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ABSTRACT 

In this project, research is conducted based on data sets of undergraduates at varsity level 

to classify student performance data. The objective of the project is to develop a system 

that utilizes various intelligent techniques with targeted accuracy being at a minimal level 

of88%. 

The system is designed to predict students' CGPA upon graduation. Any further actions 

that can be taken to avoid students' dismissals, or to strengthen their area of interest or 

expertise can be derived from the outcome of this intelligent system. 

The project is implemented using data sets Iris and Student. Techniques used to support 

classification are separated into two different subprojects: (1) Back propagation feed 

forward neural network using Bayes probability to initialize weights, and (2) Fuzzy 

system. The proposed optimization of neural network and Bayes Theorem returns 

92.55% level of accuracy for the student data. Further improvements can be performed 

on areas such as the individual variations of each technique and the combination of all 

three techniques to optimize accuracy. 

The project contributes in customizing a grading system for Universiti Teknologi 

PETRONAS. This system structure is generally relevant to many universities in Malaysia 

as they adopt a fairly similar approach in grading. 
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CHAPTER I 

INTRODUCTION 

1 INTRODUCTION 

1.1 Background of Study 

Today, most organizations are overwhelmed with a large amount of valuable data that 

requires proper management and handling in order to reveal sets of undiscovered 

knowledge. A set of data that is not transformed is considered a huge waste as the 

execution of specific processes will result in valuable knowledge that can be used to 

determine a firm's direction in making business decisions. To utilize this meaningless 

data, it needs to undergo several transformation and mining processes. 

Data Mining can be defined as the nontrivial of implicit, previously unknown, 

and potentially useful information from data[l ]. The term "Data Mining" is 

interchangeably used with the term "Knowledge Discovery in Database" (KDD) and is 

widely accepted due to the concept fundamentally similar concepts behind both terms. 

Closely related to Data Mining are the techniques that are used to support Data Mining 

activities, and examples of these include Artificial Neural Network(ANN), Fuzzy 

Logic, Genetic Algorithm(GA) and a myriad of clustering techniques. In this project, 

the aim is to conduct a research on the impact of the combination of fuzzy logic, 

neural network, as well as Bayes theory on the outcome's accuracy level. 

1.2 Problem Statement 

Data Mining approach is widely used by business firms from different sectors around 

the globe to maximize profits hence creating high firm value. This usually focuses on 

customer retention campaigns and customized marketing strategies according to 

customer profiles respectively. However, looking at the same concept from the 

pedagogical perspective, Data Mining can also be applied to track students' 
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performances. In this case, the research is to be conducted based on data sets of 

undergraduates at varsity leveL Specifically, Extract, Transform, Load(ETL) method 

is applied on data sets of a portion of undergraduates to produce meaningful 

knowledge as the final product. Some of the commonly faced problems by 

academicians and students alike are as further discussed in the following sections. 

Amongst the relevant issues are not being able to identify each student's areas 

of strengths and weaknesses in a structured mauner. This knowledge is clearly 

beneficial to both students and academicians alike. Through the application of Data 

Mining methods, students' future performances can be forecasted using prediction. 

Other than attending to future issues, the system is also designed to cater for current 

situations where student-academician relationship can be optimized through the 

knowledge that the system provides. Academicians can learn, improvise and 

customize his practice by viewing this knowledge and recognize trends. This allows 

the academicians to formulate the best approach in tutoring. Currently, academicians 

have no means of designing the' best approach in reaching for students. There exists no 

knowledge baseline that houses' student academic history during his course of study in 

the university. Thus, academicians solely rely on restricted information that is 

gathered through self-observation, intuition and limited reference to a set of manually

recorded past academic records. This identification of strengths and weaknesses is 

universal as it can generally be applied to students from all groupings according to 

students' Cumulative Grade Point Average(CGPA) respectively. 

The second issue is more focused on a specific group of students. This 

particular group has the common trait of students who are to be classified as excellent 

performers. Currently, there exists no structured system that is attending to this group 

of students to aid in maintaining their excellent performance if not expanding the 

ability. In this case, the proposed system serves the purpose of assisting students in 

maximizing their specific or general overall skills that are relevant to a particular 

programme. The choice depeqds on the particular student's prospect and interest, 
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provided that the process is based on academicians' advises and is conducted under 

strict supervision. 

Lastly, the issue is focused on the students who require urgent attention for 

academic rehabilitation. There is a high probability that these students fall under the 

academic probationary group where either their Grade Point Average(GPA) or 

Cumulative GPA(CGPA) is not at par with the university's minimum requirements. In 

this case, the analysis is narrowly focused on determining the best solution in 

improving these students' performances. Clearly, this is vital as to avoid dismissals in 

the future. Other than identifying the weaknesses of these students, another aiding tool 

includes the change of programme guide where the system is capable of suggesting the 

most suitable programme for a particular student if he decides to pursue a different 

major instead of continuing on with the same major. Currently, the rehabilitation 

session only involves heuristics-based decisions in which are mutually agreed by both 

students and academicians. It is hoped that the new system is able to provide more 

accurate decisions as the analysis conducted is based on historical data instead of 88% 

on human judgment while the remaining is based on incomplete previous academic 

records. 

