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ABSTRACT

This project researchs onthe development of T1O2 semiconductors doped with Iron, Fe

as thephotocatalyst andionic liquid, [BMIMJFeCLt for desulfurization process of model

oil. Current technology for desulfurization requires severe process conditions; high

pressure and temperature in order to remove the sulfur compounds in crude oil.

Therefore, research is being conducted to develop better desulfiirization process

employing photocatalysis andliquid-liquid extraction conducted at atmospheric pressure

and temperature in thepresence oxygen. Ti02 was selected as thephotocatalyst butnot

active in visible light. So, modification was done by doping theTi02photocatalyst with

transition metals, Iron, Fe. Transition metal doping is able to enhance the

photoexcitation of electrons in the photocatalyst when only subjected to visible light.

Besides, it can act as charge carriertrapperfor bothphotogenerated electrons and holes

thus inhibiting the electron-holes recombination for longer time. Wet Impregnation

method was chosen to prepare iron-doped catalyst, using h*on(III) Nitrate, Fe(N03)3 as

starting materials. The dopant loading varied from 0.4 to 0.8wt% and two calcination

temperatures were selected which are 400°C and 500°C. Characterization of the

modified photocatalysts were done by X-Ray Diffraction (XRD), UV-vis Diffuse

Reflectance Spectra {UV-vis DRS), Field Emission Scanning Electron Microscopy (FE-

SEM) and Fourier Transform Infrared Spectroscopy (FTIR). In this project, l-butyl-3-

methylimidazolium tetrachloroferrate , [BMIMJFeCU was preferred as the ionic liquid

for liquid-liquid extraction process as it involved same element with the transition metal

doped to Ti02. [BMIM]FeCl4 was prepared by mixing together anhydrous Iron(IH)

Chloride, FeCl3 and l-butyl-3-methylimidazolium chloride, [BMIM]C1. The

desulfurization analysis using halogen lamp and Gas Chromatography, GC analysis was

done to investigate the photocatalytic activity of the modified photocatalysts and

extraction process by ionic liquid. It was found that 0.6wt% of Fe/Ti02 calcined at

400°C yield, thus chosen for the integrated approach combining with ionic liquid,

[BMEvflFeCL*. The integrated approach also showed the increment of sulfur removal

from using photocatalyst and model oil alone. The reduction of band gap as a result of

doping was estimated and theinfluence oftheprocess parameters oncatalytic activity is

explained.
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1.1 Background of Study

CHAPTER 1

INTRODUCTION

liquid fuels contain a large variety ofsulfur compound (thiols, sulfides, disulfides and
thiophenes), which generate sulfur dioxide, S02 and airborne particulate emissions
during combustion, and hydrogen sulfide, H2S during refinery process (Campos M. J.

M., et al (2010), Takayuki H., et al. (1996)). Hie emission ofS02 and H2S is one ofthe

main contributors to acid rain and water pollution (Takayuki H., et al (1996)).

Concerning the issue, rules and regulations regarding these emissions to environment

were made to ensure mat refineries adhere to efforts of the government to reduce the

sulfur content in fuel product

At current time, the most important and common industrial process isthat oftreating the

fuel under high temperatures and high pressures with hydrogen (Campos M. J. M., et al
(2010)). This process is called catalytic hydrodesulfurization (HDS) and has received
extensive attention since itsdiscovery in 1930's (Campos M. J. M., etal (2010)). HDS

is commonly used for sulfur removal from fuels. This process involves high

temperatures exceeding 300 °C, elevated pressures of over 2 MPa, precious metal
catalysts, high hydrogen consumption, and large reactors (Hiroaki T., et al (2009)). The
refractory sulfur, dibenzothiophenes (DBTs), especially 4 and/or 6 alkyl-substituted
DBTs aredifficult to remove using theHDS process unless an energy-intensive process

is applied(HiroakiT., et al (2009)).

Research regarding the development of better technology for desulfurization, which
reduce the energy consumption and other than HDS is conducted. Processes such as



extraction, alkylation, oxidation an adsorption are considered, and among these process,
oxidative desulfurization is seen most potential solution as it can be applied in mild

condition, at ambient pressure and temperature (Campos M. J. M., et al (2010), Hiroaki

T, etal (2009)).

Oxidative desulfurization process including microbial oxidation, chemical oxidation and
photooxidation generally lead to the formation of sulfoxides or sulfones that can be
subsequently removed by conventional separation methods such as extraction,
adsorption or distillation (Hiroaki T., et al (2009)). Interests have been focused on
photooxidation because of the possibility of using atmospheric oxygen as an oxidizing
agent (Hiroaki T„ et al (2009)).

1.2 Problem Statement

In term of the current issues, the sulfur presence in crude oil in the main contributor to

the formation ofS02 and H2S mat can bring harms to living organism, environment and
process plant itself. High sulfur content in crude oil can negatively affect the refinery
performance, as itcan act as poison to reforming photocatalyst Besides, sulfur content
can cause corrosion to the equipments and pipelines. Environmentally, emissions ofSO2
and H2S can promote the formation of acid rain and causing air pollution. Besides, H2S
can cause irritation to conjunctiva, skin and mucous membrane as well as reacting with
enzymes in bloodstreams and inhibit cellular respiration resulting in pulmonary
paralysis; sudden collapse and death (refer H2S MSDS).

In term of photocatalyst used, Ti02 which will be later discussed and explained in the
next chapter, is not active in visible light only active in UV-light region (UV-active)
and the feasibility of the photocatalyst for desulfurization process is not proven yet
Modification by transition metal doping, which is Iron, Fe will be done to extend the
activation ofthe photocatalyst from only UV region to visible light region. By doing so,
the desulfurization process can utilize the abundant energy from sunlight



13 Objective

The objectives ofthis project are:

• To develop theFe-Ti02 photocatalyst to be feasible and effective for process of

sulfur removal from model oil

• To combine photocatalysis (Fe/Ti02) and extraction (ionic liquid) into an

integrated system forsulfurremoval from model oil

1.4 Scope of Study

This project is researching on the utilization of photocatalyst, semiconductor as the

oxidizing agent of the sulfiir compound in model oil via photocatalytic oxidation.

Interest regarding the photocatalytic oxidation process isfocused due to the condition of

the process which isinmoderate condition, plus the presence oflight. The photocatalyst

will be prepared in laboratory, and then the synthesized photocatalyst will be

characterized using methods such as X-ray Diffraction, Field Emission Scanning

Electron Microscopy (FE-SEM) and others to determine the physical properties. After

completing the characterization, test regarding the feasibility and effectiveness of the

synthesized photocatalyst will be conducted using sulfiir species dissolved in model oil.

The photocatalytic desulfurization is analyzed, monitored time by time and recorded

accurately. Then, the result of the experiment will be analyzed to determine the

feasibility of photocatalyst in desulfurization process.



2.1 Photocatalyst

CHAPTER 2

LITERATURE REVIEW

Photocatalyst produces surface oxidation to eliminate harmful substances such as

organic compounds or nearby bacteria, when it is exposed to the sun or fluorescent

lamp. TiO is a semiconductor which turns to a high-energy state by receiving light

energy, and releases electrons from its illuminated surface. Ifthe energy received at this

stage ishigh enough, electrons that were initially located in the so-called 'valence band'

all jump up to the 'conductionband'.

