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ABSTRACT

The aim of this project is to study the preparation methods of iron nanocatalysts on Si02

support for the Fischer Tropsch synthesis (FTS). The first phase is to prepare and

characterize the silica spheres. In the second phase, iron nanocatalysts were synthesized

and deposited on the silica support. Iron particles were synthesized using the ammonia

deposition method and impregnation method. The iron metal was attached to silica

spheres which have BET surface area of 61m2/g at 2, 3 and 5wt% loadings. Variables

such as the metal loading, ageing time and calcinations temperatures were studied

during the catalysts preparation. There are two methodologies that involved in this

project which are Ammonia Deposition Method and Impregnation Method. Different

loadings will result a different color of the sample and different results for

characterization. There are several ways of characterization that will involved in this

project such as Scanning Electron Microscope (SEM), Xray Diffraction (XRD),

Transmission Electron Microscope (TEM), Energy Dispersive Xray (EDX) . EDX

analysis showed the presence of Si, O and Fe elements in the catalyst. The TEM images

from 5wt% impregnated catalyst showed iron particles with diameter ranging from 19

nm to 34 nm deposited on silica spheres. The average diameter of Si02 sphere is 168nm.

The inconsistencies of metal attachments on the silica for impregnation method seem to

be due to inefficient stirring during preparation. XRD analysis indicates the amorphous

nature of the catalyst.
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1.0 INTRODUCTION

i.l Problem Statement

Iron is the Transition metals and the fourth most plentiful element in the Earth's crust, is
the structural backbone of our modern infrastructure m Iron has been somewhat
neglected in favor of its own oxides, as well as other metals such as cobalt, nickel, gold
and platinum. Iron's reactivity is important in macroscopic applications but is a
dominant concern at the nanoscale. Finely divided iron has long been known to be
pyrophoric, which is a major reason that iron nanoparticles have not been more folly
studied to date. This extreme reactivity has traditionally made iron nanoparticles
difficult to study and inconvenient for practical applications. Iron however has a great
deal to offer at the nanoscale, including very potent magnetic and catalytic properties.
Iron is a classical catalyst for the Fischer-Tropsch (FT) reaction. It is therefore the size
of iron particles affects the product selectivity in FT reaction. In order to perform
fundamental study on the catalytic reaction, catalyst model with defined size will be

fabricated.

1.2 Objectives and Scope Study

There are several objectives inthisproject thathave been a fundamental of research and

laboratory work. There are:

i. To prepareand characterize a well supported silicaspheres.

ii. To prepare Fe/Si02 catalysts using the Ammonia Deposition Method and

Impregnation Method,

iii. To characterize the Fe/Si02 catalyst in nanometer size range.



The project involves preparation of the iron nanocatalyst using the ammonia deposition
method and impregnation method. The literature of iron nanoparticles as with all
nanoparticles is somewhat confused by a lack of consistency in definition and
terminology. It has been argued that only particles between 1and lOnm in size can be
regarded as ananoparticle, based on the SI units system [2i or that anything between 1
and lOOOnm is ananoparticle [3\ Finely divided iron has been studied for many years,
but it has been very difficult until relatively recently to know just what the dimensions
of the iron studied were when the particles were smaller than the wavelength of light.
Certainly some of the particles studied were nanoparticles, but judging from their
methods of preparation, they were likely very polydisperse, and showed great variety in
shape. Much of this very early work focused on preparing particles or particle systems
and measuring the macroscopic properties of the particles, often magnetic properties
such as magnetization and coactivity. Theories were devised to describe the expected
magnetic properties of iron nanoparticles, but were difficult to test without an
independent measure ofthe particle sizes and shapes. With the application ofelectron
microscopy to these systems in the 1940s and 1950s, particle sizes, shapes, and
distribution information could be readily determined. There was a renewed interest in

finely divided iron, as the properties could now be correlated with the sizes and shapes
of the particles. By the early 1960s, the theory describing the magnetism of iron

nanoparticles was fully formed and had been largely confirmed by experiments. [^8]
Research on iron nanoparticles has continued since then, but has experienced a surge in

interest in the recent decade or two. This is likely due to new synthetic techniques as

well as interest in new applications of iron nanoparticles. In recent years research has

continued in earnest, andshows no signs of slowing [91



2.0 LITERATURE REVIEW

2.1 Fischer-Tropsch Catalyst

The production of higher hydrocarbon materials from synthesis gas, i.e. carbon
monoxide and hydrogen, commonly known as the Fischer-Tropsch (FT) process, has
been in commercial use for many years. Such processes rely on specialized catalysts.
The original catalysts for the Fischer-Tropsch synthesis were nickel. Nickel is still the
preferred catalyst for hydrogenation of fats and specialty chemicals. Over the years,
other metals, particularly iron and cobalt, have been preferred in the Fischer-Tropsch
synthesis of higher hydrocarbons whereas copper has been the catalyst of choice for
alcohol synthesis. Cobalt is particularly preferred for Fischer-Tropsch synthesis due its
high productivity and comparatively low methane selectivity. As the technology ofthese
syntheses developed over the years, the catalysts became more refined and were
augmented by other metals and/or metal oxides that function to promote their catalytic
activity. These promoter metals include the Group VIE metals, such as platinum,
palladium, rhenium, ruthenium and iridium. Metal oxide promoters include the oxides
ofa broader range of metals, such as molybdenum, tungsten, zirconium, magnesium,
manganese and titanium. Those of ordinary skill in the art will appreciate that the choice
ofa particular metal or alloy for fabricating a catalyst to be utilized in Fischer-Tropsch
synthesis will depend in large measure on the desired product or products[10].