1.3 Objective and Scope of Study 

The objectives of this project are as specified below: 

• To develop a system that utilizes fuzzy logic, neural network and Bayes 

techniques in classification and prediction. 

• The utilization of these three techniques to return a result set of minimally 88% 

accuracy level. 

These three techniques are used to illustrate Data Mining concepts through producing 

accurate knowledge on student performance. As for the scope of study, a sample train 

data ofUniversiti Teknologi PETRONAS's undergraduates' results is applied. 
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CHAPTER2 

LITERATURE REVIEW AND THEORY 

2 LITERATURE REVIEW AND THEORY 

2.1 Data Mining 

Data Mining or Knowledge Discovery in Databases(KDD) refers to the non-trivial 

process of identifYing valid, novel, potentially useful, and ultimately understandable 

patterns in data [2]. Provided below is the diagram of the model used to complete 

knowledge discovery process. 

Source: http:llalg.ncsa.uiuc.edultoolsld2lrlmanualldataMining.html 

FIGURE 2.1: Knowledge Discovery in Databases(KDD) Process Diagram 

The knowledge discovery goals are defined by the intended use of the system. There 

are two types of goals that can be distinguished: (1) verification and (2) discovery. 

With verification, the system is limited to verifYing the user's hypothesis. With 
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discovery, the system autonomously finds new patterns. Discovery goal is further 

subdivided into prediction and description [3]. Prediction refers to scenarios when the 

system finds patterns for forecasting the future behavior of some entities. On the other 

hand, description refers to scenarios when the system finds patterns for presentation to 

a user in a human-understandable form. In this particular project, both prediction and 

description KDD are applied in order to perform classification as well as prediction. 

The stages as shown in Figure 2.1 are briefly described below: 

• Data Selection and Cleaning 

Relevant data is selected from data warehouse or legacy system, cleansed in 

terms of formats, merging, removal of trailing comments etc. prior to 

transformation process. 

• Data Transformation 

The Extract, Transform, Load(ETL) procedures are performed at this stage 

where desired data in specific formats and fulfilling the requirement is 

gathered in a database known as the Data Mart. 

• Data Mining I Pattern Discovery 

Analytical processes to classify or predict data are conducted to discover new 

knowledge. 

• Interpretation and Evaluation 

Knowledge obtained from Data Mining is manipulated and optimized 

according to interests accordingly i.e. retain customer, predict student failures 

etc. 

2.2 Fuzzy Logics(FL) 

The primary method of assessment usually involves awarding numerical marks by an 

evaluator. Such marks are usually given according to a given marking scheme. These 

marks are usually numerical values that may fluctuate a little as different evaluators 

may award different marks. Evaluation of a student's work may be affected by the 

evaluator's experience, sensitivity and the standard used. Thus marks awarded by an 

evaluator to represent student performance are only an approximation. Although 
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linguistic terms (e.g. bad, good, very good, excellent etc.) have also been widely used 

to represent the final student's performance, their inherent nature of vagueness is often 

ignored. However, academic performance evaluation involves the measurement of 

ability, competence and skills. Ability, competence and skills are fuzzy concepts and 

can be approximately captured in fuzzy terms.[8] 

A rule-based system utilizes a model that represents human knowledge in the 

form of "IF-THEN" rules. This conventional approach has been adapted to build fuzzy 

rule-based systems. A simple fuzzy IF-THEN rule can be written in the form of" IF x 

is A THEN y is B" where A and Bare fuzzy sets. This can be extended to more than 

two fuzzy sets resulting in compound fuzzy propositions. In general, fuzzy IF-THEN 

rules are production rules whose antecedents, consequences or both are fuzzy [12]. 

Mendel [13] classified fuzzy rules into 6 different types, namely Incomplete Rules, 

Mixed Rules, Fuzzy Statement Rules, Comparative Rules, Unless Rules and 

Quantifier Rules. However there is no agreed classification of fuzzy rule models [12] 

and a single rule might involve a combination of several different classification types 

[13]. 

One method of Fuzzy Logics include the IF-THEN method(Mamdani-type). 

This model also has high interpretability. The structure is as shown below: 

,where Xu are fuzzy input linguistic variables, Yj are fuzzy output linguistic variables, 

and A and Bi are linguistic terms in the form of fuzzy sets that characterize X; and Yi. 

In order to make a system that is more readily comprehensible to the user, weighted 

subsethood-based algorithm(WSBA) employs a rule generation algorithm which is 

based on fuzzy general rules or the extension of a Mamdani-type [8]. 

