
CERTIFICATION OF APPROVAL

Text Summarization

By

Siti Noor Arfah Binti Umar

Dissertation Submitted to the Information Technology Programme

Universiti Teknologi PE1RONAS

Approved By,

~

In partial fulfillment of the requirement for the

Bachelor of Technology (Hons)

(Information Communication Technology)

(Ms. Vivian Yong Suet Peng)

UNIVERSITI TEKNOLOGI PE1RONAS

TRONOH, PERAK

June2006

I
1) ~\b~<.- "'~"\r~~"J

"Y) Lb~~\-,"~ \\~~,'"oV,c<, ,

CERTIFICATION OF ORIGINALITY

This is to certifY that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein has not been undertaken or done by

unspecified sources or persons.

ii

ABSTRACT

Text summarization is the process of distilling the most important information from a

source (or sources) to produce an abridged version for a particular user (or users) and task

(or tasks) [2]. By providing a text summarization system that will simplify the bulk of

information and producing only the most important points, the task of reading and

understanding a text would inevitably be made easier and faster. With a large volume of

text documents, a summary of each document greatly facilitates the task of finding the

desired documents and the desired data from the documents. As a solution for the above

matter, this project objective is to simplify the texts from a previous text summarization

system and further reducing the number of words in a sentence, shortening the sentences

and eliminating sentences with similar meanings and also produce grammar rules that

generate sentences that are human-like. The waterfall model is chosen as the project

development life cycle. A detailed research has been conducted during the requirement

definition phase and the system prototype is designed in the system and software design

phase. During the development phase, the coding implementation will be conducted and

the unit testing part will be done throughout that development process. After the entire

unit has been tested, they will be integrated together and the system testing can be done

as a whole. The complete program is put through thorough test and evaluation to ensure

its functionality and efficiency. As the conclusion, this project should be able to produce

a summarized text as the output product and meet the project requirements and

objectives.

iii

ACKNOWLEDGEMENT

Assalamualaikum and Alhamdulillah. First and foremost the author would like to take

this opportunity to convey her gratitude and appreciation to Ms. Vivian Y ong Suet Peng,

her final year project supervisor who had supervised her progress throughout the

development of the project. Her advice, comments and ideas has been the main factor for

this project's success.

The author would also like to thank her family for all their advice and support through all

the times the author was in need. The author would also like to acknowledge her friends

namely Mohd Fakri Bahri, Sarah Haryati Zulkifli, Nurunnisa Abd Aziz and all the others

who has assisted and helped in anyway in making this project a success.

A well-known Malay proverb translated to "One can pay back the loan of gold, but one

dies forever in debt to those who has given kind assistance." As such, the author is

forever in debt of those who has helped her in any way. Thank you

iv

TABLE OF CONTENTS

CERTIFICATION .

ABSTRACT. iii

ACKNOWLEDGEMENT . iv

CHAPTER!: INTRODUCTION I - 3

1.1 Background of Study I

1.2 Problem Statement 2

1.3 Objective . 3

1.4 Scope of Study 3

CHAPTER2: LITERATURE REVIEW 4-6

2.1 History and Previous Works. 4-6

CHAPTER3: METHODOLOGY 7-15

3.0 Software Process Model 7

3 .I Requirement Definition 8

3.2 System Design 8-10

3.3 System Development II

3.3.1 Stemmer. II

3.3.2 Stop Words Remover 12

3.3.3 Redundant Word Remover 12

3 .3 .4 Application of Grammar Rules . . 13-14

3.4 Integration And System Testing 14

3.5 Tools Required 15

3.5.1 Hardware 15

3.5.2 Software 15

v

CHAPTER4: RESULT AND DISCUSSION 16-22

4.1 Functional Testing 16

4.2 Integration Testing 17

4.3 Data Gathering and Analysis. . 18-21

4.3.1 Sample oflnput data. 19

4.3 .2 Sample Result and Analysis . 19-20

4.3 .3 Evaluation Result . 20-21

4.4 Discussion . 21-22

4.5 System Limitations 22

CHAPTERS: CONCLUSION AND RECOMMENDATION. .23-24

5 .I Conclusion .23-24

5.2 Recommendation and Future Works. 24

REFERENCES 25-27

VI

LIST OF FIGURES

Figure 3.1 The Waterfall Model

Figure 3.2 System Architecture

Figure 3.3 Text Summarization System Interface

Figure 3.4 Sample Output of Stemmer Module .

Figure 3.5 Sample Output of Redundant Word Removal Module.

Figure 3.6 Sample Grammar Rules

Figure 3.7 Sample of Sentence Rule Application.