Cobalt catalysts are preferred for Fischer-Tropsch synthesis when the feedstock is

natural gas due to the higher activity of the cobalt catalyst. Natural gas has high

hydrogen to carbon ratio, so the water-gas-shift is not needed for cobalt catalysts. Iron

catalysts are preferred for lower quality feedstocks such as coal or biomass. While iron

catalysts are also susceptible to sulfur poisoning from coal with high sulfur content, the

lower cost of iron makes sacrificial catalyst at the front of a reactor bed economical.

Also, as mentioned earlier, iron can catalyze the water-gas-shift to increase the

hydrogen to carbon ratio to make the reaction morefavorably selective.



12 Fischer-Tropsch Process

Fischer-Tropsch process is a method for the synthesis of hydrocarbons and other
aliphatic compounds [11] Synthesis gas, a mixture of hydrogen and carbon monoxide, is
reacted in the presence of an iron or cobalt catalyst; much heat is evolved, and such
products as methane, synthetic gasoline and waxes, and alcohols are made, with water
or carbon dioxide produced as a byproduct. An important source of the hydrogen-
carbon monoxide gas mixture is the gasification ofcoal. The process is named after F.
Fischer and H. Tropsch, the German coal researchers who discovered it in 1923.

2.2.1 Original Process ofFischer-Tropsch Synthesis

The original Fischer-Tropsch process is described by the following chemical equation

(where 'n' is apositive integer) [12]"

(2n+I)H2 + nCO -» CJJ(2„+2) + nHsO

The initial reactants in the above reaction (i.e. CO and H2) can be produced by other

reactionssuch as the partial combustion of a hydrocarbon:

CJIpm-y + %n02 -> (n+l)H2 + nCO

for example (whenn=l), methane (in the case of gas to liquidsapplications):

2CH4"+ 02 -> 4H2 T ICO

or by the gasification ofcoal or biomass:

C + H7O-+H2 + CO

The energy needed for this endothermic reaction of coal or biomass and steam is usually

provided by (exothermic) combustion with air or oxygen. This leads to the following

reaction:



2C + 02-^2CO

The mixture of carbon monoxide and hydrogen is called synthesis gas or syngas. The
resulting hydrocarbon products are refined to produce the desired synthetic fuel.

The carbon dioxide and carbon monoxide is generated by partial oxidation of coal and
wood-based fuels. The utility of the process is primarily in its role in producing fluid
hydrocarbons from asolid feedstock, such as coal or solid carbon-containing wastes of
various types. Non-oxidative pyrolysis of the solid material produces syngas wh.ch can
be used directly as afuel without being taken through Fischer-Tropsch transformations.
If liquid petroleum-like fuel, lubricant, or wax is requ.red, the Fischer-Tropsch process
can be applied.

23 Process Condition

Generally, the Fischer-Tropsch process is operated in the temperature range of 150-
300°C (302-572°F). Higher temperatures lead to faster reactions and higher conversion
rates, but also tend to favor methane production. As a result the temperature is usually
maintained atthe low to middle part ofthe range. Increasing the pressure leads to higher
conversion rates and also favors formation of long-chained alkanes both of which are

desirable. Typical pressures are in the range of one to several tens of atmospheres.
Chemically, even higher pressures would be favorable, but the benefits may not justify

the additional costs of high-pressure equipment.

A variety of synthesis gas compositions can be used. For cobalt-based catalysts the

optimal H2: CO ratio is around 1.8-2.1. Iron-based catalysts promote thewater-gas-shift

reaction and thus can tolerate significantly lower ratios. This can be important for

synthesis gas derived from coal or biomass, which tend to have relatively low H2: CO

ratios.



2.4 Silica Particles

Silica chemistry has been the basis for the catalyst essential in refining crude oil to
gasoline and other fuels [13]" Colloidal silica is used in making the molds for casting the
super alloys in jet engines and for polishing silicon wafers in the electronic industry.
Pure silica is needed for the glass in fiber optics. The word silica has a very broad
connotation. It includes silicon dioxide in all its forms such as crystalline, amorphous,
soluble or chemically combined. This includes silicon in any chemically combined form
in which the silica atom is surrounded by four or six oxygen atoms. Thus, we can speak
ofthe silica content ofclay, or ofsodium silicate, in terms ofSiOz

2.5 Characterization ofCatalysts

Heterogeneous catalysts usually consist of highly divided solid phases that are closely
interconnected and thus difficult to characterize. Conventional transmission electron
microscopy (CTEM) offers the unique advantages of allowing the direst observation of
catalyst morphology with aresolution tunable in the range lO^-lO"10 mand of obtaining
structural information by lattice imaging and micro diffraction techniques. Moreover,
scanning transmission electron microscope (STEM) equipped with the x-ray analyzers
can be used to determine the local composition ofcatalysts with a spatial resolution as
good as 1nm in the case of field emission gun STEM. This is why electron microscopy
is now inwidespread use for catalyst characterization.

A few review articles have been devoted to electron microscopy as applied to catalysts

characterization, but the recent, rapid development of high resolution analytical
microscopy has not been properly covered. The present chapter is intended to give only
a brief account of CTEM instrumentation and principles, but application to catalyst

morphology and structure characterization will be developed. Emphasis is laid on
STEM and its associated analytical capabilities: energy dispersive X-ray emission

spectroscopy (EDX), electron energy loss spectroscopy (EELS) and diffraction on

6



nanodomains (nanodiffraction). More specifically, dedicated STEM, working only in

scanning mode, will be considered.

