
A Comparison Stndy of LDPC and BCH Codes

By

WongHuiYin

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

DECEMBER 2006

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

Approved by,

CERTIFICATION OF APPROVAL

A Comparison Study ofLDPC and BCH Codes

by

WongHui Yin

A project dissertation submitted to tbe
Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS
in partial fulfillment of the requirement for tbe

BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

(Mr. Azizuddin Abd. Aziz)

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2006

ii

CERTIFICATION OF ORIGINALITY

This is to certiiy that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

"'
WONGHUIYIN

840222- 13- 5122

Matric ID: 3967

iii

ABSTRACT

The need for efficient and reliable digital data communication systems has been rising

rapidly in recent years. There are various reasons that have brought this need for the

communication systems, among them are the increase in automatic data processing

equipment and the increased need for long range communication. Therefore, the

LDPC and BCH codes were developed for achieving more reliable data transmission

in communication systems. This project covers the research about the LDPC and

BCH error correction codes. Algorithm for simulating both the LDPC and BCH

codes were also being investigated, which includes generating the parity check

matrix, generating the message code in Galois array matrix, encoding the message

bits, modulation and decoding the message bits for LDPC. Matlab software is used

for encoding and decoding the codes. The percentage of accuracy for LDPC

simulation codes are ranging from 95% to 99%. The results obtained shows that the

LDPC codes are more efficient and reliable than the BCH codes coding method of

error correction because the LDPC codes had a channel performance very close to the

Shannon limit. LDPC codes are a class of linear block codes that are proving to be

the best performing forward error correction available. Markets such as broadband

wireless and mobile networks operate in noisy environments and need powerful error

correction in order to improve reliability and better data rates. Through LDPC and

BCH codes, these systems can operate more reliably, efficiently and at higher data

rates.

iv

ACKNOWLEDGEMENTS

Completion of this fmal year project would not have been possible without the

assistance and guidance of certain individuals. Their contribution botb technically

and mentally is highly appreciated.

Firstly, I would like to express my sincere and utmost appreciation to my supervisor,

Mr Azizuddin Abd Aziz for his guidance, advice and commitment throughout the

process of conducting tbe final year project.

Thanks are extended to the UTP Electrical and Electronics department FYP

committee, Ms Nasreen Badruddin and Ms. Siti Hawa Tahir for their cooperation on

guiding me throughout this project period.

Last but not least, I would like to thank all persons who have contributed to this

project but have been inadvertently not mentioned.

v

TABLE OF CONTENTS

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS .. ix

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND OF STUDY ... 1

1.2 PROBLEM STATEMENT .. 3

1.2.1 Importance of error correction codes 4

1.2.2 Applications for error correction codes 4

Intemet .. 4

Deep Space Telecommunications ... 5

Satellite Broadcasting ... 8

1.2.3 Significant of the project.. .. 8

1.3 OBJECTIVES .. 9

1.4 SCOPE OF STUDY ... 10

CHAPTER 2 LITERATURE REVIEW ... 11

2.1 SUPPORTING INFORMATION .. 11

2.2 LDPC CODES .. 12

2.2.1 Gallager's decoding scheme for LDPC 13

2.2.2 Mackay's encoding and decoding scheme for LDPC 14

2.3 BCH CODES .. 16

2.3.1 BCH Codes Parameters ... 17

2.3.2 Galois Array ... l9

2.3 .3 Decoding of BCH Codes ... 20

CHAPTER 3 METHODOLOGY ... 24

3.1 PROCEDURE IDENTIFICATION ... 24

3.1.1 LDPC codes algorithm ... 25

3 .1.2 BCH Codes Algorithm .. 29

3.2 IDENTIFICATION OF REQUIRED APP ARA TUS!fOOLS 34

CHAPTER 4 RESULTS AND DISCUSSIONS ... 35

4.1 PERFORMANCES OF LDPC AND BCH CODES WITH
VARYING SNR ... 35

4.2 THE EFFECT OF NOISE VARIANCE ON THE ACCURACY
PERFORMANCE FOR LDPC AND BCH CODES 38

vi

4.3 BLOCK LENGTH VS. SIMULATION TIME 39

4.4 ERROR PERFORMANCES FOR THE CODED AND UNCODED
LDPC CODES .. 41

4.5 BLOCK LENGTH VS. BIT ERROR PERCENTAGE FOR LDPC
CODES T ... 42

4.6 BIT ERRO~ RATE VS. NUMBER OF ROWS 43

4.7 PROBABIL[TY OF ERROR VS. NUMBER OF ROWS FOR BCH
CODES ... 44

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS46

5.1 CONCLUSION .. 46

5.2 RECOMMENDATION .. 47

REFERENCES .. 48

APPENDICES ... 51

Appendix A LDPC SOURCE CODES .. 52

Appendix B LDPC SUBROUTINE MATLAB M- FILES 54

Appendix C BCH MATLAB SOURCE CODES 63

Appendix D BCH SUBROUTINE MATLAB SOURCE CODES 65

Appendix E SIMULATION RESULTS FOR LDPC AND BCH
CODES ... 75

vii

LIST OF FIGURES

Figure I : Bell curve .. 6

Figure 2 : Voyager Spacecraft ... 6

Figure 3 : Saturn taken by Vogager .. 7

Figure 4: NASA's Deep Space Missions ECC Codes (code imperfectness) 7

Figure 5 : Block diagram of a general communication system I I

Figure 6 : Parity-check set tree .. I 4

Figure 7 : LDPC and BCH codes algorithm ... 24

Figure 8 : Parity check matrix of a (20, I 0, 3) LDPC code .. 26

Figure 9 : BER vs. SNR .. 35

Figure 10 : Percentage of accuracy vs. Noise variance ... 38

Figure II : Simulation time vs. block length .. 39

Figure I2 : Error performances for the coded and uncoded codeword [37] 41

Figure 13 : Block length vs. bit error percentage for LDPC code 42

Figure I4: BER vs. number of rows for bch codes .. 43

Figure I5 :Probability of errors vs. number of rows for BCH codes 44

viii

AWGN

BCH

BER

BPSK

BMA

DNS

EA

GF

LDPC

JPEG

MPEG

NASA

SNR

TCP

UDP

LIST OF ABBREVIATIONS

Additive white Gaussian noise

Bose Chaudhuri Hocquenghem

Bit Error Rate

Binary Phase-shift Keying

Berlekamp- Massey algorithm

Domain Name System

Euclidean algorithm

Galois Field

Low-density parity-check

Joint Photographic Experts Group

Moving Picture Experts Group

National Aeronautics and Space Administration

Signal -to- noise

Transmission Control Protocol

User Datagram Protocol

ix

CHAPTER!

INTRODUCTION

1.1 BACKGROUND OF STUDY

When binary data are transmitted electronically, in telecommunications, computers,

and CD players, errors may occur in the binary digits or bits. In order to correct

them, extra digits are sent along with the information digits, so message sequences

are encoded to longer codeword sequences. Codeword with errors may be corrected

to the original codeword for a small number of errors and then decoded to the original

message sequence.

The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of powerful

random error - correcting cyclic codes. This class of codes is the generalization of

the Hamming codes for multiple error correction. BCH codes were discovered by

Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960. BCH

codes were generalized to codes in pm symbols by Gorenstein and Zierler in 1961.

[37]

The first decoding algorithm for BCH codes were devised by Peterson in 1960. After

that, Peterson's algorithm was generalized and refined by Gorenstein and Zierler,

Chien, Forney, Berlekamp, Massey, Burton and others. Among all the decoding

algorithms for BCH codes, Berlekamp's iterative algorithm, and Chien's search

algorithm are the most efficient ones.

1

Low-density parity-check (LDPC) codes were invented by Gallager in 1962, but were

nearly forgotten for more than 30 years. Gallager had proposed an interactive

decoding scheme, which is now known as belief propagation decoding algorithm and

presented the analysis of decoding performance of LDPC codes. After the

introduction of turbo codes by Berrou et al, LDPC codes were rediscovered by

Mackay in 1996, and were shown to demonstrate the properties of LDPC codes

capable of asymptotically approaching Shannon limit. [3]

The Noisy Channel Coding Theorem discovered by C. E. Shannon in 1948 offered

communication engineers the possibility of reducing error rates on noisy channels to

negligible levels without sacrificing data rates. This respective theorem establishes

that however contaminated with noise interference a communication channel may be,

it is possible to communicate digital data or information error-free up to a given

maximum rate through the channel. The theorectical maximum information transfer

rate of the channel is regarded as Shannon limit. [4]

LDPC was the first code to allow data transmission rates close to the theoretical

maximum, the Shannon Limit. Impractical to implement when developed in 1963,

LDPC was forgotten. The next 30 or so years of information theory failed to produce

anything one-third as effective and LDPC remains, in theory, the most effective

developed to date (2006).

The explosive growth in information technology has produced a corresponding

increase of commercial interest in the development of highly efficient data

transmission codes as such codes impact everything from signal quality to battery

life. Although implementation of LDPC codes has lagged that of other codes, notably

the turbo code, the absence of encumbering software patents has made LDPC

attractive to some and LDPC codes are positioned to become a standard in the

developing market for highly efficient data transmission methods. 1n 2003 an LDPC

code beat six turbo codes to become the new standard for the satellite transmission of

digital television.

2

1.2 PROBLEM STATEMENT

We study two families of error-correcting codes, which are BCH and LDPC codes.

For LDPC codes, the MacKay's codes are recently invented, and "Gallager codes"

were first investigate in 1962, but appear to have been largely forgotten, in spite of

their excellent properties.

Comparison studies for LDPC and BCH codes are performed. This is because the

codes could be implemented in different areas, depending on the application

constraints such as near capacity performances (Shannon limit), complexity, time for

decoding, cost for implementing the code on hardware, and transmission capacity.

Therefore, proper applications for the error correction codes can be implemented in

order to fit the project's criteria, such as simulation time and cost. Comparisons study

of both codes involves source codes algorithms for LDPC and BCH codes, error

performances, simulation time and others.

This project is to study the importance of LDPC and BCH codes, and the difference

between both codes. Some of the error correction schemes are computationally

intensive, or require excessive redundant data which may be inhibitive for a certain

application. In some cases, cost and simulation time are the main constraint for the

projects, therefore, the error correction codes are being compared in order to satisfy

the relative applications or projects' requirements and constraints.

For example, the satellite data transmissions require more detailed and complex error

corrections codes compared with the network transmissions and computer file

transfers, therefore, the higher capacity performance code such as LDPC code can be

applied to the satellite transmissions. LDPC code can also be applied in digital video

broadcasting (DVB-S2), and. WiMAX, which is an IEEE standard for microwave

communication. The less complex codes such as BCH codes can be implemented in

digital television, mobile communications and storage devices such as compact disk

in order to save time, reduce cost and reduce application's complexity.

The comparison study of both codes performed involved error performances,

simulation time, effect of noise variance, and effect of data rates on the bit error rate

(BER). The comparison study is important in order that proper applications for error

3

correction codes could be implemented based on the projects' constraints such as time

for decoding, cost, and codes' complexity.

1.2.1 Importance of error correction codes

The need for efficient and reliable digital data communication systems has been rising

rapidly in recent years. There are various reasons that have brought this need for the

communication systems, among them are the increase in automatic data processing

equipment and the increased need for long range communication. The data systems

developed through the use of conventional modulation and voice transmission

techniques have generally resulted in systems with relatively low data rates and high

error probabilities. Therefore, the LDPC codes were developed for achieving more

reliable data transmission in communication systems.

The significant application that requires the error correction codes are Internet, deep

space communications, and satellite broadcasting.

1.2.2 Applications for error correction codes

Internet

In a typical TCP/IP stack, error detection is performed at multiple levels. Each

Ethernet frame carries a CRC-32 checksum. The receiver discards frames if their

checksums do not match. Ethernet is a frame-based computer networking technology

for local area networks (LANs). A checksum is a form of redundancy check, a very

simple measure for protecting the integrity of data by detecting errors in data that is

sent through space (telecommunications) or time (storage). A redundancy check is

extra data added to a message for the purposes of error detection and error correction.

[5]

4

User Datagram Protocol (UDP) has an optional checksum. Packets with wrong

checksums are discarded. Common network applications that use UDP include the

Domain Name System (DNS), for example, http://www.elearning.edu.my, streaming

media applications, Voice over IP, Trivial File Transfer Protocol (TFTP), and online

games.