Figure 4.1 Three Main Buttons

LIST OF TABLES

Table 4.1 Integration Testing Comparison

Table 4.3.1 Result and Analysis for Text I

Table 4.3.2 Result and Analysis for Text 2

Table 4.3.3 Result of Evaluation .

vii

7

9

10

11

12

13

14

16

18

19

20

20

CHAPTER I

INTRODUCTION

1.1 Background of study

Automatic text summarization has received a great deal of attention in recent

research. The rapid growth of the Internet has resulted in enormous amounts of

information that has become increasingly more difficult to access efficiently. The

ability to summarize information automatically and present results to the end user in

a compressed, yet complete form would help to solve this problem [I].

Text summarization is the process of distilling the most important

information from a source (or sources) to produce an abridged version for a

particular user (or users) and task (or tasks) [2]. By providing a text summarization

system that will simplify the bulk o~ information and producing only the most
'

important points, the task of reading ahd understanding a text would inevitably be

made easier and faster.

Automatic text summarizing is .similar with both Information Retrieval and

Extraction. Information Retrieval is basically retrieving information based on a

certain criteria or set of words among a large amount of data while Information

Extraction can be described as processing a document with the objective of

revealing only the relevant infdrmation and creating a more concise document.

Summarization that is done by methods of extraction processes documents as a

collection of sentences. It identifies and returns only the sentences that are

considered most relevant thus; the summary is a subset of the set of sentences of the

original text. Summarization by abstraction, on the other hand, applies more

I

complex linguistic technology techniques that will generate the output by processing

the information in the original text. This way of summarization is complex and

needs an advanced understanding of the Natural Language Processing techniques of

Artificial Intelligence.

This project will be focusing on the semantics-side of language processing.

The main issue that would be touched on would be of Semantic Analysis that can be

defined by assigning meaning representation to inputs. Summaries can be built on a

deep semantic analysis of the source text. For example in 1995 a research was done

to investigate ways to produce a coherent summary of several texts describing the

same event, when a full semantic representation of the source texts is available. This

type of source abstraction is the most expressive, but very domain dependent [3]. A

great number of grammar rules need to be defined and semantics need to be

elaborated upon in order to produce a satisfactory result.

1.2 Problem statement

In our current digital era, everything has been made simpler with the help of

machines that enable us to perform difficult and tedious work with greater ease. But

as there are more technology and tools, more time has to be spent in learning to

understand and operate the technologies. This in tum will require humans to read in

order to gain the information and knowledge required. Thus now, we end up with a

lot of technology to learn about but with very limited time to read every single thing

about it. This is where a text summarizati<;m system comes as a necessity in our life.

With a large volume of text documents, presenting the user with a summary of each

document greatly facilitates the task of finding the desired documents and the

desired data from the documents.

The issue of text summarization has been brought up years ago and research

on the topic has been done since many years back. Although it has been accepted as

an important matter to work on, not many lights have been shed into this area. In

Malaysia, this area of Artificial Intelligence has not been studied in depths into nor

has it been given much attention.

2

A previous text summarization system [7] has been developed to extract

important sentences from a given text. But since the sentence extracted could still be

improved by applying techniques that concerns with the grammatical structure of the

text, a more in-depth system could be developed to fine-tune the current system.

1.3 Objectives

I. To build a text summarization system that would summarize and simplifY the

texts from a previous text summarization system in order to further reduce

the number of words in a sentence.

2. To research and try to find a way to develop a text summarization system

that will summarize a text by shortening the sentences and eliminating

sentences with similar meanings.

3. To develop a system that contains as many grammar rules as possible in

order to generate sentences that is as human-like as possible.

1.4 Scope of study

This project will be concerned about producing a text summarization using

semantics of the English grammar rules. The input for this project would be the

output from the previous project [7] done on text summarization using a neural­

based approach. The scope of this project is to simplifY sentence structures and to

eliminate same meanings in the text.

3

CHAPTER2

LITERATURE REVIEW AND THEORY

2.1 History and previous works

The research of automated text summarization can be said to have started

around the late fifties. Attempts to produce a human quality summary have shown

that a text summarization system has to include understanding of the meaning ofthe

sentences itself, abstraction and words production [4]. From the very beginning, the

subsequent task of automatic abstracting has been considered a problem that can be

solved using surface-level pattern matching techniques and domain-independent as

well as language-independent statistical methods.

According to the level of semantic analysis, summarization methods can be

roughly classified into the following 3 categories [14]:

I) Based on extraction. These methods analyze the sentences similarity and

extract the most important sentences to form the summary. MEAD [13] is an

example of this category. MEAD is the most elaborate publicly available

platform for multi-lingual summarization and evaluation. MEAD implements

a battery of summarization algorithms, including baselines (lead-based and

random) as well as centroid-based and query-based methods. Its flexible

architecture makes it possible to implement arbitrary algorithms in a

standardized framework. [13]

4

2) Based on simple semantic analysis such as Lexical Chain. We first

construct a tree structure of the origin document, and then score the every

chain to select the strongest chains as output. The BioChain Project [15]

propose concept chaining to link semantically-related concepts within

biomedical text together. The resulting concept chains are then used to

identity candidate sentences useful for extraction. The extracted sentences

are used to produce a summary of the biomedical text [15].

