				
HCR_1s	-INF	-9.800E+	-7		
HCR_2s	-INF				
HCR_3s	-INF				
HCR_4s	-INF			-0.30	4
HSRN1s	-INF			-0.68	1
HSRN2s	-INF	-8.879E-	⊦7		
HSRN3s	-INF	-			
HSRN4s	-INF	-		•	
HSRN5s	-INF	•		-0.30	4
ISOs	-INF	-1.000E+	-8		
LPG1s	-INF	-0.999E+	-8		
LPG2s	-ÏNF	-9.817E-	-7		
LPG3s	-INF	•			
LPG4s	-INF	-9.810E+	-7		
LPG5s	-INF	-9.810E+	-7		
LSRN1s	-INF	-1.000E-	⊦8		
LSRN2s	-INF		•		
LSRN3s	-INF				
LSRN4s	-INF	-1.000E-	⊦8		
LSRN5s	-INF	-1.000E+	⊦8	•	
LSRN6s	-INF			-0.68	7
NAP1s	-INF	•		•	
NAP2s	-INF	•	•	•	
NAP3s	-INF	•		-0.30	4
NAP4s	-INF	-7.650E+	-7		
NAP5s	-INF	-7.650E-	-7		
PCHN1s	-INF				
PCHN1_1s	-INF	-9.479E-	F7		•
PCHN1_2s	-INF		•		
PCHN2s	-INF	•		•	
PCHN3s	-INF	•	•	•	
PCHN3_1s	-INF	•			
PCHN3_2s	-INF	•		•	
REFs	-INF	-7.995E+	-7	•	
Ss	-INF	-1.000E+	-8	•	•
SOLDs	-INF	-7.804E+	7	•	
TGs	-INF	-1.000E+	-8	•	•
VISs	-INF	٠	•	•	
VIS_IS	-INF	•	-	•	
VIS_2s	-INF	•	-	•	

EQU LOGICON1	1.000	1,000	1.000).
EQU LOGICON2				
EQU LOGICON3				
EQU LOGICON4				
EQU LOGICON5	•	• •	1	
EQU LOGICON6_1		. +	INF	
EQU LOGICON6_2		1.000	+INF	
EQU LOGICON6_3		, +	INF	•
EQU LOGICON7				
EQU LOGICON8				
EQU LOGICON9		2.000	+INF	
EQU LOGICON10	-	1.000	+INF	
EQU LÓGICON11		2.000	+INF	
EQU LOGICON12	•	1.000	+INF	
-				•