Consider fuzzy rules with multi-inputs and a single output. These rules can be written 

in the following form: 
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IF A is (Al OR A2 OR ... OR Ai) AND B is (Bl OR B2 OR ... OR Bj) AND ... AND 

H is (Hl OR H2 OR ... OR Hk) THEN the classification output is (Xl OR X2 

OR ... ORXn) 

This general rule can be re-written in a more specific form with each rule 

corresponding to one classification output value: 

Rule I 

IF A is (Al OR A2 OR ... OR Ai) AND B is (Bl OR B2 OR ... OR Bj) AND ... AND 

His (Hl OR H2 OR ... OR Hk) THEN the classification output is Xl 

Rule2 

IF A is (Al OR A2 OR ... OR A) AND B is (Bl OR B2 OR ... OR Bj) AND ... AND 

His (Hl OR H2 OR ... OR 1ft) THEN the classification output is X2 

Rulen 

IF A is (Al OR A2 OR ... OR A) AND B is (Bl OR B2 OR ... OR Bj) AND ... AND 

His (Hl OR H2 OR ... OR 1ft) THEN the classification output is Xn 

Thus, all linguistic terms of each attribute are used to describe the antecedent of each 

rule initially. This may look tedious, but the reason for keeping this complete form is 

that every linguistic term may contain important information that should be taken into 

account. Otherwise, there is no need for adopting the given fuzzy partitions of the 

underlying domains in the first place. Of course, during training, some of such terms 

may be omitted due to no evaluated contribution (or with a relative weight ofO) with 

regard to the training data. 

However, the above default rules do not tell any differences between the 

relative contributions made by the individual linguistic terms of each variable towards 

the eventual conclusion drawn. It is here that relative weights computed via 

subsethood values can help. Following this idea, by multiplying each linguistic term 

by its respective weight, the fuzzy rules to be generated will be of the form: 
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Rule I 

IF A is (w(Xl,Al)Al OR (w(Xl,A2)A2 OR ... OR w(Xl,A;)A;) AND B is 

(w(Xl,Bl)Bl OR w(Xl,B2)B2 OR... OR w(Xl,Bj)Bj) AND ... AND H is 

(w(Xl,Hl)Hl OR w(Xl,H2)H2 OR ... OR w(Xl,~)Hk) THEN the classification 

output is XI 

Rule2 

IF A is (w(X2,Al)Al OR (w(X2,A2)A2 OR ... OR w(X2,A;)Ai) AND B is 

(w(X2,Bl)Bl OR w(X2,B2)B2 OR... OR w(X2,Bj)Bj) AND ... AND H is 

(w(X2,Hl)Hl OR w(X2,H2)H2 OR ... OR w(X2,~)Hk) THEN the classification 

outputisX2 

Rulen 

IF A is (w(X,,Al)Al OR (w(Xn,A2)A2 OR ... OR w(X,,A)A;) AND B is 

(w{Xn,Bl)Bl OR 

w(X,,B2)B2 OR ... OR w(Xn,Bj)Bj) AND ... AND His (w(Xn,Hl)Hl OR w(X,,H2)H2 

OR ... OR w(X,,~)Hk) THEN the classification output is Xn 

The weights for each linguistic term are considered as a quantifier "some" or "all". If 

the weight = 1, the quantifier is regarded to be "all", otherwise it is considered to 

represent "some". The extent to which "some" is interpreted depends on the value of 

the weights of the respective linguistic terms. Researchers suggested many different 

types of hedges for fuzzy systems. Among the discussed methods are concentration 

and dilution[23]. Figure 2.2 illustrates the concentration concept. The normal 

membership segment is shrunk to focus on a smaller segment of the fuzzy set. 
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FIGURE 2.2: Sample of concentration hedge 

2.3 Artificial Neural Network(ANN) 

Generally, an artificial neuron is a device with many inputs and one output. The 

neuron has two modes of operation; the training mode and the using mode. In the 

training mode, the neuron can be trained to fire (or not), for particular input patterns. 

In the using mode, when a taught input pattern is detected at the input, its associated 

output becomes the current output. If the input pattern does not belong in the taught 

Jist of input patterns, the firing rule is used to determine whether to fire or not[7]. 

Figure 2.3 illustrates the structure of a simple neuron. 

Information is stored in the weight matrix W of a neural network. Learning is 

the determination of the weights. Following the way learning is performed, two major 

categories of neural networks can be distinguished: 

• fixed networks in which the weights cannot be changed, ie dW/dt=O. In such 

networks, the weights are fixed according to the problem to solve. 

• adaptive networks which are able to change their weights, ie dW/dt not= 0. 
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Source: http://www.doc.ic.ac. ukl-ndlsurprise _96/joumal/vo/4/cslllreport.html 

FIGURE 2.3: Simple neuron structure 

As can be seen from Figure 2.4, the network has 3 inputs, and one output. All 

numbers are in binary format. The node is to learn simple OR discrete mathematics 

concept: output is 1 if either I0 or I 1 is 1. The output is 

ifWo *Io +WI *II+ wb > 0 then 

0 

ifWo *Io +WI *II+ wb <= 0 then 

1 

Linem- threshold unit 

w 

Bias unit 

Saurce: http:/ lwww.cs.stir.ac.ukl-lss!NNintro!InvSiides.html 

FIGURE 2.4: Adaptive network simple unit. 
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Source: http:! /www.doc. ic. a c. ukl-ndlsurprise _j)6/journal/vol4/cs ]]/report. html 