3) Based on deep semantic analysis. For example, Marcu proposed an

approach based on the construction of a rhetorical tree that uses explicit

discourse markers and heuristic rules to decide which is the best rhetorical

tree for a given document [16].

However, most of the automatic summarization will in the end boil down to a

sentence extraction problem. Summarization systems can either extract text-spans

related to the main topics of a whole document or apply a query-based

summarization that will produce abstract information relevant to a given query.

Many numbers of works could be found for researches done to produce an automatic

text summarization. Microsoft Word has had a summarizer for documents since

1997. R. Barzilay and M. Elhadad 9eveloped a method that creates text summaries

by finding lexical chains from the document [3]. This project applied the "simple

semantic analysis" as discussed above. This project however differs from those of

BioChain's as it discusses a more general text for summarization rather than scope

down to a narrow field.

B. Hachey and C. [8] Grover presented favorable sentence extraction results

in classification and ranking frameworks. By applying a breakdown of sentence

extraction scores by rhetorical category they have reported that rhetorical

information is an important means of controlling argumentative distribution of

sentences in an extractive summarization system [8]. Next is the SUMMARIST text

summarizer from the University of Southern California that also applies a sentence

extraction method for summarization. It is a system that combines symbolic

concept-level world knowledge with robust NLP processing to overcome the

5

problems of the depth/robustness tradeoff strives to create text summaries based on

the equation: summarization= topic identification+ interpretation+ generation [9].

Meanwhile summarizations in other languages have also been produced such

as for Turkish, German, Norwegian and many more others. SweSum is the first

automatic text summarizer for Swedish based on statistical, linguistically and

heuristic methods where the summarization system calculates how often certain key

words appear [I 0]. The summarization system calculates the frequency of the key

words in the text, which sentences they are present in, and where these sentences are

in the text. It considers if the text is tagged with bold text tag, first paragraph tag or

numerical values. All this information is compiled and used to summarize the

original text.

From the point of v1ew of natural language processing, producing a

semantically related text summarization is considered a heavily knowledge-based

task requiring a substantial knowledge background [II]. Designing computer

systems to understand natural language input is a difficult task in order to produce a

human-like summary. The very intensive and complex computational grammars

behind natural language applications are often inefficient, incomplete and

ambiguous [12]. This obvious difficulty in constructing adequate grammars has

motivated much research in machine learning.

Semantic grammars, which uniformly incorporate both syntactic and

semantic constraints to parse sentences and produce semantic analyses, have proven

extremely useful in constructing natural language interfaces for limited domains [4].

But still, interpreting a sentence is' not a simple thing to describe much less to

produce a summary of it. Theories for computer processing of natural language will

often insist on the necessity of a vJorid representation for the interpretation of a

sentence or a set of sentences. But it. is maintained that a semantic grammar should

mainly include a clear relation, not only between an expression of a language and

the objects to which they refer in a particular usage, but also between the sense of

the expression and their references.[5]

6

CHAPTER3

METHODOLOGY

3.0 Software Process Model

The methodology applied in this project is the most common of life cycle

models namely the Waterfall Model. This type of software development

methodology was selected mainly because it is very straightforward and easy to

understand and uncomplicated to perform. In a waterfall model, each phase must be

completed in its entirety before the next phase can begin as shown in Figure 1. At

the end of each phase, a review takes place to determine if the project is on the right

path and whether or not to continue or discard the project [19].

Figure 3.1: The Waterfall Model

7

3.1 Requirement Definition

Requirements are set of functionalities and constraints that the end-user

(who will be using the system) expects from the system [18]. The requirements are

analyzed for their validity and the possibility of incorporating the requirements in

the system to be development is also studied. All the requirements will in the end set

the constraints for the system and the functions that the system will need to

incorporate.

3.2 System Design

The design phase is important in order to understand what is going to be

created and what it should look like. The requirement specifications from first phase

are studied in this phase and system design is prepared [18]. System Design helps in

specifYing hardware and system requirements and also helps in defining overall

system architecture [18].

The flow of the system is that the user will have to provide an input and the system

will produce a summary of the input text. Figure 3.2 below illustrates the system

architecture of the summarization system.