	EQU	LOGICO	DN13	. 3.00	0	+IN	F
	EQU	LOGICO)N14	. 2.00	0	+IN	F
	EOU	LOGICO	DN15	. 3.00	0	+IN	IF
*===	FOU	LOGICO	DN16	2.00	0	+IN	IF
-	EQU	LOGICO	N17				
	EOH	LOGICC	WI12	• •		•	•
	EQU	LOCICO	MUTO NUTIO	• •		•	•
	EQU	LOGICO	21N19	• •		•	•
	EQU	LOGIC	VINZU	•••		-	•
	EQU	LOGICU	JN21		্ন	*INF	· ·
	EQU	LOGICU)N22	. 1.00	Ю	+IN	F
	EQU	LOGICO	DN23	• •	-	INF	•
	EQU	LOGIC)N24	• • .	્ન	-INF	
	EQU	LÓGIĆ)N25	. 2.00	Ú.	+IN	F
	EQU	LOGICO)N26				
	EOU	LOGICO)N27				•
	EOU	LOGICO)N28		4	INF	
	EOU	LOGIC)N29	1.00	Ю	+TN	F
	FOU	LOGICO	N30	. 1	•		-
	FOU	551	-DIF			•	•
	EQU	663	INTE	• •		•	
	EQU	334 663	-11NF DATE2	• •		÷	
8	EQU	333		• •		•	
	EQU	554	-INF			•	
	EQU	222	-INF	-1.000	٠		•
	EQU	SS6	-INF	-1.000	٠		•
	EQU	SS7	-INF	-1.000			•
****	EQU	SS8	-INF				
	EQU	SS9	-INF				
	EQU	ŠŠ10	-INF	-3.000			•
	EÒU	SS11	-INF				
****	EOU	SS12	-INF				
	FOU	SS13	-INF	-1 000		-	
	FOU	SS14	INF	-1.000			•
	FOU	21122		-1.000	•		•
	EQU	0015	TNDC	•	•	·	
	EQU EQU	0017	-1111	•	•	•	
	EQU	331/ 0010	-finf		•	÷	
	EQU	2212	-INF	•	•	•	
	EQU	SS19	-INF	•	•	•	
****	EQU	SS20	-INF	•	•	•	
	EQU	SS21	-INF		•		
	EQU	SS22	-INF				
	EQU	SS23	-INF				
	EOU	SS24	-INF				
*****	EÔU	ŠŠ25	-INF				
	EOU	SS26	-INF	-			
	FOU	SS27	-INF	•		•	
	FOU	SS28	INF	•		•	
	FOI	5520		-1.000	•	•	
	EQU EQU	5522		-1.000	•		•
*****	EQU	5530	-IINF	•	•	•	
	EQU	0001	, DID	• •		•	
****	EQU	3334 0000	-HNF	•		٠	
--	EQU	2222	-INF		•	•	
	EQU	5554	-INF	-1.000	•		•
d	EQU	8835	-INF	-1.000	•		•
	EQU	SS36	-INF	•	•	•	
	EQU	SS37	-INF	•	•	•	
	EQU	SS38	-INF	•	•	•	
	EQU	SS39	-INF	-1.000			•
	EQU	SS40	-INF	•			
	EQU	SS41	-INF	-3.000			
	EOU	SS42	-INF				
	EOU	SS43	-INF				
	EOU	SS44	-INF	-			
	~~~~		41 14	•	-	•	

•

.

	EQU	SS45	-INF				
	EQU	SS46	-INF	-2.000			
	EQU	SS47	-INF	-1.000			
****	EOU	SS48	-INF	•			
	EOU	SS49	-INF	•	•		
	EOU	SS50	-INF				
	EOU	SS51	-INF			÷	
	EOU	SS52	-INF				
	EOU	SS53	-INF	-1.000			
	EOU	SS54	-INF				-
	EOU	SS55	-INF				
	EOU	SS56	-INF				
	FOU	\$\$57	-INF	•		•	
	EQU	SS58	-INF	•		•	
	EOU	SS59	-INF	•			
	EOU	SS60	-INF			÷	
	EOU	SS61	-INF	•	•		
	EOU	SS62	-INF	-2 000	•	•	
	EOU	SS63	INF	2.000	•		•
	FOU	\$\$64	INF	.1 000	•	•	
	FUI	\$\$65	INF	-1:000	4		•
	FOU	3322	INF	•	•	•	
	EQU	5550	JNE	•	•	•	
	FOU	6646	THE	·	•	·	
~~~	EQU	5500	TNE	•	•	•	
	EQU	5507	-11NF INIC	•	•	•	
19-18-9- 4 -	EQU	00/0		•	•	•	
	EQU	00/1	-IINF	•	•	•	
-	EQU	0012	-INF		•	•	
	EQU	0074	-inf	-1.000	•		•
	EQU	33/4 0076	-INF	•	•	٠	
	EQU	22/2	-INF	•	•	•	
	EQU	5576	-INF	•	•	•	
	EQU	8877	-INI		•	٠	
***	EQU	SS78	-INF	-1.000	•		٠
	EQU	\$\$79	-INF	-3.000	•		÷
	EQU	SS80	-INF	-1.000	•		•
-	EQU	SS81	-INF	-1.000	•		•
	EQU	SS82	-INF	•	•	·	
~ ~~	EQU	SS83	-INF	•	•		
	EQU	SS84	-INF	•	•	•	
	EQU	SS85	-INF	•	•	•	
	EQU	SS86	-INF	•	•	٠	
	EQU	SS87	-INF	•	•	٠	
	EQU	SS88	-INF	•	•	•	
	EQU	SS89	-INF	•	-		
	EQU	SS90	-INF		•		
	EQU	SS91	-INF	•	•	•	
	EQU	SS92	-INF	•			
	EQU	SS93	-INF				
	EQU	SS94	-INF	•	•	÷	
	EQU	SS95	-INF	•			
	EQU	SS96	-INF		•		
	EQU	SS97	-INF			•	
	EQU	SS98	-INF	•			
	EQU	SS99	-INF	-1.000			
	EQU	SS100	-INF	-1.000			
	EQU	SS101	-INF	-1.000			
	EQU	SS102	-INF	•			
	EQU	SS103	-INF				
a1 ,000	EQU	SS104	-INF	•			
	EQU	SS105	-INF	•			
	EOU	SS106	-INF	•			