FIGURE 2.5: Feed forward ANN 

There are two types of ANN architectures. Firstly, feed-forward ANNs allow 

signals to travel one way only; from input to output. There is no feedback (loops) i.e. 

the output of any layer does not affect that same layer. Feed-forward ANNs tend to be 

straight forward networks that associate inputs with outputs. They are extensively used 

in pattern recognition. This type of organisation is also referred to as bottom-up or top

down. Secondly, feedback networks can have signals travelling in both directions by 

introducing loops in the network. Feedback networks are very powerful and can get 

extremely complicated. Feedback networks are dynamic; their 'state' is changing 

continuously until they reach an equilibrium point. They remain at the equilibrium 

point until the input changes and a new equilibrium needs to be found. Feedback 

architectures are also referred to as interactive or recurrent, although the latter term is 

often used to denote feedback connections in single-layer organizations. [7] 

One of the most popular neural network architectores used for classification is 

the Multi-Layer Perceptron. The units are organized into different layers, and the 

network is said to be feed-forward because the activation values propagate in one 

direction only, from the units in the input layer, through a number of hidden layers, to 

end up in the output layer. The multi-layer perceptron is usually trained with the Error 

Back-Propagation method. Initially the weights in the network are set randomly. The 

training samples are fed one at a time into the input layer and the activity propagated 
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through the network to the output layer. The output of the network is then compared to 

the desired, and the difference gives rise to an error signal which is fed backwards 

through the network, causing the weights to be updated in a way which will decrease 

the error the next time the same pattern is presented. By going through the training set 

in this way several times, the weights are gradually adjusted to minimize the output 

error[17]. Generally, the complete rule for modifying the weight WAB between a 

neuron A sending a signal to a neuron B is, 

aE2 

WAB(new) = WAB(old) -11 OA 
alB 

(2.2) 

where, 

-IB is the output neuron 

aE2 aE2 
= -- WBo fh'(IB) -IB is the hidden neuron 

alB al0 
(2.3) 

where t;, and fh are the output and hidden activation functions respectively. 

As suggested by the name, One-Layer Perceptron is the precedence of multi

layer perceptron. The single layer of weights between input and output units is trained, 

just as in the multi-layer case, with a gradient descent method, which adjusts the 

weights a small step in the direction which will make the classification of the current 

pattern more correct. 
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2.4 Statistical Method: Bayesian Theory. 

2.4.1 Previous Findings 

Bayes' Theorem, developed by the Rev. Thomas Bayes, an 18th century 

mathematician and theologian, was first published in 1763 [14]. Here, the probability 

is calculated where a Bayesian inference can be made based on available information. 

Mathematically it is expressed as: 

P(HIE,c)= 
P (HI c) * P (E I H,c) 

P(Eic) 
(2.4) 

The left-hand term, P(HIE,c) is known as the "posterior probability," or the probability 

of H after considering the effect of E on c. The term P(Hic) is called the "prior 

probability of H given c alone. The term P(EIH,c) is called the "likelihood" and gives 

the probability of the evidence assuming the hypothesis H and the background 

information c is true. Finally, the last term P(Eic) is independent of H and can be 

regarded as a normalizing or scaling factor. It is important to note that all of these 

probabilities are conditional. They specify the degree of belief in some proposition or 

propositions based on the assumption that some other propositions are true. As such, 

the theory has no meaning Without prior resolution of the probability of these 

antecedent propositions[l4]. 

There are two major classification using different Bayesian rules [17]: 

• One-layer neural network: deduced Bayesian learning rule. 

• Multi-layer neural network: complex columns in hidden layer. 

o Partitioning 

o Overlapping 

The assumption underlying the Naive Bayesian Classifier is that all input attributes are 

independent. Then the probability distribution over the domain can be written as a 

product of the marginal distributions over the attributes. These marginal distributions 
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have much fewer parameters, and are thus much easier to estimate from the training 

data. The independence assumption amounts to assuming that each input attribute 

gives some evidence for or against each class, which can be considered separately 

from the evidence contributed by the other attributes. The one-layer Bayesian neural 

network is based on the idea of a naive Bayesian classifier. The network is trained 

according to the Bayesian learning rule, which considers the units in the network as 

representing stochastic events, and calculates the weights based on the correlation 

between these events. The activity of a unit is interpreted as the probability of that 

event, given the events corresponding to already activated units. The equation is as 

displayed in Eq. 2.2. 

When all input attributes are not independent, the naive Bayesian classifier is 

not appropriate. If it were possible it is better to estimate the whole distribution P(XIY) 

directly, but this is impossible already for moderate numbers of input attributes. The 

solution that is concentrated on is to make something in between. Those attributes that 

are dependent must be considered together, but hopefully every attribute is not 

dependent on all others. There are two different ways to handle dependencies. The 

first method is to partition the input attributes into groups which are independent. Each 

group can be considered as one complex attribute, and the joint distribution over it is 

estimated. Since the different groups are independent of each other, their probability 

distributions can then be combined as before. The second method is more involved. It 

consists of trying to estimate a dependency graph between the input attributes, and 

uses this graph to calculate the joint probability distribution over the whole input 

space[l7]. 