8

.. ,. nemQue sto'p···
wortis\
' _ ',•>(<AY-V "

Figure 3.2: System Architecture for the Text Summarization System

From the figure, the system components can be divided into 4 parts. They consist of

a stemmer, stop words remover, redundant words remover and lastly application of

the grammar rules. The stemmer will remove suffix and prefixes in each word. For

example the word transitional will be stripped of its suffix "ional" and the output

will be transit. The stemmer is important to ensure that the words that are actually

the same but has suffix and prefixes will be identified and recognized as the same

word instead of words with different meanings. The next stage or module is to

remove the stop words. Stop words are those words which are so common that they

are useless to index or use in searches and are thus removed to simplify a sentence

and to leave only words with significant meanings. Example of stop words includes

words such as "because", "although", "don't" and lots more. Next process is to

remove redundant words. This is done by applying a ranking system that will detect

the words in a sentence that have the same meaning and will select only two words

to be displayed as the output randomly. The ranking algorithm was constructed

purposely for this system to select which word to be selected out of the list of words

with the same meaning. Lastly the sentence that has been stripped of unnecessary

words and elements will be applied the grammar rules that will restructure the

sentence to produce a summary of the text.

9

In this phase the interface for the system was designed. Figure 3.3 shows the

interface design for the text summarization system. The functions that are available

in the user interface consist of the "summarize", "clear" and "exit" button. The user

will open the text file they want to summarize by clicking on the "browse" button

and it will be immediately be displayed on the text field above it. The user will then

have to click the "summarize" button for the text to be run through the system and

the output to be displayed in the text field below. The "clear" button will remove the

current text in the fields and thus clear all the words in the field. Clicking the "exit"

button will terminate the program.

Figure 3.3: Text Summarization System Interface

10

3.3 System Development

Once the system design phase is completed, the work was divided into

modules/units and construction began. The system is first developed in small

programs called unit which was developed and tested for its functionality. Testing

each module separately to ensure it is working is referred to as Unit Testing. Among

the module that was constructed for this system was the stemming module, stop

words removal module, ranking module and the module in which the grammar rules

are applied to the text.

3.3.1 Stemmer

The stemmer used in this system is an altered code adapted from a stemmer

available on the internet. The Porter stemming algorithm (or 'Porter stemmer') is a

process for removing the commoner morphological and inflexional endings from

words in English. Its main use is as part of a term normalization process that is

usually done when setting up Information Retrieval systems. Examples of how the

system input and output would look like are as in Figure 3.4:

I ?- stem_token(w([r,a,i,d,e,d}), P).
P = w([r,a,i,d])

I?- stem_token(w([r,a,i,d,e,rj), P).
P = w([r,a,i.d,e,r])

I?- stem_token(w([r,a,i,d,e,r,s}), P).
P = w([r,a,i,d,e,r])

I ?-stem _token(w([l, o,o,k, i,n,g]), P).
P = w([l,o,o,k])

Figure 3.4 : Sample output from stemmer module

11

3.3.2 Stop words remover

The stop word remover module is (as the name implies) to remove all the stop

words in the text. More than 850 stop words have been identified and included in the

stop word "database" for this system.

3.3.3 Redundant words remover

This module will look through the sentence and identity the words that occur

more than three times and will not allow any words to be repeated more than three

times in the line. This is just the initial function of this module as the real module

would identity each word in a category. Each category of words consists of words

with the same meaning as they occur in the thesaurus. This is done by applying a

ranking system that will detect the words in a sentence that have the same meaning

and will select only two words to be displayed as the output randomly. The ranking

algorithm was constructed purposely for this system to select which word to be

selected out of the list of words with the same meaning. The module functions to

remove words in the same category that occur more than 3 times in one sentence.

Figure 3.5 is an example depicting how the input and output of the redundant word

remover currently works.

I?- remove_triplets([1,3,4,4,4,2,2,1,5,5,5,5,5,1,6], P).
p = [1,3,4,2,2,5,6]

I ?- remove_triplets([pretty, beautiful, cute, cute, pretty, cute, gorgeous], P).
P = [pretty, beautiful, cute, pretty, gorgeous]

Figure 3.5: Sample output from redundant word removal module

12

3.3.4 Application of grammar rules

The grammar rules applied in this system are based on semantic rules applied in

most linguistic systems. A sentence is made up of different combination of sentence

structures such as the determiner, nouns, verbs, adjectives, conjunctions and other

grammar structures. Semantic rules is concerned with providing the system with as

much sentence structure as possible to cater for all the sentences that might be used

as the input for the system. As it is impossible to cater for all the sentences in the

English language, this system is catered to suit texts in the fields oflnformation

Technology only. Figure 3.6 show examples of the grammar rules that have been

currently developed for the system.

