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ABSTRACT

This draft report explains about the background of tank systems such as
the single tank system as well as the split coupled tank and how to model such
tanks using Simulink blocks. A brief about neural network architectures were
added to this report as well as the ARX model and Neural Network. The report
also shows the project work flow such as the scope of study and literature review
which have been found during this semester. The results and discussion consist of
the designing of coupled tanks, PI and PID controllers as well as ARX model
using Simulink/Matlab. The methodology shows the procedures of the project.
The conclusion and recommendation of the project are added as well. Last but not
least is the appendix which shows the calculations which were made and a CD is

attached in the end containing all the Simulink blocks of the project.
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CHAPTER 1
INTRODUCTION

1.1 Background Of Study

The control of liquid level in tanks and flow between tanks is a basic problem
in the process industries. The process industries require liquids to be pumped,
stored in tanks, and then pumped to another tank. Many times the fluids will be
processed by chemical or mixing treatment in the tanks, but always the level of
fluid in the tanks mmust be controlled, and the flow between tanks must be
regulated. Often the tanks are so coupled together that the levels interact and this
must also be controlled. Vital industries where liquid level and flow control are
essential include:

¢ Petro-chemical industries.

s Paper making industries.

e Water treatment industries.

Our lives are governed by level and flow control systems. For example,
medical physiology involves many fluid bio-control systems. Bio-systems in our
body are there to control the rate that blood flows around our body. Other bio-

systems control the pressure and levels of moisture and chemicals in our body.

Tank level control systems are everywhere. All of our process industries, the
human body and fluid handling systems depend upon tank level control systems.
It is essential for control systems engineers to understand how tank control

systems work and how the level control problem is solved [1].

The PI and PID controllers have been used heavily in the process industries,
mostly concerned about improving its performance and efficiency without using
other approaches. In this paper, couple tanks are used to select the best controller

(either PI or PID) based on its performance and stability, and then the best



controller is compared with an intelligent controller using “ARX” model based on

their performance in controlling the couple tanks.

1.2 Problem Statement

To control by the levels of both tanks of the coupled tanks and the output

flow from the second with random input flow from the first tank.

1.3 Objectives

¢ Design a coupled tank using Simulink.

o Implement a controller to the coupled tank

o Design an ARX model for the coupled tank.

o [mplement Neural Network training.

o Compare the performances of the ARX model and neural network model

with the controller.

1.4 Scope Of Study

The scope of study is designing a single tank model first from linearized flow
equations using Simulink then implementing a PI controller to the model.
The couple tank is then designed on Simulink as well and three different PI
controller calculations are implemented. The best controller in performance is

then selected.

An “ARX” model will be designed for the split coupled tank and a comparison
will be made between the performances of the two models on the split coupled

tank.



CHAPTER 2
LITERATURE REVIEW

It’s important to understand the mathematics of how the coupled tanks system
behaves. System modeling is a very important part in control system analysis.
Before modeling of the split coupled tanks, a model is made for the single tank.
This will facilitate the modeling and simulation on the split coupled tanks as well

as the controlling of flow. Fig. 1 shows the single tank level system.

2.1 Single Tank System

The system model is determined by relating the flow Q; into the tank to the
flow Q, leaving through the valve at the tank bottom. Using a balance of flows

equation on the tank, it is possible to write:

Qi-Qo=A% (Equation1)and Qo= kv (Equation2)

Tank
I l (Cross Sectional
df“:

Qi Area A)

Pump

Valve
Qo

Figure 1 - Single Tank System



Where, A is the cross sectional area of the tank, H is the height of the fluid in the

tank and k is the valve resistance of the tank.
2.2 Coupled Tank System

Similar to the single tank system is the split coupled tank, the equations of
flows in the coupled tank can be determined where the system states here are the

levels h; and hs.

Figure 2 - Split Coupled Tank System

The flow equations of the split coupied tank are:

dhl _ Q1-Q2 Eouation 3) & dh2 _ Q2-Q3 Couation 4
T A1 (Equation 3) & Az (Equation 4)
Where

Q2 =klvhl , h2 < H (Equation 5)
Q2 =k1/(hl — (h2 — H) ,h2 > H (Equation 6)




Where

O : ' Input flow into tank 1

Q Output flow out of tank 1
Qs ' Output flow out of tank 2
hy Liquid level of tank 1

h | | Liquid level of tank 2

H Height of the split tank level
A : ~ Cross section area of tank 1
A, | | l' Cross sect.ion'area of tank 2
Ki | . Valveresistance of tank 1
K, o Valve resistance of tank 1

After applying and selecting the best PID controller to the plant which was
explained in details in the previous progress report, multi-layer perceptron (MLP)
will be applied as well. A paper has been reviewed, prepared by Martin T. Hagan,
showing examples of neural network architectures for system identification and
control. These architectures are Adaptive Inverse Control, Nonlinear Internal
Model Control, Model Reference Adaptive Control, and Model Predictive
Control. They are briefly explained below [2].