EQU SS107	-INF					
EQU SS108	-INF					
EQU SS109	-INF					
EQU SS110	-INF	•				
EQU SS111	-INF				÷	
EQU SS112	-INF	-1.000				
EQU SS113	-INF					
EQU SS114	-INF	-1.000				•
EQU SS115	-INF	-1.000				
EQU SS116	-INF				•	
EQU SS117	-INF	•				
EQU SS118	-INF	-1.000				
EQU \$\$119	-INF	•				
EQU SS120	-INF	•				
EQU SS121	-INF	-1.000				•
EQU SS122	-INF					
EQU SS123	-INF	•	•		•	
EQU SS124	-INF	•				
EQU SS125	-INF	•			•	
EQU SS126	-INF		÷			
EQU SS127	-INF	•				
EQU SS128	-INF	•				
EQU SS129	-INF	-1.000				
EQU SS130	-INF	•	•		•	
EQU SS131	-INF	•	•		÷	
EQU SS132	-INF	-1.000				
EQU SS133	-INF	•	•			
EQU \$\$134	-INF	•	•			
EQU SS135	-INF	-1.000		-		•
EQU SS136	-INF	-1.000		•		•
EQU SS137	-INF	-1.000		•		•

---- VAR F stream flowrates

BLNDs	+INF EPS
COK_1s	. 2.0000E+6 +INF .
COK_2s	+INF 7.2959E-6
CRs	+INF 5.5739E-6
FCCs	+INF EPS
FCC_1s	. 2.0000E+6 +INF .
FCC_2s	+INF 8.1639E-6
FGIs	. 1.3042E+5 +INF .
FG2s	+INF .
FG3s	. 8.6958E+5 +INF .
FG4s	+INF .
FG5s	. 1.0000E+6 +INF .
GSLNs	. 2.0047E+7 +INF .
H2s	. 7.5207E+5 +INF .
H2_1s	. 7.5207E+5 +INF .
H2_2s	+INF 0.681
H2S1s	. 14358.292 +INF .
H2S2s	+INF 8.5723E-5
HCR_1s	. 2.0000E+6 +INF .
HCR_2s	+INF 2.4736E-5
HCR_3s	+INF 2.4736E-5
HCR_4s	+INF .
HSRN1s	+INF .
HSRN2s	. 1.1213E+7 +INF .
HSRN3s	+INF 0.304
HSRN4s	+INF EPS