2.6 High-Resolution Transmission Microscope (HRTEM)

The formation of images in the conventional TEM is very similar to that in an optical

microscope. The TEM column indicates:

i. The electron gun, which is either a tungsten filament heated at 2500°C or a LAB6

cathode heated at 1600°C giving intensity ten times higher. The acceleration

voltage is commonly 100-200 kV but higher voltages are available on commercial

microscopes,

ii. The system of condenser lenses gives a demagnified image of the source on the

specimen,

iii. The objective lens gives a magnified image (typicallyx 100)ofthe specimen on the

image plane.

The specimen should be thin enough (e.g.: less than 100 nm for a 100-kV beam) to

transmit the electron beam. The limit of resolution in the absence of lens aberration is

0.61X/a, where a is the aperture angle of the beam determined by the objective aperture.

Lens astigmatism can be corrected by additional coils. The most limiting aberration is

spherical, which causes the electron beam to focus in different image planes for

different aperture angles a. The aberration is proportional to Cs a3, where Cs is the

spherical aberration coefficient and the resolution limit is given byCsa3 + 0.61X/ a.[16]

This TEM is a microscopy technique whereby a beam of electrons is transmitted

through an ultra thin specimen, interacting with the specimen as it passes through it. An

image is formed from the electrons transmitted through the specimen, magnified and

focused by an objective lens and appears on an imaging screen, a fluorescent screen in

most TEMs, plus a monitor, or on a layer of photographic film, or to be detected by a

sensor such as a CCD camera.
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2.7 X-Ray Characterization ofNanoparticles

One of the most fundamental characteristics of nanometer-sized particles is their very

high surface-to-volume ratio. This can lead to novel and unexpected atomic
arrangements, and may also have dramatic effects on the other physical or chemical
attributes. Because of this, the precise determination of nanoparticle structure, both

medium-range order and/or the existence oflocal distortion, is a fundamental issue.

It must be recognized that X-Ray diffraction (XRD), based on wide-angle elastic

scattering of x-rays, has been the single most important technique for determining the
structure of materials characterized by long-range order. However, for other systems,

such as disordered materials, XRD has been of limited use, and other experimental

techniques have had to be developed. Aparticularly powerful example is the technique
of EXAFS (Extended x-ray absorption fine structure), which probes the local
environment of a particular element Although this method is, as XRD, reciprocal space

based, it isessentially a spectroscopic technique, exploiting the energy dependence ofx-

ray absorption due to interference effects in the individual photoelectron scattering
process. The tact allows precise measurement of a local environment without the
necessity of long-range order inthe material.[18]



2.8 Scanning Electron Microscope (SEM)

The scanning electron microscope (SEM) is a type of electron microscope that images

the sample surface by scanning it with a high-energy beam of electrons in a raster scan

pattern. The electrons interact with the atoms that make up the sample producing signals
that contain information about the sample's surface topography, composition and other

properties such asThe types ofsignals produced by an SEM include secondary electrons,
back scattered electrons (BSE), characteristic x-rays, light (cathodoluminescence),

specimen current and transmitted electrons. These types ofsignal all require specialized
detectors for their detection that are not usually all present on a single machine. The

signals result from interactions ofthe electron beam with atoms at ornear the surface of
the sample. In the most common or standard detection mode, secondary electron

imaging or SEI, the SEM can produce very high-resolution images ofa sample surface,

revealing details about 1 to 5nm in size. Due totheway these images are created, SEM
micrographs have a very large depth of field yielding a characteristic three-dimensional

appearance useful for understanding the surface structure of a sample. This is
exemplified by the micrograph of pollen shown to the right. A wide range of

magnifications ispossible, from about x 25 (about equivalent tothat ofa powerful hand-
lens) to about x 250,000, about 250 times the magnification limit of the best light

microscopes. Back-scattered electrons (BSE) are beam electrons thatare reflected from

the sample by elastic scattering. BSE are often used in analytical SEM along with the

spectra made from the characteristic x-rays. Because the intensity of the BSE signal is

strongly related to the atomic number (Z) of the specimen, BSE images can provide

information about the distribution of different elements in the sample. For the same

reason BSE imaging can image colloidal gold immuno-labels of 5 or 10 nm diameters,

which would otherwise be difficult or impossible to detect in secondary electron images

in biological specimens. Characteristic X-rays are emitted when the electron beam

removes an inner shell electron from the sample, causing a higher energy electron to fill

the shell and release energy. These characteristic x-rays are used to identify the

composition and measure the abundance ofelements in the sample [1 ]'

10
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scanning electron microscope [17l

In a typical SEM, an electron beam is thennionically emitted from an electron gun fitted

with a tungsten filament cathode. Tungsten is normally used in thermionic electron guns

because it has the highest melting point and lowest vapour pressure of all metals,

thereby allowing it to be heated for electron emission, and because of its low cost. Other

types of electron emitters include lanthanum hexaboride (LaBe) cathodes, which can be

used in a standard tungsten filament SEM if the vacuum system is upgraded and field

emission guns (FEG), which may be of the cold-cathode type using tungsten single

crystal emitters or the thermally-assisted Schottky type, using emitters of zirconium

oxide.