Transfer Control Protocol (TCP) has a checksum of the payload, TCP header and

source and destination addresses of the IP header. Packets found to have incorrect

checksums are discarded and eventually get retransmitted when the sender receives a

triple-ack or a time-out occurs. Using TCP, applications on networked hosts can

create connections to one another, over which they can exchange data or packets. The

protocol guarantees reliable and in-order delivery of sender to receiver data. TCP also

distinguishes data for multiple, concurrent applications, for instance Web server and

email server, where they are running on the same host. TCP supports many of the

internet's most popular application protocols and resulting applications, including the

World Wide Web, email and Secure Shell.

Deep Space Telecommunications

NASA has used many different error correcting codes. For missions between 1969

and 1977 the Mariner spacecraft used a Reed-Muller code. The noise these spacecraft

were subject to was well approximated by a "bell-curve" (normal distribution), so the

Reed-Muller codes were well suited to the situation. [5]

The standard normal distribution is the normal distribution with a mean of zero and a

standard deviation of one. It is often called the bell curve because the graph of its

probability density resembles a bell.

5

0.9

o.~

0.7

0.6

05

0,4

O.J

0.2

0.1

0
I ., .. 4 .j

Normal

Probability density function

·2 ·I "

' P.= 0.~=0.2 --
JI =- (), o~ = l.O ----- ·-·
~ ' "· «: c j,() ··~··-··
ji::::: -::!. ct• "'0.5 --

4
The green line is the stands:rd nc.rmal distribution

Figure I : Bell curve

The Voyager I & Voyager 2 spacecraft transmitted color pictures of Jupiter and

Saturn in 1979 and 1980.

Figure 2 : Voyager Spacecraft

6

3

2.5

a:
z

"' to 2
'C
,;
• • c
u !.5
~
~
"-
.§
• 'C
0
u

0.5

Figure 3 : Saturn taken by Vogager

I f
rJ

11----------• Quadratic
Hamming Golay Residue

(8,4) (24,12) (48,24)

I
Pw= 1o-4 I

Terminated ,
Convolulional voyager 1

,;.· ~-----~
Galileo HGA

·--...------~ !

!
c· Cassini i

'c.J .. -,. .. c~·-~·~----=--1
---< -1-~ ~- !

i

Gallleo LGA

CCSDS turbo codes
r=112, 113, 114, 116

Information Block Slze k. bits

Figure 4 :NASA's Deep Space Missions ECC Codes (code imperfectness)

Color image transmission required 3 times the amount of data, so the Golay (24, 12,8)

code was used. This Golay code is only 3-error correcting, but it could be transmitted

at a much higher data rate. Voyager 2 went on to Uranus and Neptune and the code

was switched to a concatenated Reed-Solomon code-Convolutional code for its

substantially more powerful error correcting capabilities. Current DSN error

correction is done with dedicated hardware. For some NASA deep space craft such as

those in the Voyager program, Cassini-Hyugens (Saturn), New Horizons (Pluto) and

7

Deep Space 1. The use of hardware ECC may not be feasible for the full duration of

the mission. A solution to the hardware-software error correction problem exists

called "Deep Space Network@ Home". The different kinds of deep space and orbital

missions that are conducted suggest that trying to find a "one size fits all" error

correction system will be an ongoing problem for some time to come. For missions

close to the earth the nature of the "noise" is different from that on a spacecraft

headed towards the outer planets. In particular, if a transmitter on a spacecraft far

from earth is operating at a low power, the problem of correcting for noise gets larger

with distance from the earth. [5]

Satellite Broadcasting

The demand for satellite transponder bandwidth continues to grow, fueled by the

desire to deliver television, including new channels and High Definition TV and IP

data. An automatic device that receives, amplifies, and retransmits a signal on a

different frequency. Transponder availability and bandwidth constraints have limited

this growth, because transponder capacity is determined by the selected modulation

scheme and Forward Error Correction (FEC) rate. Forward error correction (FE C) is

a system of error control for data transmission. [5]

Scientific-Atlanta, which is now part of Cisco Systems, has been evaluating

developing products based on Turbo Codes concatenated with minimal complexity

Reed-Solomon Codes in its laboratories in Atlanta, Georgia and Toronto, Canada.

1.2.3 Significant of the project

The low-density parity-check (LDPC) and Bose Chaudhuri Hocquenghem (BCH)

codes are error correcting codes. These codes are a method of transmitting message

over a noisy transmission channel. In computer science and information theory, the

issue of error correction and detection has great practical importance. The error

detection is the ability to detect errors that are made due to noise or other impairments

8

during the transmission from the transmitter to the receiver. Error correction has the

feature of enabling localization of the errors and correcting them.

This project will introduce the comparison study for the LDPC and BCH codes.

Moreover, this project also provides the encoding and decoding techniques which

would be simulated by using Matlab simulation tool.

The comparison study of both codes performed involved error performances,

simulation time, effect of noise variance, and effect of data rates on the bit error rate

(BER). The comparison study is important in order that proper applications for error

correction codes could be implemented based on the projects' constraints such as time

for decoding, cost, and codes' complexity.

1.3 OBJECTIVES

• Investigate and do research on the LDPC and BCH codes.

• Investigate the algorithm for generating the parity check matrix, encoding the

message bits, modulation and decoding the message bits for LDPC and BCH

codes.

• Implement the encoding and decoding simulations for the LDPC and BCH

codes using the Matlab software.

• Conduct and generate the results using Matlab software simulations.

• Conduct a comparison performance study for LDPC and BCH codes.

9

1.4 SCOPE OF STUDY

This project covers the research about the LDPC and BCH codes. Matlab will be

used for encoding and decoding the LDPC and BCH codes. This study would

enhance our knowledge on the LDPC and BCH error correcting code, where we

learned the method of transmitting a message over a noisy transmission channel. The

codes could minimize the probability of lost information transmitted. The Matlab

software is used for simulating the encoding and decoding for both the error

correcting codes.

10

CHAPTER2

LITERATURE REVIEW

2.1 SUPPORTING INFORMATION

.. Source
Encoder

Source
Decoder

Channel
Encoder

Channel
,.._ _ _, Decoder

I Modulator

I

1•--IDemodulatorl•----'

Figure 5: Block diagram of a general communication system

Coding is the conversion of information to another form. From Figure 5, source

coding is conducted for lowering the redundancy in the information, for example ZIP,

JPEG, and MPEG2. The channel coding is to defeat the channel noise. The

application of redundant symbols to correct data errors could be implemented by

channel encoding. Modulation is the conversion of symbols to a waveform for

transmission. The conversion of the waveform back to symbols is done by

demodulation. The decoding uses the redundant symbols to correct errors. Several

parameters for code performance evaluations are code rate (R), Signal - to - noise

ratio (Eb/No), and Bit Error Rate (BER). The coding gain is the saving in Eb/No

required to achieve a given BER when coding is used vs. that with no coding.

Generally, the lower the code rate, the higher the coding gain. Better codes provides

better coding gains, however, they are usually more complicated and have higher

complexity, for instance LDPC codes. [6]

II

2.2 LDPC CODES

Low-density parity-check (LDPC) codes are a class of linear block codes. This code

contains the parity-check matrix which contains only a few 1 's in comparison to the

amount of O's. Basically there are two different possibilities to represent LDPC

codes. They can be described either via matrices or using the graphical

representation. There are several different algorithms for constructing suitable LDPC

codes. The semi-randomly generate sparse parity check matrices was proposed by

Mackay. There are several algorithm used to decode LDPC codes, the most common

one are belief propagation algorithm, the message passing algorithm and the sum­

product algorithm.

The parity-check codes use linear sums of the information bits, called parity symbols

or parity bits, for error detection or correction. A single parity check code is

constructed by adding a single parity bit to a block of data bits. The parity bit takes

on the value of one or zero as needed to ensure that the summation of all the bits in

the codeword yields an even or odd result. The summation operation is performed

using modulo-2 arithmetic. If the added parity is designed to yield an even result, the

method is termed odd parity.

The matrix H is defined as the parity-check matrix, which will enable us to decode

the received vectors. For each (k x n) generator matrix G, there exists an (n-k) x n

matrix H, such that the rows of G are orthogonal to the rows of H; that is, GHT = 0,

where HT is the transpose of H, and 0 is a k x (n-k) all-zeros matrix. HT is a matrix

whose rows are columns ofH and whose columns are the rows of H.

The product UHT yields the result UHT = 0. Thus, once the parity-check matrix His

constructed to fulfill the foregoing orthogonality requirements, it can be used to test

whether the received vector is a valid number of the codeword set U. U is a

codeword generated by G ifUHT = 0. [7]

12

2.2.1 Gallager's decoding scheme for LDPC

Maximum-likelihood decoding is a convenient concept for decoding the LDPC codes

as it minimizes the probability of decoding error and more effective than other

decoding scheme. However, the maximum-likelihood decoder's disadvantage is that

the decoder compares the received sequence with all possible code words, which is

particularly true for long block lengths, since the size of the code set grows

exponentially with block length. A desirable decoder should be relatively simple in

terms of equipment, storage and computation, even if it moderately increases the

probability of error. If the lower probability of error is required, we can simply

increase the block length of the code. [8]

There are two types of decoding scheme which will be described. The first decoding

scheme is relatively simple but only applicable to Binary Symmetric Channel (BSC)

at rates below capacity. The second decoding scheme, which decodes directly from

the a posteriori, or production probabilities at the channel output is a more promising

decoder.

In the first decoding scheme, the decoder computes all the parity-checks and changes

any digit that is contained in more than some fixed number of unsatisfied parity­

check equations. Using these new values, the parity checks are recomputed. This

process is repeated until the parity checks are all satisfied.

If the parity-check sets are small, this decoding procedure is reasonable, since most of

the parity-check sets will contain either one transmission error or no transmission

errors. Therefore, when most of the parity-check equations checking on a digit are

unsatisfied, there is a strong indication that that digit is in error.