HSRN5s	+INF .
ISOs ,	. +INF EPS
LPG1s	. 69398.411 +INF .
LPG2s	. 1.8332E+6 +INF .
LPG3s	+INF EPS
LPG4s	. 1.9026E+6 +INF .
LPG5s	. 1.9026E+6 +INF .
LSRN1s	+INF EPS
LSRN2s	+INF 0.304
LSRN3s	+INF EPS
LSRN4s	+INF .
LSRN5s	+INF .
LSRN6s	+INF .
NAP1s	+INF EPS
NAP2s	, +INF 1.3173E-5
NAP3s	+INF .
NAP4s	. 2.3502E+7 +INF .
NAP5s	. 2.3502E+7 +INF .
PCHN1s	+INF EPS
PCHN1_1s	, 5.2132E+6 +INF .
PCHN1_2s	+INF 0.681
PCHN2s	+INF 0.681
PCHN3s	+INF EPS
PCHN3_1s	+INF 0.681
PCHN3_2s	+INF 0.377
REFs .	2.0047E+7 +INF .
Ss .	12172.960 +INF .
SOLDs	. 2.1962E+7 +INF .
TGs .	2185.332 +INF .
VISs .	. +INF EPS
VIS_1s	+INF .
VIS_2s	. +INF 3.7730E-6

---- VAR CO2

ADUu			+INF	10.000
BLNDu		•	+INF	10.000
COKu			+INF	10.000
FCCu			+INF	10.000
FGHu		•	+INF	10.000
HCRu			+INF	10.000
HDTiu			+INF	10.000
HDT2u	-		+INF	10.000
ISOu			+INF	10.000
LPGu			+INF	10.000
MIX1u		•	+INF	10.000
MIX2u			+INF	10.000
MIX3u		•	+INF	10.000
MIX4u		•	+INF	10.000
MIX5u			+INF	10.000
MIX6u		•	+INF	10.000
REFu		•	+INF	10.000
SPLT1u			+INF	10.000
SPLT2u		•	+INF	10.000
SRUu			+INF	10.000
SOLDu	•		+INF	10.000
VISu			+INF	10.000

---- VAR Y existence or selection of process units

LOWER LEVEL	UPPER	MARGINAL
-------------	-------	----------

ADUu		1.000 1.000 382.903
BLNDu		1.000 1.000 EPS
COKu	•	1.000 1.000 EPS
FCCu		1.000 1.000 EPS
FGHu		1.000 1.000 EPS
HCRu		1.000 1.000 EPS
HDT1u		1.000 1.000 161.222
HDT2u		. 1.000 161.222
ISOu	•	1.000 1.000 70.535
LPGu		1.000 1.000 EPS
MIX1u		1.000 1.000 100.000
MIX2u		1.000 100.000
MIX3u		1.000 1.000 100.000
MIX4u		1.000 100.000
MIX5u		1.000 1.000 100.000
MIX6u		1.000 1.000 100.000
REFu		1.000 1.000 453.438
SPLT1u		1.000 1.000 100.000
SPLT2u		1.000 1.000 100.000
SRUu		1.000 1.000 50.382
SOLDu		1.000 1.000 EPS
VISu		. 1.000 EPS

---- VAR Z existence or selection of process streams

BLNDs	-	. 1.000 10.000
COK_1s		1.000 1.000 10.000
COK_2s		. 1.000 10.000
CRs		1.000 1.000 10.000
FCCs	•	. 1.000 10.000
FCC_ls		1.000 1.000 10.000
FCC_2s		. 1.000 10.000
FG1s		1.000 1.000 10.000
FG2s		. 1.000 -7.639E+8
FG3s		1.000 1.000 10.000
FG4s		1.000 1.000 10.000
FG5s		1.000 1.000 10.000
GSLNs		1.000 1.000 10.000
H2s		1.000 1.000 10.000
H2_1s		1.000 1.000 10.000
H2_2s		. 1.000 10.000
H2S1s		1.000 1.000 10.000
H2S2s		. 1.000 10.000
HCR_1s	•	1.000 1.000 10.000
HCR_2s		. 1.000 10.000
HCR_3s	•	. 1.000 10.000
HCR_4s		. 1.000 -3.044E+7
HSRN1s		. 1.000 -6.812E+7
HSRN2s		1.000 1.000 10.000
HSRN3s		. 1.000 10.000
HSRN4s	•	. 1.000 10,000
HSRN5s	•	. 1.000 -3.044E+7
ISOs		1.000 1.000 10.000
LPG1s		1.000 1.000 10.000