The electron beam, which typically has an energy ranging from a few hundred eV to 40

keV, is focused by one or two condenser lenses to a spot about 0.4 nm to 5 nm in

diameter. The beam passes through pairs of scanning coils or pairs of deflector plates in

the electron column, typically in the final lens, which deflect the beam in the x and y

axes so that it scans in a raster fashion over a rectangular area ofthe sample surface.

11



When the primary electron beam interacts with the sample, the electrons lose energy by

repeated random scattering and absorption within a teardrop-shaped volume of the

specimen known as the interaction volume, which extends from less than 100 nm to

around 5 um into the surface. The size of the interaction volume depends on the

electron's landing energy, the atomic number of the specimen and the specimen's

density. The energy exchange between the electron beam and the sample results in the

reflection ofhigh-energy electrons by elastic scattering, emission of secondary electrons

by inelastic scattering and the emission of electromagnetic radiation, each of which can

be detected by specialized detectors. The beam current absorbed by the specimen can

also be detected and used to create images of the distribution of specimen current.

Electronic amplifiers of various types are used to amplify the signals which are

displayed as variations in brightness on a cathode ray tube. The raster scanning of the

CRT display is synchronized with that of the beam on the specimen in the microscope,

and the resulting image is therefore a distribution map of the intensity of the signal

being emitted from the scanned area of the specimen. The image may be captured by

photography from a high resolution cathode ray tube, but in modern machines is

digitally captured and displayed on a computer monitor and saved to a computer's hard

disc.

12



23 Physical Aspect ofAdsorption

2.9.1 Non-porous Solid

The dispersion forces betweenthe adsorptive molecules and surface atoms or ions of the

adsorbing solid are described by the Lennard-Jones potential[20]"

Adsoiption isotherms can be classified in six types according to IUPAC {21]. The type I

is typical for micro porous solids and chemisorprlons isotherms. Type XI is shown by

finely divided nonporous solids. Type HIand Type V are typical of vapors. Type IV and

Type V feature an hysteresis loop generated by the capillary condensation in mesopores.

The rare Type VI, the steps-like isotherm, is shown with nitrogen on special carbons.

Classification of pores according to their width:

• Micropores Less than 2 nm

• Mesopores Between 2 nm and 50 nm

• MicroSpDr^s Larger thai! 50 rim

2.9.2 Mesoporous Solid

At low relative pressure of the pore walls adsorbs a multilayer of adsorbate. If the

pressure is raised, droplets of adsorbate occur on optimal energetic points of the pore

surface with curvatures according to the Kelvin equation. If the droplets touch each

other, the pores will be filled with condensed adsorbate. This will evaporate during the

desorption from pores showing core openings larger than the Kelvin radius. The

adsorption branch is pore-dimension dependant, and the desorption branch is related to

the pore openings.

13



2.9.3 Microporous Solid

In micropores the potentials of both sidesof the pore walls overlap, thus enhancing the

adsorption potential [22\ The smaller thepore width thedeeper the resultmg potential

becomes. This results in enhanced adsorption energy, and adsorption takes place at very

lowpressure. Micropores with thesmaller width fill first, butadsorption on thesurface

of largermicropores occurs at the sametime(secondary micropore filling)

Horvath and Kawazoe E23J developed a method to calculate the micropore size

distribution according to the relation between the pore width and the resulting

adsorption potential. The integration of the potential function gives a relationship

between the relative pressure and the pore size:

•H"J irW 'J
S

• =. i .,.;'- • .-•..,-, -; • • . ]

f-- £ .-.i 4 -i'A -W &".•).]
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3.0 METHODOLOGY & PROJECT WORK

3.1 Research & Experimental Project

Basically this project involves preparation of Silica support and preparation of iron

nanocatalyst. Early on there several variables that need to be monitor and investigated

during the experiment so that the author can have a result that the author need. After

doing some research and when doing an ongoing experimental work the author has

decided that are two variables that need to take into consideration. The variables that

need to be monitor are:

• Metal loading

• Calcinations temperature

The synthesized nonmaterial will be characterized in terms of particles size, porosity,

and surface area. The characterization will involve scanning electron microscope

(SEM/EDS). It is a type of electron microscope that images the sample surface by

scanning it with a high-energy beam of electrons in a raster scan pattern. The electrons

interact with the atoms that make up the sample producing signals that contain

information about the sample's surface topography, composition and other properties

such as electrical conductivity.

15



32 Chemicals and Quantity

No Chemicals/ Materials Quantity

1 Fe (N03)3.9H20 500g

2 Ammonia solution (28wt %) 500g

3 Tetraethyl ortosilicate (TEOS) 500g

4 Ethanol (absolute) 1 Liter

Table 3.1: List ofchemicalsand the quantityfor the experiment.

33 Tools and Equipment

No Equipment Quantity

1 Surface area analyzer and temperature-programmed

apparatus (TPD/RO)

2 BET surface area analyzer

3 Transmission electron microscope (TEM)

4 Scanning electron microscope

5 Rotary evaporator

6 Furnace

7 Magnetic stirrer/ hot plate

8 Conical flask

Table 3.2; List ofequipments that will used during the experimentalhours

16



3.4 Preparation of Silica Spheres Support

3.4.1 Preparation ofnonporous silica spheres

The nonporous silica spheres were prepared as described previously p4]. Tetraethyl
ortosilicate (TEOS) with Merck grade, ethanol (99.9%, Merck grade), distilled water

and ammonia (25% Merck grade) weremixed in the prescribed amounts and stirred for

24h in a conical flask[251 . Then, the silica containing slurry was dried in a rotor

evaporator at 75°C, to ensure improved handling and maximum recovery of the

nonporous silica spheres after the reaction compared with separating the silica spheres

by centrifugation. After drying, the silica spheres were calcined at 400 C to remove

adsorbed ammonia.