2.3 Adaptive Inverse Control

The adaptive algorithm receives the error between the plant output and the
reference model output. The controller parameters are updated to minimize that
tracking error. The basic model reference adaptive control approach can be

affected by sensor noise and plant disturbances.



Command

Input

——-’—-D

Plant Disturbance

An alternative which allows cancellation of the noise and disturbances includes a

neural network plant model in parallel with the plant. That model will be trained

Figure 3 - Adaptive Inverse Control System

* Sensor Noise
+ Plant .
NN Cutput
Controlier | Plant -——-‘+ -+ -
* Adapation | Plant Model [—>{
Algorithm | Noise &
. | — Disturbance
NN at Plant Quiput
Inverse Plant
Meodel ) ' 4
Tracking Error _{_‘i_
»| Reference f .
Model

to receive the same inputs as the plant and to produce the same output.

2.4 Nonlinear Internal Model Control

Here, the neural network controller is generally trained to represent the
inverse of the plant, if the inverse exists. The error between the output of the
neural network plant model and the measurement of plant output is used as the

feedback input to the robustness filter, which then feeds into the neural network

controller.

Command
Impur .

Conmrol

Robustness
Filter

Lol

NN
Contwroller

Input

Plamt

Plant Model |

Predicted
Plant
NN Ourput

Piant
Output

Figure 4 - Nonlinear Internal Model Control



The NN plant model and the NN controller (if it is an inverse plant model) can be
trained off-line, using data collected from plant operations. The robustness filter is

a first order filter whose time constant is selected to ensure closed loop stability.

2.5 Model Predictive Control

This architecture requires a neural network plant model, a neural network
controller, a performance function to evaluate system responses, and an
optimization procedure to select the best control input. The optimization

procedure can be computationally expensive.

Optimization Loop Predicted
_ Plant
Reference | L »- NN OCutput
Model *] Optimization Piant Model |
¥ Plant
- . Output
Command Controller Plant ———
Input Control
Input

Figure 5 - Model Predictive Control

It requires a multi-step ahead calculation, in which the neural network model is
used to predict the plant response. The neural network controller learns to produce
the input selected by the optimization process. When training is complete, the

optimization step can be completely replaced by the neural network controlier.
2.6 Model Reference Control or (Neural Adaptive Control)

The model network can be trained off-line using historical plant
measurements. The controller is adaptively trained to force the plant output to
track a reference model output. The model network is used to predict the effect of
controller changes on plant output, which allows the updating of controiler

parameters [3] [4].
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Figure 6 - Model Reference Adaptive Control

2.7 ARX Model Structure

“ARX” stands for “AutoRegressive, eXternal input”. It is considered as a
black box system which can be viewed in terms of its input, output and transfer

characteristics without any knowledge of its internal workings.

Input Qutput ,

Blackbox
Figure 7 — Black Box System

Its equation is as follows:

Y=Yy + BiU.+e (Equation 7)

Where
U System input
Y System output
Error measurement
e variable values
B _ variable values

A system with one input and one output is called “ARX 1” and described in the
above equation. A system with two inputs and two outputs is called “ARX 2” with

the following equation.

Y=Y +Yp + f1Un+ B2Upte  (Equation 8)



2.8 Artificial Neural Network

An artificial neural network (ANN) is a computer program that can recognize
patterns in a given collection of data and produce a model for that data. It is the

same like the brain in where:

» It acquires knowledge by the network through learning. (trial and error)
» Ituses of synaptic weight to store the knowledge.

One of the applications of “ANN" is the function approximation where it consists

of process modeling, process control and data modeling [3].

The most common neural network model is the multi-layer perceptron (MLP).
This type of network is known as a supervised network because it requires a
desired output in order to learn. The goal of this type of network is to create a
model that correctly maps the input to the output using historical data so that the
model can then be used to produce the output when the desired output is

unknown.

x3

Figure 8 - Graphical Presentation of an MLP

The MLP learn using an algorithm called “back-propagation” where the output of
the neural network is compared to the desired output and an error is computed.
This error is then fed back to the neural network and used to adjust the weights
such that the error decreases with each iteration and the neural model gets closer

and closer to producing the desired output. This process is called “training”.