%English grammar Rules

a(z,a(DET,N)) --> det(z,DET), n(z,N).
b(z,b(IS,VED))-->si{z,IS), ved(z,VED).
c(z,c(ST,DET))-->st(z,ST), det(z,DET).
d(z,d(V,ST))-->v(z,V), st(ST).
e(z,e(FIELD,MED))-->field(z,FIELD),
med(z,MED).
f(z,f(PREPT,ST))-->prept(z,PREPT),
st(z,ST).
g(z,g(ST,ST))-->st(z,ST), st(z,ST).
h(z,h(MED,ADV))-->med(z,MED), adv(z,ADV).
i(z,i(ST,DET))-->st(z,ST), det(z,DET).
j (z,j(FIELD))-->field(z,FIELD).
k (z, k (VED)) -->ved (z, VED).
l(z,l(A,ST))-->a(z,A), st(z,ST),
m(z,m(J,B))-->j (z,J), b(z,B).
n(z,n(C,D))-->c(z,C), d(z,D).
o(z,o(E,F))-->e(z,E), f(z,F).
p(z,p(H,J))-->h(z,H), j(z,J).
q(z,q(K,TIME))-->k(z,K), tme(z,TIME).
r(z,r(J,Q))-->j (z,J) ,q(z,Q).
v(z,v(M,N,O))-->m(z,M), n(z,N}, o(z,O).
t(z,t(K,P,R))-->k(z,K), p(z,P), r(z,R).
u(z,u(L})-->l{z,L).
s(z,s(U,V,T))-->u(z,U), v(z,V), t(z,T).

Figure 3.6: Sample Grammar Rules

13

(S (NP (NP These issues)
(PP of

(NP cybersickness)))
(VP will

(VP be
(ADJP (ADVP very)

important
(PP in

(NP (NP applications)
(VP involving

(NP people)
(PP with

(NP (NP disability)

I I I I I I I I I I I I I I

(NP (NP particularly those
disabilities)

{SBAR (WHNP that)
{S (VP affect

(NP (NP balance)
and
(NP equilibrium}

Figure 3.7: Sample of sentence rule application

Figure 3. 7 depicts the result after all the grammar rules have been applied to the

sentence "These issues of cybersickness will be very important in applications

involving people with disability, particularly those disabilities that affect balance

and equilibrium " the system will trace each word with its own grammar to identity

each fragment of a sentence.

3.4 Integration & System Testing

The modules and units developed in the precious phase are integrated into a

complete system during Integration phase and tested to check if all units coordinate

between each other and the system as a whole behaves as per the specifications. As

previously presented in the system development phase, each module is working and

functioning as intended. Thus the modules are now integrated and combined to

complete the system as a whole.

14

3.5 Tools Required

3.2.1 Hardware

• Personal Computer AMD Athlon 64 Processor 2.0Ghz.

• Memory space 256MB RAM.

3.2.2 Software

• Platform Microsoft Windows XPsp2.

• LPA WIN-Prolog 4320

15

CHAPTER4

RESULT AND DISCUSSION

4.1 Functional Testing

Once the system is completed it is put through an assessment to test each

function offered as the interface, to ensure that it was working faultlessly. As there

are three main buttons with different functions that the end user would deal with,

each would be tested to ensure functionality.

Summarize I
Figure 4.1: The three buttons with main functions

Button Expected Result Actual Result Remarks

"SUMMARIZE" Summarize the The text input was

given text input summarized and BUTTON IS

and produce a the output was a FUNCTIONAL

summarized text as shortened sentence

output

"CLEAR" To clear all fields All fields were BUTTON IS

and reset each cleared and each FUNCTIONAL

functions functions reset

16

"EXIT" Exit from the The system was

system and close successfully exited BUTTON IS

the current window and the window FUNCTIONAL

closed

Table 4.1: Functwnal testmg result

4.2 Integration Testing

The code produced as the engine for the system will be integrated and tested

to verity its functionality. The mechanism or the coding will be tested own its own

without the interface to make sure that it functions to meet the objectives set. The

system will also be tested once it is linked with the interface to ensure that it

functions as well as it did without the interface. The test on the system that has been

integrated with the user interface is also crucial to ensure that all the linkage was

properly done and that the user will be able to manipulate it as required.

Without Interface With Interface

The functionality IS tested by After making sure that the program is
invoking the system and accessing it functioning correctly, the "code" is
through the Win-Prolog console linked to the user interface which is
manually. The system functions are where the end user will be accessing
tested using the prolog programming the system. This time the system is
language. tested usmg the buttons Ill the

interface to manipulate the program.

17

The program works well and

produced an acceptable output. The

text sentences used as input were

successfully summarized and a

shorter result was produced.

The system functions correctly even

when linked to the user interface.

The buttons works and the user will

not need to know any prolog

programming in order to use the

system.

Table 4.2: integration testing comparison

4.3 Data Gathering and Analysis

Once the system has been successfully completed, an evaluation is carried

out to test the efficiency ofthe system and its effectiveness in meeting the objectives

set. The evaluation is carried out by first finding sample texts that consists of output

from the previous system [7] or any text similar to it. These texts have already been

processed to leave only the important sentences or paragraph instead of a large text

file.