17



Prepare two solutions for silica spheres:

a) 76ml ofNH40H in 600ml of absolute ethanol

b) Stir 64M1 TEOS with 260ml absolute ethanol

XZ
Add solution (b) into solution (a). Stir the mixture

together for 24 hours.

Put the mixture in a rotary evaporator at 75°C to
remove the ethanol solution.

Keep the precipitate in an oven at 110 C for 16
hours for drying.

Keep the precipitate in a furnace for another 1

hour at 500°C to calcine it

Estimated time —42 hours



3.4.2 Preparation of silica spheres

5th Experiment

Date: 24 February 2009

Lab: 03-02-05

430pm: chemicals preparation

500pm: start stirring

530pm: colorless mixture start to changeinto milky white. Stir for 24 hours.

Figure 3.1:Mixture starttostir andchange to milky white

Date: 25 February 2009

Lab: 03-02-04

500pm: stop stirring the mixture

505pm: cover up the mixture with parafilm
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Date: 26 February 2009

Lab: 03-02-04

1200pm: ethanol start to evaporate (start the rotary evaporator)

[Speed^; temperature^ 75°C]

145pm: stop rotary evaporator

[Notes: weight after = 15.6124g]

500pm: crucible going into furnace for cleaning at 530°C

600pm: sample going into ovenfor 16hours. Temperatureat 110°C.

Figure 3.2: Sample going into rotary evaporator andafterthat intooven

Date: 27 February 2009

Lab: 04-02-17

1000am: Take sample out from the oven. Weight the sample.

[Weight: 14.9976g]

1205pm: Put the sample into furnace at 500°C for an hour.

105pm: Take sample out from the furnace.

[Weight: 14.1373g]

300pm: Start to grind the silica for an hour with mortar and pastel.
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Figure 3.3: Sample going intofurnace and then being grind.

The sample undergoes BET analysis for characterization.
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3.5 Catalyst Preparation

3.5.1 Preparation of5 wt% spherical Fe/Si02 catalysts by ammoniadeposition

method

Dissolve 0.19 g ofFe (N03)3.9H2G in 7.5 mL water.

Add 7.5 mL NH4OH (25 wt %) slowly to the aqueous solution to
form precipitate

Add 22 mL NH40H (25 wt %) to dissolve the precipitate

Add 5.0 g silica spheres to the solution. Stir for 3 hours.

Centrifuge the mixture at 7000rpm for 40 minutes. Filterand
wash with water.

Dry the brownish precipitateovernight in air at room temperature
and then at 120°C for 3 hours

The procedures will be repeated at different weight ofFe (N03)3.9H20 to getdifferent

cobalt loading on the catalysts:

i. Use 0.11 g Fe (N03)3-9H20 to get a 3 wt% Fe/Si02 catalyst

ii. Use 0.07 g Fe (N03)3.9H20 to get a 2 wt% Fe/Si02 catalyst
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Solution before stir

Dry the catalyst into oven

Stir the solution with

Overhead stirrer

During filtering

After stimnii

Centrifuge at

7000rpm

Figure 3.4:Preparation ofcatalyst usingAmmonia Deposition method.

After all this steps, the catalyst is now in the process of characterization by SEM and

XRD.
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3.5.2 Preparation of5 wt% spherical Fe/Si02 model catalysts by impregnation

method

Add 5.0 g of silica spheres to a solution containing 0.19 g of
Fe(N03)3.9H20

if

After 5 hours ofimpregnation, filter the precursor and dry for 24
hours

' f

f -Reduce the precursor in flowing hydrogen by slowly increasing
the temperature at a heating rate of 1.3 K/min for 8 hours.

The procedureswill be repeatedat differentweight of Fe (N03)3.9H20 to get different

iron loading on the catalysts:

i. Use 0.11 g Fe (N03)3.9H20 to get a 3 wt% Fe/Si02 catalyst

ii. Use 0.07 g Fe (N03)3.9H20 to get a 2 wt% Fe/Si02 catalyst
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Figure 3.5: Preparation of5wt% Fe/Si02 using impregnation method
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4.0 RESULTS & DISCUSSION

4.1 Silica preparation

The attempts to do a silica sphere support for iron catalyst has failed due to several

causes such as contaminated and change offinal silica color. There have been four

attempts to do a silica support before the fifth attempt has end up with a success. There

are many variables that need to be control such as speed ofstirring, cleanliness of

equipment and glassware, chemicals that have been contaminated and so on. The first

three attempts have been failed when the color ofsilica was changed from pure white to

purple and brownish respectively. The fourth attempt the color ofsilica is pure white but

the BET result is not likethe desired onewherethe BET is 198m2/g instead of less than

100m2/g. The finalattempt was successful where the color of the silicasphere is pure

white and the BET is less than 100m2/g where after characterize it the sample has a bet

of61m2/g.