13

k-l other
digits in fust .,. .,

parity-check set ' '::
~~~il" 

d 

Figure 6 : Parity-check set tree 

2.2.2 Mackay's encoding and decoding scheme for LDPC 

Mackay reported the empirical which are observation and experiment for 

performance of Gallager's LDPC codes on Gaussian channels. It was shown that 

performance successfully better than that of standard convolutional and concatenated 

codes can be achieved, and the performance is ahnost as close to the Shannon limit as 

that of Turbo codes. [9] 

A linear code may be described in terms of a generator matrix G or in terms of a 

parity check matrix H, which satisfies Hx=O for all codewords x. The Gallager codes 

were superior for practical purposes. 

During the work on Mackay's codes, it was realized that it is possible to create good 

codes from very sparse random matrices, and to decode them using approximate 

probabilistic algorithms. The Gallager's decoding algorithm and codes were 

reinvented. The sparse random parity check matrices [9] were created in the 

following ways. 

i. Construction lA. 

An M by N matrix (M rows, N colnnms) is created at random with weight per colnnm 

t, and weight per row as uniform as possible, and overlap between any two columns 

14 



no greater then 1. The weight of a column is the number of non-zero elements. The 

overlap between two columns is their inner product. 

ii. Construction 2A 

Up to M/2 of the columns are designated weight 2 columns, and these are constructed 

such that there is zero overlap between any pair of columns. The remaining columns 

are made at random with weight 3, with the weight per row as uniform as possible, 

and overlap between any two columns of the entire matrix no greater than 1. 

iii. Construction lB and 2B. 

A small number of columns are deleted from a matrix produced by constructions IA 

and 2A, respectively, so that the bipartite graph corresponding to the matrix has no 

short cycles oflength less than some length 1. 

The constructions stated above do not ensure that all rows of the matrix are linearly 

independent, therefore the M x N matrix created is the parity matrix of a linear code 

with rate at least R =MIN, where K = N- M. R denotes the rate. The generator 

matrix of the code can be created by Gaussian elimination. 

The Gaussian channel is simulated with binary input ±a and additive noise of 

variance equals to 1. If one communicates using a code of rate R then it is 

2 
. I d "b h . I . . b Eb a d h" b . convent1ona to escn e t e s1gna to nmse ratio y - = -- an t 1s num er IS 

No 2Ra.2 

reported in decibels as 10 logw EWN"o-

15 



iv. Decoding 

The decoding problem is to fmd the most probable vector x such that Hx mod 2 = 0, 

with the likelihood of x given by ITnf~n where fh=11(1+exp(-2ayn/a.2)) 

and f~ = 1-f~, and Yn is the channel's output at time n. 

Gallager's algorithm may be viewed as an approximate belief propagation algorithm. 

Moreover, the Turbo decoding algorithm may also be viewed as a belief propagation 

algorithm. 

The elements ofx are referred as bits and to the rows ofH are referred as checks. We 

denote the set of bits n that participate in check m by N (m) = {n: Hrnn =1}. We 

define the set of checks in which bit n participates, M (n) = {m: Hmn =1}. A set N 

(m) is denoted with bit n excluded by N (m)/n. The algorithm has two alternating 

parts, in which quantities qmn and rmn associated with each non-zero element in the H 

matrix are iteratively updated. The quantity q:i,n is meant to be the probability that 

bit n of x is x, given the information obtained via checks other than check m. The 

quantity rfun is meant to be the probability of check m being satisfied if bit n of x is 

considered fixed at x and the other bits have a separable distribution given by the 

probabilities {qrnn' : n' E N(m)\n}. The algorithm would produce the exact posterior 

probabilities of all the bits if the bipartite graph defmed by the matrix H contained no 

cycles. 

2.3 BCH CODES 

Bose - Chaudhuri - Hocquenghem (BCH) codes are a generalization of Hamming 

codes that allow multiple error correction. They are a powerful class of cyclic codes 

that provide a large selection of block lengths, codes rates, alphabet sizes, and error­

correcting capability. At the block lengths of a few hundred, BCH codes could 

outperform all other block codes with the same block length and code rate. BCH 

16 



codes employ a binary alphabet and a codeword block length of n =2m- I, where m 

= 3, 4, and etc. [27] 

2.3.1 BCH Codes Parameters 

The BCH codes have the following parameters for any positive integers 'm' and 't', 

where m<:3 andt<2 m-I. 

Block length: n = 2 m- I; 

Number of parity- check digits: n- k s mt ; 

Minimum distance: d min <: 2t +I. 

This code [37] is capable of correcting combinations of 't' or fewer errors in a block 

of n = 2 m- 1 digits. The generator polynomial of this code is specified in terms of its 

roots from the Galois field. GF(2m). The generator polynomial g(X) of the t- error­

correcting BCH code of length 2 m - I is the lowest - degree polynomial over GF(2) 

that has : "a, a2
, a3 

... a2f' as its roots. Let ¢t(X) be the minimal polynomial of a;. 

Then, g(X) must be the least common multiple (LCM) of¢1(X),qh(X), ... ,¢2t(X), 

which isg(X) = LCM{¢t(X),¢2(X), ... ,¢21(X)}. 

Hence, every even power of 'a' in the sequence of "a, a2
, a3 

... a2
'" has the same 

minimal polynomial as the preceding odd power of 'a' in the sequence. As a result, 

the generator polynomial g(X) of the binary t- error- correcting BCH code oflength 

2 rn - I can be reduced from g(X) = LCM{¢t(X),¢2(X), ... ,¢2t(X)} to 

g(X) = LCM{¢t(X),¢,(X), ... ,¢zt-t(X)}. 

Due to the degree of each minimal polynomial is 'm' or less, the degree of g(X) is at 

most 'mt'; that is, the number of parity - check digits, n - k, of the code is at most 

equal to 'mt'. 'n' represents the block size, 'n- k' represents the parity- check digits 

17 



and 't' represents the number of errors that could be corrected with BCH codes. If 

the value of 't' is small, n - k is exactly equal to 'mt'. The BCH codes defined are 

usually called primitive BCH codes, where its parameters are code length of 2 m - 1 

withm:>IO. [37] 

The single - error - correcting BCH code of length 2 m - 1 is generated by 

g(X) =¢I( X). Because 'a' is a primitive element of GF(2m), ¢I( X) is a primitive 

polynomial of degree 'm'. Therefore, the single - error- correcting BCH code of 

length 2 m - 1 is a Hamming code. 

Let v(X) = vo +via' + ... + v.- w(•-IJ• = 0 be a code polynomial in a t - error -

correcting BCH code of length n = 2 m - 1. This equality can be written as a matrix 

product as follows: 

1 

a' 

0
21 

(vo, VI, ••• , Vn -1) · ::::: 0 

a<n-l)i 

for 1 :> i :> 2t . The condition given as above shows that the inner product of 

( ) d (1 i 2i (n-I)i) • 1 t Th C. ' ' • th vo, VI, ••• , vn -I an ,a ,a , ... ,a IS equa o zero. eretore, as v 1s e 

codeword in the BCH code, then 

v·HT =0 

18 



2.3.2 Galois Array 

Galois array theory is an important for BCH codes encoding and decoding 

algorithms. In mathematics, more specifically in abstract algebra, Galois Theory, 

named after Evariste Galois, provides a connection between field theory and group 

theory. Using Galois Theory, certain problems in field theory can be reduced to group 

theory, which is in some sense simpler and better understood. Abstract algebra is the 

field of mathematics that studies algebraic structures, such as groups, rings, fields, 

modules, vector spaces, and algebras. 

Group theory is that branch of mathematics concerned with the study of groups. It has 

several applications in physics and chemistry. Galois Theory uses groups to describe 

the symmetries of the equations satisfied by the solutions to a polynomial equation. 

[10] 

A group G is a collection of objects with an operation · satisfying the following rules: 

I) For any two elements x andy in the group G we also have x·y in the group G. 

2) There is an element, which is usually written I or e, but sometimes 0, called 

the identity in G such that for any x in the group G we have l·x = x = x · I. 

3) For any elements x, y, z in G we have (x · y) · z = x · (y · z). This property is 

called associativity; it means we can write x·y·z unambiguously. 

4) Every element x in G has a unique inverse y (sometimes written -x or x-1) so 

that X • y = y • X= J. [11] 

Field theory is a branch of mathematics which studies the properties of fields. A field 

is a mathematical entity for which addition, subtraction, multiplication and division 

are well-defined. 

A field F is quite similar with a group, but it has two operations, usually written · and 

+. F is a field ifF has elements 0 and I such that F with the operation + is a group, 

19 



for example (f, +),the set F without the element 0 is a group with the operation · , for 

example (F {0}, ·). Besides, it also involves relations like (x + y) ·z = x · z + y · z, 0 · 

x = 0 = x · 0, x · y = y · x. The general defmition of a field is that a field is a set in 

which we can add, subtract and multiply any elements, and can divide by any element 

other than 0. [11] 

Originally Galois used permutation groups to describe how the various roots of a 

given polynomial equation are related to each other. The modern approach to Galois 

Theory, developed by Richard Dedekind, Leopold Kronecker and Emil Artin, among 

others, involves studying automorphisms of field extensions. In mathematics, an 

automorphism is an isomorphism from a mathematical object to itself. It is, in some 

sense, a symmetry of the object, and a way of mapping the object to itself while 

preserving all of its structure. The set of all automorphisms of an object forms a 

group, called the automorphism group. It is, loosely speaking, the symmetry group of 

the object. [11] 

Galois theory is concerned with symmetries in the roots of a polynomial p(x). for 

example, if p(x) = x'- 2 then the roots are ± .J2. A symmetry of the roots is a way 

of swapping the solutions around in a way which does not matter in some sense. 

Therefore, .J2 and - .J2 are the same because any polynomial expression 

involving .J2 will be the same if .J2 is replaced by - .J2. For example, for the 

equation .Ji' +.Ji +1 = 3 +.Ji, or a' +a+ I= 3+a when a -.Ji, and this will be 

true for any expression involving only adding and multiplying .J2. [11] 

2.3.3 Decoding of BCH Codes 

There are several decoding scheme available for BCH codes, which would be 

described as follows: 

i. Berlekamp- Massey algorithm (BMA) 

The BMA was invented by Berlekamp and Massey. This is a computationally 

efficient method to solve the syndrome equation, in terms of the nmnber of 

20 



operations in GF (2m). The BMA is important for BCH decoders' 

implementation in software. 

ii. Euclidean algorithm (EA) 

Euclidean algorithm involves determining the greatest common divisor (GCD) 

of two integers of elements of any Euclidean domain by repeatedly dividing 

the two numbers and the remainder in turns. Due to its regular structure, the 

EA is widely used in hardware implementations for BCH decoders. 

iii. Direct solution 

This method was proposed by Peterson. It directly fmds the coefficients of 

error locator polynomial as a set of linear equations. The term Peterson -

Gorenstein - Zierler decoder was used in the literature. As the complexity of 

inverting a matrix grows with eh cube of the error - correcting capability, the 

direct solution method works only for small values of 't'. 

For this project, the Berlekamp decoding scheme would be implemented for decoding 

the BCH codes. 

When the codeword v(X) = vo+ v1X + vzX 2 + ... + v. -1X"-1 is transmitted, the 

transmission errors would result in the following received vector: 

r(X) = ro + nX + rzX2 + ... + rn -1X"-1 

In order to decode the BCH codes, the elements f3 E GF(2m) to number the positions 

of a codeword, or the order of the coefficients of the associated polynomial. 

By using the GF(2m) arithmetic, the positions of the errors can be found with 

solving a set of equations. These equations can be obtained from the error 

polynomial e(X) and the zeros of the code, ai. 

The equation r(X) = v(X) + e(X) represents the polynomial associated with a 

21 



received codeword, where the error polynomial is defined as 

e(X)=en(X11 )+e•2(X'2 )+ ... +e;,(X") and v-:;.t is the number of errors. The sets 

for e(X) and H matrix are known as the error values and error positions respectively, 

where e; E {0,1} for binary BCH codes and a E GF(2m). 

Firstly, the syndrome from the received vector r(X) would be computed for decoding. 

The syndrome could be represented by: S = r · Hr . The ith component of the 

syndrome is s, = r( a') = ro + rw' + rza21 + ... + rn- w<•-IJI, for I-:;. i .,;,. 2t . The 

syndrome components are elements in the field GF (2m). The syndrome could be 

computed by dividing the r(X) by the minimal polynomial ¢.(X) of ai, which is 

r( X) = c;( X)¢.( X) + tJ,( X) , where di(X) is the remainder with the degree less than 

that of ¢.(X) . Because ¢.(a' ) = 0 , the syndrome could be written as: 

s, = r(a') = di(a'). 

Let the error locator polynomial be defmed as 

' a(x)= TIO+a 11 x)=l+aix+azx2 + ... +o;,x', with roots equal to the inverses of 
l=l 

the error locations. Then the following relation between the coefficients of a (x) and 

the syndromes holds: 

Sv+l S! S2 ... Sv 01' 

Sv+2 Sz s, 
000 Sv+I 01' -1 

= 

Sz, Sv Sv+I 000 Szv-1 0"1 

The decoder consists of digital circuits and processing elements to accomplish the 

following tasks: 

• Compute the syndromes, by evaluating the received polynomial at the zeros of 

the code. 

22 



• Find the coefficients of the error locator polynomial a(x) 

• Find the inverses of the roots of a(x), for example, the locations of the errors, 

it iv a , ... ,a . 

• Find the values of the errors eit, ... , eiv· 

• Correct the received word with the error locations and values found. 

23 



CHAPTER3 

METHODOLOGY 

3.1 PROCEDURE IDENTIFICATION 

In order to perform effectively in this project, the problem statement and objectives 

are firstly defined. The objective for this project is to do research on the LDPC and 

BCH codes. Before starting for simulating the LDPC and BCH codes in the Matlab 

simulation software, detailed understanding of the LDPC and BCH codes 

characteristics including the H matrix generation, Galois array matrix, encoding the 

message bits, channel modulation and decoding the received bits are required. 

Furthermore, the Matlab software would be used for encoding and decoding the 

codes. The algorithm for the LDPC and BCH source codes would be investigated as 

well. The Matlab software is used as a simulation tool that helps to generate results 

of encoding and decoding for both the LDPC and BCH codes. 

Generating the parity-
check matrix 

~ 
The decoded 

Encoding message bits were being 
blocks compared with 
~ the information 

Modulation and bits 

channel simulations 

.~ 
Decoding 

Figure 7 : LDPC and BCH codes algorithm 

24 



3.1.1 LDPC codes algorithm 

Low Density Parity Check codes can be specified by a non-systematic sparse parity­

check matrix, H. H matrix would have a uniform column weight greater than 3, and a 

uniform row weight as well. H is constructed at random subject to these constraints. 

An (nj,k) LDPC code is specified by a parity check matrix H, having n-k rows, n 

columns and j 1 's per column. For this Matlab program, the k=3. All the parity 

check matrices would have 3 ones per column. The code formed from such a parity 

check matrix is known as a regular Gallager code. [7] The LDPC Matlab source 

codes could be referred in Appendix A. 

Step 1: Generating the parity check matrix 

For generating the parity check matrix for a (200,100,3) LDPC code, the fimction 

gen _Idpc(rows,cols) could be used as follows: 

h=gen_ldpc(100,200); 

The algorithm [7] for implementation of this function was shown as follows: 

1. An all zero matrix H of dimension rows x cols is created. 

2. For each column in H, three l 's are placed in rows chosen at random, subject 

only to the constraint that the ones be placed in distinct rows. 

3. The Matlab software then runs through the matrix searching for a row with 

zero 1 's or just one 1. If a row has no 1 's in it then it is a redundant row. So 

the software chooses 2 columns in the same row at random and places I 's in 

those columns. If a row just has one 1 in a row, this means that the codeword 

bit in that column is always zero. Therefore whenever the software find a row 

with just one 1 in it, it randomly picks another column in the same row and 

places a 1 there. 

4. The software then calculates the number of 1 's per row. Number of l's per 

row = ( cols x bits _per_ col)/rows. If this is not an integer, the software rounds 

25 



the value to the next higher integer. If the number of 1's per row calculated is 

not an integer, it is not possible to have a uniform number of ones in each row. 