Fujishima and Honda discovered the photocatalytic splitting of water on TiCh

electrodes in 1972, marking the new beginning for research for heterogeneous

photocatalysis (Amy L. L., et a/.(1995)). Researches have been conducted on the
photocatalyst for the purpose ofunderstanding the fundamental photo-electrochemistry
process, its feasibility and to improve the photocatalytic efficiency of the
semiconductor. Semiconducting metal oxides such as Ti02, SrTi03, Fe203, and Ptwere

much used for these researches; however Ti02 is the most preferable (Aboel M. A., et

al. (1998)). The strong oxidizing power of the photogenerated holes (large band gap
material), the chemical inertness and resistance to both photocorrosion and

decomposition reactions which plague other band gap materials (e.g., Si, GaAs, GaP,

InP, CdS, etc.), low cost and wide availability in addition to the nontoxicity of Ti02

have made it a superior photocatalyst (Aboel M. A., et al (1998)).



2.2 Titanium (IV) Oxide, Ti02 as Photocatalyst

Unlike metals which have a continuum of electronic states, semiconductors possess a

void energy region where noenergy levels are available to promote recombination ofan

electron and hole produced by photoactivation in the solid. The void region which

extends from the top of the filled valence band to the bottom of the vacant conduction

band is called the band gap. Once excitation occurs across the band gap there is a

sufficient lifetime, in the nanosecond regime, for the created electron-hole pair to

undergo charge transfer to adsorbed species on the semiconductor surface from solution

or gas phase contact. If the semiconductor remains intact and the charge transfer to die

adsorbed species is continuous and exothermic die process is termed heterogeneous

photocatalysis (Amy L, L., etal (1995)).

The initial process for heterogeneous photocatalysis of organic and inorganic

compounds by semiconductors is the generation of electron-hole pairs in the

semiconductor particles. The enlarged section of Figure 1 shows the excitation of an

electron from the valence band to the conductionband initiated by light absorptionwith

energy equal toorgreater than the band gap ofthe semiconductor. Upon excitation, the

fate of the separated electron and hole can follow several pathways. Figure 2.1

illustrates some of the deexcitation pathways for the electrons and holes (Amy L. L., et

a/.(1995)).

FIGURE 2.1: Schematic photoexcitation in a solid followed bydeexcitation events



The photoinduced electron transfer to adsorbed organic or inorganic species or to the

solvent results from migration ofelectrons and holes to the semiconductor surface. The

electron transfer process is more efficient if the species are preadsorbed onthe surface.

While at the surface the semiconductor can donate electrons to reduce an electron

acceptor (usually oxygen in an aerated solution) (pathway C); in turn, a hole can

migrate to the surface where an electron from a donor species can combine with the

surface hole oxidizingthe donor species (pathwayD)

Ti02 has been widely studied because of its various merits, such as optical-electronic

properties, low-cost, chemical stability, and non-toxicity (Tianzhong T., et al (2008)).
However, it isunavoidable to face two issues for its practical applications, one ofwhich

is to improve the low photo-quantum efficiency of Ti02 that arises from the fast

recombination of photogenerated electrons and holes; another is to further extend its

photoresponse into visible light regions (Tianzhong T., et al (2008)). Particularly, Ti02

can only be activated by UV light due to its large band gap (£bg, anatase^3.2 eV, £bg,

rutile^3.0 eV) and only make use of 3-5% of the solar spectrum that reach the earth

(Tianzhong T, et al (2008)).

One of solutions to enhance the performance of Ti02 photocatalyst is by doping the

photocatalyst with suitable transition metal, which is in this project, Iron, Fe is selected.



23 Transition Metal Doping ofTi02 photocatalyst

2.3.1 Charge Carrier Trapping

Due to the low photo-quantum efficiency of Ti02] recombination of the photoexcited
electron-hole pair needs to be retarded for an efficient charge transfer process to occur

on the photocatalyst surface. Charge carrier trapping would suppress recombination and
increase the lifetime of the separated electron and hole to above a fraction of a

nanosecond (Amy L. L., et al(\995))..

A simplified illustration of available bulk and surface trapping states for a
photogenerated electron in a semiconductor is shown in Figure 2.2. In this illustration,
the energy levels of the bulk and surface state traps fall witiiin the band gap of the
semiconductor. These surface and bulk states are localized. The charge carriers trapped

in such states are localized to a particular site on the surface or in the bulk. The

population ofbulk and surface traps is dependent on the energy difference between the
trap and the bottom of the conduction band and die decrease in entropy when the
electron undergoes trapping (Amy L. L., eta/.(1995))..

*
""^^S«r*BC»
^"""^ Troo

FIGURE 2.2: Surface and bulk electron carrier trapping



The example for charge carrier trapping can be observed from a photocatalytic study of

Ce-Ti02 photocatalyst (Tianzhong T., et al (2007)). Ce4+ ion acts as an electron
scavenger totrap the electron ofexcited dye molecule. The electron trapped inCe sites

was subsequently transferred to adsorption 02 to form oxygen radicals. The release of

the oxygen radical will further initiate the photocatalytic reaction (Tianzhong T., etal

(2007)).

.3+2.3.2 Fe^ Doped to Ti02 Photocatalyst

It is necessary to develop a proficient way to not only extend the absorbance of Ti02

into visible regions but also reduce the recombination of photo-generated electrons and

photogenerated holes. Recently, some studies have reported doping with suitable
transitional metals is a useful way for improving the above two performances of Ti02,

and amongst variety oftransitional metals, iron has been considered to be anappropriate

candidate due to the fact that the radium ofFe3* (0.69 A) is similar to that ofTi4+ (0.745
A), so Fe3+ can be easily incorporated into the crystal lattice ofT102 (Tianzhong T., et

al (2008)).

The most accepted explanation for the improved photocatalytic performance of iron-

doped photocatalyst is the generation of shallow charge traps in the crystal structure

which decreases the recombination rate of electron-hole pairs. At the same time, the

absorption oflight is improved. Introducing iron ions into the lattice therefore provides
photocatalysts not only with lower electron-hole recombination rate but also with
excitability by visible light. Enhanced photocatalytic activity was observed for iron-
doped photocatalyst under UV and also for visible light irradiation in several
publications both in gas and in liquid phase, for avariety ofmodel compounds (e.g., dye
molecules, phenols, oxalic acid, acetaldehyde, acetone, 2- propanol, etc.) (Zolta'n A., et

al (2008)).



It can be found that Fe doping almost has no influences on the crystal structure and

morphology of die photocatalyst. Although Fe doping affects the crystal size and

specific surface area (Sbet) of the photocatalyst to a certain extent, the photocatalytic

activity of the catalysts is not in accordance with the variations of crystal size andSbet-

The effect of Fe3+ doping on the photocatalytic activity under UV light irradiation

should be due to the reason that an appropriate amount of Fe ions can act as

intermediates for photo-generated holes and electrons transfer, and inhibit the

recombination ofholes and electrons. Due to the facts that the energy level for Fe3+/Fe4+

is above the valence band edge ofTi02 and the energy level for Fe3+/Fe2+ is below the
conduction band edge ofTi02, Fe3+ ions, acting as both electrons and holes traps, can

turn into Fe2+ and Fe4+ ions by trapping photo-generated electrons and holes traps,

respectively.