During the final attempt in preparing the silica the author has been in extra precaution

with the cleanliness ofthe equipment and glassware. The author follows the

methodology continuously until when we want to put the solution in the oven after

finish doing rotary evaporator. Instead put the sample in one patry disc the author put

the sample into two discs separately. Same goes when placing the sample into furnace

for calcinations. The author has put the sample into two crucibles that have been cleaned

before with high temperature. The empty crucibles were put in the furnace overnight at

550°C to remove all particles that might had at the surface of crucibles.

The summary of attempts preparing a silica sphere support is shown as below:
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cruciblies. Results failed.
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orSiiica^
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The samples are clearlypure white after The sariiples have been sent

been calcined. The sampleshave been put for BET analysis/

into two different crucibles to maximize

the calcinations to remove impurities.
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Unfortunately the results show

thattheBET is 198 which

larger than maximum

allowable BET, 100; It is

suspected come from the speed

when stir because the stirring

rate is too fast Results failed.



14.1373 The samples are clearly pure white after

been calcined. No sign ofcontaminated.

The samples have been sent

for BET suifacc area analysis.

The result has come out and

the reading is

61.8923m7g.Results is a

success. The sample of silica

sphere can be use to prepare a

catalyst.

Table 4.1: Summary ofpreparing a silica support spheres.

\iiiinpi Color Results

Purple Contaminated. Failed

Dark Contaminated. Failed

Brownish

Light Contaminated. Failed

Brownish
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Pure White BHV surface area is more

than 100. Failed

5 Pure White BKT surface area is

61 8923mVg. Success

Table 4.2; Summary oj silica spheresphotograph

It takes almost two months two prepare and characterize the silica support before the

author can proceedto next step which is to prepare iron catalyst. After characterizedthe

BET surface area the result is as followed:

Figure 4.1; The isothermplot on silica spheres
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Adsorption isotherms can be classified in six types according to IUPAC[26]. The type I
is typical for micro porous solids and chemisorptions isotherms. Type n is shown by

finely divided non-porous solids. Type HI and Type V are typical ofvapors. Type IV

and Type V feature a hysteresis loop generated by the capillary condensation in

mesopores. The rare Type VI, the steps-like isotherm is shown with nitrogen on special

carbons. The graph above is the Type It ofadsorption isotherms where it indicate a

finely divided non-porous. The types ofgraph above can be compared with the rest of

adsorption isotherms.

Figure42: Adsorption isotherms[273
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42 Catalyst preparation (Ammonia Method)

The author has followed the methodology that has been prepared (Chapter 3). For

ammoniadeposition the author have been used an overheadstirrer to stir the solutions of

Fe (N03)3.9H20 and silica. Theauthor decide to put 0.5g of silica to add into 0.19g of

Fe (N03)3.9H20. The speed of overhead stirrer is fixed at 200rpm. The authorhas doing

a 5wt% ofFe/ S1O2 loading first then follow by3wt% and2wt% respectively. Different

loadingwill result a differentweightof Fe (N03)3.9H20 that will add into solution.

\U-ilioiliilu**i

llll MM|IK'llft'l

Mill M

( t'liliifti'^i

Mum I iIkm

I'll. <>hsi'i\.ilnill

There were three layers inside it contains

a very darker brownish layer, brownish

layer and water layer. There is also a tiny

white layer at the bottom of it

The layers were more clear after the

sample been centrifuge. At the bottom

there is still a tiny layer of whtte color

suspected is silica, the middle layer is an

iron layer while at the top is a clear water

layer.

The iron catalyst is a brownish in color.

The sample is separated into small pieces

by washing it with water.
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After drying the sample overnight plus

with 3 more hours in an oven the sample

color change to more bright brownish.

Some of the pieces were brown n color

and some are while which shows that it

not well distributed.

After grinding the color of the sample

become darker and it changed into powder

form.

Table 4.3; Summary ofobservation ofammonia deposition method.

2wt% Fe/ Si02 catalyst 3wt% Fe / Si02 catalyst 5wt% Fe / Si02 catalyst

Figure4.3: Comparing the color ofdifferent loading ofFe / Si02catalyst

As showninFigure 4.4 above, different metal loadingwill resultdifferentcatalyst

color. As it goes the lowermetal loading which is 2wt%Fe / Si02 has a brightest

brownishcolor comparedto highermetal loadingwhich is 5wt% Fe/ Si02 has a darker

brownish color. So it shows that the higher metal loading ofthe catalyst, the more

darkly the colorwill be. This canhappen dueto additionof metal insidethe solution

before stirringit where it depends on the calculation. The calculation is basedon ratio of
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iron and silica itself where it figure out by trial and error method. The sample of

calculation of 5wt% Fe/ Si02is shown as below:

42.1 Catalyst calculation (5wt% Fe/ SiOi):

Assume silica to be 0.5grams.