5. The software then runs through the matrix trying to make the number of 1 's 

per row as uniform as possible. For any row containing more number of ones 

than the value calculated in Step 4, the software picks a column containing a 1 

at random and tries to move that 1 to a different row in the same column. The 

software makes sure that the row chosen does not have a I in that particular 

column. If the software is not able to find such a row, it just tries with a 

different column containing a l in row i. 

6. A good parity check matrix for LDPC codes generates a factor graph with no 

cycles in it. The software runs through the graph trying to eliminate cycles of 

length 4, for example situations where pairs of rows share! 's in a particular 

pair of colunms as shown in Figure 6. The figure 6 shown below is the parity 

check matrix of a (20, I 0,3) LDPC code. 

II 

v~ 
0 0 0 0 0 

0 0 0 I I I 
0 0 I I 0 I 0 0 0 0 I 
0 0 0 0 0 0 0 1 0 I 0 
0 0 0 I 0 I 0 I I 0 0 0 0 0 
0 0 0 0 0 0 1 I 0 0 0 0 I I 0 0 
0 0 I 0 0 0 0 0 0 I I I I 0 0 0 
I 0 0 I 0 0 0 0 I 0 I 0 0 0 0 0 
I I I 0 I I 0 0 0 0 0 0 0 I 0 0 
0 0 0 0 0 I 0 0 I 0 0 0 I 0 0 I 

Figure 8 : Parity check matrix of a (20, 10, 3) LDPC code. 

Step 2: Encoding the Message Blocks 

The codeword which is by 'u' variable, and an M by N IG parity check matrix H 

could be related as u.HT = 0. The message bits, s, are located at the end of the 

codeword and the check bits, c occupy the beginning of the codeword, where the 

equation is u =[cis]. [7] 

Let H =[AlB], where A is an M by M matrix and B is an M by N-M matrix. If the 

message bits 's' are located at the end of the codeword, the first part of H is an 

26 



identity matrix. The equation derived are Ac + Bs = 0, and c = A"1 Bs. The check bits 

could be computed as long as A is non-singular. 

For encoding ofiG parity check matrix, the first M by M part of the matrix (A) has to 

be non singular. The IG parity check matrix could be obtained by the gen _ldpc() 

function. The function rearrange_ cols(parity check) rearranges the columns of the IG 

parity check matrix such that A is non singular. The function does only the colurrm 

operations of the Gauss-Jordan reduction that can be used to reduce the IG parity 

check matrix to the systematic form. 

Step 3: Conducting Modulation and Channel Simulation 

For this program, the Binary Phase Shift Keying (BPSK) and Additive White 

Gaussian Noise (A WGN) are the constraints for performing the modulation and 

channel simulation respectively. The Binary Phase Shift Keying uses a single carrier 

with the phase shifts of 180° to carry the sigualln communications. [7] 

The additive white Gaussian noise (A WGN) channel model is one in which the only 

impairment is the linear addition of wideband or white noise with a constant spectral 

density a Gaussian distribution of amplitude. The model does not account for the 

phenomena of fading, frequency selectivity, interference, nonlinearity or dispersion. 

However, it produces simple, tractable mathematical models which are useful for 

gaining insight into the underlying behavior of a system before these other 

phenomena are considered. 

The A WGN channel is a good model for many satellite and deep space 

communication links. It is not a good model for most terrestrial links because of 

multipath, terrain blocking, interference, etc. However for terrestrial path modeling, 

AWGN is commonly used to simulate background noise of the channel under study, 

in addition to multipath, terrain blocking, interference, ground clutter and self 

interference that modern radio systems encounter in terrestrial operaton. 

27 



Step 4: Decoding Received Blocks 

The decoding problem is to find the most probable vector x such that Hxmod2 = 0, 

with the likelihood of x given by TIJ.= where 1: =l/(l+exp(-2try./a-2
)) 

and/.0 = 1-1:, and Yn is the channel's output at time n. [7] 

For the initialization, we first initialize q~. and q~. to the likelihoods of Xn, 

f."andf:. For the AWGN channel, f.' =1/(l+exp(-2tryn/u 2
)) and /.0 =1-1: 

where the input to the Gaussian channel is± a, a-2 = No/2 is the variance of the 

additive noise and Yn is the soft output of the Gaussian Channel. 

For the horizontal step calculation, we compute oqmn = q~. - q~., next 

onnn = r!,- r;. = n oqmn" : n'E .L(m) \ n is computed, Next we would get 

r:. =(l+onn.)/2 and r~ =(l+o,m.)/2 

Next is the vertical step calculation, for this step we update the values of q~. and q~. 

using the r's obtained in step 2. 

The equations are: 

q~. =amnf.0nr: ... :m'EM(n)\m where amn is chosen such that q~n +q~n =I. 

The pseudoposterior probabilities are then obtained as: 

q~ =aJ."Tir: •. :mEM(n) and q~ =aJ:Tir~ •. :mEM(n) 

The final step is the tentative decoding, we set rn =I if q1 n >0.5 and rn=O otherwise. 

In the software implementation the algorithm iterates 1000 times. 

The function decode_ldpc(rx_waveform,No,amp,h,scale) does the decoding. 

The function returns the decoded codeword and not the message bits. 

28 



The function can be used along with the modulation and channel transmission 

functions as shown below: 

Once the decoding is done or the termination condition is satisfied or the maximum 

numbers of iterations are performed, the message bits need to be extracted. At the 

last step of encoding the message blocks, the reordering done to get a non-singular A 

was undone. If this reordering was done again, the message bits would be located at 

the end of the decoded codeword and can be extracted easily. The rearranged_ cols 

array (output by the rearrange_cols() function) that holds the reordering information 

is used to do the reordering. The extract_mesg(vhat,rearranged_cols) works in this 

manner. 

3.1.2 BCH Codes Algorithm 

The BCH codes algorithm was divided into several parts for more detailed 

explanations. The several parts of BCH codes algorithms are: constructing the 

codeword length, generates a matrix consists of random binary numbers and creates a 

Galois field array, gets generator polynomial, encodes the message, BPSK 

modulation, channel simulation, demodulation and decode the received codes. BCH 

Matlab source could be referred in Appendix C. 

Referred to the MATLAB communication toolbox functions, the algorithm for BCH 

code is described as follows: 

Step 1: Construct the codeword 

m=4; 

n=2·"m-1; 

k=5; 

nwords=10; 

From the codes above, 'n' represents the codeword length, 'k' is the message length, 

and the 'nwords' represents the number of words to encode for this program. 

29 



Step 2: Create Galois field array 

msg=gf(randint(nwords,k)); 

From the code above, randint (10,5) generates an 10 by 5 matrix of random binary 

numbers. "0" and "1" occur with equal probability. 

'GF' function creates a Galois field array. The msg = gf(randint(nwords,k) creates a 

Galois field array from the matrix 'randint(nwords,k)'. The Galois field has 2Am 

elements, where for this program, the value of m is set to default value 1. Each 

element of x must be 0 or 1. The output for 'msg' is a variable that MATLAB 

recognizes as a Galois field array, rather than an array of integers. [ 13] 

Step 3: Create generator polynomial 

[genpoly,t]=bchgenpoly(n,k) 

The function 'bchgenpoly' gets generator polynomial and error - correction 

capability. genpoly = bchgenpoly (n,k) returns the narrow - sense generator 

polynomial of a BCH code with code length 'n' and message length 'k'. The 

codeword length 'n' must have the form 2Am -1 for some integer 'm' between 3 and 

16. The output 'genpoly' is a Galois row vector that represents the coefficients of the 

generator polynomial in order of descending powers. The narrow-sense generator 

polynomial is (X-alpha) * (X-alphaA2) • ... • (X-alpha A (N-K)), where alpha is a root 

of the default primitive polynomial for the field GF (N+l). [14] 

30 



Step 4: Encode the message 

code= bchenc(msg,n,k); 

CODE = BCHENC (MSG,N,K) encodes the message in MSG using an (N,K) BCH 

encoder with the narrow-sense generator polynomial. MSG is a Galois array of 

symbols over GF (2). Each K-element row ofMSG represents a message word, where 

the leftmost symbol is the most significant symbol. Parity symbols are at the end of 

each word in the output Galois array CODE. [15] 

1. Fundamental checks on parameter data types: Firstly, MSG must be a Galois 

array; secondly, MSG must be in GF (2). 

2. Set and check the parity position. Parity position must be either at the 

beginning or at the end. 

3. Check the message length. The message length must equal K. 

4. Get the generator polynomial. 

5. Get the generator matrix. The function 'cyclgen' is used. CYCLGEN 

produce parity-check and genemtor matrices for cyclic code. H = 

CYCLGEN(N, P) produces the parity-check matrix for a given codeword 

length N and generator polynomial P. The vector P gives the binary 

coefficients of the generator polynomial in order of ascending powers. A 

polynomial can generate a cyclic code if and only if it is a factor of X "N-1. 

The message length of the code is K = N- M, where M is the degree ofP. The 

parity-check matrix is an M-by-N matrix. 

6. Do the coding. Code= msg * gen. (message * generator matrix) 

7. Rearrange parity if necessary. [20] 

y=double(code.x) 

The above code converts 'code' from Galois array to integers for modulation. 

31 



Step 5: BPSK modulation 

y2=pskmod(y,2); 

The 'PSKMOD' function represents phase shift keying modulation. 

Y = PSKMOD(X, M) outputs the complex envelope of the modulation of the 

message signal X, using the phase shift keying modulation. M is the alphabet size and 

must be an integer power or 2. The message signal X must consist of integers 

between 0 and M-1. For two-dimensional signals, the function treats each column as 

I channel. [16] 

I. Check that x is a positive integer 

2. Check that M is a positive integer. Determine whether is BPSK, QPSK, or 

OPSK. 

3. Check that x is within range. Elements of input X must be integers in [0, M-

1]. 

4. Determine the initial phase. The default value is 0. 

5. Evaluate the phase angle based on M and the input value. The phase angle lies 

between 0 - 2 *pi. 

6. The complex envelope is (cos (theta)+ j*sin (theta)). This can be expressed as 

exp (j*theta). Ifthere is an initial phase, it is added to the existing phase angle 

7. Restore the output signal to the original orientation. 

Step 6: A WGN channel simulation 

channel=awgn(y2, 10); 

A WGN add white Gaussian noise to a signal. 

Y =A WGN(X, SNR) adds white Gaussian noise to X. The SNR is in dB. 

The power of X is assumed to be 0 dBW. If X is complex, then A WGN adds 

complex noise. [17] 

32 



Step 7: BPSK demodulation 

r=pskdemod(channel,2); 

Demodulation is basically tbe reverse of modulation. 

The demodulator, which is designed specifically for the symbol-set used by the 

modulator, determines tbe phase of tbe received signal and maps it back to tbe 

symbol it represents, tbus recovering the original data. [18] 

r2=gf(r); 

The above code converts tbe signal 'r' to Galois array. 

Step 8: Decode the received message 

[newmsg,err,ccode] = bchde<:(r2.n,k) 

The function 'BCHDEC; represents tbe BCH decoder. 

DECODED = BCHDEC (CODE, N, K) attempts to decode tbe received signal in 

CODE using an (N,K) BCH decoder witb tbe narrow-sense generator polynomial. 

CODE is a Galois array of symbols over GF (2). Each N-element row of CODE 

represents a corrupted systematic codeword, where tbe parity symbols are at the end 

and the lefunost symbol is th~ most significant symbol. 

In the Galois array DECODED, each row represents the attempt at decoding the 

corresponding row in CO DEl A decoding failure occurs if a row of CODE contains 
I 

more than T errors, where T is the number of correctable errors as returned from 

BCHGENPOLY. In tbis case, BCHDEC forms the correspo11ding row of DECODED 
I 

by merely removing N-K synibols from the end oftbe row of CODE. 

[DECODED,CNUMERR,CCODE] = BCHDEC(r2, n, k) returns CCODE, the 

corrected version of CODE, The Galois array CCODE is in the same format as 

33 



CODE. If a decoding failure occurs in a certain row of CODE, then the corresponding 

row in CCODE contains that row unchanged. [19] 

1. Fundamental check on parameter data types: Firstly, CODE must be a Galois 

array. Secondly, code must be in GF (2). 

2. Check width of code. CODE must be either an N-element row vector or a 

matrix with N columns. 

3. Set and check the parity position. Parity position must be either beginning or 

at the end. 

4. Get the number of errors we can correct 

5. Bring the coded word into the extension field 

6. Call to core algorithm Berlekamp 

7. Bring back to gf(2). 

3.2 IDENTIFICATION OF REQUIRED APPARATUS/TOOLS 

This project requires Matlab simulation tool for producing results of encoding and 

decoding for the error correction codes. Comparison study for LDPC codes with 

BCH codes will be conducted through the Matlab simulation as well. 

34 



CHAPTER4 

RESULTS AND DISCUSSIONS 

4.1 PERFORMANCES OF LDPC AND BCH CODES WITH VARYING SNR 

Performance of LDPC and BCH cades with varying SNR 

---B- LOPC 

10 
~ 

..______,._._BCH 
--+----Shannon Umit 

' ,, 
"'· ·~~ 

... 

\ \ 
\, 

\ 
' \ ' 
\ \ \ 

\ \ ' ' 

10~ 

ffi 
"' 

\ 

"'" ... , '8 

2 2.5 3 3.5 . 4 4'.5· - 5 .· 5.5 6 6.5 7 
SNR (dB) 

Figure 9 : BER vs. SNR 

. 

Figure 9 shows the error performances for both the LDPC and BCH codes. The y -

axis represents the bit error rate, which is the ratio of the number of bits incorrectly 

received to the total number of bits sent during a specified time interval. For a given 

communication system, the bit error ratio will affected by both the data transmission 

rate and the signal power margin. The results comparison analysis was performed. 

35 



The above figure shows that the higher the value of Signal to Noise Ratio (SNR), the 

lower the Bit Error Rate (BER). This is because if SNR is higher, the signal power is 

stronger compared to the noise power, therefore, larger and clearer signal could the 

detected by the receiver. The BER of the LDPC is lower than the BER for BCH 

codes. This shows that the LDPC is a more efficient code, where it uses Sum Product 

Algorithm decoding scheme. The sum-of-product algorithm involves more detailed 

calculations and iterations on the decoding part for LDPC codes. 

From Figure 9 observed, the LDPC code allows the data transmission rates close to 

the theoretical maximmn, the Shannon limit. Although the LDPC cannot guarantee 

prefect transmission, the probability of error information can be made as small as 

desired. The results were measured by bit error rate and signal to noise ratio. 

Shannon showed the existence of capacity achieving codes but achieving capacity is 

only part of it. For practical communication, we need fast encoding and decoding 

algorithms. The LDPC codes are the linear codes associated with sparse bipartite 

graphs. LDPC code is a very good error correction codes, this is due to the codes are 

equipped with very fast encoding and decoding algorithms. 

For BCH codes, it shows that as the SNR increases, the BER or bit error rate 

decreases. However, when compared with the LDPC code performance graph, the 

BCH code shows higher bit error rate. LDPC is a more powerful code, although the 

decoding algorithm is more complex, it can actually decode more errors, and the bit 

error rate results also lower compared with BCH code. Signal to noise ratio (SNR) is 

an engineering term for the power ratio between a signal (meaningful information) 

and the background noise. 

Signal to noise ratio (SNR) [21] is an engineering term for the power ratio between a 

signal (meaningful information) and the background noise. 

36 



SNR = p,, ... , 
Pnoise 

SNR are usually expressed in terms of the logarithmic decibel scale because many 

signals have a very wide dynamic range. In decibels, the SNR is 20 times the base I 0 

logarithm of the amplitude ratio or I 0 times the logarithm of the power ratio: 

SNR = !Ologw(p,, ... ,) 
Pnoise 

For this project, we relate the SNR with the noise variance (No), which is: 

I 
SNR = 10 log to(-) 

No 

An error ratio is the ratio of the number of bits, or blocks incorrectly received to the 

total number of bits, or blocks sent during a specified time interval. The error ratio is 

usually expressed in scientific notation. For example, 2.5 erroneous bits out of 

I 00,000 bits transmitted would be 2.5 out of I 05 or 2.5 x 1 o·5• 

Moreover, the bit error ratio for the transmission is the number of erroneous bits 

received divided by the total number of bits transmitted. For the information BER, 

the number of erroneous decoded bits is divided by the total number of decoded bits. 

37 



4.2 THE EFFECT OF NOISE VARIANCE ON THE ACCURACY 

PERFORMANCE FOR LDPC AND BCH CODES 

The. Effect Of Nqise Vareince On The Accuracy Performance For tDPC and BCH Codes _ 

100~::::~~~~-±~;~;. ±.;;, ~~~------~-.-----.-----.-----,----~~ 
~~~--~---~-~-----J 