According to the viewpoint of crystal field theory, Fe2+ and Fe44 ions are relatively
unstable when compared to Fe34 ions, which have half-filled 3d5 orbital. Therefore, the

trapped charges can easily release from Fe2+ or Fe4+ ions and then migrate to the surface
to initiate the photocatalytic reaction. Fe2+ ions can be oxidized to Fe3+ ions by
transferring electrons to absorbed O2 on the surface ofTi02 or neighboring surface Ti +
ions. Meanwhile, the adsorbed 02isreduced toO2 ",which can further degrade MO (see

figure 2.3). Similarly, Fe4+ ions also are reduced to Fe3+ ions by releasing electrons,
while surface hydroxyl group translates into hydroxyl radical. As a result, the

introduction of appropriate Fe3* ions is responsible for the reduction of the photo-

generated hole-electron recombination rate and favors the improvement of die

photocatalytic activity (Tianzhong T., et al (2008)).



MO

Degnded products

FIGURE 23: Proposed mechanism for MO degradation under UV and visible light
irradiation

However, when the concentration ofFe3+ ions becomes too large, FeJ* ions can act as
the recombination centers for the photo-generated electrons and holes, resulting in the

decrease of photocatalytic activity (Tianzhong T., et al (2008)). So, optimal
concentration of Fe3" is needed for maximum photocatalytic activity.

.3+

2.4 Ionic Liquid

Over the past years die desulfurization ofvarious motor fuels has been suggested to be
performed by extraction with ionic hquids (Campos M. J. M., ei al (2010), Anisimov A,
et al (2009)). They are sometimes referred to as non-aqueous ionic liquids (NAILs) or
molten salts (Paul J. D., (2002)) . Ionic liquids are a new class ofsolvents which have
interesting properties such as non-volatility, high ionic concentration, good thermal
stability, non-flammability and can dissolve most of organic as well as inorganic
materials (Shadpour M., et al (2006)). Ionic hquids containing Cu (I) and Ag (I) ions
were found to be especially efficient due to their tendency to form %complexes with
thiophene derivatives (Campos M. J. M., et al (2010), Chongpin H., et al (2004)).

10



An interesting example is the application of ionic liquids obtained by reaction of 1-

butyl-3-methylimidazolium chloride [BMIM]C1 with anhydrous powdered CuCI,

containing CuCl2~, Cu2Cl3", and Cu3CLf anions that are resistant to moisture and au% for

desulfurization of a model fuel. These systems revealed a high desulfurizing activity

toward gasoline; for instance, the ionic liquid BMImCi^Ch extracted 23% of sulfur

compounds, whereas BMImBF4 extracted no more than 11%. Potent complex-forming

agents dissolved in gasoline hinder extraction of sulfur compounds with ionic liquids

(Campos M. J. M., etal (2010)). As for the project, [BMEvflFeCU is used as it uses

same element of the doping metal, Iron, Fe. Besides, [BMIM]Cu2Cl3 is also prepared.

This liquid has been called an ionic liquid and has been receiving increased attention in

separation processes for itsnon-volatility (ChongpinH., etal (2004)).

Ionic hquids can be regenerated by treatment of the extract with an excess of low-

boiling paraffins and repeatedly used for desulfurization. But, as a general rule, ionic

hquids themselves, in the absence of oxidants, fail to provide a high degree of sulfur

removal. This effect can be related to the similar polarity between alkenes, aromatics,

and the sulfur compounds, and the sulfur removal is improved increasing the polarity of

sulfur oxidizing sulfur compounds to the corresponding sulfoxides and sulfones

(Campos M. J. M., et al (2010)).

11



2.5 Photooxidation Mechanism of Selected Sulfur Compound

The photocatalytic oxidation of dibenzothiphene (selected sulfur species) gives mainly

corresponding sulfoxide and sulfone from mechanism shown below (Aboel M. A., etal

(1998)):

^^XV> ^^SN^X
•—♦ * i ; + sinsr

0

FIGURE 2.4: Reaction Chemistry of Photooxidation of Dibenzothiophene

Forothersulfur species (I: dibenzothiphene, H: thioxanthone, andHI: thianthrene):

X

TtO?*

^^ ch3cn. 0,
1, X=-: II. X^CO; III. X=S

S>^
+• minor products

FIGURE 2.5: General sulfur Photooxidation Route
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2.6 Integrated System ofPhotooxidation - Ionic Liquid Extraction Approach

for Sulfiir Removal

Integrated approach employing both photooxidation and extraction using ionic liquid
has yet been explored by researches. In this project, the best modified photocatalyst
judge by the sulfur removal percentage with the given condition will be used togedier
with ionic liquid, maintaining their original ratio to the model oil, for the observation of
integrated approach of photooxidation and extraction of sulfur compound in model oil.
There are two possible mechanisms for integrated approach for desulfurization using
photooxidation-extraction which are photooxidation in ionic liquid phase and
photooxidation in model oilphase.

2.6.1 Mechanism 1: Photooxidation in Ionic Liquid Phase

hi this mechanism, sulfur compounds were initially extracted in large quantities from

model oil phase into ionic liquid phase. Photodegradation of Fe3* would create radical
(Of and OH) and since the ionic liquid consisted ofanion and cation and has a lower
dielectric, itmay he excellent medium for existence ofradical ions (Dishun Z,, (2008)).
The radical ions transfer into the ionic liquid phase easily and exist stably which leads to

a high concentration of oxidizing agent (02" and "OH radical). The sulfur compounds
dissolved in the ionic liquid phase are men oxidized by the oxidizing agent since the
oxide products DBTO and DBT02 have higher solubility in the ionic liquid. So once the
previously extracted sulfur compounds were oxidized in ionic liquid phase, the
remaining sulfur compounds in the model oil phase can be successfully extracted from
the model oil to the ionic liquid phase and oxidized. Inthe end, the continuous decrease

in concentration of sulfur compounds in model oil is observed during process can be
attributes to the large numbers of sulfur compounds that can be oxidized in the ionic
liquid phase by the oxidizing agent accordingly.