10 paragraphs from texts were selected randomly to be tested for this

evaluation purpose. Each contains sentences that are very long due to the number of

words in the sentence (more than 10 words in a given sentence). The number of

words in the sentence that is used as the input is documented. After the sentence is

run through the system, the output is also documented and the number of words after

the test is noted. A comparison of the number of words reduced is performed and the

result is documented.

18

4.3.1 Sample of input data

• Fingerprints have been routinely taken, categorized, and filed for over 100 years, and since the 1980s

have been digitized, stored, shared, and compared on networked computer systems. Fingerprints are

accepted by all courts worldwide as positive proof of identity, and a considerable body of knowledge

has been established and is legally accepted regarding fingerprint identification methods.

• The tools for the search and seizure side of computer forensics are a sophisticated potpourri primarily

focused on the physical side of computing: tracing and locating computer hardware, recovering hidden

data from storage media, identifying and recovering hidden data, decrypting tiles, decompressing data,

cracking passwords, crow- barring an operating system by bypassing normal security controls and

permissions, and so forth.

• Although most research on visually induced motion sickness has been on sickness induced in vehicle

simulators or simulator sickness, it is assumed that the problems and findings generalize to other

virtual environments. Furthermore simulator sickness is a subset of the motion sickness experienced

from travel through virtual environments, for which we suggest the more general term cybersickness.

• Grid computing offers a model for solving massive computational problems by making use of the

unused resources such as CPU cycles or disk storage, of large numbers of disparate computers, often

desktop computers, treated as a virtual cluster embedded in. a distributed telecommunications

infrastructure. Grids offer a way to solve Grand Challenge problems like protein folding, financial

modeling, earthquake simulation and climate/weather modeling.

4.3.2 Sample result and analysis

Fingerprints have been routinely taken, categorized, and filed for over 100 years, and since the 1980s

Input have been digitized, stored, shared, and compared on networked computer systems. Fingerprints are

Text accepted by all courts worldwide as positive pmof of identity, and a considerable body of knowledge

has been established and is legally accepted regarding fingerprint identification methods.

Fingerprints have been taken, categorized, tiled, digitized, stored, shared and compared on computer

Output systems.

·rext Fingerprints are accepted by courts as proof of identity and the knowledge has been established and

accepted regarding fingerprint identification methods.

Word

Count 35 I 56

Table 4.3.1: Result and analysis for Text 1

19

Grid computing offers a model for solving massive computational problems by making use of the

Input unused resources such as CPU cycles or disk storage, of large numbers of disparate computers, often

Text desktop computers, treated as a virtual cluster embedded in a distributed telecommunications

infrastructure. Grids offer a way to solve Grand Challenge problems like protein folding, financial

modeling, earthquake simulation and climate or weather modeling

Grid computing offers a model for solving computational problems by using the unused resources

Output such as CPU cycles or disk storage of large numbers of computers treated as a virtual cluster

Text embedded in a distributed telecommunications infrastructure.

Grids offer a way to solve problems like protein folding and financial modeling.

Word

Count 50 I 65

Table 4.3.2: Result and analysis for Text 4

4.3.3 Evaluation result

Number Percentage of

Text Words Before Words After reduced Reduction

Text 1 56 35 21 37.5%

Text2 59 39 20 33.9%

Text 3 67 38 29 43.3%

Text4 65 50 15 23.1%

Text 5 60 31 29 48.3%

Text6 59 42 17 28.8%

Text 7 63 41 22 34.9%

Text8 73 39 34 46.6%

Text 9 62 34 28 45.2%

Text 10 65 43 22 33.8%

Average percentage reduced 37.54%

Table 4.3.3: Result of Evaluation

20

After each text has been processed by the system the result is as shown in

Table 4.3.3 above. The text with the most number of words is Text 8 while the least

number of words occurred in the input text of Text 1. The average number of words

put through the system for this evaluation purpose is 62.9 per paragraph. The output

text with the most significant change was Text 5 with a result of 31/60 or with a

48.3% reduction from the original text. The number of words that the system

manages to reduce varies from one text to another. This is because each sentence

structure is different. Some might have more words with similar meanings or words

from the adjectives category which will be eliminated under certain conditions. The

average number of words the system was able to eradicate was 37.54% out of all the

input texts. Although 37.54 is not such a big number, in text summarization it would

be enough to simplifY and reduce the number of words a person would have to read

to understand a text. For example, if a text contained 1000 words that the user would

have to read, by going through this summarization process the system could reduce

an estimate of375 words (based on the percentage of reduction obtained from the

evaluation process).