95

85

!g
·~

: ~ 00

" "-! 75
·~

~ 70
<L

85

"'
55

0.1 0.2 0.3 ' 0.4 0.5
Noise Variance (dS)

' I

0.6 0.7

Figure l 0 : Percentage of accuracy vs. Noise variance

0.8 0.9

The percentage of accuracy for this LDPC code program is 95%. For the BCH code,

the percentage of accuracy for noise variance range from 0.1 to 0.3 is 99.5%, at noise

variance for 0.35, the perc(lntage of accuracy is 95%, and its accuracy decreased

simultaneously with the increasing of noise variance. The larger the noise variance,

the larger the probability of error occurred in the error correction codes.

For the LDPC codes, the codes were able to be successfully implemented in large

range of noise variance, which is from 0.1 to 0.9. However, for the BCH codes, it

was only capable for implementation with small noise variance, which ranges from

0.1 to 0.35.

38

The percentage of accuracy for BCH code depend on the noise variance added to it.

The larger the noise variance, the larger the probability of error occurred in the BCH

codes. When the noise variance gets more than 0.4, the BCH codes could not decode

the received codeword correctly. Thus, LDPC codes were more efficient for

implementation in encoding and decoding through a noisy charmel.

Generally, Figure 10 shows that the larger the noise variance, the lower the

percentage of accuracy for decoding, and the larger the probability of error occurred

in the LDPC codes. The implementation of both the LDPC and BCH codes in this

MATLAB simulation program were very successful. The programs were able to

generate the message bits, encode the message bits with the check bits, send the

encoded bits through the A WGN charmel and also decoded the received bits

successfully with the least probability of error.

4.3 BLOCK LENGTH VS. SIMULATION TIME

:;;;
m
c

"' ~
" ~ c • m

~
Jj

-" c
~
I'
• E
I=

Block Length vs. Simulation Time
1X00r----.-----.----.----,--~-.----.-----.----,-----,--~

11ml

8000

6000

41lll

xoo

Figure 11 : Simulation time vs. block length

39

Figure II shows that the LDPC codes took longer time for encoding and decoding

when compared with the BCH codes. This is due to the LDPC codes are more

complicated and have higher complexity.

LDPC codes have much iteration to converge, which takes times. LDPC codes are a

way of producing random codes, which is suggested by Shannon's proof of the

channel coding theorem; however its decoding algorithm grows linearly with the code

length.

LDPC takes a long time to converge to good solutions. The very long code word

lengths are producing good decoding efficiency, in other words, the longer the LDPC

codeword is sent through the channel modulation, the more accuracy of decoded data

received. The iterative convergence is quite slow, which it takes 1000 iterations to

converge under standard conditions. Therefore, due to those reasons, the

transmission time increases for the information encoding, transmission, and decoding.

For the large parity check matrix such as rows = 200 and columns = 500, the LDPC

codeword decoding would last for almost 2 hours.

From Figure I 1, it shows that the BCH codes takes less time for encoding and

decoding to complete. This is due to the encoding and decoding algorithm of BCH

codes are much simpler than the encoding and decoding algorithm for LDPC codes.

However, BCH codes can only be effectively implemented with small block length

code, where LDPC codes can be effectively implemented with unlimited block length

code.

40

4.4 ERROR PERFORMANCES FOR THE CODED AND UNCODED LDPC

CODES

1~~----~----~----~----~~----~----~----~----~L_ __ __J
·1 0 2 3 4 5 E 7 8

EbJNo {dB)

Figure 12 :Error performances for the coded and uncoded codeword [37]

Figure 12 [37] shows that when a message is coded with LDPC codes, the errors

contained in the received message could be reduced effectively. The error correction

codes could detect errors that are made due to noise or other impairments in the

course of the transmission from the transmitter to the receiver. The error correction

has the additional feature that enables localization of the errors and correcting them.

The error correction schemes are computationally intensive, and require excessive

redundant data which may be inhibitive for a certain application.

Error correction in some applications, such as a sender-receiver system, can be

achieved with only a detection system in tandem with an automatic repeat request

scheme to notify the sender that a portion of the data sent was received incorrectly

41

and will need to be retransmitted, however where efficiency is important, it is

possible to detect and correct errors with far less redundant data. [22]

The LDPC code is a powerful code where it transmits a message over a noisy

transmission chaunel. For LDPC code, althought it cannot gurantee perfect

transmission, the probability oflost information can be made as small as desired. [23]

From the Figure shown, the Shannon Limit is able to reach bit error probability of

0.00000 I at SNR equals to -0.8. The LDPC codes were able to decode and correct

the errors up to 0.00003 bit error probability at the SNR of 3.5. For the uncoded

BPSK code, it can correct the errors up to 0.00035 at the SNR of 8. Therefore, the

message that implements LDPC error correction codes was able to transmit and

receive more accurately.

4.5 BLOCK LENGTH VS. BIT ERROR PERCENTAGE FOR LDPC CODES

2.8

2.6

2.4

~
!'! 2.2
g
w

ffi 2
>;

Figure 13 : Block length vs. bit error percentage for LDPC code

42

From the Figure 13, it was observed that the longer the codeword generated; the

higher probability of error would occur. The percentage of accuracy for this program

is 99%, which is quite similar with the theoretical values.

The results obtained shows that the LDPC codes is a very efficient coding method of

error correction. This error correction coding technique had a channel performance

very close to the Shannon limit. Both of the LDPC codes implemented in Matlab

simulation achieved the results which are very close to the theoretical values.

4.6 BIT ERROR RATE VS. NUMBER OF ROWS

Bit Error Rate Vs. Number of Rows

100 200 300 500 6IJO
Number of Rows (nwords)

~n=31,k=6

~rF63,1F7

~n::127,k=8

mo aoo mm

Figure 14 : BER vs. number of rows for bch codes

1000

From Figure 14, it shows that the bit error rate is higher when the code size increases.

The n = 127, k = 8 BCH code generated the highest probability of error when

compared to the BCH codes for n = 63, k = 7, and n = 31, k = 6. One way to lower

43

the noise density is to reduce the bandwidth. For a given communication system, the

bit error ratio is affected by both the data transmission and the signal power margin.

The power margin is the difference between available signal power and the minimum

signal power needed to overcome system losses and still satisfy the minimum input

requirement of the receiver for a given performance level.

4.7 PROBABILITY OF ERROR VS. NUMBER OF ROWS FOR BCH

CODES

~
w
'5

Probabiflty of Erros vs. Number of RO\w

Number of Rows

Figure 15 :Probability of errors vs. number of rows for BCH codes

Figure 15 shows that the longer the number of rows for BCH codes, the lower the

probability of errors or bit error rate (BER). When a codeword was sent with more

number of times, more iterations for decoding would be conducted, which will reduce

the Bit Error Rate.

44

Bit error ratio (BER) [24] is an error ratio of the number of bits incorrectly received

to the total number of bits sent during a specified time interval. The error ratio is

usually expressed in scientific notation, for instance 2.5 x I o-5

The bit error ratio would be affected by both the data transmission rate and the signal

power margin. Data transmission is the conveyance of information from one space to

another.

45

CHAPTERS

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

This project allows me to learn two very interesting and powerful error correcting

codes, which are LDPC and BCH codes. The codes are methods of transmitting

message over a noisy transmission channel. The codes are practically important for

error correction and detection during the transmission of data. This error detection

would detect errors that are made due to noise during the transmission from the

transmitter to the receiver and eliminate the noise. Compare with BCH codes, the

LDPC codes can allow data transmission rate close to the Shannon limit or theoretical

maximum.

The LDPC code algorithm could be divided into four parts, which are generating the

parity-check matrix, encoding message blocks, modulation channel simulations and

decoding the received message bits. Moreover, the several parts of BCH codes

algorithms are: constructing the codeword length, generates a matrix consists of

random binary numbers and creates a Galois field array, gets generator polynomial,

encodes the message, BPSK modulation, channel simulation, demodulation and

decode the received codes.