13



2.6.2 Mechanism 2: Photooxidation in Model Oil Phase

Modified photocatalyst subjected to visible light irradiation will induce the

photodegradation of Fe3+ in which creating radicals (O2" and "OH). The radicals in turn

oxidize the sulfur compounds in the model oil phase to form highly polarized

compounds, sulfones and sulfoxides. These two do not distribute into the nonpolar

model oil and much easier to be extracted into the ionic hquid phase in which is a polar

compound. So, the extraction of sulfur compounds happen simultaneously with the

extraction of the oxidized sulfur compounds. The decrease in concentration of sulfur

compounds in model oil is caused by the oxidation of the sulfur compounds in the

model oil phase and its extraction into ionic liquid phase by attraction of polar

compounds.
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FIGURE 3.1: Overview on the methodology ofexperiment

3.1 Iron-Titania, Fe/Ti02 photocatalyst

The selection of photocatalyst (Ti02 and modified Ti02) and its preparations are

obtained from literature review. For this project, the photocatalysts used are pure Ti02

andFe3+ doped Ti02. The preparation methods are asbelow:
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fr3.1.1 Preparation and Pretreatment of Fe -Ti02 photocatalyst

Ihe preparation method for Fe3+-Ti02 photocatalyst is very important to determine the
improvement ofthephotocatalytic activity. The effect of the transition metal doping and

the concentration of doped Fe will affect the photocatalytic activity of the modified

photocatalyst (Tianzhong T., et al (2007)). Fe3+-Ti02 photocatalyst can be prepared by
several techniques such as hydrothermal treatment (Tianzhong T., et al (2008)), wet

impregnation (Zolta'n A., et al (2008)), sol-gel technique (Jiefang Z., et al (2006)),

ultrasonic (Zhou M,etal (2006)) andco-precipitation (Tianzhong T., etal (2007)).

For this project, Fe3+-Ti02 photocatalyst will be prepared using wet impregnation

method due to its simplicity andextremely versatile techniques which canbe controlled

to givea good dispersion and better distribution of metal loading on thesupport.

Ihe percentage of Iron, Fe doped into Ti02 is 0.4 wt%, 0.6 wt% and 0.8wt%. A

calculated amount of copper nitrate in distilled water being stirred for 1 hour with Ti02

added to it. (Calculation in Appendix A) The solvent has been evaporated slowly in

water bath at 80°C until the solvent has transform into super-saturated solvent. The

solvent being oven-dried at 120°C for 18 hours. The dried solution being grinded to get

the photocatalyst in powder form. This is to ensure that the photocatalyst get the

maximum surface area contact during calcinations. Finally, calcination process whichis

to remove N03" substance been conducted at 400°C and 500°C for I hour. Figure 3.2 is

the summary of the preparation of Fe/Ti02 methodology.
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Acalculated amount of iron nitrate in distilled j
water been stirred for1hrwith Ti02 \

addedtoil

The solvent been evaporated slowly in a
water bath at 8G°C

The material been oven-dried at 120°C for

18 hours in oven

Calcination process been conducted at
400°C and5Q0°C for 1 hr.

FIGURE 3.2: Flowchart for Fe3+-Ti02 photocatalyst preparation (left) and picture of

Fe(N03)3 mixed with Ti02(right)

The amount of Fe metal loading to Ti02 are based on target of having Fe concentration

of 0.4, 0.6 and 0.8wt% of Fe in Ti02. This variation of concentrations was done to

observe the dependence of the photocatalysts' performance to the amount of dopant

This concentration is decided based on literature review and continuations of previous

project that showing decrement of photocatalytic activity between concentrations of 0.4

to 1.0wt% of Fe in Ti02. The experiment also been carried out in three different

calcinations temperature which are 400°C and 500°C. This is to determine the suitable

calcinations temperature for the photocatalyst This calcinations temperature is taken

based on literature review. Calcination can activate the catalyst and also reduce the

concentration ofnitrate from Iron(III) Nitrate in photocatalyst.
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The details ofthe photocatalysts prepared:

Metal loading (wt %) Calcinations temperature (°C)

400 500

0.4 0.4FeTiO400 0.4FeTiO500

0.6 0.6FeTiO400 0.6FeTiO500

0.8 0.8FeTiO400 0.8FeTiO500

TABLE 3.1: Details of the photocatalysts prepared

The prepared photocatalyst will then undergo the characterization process before being

used for photocatalytic desulfurization experiment. This process is to ensure that Fe +
ion is successfully dopedinto Ti02 photocatalyst surface.

3.1.2 Characterization of the Photocatalyst

Characterization of the photocatalyst is essential procedure to determine the physical

properties of the photocatalyst. The characterization methods used are asbelow:

3.1.2.1 X-Ray Diffraction (XRD)

This test is done to determine the phases, crystal structures and crystallite sizes of the

modified Ti02 photocatalyst. It is performed on an X-Ray Diftractometer at room

temperature. The crystallite size observed inXRD can becalculated using the Scherrer's

equation (Tianzhong T., et al (2008)).
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3.1.2.2 UV-vis Diffuse Reflectance Spectra (DRS)

This test is conducted using UV-vis-NIR spectrophotometer to determine the optical

properties ofthe modified Ti02 photocatalyst. Optical properties refer to the light region

adsorption ability of the photocatalyst. Using this analysis, it would show the

absorbance of light has been shifted to the visible region after Ti02 is doped with Fe

metal. The diffuse reflectance UV-vis spectra of the photocatalysts are recorded by the

equipment with an integrating sphere attachment using BaS04 powder as reference. The

photocatalyst samples are prepared in sample holder, thick enough so that all incident

light to be absorbed or scattered before reaching the back surface ofthe sample holder.
Resulting diffuse reflectance spectra are plotted as the Kubelka-Munk ruction or

remission, F(R) versus wavelength. The band gap energy (Eg) for ah photocatalysts are

determined from the extrapolation of the linear fit for the Tauc plot onto the photon

energyaxis as the relationship belowdepicts:

[F(R),hv]1/2 -K(hv-Eg)

Where hv is photon energy and K is the constant characteristic of the semiconductor

material.

3.1.23 Field Emission Scanning Electron Microscopy (FE-SEM)

This test is conducted to show how well the dopant is dispersed into Ti02. From the

morphologies obtained from the photocatalysts, determinations ofthe distribution ofFe
inside Ti02 structure are done. Besides, from Energy Dispersive X-Ray (EDX) analysis,

elemental analyses are done to determine Fe element inphotocatalysts prepared. Using

FE-SEM, the samples are coated with a layer of platinum-palladium before scanning at

100K magnification.
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FIGURE 33: Picture of Field EmissionScanningElectronMicroscopy (FE-SEM)

3.1.2.4 Fourier Transform Infrared Spectroscopy (FTIR)

This test is for identifying chemicals that are either organic or inorganic. It can be

utilized to quantitate some components ofanunknown mixture. FTIR spectra are useful

to determine the functional group (N03", OH* and etc) present in photocatalysts before

and after the calcinations process. They are identified by characteristic peaks in the

spectrum. Using FTIR, a sample isprepared by grinding and mixing approximately lmg

ofphotocatalyst and 200mg ofIR-grade KBr and the samples are pressed into a pellet

by hand press. Ihe FTIR spectrum of the pellet, taken over a wavelength range of
450cm'1 to 4000cm"1, recorded as the percentage of transmittance (%T) versus

wavelength.
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FIGURE 3.4: Picture of Fourier Transform Infrared spectrophotometer.

3.2 Ionic Liquid: l-buryI-3-methyhmidazolium tetrachloroferrate,

[BIVtIM]FeCl4

3.2.1 [BMIMJFeCU Preparation Using Anhydrous IromTII) Chloride,

FeCI3

In preparing l-butyl-3-methylimidazolium tetrachloroferrate, [BMIM]FeCl4, a method

using anhydrous FeCl3 is adopted from hterature review.