Researchers have made a substantial amount of effort to improve naive Bayes. 

Related work can be broadly divided into two approaches: eager learning and lazy 

learning, depending on when the major computation occurs. Eager learning does major 

computation at training time. Different from eager learning, lazy learning spends little 

or no effort during training and delaying computation until classification time[5]. An 

example is Hill Climbing method. 
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2.5 Researches on Student Data 

Many research papers [26], [8], [24], [25] focuses on fuzzy techniques in mining 

student data. To improve the basic fuzzy technique, quantifiers, and neural techniques 

are used as supporting techniques. Rasmani has researched on the latest improvisation 

technique called fuzzy quantifier subsethood-based rule algorithm(FuzzyQSBA). The 

fuzzy membership value degrees obtained using fuzzy rule-based approach is used to 

detennine how strong the student performance belongs to a specific letter-grade[24]. 

Table 2.1 shows the original grade and the new grade as transformed using 

FuzzyQSBA. 

TABLE 2.1: FuzzyQSBA Approach in transforming grades 

Aside from FuzzyQSBA, NEFCLASS neuro-fuzzy classification is also 

utilized on student academic data. During the learning process, fuzzy rules are 

generated based on overlapping rectangular clusters created by the grid representing 

fuzzy sets for the input variables. Optimization process is conducted through back

propagation where the error rates obtained using the generated fuzzy rules are used to 

modifY the parameters of the initial membership functions that represent fuzzy rule 

antecedents[24]. 
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CHAPTER3 

METHODOLOGY 

3 METHODOLOGY 

3.1 System Design & Architecture 

The general flow of this project follows the general flow of the waterfall development 

model. It starts of with requirement definition and analysis, system design, and finally 

the implementation on specific domains as illustrated in Figure 3.1. 

( START l 

Specification of system requirements, 
literature review and research process 

A l I 

Design and modeling i.e. method and 
algorithm 

i ! 
Test accuracy of individual components 
in both techniques. 

i -l 
Implement tested algorithm to student 
data, develop front-end with a database 
link to access data. 

[ END ) 

} Requirements 
Definition 

System& 
Software Design 

FIGURE 3.1: Flow of Classification System 

17 



In this project, two distinctive techniques are used to assist in classification of 

data; and they are the back propagation feed forward neural network(BPFFNN) and 

fuzzy logic(FL) techniques. The purpose of this is to observe the accuracy level 

returned for both techniques and latter implement the most accurate technique on the 

UTP student data set. 

Figure 3.2 shows the architecture in a more comprehensible structure of the 

system. There are two independent techniques shown in the figure, and these 

techniques are executed in a parallel manner. Referring to the objective of this project 

being the utilization of intelligent techniques to return a result set with 88% level of 

accuracy, testing for both subprojects are equally vital to ensure successful product 

delivery. However, ensuring that the modeling is accurate is the main priority before 

venturing into the prototype development phase. This is aligned with the area of 

research for this project which vastly covers theories and concepts of data mining and 

intelligent techniques. It is expected that most of the resources of this project is highly 

focused on the design phase where iteration of testing substages take place within the 

design phase itself 

18 



3.1.1 System Architecture 

Project A ProjectB 

FIGURE 3.2: Architecture of the system 

3.1.2 Pre-Processing 

This pre-processing procedure only applies for the raw academic data that is obtained 

from UTP. Publicly available test data sets do not require this process as they are 

prepared directly for testing purposes. The purpose of pre-processing is to produce 

data sets of the desired format. 
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As-Is 
• No structured system to support maximization of student ability 
• No structured system to support student academic rehabilitation 

programme 
• No structured system to determine academicians' best approach of 

reaching students 

To-Be 

Maximize 
abilities 

Specialized knowledge 
or overall skills 

Maximize 
abilities 

Change of programme 
guide 

targeted at 

targeted at 

Students with excellent 
academic performance 

Students nnder academic 
probationary statns 

Maximize 
abilities 

targeted at 
f---------~ Students of all groupings: 

'bigh' 'mid' 'low' , ' 

Prediction of future 
academic performance 

FIGURE 3.3: The relevance of pre-processing stage in the system 

UTP Student Data requires extensive patching processes due to factors such as 

change of structures and special circumstances that leads to outliers. For example, 

student who changes course during his/her duration of study in UTP may have more 
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subjects in record. Currently, extraction and transformation processes are not fully 

automated as data cleaning needs massive human intervention in order to allow correct 

interpretation of data. 

Figure 3.3 illustrates how pre-processing takes place in order to create a set of 

valid and meaningful information. Currently, there is no formal system in UTP that is 

used to identify the academic status of students. The academic data goes through the 

process of producing current results in specific values of GP As and CGP As. No 

prediction of mining is currently conducted to perform mining in identifying strengths, 

or in avoiding dismissals. 

The retrieval of raw academic data from ACS is followed by filtering, cleaning 

and patching up process. Although the number of instances initially provided totals up 

to 400, the pre-processing stage filters out the invalid and dirty data to produce 300 

instances that are ready for testing. 