The MLP is used in process modeling and control by creating a neural
network model for a physical plant then using that model to determine the best

control settings for the plant [3].

The features of using neural network are:

a. Model unknown non-linear systems.
b. Simplified the modeling process.
¢. Enables implementations of generic tools for control system

design.

10



CHAPTER 3

METHODOLOGY

3.1 Procedure Identification

Start

v

A4

Literature Research

—

Background study of
Simulink

Background study of
tanks system

Background study of
MATLAB

v

Gathering data, .
parameters involve

=

Designing a split
coupled tank

'

Implementing PI
controller for split
coupled tank

¥

Background study of
ARX modeling

v

Implementing ARX
model

¥

Training of Neural
Network

¥

End

Figare 9 — Flow chart of project
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3.2 Tools and Equipment

MATLAB software was used to implement the required designs. The
command window, Simulink feature as well as M-file facilitated the construction
of the plant, controllers and the “ARX" model. It is recommended for beginners to
view the basics of Simulink before viewing the results. This is available from the

MATIAB help guide with video tutorials.

12



CHAPTER 4
RESULTS AND DISCUSSION

The results and findings are composed of:
1) Design of coupled tank system using Simulink.
2) “Process Reaction Curve” of the coupled tank.
3) Designing of controller using:
a. Ciancone correlations for PID controller.
b. Cohen Coon tuning correlations.
c. Ziegler Nichols closed loop tuning correlations.
4) Choosing the best controller.
5) Fine tuning the selected controller.
6) Changing output to the level H;
7) Designing of ARX model.
8) Training of Neural Network

4.1 Design of Coupled Tank System using Simulink

The split coupled tank is constructed from the flow equation which was
mentioned earlier. The cross sectional areas (A; A;) are as assumed to be 6 cm?

while the valve resistances (k; kz) equals 1 cm’/s,

13



File Edt Yiew Simulation Format Tooh Help

D EE& A » = Bt [Nowe ST RmB® REme
Ga To Workspace2
m - M To Workspace1
Sep Add Gain integrator H

Om & Cout
h2
- T =
Add1 Gan2 Integrator! 2
To Workspace3 Math
[om Jo o= . ]
san fe e
—
To Workspace
Area of tank 1{a1) =6
Area of tank 2 (a2) = 6
Vabe resistance (k1j=1

Vabe resistance (k2) = 1

Figure 10 - Interacting Couple Tank

Figure 10 shows the coupled tank with a step input (Q;,) and the output is
considered as the output flow (Qquy).

4.2 Process Reaction Curve of the Plant

.:_ i | | 4

1500 2000 500

S

Figure 11 - Process Reaction Curve

Based on the relationship between the input and the output of the coupled tank

shown in figure 5, some parameters have been calculated using it such as process

14



gain (K.), dead time (8) and time constant (t). These parameters helped in
determining the suitable controllers for the tank. This is also called “Process

Reaction Curve”.

Three different approaches have been used to determine the suitable controllers
which are Ciancone correlations with PID controller, Cohen coon tuning

correlations and Ziegler Nichols closed loop tuning correlations.

4.3 Designing of Controller

This section shows how the controller parameters have been estimated by three

different methods which are:

4.3.1 Ciancone Correlations with PID Controller

The proportional gain, the integral and derivative time are calculated from the
parameters of the process reaction curve. The controller block is connected in

series with the plant block as shown in the figure below.

Figure 12 - Ciancone PID Block

15



The Ciancone block is constructed from the PID formula where:

(Equation 9)

These adjustable parameters are called tuning constants

The Ciancone block consists of the PID formula and the values of K, T;and T4
are added as shown below.

Figure 13 - Ciancone PID Block

The response of the levels with the Ciancone method showed a faster
response than the original plant as well as for the input and output flow

responses but the input flow experience a small overshoot.

16
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Figure 14 - Input & Output flow of Ciancone method

432 Cohen Coon Tuning Correlations

The second method which is used to calculate the tuning constants is the Cohen
Coon method. The table below shows how to calculate them using the parameters

obtained from the process reaction curve.

17



Table 1 - Cohen Coon Calculations

Similar to the Ciancone method, a Simulink block was constructed for the P,

PI and PID controllers as shown.