In a round bottom flask equipped with a magnetic stirrer, calculated amount anhydrous

FeCl3 were slowly added to calculated amount l-butyl-3-methylimidazoiium chloride,

[BMIM]C1. To ensure complete reaction, the reaction mixture was left stirring overnight
(Calculation ofthe amount ofmaterials needed available in Appendix B). Ared-brown

hquid was obtained which was dried under high vacuum and stored under N2. (Iraj M.

B.,e*a/,(2010))
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3.3 Desulfurization of Model OH Analysis

33.1 Model Oil Preparation

For model oil preparation, which is the representation ofcrude oil for bigger process, it

is prepared by mixing together Dodecane and calculated amount of Dibenzothiophene

so that the concentration of DBTin Dodecane is 0.1wt%. (Thecalculation for amount of

dodecane needed is available at Appendix C)

33.2 Experimental Materials and Apparatus

Below is the list of chemicals and apparatus needed to conduct the photocatalytic

desulfurization analysis experiment:

Chemicals Apparatus

Model Oil Prepared 500W medium pressure Hg lamp with pyrex well

Ionicliquidprepared [BMIM]FeCU 50ml 3 neck round-bottle flask

Photocatalysts prepared: Fe/Ti02 Magnetic Stirrer

Needle and Syringe

GC Analyzer

TABLE 3.2: Chemicals andapparatus for the experiment
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33.2 Desulfurization Procedure using Halogen Lamp

The desulfurization experiment is been carried out to observe the photocatalytic ability

of the Fe/Ti02 photocatalysts and extraction process by [BMIM]FeCLi for sulfur

removal in model oil. The experiment is prepared by adding O.lg 0.4FeTiO400 in 20ml

of model oil. Thesolution is being stirred for 30 minutes (without irradiation of tight) to

ensure well mixing of photocatalyst in model oil. Then, the mixture is subjected to

irradiation with a visible light source after the first 30 minutes. The whole reactions

were carried out for 5 hours (including 30minutes without visible light irradiation). The

sample of model oil is being taken after at the initial and final of the experiment. The

sample is subjected to centrifugal force to separate the oil phase and photocatalyst. The

oil phase of die samples were taken and sent to Gas Chromatograph analysis (GC) to

determine the amount of sulfiir left in the oil phase. The procedure is repeated for 5

other modified photocatalyst, pure Ti02 and [BMIM] FeCl4. For IBMIMJFeCU, model

oil is added to [BMlM]FeCLi with a ratio of 20:1 (model oil: ionic liquid) in term of

weight The result is studied and the best Fe/Ti02photocatalyst isdetermined.

The experiment followed for integrated approach using photocatalytic desulfurization

and ionic liquid extraction. Model oil is added to [BMIMlFeCU with a ratio of 20:1

(model oil: ionic liquid) in term of weight. O.lg of the best Fe/Ti02 photocatalyst is
added for every 20ml ofmodel oil. The best photocatalyst is added to solution ofmodel

oil and [BMIM]FeCl4 to determine the ability of sulfur removal by photocatalysis and

ionic hquid extraction at the same time. The reactions were carried out for 5 hours and

samples at the intial and final experiment are taken. The samples are centrifuged to

separate the oil phase with the ionic liquid phase. The oil phase ofthe samples was sent

to Gas Chromatograph analysis (GC) to determine the amount of sulfur left in the oil

phase. Figure 3.5 isthe summary ofthe desulfurization from model oil experiment.
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Themodeloilis mixed

togetherwth rank; liquid
[BMIMlFea4wilharatk)of

10fl:l(g}.

About O.lg ofphotocatalyst

is mixed togetherwith
Every 20ml ofmodel oil.

The mixture is stirred using magnetic stirrer for 30 mifiutes

The mixture is subjected toirradiation with avisible
iight source.

The reaction were carried out for 5 hours before

It will be analyzed {GC analysis) to determine the amount of

FIGURE 3.5: Experimental Procedure for Photocatalytic Desulfurization Experiment

(left) and picture ofthesetup oftheexperiment (right)

333 Amount of Sulfiir is Mode] Oil, [S] Monitoring

After the experiment, the samples are centrifuged to separate the oil phase with the ionic

hquid phase. The samples men are analyzed using GC (Gas Chromatography) analysis

to determine theamount of sulphur left in model oil. This test is to determine thedegree

of success for pure Ti02 and modified Ti02 to remove sulfur from the model oil. GC

Analyzer use the area under the peak of the curve from the sample to calculate the
concentration of the remaining sulfur in samples by calibrating it with the curve from

standardsamplesthat have been sentearlier.
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CHAPTER 4

RESULT AND DISCUSSION

4.1 Characterization of Photocatalysts, Fe/Ti02

To observe and analyze the distribution of dopant element inside T1O2 structures,

chemical and physical properties, the modified photocatalysts are characterized using

several method of analysis, focusing on elemental analysis to determine the element

exist inmodified photocataysts, the metal distribution and optical properties toobserved

the changes ofBand gap energy after the modifications are done sothat correlations can

bedone with the observed performance ofmodified photocatalysts. Below are the result

analysis from samples prepared rpr XRD test, UV-vis DRS analysis, FE-SEM analysis

and FTIR test

4.1.1 X-Ray Diffraction (XRD)

All of the photocatalysts prepared were subjected to XRD analysisand the result of the

test represent by XRD diffractogram of the samples are shown in Figure 4.2. As for
comparison, XRD diffractogram ofpure TiQj isalso included and shown in Figure 4.1

below:
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FIGURE 4.1: Pure Ti02 XRD Diffractogram

From Figure 4,1, as shown inthe pure Ti02 diffractogram, the diffracton peaks at 2D =

2534°, 37.9°, 48°, 53.9° and 55° represent indices of (101), (004), (200), (105) and

(211) phase plane, in which were confirmed to be crystalline structure of Ti02 anatese.

(Yoong L. S., et ah (2009)). As shown in Figure 4.2, observing the XRD diffractogram

for other modified photocatalysts, all ofdiffraction patterns from samples showing quite

similar pattern and peaks at the same point, showing that all samples exhibit only

patterns assigned to the well crystalline anatase phase (Zhu, J., et al (2004)).

Forlow Fe content, any crystalline phase containing Fe could not be observed byXRD

in Fe/Ti02. It is due to the tact that Fe3+ and Ti4+ have similar ionic radii (0.79A versus
0.75 A), so Fe3+ can easily substitute Ti4+ into Ti02 lattice. These results support that the
current doping procedure allows uniform distribution of the dopants, forming stable
solid solutions within Ti02. From the diffraction patterns it is also obvious that the

materials prepared are in the form ofsmall particles, as the peaks are broad (Zhu, J., et
al (2004)). So, Fe203 orFexTiOy phase also could not be found inXRD diffractogram

pattern (Zhou M, et al (2006)) which meant mat Fe203 may be existed in amorphous

phase (Li Z., etal (2008)).
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FIGURE 4.2: Pure Ti02 and modified Fe/Ti02 XRD Diffractogram
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4.1.2 UV-vis Diffuse Reflectance Spectra (DRS)

The DR-UV-Vis spectra of the catalyst samples as well as of pure Ti02 are depicted in

Figure 4.3 and 4.4 (zoomed to be between wavelengths of 350 to 550nm). The spectra

of pure Ti02 shows absorption peak at 388nm which is still in UV region (Yoong L. S.,

etal, (2009)). A significant increase in the absorption at wavelengths shorter than 400

nm can beassigned to the intrinsic band gap absorption ofTi02 (Zhou M, et al (2006)).