The implementations of error correction codes in Matlab simulation software for this

Final Year Project were very successful. The codes enabled us to analyze the error

correction codes in further detail and research were conducted successfully.

46

5.2 RECOMMENDATION

I. Implementation of LDPC code on MIMO architecture and OFDM

modulation.

According to Intel Technology Journal (May 15, 2006) [38], the wireless

channels often suffer the problem of interference caused by the reception of a

small number of reflections from remote objects. The interference causes the

receiver to receive the imperfect signals. The OFDM modulation provides

good interference rejection mechanism. The use of OFDM modulation within

MIMO structured systems creates a strong system that has the ability to

successfully reject fading and interference.

The MIMO channel can increase its capacity and throughput by using the

proper coding prior to transmission. The coding procedure includes adding

the protection bits to the transmitted data during transmission. LDPC codes

were recommended for this system as they are highly efficient capacity -

approaching codes. LDPC codes will fultill the high - throughput potential of

MIMO systems efficiently. [38]

2. Implementation of LDPC and BCH and other error correcting codes on

hardware by using FPGA. The hardware description language (HDL) and

schematic design should be provided for FPGA implementations. The

languages are VHDL and Verilog.

47

REFERENCES

[I] Madhu Sudan, "Essential Coding Theory", September 27,2004.

http://theory.lcs.mit.edu/-madhu!FT04/scribe/lect06.pdf#search=%22history

%20of%20BCH%20codes%22

[2] http://en.wikipedia.org/wiki/Berlekamp-Massey _algorithm

[3] http://en.wikipedia.org/wiki!Low _Density _Parity_ Check_ Codes

[4] Robert H. Morelos - Zaragoza, The Art Of Error Correcting Coding, John

Wiley & Sons, LTD, 2002.

[5] http://en.wikipedia.org/wiki!Error _detection_ and_ correction

[6] Jian Sun, An introduction to low density parity check (LDPC) codes, Wireless

communication research laboratory, Lane department of computer science and

electrical engineering, West Virgina University, June 3, 2003

[7] http://plaza.ufl.edu/nayagam

[8] Robert G. Gallager, Low- Density Parity- Check Codes, 1963

[9] www.inference.phy.cam.ac.uk/mackay/codes/

[I 0] http://en.wikipedia.org/wiki/Galois _theory

[II] http://nrich.maths.org/public

[12] http://en. wikipedia.org/wiki!Berlekamp-Massey _algorithm

[13] MATLAB communication toolbox functions for Galois array

[14] MATLAB communication toolbox functions for generator polynomial

[15] MATLAB communication toolbox functions for bchenc

[16] MATLAB communication toolbox functions for pskmod

[17] MATLAB communication toolbox functions for awgn

[18] MATLAB communication toolbox functions for pskdemod

48

[19] MATLAB communication toolbox functions for bchdec

[20] http://www.comap.com/product/?idx=655

[21] wikipedia.orglwiki/Signal-to-noise _ratio

[22] http:!len.wikipedia.orgfwiki!Error _correction

[23] http:!len.wikipedia.orglwiki!LDPC

[24] http:!len.wikipedia.orglwiki!Bit_error_rate

[25] Proakis, John G., "Digital Communications, Singapore", McGraw Hill, 1995.

[26] Forouzan, Behrouz A., "TCP/IP Protocal Suite, 2nd edition", McGraw Hill,

2003.

[27] Bernard Sklar, "Digital Communications Fundamentals and Applications, 2nd

edition", Prentice Hall, 2001.

[28] Mackay, D.J.C.; Neal, R.M., "Near Shannon limit performance oflow density

parity check codes", IEEE Transactions on Information Theory, Volume: 33

Issue 6, 1997.

[29] Mackay, D.J.C., "Good error-correcting codes based on very sparse matrices",

IEEE Transactions on Information Theory, Volume: 45 Issue 2, March 1999.

[30] R.G.Gallager., "Low Density Parity Check Codes", IEEE Transactions on

Information Theory, 1963.

[31] Kschischang, F.R.; Frey, B.J.; Loeliger, "Factor graphs and the sum-product

algorithm", IEEE Transactions on Information Theory Volnme: 47 Issue: 2,

2001.

[32] Kavcic, A. Xiao Ma Mitzenmacher, M., "Binary intersymbol interference

channels: Gallager codes, density evolution, and code performance bounds",

IEEE Transactions on Information Theory, July 2003.

[33] E. R. Berlekamp, R. J. McEiiece, and H. C. A. van Tilborg, "On the

intractability of certain coding problems," lEE Transactions on Information

Theory, vol. 24, May 1978.

49

[34] C. Berrou and A. Glavieux, "Near optimum error correcting coding and

decoding: Turbo - codes," IEEE Transactions on Communications,

October 1996.

(35] M. C. Davey and D. J. C. Mackay, "Low density parity check codes over

GF(q)," IEEE Communications Letter, June 1998.

(36] G. L. Feng and T. R. N. Rao, "Decoding algebraic-geometric codes up to the

designed minimum distance," IEEE Transactions on Information Theory,

volume 39, January 1993.

[37] Shu Lin, Daniel J. Costello, Jr., "Error Control Coding'', Prentice Hall, Second

Edition, 2004.

[38] http://www.intel.corn!technology/iUf2006/volume I Oissue02/art07 _ MIMO _ Ar

chitecture/p02 _ intro.htm.

50

APPENDICES

51

APPENDIX A

LDPC SOURCE CODES

>> rows=lOO;
>> cols,200;
>> h=gen_ldpc(rows,cols);

variance =

0.4140

>> [newh,rearranged_cols]=rearrange_cols(h);
>> for i=l:rows
for j=l:rows
A(i,j)=newh(i,j);
end
end
>> for i=l:rows
for j=rows+l:cols
B{i,j-rows)=newh(i,j);
end
end
>> for i=l:cols-rows
s(i)=round(rand);
end
>> s=s. ';
>> Ainverse=inv_GF2(A);
d~ul_GF2(Ainverse,B);

>> c~ul_GF2{d,s);
>> ul=c;
>> for i=rows+l:cols
ul(i)=s(i-rows);
end
>> u=reorder_bits(ul,rearranged_cols);
>> tx_wavefor.m=bpsk(u,l);
>> No=O.S;
>> rx_waveform=awgn(tx_waveform,No);
>> scale(l:length(c))=l;
>> length{rx_waveform)

ans =

200

» vhat=decode_ldpc_log(rx_waveform,No,l,h,scale)

vhat =

Columns 1 through 14

0 1 0 1 1 1 1 1

Columns 15 through 28

0 0 1 1 1 0 0 1

Columns 29 through 42

1 0 1 0 0 0 1 0

Columns 43 through 56

0 0 0 1 1 0 1 0

Columns 57 through 70

0 0 0 1 0 0 1 1

Columns 71 through 84

0 1 0 1 0 1 1 1

52

0

1

0

0

0

1

1 1 1 0 0

0 0 1 1 0

1 1 0 0 1

1 0 0 0 0

0 1 1 0 1

0 0 1 1 1

Columns 85 through 98

1 0 1 0

Columns 99 through 112

1 1 0 1

Columns 113 through 126

1 1 1 1

Columns 127 through 140

1 1 0 1

Columns 141 through 154

1 1 0 1

Columns 155 through 168

1 1 1 1

Columns 169 through 182

0 0 0 0

Columns 183 through 196

0 0 1 0

Columns 197 through 200

1 0 1 1

1 1 0

0 0 1

1 1 1

0 1 0

1 1 1

1 1 0

1 0 1

1 0 1

>> uhat=extract_mesg(vhat,rearranged_cols}

uhat =

Columns 1 through 14

0 1 0 1

Columns 15 through 28

1 1 1 1

Columns 29 through 42

0 1 0 1

Columns 43 through 56

0 1 1 1

Columns 57 through 70

1 1 1 1

Columns 71 through 84

0 0 1 0

Columns 85 through 98

1 0 1 0

Columns 99 through 100

1 1

1 0 1

1 1 1

0 1 0

1 0 1

0 1 1

1 1 1

1 1 0

53

1 1 0 1 0 1 1

0 1 1 0 0 0 0

1 1 0 0 0 1 1

1 0 1 0 0 1 1

0 1 0 1 0 1 1

1 1 0 1 0 1 1

1 1 1 0 0 0 1

1 0 0 1 1 0 0

1 0 0 0 0 1 1

0 0 0 1 1 1 1

1 0 0 1 1 1 1

0 1 0 1 1 1 1

0 1 0 1 1 0 0

1 0 0 0 1 0 0

0 1 1 0 0 1 0

APPENDIXB

LDPC SUBROUTINE MATLAB M- FILES

1. qen ldpc. m

function [H]=gen_ldpc(rows,cols)

%H=gen_ldpc(rows,cols)

bits _per_ col"'-'3;

for i=l:rows

row_flag(i)=O;

for j=l:cols

end

parity check(i,j)=O;

end

%add bits_per_col l's to each column with the only constraint being that

%the l's should be placed in distinct rows

for i=l:cols

end

a=randper.m(rows);

for j=l:bits_per_col

parity_check(a(j),i)=l;

row_flag(a(j))=row_flag(a(j))+l;

end

row_flag;

max_ones_per_row=ceil{cols*bits_per_col/rows);

parity_check;

%add l's to rows having no l(a redundant row) or only one !(that bit in

%the codeword becomes

%zero irrespective of the input)

for i=l:rows

if row_flag(i)==l

j=unidrnd(cols);

while parity_check(i,j)==l

j=unidrnd(cols);

end

parity_check(i,j)=l;

row_flag(i)=row_flag(i)+l;

end

if row_flag(i)==O

for k=1:2

j=unidrnd(cols);

while parity_check(i,j)==l

j=unidrnd(cols);

end

parity_check(i,j)=l;

row_flag{i)=row_flag(i)+l;

end

54

end

end

%try to distribute the ones so that the number of ones per row is as

%uniform as possible

for i==l:rows

j=l;

a=randperm(cols);

while row_flag(i}>max_ones_per_row;

if parity_check(i,a(j)l==l

parity_check(i,a(j))=O;

row_flag{i)=row_flag{i)-1;

newrow=unidrnd(rows);

k=O;

while row_flag(newrow)>=max_ones_per_row I parity_check(newrow,a(j))==l

newrow=unidrnd(rows);

k=k+l;

if k>:=rows

break;

end

end

if parity_check(newrow,a(j))==O

parity_check(newrow,a(j))=l;

row_flag(newrow)=row_flag(newrow)+l;

else

parity_check(i,a(j)}=l;

row_flag(i)=row_flag(i)+l;

end

end%if loop

j""j+l;

end%while loop

end%for loop

row_flag;

parity_check;

parity_check;

%try to eliminate cycles of length 4 in the factor graph

for loop""l:lO

ones_position(l)=O;

for r=l:rows

ones_count=:=O;

for c=l:cols

if parity_check(r,c)==l

ones_count=:=ones_count+l;

ones_position(ones_count)""c;

end

end

55

for i=1:r-1

corrnnon=O;

end

for j=l:ones_count

end

if parity_check{i,ones_position(j))==1

common=common+ 1

if common==1

theco1=ones_position(j);

end

end

if comrnon=2

comrnon=common-1;

if(round{rand)==O)

coltoberearranged=thecol;

thecol=ones_position(j);

else

co1toberearranged=ones_position(j);

end

parity_check(i,coltoberearranged)=3; %make this entry 3 so

%that we dont use

newrow=unidrnd(rows);

%of this entry again

%while getting rid

%of other cylces

%while ((newrow==i) I (parity_check(newrow,ones_position(j))~1))

iteration=O;

while parity_check(newrow,coltoberearranged)~=O

newrow=unidrnd(rows);

iteration=iteration+l;

if iteration=S

end

break;

end

if iteration=S

while parity_check(newrow,coltoberearranged)==l

newrow=unidrnd(rows);

end

end

parity_check(newrow,coltoberearranged)=l;

end

for i=r+l:rows

common,O;

for j=l:ones_count

if parity_check(i,ones_position(j))==l

common=common+l

end

if common=!

thecol=ones_position(j);

end

if common=2

56

end

common~common-1;

if(round(rand)==O)

coltoberearranged=thecol;

thecol=ones_position(j);

else

coltoberearranged=ones_position(j);

end

parity_check(i,coltoberearranged)=3;%make this entry 3 so that

%we dont use

newrow=unidrnd(rows);