Fe S0 Vew Seuistion Fomst Tooh Hep

Deas P b f [ I RBuBéd REmE

e plezs

Qurt
r outt nt O T Worspaced  Proportonal Gan (Ke) = 9 646
o 2 e To Workspace) = WTI'II(TIPG
Coben Coon P controller  interacting Tank | Dervaive Time (Td) = 0
Scapad
|
L)
o2 Proporsonal Gan (Kc) = 8439
. Iregral Time (T) = 15965
Cohen Coon P controfler  Interacting Tank ) Dervabve Time (Td) =0

Coken Coon PO cotroler  intaracting Tank2 iniegral Time (Ti) = 1406
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To Worksgace?

|
- - }ﬂ -
E o0 —+' P g S Proporonsl Gan (K = 1264
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Figure 16 - Simulink Block for Cohen Coon Method
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Since the PI and PID controllers showed better responses than the P controller,

they will be discussed and analyzed.

Pl Controller

The levels for the PI controller show better response than the Ciancone
method and better settling time. The flow graph has also a fast response but Q;,
experience some overshoot at the beginning. This can be observed through the

figures 11 and 12.

o =

Figure 18 - Flow of the PI Controller

19



PID Controller

In case of the PID controller, the levels have slower response than the Pl
controller while the input flow in this controller is very noisy and unstable which

is unacceptable. The graphs for the levels and flow are shown as well.

utpit flow for PID contiollar of cohan ¢

Input & O

Figure 21 - Input & Output flow for the PID Controller



4.3.3 Ziegler Nicholas Closed Loop Method

The third method which is used is the Ziegler Nicholas. The calculation of the
tuning parameters in this case doesn’t depend on the process reaction curve like
the previous two method, it is derived from the bode plot of the transfer function
which is calculated from the coupled tanks.

In the figure below shows the bode plot of the plant. To ensure the stability of the
system, we assume the phase degree to be -180, from that we can calculate the
critical frequency (o) as well as the magnitude in decibel (ARc).

The ultimate gain (K,) and the ultimate period (P,) are then calculated using the

following formulas:
Bode Dagram
8 —— ] ——ery ——r—rrr
2+ ]
System G
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Figure 22 - Bode Plot of the Coupled Tank System
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The P, Pl and PID are then calculated using the table below.

The simulink block is then constructed for the three controllers as shown in
the previous methods. Since the performance of the PI and PID controllers
showed better results than the P controller, they will be discussed only.

PI Controller

DEE8 IR ) e BB REES

NP0 | Proporkonal Gan (Kc) = 71445
To Workspaces nigral Time (Ti) = 0
Dervave Time (Td) =0

Propartonal Gan (Kc) = 84
degre Time (T = 1200
Dervabe Time (Td) = 302075

Figure 23 - Ziegler Nichols Closed Loop Method
The graphs for the levels of the PI controller show similarities with the PI

of the Cohen Coon method but its responses are slightly better. For the flow,
the graphs are typical from the Cohen Coon method.

Table 2 - Ziegler Nicholas Closed Loop Calculations
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Figure 25 - Flow for PI controller

PID Controller

The PID controller shows the exact typical response with the Cohen Coon
method for the levels as well as for the flow.
After discussing the performance of the controllers, the best controller is selected

based on fast response, good settling time and low overshoot.

2
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Table 3 - Comparison of performance between the three methods

Ciancone Cohen Coon Ziegler
Correlation Tuning Method Nichols Closed
Tuning Method Loop Method

The table here summarizes the advantages and disadvantages of the controller
used for the three methods. As shown, the Ciancone method has only PI controller
where the other methods have PI and PID controllers.

After analyzing table 3, it was found that the PI controller of the Ziegler Nichols

closed loop method is best controller with good performance.

h; and Q;, are observed to experience an overshoot in the controller so fine tuning

was applied to the controller to enhance its performance.

4.4 Fine Tuning

Fine tuning is applied the PI controller of the Ziegler Nichols closed loop.