Final

Cataly

Final

Iron

T
(1)0.05x0.526 = 0.0263

(2) 0.526 - 0.0263 = 0.4997 —

(3)56MwofFe • 403.86Mw of Fe (N03)3.9H20

(4) So, 403,86 * 0.0263 = 0.19 Fe (N03)3.9H20

56

Silica

Metal Loading Weight ofFe (N03)3.9H20 (grams)

2wt% 0.074

3wt% 0.11

5wt% 0.19

Table 4.4. Summary ofmetal loading and weight ofiron

After all the catalyst from different metal loading have been prepared, the sample is

sending for characterization of Scanning Electron Microscope (SEM) and Xray

Diffraction (XRD). Here are the photographs that have taken from SEM equipment and

the analysis from Energy Dispersive X-ray (EDX) for 5wt% Fe / Si02 ammonia

deposition method.
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4.2.2 SEM and EDX characterization

Mag= 10.00KX EHT=15.00kV Date :28 Apr 2008 Time :12:04:20

wfi= iijmm Signal A=sei universi8 Teknoiogi PETRONAS

Figure 4.4; ScanningElectronMicroscope image of5wt% Fe /Si02 loading
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Figure 4.5; Thecomposition graph of5wt% Fe /Si02 loading
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Figure 4.4 and 4.5 shows the results of SEM and EDX respectively. From the image of

SEM we can say that the silica is spherical in shape. From the graph above we can

confirm that there are only three components exist in the catalyst which is iron (Fe),

silica (Si) and oxygen (O). The graph shows that this catalyst a very large amount of

silica and very small weight of iron. The composition and weight ofall three particles as

shown below:

Element Weight % Atomic %

Oxygen 52.27 71.30

Silica 38.21 27.09

Ferum 4,52 1.61

The weight %offerum is 4.52 which show that it is near to 5wt% that have been

selected before. For now, only 5wt% ofFe / Si02 can be done due to limitation. After

this the author will Continue to characterize for 2wt% and 3wt% 6fthe sample.
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43 Catalyst preparation (Impregnation Method)

This methodology is same with ammonia deposition where the author had started with

highest loading first which is 5wt% of loading. The author will continue with 3wt% and

2wt% of loading the next day respectively.

Method olo<*\

(in sequence)

Stirring

I- liter

l)r\iiig

Alter

Healing

Grind

Photo Observation

Some of the solution has been evaporated

lo the air. Some of the pari has changed

to solid and some other part still has

water.

The solid part was led as a sample. The

color becomes yellowish.

The solid become brownish.

The sample becomes darker in color.

The color become less dark than previous

due to particles is not well distributed.
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2wt% Fe/ Si02 catalyst 3wt% Fe / Si02 catalyst 5wt% Fe / Si02 catalyst

Figure 4.6: Comparing the colorofdifferent loading ofFe /Si02 catalyst

As shown in Figure 4.7 above, different metal loading will result different catalyst

color. As it goes the lower metal loading which is 2wt% Fe / Si02 has a brightest

brownish color compared to higher metal loading which is 5wt% Fe/ Si02 has a darker

brownish color. So it shows that the higher metal loading of the catalyst, the more

darkly the color will be.
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43.1 SEM and EDX characterization

1ym Mag= 10.QOKX EHT =15.00kV Dste:28 Apr 2009 Time :11:53:16
WD= TO nm Signal A= SEi UtltVersmTekllOlOgi PETRONAS

Figure 4.7; Scanning Electron Microscope image of5wt% Fe /Si02 loading
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Figure 4.8; The composition graphof5wt% Fe /Si02loading
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Figure 4.7and 4.8 shows the results of SEM and EDX respectively. From the image of

SEM we can say that the silica is spherical is shape. For impregnation method the image

lookagglomerated andthe cause of this scenario happen is when the author calcines the

sample in the furnace where the thermal effect occurs. From the graph above we can

confirm that there are only three components exist in the catalyst which is iron (Fe),

silica (Si) and oxygen (O). The graph shows that this catalyst a very large amount of

silicaand very small weightof iron. Thecomposition and weightof all three particles as

shown below:

Element Weight % Atomic %

Oxygen 60.70 73.51

Silica 37.49 25.87

Iron 1,81 0.63

The weight %of ferum is 1.81 which shows that it is tar from 5wt% that have been

selected before. For now, only 5wt% of Fe / Si02 can be done due to limitation. After

this the author will continue to characterize for 2wt% arid 3~wf% ofthe sample.
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43.2 Transmission Electron Microscope (TEM)

•-I'l*

Figure 4.9: Transmission Electron Microscopy (TEM) image ofthe synthesizedsilica spheres

,^-'^

Figure 4.10: Transmission Electron Microscopy (TEM) image ofthe synthesized silica spheres

40



-*•*•'

Figure 4.11: Transmission Electron Microscopy (TEM) image of5wt% Fe/Si02

CatalystOfimpregnatidn method

From figure 4.9 and 4.10 shows TEM images of the synthesized silica spheres. The

silica spheres were considered nonporous and smooth surface with slightly sharp edges.

The average diameter of each silica spheres is at 168nm. Figure 4.11 shows the TEM

image of the 5wt% Fe/Si02 spherical model (Fe-21nm) catalyst prepared by

impregnation, which is, mixing a iron nitrate solution with the nonporous silica spheres

followed by drying and calcinations. The catalyst model was found to be well-defined

with proper attachment of iron metal on the silica spheres. However, it seems that the

iron particle size is bigger than expected (12nm).
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Figure 4,12: TEM image of5wt% Fe/SiCfc catalyst with different iron size attached on the silica

From Figure 4.12 above shows that iron particles at different size attached on the silica
sphere of 5wt% Fe/Si02 -It shows the size of iron metal attached on the particle is in
range of19nm-34nm. The range is too big whereas the desired range ofiron metal is
below 12nm. In the figure shows the distribution of iron metal is inconsistencies onthe

support. This might be because of unevenly stirring of mixture during the catalyst
preparations where the solution may not be contact at all area. The stirring process was
notuniform throughout themixture, causing only certain amount of iron particles mixed

with the silica spheres.
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43.3 X-ray Diffraction (XRD)