The student raw academic data consists of courses, grades, GP As, and CGP As 

columns. These data is to be grouped into 3 specific fields: (1) Core, (2) Major, (3) 

Electives. The grades for respective subjects are then summed up and averaged as 

grouped by these three fields. The two data sets used in this project are Iris and 

Student. Provided in Table 3.1 are the attributes of these data sets with a specific 

description on the customized data sets used for this project. 

• Iris Data Set (Source: WEKA Project) 

The Iris data set contains four linguistic variables: sepal length, sepal width, petal 

length, and petal width. It consists of 150 object instances and 3 output classes: setosa, 

versicolor, virginica. The considered linguistic terms for each linguistic variable are: 

small, average, and large. 
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• UTP Student Data Set 

The student data set is the domain in which the system is applied on. The source is 

directly obtained from UTP Academic Central Services. Following pre-processing 

stage, the data set consists of 300 object instances, and 3 linguistic variables: 

excellent, good, and poor. The 4 output classes are: first, second upper, second lower, 

third. 

TABLE 3.1: A summary of the used data sets. 

measurements em, 
Jacc:urwcy of 0.1 em, petals 

sepals of 3 kinds of Iris 

inCGPA 
1"":= of 3 subject groups. 

To pre-process the raw student data set, basic database operations are conducted. Each 

subject is tagged with a subject group; being either core, elective or major. For each 

student, the average grades for all three subject groups are calculated using this query 

statement: 

select id, sum( grade)! count(*) 

from sample_ data 

group by id, subject _group; 

An illustration for this process is portrayed in Figure 3.4. In this case, the raw 

wcademic data for student tagged as I20 10 is collected. To begin with pre-processing, 

each subject is then tagged with a new column subject_group, where the subject 

groupings are inserted with core, elective, or major. Then, the mean of grades for these 

subjects are calculated accordingly using the query as stated in Figure 3.4. The 

outcome of this should be three columns for student 12010; which store the mean of 
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grade as grouped by respective subject groups. Appendix 3-1 and 3-2 displays the 

student test data set and the raw academic data respectively. 

raw academic data 

Information 

create table acc_subject_group as select id, sum(l201 0)/count(*) from 
sample_data group by subject_group, id; 

FIGURE 3.4: An example of pre-processing for one student instance. 

3.1.3 Bayes Theory 

Formula 2.4 is applied on all instances to get the Bayes probability of each feature. 

This process of calculation will generate a total of 36 values as can be derived from 

the matrix constructed on the three mentioned factors. Database tables are used for this 
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purpose, where initially calculations are conducted. based on features and classes, and 

next combining the values into subresults of the nominator and denominator. The final 

calculation of Bayes probability includes the combination of all subresults as 

specifically stated in Formula 2.4. There are two procedures and functions that are 

developed in order to calculate the Bayes probability. The purpose of the procedure is 

to calculate set probability subvalues, and the purpose of the function is to get the 

probability subvalues for final calculation. Displayed in Figure 3.5 is an example of 

deriving the Bayes probability value for excellent performance in core subjects given a 

first class degree. lllustrated are also the stages of calculation involved as divided into 

three database table sets respectively. 

_:~c __ TL~~-
\. P (Featur~'\P (Class Given Featur~ 

P(Feature Given Class)='- - ~ '"""-- --
(~-;(Ci;s)'\ Table Set 3 
' -----

P (Core is Excellent) * 
P (First Given Core is Excellent) 

P(Core is Excellent Given First)=-----------
P (First) 

FIGURE 3.5: How Bayes probability is derived from pre-processed academic data 

The Bayes probability values are then mapped to the number of neurons in the 

neural network hidden layer in order to allow initialization of the network's weights as 

opposed to randomly assigning weights to the network. The outcome of this part of the 

system includes the weights that are assigned to each possible combination of 

linguistic variables and linguistic terms. Table 3.2 illustrates the structure that is used 

to calculate individual weights for the Feed Forward Neural Network. 
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TABLE 3.2: Structure of Student Data Set for Bayes Theory calculation. 

3.1.4 Neural Network 

A two-layer of hidden network is used as to support neural network architecture. The 

activation function used is Sigmoid based. The Back Propagation Feed Forward 

Neural Network(BP FFNN) includes 4 number of inputs, 2 number of hidden layers, 

and 3 number of outputs. Weights derived from Bayes Theory are assigned to each 

synapse that connects the neurons. These weights are trained until the error is 

minimized to a certain extent. The parameters settings that are used to execute the 

neural network are as specified next. Figure 3.6 shows the architecture of the neural 

network, with 3-4-3-4 combination of neurons in the layers. 

• Learning rate is set to 0. 8 

• Halt training if maximum epochs is equal to 50000 or error ratio is less than 

0.05 

• Data is divided; training 60%, cross validation 20%, testing 20% 

• Activation function is sigmoidal. 

• 2 hidden layers, with 3 neurons in the input layer, and 4 neurons in the output 

layer. 

• The folds for data are set as randomized ordering of instances. 
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• The training is conducted for 20 cycles. 