I

g TR —ory W e
™ om um-c-lz Te Warapaced j.T;-.gg.Iy
w2 —.E Proporsonal Gamn (Kc) = 6 495

Deglas Mechols P controlies m'l’
Scope?
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|
O E ] ]

P
Step n pi Ta W Te HEpATH Te

e} o - Gain (Ke) = 5

plﬁ:ﬂﬁmﬂnl— tecacing Tank2 PWT' T
- Scanek Scopa? Iniegral Tme (1)) = 200
Dervabve Time (Td) = 0

Gan
<G
Ready 728 cdets

Figure 26 - Comparison between Old & Modified Pl Controller using ZN Closed Loop
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To overcome the overshoots of h; and Qj, , the tuning constants values are
changed. Since MV is related to Qi based on the PID formula in Equation I
above, so to decrease Q;, MV is decreased and from the equation K is also
decreased while T; is increased. |
In the figure 25, these changes can be seen where the K, is decreased and T; is
increased. Also a gain of half has been added to get the maximum tuning from this
controller.

A comparison between the levels of the old & modified PI controller has been

made. As observed, the overshoot of hy has been decreased.

tovals inr P Controfier
jrs
¥

1

LX] 1 2

Figure 27 - Comparison between the levels of the Old & Modified PI Controller

In case of the flow, the overshoot of Q;, has decreased a bit while the settling

time has increased as shown in the figure below [3] [4].
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Figure 28 - Comparison between the flows of the Old & Modified PI Controller

4.5 Changing the Output to the Level H,

All the previous results which were shown earlier, the output was considered as

output flow of the second tank of the plant. So to observe how the controller is

effective on the plant the output has been changed from the flow output (Q,y) to

the level of the first tank (H,) as seen in the figure below.

File Edft View Seulstion Fommast Tools Help

DFE& T o » 1500 [Nowal - HmBS rEE®

Avea of tarsk | (a1) = 6

Agea of tank 2 {a2) = &
Vale ressstance (k1j=1
Vilve resastance (k2) = 1

Figure 29 - The plant with the new output (H;)
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The Ziegler Nicholas PI Controller was nsed with new output different tuning
constants (Kc, Ti, Td) according the new output. The Controller was selected
according to the guidelines of controlled modes in table 4.

As shown in the table, the flow and the level always are controlled well by a PI
controller and rarely with PD or PID controllers, so because the Ziegler Nicholas
P! controller suited best for the output flow then it is assumed the same with the

level of the first tank.

Table 4 - Guidelines for Selecting Controller Modes

Controller Mode
Control Loop

Proportional Integral Derivative

Flow Always Usually Never

Level Always Usually Rarely

Temperature Always Usually Usually
Analytical Always Usually Sometimes
Pressure Always Usually Sometimes

After considering the level as the new output, random variable input functions
were used such as sine waves, pulse generators and multiple step variables with

different step time and final time as shown in the figure below.

fle Ed? View Smulstion Fornst Teoh Help

DERS @ oo FEm D EmRES REBE

Ampidude = 1
Fencs = 2
Pulse whtth = 5% ] l '
Pote Sepl amphiuge =1
Grapance? Arglitude = 2 Frequency = !

Fraquency = 2

Sine g2 Stapiime - Wb Ongnal Inzut
Firal vaiue = *

e i
L= Ly Ale

5y

Ganl tre, Rerdamvalues

Figure 30 - Random Input Variables block for New Output
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Figure 31 — Input’s graph

The graph of the output level after implementing the PI controller is shown in the

figure below.

4.6 Designing of ARX model

The ARX model has been chosen from
the rest of the models which were
mentioned in the literature review. An
M-file was made for each ARX (I, 2
&3) to compare and see which one
gives more accuracy.

The M-files are used to get the values
of alpha’s and beta’s which are then
used in the ARX model. As shown
below, the M-file of ARX (1) gives one
alpha and one beta while ARX (2)
gives two alpha and two beta and so
on. The lease error among them is
ARX (3) with an error equals 0.2697.

28

>> ARKI(H1 2,Qizm): >> ARX3(H1 2,QCan):
paz = par =
0.7579 ©.5030
0.3%08 0.432%
0.1466
0.2422
ans = -0.0518
-0.3423
133%
>> ARXKZ(H1_2,01n): ans =
par = 637
3.7631 5> |
}.1236
0.4082
0.2200
ans =
1.6722

Figure 32 - The values of :alphas & betas for
different ARXs
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Figure 33 - ARX model
The M-files of the three models can be seen in Appendix [E].
The values of ARX (3) were used in the ARX model which was constructed from

the equation:

Y=Y ¥ Y0 +Y 3 + B1Upit+ BaUat B3Uste

The values of ‘p’ are the values of alpha’s and beta’s from the ARX (3) M-file.
The inputs of the ARX model are input flow (Q;,) and the level H; without the
controller.

A graph is made between the level H, of the plant (without the controller), with
the PI controller and with the ARX model.