When doped with Fe, considerable shift of the peak towards the visible range at around

400-800 nm occurred for all the samples as shown in clearer view at Figure 4.4. The

absorption spectra ofthe Fe/Ti02 samples show a stronger absorption in the UV-visible

light region and an obvious red shift in the band gap transition. Fe-doping obviously

affects light absorption characteristics of TiCh as shown in Figure 4.4.With increasing

Fe-doping concentration; the samples show a stronger absorption in the visible range

and a red shift in the band gap transition. The red shift is ascribed to the results of the

Fe-doping (Zhou M, et al (2006)). It is also observed that Fe/Ti02 samples calcined at

500°C have slightly more absorption than those calcined at400°C with given amount of

dopant. Increment oflight absorption ofthe samples invisible light region can possibly

lead tobetter photocatalytic activity, especially under visible light region.
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FIGURE 4,3: DR-UV-vis spectrafor pure Ti02 and Fe/Ti02 samples

Reflectance versus Wavelength

FIGURE 4.4: DR-UV-vis spectra for pure Ti02 and Fe/Ti02 samples (350-550nm)
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The UV-Vis absorption edge and band gap energies of the samples have been

determined from the reflectance [F(R)] spectra using the KM (Kubelka-Munk)

formalism and the Tauc plot. For a semiconductor material, a plot of [F(R).hvf against

hv should show a linear region just above the optical absorption edge for n = %if the

band gap is a direct transition, or for n = 2 if it is indirect (Yoong L.S., et al, (2009)) .

Overthe linearregionof the plots, the relationship canbe described as;

\\n _[F(R).hv]"z -Kihv-Eg)

Where hv = photon energy, Eg= the band gap energy, and K = a constant characteristic

of the semiconductor material. From the equation above, it appears that extrapolation of

a Tauc plotto thehv axisshould yield thesemiconductor band gap energy (Yoong L. S.,

et al, (2009)). The extrapolation lines shown in Figure 4.5 have beenused to determine

the band gaps for the different catalyst samples tested. The calculated band gap energy

for pure Ti02 is also found to be 3.25 eV from the extrapolation of the corresponding

plot. The calculated values of the band gap energy are given in Table 4.1. All the

catalysts displayed reduction in theirband gapscompare to Ti02.
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FIGURE 4.5: Plot oftransformed Kubelka-Munk function [(F(R).hv]1/2 vs hv for pure

Ti02 and Fe/Ti02 samples

Reduction of band gap energies of Fe/Ti02 samples increase with the increase of

dopant, Fe loading. It is also observed that band gap energies of Fe/Ti02 samples

calcined at 500°C is lower than those calcined at 400°C, concluding that higher

calcination temperature result in lower band gap energy of thesamples. Thus, among the

Fe/Ti02 samples, 0.8wt% Fe/Ti02 calcined at 500°C shows the smallest band gap

energy at 2.84eV. The summary of the calculated values of band gap energy of all

samples is shown in Table 4.1.
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Photocatalyst Samples Band Gap Energy, eV

PureTi02 3.25

0.4FeTiO400 2.99

0.6FeTiO400 2.96

0.8FeTiO400 2.89

0.4FeTiO500 2.98

0.6FeTiO500 2.90

0.8FeTiO500 2.84

BLE 4.1: Summary ofthe Band Gap energiesestimated for UV-vis DRS data

4.1.3 Field Emission Scanning Electron Microscopy (FE-SEM)

All samples of photocatalysts were subjected to FE-SEM scanning, overall consisting 7

samples (Pure Ti02 and 6 samples of Fe/Ti02). Figure 4.6 and 4,7 (a)-(f) show the

morphology result ofthe samples from FE-SEM test, showing some irregularities of the

samples and variation of particle sizes to be in range of 20-50nm. The irregularities of

particle sizes are the result of grinding process on the samples. But, with 100K

magnification of scanning is insufficient to observe the distribution of dopant in

supported Ti02 as no real distinction is shown on the morphology results of the

modified photocatalysts.

FIGURE 4.6: Morphology resultof PureTi02 from FE-SEM

32



(a) 0.4FeTiO400 (b) 0.4FeTiO500

(c) 0.6FeTiO400 (d) 0.6FeTiO500

(e) 0.8FeTiO400 (f) 0.8FeTiO500

FIGURE 4.7: Fe/TiC^ Morphology Results from FE-SEM
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From the morphology results, scanning of 100K magnification is still not sufficient to

show the distinction between pure and doped Ti02, but from elemental analysis using

Energy Dispersive X-Ray (EDX) analysis, presence of Fe in prepared photocatalysts can

be analyzed. Results from EDX analysis are shown below:
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FIGURE 4.8: Pure Ti02 and Fe/Tit>2 EDX Results from FE-SEM

Spectrin 4
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As shown in EDX results from Table 4.2 and 4.3 (a)- (f), from elemental analysis, the

concentration of Fe metal in Ti02 are analyzed and the result shows that Fe is presents

in Fe/Ti02 but the values calculated are shghtly different than targeted values. This is

caused by irregularities of the distribution of Fe in Ti02. But, as a conclusion, Fe is

present in prepared Fe/Ti02 and well distributed as the error from the targeted value

(concentration ofdopant) and obtained value exhibit error below than 35%.

Pure Ti02

TAB

Element Weight% Atomic%

CK 44.24 57.58

OK 37.22 36.37

TiK 18.54 6.05

Totals 100.00

LE 4.2: Summ ary of the ED>l Result for pure
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(a) 0.4Fe/TiO2400
Element Weight% Atomic%

OK 40.65 67.22

TiK 59.07 32.66

FeK 0.28 0.12

Totals 100.00

(c)0.6Fe/TiO2400

Element Weight% Atomic%

OK 53.04 77.21

TiK 46.30 22.51

FeK 0.66 0.27

Totals 100.00

(e)0.8Fe/TiO2400

Element Weight% Atomic%

OK 50.32 75.23

TiK 49.18 24.56

FeK 0.50 0.21

Totals 100.00

(b) 0.4Fe/TiO2500
Element Weight% Atomic%

OK 40.64 67.20

TiK 59.05 32.61

FeK 0.31 0.19

Totals 100.00

(d) 0.6Fe/TiO2500

Element Weight% Atomic%

CK 5.21 9.03

OK 57.46 74.78

TiK 36.73 15.96

FeK 0.61 0.23

Totals 100.00

(f) 0.8Fe/TiO2500

Element Weight% Atomic%

OK 50.23 75.09

TiK 49.08 24.53

FeK 0.69 0.37

Totals 100.00

TABLE 43: Summary ofthe EDX Result for Fe/Ti02
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4.1.4 Fourier Transform Infrared Spectroscopy (FTIR)