%of this entry again

%while getting rid

%of other cylces

%while ((newrow==i)! (parity_check(newrow,ones_position(j))==l))

iteration:=O;

while parity_check(newrow,coltoberearranged)-=0

newrow=unidrnd(rows);

iteration=iteration+l;

if iteration==S

end

break

end

if iteration==S

while parity_check(newrow,coltoberearranged)==l

newrow=unidrnd(rows);

end

end

parity_check(newrow,coltoberearranged)=l;

end

end

end

end;

parity_check;

for i=l:rows

row_flag(i),O;

for j=l:cols

if parity_check(i,j)==l

row_flag(i)=row_flag(i)+l;

end

if eq(parity_check(i,j),3) %replace the 3's with O's

parity_check(i,j)=O;

end

end

end

variance=var(row_flag)

H=parity_check;

%Get the Parity Checks

%A=O;

57

%B=O;

%for i=l:rows

% for j=l:rows

% A(i,j)=parity_check(i,j);

% end

%end

%for i=l:rows

% for j=rows+l:cols

% B(i,j-rows)=parity_check(i,j);

% end

%end

%ainvb=inv(sparse(A))*sparse(B);

%ainvb=inv(A)*B;

%toe

2. rearrange cols.m

function [b,rearranged_cols]=rearrange_cols(A)

%(b,rearranged_cols]=rearrange_cols(A)

%Rearrange the columns of the parity check matrix to get non singular

%A matrix

dim=size(A);

rows=dim (1) ;

cols=dim(2);

newA=A;

for i=l:rows

rearranged_cols(i)=O;

end

for i=l:rows

if newA(i,i)=O

k=i+l;

if k<cols

%while A{rows,k)==O

while newA(i,k)==O

k=k+l;

if k==cols

break

end

end

%if k-=cols

temp=newA(l:rows,k);

newA(l:rows,k)=newA(l:rows,i);

newA(l:rows,i)=temp;

rearranged_cols(i}=k;

temp=A(l:rows,k);

A(l:rows,k)=A(l:rows,i);

A(l:rows,i)=temp;

%end

58

end

end

for j=l:rows

if j-~i

if newA(j~iJ==l

newA(j,l:cols)=xor(newA(i,l:cols),newA(j,l:cols});

end

end

end

A;

end

rearranged_cols;

b=A;

3. inv Gf2.m

function [b]=inv_GF2(A)

%Ainv=inv_GF2(A)

dim=size (A);

rows=dim(l);

cols,dim(2};

for i=l:rows

for j=l:rows

unity(i,j)=O;

end

unity(i,i)=l;

end

for i=l:rows

b(l:rows,i)=gflineq(A,unity(l:rows,i),2);

end

4. mul GF2.m

function [c]~ul_GF2(A,B)

%[c]=mul_GF2(A,B)

di.m=size (A) ;

m=dim(l);%no of rows of the first matrix

n=dim(2);%no of eels of the first matrix and no of rows of 2nd matrix

dim=size (B);

p=dim(2);%no of eels of the second matrix

for i=l:m

for j=l :p

templ=A(i,l:n);

temp2=B(l:n,j);

prod=templ.*(temp2.');

suml=O;

for k=l:n

59

suml~xor{suml,prod{k));

end

c (i, j) =suml;

end

end

5. reorder bit5 .m

function [u]= reorder_bits(c,rearranged_cols)

%v= reorder_bits(c,rearranged_cols)

dim=size(rearranged_cols);

rows=dim (2) ;

for i=rows:-1:1

end

if rearranged_cols(i)-=0

temp=c(i);

c(i}=c(rearranged_cols(i));

c{rearranged_cols(i))=temp;

end

u=c;

6. bpsk.m

function [waveform]=bpsk(bitseq,amplitude)

%waveform=bpsk(bitseq,amplitude)

for i=l:length{bitseq)

end

if bitseq(i)=l

waveform(i)=-amplitude;

else

waveform(i)~amplitude;

end

7.~

function (xJ=awgn(waveform,No);

%x=awgn(waveform,No);

NoiseStdDev=sqrt(No/2);

x=waveform + NoiseStdDev*randn{l,length(waveform));

8. decode ldpc loq.m

function [vhat,iteration}=decode_ldpc(rx_waveform,No,amp,h,scale)

%[vhat]=decode_ldpc{rx_waveform,No,amp,h,scale)

dim=size (h);

rows,dim(l);

cols=dim{2);

vhat{l,l:cols)=O;

zero(l,l:rows)=O;

60

prevhat(l:cols)=l;

s~struct('alpha_mn',O,'beta_mn',O, 'garnma_mn',O);

%associate this structure with all non zero elements of h

%Initialization : set garnma_n to log-likelyhood ratios for every code

%bit and then initialize the alpha_mns for

% all non -zero elements of the parity_check matrix

for j=l:cols

gamma_n(j)=(4/No)*rx_wavefor.m(j);

temp=exp(-abs(garnma_n(j)));

for i=l:rows

if (h(i,j}==l)

newh(i,j)=s;

newh(i,j).alpha_mn=sign(gamma_n(j))*log((l+temp)/(1-temp});

end

end

end

for iteration=l:lOO

%%%%%%%%%%%begin horizontal step%%%%%%%%%%%%%%%%%%%%%%5

for i=l:rows

prod_of_alpha_mn=l;

sum_of_alpha_mn=O;

for j=l:cols

if h(i,j)==l

for k=l: cols

if ((h(i,j}==l)&(j~=k))

prod~of_alpha_mn=prod_of_alpha_mn*newh(i,j).alpha_mn;

sum_of_alpha_mn=sum_of_alpha_mn+abs(newh(i,j) .alpha_mn);

end

end

temp=exp(-sum_of_alpha_mn);

newh(i,j) .beta_mn=sign(prod_of_alpha_mn)*log((l+temp)/(1-temp));

end

end

end

%%%%%%%%%%%%%%end horizontal step%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%begin vertical step%%%%%%%%%%%%%%%%%

for j=l:cols

sum of beta_mn=O;

for i=l:rows

if (h (i, j) ==1)

sum_of_beta_mn=sum_of_beta_mn+newh(i,j) .beta_mn;

end

end

61

for i=l:rows

newh(i,j) .gamma_mn=gamma_n(j)+sum_of_beta_mn-newh(i,j) .beta_mn;

temp=exp(-abs{newh{i,j) .gamma_mn));

newh(i,j).alpha_mn=sign(newh(i,j) .gamma_mn)*log((l+temp)/(1-temp));

end

%%%%%%calculate pseudo log APP ratios

lambda_n(j)=gamma_n{j)+sum_of_beta_mn;

if larnbda_n(j)>=O

end

vhat(j)=O;

else

vhat(j)""li

end

%%%%%%%%%%%%%%%%%%%end vertical step%%%%%%%%%

%%%%%%%%%%stop if v.bat'=O or if u get the same codeword 20

%consequtive times

iteration;

if prevhat==vhat

converge=converge+l;

else

end

converge=O;

prevhat=vhat;

end

if mul_GF2(vhat,h. ')==zero

break;

end

if converge==20

break

end

%decoding

9 . extract mesq. m

function [u]= extract_mesg(c,rearranged_cols)

%u= extract_mesg(c,rearranged_cols)

dim=size(rearranged_cols);

rows=dim(2);

dim=size (c);

cols=dim(2);

for i=l:rows

if rearranged_cols(i)-=0

temp=c (i);

c{i)=c(rearranged_cols(i));

c(rearranged_cols(i})=temp;

end

end

u=c(rows+l:cols);

62

APPENDIXC

BCH MATLAB SOURCE CODES

>> m = 4;

>> n = 2"'m-l;

>> k = 5;

>> nwords = 10;

>> msg = gf(randint(nwords,k});

>> [genpoly,t] = bchgenpoly(n,k);

>>code= bchenc(msg,n,k);

>> y=double(code.x);

>> y2=pskmod(y,2);

>> channel=awgn(y2,10);

>> r=pskdemod(channel,2};

>> r2=gf (r);

>> [newmsg,err,ccode] = bchdec(r2,n,k}

newmsg = GF(2) array.

Array elements

err

0

ccode

Array

0

1

0

1

0

1

0

1

1

1

0

= GF(2)

0

1

1

1

1

1

0

0

0

1

0

array.

elements =

Columns 1 through

0 0

1 0

1 1

0 1

0 1

1

0

1

1

0

1

1

0

1

1

14

1

0

1

0

1

1

1

1

0

1

0

0

1

1

1

1

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

0 0 0 0

1 1 1 0

1 1 0 0

0 1 0 1

63

0 0 0

1 0 0

1 0 0

1 0

1 1 1 1 0 1 0 1 1 0 0 1

0 0

0 1 0 0 0 1 1 1 1 0 1 0

1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1

0 0 1 0 0 0 1 1 1 1 0 1

0 1

1 0 0 0 0 1 0 1 0 0 1 1

0 1

1 0 1 1 0 0 1 0 0 0 1 1

1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1

Column 15

1

1

0

0

0

1

1

1

0

1

>> if ccode==code

disp{ 'All errors were corrected.')

end

All errors were corrected.

>> if newmsg==msg

disp('The message was recovered perfectly. ')

end

The message was recovered perfectly.

64

APPENDIXD

BCH SUBROUTINE MATLAB SOURCE CODES

1. bchqenpoly.lll.

function [genpoly, t] = bchgenpoly(N,K,varargin);

%BCHGENPOLY Generator polynomial of BCH code.

% Initial checks

error(nargchk(2,3,nargin)};

t = bchnumerr(N,K);

t2 = 2*t;

prim_poly 1;

m log2 (N+l);

if ~isempty{varargin)

prim_poly = varargin{l};

% Check prim_poly

if isernpty(prim_poly)

if -isnumeric(prim_poly)

error('To use the default PRIM_POLY, it must be marked by [] .');

end

else

if -isnumeric{prim_poly)

prim _poly)

I I -isscalar(prirn_poly)

error('PRIM~POLY must be a scalar integer.');

end

if -isprimitive(prim_poly)

II

error('PRIM_POLY must be a primitive polynomial.');

end

end

end

% Alpha is the primitive element of this GF(2Am) field

if prim_poly == 1

alpha= gf(2,m);

else

alpha gf(2,m,prim_poly);

end

% genpoly LCM([l alpha.Ak]) ... for k 1 2t-ll

% Find all the minimun polynomials, add them to list of minimum

(floor(prim_poly)

% polynomials, if they're not there yet. Then convolve all the minimum

% polynomials to make the generator polynomial.

65

minpol_list minpol (alpha);

for k=[l:t2-1J

minpoly = minpol(alpha.Ak);

[len,w] = size{minpol_list);

minpol_mat = repmat(minpoly, [len 1]);

eq = (minpol_ mat

if (~any{sum(eq')

minpol_list);

w))

minpol_list = [minpol_list;minpoly];

end

end

% convolve all the rows of the minpol_list with each other.

len= size{minpol_list,l);

genpoly = 1;

for(i = 1:len)

genpoly = conv(genpoly,minpol_list(i,:));

end

% strip any leading zeros

% the size of the generator polynomial should be N-K+1

genpoly = genpoly(end-(N-K) :end);

2. bchenc.m

function code = bchenc(msg, N, K, varargin)

%BCHENC BCH encoder.

% Initial checks

error(nargchk(3,4,nargin));

% Number of optional input arguments

nvarargin = nargin - 3;

% % Fundamental checks on parameter data types

if ~is a (msg, 'gf')

error('MSG must be a Galois array.');

end

if {msg .m ~=1)

error{'MSG must be in GF{2). ');

end

%set and check the parity position

if(nargin>3)

pari tyPos varargin{l};

else

pari tyPos 'end';

end

66

if(~strcmp(parityPos,'beginning') && -strcmp(parityPos, 'end') }

error('PARITYPOS must be either ''beginning'' or ''end'' 1
)

end

[m_msg, n_msg] size(msg);

if (n_msg -"" K)

error('The message length must equal K.')

end

% get the generator polynomial

genpoly = bchgenpoly(N,K);

% get the generator matrix

[h, genJ = cyclgen{N, {double(genpoly.x)});

% do the coding

code = msg * gen;

% rearrange parity if necessary

%if(isempty(varargin) I I strcmp{lower(varargin{l}), 'beginning'))

if(strcmp(parityPos, 'end'))

code= [code(:,N-K+l:end), code(:,l:N-K)];

end

3. pskm.od.m

function y = pskmod(x,M,varargin)

%PSKMOD Phase shift keying modulation

% Error checks

if {nargin > 3)

error{'comm:pskmod:numarg', 'Too many input arguments. ');

end

% Check that x is a positive integer

if {-isreal(x) I I any{any(ceil(x) N= x)) I I ~isnumeric(x))

error{'comm:pskmod:xreal', 'Elements of input X must be integers in [0, M-1]. ');

end

% Check that M is a positive integer

if (~isreal{M) II ~isscalar(M) II M<=O II {ceil(M)~=M) II -isnumeric(M))

error('comm:pskmod:Mreal', 'M must be a positive integer. ');

end

% Check that M is of the form 2AK

if (-isnwneric (M) II (ceil (log2 (M)) -= log2 {M)))

error('comm:pskmod:Mpow2', 'M must be in the form of M

integer. ');

end

% Check that x is within range

67

2AK, where K is an

if ({min{min{x)) < 0) !! {max{max{x)) > (M-1)))

error{'comm:pskmod:xreal', 'Elements of input X must be integers in [0, M-1]. ');

end

% Determine initial phase. The default value is 0

if (nargin == 3)

ini_phase = varargin{l};

if (isempty(ini_phase))

ini _phase = 0;

elseif (~isreal(ini_phase) ! I ~isscalar(ini_phase))

error('comm:pskmod:ini_phaseReal', 'INI_PHASE must be a real scalar. ');

end

else

ini _phase 0;

end

% --- Assure that X, if one dimensional, has the correct orientation --- %

wid= size{x,l);

if {wid === 1)

x x(:);

end

% Evaluate the phase angle based on M and the input value. The phase angle

% lies between 0 - 2*pi.

theta = 2*pi*x/M;

%The complex envelope is (cos{theta) + j*sin(theta)). This can be

% expressed as exp(j*theta). If there is an initial phase, it is added

% to the existing phase angle

y = exp(j*(theta + ini_phase));

% --- restore the output signal to the original orientation --- %

if (wid :== 1)

y = y. ';

end

4 . .!!!2!!..:..!!!

function y=awgn(varargin)

%AWGN Add white Gaussian noise to a signal.