Companson betwesn ARX model, Pl & phant( ) in the level HY
= T T T T

Plant response

PI controller response

1 L L
(1} 500 1000 & o ]

Figure 34 - a graph between ARX model (Blue), PI controller (Red)
& plant without controller (Green) in the level H;

3 1
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It is clear that the ARX is learning based on the input values. The ARX
output is then subtracted from the input flow (Qi,) and fed to the PI controller as

an input as shown in figure 33.

DEES © @ 12 » B few ] DEDS  REAEE

Inputs .
n1 i1

Qutt . &
e e =
Hi nz = ARX
output
To Workspaced
. : Out?
e input plant & controiter
= [. 1 outt
Qui2pe h
| . uzh
N "2 Outa ARX b1
» M . Plant & Controileri
Add2 Gamt —.-2
Out2
After adder Hi | ]
Output fow
Resdy L g

Figure 35 - ARX Model as an Input to the PI controller

The input of the controlled was fine tuned in the form of a gain block as seen in
the figure. The value 0.1137 was estimated based on trial and error to make the
final level H; stable as well as the output flow (Q,,) which is the prime objective
of the whole project. The gain value is considered a very sensitive value where
any other values tend to make the final Output H; unstable (either increasing

sharply or decreasing).
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Figure 36 - The Whole System with plant, PI Controller & ARX Model

The ARX model which is shown above is made in a subsystem which is clear in

figure 34.

The random inputs which were mentions carlier are feeding the plant above
without any controller as well as the plant with controller and the ARX model
where the ARX model is also an input for the same plant with controller.

A comparison is made between the graphs of the level H; without controller, H,
with controller and H: of the controller with ARX model as an input (figure 33).
As seen in figure 33, the level in case of Pl controller and without controller is
stable and doesn’t exert rapid changes compared to the level of ARX. It takes
some time until it is finally stable.

The stability of the level H; from the ARX model has also affected the output
flow (Q,y) which is the main output. The ARX made also the outplit flow stable.

Another comparison is made between the flow outputs of each system.
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Figure 37 - a graph of level H1 between PI controller with ARX model as input (Blue),
PI controller with input flow (Red) & the Plant (Green)
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Figure 38 ~ a graph of Output flow (Qq.t) between PI controller with ARX model as input
(Blue), PI controller with input flow (Red) & the Plant (Green)

The output flow follows the same path of the level H; with the three systems.
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4.7 Training of Neural Network

The neural network has been used to compare between its performance and the PI
controller. To train a network on “MATLAB”, the command “nftool” is entered at

the command window and the neural network fitting tool window will come out

as shown in the figure below.

Welcome to the Neural Netwark Fitting Tool.

Sdve an Input-output ting problem veth a twodaver feed-forward neural networl .
Introdusc tion
1n fitting probiems, you wart a newral network 1o map between a data set of

Heural Network

rasmenc Iputs and a set of rumenc targets. Hadden Layes Sieiaw
e ot i R A o W
INput variaties as tax rate, pupl/teacher rano N local schodk and crime rate
(house_dataset); estmating engine emission levels based on measurements of
ummmmm or predctng a pabent's
bodyfit e an body (bodyfat_datast).
A two-lsyer feed-forward network gnewff) with sigmaid hidden neurors and
The Neurd Network Fitting Tool wil help you select data, create and ran & Tt -amersonat ok r
w“m“mmmmm“’m ::.'ng:ﬁMr-mhbmlhl
The restwork will be trained with Leverber g-Marquardt backpropagation
w&ml ui-mumnaﬂ-mv N which case scaled

Yugate propagsbon (7 srscg) wil be used

W Tocontinue, dick [Next].

Figure 39 - Neural Network fitting tool window

The “Next” button is clicked and the number of inputs and targets are chosen
which are the input flow (Q;,) and the output flow (Q,) from the PI controller.
Since the range of values is 7000 samples, only 500 samples were used in order to

get good performance from the network. Other sample numbers can also be used
as well. This can be seen in figure 40.

The network size is then set. The number of hidden layers neurons is chosen here.

In this case, it is set by default to 20. If the network showed low accuracy after

training, this number can be adjusted.
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Select Data
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Get Data from Workspace Saummary

B inputs: Qin - \__7.{ Tnputs ‘input’ is a S01xd matris, rep 9 501 of 1

@ Tages Qoutl & = |
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’ To ontime. dick [Mext]

Figure 41 - Selecting the input & target data

Network Size
Sat the number of neurons in the fithng network’s hidden layer.