LPG2s		1.000	1.000	10.000
LPG3s			1.000	10.000
LPG4s		1.000	1.000	10.000
LPG5s		1.000	1.000	10.000
LSRN1s		1.00	0 1.000) 10.000
LSRN2s	•		1.000	10.000
LSRN3s			1.000	10.000
LSRN4s		1.00	0 1.000) 10.000
LSRN5s	•	1.00	0 1.000) 10.000
LSRN6s			1.000 -0	5.875E+7
NAP1s			1.000	10.000
NAP2s			1.000	10.000
NAP3s		•	1.000 -3	.044E+7
NAP4s		1.000	1.000	10.000
NAP5s		1.000	1.000	10.000
PCHN1s			1.000	10.000
PCHN1_1s		. 1.0	00 1.00	00 10.000
PCHN1_2s			1.000	10.000
PCHN2s			1.000	10.000
PCHN3s			1.000	10.000
PCHN3_1s			1.000	10.000
PCHN3_2s			1.000	10.000
REFs	-	1.000	1.000	10.000
Ss .		1.000	1.000 1	0.000
SOLDs	•	1.000) 1.000	10.000
TGs .		1.000	1.000	10.000
VISs .		. 1	1.000 10).000
VIS_1s		•	1.000 1	10.000
VIS_2s	•	•	1.000 1	0.000

LOWER LEVEL UPPER MARGINAL

.

----- VAR c -INF 3.5538E+6 +INF

c total cost of refinery

****	REPORT SUMMARY :	0	NONOPT
		0	INFEASIBLE
		0	UNBOUNDED
-			

Execution

---- 1859 VARIABLE c.L = 3553770.763 total cost of refiner y

---- 1859 VARIABLE F.L stream flowrates

COK_1s 200000.000, FCC_1s 200000.000, FG1s 130421.153 FG3s 869578.847, FG5s 1000000.000, GSLNs 2.004732E+7 H2s 752068.192, H2_1s 752068.192, H2S1s 14358.292 HCR_1s 200000.000, HSRN2s 1.121318E+7, LPG1s 69398.411 LPG2s 1833166.219, LPG4s 1902564.630, LPG5s 1902564.630 NAP4s 2.350213E+7, NAP5s 2.350213E+7, PCHN1_1s 5213175.169 REFs 2.004732E+7, Ss 12172.960, SOLDs 2.196206E+7 TGs 2185.332

---- 1859 VARIABLE Y.L existence or selection of process units

ADUu 1.000, BLNDu 1.000, COKu 1.000, FCCu 1.000, FGHu 1.000 HCRu 1.000, HDT1u 1.000, ISOu 1.000, LPGu 1.000, MIX1u 1.000 MIX3u 1.000, MIX5u 1.000, MIX6u 1.000, REFu 1.000, SPLT1u 1.000 SPLT2u 1.000, SRUu 1.000, SOLDu 1.000

---- 1859 VARIABLE Z.L existence or selection of process streams

COK_1s 1.000, CRs 1.000, FCC_1s 1.000, FG1s 1.000 FG3s 1.000, FG4s 1.000, FG5s 1.000, GSLNs 1.000 H2s 1.000, H2_1s 1.000, H2S1s 1.000, HCR_1s 1.000 HSRN2s 1.000, ISOs 1.000, LPG1s 1.000, LPG2s 1.000 LPG4s 1.000, LPG5s 1.000, LSRN1s 1.000, LSRN4s 1.000 LSRN5s 1.000, NAP4s 1.000, NAP5s 1.000, PCHN1_1s 1.000 REFs 1.000, Ss 1.000, SOLDs 1.000, TGs 1.000

.