Figure 4.9 shows theFTIR transmission spectra of the Fe/Ti02 photocatalyst for before

calcination. As shown in Figure 4.9, in all the spectra, the absorption peaks around

1600cm"1 and 3400cm"1 are attributed to the O-H bending and stretching ,respectively

while the IR band observed from 400 to 900cm"1 corresponds to the Ti-O stretching

vibrations. The IR band also shows the absorption band at 1382.7 cm-1 which is

attributed to the presence ofnitrate (N03") group in the samples tested (Yoong L. S., et

al, (2009)). This peak is seen clearly as the samples are yet subjected to calcination

process which purposely done to remove nitrate (NO3 ") group (Yoong L. S., et al,

(2009)).
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FIGURE 4.9: FTIRspectra for Fe/Ti02samples before calcination
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As for samples after calcinations, the FTIR spectraof the samples are shown in Figure

4.10 below. As observed, the absorption peaks around 1600cm"1 and 3400cm'1 arid 400
to 900cm"1 are stilldetected in calcined samples. On theotherhand, the absorption band

at 1382.7 cm-1 which is attributed to thepresence of nitrate (N03 ") group could not be

detected on the spectra shown in Figure 4.10, spectra for samples after subjected to

calcination at 400°C and 500°C, indicating that the calcination process was able to

completely remove the NO3" group from the raw catalysts.
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FIGURE 4.10: FTIRspectrafor Fe/Ti02samples aftercalcinations
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4.2 Desulfurization of Model Oil using Fe/Ti02 and [BMIMJFeCU

Desulfurization process represents theobservation onthe sample of photocatalysts (pure

Ti02 and Fe/Ti02) regarding the improvement of the photocatalytic activity of the

modified photocatalysts and the extraction process by the ionic liquid, [BMIMJFeCU-

All 7 samples of photocatalysts were used in desulfurization experiment, plus one ionic

liquid, [BMIMJFeCU, tested one byone before thebest among the tested photocatalysts

is obtained to be combined with [BMIMJFeCU as the integrated approach for

desulfurization process.

The results from the desulfurization experiment are shown in Table 4.4. As the

methodology specified in previous section, the samples were taken at the initial and

final of the experiment. The result of GC analysis of initial amount of Sulfur in model

oil is 0.112wt%. As for final concentration of Sulfur in samples, the results are listed in

Table4.4. The results show that the desulfurization process, from the pattern of results,

percentage of sulfur removal increases from Fe/Ti02 concentration of 0.4 to 0.6wt% and

decrease from 0.6 to 0.8wt%. Besides, the photocatalytic activities of the prepared

photocatalysts reduce withthe increasing of calcinations temperature.

The results showthat the desulfurization process, from the patternofresults, percentage

of sulfur removal increases from Fe/Ti02 concentration of 0.4 to 0.6wt% and decrease

from 0.6 to 0.8wt%. Besides, the photocatalytic activities of the prepared photocatalysts

reduce with the increasing ofcalcinations temperature.
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Samples Total Sulfur Left (%wt) Percentage of Sulfur Removal (%)

Initial Amount of Sulfur in model oil from GC analysis -0.112 wt%

[BMIMJFeCU 0.083 25.55

PureTi02 0.110 1.79

0.4FeTiO400 0.106 5.36

0.6FeTiO400 0.104 7.14

0.8FeTiO400 0.106 5.36

0.4FeTiO500 0.107 4.46

0.6FeTiO500 0.105 6.25

0.8FeTiO500 0.106 5.36

[BMIM]FeCU+

0.6FeTiO400

0.071 36.61

TABLE 4.4: Summary of Sulfur Removal Experiment Result

Doping of Fe3+ has been affirmed to be responsible for the reduction of the photo-

generated hole-electron recombination rateand introduce much more oxygen vacancies

in/on the crystal lattice and surface of Ti02, while oxygen vacancies favor the

adsorption of H20 and formation of surface hydroxyl group, as well as promote the

photocatalytic activity. (Tianzhong T., el al (2008), Jiefang Z., etal (2006))

Ti02+to>-+e +h"

Fe3++/*+-

Fe3++e~-

Fe4H

2+
Fe

Fe2+ -K)2(ads) -* Fe3+ +02~

Fe2++Ti4+-*Fe3++Ti3+

Ti3+ +02(ads) -» Ti4+ +02~

0)

(2)

(3)

(4)

(5)

(6)
,3+Fe4+ +OH~(ads) -* FeJ+ +OH*(ads) (7) (Tianzhong T., et al. (2008))
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Unfortunately, Fe3+ can also act as the recombination centers for the photogenerated

electrons and holes (Eqs. (2 and 3) and (8-10)), thus resulting in the decrease of

photocatalytic activity. When the dopant concentration is too high, the recombination

rate will increase and compete with the redox processes because the distance between

trapping sites decreases. (Tianzhong T„etal (2008), Jiefang Z.,etal (2006))

Fe4++e~-»Fe3+ (8)

Fe2++/i+-*Fe3+ (9)

Fe2+ +OH* -> Fe3+ +01T (10) (Tianzhong T.,etal (2008))

With increasing of calcinations temperature will induce the change in morphologies of

the photocatalyst, resulting in reducing of contact area of the particle. Decreasing in

contact area for reaction will reduce the reaction itself, thus photocatalytic activities

reduces too. But, low calcination temperature will not be sufficientenough to eliminate

die fimctional group which is NO3" group that enables the formation of Fe203 that can

affect negatively to the photocatalytic activities.

From the result, Fe/Ti02 of 0.6wt% Fe calcined at 400°C show the best result,

combining with ionic liquid [BMIMJFeCU forming integrated sytem enhance the sulfur

removal from 7.14% (0.6FeTiO2400 alone) and 25.55% ([BMIMJFeCU alone) to

36.61%. Photooxidation by the photocatalyst converts the sulfur species to sulfone and

sulfoxide, smaller compounds andhighly polarized that ease the extraction using ionic

hquid from model oil that is non polar, thus enhancing the sulfur removal. So,

combining both photooxidation and extraction yield better desulfurization.
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CHAPTERS

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The experimental results on desulfiirization process for the pure Ti02, six modified

photocatalyts, Fe/Ti02 prepared with different dopant loadings and under different

conditions of calcinations and ionic liquid, [BMIMlFeCU show some definite trends.

The sulfur removal of Fe/Ti02 is much higher than that achieved with pure Ti02 alone.

With trend observed, it showed the increment of photocatalytic activity from dopant

loading of 0.4wt% to 0.6wt% and decrement when dopant loading increase from

0.6wt% to 0.8wt%. Besides, sulfur removal form samples of Fe/Ti02 calcined at 400°C

are higher than those calcined at 500°C showing that photocatalytic activity of the

photocatalyst depends on the amoung of dopant and calcinations temperature. From all

seven samples of photocatalysts prepared, (Ti02 and Fe/Ti02) Fe/Ti02 with 0.6wt% of

Fe calcined at 400°C exhibit the best sulfur removal percentages at 7.14% sulfur

removal, thus selected to be combined with ionic liquid as Integrated System.