Hitden Lopes Rore oemmasation

MNumber of Hidden Neurons: . Retum to tha panel and changs the number of neurons i
the network does not perform well sfter tiawning.

Meursl Network

Hidden Layer Qutput Layer
Input Output

1 — 1
20 1

WP (hange henumber of newrons it desired. then cick [Next] to con S

[ e (et | [ O cones |

Figure 40 - Selecting the neural network size

Next the network is trained using Levernberg-Marquardt backpropagation method
as seen in figure 43 then the training panel is opened showing all the details of the

training. The panel shows the algorithms used progress of the training and
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the plots. As seen in figure 43, the training stops when the validation error

increased to 6 iterations which occurred at iteration 11.

Train Network
: Train the network to fit the inputs and targets.

Train Network Results

Train using L g-Marg ckpropagation (trainirm) B semples

.Tm 1050
5
5

[ ST |

@ vatidation:

@ Testing:
Training automatically stops when generalization stops improving, 85
indicated by an increase in the mean square error of the validation
samples.

Notes
) Training multiple bmes will generate different results due %) Mean Squared Error is the average squared ddference

to different inttial condibions and sampling. between outputs and targets. Lower values are better. Zero
means no eTor.

#] Regression R Values the correlation b
outputs and targets. An R value of 1 means a close
elationship, 0 a rand bl

P

o Train network. then dick [Nexil

The performance plot can be seen in figure 44.
A plot of the training errors, validation errors
and test errors can be seen in the performance,

the results here are reasonable as:

o The final mean square error is small.

o The test set error and validation set error

have similar characteristics.

Figure 43 — The Training Panel
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Figure 44 - Performance curve

When observing the regression curve, the regression should be more than 0.8 or
80% but in it was managed to get only 49%. The regression shows how accurate

the training is. To increase the accuracy of the network:

o The initial network weights should

be reset.

o The number of hidden neurons
should be increased.

o The number of the training vectors

increased.

These initiatives were made to

enhance the accuracy and also the
range of the input and target
samples have been also changed but

these attempts couldn’t push the

regression value beyond 49%.

Figure 45 - Regression values
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CHAPTER 5
CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Based on the latest’s results, the “ARX” model showed a good response as
the output flow (Q,y) stabilizes but it diverted far away from the set point. This
can be a good start to use an intelligent controller in the process industry but not
totally replace the PI and PID controllers. Usually, Industries try to focus more on
how to improve the performance of PI controllers as they are more reliable and
may not consider intelligent controllers. For the neural network if the accuracy
increased to reach at least 85% it can be a reliable and be used in the field instead

of the PID controllers.

During this year, a lot have been learnt about the level tanks systems and how to
implement a Pl controller using Simulink/Matlab. There are a lot problems related
to tanks system in process industries. This kind of problems is concerned with
stability of the plant. Control engineers should understand how control system

works and how to solve the flow and level problems.

A model for a coupled tank system has been designed and several controllers have
been tested (P, PI or PID controllers) and calculated by three different methods.

The best controlled undergo fine tuning to get the best performance.

Then, the output has been changed to the level of the first tank H; as it is affected
more easily than the output flow. Also random input variables have been used
instead of a simple step function. After that, the ARX modeling was considered as
an intelligent controller for the plant instead of PI controller and several

comparisons were made to show their performances against each other. Finally a
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training is made to a neural network to mimic the PI controllers in performance

but its accuracy showed 49% only.

It must be mentioned that resources on this project were very limited either on
online papers or in textbooks; most of the work was under the supervision of the
supervisor especially the ARX modeling part. The controller calculations were
based on a project which was made in “Plant Process Control Systems” subject

during final year.

5.2 Recommendation

It is recommended to make M-files for the calculations of the process reaction
curve, Ciancone caiculation, Cohen Coon calculation as their calculation is time

consuming. It is also recommended if several outputs were considered.

When selecting the level H, as an output, it was assumed that the best controller
the same as the output flow (Qo) based on Table 4. Comparing the performance
of the controllers and choosing the best one will definitely affect the ARX

modeling and show better learning as well as better results.

When training the neural network, several methods attempted but failed due to
dimensional errors in the input samples. Some neural networks require the input
to be in two dimensions form and this was a problem as the inputs are in row
form. It is recommended to use other methods in training and compare the

regression results.