4.4 Discussion

Based on the gathered data and the analysis done in the evaluation process,

the system can be said to meet its objectives and is a solution that fits its problem

statement. All the input sentences have successfully been shortened and the number

of words in the text reduced, which is the most important thing required of a text

summarization system.

This system is a semantic based summarization that is produced by applying

predefined semantic grammar rules to the input text to produce a reduced and

shortened output. As such, only the sentences with the sentence structure defined in

the database will recognized. Thus not all the texts and sentences will be able to be

summarized by this system. This system is focused to the field of computers only as

the database only contains grammar rules that are applicable to sentences with words

21

related to the field. Although semantic grammar is sometimes thought of as a very

obscure system to produce, it have proven extremely useful in constructing natural

language interfaces for limited domains as it incorporate both syntactic and semantic

constraints.

When integrated with the previous text summarization system [7] the system

could be used by anyone studying the field oflnformation Technology to simplify

what they have to read. The previous system will identify and extract the sentences

with important points while this program will process the extracted sentences to

reduce the number of words and shorten the text.

4.5 System Limitations

The main limitation of the system is that it can summarize only one sentence

at a time and thus cannot recognize more than one sentence if it is used as the input.

Although the inputs are in the form of paragraphs, each sentence in the paragraph

has to be fragmented into sentences and each sentence is summarized separately.

Using the current user interface, the system user cannot directly open the text

file into the text field as the open file function is unavailable. This means that the

user can only copy the sentences from another (previously) opened file and paste it

onto the input field.

As there was a time limit to this project, only a limited amount of grammar

rules can be produced as the engine of this system. Thus the system lacks grammar

rules and can only summarize sentences whose grammar rules have been predefined

in the database. Applying more grammar rules would make this system more

versatile effective and efficient.

As the system uses the semantic grammar, it was only feasible to select one

area of research in which the database would be concentrated on. The system could

only summarize texts with topics and words related to the field of information

technology or computers.

22

5.1 Conclusion

CHAPTERS

CONCLUSION AND RECOMMENDATION

Until today, numerous projects have been developed to produce a text

summarization system that would efficiently minimize and reduce the words in a

text. The most popular method of producing a text summarization is the lexical

chain method and the statistical method. Even in UTP a text summarization system

has been produced [7] a few years ago that applied the neural network in order to

produce a concise and precise summary. As the text summarization system [7]

managed to correctly and efficiently pick out the important points in a text, an

enhancement is the only best thing to do to make a perfect text summarization

system. This is a project that should fine-tune the result from that project and filter

the sentences to make it even more concise.

By using the system, the sentences will be processed to produce a more

simplified version of the output from the previous system [7]. A lot of people would

benefit by using this system such as teachers, lecturer or student and even business­

personnel and also technicians. Teachers or students would inevitable be reading a

text to learn from its contents while a businessmen of technicians would read a text

to understand and make decisions on what action to take based on a given text. In

either case, a summarized text would help plenty.

The functionality of each module has been tested and the system was tested

again upon integration. Since its completion the system has been able to constantly

produce a shorter, more readable version of the text when the grammar rule is

defined in the database. As a conclusion, this system has in deed met its objectives

23

by simplifying the texts from a previous text summarization system and further

reducing the number of words in a sentence, shortening the sentences and

eliminating sentences with similar meanings and also contains many grammar rules

that generate sentences that are human-like.

5.2 Recommendation and Future Works

First and foremost, as this system is based on semantic grammar, the number

of grammar rules produced would have to be countless in order to cater for all the

sentence combination that could be produced in the English language. In addition to

that, the system currently only caters for sentences in the field of Information

Technology and Computers as the grammar rules were only designed for that

specific field. Thus the number of grammar rules produced in this project is still not

enough to produce an ideal text summarization system. Consequently in the future,

more grammar rules should be produced and added to the database to make this

system more effective and efficient.

The interface of this system could be reconstructed to include and allow

more functionality to make it more user-friendly. Other functions that could be

added include an automatic word count to show how many words have been

produced and reduced by the program or enable the "open file from a specific

location" function so that users wouldn't need to copy and paste the input into the

input field.

In the future, the system could also be integrated with other software to make

it more attractive or to enhance the functionality of the system. For example, a

method could be designed to enable the integration of Win-Prolog with Microsoft

Access or Oracle to act as a database in which the data could be stored instead of the

current ".pi" file. Java or Visual Basic could be used to make the user-interface more

user-friendly with more functions. Another way is to integrate the prolog file with

PHP or ASP to make it a web-based system so that it could be accessed through the

internet and serve more people from all around the world.