Combining with ionic liquid also enhance the desulfurization as extraction is added to

the system, leading to photooxidation-extraction integrated system. This is shown in

results where sulfur removal is increased from 7.14% (photocatalyst) and 25.55% (ionic

liquid) to 36.61% (Integrated System). Photooxidation by thephotocatalyst converts the

sulfur species to sulfone and sulfoxide, smaller compounds and highly polarized that

ease the extraction using ionic liquid from model oil that is non polar, thus enhancing

the sulfur removal. So, combining both photooxidation and extraction yield better

desulfurization. The size range of the particles sizes for the pure Ti02 and Fe/Ti02

catalyst varied between 20 and 50nm. The relatively uniform dispersion ofFeonTi02

indicated by the EDX results and the full crystallinity confirmed by the XRD analysis

are the factors behind its highest catalytic efficiency,
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5.1 Recommendation

For future study and improvement, more characterization method should be done for in-

depth studies of the properties of photocatalyst using Brunauer Emmett Teller (BET)

Specific Surface Area, X-ray Photoelectron Spectroscopy (XPS), Transmission Electron

Microscopy (TEM), Thermogravimetric Analysis (TGA), Temperature-Programmed

Reduction (TPR) and Atomic absorption spectrometry (AAS). Modification should be

doneon the method for preparing modified photocatalyts, to optimize the distribution of

the dopant in supported Ti02. Other method can be suggested such as complex

precipitation as this method proposed better distribution of dopant in semiconductor.

Calcination temperature and duration can be best determined using TGA analysis. By

implying this analysis beforehand, we can increase the efficiency of photocatalyst.

Another type of metal transition doping also should be studied for the desulfiirization

process suchas Fe, Mn, Ni, Zn,Pt, Ag,andetc. Study ofdesulfurization process should

be done by other sulphur species such as Benzothiophene and instead of using model

oil, the reaction should be continuedby using the crude oil so that real efficiencyof the

desulfurization by bothphotocatalytic desulfiirization andextraction canbe observed.
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APPENDICES

APPENDIX A: Calculation Fe/Ti02 Preparation

Mass Balance Calculation for Fe Metal Doping

Molecular weight for the chemical used in Fe/Ti02 photocatalyst

• Iron(III) Nitrate, Fe(N03)3.9H20 : 404 g/mol

• Iron metal: 55.85 g/mol

• Titanium Dioxide, Ti02 : 79.87 g/mol

Sample calculation (for 0.4 wt% Fe metal doping):

100 g of Fe/Ti02 photocatalyst —> 0.4 g Fe metal needed

20 g of Fe/Ti02 photocatalyst —> 0.08 g Fe metal needed

1 mole ofFe(N03)3.9H20

Therefore, 0.08 g of Fe metal,

0.08
0.08 g of Fe metal xlmol

55.85

0.08 g of Fe metal = 0.001432 mol

55.85 gFe metal

1 mol of Fe(N03)3.9H20 -* 404 g/mol

Therefore, 0.001432 mol of Fe(N03)3.9H20,

xgof Iron(HI)Mrrate = 404 g/mol x 0.001432 mol

0.001432 mol of lron(JU)NUrate - 0.5787 g of Iron(III)Mtra£e

Description Fe'"" loading (wt%)

0.4 0.6 0.8

Amount ofcatalyst (g) 20 20 20

Mass ofFe (g) 0.08 0.12 0.16

Mass ofTi02(g) 19.92 19.88 19.84

Mass ofFe(N03)3.9H20 (g) 0.5787 0.8680 1.1574

TABLE 7.1: Summary o fFe(N03)3.9H2« 3 mass needed foir respective loading
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APPENDIX B: Calculation in Ionic Liquid, [BMIMJFeCU Preparation

Molecular weight:

• [BMIMJC1 -174.67 g/mol

• FeCl3 anhydrous = 162.22 g/mol

From the methodology of Ionic Liquid Preparation, equimolar amount of both

[BM1MJC1 and anhydrous FeCl3 are needed. So, in preparing 0.5 mole of

[BMIMJFeCU, 0.5 mole ofeach [BMIMJCl and FeCl3 are needed. The Calculation for

the rightamount of reactants to be mixed is as below:

1 mole of [BMIMJCl -* 174.67 g of [BMIMJCl

So, 0.5 mole [BMIMJCl = 87.335g of [BMIMJCl

As for anhydrous FeCl3

1moleof anhydrous FeCl3 -* 162.22 g of anhydrous FeCl3

So, 0.5 moleanhydrous FeCi3 = 81.11 g of anhydrous FeCl3

So,87.335 g of [BMIMJCl is mixed with 81.11 g ofanhydrous FeCl3.

48



APPENDIX C: Calculation in Model Oil Preparation

Dodecane + Dibenzothiophene (0.1wt %)

0.1 wt% -»• lOOOppm -*• 1000 mg/L S

1L = 10007n^5

100 ml = 100 mg S

XmolS = 32.06gS

1 mol DBT = 32.06# 5

1 mol DBT = 32060 mg S

x mol DBT = 100 mgS

100 mg S
xmol DBT = —— -.——

32060 mg/mol S

x =0.003119 mol DBT

mass

0,003119 mol DBT =
184.26 g/mol DBT

mass = 0.5747 g DBT

yipurity) = 99%

mass = 0.5747 * 0.99

mass = 0.5805 g DBT
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APPENDIX D: Result of XRD test for each modified photocatalyst, Fe/Ti02

Liq|C^unts)

2-Theta -Scale

Opstfons eac^siound 1.000,1.090!

FIGURE 8.1:0.4wt% Fe/Ti02 calcined at 400°C XRD Diffractogram

2-TTieta-

FIGURE 8.2: 0.4wt% Fe/Ti02 calcined at 500°C XRD Diffractogram
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FIGURE 83: 0.6wt% Fe/Ti02 calcined at 400°C XRD Diffractogram
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FIGURE 8.4: 0.6wt% Fe/Ti02 calcined at 500°C XRD Diffractogram
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FIGURE 8.5: 0.8wt% Fe/Ti02 calcined at 400°C XRD Diffractogram
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FIGURE 8.6: 0.8wt% Fe/Ti02 calcined at 500°C XRD Diffractogram
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APPENDIX E: Result of FTIR test for each modified photocatalyst, Fe/Ti02

1. 0.4wt% Fe/Ti02 before calcination

2. 0.6wt% Fe/Ti02 before calcination

3. 0.8wt% Fe/Ti02 before calcination

4. 0.4wt%Fe/TiO2 calcination at 400°C

5. 0.6wt% Fe/TiOa calcination at 400°C

6. 0.8wt% Fe/Ti02 calcination at 400°C

7. 0.4wt%Fe/TiO2 calcination at 500°C

8. 0.6wt%Fe/TiCh calcination at 500°C

9. 0.8wt%Fe/TiO2 calcination at 500°C
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