Last but not least, it is recommended to apply these results on a prototype to
compare between the modeling of the MATLAB with the practical results and

compare the differences between the margins of errors between the two.
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APPENDIX A - CALCULATIONS OF THE PROCESS REACTION
CURVE PARAMETERS OF THE OUTPUT FLOW (Qqur)

The following is the process reaction curve with the calculations of process gain

(K¢), dead time (0) and time constant (t).
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APPENDIX B - CALCULATIONS OF CIANCONE CONTROLLER
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_ APPENDIX |
CIANCONE CORRELATIONS FOR DIMENSIONLESS TUNING CONSTANTS
(PID ALGORITHM)
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APPENDIX B: Tabulation of Resulis

Lab Session 2 -Pressure

Table B.1: Results for Process Raaction Curve (sither Method | or Mathod if can be usad)

Measurement Value.
Ehange in porturhation ! MV, o S
Changa in output / PV, & 4415
Maxirnum slope, 5
Apparent dead time, & £0
Calzuistions Value
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“Fraction dead time, ety

013

* The fractian dead bime: mentioned hers is sightty ciferant than ons being used for Clancone coraiasions.
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APPENDIX C - CALCULATIONS COHEN COON TUNING
CORRELEATIONS
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APPENDIX D — CALCULATIONS ZIEGLAR NICHOLS CLOSED LOOP
TUNING METHOD CALCULATIONS
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APPENDIX E —~ M-FILES

The M-files which were used for ARX modeling can be seen viewed here.

1. ARX (1) M-file

function Yt= ARX1(H1 2,Qin)
Ye=H1 2({2:2280);
Yt _1=H1 2(1:2279};
Ut=0in(2:2278);

Ut 1=0Qin(1:2279};
X=[Yt 1 Ut_1];
par=pinv(X)*Yt
Ypred=X*par;

plot ([YL Ypred]);
err={Yt=-Ypred);
err."2;
mean{err.”2)

2. ARX (2) M-file

function Yt= ARX2(H1 1,Qin)
¥t=H1 1{3:2280);

¥t 1=H1 1{2:2279);
Yt_2=H1 1(1:2278);
ULt=Qin{3:2280};

Ut 1=0in{2:2279);

Ut 2=0in{1:2278);
X=[Y¥t 1 Yt 2 Ut 1 Ut_2};
par=pinv(X)*Yt
Ypred=X*pax;

plot{[¥t Ypred]);
err=(Yt-Ypred};

err.”2;

mean{err.”2)
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3. ARX (3) Mfile

function par= ARX3{Hl 2,Qin)
Yt=H1_2{4:2280);
Yt 1=H1 2(3:2279);:

Yt Z2=Hl 2(2:2278);

Yt 3=HL 2{1:2277);

Ut=Qin (4:2280);

Ut _1=Qin(3:2279);

Ut 2=0in{2:2278);

Ut _3=0in(1:2277}):

X=[Y¥t 1 ¥t 2 ¥t 3 Ut 1 Ut 2 Ut 3];
par=pinv (X} *Yt

Ypred=X*par;

plot{[Yt Ypred]):

err=(Yt-Ypred}:;

err.n2;

mean{err.”2)

The ARX (3) is one which is used during the calculation as the error is minimum
compared to ARX (1) and ARX (2).
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APPENDIX F - CD OF THE PROJECT

A CD s attached with this report with the entire Simulink blocks and M-
files which were made to acquire these results and graphs. Also this can be
downloaded online from this link

http://hotfile.com/di/81742832/9891850/MLP_sim Mf.rar.html
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APPENDIX [G] — Gantt Chart

askName - puraton vistrt | v Finish Y i
 Background Sudy 177 days  Thu28/1/10  Sun31/Ie/10 °
learning Stnulink 0days?  Mon 4/2/10  Sun 28/2/10

Designing Single Tank  j5days? Mon1/3/10  Fri19/3/10
Svstem

Desigining a PI Controller 3 days? Mon 22/3/10  Wed 31/3/10 ’ L)
for the Smgle Tank

Desigming an Interacting 13days?  Thu1/4/10  Mon19/4/10 S
Coupled Tank Svstem

Desigining a Pl 15 days?  Tue 20/4/10  Sat15/5/i0 ot

controller for an _

Interacting Coupled Tank

Svstem

Desigining an spht 13 days? Mor 31/5/10  Wed 16/6/10 - o
Coupled Tank Svstem .

Backgournd Study of [r————
ARX

Designing an ARX model 45days?  Mon 30/8/10  Sat 30/10/10

for the split coupled

tank

4