S1

2-Thels - Scale
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Figure 4.13: XRD result for3wt% Fe/Si02 catalyst by impregnation

Figure 4.13 shows the representation ofamorphous nature ofthe 3wt% Fe/Si02 catalyst

after XRD analysis. For 3wt% of iron loading we know that the supported catalyst is

largely covered with silica which contains only 3% makes it hard for the catalyst to be

in crystalline structure. An amorphous solid is the kind in which there is no long chain

order of the position of the atoms. Theoretically, given a sufficiently high cooling rate,

any liquid can be made into amorphous solid. It is difficult to make a distinction

between truly amorphous solids and crystalline solids if the size of the crystals is very

small. Even amorphous materials have someshort-rangeorder at the atomic length scale

due the nature of chemical bonding. Furthermore, in very small crystals a large fraction

of the atoms are located at or near the surface of the crystal; relaxation of the surface

and interfacial effects distort the atomic positions, decreasing the structural order.
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4.4 Comparison of Impregnation Method and Ammonia Deposition Method

Theoretically, iron catalyst will react well in impregnation method compare to

deposition method. Looking at the image in Figure 4.5 and 4.8 the author can say that

the imagejust can tell aboutthe shape of silica which sphere. The impregnation method

image look agglomerated maybe because of the lense of SEM equipment that touch the

sample make the sample look like that. It also maybe because the image is just takes at

one spot ofthe catalyst where the result may not that accurate.

Looking at EDX results it shows that ammonia deposition is better for iron compared to

impregnation method although the theory tell otherwise. This result is only base on

5wt% for both methods so when the author can managed to get the result for 2wt% and

3wt% samples, the author can get the accurate result.
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5.0 CONCLUSION AND RECOMMENDATIONS

The authorhas desired result for silicasphere after the 5 attempt when the color of the

silica is pure white and the BET is less than 100 where the result is 61.8923 m2/g. The
reason for the previous result has been failed is because there were some parameter that

the author has missed looked such as the cleanliness of the crucibles and the speed when

stirring the solution. In the end, after understand all the problems the author has

managed to geta desired silica support So it shows that a silica spheres can be made to

achieve the first objective.

For the iron catalyst, after the result of scanning electron microscope (SEM) andEnergy

Dispersive Xray (EDX) for 5wt% Fe/ Si02 catalyst has come out, the author found out

that the ammonia deposition method is more preferable for iron catalyst compared to

impregnation method. The conclusion is made base on the result that has shown from

the image of SEM and the weight % of element at EDX for 5wt% of Fe / Si02. After

this, the author will continue to characterize the sample from 2wt% and 3wt% and

hopefully from there an accurate and correct resultwill appeared.

Transmission Electron Microscopy (TEM) analysis conducted on sample of 5wt%

Fe/Si02 catalyst by impregnation method yield an estimated average of iron particles

with 25nm diameter attached on a silica sphere. X-ray Diffraction (XRD) measurement

indicated that the catalyst samples are in amorphous state.
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There are several recommendations can be made to improvethe outcome of this project

in the future:

• Allthe equipments must clean and ingood condition when doing the

experiment. For example the crucibles use to prepare the silica must be clean to

avoid the sample been contaminated.

• The variables such as stirring speed rnust be fixed and always Use the same

magnetic hot plate to avoid changeof speed.
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APPENDIX A:

BET SURFACE AREA ANALYSIS OF THE SYNTHESIS SILICA

SPHERES

.BET SURFACE AREA REPORT .

BET" SURFACE

SLOPE:
Y-INTERCEPT-

•C: ""."
VN :

CORRELATIOH

AREA: 61.8923 • ' +/- " 0.9020 • sq .. m/g
" 0,06993.9 +/- 0,001024"
• 0.000398 +/- '••••0,000052

•177.840080

14.217668 cc/g STP
COEFFICIENT": -S.99679E'-01.

. RELATIVE

.. PRESSURE
'"-.•• ' VOL.".ABSORBED .; -1/ •" " •"•

;(cc/g STP;). \ . [VA.(Po/P - I").]/ •-•-.

• 0.0098
0.0205

.0.0396 .

•"0.0670
0.078?

9.7306 .: 0;001019
. 11.2564 0.001857

• " 12.7508- " " • 0..003233 "
• • • . • 14..1205 '..----"" . 0.005085-

14-,.5700 -.. • •" 0.005865 "



APPENDIX B:

SCANNING ELECTRON MICROSCOPE (SEM) ANALYSIS OF

THE CATALYSTS

*Vm | Mag= 10.00KX EHT =15.00kV Date28Apr2009 T&T»:12:0420
"™ "• wd= 10mm SignaiA=SEi Unirei^ Teknotogt PETRONAS

Scanning Electron Microscope image of5wt% Fe /Si02 loading (ammonia deposition)

ScanningElectron Microscope image of5wt% Fe/Si02 loading (impregnation)



APPENDIX C:

ENERGY DISPERSIVE X-RAY (EDX) ANALYSIS OF THE

CATALYSTS
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5wt% Fe/SiC>2 catalysts by ammonia deposition method
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5wt% Fe/Si02 catalysts by ammonia impregnation method



APPENDIX D:

TRANSMISSION ELECTRON MICROSCOPY (TEM) IMAGES OF

5wt% Fe/Si02 CATALYST BY IMPREGNATION METHOD
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APPENDIX E:

X-RAY DIFFRACTION (XRD) IMAGES OF Fe/Si02 CATALYST
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