Electives 

Input 
Layer 

Back Propagation Feed Forward Neural 
Network 

Hidden 
Layers 

Output 
Layer 

FIGURE 3.6: Architecture ofback propagation feed forward neural network 

The learning process for the BP FFNN is conducted based on the reassignment 

of weights as the weights at the output layer is back propagated to the previous layers 

until the minimized error rate is reached. In this particular project, there are 2 

conditions that halt training: (1) When the maximum number of epochs is equal to 
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50000, or (2) Error ratio is less than 0.05. The formulae for this weight modification 

can be viewed from formulae 2.2 and 2.3. 

3.1.5 Fuzzy Logic 

3.1.5.1 Input and Definition of membership function 

At this stage, the data set values are fully loaded for further transformation processes. 

Following the loading, fuzzy variables which include Core, Major and Elective are 

then declared. As for testing data set Iris, the fuzzy variables are Petal Length, Petal 

Width, Sepal Length and Sepal Width. 

Fuzzy Sets are then defined to identify the degree of membership of each 

variable. Following this, membership functions are constructed depending on the 

number of linguistic terms and the number of classes that a data set generates. An 

example code snippet is provided below where variable Core is declared with three 

linguistic terms: (1) Excellent, (2) Good, and (3) Poor. 

Core.addTerm("Excellent'; new LeftLinearFuzzySet(3.65, 3.875)); 

Core.addTerm("Good'; new TrapezoidFuzzySet(2.9,3. 0,3.5,3.875)); 

Core.addTerm('Poor'; new RightLinearFuzzySet(2.5,2.9)); 

The types of fuzzy sets can be trapezoidal, triangular, singleton, PI or many others 

depending on the nature of the data. Since all three subject groups are evaluated in the 

same manner, the membership functions are defined using the same figures as the 

performance benchmark. Figure 3.7 shows the graph of the membership functions for 

fuzzy variable Major with the linguistic terms Excellent, Good and Poor respectively. 

As the value of membership function reaches 1, the higher the attachment of the 

linguistic terms are. For example, for Poor linguistic term in Figure 3.7, the fuzzy area 

between fuzzy values 2.5 and 2.9 falls in between membership function values 0 and 

l. Any linguistic values being under 2.5 are considered as completely poor, where 

there is no sense of fuzziness attached to the value. As for linguistic values being more 
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than 2.9, the fuzziness for the next linguistic term which is Average is calculated. The 

scenario is similar for all the linguistic terms. Commonly, the right and left points of 

the graph usually form a constant line at I or 0. 

c: 
.Q 
0 
c: 
::I u. 
Q. :c e 
~ 
E 
CD ::e 

Linguistic Terms Points 

FIGURE 3.7: Membership function for fuzzy variable Major. 

3.1.5.2 Construction of fuzzy rules, aggregation and defuzzification 

Heuristically induced, there are six final fuzzy rules that are applied by the system. 

One of the parameters that are used to implement the fuzzy logic system is union 

function; where it is used to globalize or aggregate the executed rules. The steps 

require the individual rules to be executed prior to the aggregation of the fuzzy 

outcome. If the rule antecedents match the rule inputs, rule will fire with meaningful 

outputs. The test is that all of the antecedent/input pairs overlap at least to degree as 

specified by the threshold that is set to zero. A global fuzzy value is created to 

unionize the rule execution outcome prior to defuzzification process. In summary, the 

steps that are applied in constructing fuzzy rules, aggregation and defuzzification are: 

(1) Apply the inputs to all of the rules in the system, executing the rules one at a time 
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and performing a global accumulation of the outputs, (2) defuzzify the outputs to 

create crisp numbers from the output fuzzy values, and (3) apply the crisp outputs to 

the system. There are two different defuzzifiers that are used in this project: 

• Center of Area (COA) defuzzification 

This method defuzzifies a fuzzy set returning a floating point that represents the 

fuzzy set. It calculates the x value that splits the fuzzy set so that there is an equal 

area on either side of the x value. The set is subdivided into different shapes by 

partitioning vertically at each point in the set, resulting in rectangles, triangles, and 

trapezoids. 

• Moment defuzzification 

This method defuzzifies a fuzzy set returning a floating point that represents the 

fuzzy set. It calculates the first moment of area of a fuzzy set about the y axis. The 

set is subdivided into different shapes by partitioning vertically at each point in the 

set, resulting in rectangles, triangles, and trapezoids. The centre of gravity 

(moment) and area of each subdivision is calculated using the appropriate formulas 

for each shape. 

The defuzzification process is then followed by the iteration of all Student data. 

Finally, the accuracy level is calculated for classes accordingly prior to combining the 

total errors for all instances. 

3.2 Unit and Integration Testing 

Unit testing involves verifying each module as to determine if it meets the stated 

specifications. In this project, the accuracy level of individual components in the fuzzy 

system and the neural network are tested during design phase. The design will then go 

through integration testing where several modules are combined. The individual 

components previously mentioned are: 

• Fuzzy system. 

• Neural network. 
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• Bayes probability calculations. 

Following the success of these modules, the integration test begins through 

combination of module incrementally. Any incompatibility discovered at this stage is 

debugged by modifying the linkage between the modules or generally viewing the 

system as a solid entity without having to debug the modules' internal contents. 