24

REFERENCES

[1] "Efficient Text Summarization Using Lexical Chains"
H. G. Silber and K. F. McCoy 2000. Retrieved 23 Dec 2005 from the World
Wide Web : <http://acl.ldc-upenn.edu/W!WOO/W00-1438.pdj>

[2] I. Mani and M. T. Maybury. 1999 "Advances in Automatic Text
Summarization", The MIT Press, Massachusetts Institute of Technology,
Cambridge, Massachusetts.

(3] "Using Lexical Chains for Text Summarization"
R. Barzilay and M. Elhadad 1997. Retrieved 19 Dec 2005 from the World
Wide Web: <http://www­
nlpir.nist.govlprojectslduc/pubs/2001papers!lethbridge.pdj>

[4] "Automatic Text Summarization Based onWord-Clusters and Ranking
Algorithms"

(5]

[6]

Massih R. Amini, Nicolas Usunier, and Patrick Gallinari 2005. Retrieved 19
Dec 2005 from the World Wide Web:
<http://www-connex.lip6frldownload _artie/ell 03J.pdj>

"Learning Semantic Grammars with Constructive Inductive Logic
Programming"
J. M. Zelle and R. J. Mooney 1993. Retrieved 2 Feb 2006 from the World
Wide W eb:<www. cs. utexas.edul-mllpaperslchill-aaai-93.pdj>

"Semantic for Text Processing"
Jean-Guy Meunier 1980. Proceedings of the gth conference on Computational
Linguistics. Retrieved 2 Feb 2006 from the World Wide Web:
<http: 1/ucrel./ancs. a c. uk/ aci/CIC80/C80-l 0 5 4.pdj>

25

[7] Yie C. Y. 2004 "A Text Summarization System With Neural-Based
Approach", Universiti Teknologi PETRONAS.

[8] B. Hachey and C. Grover (2005). "Automatic Legal Text Summarisation:
Experiments with Summary Structuring".
Proceedings of the 1Oth International Conference on Artificial Intelligence
and Law (ICAIL 2005), Bologna, Italy. Retrieved 12 Feb 2006 from the
World Wide Web : <http:/lhomepages.infed.ac.uklbhacheyiPUBSiicai/05-
author.pdf>

[9] SUMMARIST Automated Text Summarization Website (2000) Browsed
on 19 Dec 2005 on the World Wide Web : <http:!lwww.isi.edulnatural­
languagelprojectsiSUMMARIST html>

[1 0] SweSum - A Text Summarizer for Swedish.

Dalianis H. 2000. Retrieved 2 Jan 2006 From The World Wide Web
<http: I lwww. nada. kth. sel~herculesiTextsumsummary. html>

[11] D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer, A. c;:elebi, S. Dimitrov,
E. Drabek, A. Hakim, W. Lam, D. Liu, J. Otterbacher, H. Qi, H. Saggion, S.
Teufel, M. Topper, A. Winkel and Z. Zhu.
"MEAD a platform for multidocument multilingual text
summarization."
In Proceedings of LREC 2004, Lisbon, Portugal, May 2004. Retrieved 12
Feb 2006 from the World Wide Web:
<http: I ltangra. si. umich. edul~radev!papersllrec-mead04.pdf>

[12] Q. Zhou, L. Sun, 2005, "IS_SUM: A Multi-Document Summarizer Based
on Document Index Graphic and Lexical Chains"
Chinese Academic of Sciences, J.-Y. Nie, Universite' de Montreal.
Retrieved 12 Feb 2006 from the World Wide Web:
<http:llwww-nlpir.nist.govlprojectslduc/pubsl2005paperslcas.zhou.pdf>

[13] L. Reeve, H. Han, A. D. Brooks, 2005. "BioChain: Lexical Chaining
Methods for Biomedical Text Summarization"
Retrieved 12 Feb 2006 from the World Wide Web:
<http: llwww.pages. drexel. edul~lhr 2 41pubsl2 006SA C-BI0-13 O.pdf>

[14] Marcu, D. "From Discourse Structures to Text Summaries".
In The Proceedings of the ACL'97/EACL'97 Workshop on Intelligent
Scalable Text Summarization, 82-88 Retrieved 19 Dec 2005 from the World
Wide Web: <http:llwww.isi.edul~marculpaperslsummary97.ps>

26

[15] StartVBdotnet.com Website, System Development LifeCycle.
Browsed on the World Wide Web on 21 March 2006.
< http://www.startvbdotnet.com/sdlc!sdlc.aspx>

[16] Buzz1e.com Intelligent Life on the Web, The Waterfall Model Explained.
Browsed on the World Wide Web on 21 March 2006.
<http: I /www. buzz/e. com/ editorials/ 1-5-200 5-63 7 68. asp>

[17] CodeBetter.com Website, Software Development Life Cycle Models.
Browsed on the World Wide Web on 21 March 2006.
<http:!/codebetter.com!blogs/raymond.lewallen!archive/2005/07 /13/129114.aspx>

27