% --- Initial checks

error(nargchk{2,5,nargin))i

% --- Value set indicators (used for the string flags)

pModeSet 0;

measModeSet 0;

% --- Set default values

reqSNR II;

sig I l ;

sigPower 0;

pMode 'db';

measMode 'specify';

68

state [];

% --- Placeholder for the signature string

SigStr = 1 1 i

% --- Identify string and numeric arguments

for n=l:nargin

if (n>l)

sigStr(size(sigStr,2)+1) '/';

end

% --- Assign the string and numeric flags

if(ischar(varargin{n}))

sigStr(size(sigStr,2)+1} = 's';

elseif(isnumeric(varargin{n}))

sigStr(size(sigStr,2)+1) = 'n';

else

error('Only string and numeric arguments are allowed.');

end

end

% --- Identify parameter signatures and assign values to variables

switch sigStr

% --- awgn(x, snr)

case 'n/n'

sig

reqSNR

varargin{l};

varargin{2};

% --- awgn(x, snr, sigPower)

case 'n/n/n'

sig

reqSNR

sigPower

varargin{l};

varargin{2};

varargin{3};

% --- awgn(x, snr, 'measured')

case 'n/n/s'

sig varargin{l};

reqSNR varargin{2};

measMode lower(varargin{3}};

measModeSet 1;

% --- awgn(x, snr, sigPower, state)

case 'n/n/n/n'

sig

reqSNR

sigPower

state

varargin{l};

varargin{2};

varargin{3};

varargin{4};

% --- awgn(x, snr, 'measured', state)

case 'n/n/s/n'

sig

reqSNR

varargin{l};

varargin{2};

69

end

measMode lower(varargin{3});

state varargin{ 4};

measModeSet 1;

% --- awgn{x, snr, sigPower, 'db!linear')

case 'n/n/n/s'

sig

reqSNR

sigPower

pMode

pModeSet

varargin{l};

varargin{2};

varargin{3};

lower{varargin{4});

1;

% --- awgn{x, snr, 'measured', 'dbllinear'}

case 'n/n/s/s'

sig varargin{1};

reqSNR varargin{2};

measMode lower(varargin{3}};

pMode lower (varargin{ 4});

measModeSet 1;

pModeSet 1;

% --- awgn(x, snr, sigPower, state, 'dbllinear')

case 'n/n/n/n/s'

sig

reqSNR

sigPower

state

pMode

pModeSet

varargin{1};

varargin{2};

varargin{3};

varargin{4};

lower(varargin{S});

1;

% --- awgn(x, snr, 'measured', state, 'dbllinear')

case 'n/n/s/n/s'

sig varargin{l};

reqSNR varargin{2};

measMode lower(varargin{3});

state varargin{4};

pMode lower(varargin{S});

measModeSet 1;

pModeSet 1;

otherwise

error ('Syntax error.');

% --- Parameters have all been set, either to their defaults or by

%the values passed in, so perform range and type checks

70

% --- sig

if(isempty(sig))

error('An input signal must be given.'};

end

if(ndims(sig)>2)

error('The input signal must have 2 or fewer dimensions.');

end

% --- measMode

if (measModeSet)

if(-strcmp(measMode, 'measured'))

error('The signal power parameter must be numeric or ''measured'','};

end

end

% --- pMode

if(pModeSet)

switch pMode

case {'db' 'linear'}

otherwise

error('The signal power mode must be ''db'' or ''linear''.'};

end

end

% -- reqSNR

if {any ([-isreal (reqSNR} (length(reqSNR) >1) (length (reqSNR):::=:Q)]))

error('The signal-to-noise ratio must be a real scalar.');

end

if(strcmp(pMode, 'linear'))

if {reqSNR<=O)

error('In linear mode, the signal-to-noise ratio must be> 0.');

end

end

% --- sigPower

if(-strcmp(measMode, •measured')}

end

%---If measMode is not 'measured', then the signal power must be specified

if(any([-isreal(sigPower) (length(sigPower)>l) {length(sigPower)==O)]))

error('The signal power value must be a real scalar.');

end

if(strcmp(pMode,'linear'))

if { sigPower<O}

error('In linear mode, the signal power must be>= 0.');

end

end

71

% --- state

if(~isempty(state))

if(any([~isreal(state)

floor(state))-=0)]))

(length(state)>l) (length(state)==O)

error('The State must be a real, integer scalar.');

end

end

% --- All parameters are valid, sq no extra checking is required

any((state-

% --- Check the signal power. This needs to consider power measurements on matrices

if(strcmp(measMode,'measured'))

sigPower = sum(abs(sig(:)).A2)/length(sig(:));

if(strcmp{pMode,'db'))

sigPower = lO*loglO(sigPower);

end

end

% --- Compute the required noise power

switch lower(pMode)

case 'linear'

noisePower

case 'db'

sigPower/reqSNR;

noisePower = sigPower-reqSNR;

pMode = 'dbw';

end

% --- Add the noise

if(isreal(sig)}

opType = 'real';

else

opType 'complex';

end

y sig+wgn(size{sig,l), size{sig,2), noisePower, 1, state, pMode, opType);

S. pskdemod.m

function z = pskdemod(y,M,varargin)

%PSKDEMOD Phase shift keying demodulation

% Error checks

if {nargin > 3)

error('comm:pskdemod:numarg', 'Too many input arguments. ');

end

%Check y, m

if(-isnumeric(y)J

error('comm:pskdemod:Ynum', 'Y must be numeric.');

end

% Checks that M is positive integer

if (-isreal (M) II -isscalar (M) I I M<=O II (ceil (M) -=M) II -isnumeric (M))

72

error('comm:pskdemod:Mreal', 'M must be a positive integer. ');

end

% Checks that M is in of the form 2AK

if(-isnumeric(M) II (ceil(log2 (M)) -= log2 (M)))

error (' comrn:pskdemod:Mpow2', 'M must be in the form of M

integer. ');

end

% Determine INI PHASE. The default value is 0

if (nargin == 3)

ini_phase = varargin{l};

if (isempty(ini_phase))

ini_phase = O;

2AK, where K is an

elseif (-isreal(ini_phase} I I -isscalar(ini_phase))

error('comm:pskdemod:Ini_phaseReal', 'INI PHASE must be a real scalar. ');

end

else

ini_phase 0;

end

% generate a constellation

const = pskmod(O:M-l,M, ini_phase);

%demodulate.

z = genqamdemod(y,const);

6. bchdec.m

function [decoded, cnumerr,ccode]

%BCHDEC BCH decoder.

error(nargchk(3,4,nargin));

bchdec(coded,N,K, varargin);

% Fundamental checks on parameter data types

if -isa(coded, 'gf')

error{'CODE must be a Galois array.');

end

if (coded.m-""1)

error ('Code must be in GF(2). ');

end

[m _code, n_ code] size{coded);

% Check mandatory parameters code, N, K, t

% --- code

if isempty(coded.x)

error('CODE must be a nonempty Galois array.');

end;

% --- width of code

73

if N "'= n_code

error('CODE must be either aN-element row vector or a matrix with N columns.'};

end

%set and check the parity position

if(nargin>3}

pari tyPos varargin{l};

else

pari tyPos 'end';

end

if{ "'Strcmp(parityPos,'beginning 1
) && ~strcmp(parityPos, 'end'})

error('PARITYPOS must be either 1 'beginning'' or ''end' 1 1
)

end

% get the number of errors we can correct

t = bchnumerr(N,K);

M = log2 (N+l);

% bring the coded word into the extension field

coded= gf(coded.x,M);

[m_code, n_code] = size(coded);

for j=l:m_code,

% Call to core algorithm BERLEKAMP

[coded(j,:) cnumerr(j}] = berlekamp(coded{j,:),N,K,t,l,'bch');

end

%bring back to gf(2)

ccode = gf(coded.x};

switch parityPos

case 'end'

decoded = ccode (:, 1: K) ;

case 'beginning'

decoded= ccode(:,N-K+l:end);

end;

74

APPENDIXE

SIMULATION RESULTS FOR LDPC AND BCH CODES

75

0:::
l.U
co

10
_
1

Performance of LDPC and BCH codes with varying SNR

10-2'

\

10-3 bt \
I-I

10-4

10-5

----8----- LDPC
~BCH

--+------ Shannon Limit

10-6 Y-------~------~~------~------~--------~-------J--------~------~--------L--------"
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

r.II.IM t.ll"'l\

9
...>

0

"'

0

"'
,
-o ' . ;· b.

'
i
' ;·
I

' ' -o L •
~01

0
(»

0

""'

0
(X)

9
co

01
01

Ol
0

Percentage of Accuracy (%)

""' 01
(X)
0

(X)
01

co
01

...>
0
0

+t
>Ill
0()
"U:r:
()

-i
:::T
(!)

m
~ u
0 -z
0
iii"
(!)

iff
iil :;·
(")
(!)

0
:::>
-i
:::T
(!)

)>
(")
(")

" iil
(")
'<
"1)
(!)

a-,
3
Ill
:::>

£
"Tl
0 ,
r-
0
"1)
()
Ill
:::>
a.
Ill
()
:r:
(")
0 a.
(!)

"'

1\.)

g

"' 0
0

"'" 0
0

'01
·O

0

Ol
0
0

...,
0
0

co
0
0

~

~
0
0

Time Taken for Encoding and Oecoding(s)

"' 0
g

~

g
0
0

+t

~

1\.)
0
0
0

OL_ __ ~~----~----------_L----------~--------~~---------L--------~ 0
0

Ill
0
0

"'" r-
<1>
:J

(Q

s:
<
!II
(/)

~j"
c:
iii"
~ o·
:J

::!
3
<1>

10
_
1

Error Performances for the coded and uncoded (511, 139) LDPC codes

10-2

r

10"3 ! ~ :a
I <II

..0 e
I

a. ._
g

I LU

"" £0
10-4

I

10., I
'
I
I

I I
10"6

-1 0 1 2 3 4 5 6

1
if---- Uncoded BPSK

1

--B- Shannon Limit
A-- (511,139) LDPC

7 8

Block Length vs. Bit Error Percentage

3 *

2.8

2.6

2.4

-;;-
~ 2.2

~
liS
0
())

f
2

~ 1.8
~

1.6

1.4

1.2

*

1¥---------L-------~---------L ________ _L ________ ~--------~------~--------~

~ ~ ~ ~ ~ ~ ~ ~ 1~
.. , ____ ,_---I!,...._,_----- ,_,

10·1.4

10·1.5

ffi 10-1.6
~

~
'-e
'-
LU

iii 10-1 7

10·1.8

10-1.9

100 200 300 400

Bit Error Rate Vs. Number of Rows

---- n=31, k=6
--n=63, k=7
-- n=127, k=8

500 600 700 800 900 1000
... ____ ... ___ z; ..., _____ '-···---l-'\

,

i
' I
'

Probability of Errors
~ ~

~ ~
c>r--------------------r~~--,m~------~
0

~

01
0

"' 0
0

"' 01
0

w
0
~0
J
!

w
01
0

8~~------------_J--~------~

1l a
C"
Ol
!2:
~
0 -m
~ a
(})

~
z
c:
3
C"
(I)
~

0 -;;o

~
(})