3.3 Required Tools 

Since the main utilized programming language in this project is Java, the main 

requirement is Java Runtime Environment, with additional complementary Java tools. 

The data is to be stored in mySQL5-based database. Other than that, publicly available 

training and test data sets are also required to train system. 

30 



CHAPTER4 

RESULTS AND DISCUSSION 

4 RESULTS AND DISCUSSION 

After executing both techniques on both data sets, the summary of the results in tenns 

of accuracy is as shown in Table 4.1. Among the three techniques, the highest 

accuracy is achieved by the combination of back propagation feed forward neural 

network with initialization of weights using Bayes Theorem. The test is conducted for 

20-folds using randomized data selection as the folding method. 

Accuracy(%) 
NN NN+B 

Data Set Train Test Train Test 
89.5- 89.2- 90.1- 90.3-

Iris 96.2 96.0 97.9 98.6 
88.2- 87.0- 88.6- 88.1-

Student 90.0 90.0 96.3 97.0 
Averaged Iris 92.85 92.6 94 94.45 
Averaaed Student 89.2 88.5 92.45 92.55 

Accuracy(%) 
FL 

Data Set MomentDefuzzifv COA 
Iris 80.1 66.0 
Student 99.5 75.0 

TABLE 4.1: Level of accuracy for neural net and fuzzy system 

For Fuzzy Logic, since it is not a learning technique on its own, the defuzzifier 

with the highest accuracy level returned is moment defuzzifYjng technique. It is 

concluded that the results generated by the combination of neural network and Bayes 

Theorem are higher as compared to Fuzzy Techniques. 

For neural network, the error rates are minimized as the iteration increases. 

Based on the parameters provided in the methodology section of this report, the 
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application is developed utilizing the neural network with initialization of weights 

using Bayes Theory. 

FIGURE 4.1: Error rates for neural network with Bayes weight initialization 

For implementation purposes, the chosen methodology is the combination of 

Bayes and neural network. The ability of neural network to process and learn is much 

appreciated in a data mining project such as this. Fuzzy technique is used here to 

present the data in simple human language instead of statistics and numbers. 

Observing from the two sub-projects that are managed separately, both techniques can 

function independently for different advantages. In the future, the combination of 

these techniques may lead to better results in terms of accumulating learning and 

presentation features. 

4.1 Screen Flow 

The system is fairly simple for front-end users. User logs on the system, fill in 

username and password to enter the screen provided in Figure 4.1. Next, student ID is 

inserted into the text field to be searched Once found in the database, the student's 

expected class of graduation will be displayed. As seen in Figure 4.1, the fuzzy table 
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indicating fuzzy rules that are relevant to the classification is included for reference. 

User can also train the data through front-end access to view the generated statistics 

and graphs in command prompt format. 

FIGURE 4.2: Student Predicted Class of Graduation 
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CHAPTERS 

CONCLUSION AND RECOMMENDATION 

5 CONCLUSION AND RECOMMENDATION 

Fuzzy logic, neural network and Bayes individually covers many areas of possibilities. 

Although in this project, the techniques are separated, it is foreseen that through the 

combination of all three techniques, the accuracy level of the returned results is 

expected to be optimized. Although nowadays most researchers are aiming for hybrid 

systems, the application of individual fuzzy techniques, neural network and Bayes 

Theorem should not be left out. Many parties believe that the studies on individual 

.algorithms, and their variants of application are not conducted vastly, thus disallowing 

direct comparison of algorithms. As further standards are set, the comparison may 

stand of more solid grounds, and the 'best' algorithm may be named depending on 

factors accordingly. Thus, the optimization of the subcomponents should be 

researched on continuously. Through the identification of weaknesses as strengths of 

the components, the overall objective can be achieved through the construction of an 

ideal hybrid system. 

In specific reference to student academic data, this project has contributed in 

terms of customizing the grading system based on UTP academic structure. 

Researchers [24], [25], [8] have identified the problems of grading in general. 

Tremendous efforts had to be put into the pre-processing stage, where extensive data 

cleaning and patching was manually conducted. This grading system is generally 

relevant to many universities in Malaysia as the grading system is fairly similar. 

However, customization may be needed in order to cater for very specific 

requirements. It is a possibility that some of the applied methods by these researchers 

can be absorbed into UTP' s way of grading, if not all local universities in Malaysia. 

Initial efforts have also been shown in terms of combining learning abilities of 

neural network and the simple human language presentation of information. In the 
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future, this effort can be continued along with deeper analysis on how Bayes Theorem 

can further improve the intelligent system as a whole. Other than that, UTP raw 

academic data's pre-processing should be automated, especially in terms of data 

cleaning and patching. It is more organized thus definitely is adding to UTP' s value in 

its academic data operations. It is also easier in terms of conducting analyses and 

knowledge discovery. In conclusion, the system is currently developed at its initial 

stage, where further technical improvements and combinations of algorithms can be 

explored to create a more solid system as a whole. 
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APPENDIX 3-2 

Student Raw Data Sample 
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